[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / CodeGen / GlobalISel / IRTranslator.cpp
blob709965ba1515fe66bf15d3551037476940ccd1b2
1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file implements the IRTranslator class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
22 #include "llvm/CodeGen/LowLevelType.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/StackProtector.h"
31 #include "llvm/CodeGen/TargetFrameLowering.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetPassConfig.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GetElementPtrTypeIterator.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/MC/MCContext.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/LowLevelTypeImpl.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetIntrinsicInfo.h"
65 #include "llvm/Target/TargetMachine.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <iterator>
70 #include <string>
71 #include <utility>
72 #include <vector>
74 #define DEBUG_TYPE "irtranslator"
76 using namespace llvm;
78 char IRTranslator::ID = 0;
80 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
81 false, false)
82 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
83 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
84 false, false)
86 static void reportTranslationError(MachineFunction &MF,
87 const TargetPassConfig &TPC,
88 OptimizationRemarkEmitter &ORE,
89 OptimizationRemarkMissed &R) {
90 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
92 // Print the function name explicitly if we don't have a debug location (which
93 // makes the diagnostic less useful) or if we're going to emit a raw error.
94 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
95 R << (" (in function: " + MF.getName() + ")").str();
97 if (TPC.isGlobalISelAbortEnabled())
98 report_fatal_error(R.getMsg());
99 else
100 ORE.emit(R);
103 IRTranslator::IRTranslator() : MachineFunctionPass(ID) {
104 initializeIRTranslatorPass(*PassRegistry::getPassRegistry());
107 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
108 AU.addRequired<StackProtector>();
109 AU.addRequired<TargetPassConfig>();
110 getSelectionDAGFallbackAnalysisUsage(AU);
111 MachineFunctionPass::getAnalysisUsage(AU);
114 static void computeValueLLTs(const DataLayout &DL, Type &Ty,
115 SmallVectorImpl<LLT> &ValueTys,
116 SmallVectorImpl<uint64_t> *Offsets = nullptr,
117 uint64_t StartingOffset = 0) {
118 // Given a struct type, recursively traverse the elements.
119 if (StructType *STy = dyn_cast<StructType>(&Ty)) {
120 const StructLayout *SL = DL.getStructLayout(STy);
121 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
122 computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
123 StartingOffset + SL->getElementOffset(I));
124 return;
126 // Given an array type, recursively traverse the elements.
127 if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
128 Type *EltTy = ATy->getElementType();
129 uint64_t EltSize = DL.getTypeAllocSize(EltTy);
130 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
131 computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
132 StartingOffset + i * EltSize);
133 return;
135 // Interpret void as zero return values.
136 if (Ty.isVoidTy())
137 return;
138 // Base case: we can get an LLT for this LLVM IR type.
139 ValueTys.push_back(getLLTForType(Ty, DL));
140 if (Offsets != nullptr)
141 Offsets->push_back(StartingOffset * 8);
144 IRTranslator::ValueToVRegInfo::VRegListT &
145 IRTranslator::allocateVRegs(const Value &Val) {
146 assert(!VMap.contains(Val) && "Value already allocated in VMap");
147 auto *Regs = VMap.getVRegs(Val);
148 auto *Offsets = VMap.getOffsets(Val);
149 SmallVector<LLT, 4> SplitTys;
150 computeValueLLTs(*DL, *Val.getType(), SplitTys,
151 Offsets->empty() ? Offsets : nullptr);
152 for (unsigned i = 0; i < SplitTys.size(); ++i)
153 Regs->push_back(0);
154 return *Regs;
157 ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) {
158 auto VRegsIt = VMap.findVRegs(Val);
159 if (VRegsIt != VMap.vregs_end())
160 return *VRegsIt->second;
162 if (Val.getType()->isVoidTy())
163 return *VMap.getVRegs(Val);
165 // Create entry for this type.
166 auto *VRegs = VMap.getVRegs(Val);
167 auto *Offsets = VMap.getOffsets(Val);
169 assert(Val.getType()->isSized() &&
170 "Don't know how to create an empty vreg");
172 SmallVector<LLT, 4> SplitTys;
173 computeValueLLTs(*DL, *Val.getType(), SplitTys,
174 Offsets->empty() ? Offsets : nullptr);
176 if (!isa<Constant>(Val)) {
177 for (auto Ty : SplitTys)
178 VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
179 return *VRegs;
182 if (Val.getType()->isAggregateType()) {
183 // UndefValue, ConstantAggregateZero
184 auto &C = cast<Constant>(Val);
185 unsigned Idx = 0;
186 while (auto Elt = C.getAggregateElement(Idx++)) {
187 auto EltRegs = getOrCreateVRegs(*Elt);
188 std::copy(EltRegs.begin(), EltRegs.end(), std::back_inserter(*VRegs));
190 } else {
191 assert(SplitTys.size() == 1 && "unexpectedly split LLT");
192 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
193 bool Success = translate(cast<Constant>(Val), VRegs->front());
194 if (!Success) {
195 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
196 MF->getFunction().getSubprogram(),
197 &MF->getFunction().getEntryBlock());
198 R << "unable to translate constant: " << ore::NV("Type", Val.getType());
199 reportTranslationError(*MF, *TPC, *ORE, R);
200 return *VRegs;
204 return *VRegs;
207 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
208 if (FrameIndices.find(&AI) != FrameIndices.end())
209 return FrameIndices[&AI];
211 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType());
212 unsigned Size =
213 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
215 // Always allocate at least one byte.
216 Size = std::max(Size, 1u);
218 unsigned Alignment = AI.getAlignment();
219 if (!Alignment)
220 Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
222 int &FI = FrameIndices[&AI];
223 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
224 return FI;
227 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
228 unsigned Alignment = 0;
229 Type *ValTy = nullptr;
230 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
231 Alignment = SI->getAlignment();
232 ValTy = SI->getValueOperand()->getType();
233 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
234 Alignment = LI->getAlignment();
235 ValTy = LI->getType();
236 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
237 // TODO(PR27168): This instruction has no alignment attribute, but unlike
238 // the default alignment for load/store, the default here is to assume
239 // it has NATURAL alignment, not DataLayout-specified alignment.
240 const DataLayout &DL = AI->getModule()->getDataLayout();
241 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
242 ValTy = AI->getCompareOperand()->getType();
243 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
244 // TODO(PR27168): This instruction has no alignment attribute, but unlike
245 // the default alignment for load/store, the default here is to assume
246 // it has NATURAL alignment, not DataLayout-specified alignment.
247 const DataLayout &DL = AI->getModule()->getDataLayout();
248 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType());
249 ValTy = AI->getType();
250 } else {
251 OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
252 R << "unable to translate memop: " << ore::NV("Opcode", &I);
253 reportTranslationError(*MF, *TPC, *ORE, R);
254 return 1;
257 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
260 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
261 MachineBasicBlock *&MBB = BBToMBB[&BB];
262 assert(MBB && "BasicBlock was not encountered before");
263 return *MBB;
266 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
267 assert(NewPred && "new predecessor must be a real MachineBasicBlock");
268 MachinePreds[Edge].push_back(NewPred);
271 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
272 MachineIRBuilder &MIRBuilder) {
273 // FIXME: handle signed/unsigned wrapping flags.
275 // Get or create a virtual register for each value.
276 // Unless the value is a Constant => loadimm cst?
277 // or inline constant each time?
278 // Creation of a virtual register needs to have a size.
279 unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
280 unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
281 unsigned Res = getOrCreateVReg(U);
282 auto FBinOp = MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1);
283 if (isa<Instruction>(U)) {
284 MachineInstr *FBinOpMI = FBinOp.getInstr();
285 const Instruction &I = cast<Instruction>(U);
286 FBinOpMI->copyIRFlags(I);
288 return true;
291 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
292 // -0.0 - X --> G_FNEG
293 if (isa<Constant>(U.getOperand(0)) &&
294 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
295 MIRBuilder.buildInstr(TargetOpcode::G_FNEG)
296 .addDef(getOrCreateVReg(U))
297 .addUse(getOrCreateVReg(*U.getOperand(1)));
298 return true;
300 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
303 bool IRTranslator::translateCompare(const User &U,
304 MachineIRBuilder &MIRBuilder) {
305 const CmpInst *CI = dyn_cast<CmpInst>(&U);
306 unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
307 unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
308 unsigned Res = getOrCreateVReg(U);
309 CmpInst::Predicate Pred =
310 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
311 cast<ConstantExpr>(U).getPredicate());
312 if (CmpInst::isIntPredicate(Pred))
313 MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
314 else if (Pred == CmpInst::FCMP_FALSE)
315 MIRBuilder.buildCopy(
316 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType())));
317 else if (Pred == CmpInst::FCMP_TRUE)
318 MIRBuilder.buildCopy(
319 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType())));
320 else
321 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1);
323 return true;
326 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
327 const ReturnInst &RI = cast<ReturnInst>(U);
328 const Value *Ret = RI.getReturnValue();
329 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
330 Ret = nullptr;
332 ArrayRef<unsigned> VRegs;
333 if (Ret)
334 VRegs = getOrCreateVRegs(*Ret);
336 // The target may mess up with the insertion point, but
337 // this is not important as a return is the last instruction
338 // of the block anyway.
340 return CLI->lowerReturn(MIRBuilder, Ret, VRegs);
343 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
344 const BranchInst &BrInst = cast<BranchInst>(U);
345 unsigned Succ = 0;
346 if (!BrInst.isUnconditional()) {
347 // We want a G_BRCOND to the true BB followed by an unconditional branch.
348 unsigned Tst = getOrCreateVReg(*BrInst.getCondition());
349 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
350 MachineBasicBlock &TrueBB = getMBB(TrueTgt);
351 MIRBuilder.buildBrCond(Tst, TrueBB);
354 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
355 MachineBasicBlock &TgtBB = getMBB(BrTgt);
356 MachineBasicBlock &CurBB = MIRBuilder.getMBB();
358 // If the unconditional target is the layout successor, fallthrough.
359 if (!CurBB.isLayoutSuccessor(&TgtBB))
360 MIRBuilder.buildBr(TgtBB);
362 // Link successors.
363 for (const BasicBlock *Succ : successors(&BrInst))
364 CurBB.addSuccessor(&getMBB(*Succ));
365 return true;
368 bool IRTranslator::translateSwitch(const User &U,
369 MachineIRBuilder &MIRBuilder) {
370 // For now, just translate as a chain of conditional branches.
371 // FIXME: could we share most of the logic/code in
372 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel?
373 // At first sight, it seems most of the logic in there is independent of
374 // SelectionDAG-specifics and a lot of work went in to optimize switch
375 // lowering in there.
377 const SwitchInst &SwInst = cast<SwitchInst>(U);
378 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition());
379 const BasicBlock *OrigBB = SwInst.getParent();
381 LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL);
382 for (auto &CaseIt : SwInst.cases()) {
383 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue());
384 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1);
385 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue);
386 MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
387 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor();
388 MachineBasicBlock &TrueMBB = getMBB(*TrueBB);
390 MIRBuilder.buildBrCond(Tst, TrueMBB);
391 CurMBB.addSuccessor(&TrueMBB);
392 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB);
394 MachineBasicBlock *FalseMBB =
395 MF->CreateMachineBasicBlock(SwInst.getParent());
396 // Insert the comparison blocks one after the other.
397 MF->insert(std::next(CurMBB.getIterator()), FalseMBB);
398 MIRBuilder.buildBr(*FalseMBB);
399 CurMBB.addSuccessor(FalseMBB);
401 MIRBuilder.setMBB(*FalseMBB);
403 // handle default case
404 const BasicBlock *DefaultBB = SwInst.getDefaultDest();
405 MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB);
406 MIRBuilder.buildBr(DefaultMBB);
407 MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
408 CurMBB.addSuccessor(&DefaultMBB);
409 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB);
411 return true;
414 bool IRTranslator::translateIndirectBr(const User &U,
415 MachineIRBuilder &MIRBuilder) {
416 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
418 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress());
419 MIRBuilder.buildBrIndirect(Tgt);
421 // Link successors.
422 MachineBasicBlock &CurBB = MIRBuilder.getMBB();
423 for (const BasicBlock *Succ : successors(&BrInst))
424 CurBB.addSuccessor(&getMBB(*Succ));
426 return true;
429 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
430 const LoadInst &LI = cast<LoadInst>(U);
432 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile
433 : MachineMemOperand::MONone;
434 Flags |= MachineMemOperand::MOLoad;
436 if (DL->getTypeStoreSize(LI.getType()) == 0)
437 return true;
439 ArrayRef<unsigned> Regs = getOrCreateVRegs(LI);
440 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
441 unsigned Base = getOrCreateVReg(*LI.getPointerOperand());
443 for (unsigned i = 0; i < Regs.size(); ++i) {
444 unsigned Addr = 0;
445 MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8);
447 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
448 unsigned BaseAlign = getMemOpAlignment(LI);
449 auto MMO = MF->getMachineMemOperand(
450 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8,
451 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
452 LI.getSyncScopeID(), LI.getOrdering());
453 MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
456 return true;
459 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
460 const StoreInst &SI = cast<StoreInst>(U);
461 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile
462 : MachineMemOperand::MONone;
463 Flags |= MachineMemOperand::MOStore;
465 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
466 return true;
468 ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand());
469 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
470 unsigned Base = getOrCreateVReg(*SI.getPointerOperand());
472 for (unsigned i = 0; i < Vals.size(); ++i) {
473 unsigned Addr = 0;
474 MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8);
476 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
477 unsigned BaseAlign = getMemOpAlignment(SI);
478 auto MMO = MF->getMachineMemOperand(
479 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8,
480 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
481 SI.getSyncScopeID(), SI.getOrdering());
482 MIRBuilder.buildStore(Vals[i], Addr, *MMO);
484 return true;
487 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
488 const Value *Src = U.getOperand(0);
489 Type *Int32Ty = Type::getInt32Ty(U.getContext());
491 // getIndexedOffsetInType is designed for GEPs, so the first index is the
492 // usual array element rather than looking into the actual aggregate.
493 SmallVector<Value *, 1> Indices;
494 Indices.push_back(ConstantInt::get(Int32Ty, 0));
496 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
497 for (auto Idx : EVI->indices())
498 Indices.push_back(ConstantInt::get(Int32Ty, Idx));
499 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
500 for (auto Idx : IVI->indices())
501 Indices.push_back(ConstantInt::get(Int32Ty, Idx));
502 } else {
503 for (unsigned i = 1; i < U.getNumOperands(); ++i)
504 Indices.push_back(U.getOperand(i));
507 return 8 * static_cast<uint64_t>(
508 DL.getIndexedOffsetInType(Src->getType(), Indices));
511 bool IRTranslator::translateExtractValue(const User &U,
512 MachineIRBuilder &MIRBuilder) {
513 const Value *Src = U.getOperand(0);
514 uint64_t Offset = getOffsetFromIndices(U, *DL);
515 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src);
516 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
517 unsigned Idx = std::lower_bound(Offsets.begin(), Offsets.end(), Offset) -
518 Offsets.begin();
519 auto &DstRegs = allocateVRegs(U);
521 for (unsigned i = 0; i < DstRegs.size(); ++i)
522 DstRegs[i] = SrcRegs[Idx++];
524 return true;
527 bool IRTranslator::translateInsertValue(const User &U,
528 MachineIRBuilder &MIRBuilder) {
529 const Value *Src = U.getOperand(0);
530 uint64_t Offset = getOffsetFromIndices(U, *DL);
531 auto &DstRegs = allocateVRegs(U);
532 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
533 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src);
534 ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
535 auto InsertedIt = InsertedRegs.begin();
537 for (unsigned i = 0; i < DstRegs.size(); ++i) {
538 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
539 DstRegs[i] = *InsertedIt++;
540 else
541 DstRegs[i] = SrcRegs[i];
544 return true;
547 bool IRTranslator::translateSelect(const User &U,
548 MachineIRBuilder &MIRBuilder) {
549 unsigned Tst = getOrCreateVReg(*U.getOperand(0));
550 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U);
551 ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
552 ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
554 for (unsigned i = 0; i < ResRegs.size(); ++i)
555 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i]);
557 return true;
560 bool IRTranslator::translateBitCast(const User &U,
561 MachineIRBuilder &MIRBuilder) {
562 // If we're bitcasting to the source type, we can reuse the source vreg.
563 if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
564 getLLTForType(*U.getType(), *DL)) {
565 unsigned SrcReg = getOrCreateVReg(*U.getOperand(0));
566 auto &Regs = *VMap.getVRegs(U);
567 // If we already assigned a vreg for this bitcast, we can't change that.
568 // Emit a copy to satisfy the users we already emitted.
569 if (!Regs.empty())
570 MIRBuilder.buildCopy(Regs[0], SrcReg);
571 else {
572 Regs.push_back(SrcReg);
573 VMap.getOffsets(U)->push_back(0);
575 return true;
577 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
580 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
581 MachineIRBuilder &MIRBuilder) {
582 unsigned Op = getOrCreateVReg(*U.getOperand(0));
583 unsigned Res = getOrCreateVReg(U);
584 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op);
585 return true;
588 bool IRTranslator::translateGetElementPtr(const User &U,
589 MachineIRBuilder &MIRBuilder) {
590 // FIXME: support vector GEPs.
591 if (U.getType()->isVectorTy())
592 return false;
594 Value &Op0 = *U.getOperand(0);
595 unsigned BaseReg = getOrCreateVReg(Op0);
596 Type *PtrIRTy = Op0.getType();
597 LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
598 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
599 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
601 int64_t Offset = 0;
602 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
603 GTI != E; ++GTI) {
604 const Value *Idx = GTI.getOperand();
605 if (StructType *StTy = GTI.getStructTypeOrNull()) {
606 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
607 Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
608 continue;
609 } else {
610 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
612 // If this is a scalar constant or a splat vector of constants,
613 // handle it quickly.
614 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
615 Offset += ElementSize * CI->getSExtValue();
616 continue;
619 if (Offset != 0) {
620 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
621 unsigned OffsetReg =
622 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
623 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg);
625 BaseReg = NewBaseReg;
626 Offset = 0;
629 unsigned IdxReg = getOrCreateVReg(*Idx);
630 if (MRI->getType(IdxReg) != OffsetTy) {
631 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy);
632 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg);
633 IdxReg = NewIdxReg;
636 // N = N + Idx * ElementSize;
637 // Avoid doing it for ElementSize of 1.
638 unsigned GepOffsetReg;
639 if (ElementSize != 1) {
640 unsigned ElementSizeReg =
641 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize));
643 GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy);
644 MIRBuilder.buildMul(GepOffsetReg, ElementSizeReg, IdxReg);
645 } else
646 GepOffsetReg = IdxReg;
648 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
649 MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg);
650 BaseReg = NewBaseReg;
654 if (Offset != 0) {
655 unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
656 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg);
657 return true;
660 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
661 return true;
664 bool IRTranslator::translateMemfunc(const CallInst &CI,
665 MachineIRBuilder &MIRBuilder,
666 unsigned ID) {
667 LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL);
668 Type *DstTy = CI.getArgOperand(0)->getType();
669 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 ||
670 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0))
671 return false;
673 SmallVector<CallLowering::ArgInfo, 8> Args;
674 for (int i = 0; i < 3; ++i) {
675 const auto &Arg = CI.getArgOperand(i);
676 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType());
679 const char *Callee;
680 switch (ID) {
681 case Intrinsic::memmove:
682 case Intrinsic::memcpy: {
683 Type *SrcTy = CI.getArgOperand(1)->getType();
684 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0)
685 return false;
686 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove";
687 break;
689 case Intrinsic::memset:
690 Callee = "memset";
691 break;
692 default:
693 return false;
696 return CLI->lowerCall(MIRBuilder, CI.getCallingConv(),
697 MachineOperand::CreateES(Callee),
698 CallLowering::ArgInfo(0, CI.getType()), Args);
701 void IRTranslator::getStackGuard(unsigned DstReg,
702 MachineIRBuilder &MIRBuilder) {
703 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
704 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
705 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD);
706 MIB.addDef(DstReg);
708 auto &TLI = *MF->getSubtarget().getTargetLowering();
709 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
710 if (!Global)
711 return;
713 MachinePointerInfo MPInfo(Global);
714 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
715 MachineMemOperand::MODereferenceable;
716 MachineMemOperand *MemRef =
717 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
718 DL->getPointerABIAlignment(0));
719 MIB.setMemRefs({MemRef});
722 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
723 MachineIRBuilder &MIRBuilder) {
724 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI);
725 MIRBuilder.buildInstr(Op)
726 .addDef(ResRegs[0])
727 .addDef(ResRegs[1])
728 .addUse(getOrCreateVReg(*CI.getOperand(0)))
729 .addUse(getOrCreateVReg(*CI.getOperand(1)));
731 return true;
734 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
735 MachineIRBuilder &MIRBuilder) {
736 switch (ID) {
737 default:
738 break;
739 case Intrinsic::lifetime_start:
740 case Intrinsic::lifetime_end:
741 // Stack coloring is not enabled in O0 (which we care about now) so we can
742 // drop these. Make sure someone notices when we start compiling at higher
743 // opts though.
744 if (MF->getTarget().getOptLevel() != CodeGenOpt::None)
745 return false;
746 return true;
747 case Intrinsic::dbg_declare: {
748 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
749 assert(DI.getVariable() && "Missing variable");
751 const Value *Address = DI.getAddress();
752 if (!Address || isa<UndefValue>(Address)) {
753 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
754 return true;
757 assert(DI.getVariable()->isValidLocationForIntrinsic(
758 MIRBuilder.getDebugLoc()) &&
759 "Expected inlined-at fields to agree");
760 auto AI = dyn_cast<AllocaInst>(Address);
761 if (AI && AI->isStaticAlloca()) {
762 // Static allocas are tracked at the MF level, no need for DBG_VALUE
763 // instructions (in fact, they get ignored if they *do* exist).
764 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
765 getOrCreateFrameIndex(*AI), DI.getDebugLoc());
766 } else {
767 // A dbg.declare describes the address of a source variable, so lower it
768 // into an indirect DBG_VALUE.
769 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
770 DI.getVariable(), DI.getExpression());
772 return true;
774 case Intrinsic::dbg_label: {
775 const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
776 assert(DI.getLabel() && "Missing label");
778 assert(DI.getLabel()->isValidLocationForIntrinsic(
779 MIRBuilder.getDebugLoc()) &&
780 "Expected inlined-at fields to agree");
782 MIRBuilder.buildDbgLabel(DI.getLabel());
783 return true;
785 case Intrinsic::vaend:
786 // No target I know of cares about va_end. Certainly no in-tree target
787 // does. Simplest intrinsic ever!
788 return true;
789 case Intrinsic::vastart: {
790 auto &TLI = *MF->getSubtarget().getTargetLowering();
791 Value *Ptr = CI.getArgOperand(0);
792 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
794 MIRBuilder.buildInstr(TargetOpcode::G_VASTART)
795 .addUse(getOrCreateVReg(*Ptr))
796 .addMemOperand(MF->getMachineMemOperand(
797 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0));
798 return true;
800 case Intrinsic::dbg_value: {
801 // This form of DBG_VALUE is target-independent.
802 const DbgValueInst &DI = cast<DbgValueInst>(CI);
803 const Value *V = DI.getValue();
804 assert(DI.getVariable()->isValidLocationForIntrinsic(
805 MIRBuilder.getDebugLoc()) &&
806 "Expected inlined-at fields to agree");
807 if (!V) {
808 // Currently the optimizer can produce this; insert an undef to
809 // help debugging. Probably the optimizer should not do this.
810 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
811 } else if (const auto *CI = dyn_cast<Constant>(V)) {
812 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
813 } else {
814 unsigned Reg = getOrCreateVReg(*V);
815 // FIXME: This does not handle register-indirect values at offset 0. The
816 // direct/indirect thing shouldn't really be handled by something as
817 // implicit as reg+noreg vs reg+imm in the first palce, but it seems
818 // pretty baked in right now.
819 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
821 return true;
823 case Intrinsic::uadd_with_overflow:
824 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
825 case Intrinsic::sadd_with_overflow:
826 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
827 case Intrinsic::usub_with_overflow:
828 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
829 case Intrinsic::ssub_with_overflow:
830 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
831 case Intrinsic::umul_with_overflow:
832 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
833 case Intrinsic::smul_with_overflow:
834 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
835 case Intrinsic::pow:
836 MIRBuilder.buildInstr(TargetOpcode::G_FPOW)
837 .addDef(getOrCreateVReg(CI))
838 .addUse(getOrCreateVReg(*CI.getArgOperand(0)))
839 .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
840 return true;
841 case Intrinsic::exp:
842 MIRBuilder.buildInstr(TargetOpcode::G_FEXP)
843 .addDef(getOrCreateVReg(CI))
844 .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
845 return true;
846 case Intrinsic::exp2:
847 MIRBuilder.buildInstr(TargetOpcode::G_FEXP2)
848 .addDef(getOrCreateVReg(CI))
849 .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
850 return true;
851 case Intrinsic::log:
852 MIRBuilder.buildInstr(TargetOpcode::G_FLOG)
853 .addDef(getOrCreateVReg(CI))
854 .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
855 return true;
856 case Intrinsic::log2:
857 MIRBuilder.buildInstr(TargetOpcode::G_FLOG2)
858 .addDef(getOrCreateVReg(CI))
859 .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
860 return true;
861 case Intrinsic::fabs:
862 MIRBuilder.buildInstr(TargetOpcode::G_FABS)
863 .addDef(getOrCreateVReg(CI))
864 .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
865 return true;
866 case Intrinsic::trunc:
867 MIRBuilder.buildInstr(TargetOpcode::G_INTRINSIC_TRUNC)
868 .addDef(getOrCreateVReg(CI))
869 .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
870 return true;
871 case Intrinsic::round:
872 MIRBuilder.buildInstr(TargetOpcode::G_INTRINSIC_ROUND)
873 .addDef(getOrCreateVReg(CI))
874 .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
875 return true;
876 case Intrinsic::fma:
877 MIRBuilder.buildInstr(TargetOpcode::G_FMA)
878 .addDef(getOrCreateVReg(CI))
879 .addUse(getOrCreateVReg(*CI.getArgOperand(0)))
880 .addUse(getOrCreateVReg(*CI.getArgOperand(1)))
881 .addUse(getOrCreateVReg(*CI.getArgOperand(2)));
882 return true;
883 case Intrinsic::fmuladd: {
884 const TargetMachine &TM = MF->getTarget();
885 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
886 unsigned Dst = getOrCreateVReg(CI);
887 unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0));
888 unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1));
889 unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2));
890 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
891 TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) {
892 // TODO: Revisit this to see if we should move this part of the
893 // lowering to the combiner.
894 MIRBuilder.buildInstr(TargetOpcode::G_FMA, Dst, Op0, Op1, Op2);
895 } else {
896 LLT Ty = getLLTForType(*CI.getType(), *DL);
897 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, Ty, Op0, Op1);
898 MIRBuilder.buildInstr(TargetOpcode::G_FADD, Dst, FMul, Op2);
900 return true;
902 case Intrinsic::memcpy:
903 case Intrinsic::memmove:
904 case Intrinsic::memset:
905 return translateMemfunc(CI, MIRBuilder, ID);
906 case Intrinsic::eh_typeid_for: {
907 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
908 unsigned Reg = getOrCreateVReg(CI);
909 unsigned TypeID = MF->getTypeIDFor(GV);
910 MIRBuilder.buildConstant(Reg, TypeID);
911 return true;
913 case Intrinsic::objectsize: {
914 // If we don't know by now, we're never going to know.
915 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1));
917 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0);
918 return true;
920 case Intrinsic::stackguard:
921 getStackGuard(getOrCreateVReg(CI), MIRBuilder);
922 return true;
923 case Intrinsic::stackprotector: {
924 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
925 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy);
926 getStackGuard(GuardVal, MIRBuilder);
928 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
929 MIRBuilder.buildStore(
930 GuardVal, getOrCreateVReg(*Slot),
931 *MF->getMachineMemOperand(
932 MachinePointerInfo::getFixedStack(*MF,
933 getOrCreateFrameIndex(*Slot)),
934 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
935 PtrTy.getSizeInBits() / 8, 8));
936 return true;
938 case Intrinsic::cttz:
939 case Intrinsic::ctlz: {
940 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
941 bool isTrailing = ID == Intrinsic::cttz;
942 unsigned Opcode = isTrailing
943 ? Cst->isZero() ? TargetOpcode::G_CTTZ
944 : TargetOpcode::G_CTTZ_ZERO_UNDEF
945 : Cst->isZero() ? TargetOpcode::G_CTLZ
946 : TargetOpcode::G_CTLZ_ZERO_UNDEF;
947 MIRBuilder.buildInstr(Opcode)
948 .addDef(getOrCreateVReg(CI))
949 .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
950 return true;
952 case Intrinsic::ctpop: {
953 MIRBuilder.buildInstr(TargetOpcode::G_CTPOP)
954 .addDef(getOrCreateVReg(CI))
955 .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
956 return true;
958 case Intrinsic::invariant_start: {
959 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
960 unsigned Undef = MRI->createGenericVirtualRegister(PtrTy);
961 MIRBuilder.buildUndef(Undef);
962 return true;
964 case Intrinsic::invariant_end:
965 return true;
967 return false;
970 bool IRTranslator::translateInlineAsm(const CallInst &CI,
971 MachineIRBuilder &MIRBuilder) {
972 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue());
973 if (!IA.getConstraintString().empty())
974 return false;
976 unsigned ExtraInfo = 0;
977 if (IA.hasSideEffects())
978 ExtraInfo |= InlineAsm::Extra_HasSideEffects;
979 if (IA.getDialect() == InlineAsm::AD_Intel)
980 ExtraInfo |= InlineAsm::Extra_AsmDialect;
982 MIRBuilder.buildInstr(TargetOpcode::INLINEASM)
983 .addExternalSymbol(IA.getAsmString().c_str())
984 .addImm(ExtraInfo);
986 return true;
989 unsigned IRTranslator::packRegs(const Value &V,
990 MachineIRBuilder &MIRBuilder) {
991 ArrayRef<unsigned> Regs = getOrCreateVRegs(V);
992 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V);
993 LLT BigTy = getLLTForType(*V.getType(), *DL);
995 if (Regs.size() == 1)
996 return Regs[0];
998 unsigned Dst = MRI->createGenericVirtualRegister(BigTy);
999 MIRBuilder.buildUndef(Dst);
1000 for (unsigned i = 0; i < Regs.size(); ++i) {
1001 unsigned NewDst = MRI->createGenericVirtualRegister(BigTy);
1002 MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]);
1003 Dst = NewDst;
1005 return Dst;
1008 void IRTranslator::unpackRegs(const Value &V, unsigned Src,
1009 MachineIRBuilder &MIRBuilder) {
1010 ArrayRef<unsigned> Regs = getOrCreateVRegs(V);
1011 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V);
1013 for (unsigned i = 0; i < Regs.size(); ++i)
1014 MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]);
1017 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
1018 const CallInst &CI = cast<CallInst>(U);
1019 auto TII = MF->getTarget().getIntrinsicInfo();
1020 const Function *F = CI.getCalledFunction();
1022 // FIXME: support Windows dllimport function calls.
1023 if (F && F->hasDLLImportStorageClass())
1024 return false;
1026 if (CI.isInlineAsm())
1027 return translateInlineAsm(CI, MIRBuilder);
1029 Intrinsic::ID ID = Intrinsic::not_intrinsic;
1030 if (F && F->isIntrinsic()) {
1031 ID = F->getIntrinsicID();
1032 if (TII && ID == Intrinsic::not_intrinsic)
1033 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
1036 bool IsSplitType = valueIsSplit(CI);
1037 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) {
1038 unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister(
1039 getLLTForType(*CI.getType(), *DL))
1040 : getOrCreateVReg(CI);
1042 SmallVector<unsigned, 8> Args;
1043 for (auto &Arg: CI.arg_operands())
1044 Args.push_back(packRegs(*Arg, MIRBuilder));
1046 MF->getFrameInfo().setHasCalls(true);
1047 bool Success = CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() {
1048 return getOrCreateVReg(*CI.getCalledValue());
1051 if (IsSplitType)
1052 unpackRegs(CI, Res, MIRBuilder);
1053 return Success;
1056 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
1058 if (translateKnownIntrinsic(CI, ID, MIRBuilder))
1059 return true;
1061 unsigned Res = 0;
1062 if (!CI.getType()->isVoidTy()) {
1063 if (IsSplitType)
1064 Res =
1065 MRI->createGenericVirtualRegister(getLLTForType(*CI.getType(), *DL));
1066 else
1067 Res = getOrCreateVReg(CI);
1069 MachineInstrBuilder MIB =
1070 MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory());
1072 for (auto &Arg : CI.arg_operands()) {
1073 // Some intrinsics take metadata parameters. Reject them.
1074 if (isa<MetadataAsValue>(Arg))
1075 return false;
1076 MIB.addUse(packRegs(*Arg, MIRBuilder));
1079 if (IsSplitType)
1080 unpackRegs(CI, Res, MIRBuilder);
1082 // Add a MachineMemOperand if it is a target mem intrinsic.
1083 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1084 TargetLowering::IntrinsicInfo Info;
1085 // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
1086 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
1087 uint64_t Size = Info.memVT.getStoreSize();
1088 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
1089 Info.flags, Size, Info.align));
1092 return true;
1095 bool IRTranslator::translateInvoke(const User &U,
1096 MachineIRBuilder &MIRBuilder) {
1097 const InvokeInst &I = cast<InvokeInst>(U);
1098 MCContext &Context = MF->getContext();
1100 const BasicBlock *ReturnBB = I.getSuccessor(0);
1101 const BasicBlock *EHPadBB = I.getSuccessor(1);
1103 const Value *Callee = I.getCalledValue();
1104 const Function *Fn = dyn_cast<Function>(Callee);
1105 if (isa<InlineAsm>(Callee))
1106 return false;
1108 // FIXME: support invoking patchpoint and statepoint intrinsics.
1109 if (Fn && Fn->isIntrinsic())
1110 return false;
1112 // FIXME: support whatever these are.
1113 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
1114 return false;
1116 // FIXME: support Windows exception handling.
1117 if (!isa<LandingPadInst>(EHPadBB->front()))
1118 return false;
1120 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
1121 // the region covered by the try.
1122 MCSymbol *BeginSymbol = Context.createTempSymbol();
1123 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
1125 unsigned Res =
1126 MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL));
1127 SmallVector<unsigned, 8> Args;
1128 for (auto &Arg: I.arg_operands())
1129 Args.push_back(packRegs(*Arg, MIRBuilder));
1131 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args,
1132 [&]() { return getOrCreateVReg(*I.getCalledValue()); }))
1133 return false;
1135 unpackRegs(I, Res, MIRBuilder);
1137 MCSymbol *EndSymbol = Context.createTempSymbol();
1138 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
1140 // FIXME: track probabilities.
1141 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
1142 &ReturnMBB = getMBB(*ReturnBB);
1143 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
1144 MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
1145 MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
1146 MIRBuilder.buildBr(ReturnMBB);
1148 return true;
1151 bool IRTranslator::translateLandingPad(const User &U,
1152 MachineIRBuilder &MIRBuilder) {
1153 const LandingPadInst &LP = cast<LandingPadInst>(U);
1155 MachineBasicBlock &MBB = MIRBuilder.getMBB();
1157 MBB.setIsEHPad();
1159 // If there aren't registers to copy the values into (e.g., during SjLj
1160 // exceptions), then don't bother.
1161 auto &TLI = *MF->getSubtarget().getTargetLowering();
1162 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
1163 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
1164 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
1165 return true;
1167 // If landingpad's return type is token type, we don't create DAG nodes
1168 // for its exception pointer and selector value. The extraction of exception
1169 // pointer or selector value from token type landingpads is not currently
1170 // supported.
1171 if (LP.getType()->isTokenTy())
1172 return true;
1174 // Add a label to mark the beginning of the landing pad. Deletion of the
1175 // landing pad can thus be detected via the MachineModuleInfo.
1176 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
1177 .addSym(MF->addLandingPad(&MBB));
1179 LLT Ty = getLLTForType(*LP.getType(), *DL);
1180 unsigned Undef = MRI->createGenericVirtualRegister(Ty);
1181 MIRBuilder.buildUndef(Undef);
1183 SmallVector<LLT, 2> Tys;
1184 for (Type *Ty : cast<StructType>(LP.getType())->elements())
1185 Tys.push_back(getLLTForType(*Ty, *DL));
1186 assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
1188 // Mark exception register as live in.
1189 unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
1190 if (!ExceptionReg)
1191 return false;
1193 MBB.addLiveIn(ExceptionReg);
1194 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP);
1195 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
1197 unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
1198 if (!SelectorReg)
1199 return false;
1201 MBB.addLiveIn(SelectorReg);
1202 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
1203 MIRBuilder.buildCopy(PtrVReg, SelectorReg);
1204 MIRBuilder.buildCast(ResRegs[1], PtrVReg);
1206 return true;
1209 bool IRTranslator::translateAlloca(const User &U,
1210 MachineIRBuilder &MIRBuilder) {
1211 auto &AI = cast<AllocaInst>(U);
1213 if (AI.isSwiftError())
1214 return false;
1216 if (AI.isStaticAlloca()) {
1217 unsigned Res = getOrCreateVReg(AI);
1218 int FI = getOrCreateFrameIndex(AI);
1219 MIRBuilder.buildFrameIndex(Res, FI);
1220 return true;
1223 // FIXME: support stack probing for Windows.
1224 if (MF->getTarget().getTargetTriple().isOSWindows())
1225 return false;
1227 // Now we're in the harder dynamic case.
1228 Type *Ty = AI.getAllocatedType();
1229 unsigned Align =
1230 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment());
1232 unsigned NumElts = getOrCreateVReg(*AI.getArraySize());
1234 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
1235 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
1236 if (MRI->getType(NumElts) != IntPtrTy) {
1237 unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
1238 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
1239 NumElts = ExtElts;
1242 unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
1243 unsigned TySize =
1244 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty)));
1245 MIRBuilder.buildMul(AllocSize, NumElts, TySize);
1247 LLT PtrTy = getLLTForType(*AI.getType(), *DL);
1248 auto &TLI = *MF->getSubtarget().getTargetLowering();
1249 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1251 unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy);
1252 MIRBuilder.buildCopy(SPTmp, SPReg);
1254 unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy);
1255 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize);
1257 // Handle alignment. We have to realign if the allocation granule was smaller
1258 // than stack alignment, or the specific alloca requires more than stack
1259 // alignment.
1260 unsigned StackAlign =
1261 MF->getSubtarget().getFrameLowering()->getStackAlignment();
1262 Align = std::max(Align, StackAlign);
1263 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) {
1264 // Round the size of the allocation up to the stack alignment size
1265 // by add SA-1 to the size. This doesn't overflow because we're computing
1266 // an address inside an alloca.
1267 unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy);
1268 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align));
1269 AllocTmp = AlignedAlloc;
1272 MIRBuilder.buildCopy(SPReg, AllocTmp);
1273 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp);
1275 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI);
1276 assert(MF->getFrameInfo().hasVarSizedObjects());
1277 return true;
1280 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
1281 // FIXME: We may need more info about the type. Because of how LLT works,
1282 // we're completely discarding the i64/double distinction here (amongst
1283 // others). Fortunately the ABIs I know of where that matters don't use va_arg
1284 // anyway but that's not guaranteed.
1285 MIRBuilder.buildInstr(TargetOpcode::G_VAARG)
1286 .addDef(getOrCreateVReg(U))
1287 .addUse(getOrCreateVReg(*U.getOperand(0)))
1288 .addImm(DL->getABITypeAlignment(U.getType()));
1289 return true;
1292 bool IRTranslator::translateInsertElement(const User &U,
1293 MachineIRBuilder &MIRBuilder) {
1294 // If it is a <1 x Ty> vector, use the scalar as it is
1295 // not a legal vector type in LLT.
1296 if (U.getType()->getVectorNumElements() == 1) {
1297 unsigned Elt = getOrCreateVReg(*U.getOperand(1));
1298 auto &Regs = *VMap.getVRegs(U);
1299 if (Regs.empty()) {
1300 Regs.push_back(Elt);
1301 VMap.getOffsets(U)->push_back(0);
1302 } else {
1303 MIRBuilder.buildCopy(Regs[0], Elt);
1305 return true;
1308 unsigned Res = getOrCreateVReg(U);
1309 unsigned Val = getOrCreateVReg(*U.getOperand(0));
1310 unsigned Elt = getOrCreateVReg(*U.getOperand(1));
1311 unsigned Idx = getOrCreateVReg(*U.getOperand(2));
1312 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
1313 return true;
1316 bool IRTranslator::translateExtractElement(const User &U,
1317 MachineIRBuilder &MIRBuilder) {
1318 // If it is a <1 x Ty> vector, use the scalar as it is
1319 // not a legal vector type in LLT.
1320 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) {
1321 unsigned Elt = getOrCreateVReg(*U.getOperand(0));
1322 auto &Regs = *VMap.getVRegs(U);
1323 if (Regs.empty()) {
1324 Regs.push_back(Elt);
1325 VMap.getOffsets(U)->push_back(0);
1326 } else {
1327 MIRBuilder.buildCopy(Regs[0], Elt);
1329 return true;
1331 unsigned Res = getOrCreateVReg(U);
1332 unsigned Val = getOrCreateVReg(*U.getOperand(0));
1333 unsigned Idx = getOrCreateVReg(*U.getOperand(1));
1334 MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
1335 return true;
1338 bool IRTranslator::translateShuffleVector(const User &U,
1339 MachineIRBuilder &MIRBuilder) {
1340 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR)
1341 .addDef(getOrCreateVReg(U))
1342 .addUse(getOrCreateVReg(*U.getOperand(0)))
1343 .addUse(getOrCreateVReg(*U.getOperand(1)))
1344 .addUse(getOrCreateVReg(*U.getOperand(2)));
1345 return true;
1348 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
1349 const PHINode &PI = cast<PHINode>(U);
1351 SmallVector<MachineInstr *, 4> Insts;
1352 for (auto Reg : getOrCreateVRegs(PI)) {
1353 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, Reg);
1354 Insts.push_back(MIB.getInstr());
1357 PendingPHIs.emplace_back(&PI, std::move(Insts));
1358 return true;
1361 bool IRTranslator::translateAtomicCmpXchg(const User &U,
1362 MachineIRBuilder &MIRBuilder) {
1363 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
1365 if (I.isWeak())
1366 return false;
1368 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
1369 : MachineMemOperand::MONone;
1370 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1372 Type *ResType = I.getType();
1373 Type *ValType = ResType->Type::getStructElementType(0);
1375 auto Res = getOrCreateVRegs(I);
1376 unsigned OldValRes = Res[0];
1377 unsigned SuccessRes = Res[1];
1378 unsigned Addr = getOrCreateVReg(*I.getPointerOperand());
1379 unsigned Cmp = getOrCreateVReg(*I.getCompareOperand());
1380 unsigned NewVal = getOrCreateVReg(*I.getNewValOperand());
1382 MIRBuilder.buildAtomicCmpXchgWithSuccess(
1383 OldValRes, SuccessRes, Addr, Cmp, NewVal,
1384 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
1385 Flags, DL->getTypeStoreSize(ValType),
1386 getMemOpAlignment(I), AAMDNodes(), nullptr,
1387 I.getSyncScopeID(), I.getSuccessOrdering(),
1388 I.getFailureOrdering()));
1389 return true;
1392 bool IRTranslator::translateAtomicRMW(const User &U,
1393 MachineIRBuilder &MIRBuilder) {
1394 const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
1396 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
1397 : MachineMemOperand::MONone;
1398 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1400 Type *ResType = I.getType();
1402 unsigned Res = getOrCreateVReg(I);
1403 unsigned Addr = getOrCreateVReg(*I.getPointerOperand());
1404 unsigned Val = getOrCreateVReg(*I.getValOperand());
1406 unsigned Opcode = 0;
1407 switch (I.getOperation()) {
1408 default:
1409 llvm_unreachable("Unknown atomicrmw op");
1410 return false;
1411 case AtomicRMWInst::Xchg:
1412 Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
1413 break;
1414 case AtomicRMWInst::Add:
1415 Opcode = TargetOpcode::G_ATOMICRMW_ADD;
1416 break;
1417 case AtomicRMWInst::Sub:
1418 Opcode = TargetOpcode::G_ATOMICRMW_SUB;
1419 break;
1420 case AtomicRMWInst::And:
1421 Opcode = TargetOpcode::G_ATOMICRMW_AND;
1422 break;
1423 case AtomicRMWInst::Nand:
1424 Opcode = TargetOpcode::G_ATOMICRMW_NAND;
1425 break;
1426 case AtomicRMWInst::Or:
1427 Opcode = TargetOpcode::G_ATOMICRMW_OR;
1428 break;
1429 case AtomicRMWInst::Xor:
1430 Opcode = TargetOpcode::G_ATOMICRMW_XOR;
1431 break;
1432 case AtomicRMWInst::Max:
1433 Opcode = TargetOpcode::G_ATOMICRMW_MAX;
1434 break;
1435 case AtomicRMWInst::Min:
1436 Opcode = TargetOpcode::G_ATOMICRMW_MIN;
1437 break;
1438 case AtomicRMWInst::UMax:
1439 Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
1440 break;
1441 case AtomicRMWInst::UMin:
1442 Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
1443 break;
1446 MIRBuilder.buildAtomicRMW(
1447 Opcode, Res, Addr, Val,
1448 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
1449 Flags, DL->getTypeStoreSize(ResType),
1450 getMemOpAlignment(I), AAMDNodes(), nullptr,
1451 I.getSyncScopeID(), I.getOrdering()));
1452 return true;
1455 void IRTranslator::finishPendingPhis() {
1456 for (auto &Phi : PendingPHIs) {
1457 const PHINode *PI = Phi.first;
1458 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
1460 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator
1461 // won't create extra control flow here, otherwise we need to find the
1462 // dominating predecessor here (or perhaps force the weirder IRTranslators
1463 // to provide a simple boundary).
1464 SmallSet<const BasicBlock *, 4> HandledPreds;
1466 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
1467 auto IRPred = PI->getIncomingBlock(i);
1468 if (HandledPreds.count(IRPred))
1469 continue;
1471 HandledPreds.insert(IRPred);
1472 ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
1473 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
1474 assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) &&
1475 "incorrect CFG at MachineBasicBlock level");
1476 for (unsigned j = 0; j < ValRegs.size(); ++j) {
1477 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
1478 MIB.addUse(ValRegs[j]);
1479 MIB.addMBB(Pred);
1486 bool IRTranslator::valueIsSplit(const Value &V,
1487 SmallVectorImpl<uint64_t> *Offsets) {
1488 SmallVector<LLT, 4> SplitTys;
1489 if (Offsets && !Offsets->empty())
1490 Offsets->clear();
1491 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
1492 return SplitTys.size() > 1;
1495 bool IRTranslator::translate(const Instruction &Inst) {
1496 CurBuilder.setDebugLoc(Inst.getDebugLoc());
1497 switch(Inst.getOpcode()) {
1498 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1499 case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder);
1500 #include "llvm/IR/Instruction.def"
1501 default:
1502 return false;
1506 bool IRTranslator::translate(const Constant &C, unsigned Reg) {
1507 if (auto CI = dyn_cast<ConstantInt>(&C))
1508 EntryBuilder.buildConstant(Reg, *CI);
1509 else if (auto CF = dyn_cast<ConstantFP>(&C))
1510 EntryBuilder.buildFConstant(Reg, *CF);
1511 else if (isa<UndefValue>(C))
1512 EntryBuilder.buildUndef(Reg);
1513 else if (isa<ConstantPointerNull>(C)) {
1514 // As we are trying to build a constant val of 0 into a pointer,
1515 // insert a cast to make them correct with respect to types.
1516 unsigned NullSize = DL->getTypeSizeInBits(C.getType());
1517 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize);
1518 auto *ZeroVal = ConstantInt::get(ZeroTy, 0);
1519 unsigned ZeroReg = getOrCreateVReg(*ZeroVal);
1520 EntryBuilder.buildCast(Reg, ZeroReg);
1521 } else if (auto GV = dyn_cast<GlobalValue>(&C))
1522 EntryBuilder.buildGlobalValue(Reg, GV);
1523 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
1524 if (!CAZ->getType()->isVectorTy())
1525 return false;
1526 // Return the scalar if it is a <1 x Ty> vector.
1527 if (CAZ->getNumElements() == 1)
1528 return translate(*CAZ->getElementValue(0u), Reg);
1529 std::vector<unsigned> Ops;
1530 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
1531 Constant &Elt = *CAZ->getElementValue(i);
1532 Ops.push_back(getOrCreateVReg(Elt));
1534 EntryBuilder.buildMerge(Reg, Ops);
1535 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
1536 // Return the scalar if it is a <1 x Ty> vector.
1537 if (CV->getNumElements() == 1)
1538 return translate(*CV->getElementAsConstant(0), Reg);
1539 std::vector<unsigned> Ops;
1540 for (unsigned i = 0; i < CV->getNumElements(); ++i) {
1541 Constant &Elt = *CV->getElementAsConstant(i);
1542 Ops.push_back(getOrCreateVReg(Elt));
1544 EntryBuilder.buildMerge(Reg, Ops);
1545 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
1546 switch(CE->getOpcode()) {
1547 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1548 case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder);
1549 #include "llvm/IR/Instruction.def"
1550 default:
1551 return false;
1553 } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
1554 if (CV->getNumOperands() == 1)
1555 return translate(*CV->getOperand(0), Reg);
1556 SmallVector<unsigned, 4> Ops;
1557 for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
1558 Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
1560 EntryBuilder.buildMerge(Reg, Ops);
1561 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
1562 EntryBuilder.buildBlockAddress(Reg, BA);
1563 } else
1564 return false;
1566 return true;
1569 void IRTranslator::finalizeFunction() {
1570 // Release the memory used by the different maps we
1571 // needed during the translation.
1572 PendingPHIs.clear();
1573 VMap.reset();
1574 FrameIndices.clear();
1575 MachinePreds.clear();
1576 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
1577 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
1578 // destroying it twice (in ~IRTranslator() and ~LLVMContext())
1579 EntryBuilder = MachineIRBuilder();
1580 CurBuilder = MachineIRBuilder();
1583 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
1584 MF = &CurMF;
1585 const Function &F = MF->getFunction();
1586 if (F.empty())
1587 return false;
1588 CLI = MF->getSubtarget().getCallLowering();
1589 CurBuilder.setMF(*MF);
1590 EntryBuilder.setMF(*MF);
1591 MRI = &MF->getRegInfo();
1592 DL = &F.getParent()->getDataLayout();
1593 TPC = &getAnalysis<TargetPassConfig>();
1594 ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F);
1596 assert(PendingPHIs.empty() && "stale PHIs");
1598 if (!DL->isLittleEndian()) {
1599 // Currently we don't properly handle big endian code.
1600 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1601 F.getSubprogram(), &F.getEntryBlock());
1602 R << "unable to translate in big endian mode";
1603 reportTranslationError(*MF, *TPC, *ORE, R);
1606 // Release the per-function state when we return, whether we succeeded or not.
1607 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
1609 // Setup a separate basic-block for the arguments and constants
1610 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
1611 MF->push_back(EntryBB);
1612 EntryBuilder.setMBB(*EntryBB);
1614 // Create all blocks, in IR order, to preserve the layout.
1615 for (const BasicBlock &BB: F) {
1616 auto *&MBB = BBToMBB[&BB];
1618 MBB = MF->CreateMachineBasicBlock(&BB);
1619 MF->push_back(MBB);
1621 if (BB.hasAddressTaken())
1622 MBB->setHasAddressTaken();
1625 // Make our arguments/constants entry block fallthrough to the IR entry block.
1626 EntryBB->addSuccessor(&getMBB(F.front()));
1628 // Lower the actual args into this basic block.
1629 SmallVector<unsigned, 8> VRegArgs;
1630 for (const Argument &Arg: F.args()) {
1631 if (DL->getTypeStoreSize(Arg.getType()) == 0)
1632 continue; // Don't handle zero sized types.
1633 VRegArgs.push_back(
1634 MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL)));
1637 // We don't currently support translating swifterror or swiftself functions.
1638 for (auto &Arg : F.args()) {
1639 if (Arg.hasSwiftErrorAttr() || Arg.hasSwiftSelfAttr()) {
1640 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1641 F.getSubprogram(), &F.getEntryBlock());
1642 R << "unable to lower arguments due to swifterror/swiftself: "
1643 << ore::NV("Prototype", F.getType());
1644 reportTranslationError(*MF, *TPC, *ORE, R);
1645 return false;
1649 if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) {
1650 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1651 F.getSubprogram(), &F.getEntryBlock());
1652 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
1653 reportTranslationError(*MF, *TPC, *ORE, R);
1654 return false;
1657 auto ArgIt = F.arg_begin();
1658 for (auto &VArg : VRegArgs) {
1659 // If the argument is an unsplit scalar then don't use unpackRegs to avoid
1660 // creating redundant copies.
1661 if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) {
1662 auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt));
1663 assert(VRegs.empty() && "VRegs already populated?");
1664 VRegs.push_back(VArg);
1665 } else {
1666 unpackRegs(*ArgIt, VArg, EntryBuilder);
1668 ArgIt++;
1671 // Need to visit defs before uses when translating instructions.
1672 ReversePostOrderTraversal<const Function *> RPOT(&F);
1673 for (const BasicBlock *BB : RPOT) {
1674 MachineBasicBlock &MBB = getMBB(*BB);
1675 // Set the insertion point of all the following translations to
1676 // the end of this basic block.
1677 CurBuilder.setMBB(MBB);
1679 for (const Instruction &Inst : *BB) {
1680 if (translate(Inst))
1681 continue;
1683 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1684 Inst.getDebugLoc(), BB);
1685 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
1687 if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
1688 std::string InstStrStorage;
1689 raw_string_ostream InstStr(InstStrStorage);
1690 InstStr << Inst;
1692 R << ": '" << InstStr.str() << "'";
1695 reportTranslationError(*MF, *TPC, *ORE, R);
1696 return false;
1700 finishPendingPhis();
1702 // Merge the argument lowering and constants block with its single
1703 // successor, the LLVM-IR entry block. We want the basic block to
1704 // be maximal.
1705 assert(EntryBB->succ_size() == 1 &&
1706 "Custom BB used for lowering should have only one successor");
1707 // Get the successor of the current entry block.
1708 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
1709 assert(NewEntryBB.pred_size() == 1 &&
1710 "LLVM-IR entry block has a predecessor!?");
1711 // Move all the instruction from the current entry block to the
1712 // new entry block.
1713 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
1714 EntryBB->end());
1716 // Update the live-in information for the new entry block.
1717 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
1718 NewEntryBB.addLiveIn(LiveIn);
1719 NewEntryBB.sortUniqueLiveIns();
1721 // Get rid of the now empty basic block.
1722 EntryBB->removeSuccessor(&NewEntryBB);
1723 MF->remove(EntryBB);
1724 MF->DeleteMachineBasicBlock(EntryBB);
1726 assert(&MF->front() == &NewEntryBB &&
1727 "New entry wasn't next in the list of basic block!");
1729 // Initialize stack protector information.
1730 StackProtector &SP = getAnalysis<StackProtector>();
1731 SP.copyToMachineFrameInfo(MF->getFrameInfo());
1733 return false;