1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 /// This file implements the RegBankSelect class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
18 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
20 #include "llvm/CodeGen/GlobalISel/Utils.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
23 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetOpcodes.h"
30 #include "llvm/CodeGen/TargetPassConfig.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
33 #include "llvm/Config/llvm-config.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/BlockFrequency.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
50 #define DEBUG_TYPE "regbankselect"
54 static cl::opt
<RegBankSelect::Mode
> RegBankSelectMode(
55 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden
, cl::Optional
,
56 cl::values(clEnumValN(RegBankSelect::Mode::Fast
, "regbankselect-fast",
57 "Run the Fast mode (default mapping)"),
58 clEnumValN(RegBankSelect::Mode::Greedy
, "regbankselect-greedy",
59 "Use the Greedy mode (best local mapping)")));
61 char RegBankSelect::ID
= 0;
63 INITIALIZE_PASS_BEGIN(RegBankSelect
, DEBUG_TYPE
,
64 "Assign register bank of generic virtual registers",
66 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo
)
67 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
68 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig
)
69 INITIALIZE_PASS_END(RegBankSelect
, DEBUG_TYPE
,
70 "Assign register bank of generic virtual registers", false,
73 RegBankSelect::RegBankSelect(Mode RunningMode
)
74 : MachineFunctionPass(ID
), OptMode(RunningMode
) {
75 initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
76 if (RegBankSelectMode
.getNumOccurrences() != 0) {
77 OptMode
= RegBankSelectMode
;
78 if (RegBankSelectMode
!= RunningMode
)
79 LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
83 void RegBankSelect::init(MachineFunction
&MF
) {
84 RBI
= MF
.getSubtarget().getRegBankInfo();
85 assert(RBI
&& "Cannot work without RegisterBankInfo");
86 MRI
= &MF
.getRegInfo();
87 TRI
= MF
.getSubtarget().getRegisterInfo();
88 TPC
= &getAnalysis
<TargetPassConfig
>();
89 if (OptMode
!= Mode::Fast
) {
90 MBFI
= &getAnalysis
<MachineBlockFrequencyInfo
>();
91 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
97 MORE
= llvm::make_unique
<MachineOptimizationRemarkEmitter
>(MF
, MBFI
);
100 void RegBankSelect::getAnalysisUsage(AnalysisUsage
&AU
) const {
101 if (OptMode
!= Mode::Fast
) {
102 // We could preserve the information from these two analysis but
103 // the APIs do not allow to do so yet.
104 AU
.addRequired
<MachineBlockFrequencyInfo
>();
105 AU
.addRequired
<MachineBranchProbabilityInfo
>();
107 AU
.addRequired
<TargetPassConfig
>();
108 getSelectionDAGFallbackAnalysisUsage(AU
);
109 MachineFunctionPass::getAnalysisUsage(AU
);
112 bool RegBankSelect::assignmentMatch(
113 unsigned Reg
, const RegisterBankInfo::ValueMapping
&ValMapping
,
114 bool &OnlyAssign
) const {
115 // By default we assume we will have to repair something.
117 // Each part of a break down needs to end up in a different register.
118 // In other word, Reg assignement does not match.
119 if (ValMapping
.NumBreakDowns
> 1)
122 const RegisterBank
*CurRegBank
= RBI
->getRegBank(Reg
, *MRI
, *TRI
);
123 const RegisterBank
*DesiredRegBrank
= ValMapping
.BreakDown
[0].RegBank
;
124 // Reg is free of assignment, a simple assignment will make the
125 // register bank to match.
126 OnlyAssign
= CurRegBank
== nullptr;
127 LLVM_DEBUG(dbgs() << "Does assignment already match: ";
128 if (CurRegBank
) dbgs() << *CurRegBank
; else dbgs() << "none";
129 dbgs() << " against ";
130 assert(DesiredRegBrank
&& "The mapping must be valid");
131 dbgs() << *DesiredRegBrank
<< '\n';);
132 return CurRegBank
== DesiredRegBrank
;
135 bool RegBankSelect::repairReg(
136 MachineOperand
&MO
, const RegisterBankInfo::ValueMapping
&ValMapping
,
137 RegBankSelect::RepairingPlacement
&RepairPt
,
138 const iterator_range
<SmallVectorImpl
<unsigned>::const_iterator
> &NewVRegs
) {
139 if (ValMapping
.NumBreakDowns
!= 1 && !TPC
->isGlobalISelAbortEnabled())
141 assert(ValMapping
.NumBreakDowns
== 1 && "Not yet implemented");
142 // An empty range of new register means no repairing.
143 assert(NewVRegs
.begin() != NewVRegs
.end() && "We should not have to repair");
145 // Assume we are repairing a use and thus, the original reg will be
146 // the source of the repairing.
147 unsigned Src
= MO
.getReg();
148 unsigned Dst
= *NewVRegs
.begin();
150 // If we repair a definition, swap the source and destination for
155 assert((RepairPt
.getNumInsertPoints() == 1 ||
156 TargetRegisterInfo::isPhysicalRegister(Dst
)) &&
157 "We are about to create several defs for Dst");
159 // Build the instruction used to repair, then clone it at the right
160 // places. Avoiding buildCopy bypasses the check that Src and Dst have the
161 // same types because the type is a placeholder when this function is called.
163 MIRBuilder
.buildInstrNoInsert(TargetOpcode::COPY
).addDef(Dst
).addUse(Src
);
164 LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src
) << " to: " << printReg(Dst
)
167 // Check if MI is legal. if not, we need to legalize all the
168 // instructions we are going to insert.
169 std::unique_ptr
<MachineInstr
*[]> NewInstrs(
170 new MachineInstr
*[RepairPt
.getNumInsertPoints()]);
173 for (const std::unique_ptr
<InsertPoint
> &InsertPt
: RepairPt
) {
178 CurMI
= MIRBuilder
.getMF().CloneMachineInstr(MI
);
179 InsertPt
->insert(*CurMI
);
180 NewInstrs
[Idx
++] = CurMI
;
184 // Legalize NewInstrs if need be.
188 uint64_t RegBankSelect::getRepairCost(
189 const MachineOperand
&MO
,
190 const RegisterBankInfo::ValueMapping
&ValMapping
) const {
191 assert(MO
.isReg() && "We should only repair register operand");
192 assert(ValMapping
.NumBreakDowns
&& "Nothing to map??");
194 bool IsSameNumOfValues
= ValMapping
.NumBreakDowns
== 1;
195 const RegisterBank
*CurRegBank
= RBI
->getRegBank(MO
.getReg(), *MRI
, *TRI
);
196 // If MO does not have a register bank, we should have just been
197 // able to set one unless we have to break the value down.
198 assert((!IsSameNumOfValues
|| CurRegBank
) && "We should not have to repair");
199 // Def: Val <- NewDefs
200 // Same number of values: copy
201 // Different number: Val = build_sequence Defs1, Defs2, ...
202 // Use: NewSources <- Val.
203 // Same number of values: copy.
204 // Different number: Src1, Src2, ... =
205 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
206 // We should remember that this value is available somewhere else to
207 // coalesce the value.
209 if (IsSameNumOfValues
) {
210 const RegisterBank
*DesiredRegBrank
= ValMapping
.BreakDown
[0].RegBank
;
211 // If we repair a definition, swap the source and destination for
214 std::swap(CurRegBank
, DesiredRegBrank
);
215 // TODO: It may be possible to actually avoid the copy.
216 // If we repair something where the source is defined by a copy
217 // and the source of that copy is on the right bank, we can reuse
220 // RegToRepair<BankA> = copy AlternativeSrc<BankB>
221 // = op RegToRepair<BankA>
222 // We can simply propagate AlternativeSrc instead of copying RegToRepair
223 // into a new virtual register.
224 // We would also need to propagate this information in the
225 // repairing placement.
226 unsigned Cost
= RBI
->copyCost(*DesiredRegBrank
, *CurRegBank
,
227 RBI
->getSizeInBits(MO
.getReg(), *MRI
, *TRI
));
228 // TODO: use a dedicated constant for ImpossibleCost.
229 if (Cost
!= std::numeric_limits
<unsigned>::max())
231 // Return the legalization cost of that repairing.
233 return std::numeric_limits
<unsigned>::max();
236 const RegisterBankInfo::InstructionMapping
&RegBankSelect::findBestMapping(
237 MachineInstr
&MI
, RegisterBankInfo::InstructionMappings
&PossibleMappings
,
238 SmallVectorImpl
<RepairingPlacement
> &RepairPts
) {
239 assert(!PossibleMappings
.empty() &&
240 "Do not know how to map this instruction");
242 const RegisterBankInfo::InstructionMapping
*BestMapping
= nullptr;
243 MappingCost Cost
= MappingCost::ImpossibleCost();
244 SmallVector
<RepairingPlacement
, 4> LocalRepairPts
;
245 for (const RegisterBankInfo::InstructionMapping
*CurMapping
:
247 MappingCost CurCost
=
248 computeMapping(MI
, *CurMapping
, LocalRepairPts
, &Cost
);
249 if (CurCost
< Cost
) {
250 LLVM_DEBUG(dbgs() << "New best: " << CurCost
<< '\n');
252 BestMapping
= CurMapping
;
254 for (RepairingPlacement
&RepairPt
: LocalRepairPts
)
255 RepairPts
.emplace_back(std::move(RepairPt
));
258 if (!BestMapping
&& !TPC
->isGlobalISelAbortEnabled()) {
259 // If none of the mapping worked that means they are all impossible.
260 // Thus, pick the first one and set an impossible repairing point.
261 // It will trigger the failed isel mode.
262 BestMapping
= *PossibleMappings
.begin();
263 RepairPts
.emplace_back(
264 RepairingPlacement(MI
, 0, *TRI
, *this, RepairingPlacement::Impossible
));
266 assert(BestMapping
&& "No suitable mapping for instruction");
270 void RegBankSelect::tryAvoidingSplit(
271 RegBankSelect::RepairingPlacement
&RepairPt
, const MachineOperand
&MO
,
272 const RegisterBankInfo::ValueMapping
&ValMapping
) const {
273 const MachineInstr
&MI
= *MO
.getParent();
274 assert(RepairPt
.hasSplit() && "We should not have to adjust for split");
275 // Splitting should only occur for PHIs or between terminators,
276 // because we only do local repairing.
277 assert((MI
.isPHI() || MI
.isTerminator()) && "Why do we split?");
279 assert(&MI
.getOperand(RepairPt
.getOpIdx()) == &MO
&&
280 "Repairing placement does not match operand");
282 // If we need splitting for phis, that means it is because we
283 // could not find an insertion point before the terminators of
284 // the predecessor block for this argument. In other words,
285 // the input value is defined by one of the terminators.
286 assert((!MI
.isPHI() || !MO
.isDef()) && "Need split for phi def?");
288 // We split to repair the use of a phi or a terminator.
290 if (MI
.isTerminator()) {
291 assert(&MI
!= &(*MI
.getParent()->getFirstTerminator()) &&
292 "Need to split for the first terminator?!");
294 // For the PHI case, the split may not be actually required.
295 // In the copy case, a phi is already a copy on the incoming edge,
296 // therefore there is no need to split.
297 if (ValMapping
.NumBreakDowns
== 1)
298 // This is a already a copy, there is nothing to do.
299 RepairPt
.switchTo(RepairingPlacement::RepairingKind::Reassign
);
304 // At this point, we need to repair a defintion of a terminator.
306 // Technically we need to fix the def of MI on all outgoing
307 // edges of MI to keep the repairing local. In other words, we
308 // will create several definitions of the same register. This
309 // does not work for SSA unless that definition is a physical
311 // However, there are other cases where we can get away with
312 // that while still keeping the repairing local.
313 assert(MI
.isTerminator() && MO
.isDef() &&
314 "This code is for the def of a terminator");
316 // Since we use RPO traversal, if we need to repair a definition
317 // this means this definition could be:
318 // 1. Used by PHIs (i.e., this VReg has been visited as part of the
319 // uses of a phi.), or
320 // 2. Part of a target specific instruction (i.e., the target applied
321 // some register class constraints when creating the instruction.)
322 // If the constraints come for #2, the target said that another mapping
323 // is supported so we may just drop them. Indeed, if we do not change
324 // the number of registers holding that value, the uses will get fixed
325 // when we get to them.
326 // Uses in PHIs may have already been proceeded though.
327 // If the constraints come for #1, then, those are weak constraints and
328 // no actual uses may rely on them. However, the problem remains mainly
329 // the same as for #2. If the value stays in one register, we could
330 // just switch the register bank of the definition, but we would need to
331 // account for a repairing cost for each phi we silently change.
333 // In any case, if the value needs to be broken down into several
334 // registers, the repairing is not local anymore as we need to patch
335 // every uses to rebuild the value in just one register.
338 // - If the value is in a physical register, we can do the split and
340 // Otherwise if the value is in a virtual register:
341 // - If the value remains in one register, we do not have to split
342 // just switching the register bank would do, but we need to account
343 // in the repairing cost all the phi we changed.
344 // - If the value spans several registers, then we cannot do a local
347 // Check if this is a physical or virtual register.
348 unsigned Reg
= MO
.getReg();
349 if (TargetRegisterInfo::isPhysicalRegister(Reg
)) {
350 // We are going to split every outgoing edges.
351 // Check that this is possible.
352 // FIXME: The machine representation is currently broken
353 // since it also several terminators in one basic block.
354 // Because of that we would technically need a way to get
355 // the targets of just one terminator to know which edges
357 // Assert that we do not hit the ill-formed representation.
359 // If there are other terminators before that one, some of
360 // the outgoing edges may not be dominated by this definition.
361 assert(&MI
== &(*MI
.getParent()->getFirstTerminator()) &&
362 "Do not know which outgoing edges are relevant");
363 const MachineInstr
*Next
= MI
.getNextNode();
364 assert((!Next
|| Next
->isUnconditionalBranch()) &&
365 "Do not know where each terminator ends up");
367 // If the next terminator uses Reg, this means we have
368 // to split right after MI and thus we need a way to ask
369 // which outgoing edges are affected.
370 assert(!Next
->readsRegister(Reg
) && "Need to split between terminators");
371 // We will split all the edges and repair there.
373 // This is a virtual register defined by a terminator.
374 if (ValMapping
.NumBreakDowns
== 1) {
375 // There is nothing to repair, but we may actually lie on
376 // the repairing cost because of the PHIs already proceeded
377 // as already stated.
378 // Though the code will be correct.
379 assert(false && "Repairing cost may not be accurate");
381 // We need to do non-local repairing. Basically, patch all
382 // the uses (i.e., phis) that we already proceeded.
383 // For now, just say this mapping is not possible.
384 RepairPt
.switchTo(RepairingPlacement::RepairingKind::Impossible
);
389 RegBankSelect::MappingCost
RegBankSelect::computeMapping(
390 MachineInstr
&MI
, const RegisterBankInfo::InstructionMapping
&InstrMapping
,
391 SmallVectorImpl
<RepairingPlacement
> &RepairPts
,
392 const RegBankSelect::MappingCost
*BestCost
) {
393 assert((MBFI
|| !BestCost
) && "Costs comparison require MBFI");
395 if (!InstrMapping
.isValid())
396 return MappingCost::ImpossibleCost();
398 // If mapped with InstrMapping, MI will have the recorded cost.
399 MappingCost
Cost(MBFI
? MBFI
->getBlockFreq(MI
.getParent()) : 1);
400 bool Saturated
= Cost
.addLocalCost(InstrMapping
.getCost());
401 assert(!Saturated
&& "Possible mapping saturated the cost");
402 LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI
);
403 LLVM_DEBUG(dbgs() << "With: " << InstrMapping
<< '\n');
405 if (BestCost
&& Cost
> *BestCost
) {
406 LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
410 // Moreover, to realize this mapping, the register bank of each operand must
411 // match this mapping. In other words, we may need to locally reassign the
412 // register banks. Account for that repairing cost as well.
413 // In this context, local means in the surrounding of MI.
414 for (unsigned OpIdx
= 0, EndOpIdx
= InstrMapping
.getNumOperands();
415 OpIdx
!= EndOpIdx
; ++OpIdx
) {
416 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
419 unsigned Reg
= MO
.getReg();
422 LLVM_DEBUG(dbgs() << "Opd" << OpIdx
<< '\n');
423 const RegisterBankInfo::ValueMapping
&ValMapping
=
424 InstrMapping
.getOperandMapping(OpIdx
);
425 // If Reg is already properly mapped, this is free.
427 if (assignmentMatch(Reg
, ValMapping
, Assign
)) {
428 LLVM_DEBUG(dbgs() << "=> is free (match).\n");
432 LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
433 RepairPts
.emplace_back(RepairingPlacement(MI
, OpIdx
, *TRI
, *this,
434 RepairingPlacement::Reassign
));
438 // Find the insertion point for the repairing code.
439 RepairPts
.emplace_back(
440 RepairingPlacement(MI
, OpIdx
, *TRI
, *this, RepairingPlacement::Insert
));
441 RepairingPlacement
&RepairPt
= RepairPts
.back();
443 // If we need to split a basic block to materialize this insertion point,
444 // we may give a higher cost to this mapping.
445 // Nevertheless, we may get away with the split, so try that first.
446 if (RepairPt
.hasSplit())
447 tryAvoidingSplit(RepairPt
, MO
, ValMapping
);
449 // Check that the materialization of the repairing is possible.
450 if (!RepairPt
.canMaterialize()) {
451 LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
452 return MappingCost::ImpossibleCost();
455 // Account for the split cost and repair cost.
456 // Unless the cost is already saturated or we do not care about the cost.
457 if (!BestCost
|| Saturated
)
460 // To get accurate information we need MBFI and MBPI.
461 // Thus, if we end up here this information should be here.
462 assert(MBFI
&& MBPI
&& "Cost computation requires MBFI and MBPI");
464 // FIXME: We will have to rework the repairing cost model.
465 // The repairing cost depends on the register bank that MO has.
466 // However, when we break down the value into different values,
467 // MO may not have a register bank while still needing repairing.
468 // For the fast mode, we don't compute the cost so that is fine,
469 // but still for the repairing code, we will have to make a choice.
470 // For the greedy mode, we should choose greedily what is the best
471 // choice based on the next use of MO.
473 // Sums up the repairing cost of MO at each insertion point.
474 uint64_t RepairCost
= getRepairCost(MO
, ValMapping
);
476 // This is an impossible to repair cost.
477 if (RepairCost
== std::numeric_limits
<unsigned>::max())
478 return MappingCost::ImpossibleCost();
480 // Bias used for splitting: 5%.
481 const uint64_t PercentageForBias
= 5;
482 uint64_t Bias
= (RepairCost
* PercentageForBias
+ 99) / 100;
483 // We should not need more than a couple of instructions to repair
484 // an assignment. In other words, the computation should not
485 // overflow because the repairing cost is free of basic block
487 assert(((RepairCost
< RepairCost
* PercentageForBias
) &&
488 (RepairCost
* PercentageForBias
<
489 RepairCost
* PercentageForBias
+ 99)) &&
490 "Repairing involves more than a billion of instructions?!");
491 for (const std::unique_ptr
<InsertPoint
> &InsertPt
: RepairPt
) {
492 assert(InsertPt
->canMaterialize() && "We should not have made it here");
493 // We will applied some basic block frequency and those uses uint64_t.
494 if (!InsertPt
->isSplit())
495 Saturated
= Cost
.addLocalCost(RepairCost
);
497 uint64_t CostForInsertPt
= RepairCost
;
498 // Again we shouldn't overflow here givent that
499 // CostForInsertPt is frequency free at this point.
500 assert(CostForInsertPt
+ Bias
> CostForInsertPt
&&
501 "Repairing + split bias overflows");
502 CostForInsertPt
+= Bias
;
503 uint64_t PtCost
= InsertPt
->frequency(*this) * CostForInsertPt
;
504 // Check if we just overflowed.
505 if ((Saturated
= PtCost
< CostForInsertPt
))
508 Saturated
= Cost
.addNonLocalCost(PtCost
);
511 // Stop looking into what it takes to repair, this is already
513 if (BestCost
&& Cost
> *BestCost
) {
514 LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
518 // No need to accumulate more cost information.
519 // We need to still gather the repairing information though.
524 LLVM_DEBUG(dbgs() << "Total cost is: " << Cost
<< "\n");
528 bool RegBankSelect::applyMapping(
529 MachineInstr
&MI
, const RegisterBankInfo::InstructionMapping
&InstrMapping
,
530 SmallVectorImpl
<RegBankSelect::RepairingPlacement
> &RepairPts
) {
531 // OpdMapper will hold all the information needed for the rewritting.
532 RegisterBankInfo::OperandsMapper
OpdMapper(MI
, InstrMapping
, *MRI
);
534 // First, place the repairing code.
535 for (RepairingPlacement
&RepairPt
: RepairPts
) {
536 if (!RepairPt
.canMaterialize() ||
537 RepairPt
.getKind() == RepairingPlacement::Impossible
)
539 assert(RepairPt
.getKind() != RepairingPlacement::None
&&
540 "This should not make its way in the list");
541 unsigned OpIdx
= RepairPt
.getOpIdx();
542 MachineOperand
&MO
= MI
.getOperand(OpIdx
);
543 const RegisterBankInfo::ValueMapping
&ValMapping
=
544 InstrMapping
.getOperandMapping(OpIdx
);
545 unsigned Reg
= MO
.getReg();
547 switch (RepairPt
.getKind()) {
548 case RepairingPlacement::Reassign
:
549 assert(ValMapping
.NumBreakDowns
== 1 &&
550 "Reassignment should only be for simple mapping");
551 MRI
->setRegBank(Reg
, *ValMapping
.BreakDown
[0].RegBank
);
553 case RepairingPlacement::Insert
:
554 OpdMapper
.createVRegs(OpIdx
);
555 if (!repairReg(MO
, ValMapping
, RepairPt
, OpdMapper
.getVRegs(OpIdx
)))
559 llvm_unreachable("Other kind should not happen");
563 // Second, rewrite the instruction.
564 LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper
<< '\n');
565 RBI
->applyMapping(OpdMapper
);
570 bool RegBankSelect::assignInstr(MachineInstr
&MI
) {
571 LLVM_DEBUG(dbgs() << "Assign: " << MI
);
572 // Remember the repairing placement for all the operands.
573 SmallVector
<RepairingPlacement
, 4> RepairPts
;
575 const RegisterBankInfo::InstructionMapping
*BestMapping
;
576 if (OptMode
== RegBankSelect::Mode::Fast
) {
577 BestMapping
= &RBI
->getInstrMapping(MI
);
578 MappingCost DefaultCost
= computeMapping(MI
, *BestMapping
, RepairPts
);
580 if (DefaultCost
== MappingCost::ImpossibleCost())
583 RegisterBankInfo::InstructionMappings PossibleMappings
=
584 RBI
->getInstrPossibleMappings(MI
);
585 if (PossibleMappings
.empty())
587 BestMapping
= &findBestMapping(MI
, PossibleMappings
, RepairPts
);
589 // Make sure the mapping is valid for MI.
590 assert(BestMapping
->verify(MI
) && "Invalid instruction mapping");
592 LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping
<< '\n');
594 // After this call, MI may not be valid anymore.
596 return applyMapping(MI
, *BestMapping
, RepairPts
);
599 bool RegBankSelect::runOnMachineFunction(MachineFunction
&MF
) {
600 // If the ISel pipeline failed, do not bother running that pass.
601 if (MF
.getProperties().hasProperty(
602 MachineFunctionProperties::Property::FailedISel
))
605 LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF
.getName() << '\n');
606 const Function
&F
= MF
.getFunction();
607 Mode SaveOptMode
= OptMode
;
608 if (F
.hasFnAttribute(Attribute::OptimizeNone
))
609 OptMode
= Mode::Fast
;
613 // Check that our input is fully legal: we require the function to have the
614 // Legalized property, so it should be.
615 // FIXME: This should be in the MachineVerifier.
616 if (!DisableGISelLegalityCheck
)
617 if (const MachineInstr
*MI
= machineFunctionIsIllegal(MF
)) {
618 reportGISelFailure(MF
, *TPC
, *MORE
, "gisel-regbankselect",
619 "instruction is not legal", *MI
);
624 // Walk the function and assign register banks to all operands.
625 // Use a RPOT to make sure all registers are assigned before we choose
626 // the best mapping of the current instruction.
627 ReversePostOrderTraversal
<MachineFunction
*> RPOT(&MF
);
628 for (MachineBasicBlock
*MBB
: RPOT
) {
629 // Set a sensible insertion point so that subsequent calls to
631 MIRBuilder
.setMBB(*MBB
);
632 for (MachineBasicBlock::iterator MII
= MBB
->begin(), End
= MBB
->end();
634 // MI might be invalidated by the assignment, so move the
635 // iterator before hand.
636 MachineInstr
&MI
= *MII
++;
638 // Ignore target-specific instructions: they should use proper regclasses.
639 if (isTargetSpecificOpcode(MI
.getOpcode()))
642 if (!assignInstr(MI
)) {
643 reportGISelFailure(MF
, *TPC
, *MORE
, "gisel-regbankselect",
644 "unable to map instruction", MI
);
649 OptMode
= SaveOptMode
;
653 //------------------------------------------------------------------------------
654 // Helper Classes Implementation
655 //------------------------------------------------------------------------------
656 RegBankSelect::RepairingPlacement::RepairingPlacement(
657 MachineInstr
&MI
, unsigned OpIdx
, const TargetRegisterInfo
&TRI
, Pass
&P
,
658 RepairingPlacement::RepairingKind Kind
)
659 // Default is, we are going to insert code to repair OpIdx.
660 : Kind(Kind
), OpIdx(OpIdx
),
661 CanMaterialize(Kind
!= RepairingKind::Impossible
), P(P
) {
662 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
663 assert(MO
.isReg() && "Trying to repair a non-reg operand");
665 if (Kind
!= RepairingKind::Insert
)
668 // Repairings for definitions happen after MI, uses happen before.
669 bool Before
= !MO
.isDef();
671 // Check if we are done with MI.
672 if (!MI
.isPHI() && !MI
.isTerminator()) {
673 addInsertPoint(MI
, Before
);
674 // We are done with the initialization.
678 // Now, look for the special cases.
680 // - PHI must be the first instructions:
681 // * Before, we have to split the related incoming edge.
682 // * After, move the insertion point past the last phi.
684 MachineBasicBlock::iterator It
= MI
.getParent()->getFirstNonPHI();
685 if (It
!= MI
.getParent()->end())
686 addInsertPoint(*It
, /*Before*/ true);
688 addInsertPoint(*(--It
), /*Before*/ false);
691 // We repair a use of a phi, we may need to split the related edge.
692 MachineBasicBlock
&Pred
= *MI
.getOperand(OpIdx
+ 1).getMBB();
693 // Check if we can move the insertion point prior to the
694 // terminators of the predecessor.
695 unsigned Reg
= MO
.getReg();
696 MachineBasicBlock::iterator It
= Pred
.getLastNonDebugInstr();
697 for (auto Begin
= Pred
.begin(); It
!= Begin
&& It
->isTerminator(); --It
)
698 if (It
->modifiesRegister(Reg
, &TRI
)) {
699 // We cannot hoist the repairing code in the predecessor.
701 addInsertPoint(Pred
, *MI
.getParent());
704 // At this point, we can insert in Pred.
706 // - If It is invalid, Pred is empty and we can insert in Pred
708 // - If It is valid, It is the first non-terminator, insert after It.
709 if (It
== Pred
.end())
710 addInsertPoint(Pred
, /*Beginning*/ false);
712 addInsertPoint(*It
, /*Before*/ false);
714 // - Terminators must be the last instructions:
715 // * Before, move the insert point before the first terminator.
716 // * After, we have to split the outcoming edges.
717 unsigned Reg
= MO
.getReg();
719 // Check whether Reg is defined by any terminator.
720 MachineBasicBlock::iterator It
= MI
;
721 for (auto Begin
= MI
.getParent()->begin();
722 --It
!= Begin
&& It
->isTerminator();)
723 if (It
->modifiesRegister(Reg
, &TRI
)) {
724 // Insert the repairing code right after the definition.
725 addInsertPoint(*It
, /*Before*/ false);
728 addInsertPoint(*It
, /*Before*/ true);
731 // Make sure Reg is not redefined by other terminators, otherwise
732 // we do not know how to split.
733 for (MachineBasicBlock::iterator It
= MI
, End
= MI
.getParent()->end();
735 // The machine verifier should reject this kind of code.
736 assert(It
->modifiesRegister(Reg
, &TRI
) && "Do not know where to split");
737 // Split each outcoming edges.
738 MachineBasicBlock
&Src
= *MI
.getParent();
739 for (auto &Succ
: Src
.successors())
740 addInsertPoint(Src
, Succ
);
744 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr
&MI
,
746 addInsertPoint(*new InstrInsertPoint(MI
, Before
));
749 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock
&MBB
,
751 addInsertPoint(*new MBBInsertPoint(MBB
, Beginning
));
754 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock
&Src
,
755 MachineBasicBlock
&Dst
) {
756 addInsertPoint(*new EdgeInsertPoint(Src
, Dst
, P
));
759 void RegBankSelect::RepairingPlacement::addInsertPoint(
760 RegBankSelect::InsertPoint
&Point
) {
761 CanMaterialize
&= Point
.canMaterialize();
762 HasSplit
|= Point
.isSplit();
763 InsertPoints
.emplace_back(&Point
);
766 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr
&Instr
,
768 : InsertPoint(), Instr(Instr
), Before(Before
) {
769 // Since we do not support splitting, we do not need to update
770 // liveness and such, so do not do anything with P.
771 assert((!Before
|| !Instr
.isPHI()) &&
772 "Splitting before phis requires more points");
773 assert((!Before
|| !Instr
.getNextNode() || !Instr
.getNextNode()->isPHI()) &&
774 "Splitting between phis does not make sense");
777 void RegBankSelect::InstrInsertPoint::materialize() {
779 // Slice and return the beginning of the new block.
780 // If we need to split between the terminators, we theoritically
781 // need to know where the first and second set of terminators end
782 // to update the successors properly.
783 // Now, in pratice, we should have a maximum of 2 branch
784 // instructions; one conditional and one unconditional. Therefore
785 // we know how to update the successor by looking at the target of
786 // the unconditional branch.
787 // If we end up splitting at some point, then, we should update
788 // the liveness information and such. I.e., we would need to
790 // The machine verifier should actually make sure such cases
792 llvm_unreachable("Not yet implemented");
794 // Otherwise the insertion point is just the current or next
795 // instruction depending on Before. I.e., there is nothing to do
799 bool RegBankSelect::InstrInsertPoint::isSplit() const {
800 // If the insertion point is after a terminator, we need to split.
802 return Instr
.isTerminator();
803 // If we insert before an instruction that is after a terminator,
804 // we are still after a terminator.
805 return Instr
.getPrevNode() && Instr
.getPrevNode()->isTerminator();
808 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass
&P
) const {
809 // Even if we need to split, because we insert between terminators,
810 // this split has actually the same frequency as the instruction.
811 const MachineBlockFrequencyInfo
*MBFI
=
812 P
.getAnalysisIfAvailable
<MachineBlockFrequencyInfo
>();
815 return MBFI
->getBlockFreq(Instr
.getParent()).getFrequency();
818 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass
&P
) const {
819 const MachineBlockFrequencyInfo
*MBFI
=
820 P
.getAnalysisIfAvailable
<MachineBlockFrequencyInfo
>();
823 return MBFI
->getBlockFreq(&MBB
).getFrequency();
826 void RegBankSelect::EdgeInsertPoint::materialize() {
827 // If we end up repairing twice at the same place before materializing the
828 // insertion point, we may think we have to split an edge twice.
829 // We should have a factory for the insert point such that identical points
830 // are the same instance.
831 assert(Src
.isSuccessor(DstOrSplit
) && DstOrSplit
->isPredecessor(&Src
) &&
832 "This point has already been split");
833 MachineBasicBlock
*NewBB
= Src
.SplitCriticalEdge(DstOrSplit
, P
);
834 assert(NewBB
&& "Invalid call to materialize");
835 // We reuse the destination block to hold the information of the new block.
839 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass
&P
) const {
840 const MachineBlockFrequencyInfo
*MBFI
=
841 P
.getAnalysisIfAvailable
<MachineBlockFrequencyInfo
>();
845 return MBFI
->getBlockFreq(DstOrSplit
).getFrequency();
847 const MachineBranchProbabilityInfo
*MBPI
=
848 P
.getAnalysisIfAvailable
<MachineBranchProbabilityInfo
>();
851 // The basic block will be on the edge.
852 return (MBFI
->getBlockFreq(&Src
) * MBPI
->getEdgeProbability(&Src
, DstOrSplit
))
856 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
857 // If this is not a critical edge, we should not have used this insert
858 // point. Indeed, either the successor or the predecessor should
860 assert(Src
.succ_size() > 1 && DstOrSplit
->pred_size() > 1 &&
861 "Edge is not critical");
862 return Src
.canSplitCriticalEdge(DstOrSplit
);
865 RegBankSelect::MappingCost::MappingCost(const BlockFrequency
&LocalFreq
)
866 : LocalFreq(LocalFreq
.getFrequency()) {}
868 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost
) {
869 // Check if this overflows.
870 if (LocalCost
+ Cost
< LocalCost
) {
875 return isSaturated();
878 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost
) {
879 // Check if this overflows.
880 if (NonLocalCost
+ Cost
< NonLocalCost
) {
884 NonLocalCost
+= Cost
;
885 return isSaturated();
888 bool RegBankSelect::MappingCost::isSaturated() const {
889 return LocalCost
== UINT64_MAX
- 1 && NonLocalCost
== UINT64_MAX
&&
890 LocalFreq
== UINT64_MAX
;
893 void RegBankSelect::MappingCost::saturate() {
894 *this = ImpossibleCost();
898 RegBankSelect::MappingCost
RegBankSelect::MappingCost::ImpossibleCost() {
899 return MappingCost(UINT64_MAX
, UINT64_MAX
, UINT64_MAX
);
902 bool RegBankSelect::MappingCost::operator<(const MappingCost
&Cost
) const {
903 // Sort out the easy cases.
906 // If one is impossible to realize the other is cheaper unless it is
907 // impossible as well.
908 if ((*this == ImpossibleCost()) || (Cost
== ImpossibleCost()))
909 return (*this == ImpossibleCost()) < (Cost
== ImpossibleCost());
910 // If one is saturated the other is cheaper, unless it is saturated
912 if (isSaturated() || Cost
.isSaturated())
913 return isSaturated() < Cost
.isSaturated();
914 // At this point we know both costs hold sensible values.
916 // If both values have a different base frequency, there is no much
917 // we can do but to scale everything.
918 // However, if they have the same base frequency we can avoid making
919 // complicated computation.
920 uint64_t ThisLocalAdjust
;
921 uint64_t OtherLocalAdjust
;
922 if (LLVM_LIKELY(LocalFreq
== Cost
.LocalFreq
)) {
924 // At this point, we know the local costs are comparable.
925 // Do the case that do not involve potential overflow first.
926 if (NonLocalCost
== Cost
.NonLocalCost
)
927 // Since the non-local costs do not discriminate on the result,
928 // just compare the local costs.
929 return LocalCost
< Cost
.LocalCost
;
931 // The base costs are comparable so we may only keep the relative
932 // value to increase our chances of avoiding overflows.
934 OtherLocalAdjust
= 0;
935 if (LocalCost
< Cost
.LocalCost
)
936 OtherLocalAdjust
= Cost
.LocalCost
- LocalCost
;
938 ThisLocalAdjust
= LocalCost
- Cost
.LocalCost
;
940 ThisLocalAdjust
= LocalCost
;
941 OtherLocalAdjust
= Cost
.LocalCost
;
944 // The non-local costs are comparable, just keep the relative value.
945 uint64_t ThisNonLocalAdjust
= 0;
946 uint64_t OtherNonLocalAdjust
= 0;
947 if (NonLocalCost
< Cost
.NonLocalCost
)
948 OtherNonLocalAdjust
= Cost
.NonLocalCost
- NonLocalCost
;
950 ThisNonLocalAdjust
= NonLocalCost
- Cost
.NonLocalCost
;
951 // Scale everything to make them comparable.
952 uint64_t ThisScaledCost
= ThisLocalAdjust
* LocalFreq
;
953 // Check for overflow on that operation.
954 bool ThisOverflows
= ThisLocalAdjust
&& (ThisScaledCost
< ThisLocalAdjust
||
955 ThisScaledCost
< LocalFreq
);
956 uint64_t OtherScaledCost
= OtherLocalAdjust
* Cost
.LocalFreq
;
957 // Check for overflow on the last operation.
958 bool OtherOverflows
=
960 (OtherScaledCost
< OtherLocalAdjust
|| OtherScaledCost
< Cost
.LocalFreq
);
961 // Add the non-local costs.
962 ThisOverflows
|= ThisNonLocalAdjust
&&
963 ThisScaledCost
+ ThisNonLocalAdjust
< ThisNonLocalAdjust
;
964 ThisScaledCost
+= ThisNonLocalAdjust
;
965 OtherOverflows
|= OtherNonLocalAdjust
&&
966 OtherScaledCost
+ OtherNonLocalAdjust
< OtherNonLocalAdjust
;
967 OtherScaledCost
+= OtherNonLocalAdjust
;
968 // If both overflows, we cannot compare without additional
969 // precision, e.g., APInt. Just give up on that case.
970 if (ThisOverflows
&& OtherOverflows
)
972 // If one overflows but not the other, we can still compare.
973 if (ThisOverflows
|| OtherOverflows
)
974 return ThisOverflows
< OtherOverflows
;
975 // Otherwise, just compare the values.
976 return ThisScaledCost
< OtherScaledCost
;
979 bool RegBankSelect::MappingCost::operator==(const MappingCost
&Cost
) const {
980 return LocalCost
== Cost
.LocalCost
&& NonLocalCost
== Cost
.NonLocalCost
&&
981 LocalFreq
== Cost
.LocalFreq
;
984 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
985 LLVM_DUMP_METHOD
void RegBankSelect::MappingCost::dump() const {
991 void RegBankSelect::MappingCost::print(raw_ostream
&OS
) const {
992 if (*this == ImpossibleCost()) {
1000 OS
<< LocalFreq
<< " * " << LocalCost
<< " + " << NonLocalCost
;