[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / CodeGen / GlobalISel / RegBankSelect.cpp
blob9e2d48d1dc424fe09c0c8ca9215cb2baa83a2982
1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file implements the RegBankSelect class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
18 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
20 #include "llvm/CodeGen/GlobalISel/Utils.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
23 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetOpcodes.h"
30 #include "llvm/CodeGen/TargetPassConfig.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
33 #include "llvm/Config/llvm-config.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/BlockFrequency.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstdint>
46 #include <limits>
47 #include <memory>
48 #include <utility>
50 #define DEBUG_TYPE "regbankselect"
52 using namespace llvm;
54 static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
55 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
56 cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
57 "Run the Fast mode (default mapping)"),
58 clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
59 "Use the Greedy mode (best local mapping)")));
61 char RegBankSelect::ID = 0;
63 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
64 "Assign register bank of generic virtual registers",
65 false, false);
66 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
67 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
68 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
69 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
70 "Assign register bank of generic virtual registers", false,
71 false)
73 RegBankSelect::RegBankSelect(Mode RunningMode)
74 : MachineFunctionPass(ID), OptMode(RunningMode) {
75 initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
76 if (RegBankSelectMode.getNumOccurrences() != 0) {
77 OptMode = RegBankSelectMode;
78 if (RegBankSelectMode != RunningMode)
79 LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
83 void RegBankSelect::init(MachineFunction &MF) {
84 RBI = MF.getSubtarget().getRegBankInfo();
85 assert(RBI && "Cannot work without RegisterBankInfo");
86 MRI = &MF.getRegInfo();
87 TRI = MF.getSubtarget().getRegisterInfo();
88 TPC = &getAnalysis<TargetPassConfig>();
89 if (OptMode != Mode::Fast) {
90 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
91 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
92 } else {
93 MBFI = nullptr;
94 MBPI = nullptr;
96 MIRBuilder.setMF(MF);
97 MORE = llvm::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
100 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
101 if (OptMode != Mode::Fast) {
102 // We could preserve the information from these two analysis but
103 // the APIs do not allow to do so yet.
104 AU.addRequired<MachineBlockFrequencyInfo>();
105 AU.addRequired<MachineBranchProbabilityInfo>();
107 AU.addRequired<TargetPassConfig>();
108 getSelectionDAGFallbackAnalysisUsage(AU);
109 MachineFunctionPass::getAnalysisUsage(AU);
112 bool RegBankSelect::assignmentMatch(
113 unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping,
114 bool &OnlyAssign) const {
115 // By default we assume we will have to repair something.
116 OnlyAssign = false;
117 // Each part of a break down needs to end up in a different register.
118 // In other word, Reg assignement does not match.
119 if (ValMapping.NumBreakDowns > 1)
120 return false;
122 const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
123 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
124 // Reg is free of assignment, a simple assignment will make the
125 // register bank to match.
126 OnlyAssign = CurRegBank == nullptr;
127 LLVM_DEBUG(dbgs() << "Does assignment already match: ";
128 if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
129 dbgs() << " against ";
130 assert(DesiredRegBrank && "The mapping must be valid");
131 dbgs() << *DesiredRegBrank << '\n';);
132 return CurRegBank == DesiredRegBrank;
135 bool RegBankSelect::repairReg(
136 MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
137 RegBankSelect::RepairingPlacement &RepairPt,
138 const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) {
139 if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled())
140 return false;
141 assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented");
142 // An empty range of new register means no repairing.
143 assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair");
145 // Assume we are repairing a use and thus, the original reg will be
146 // the source of the repairing.
147 unsigned Src = MO.getReg();
148 unsigned Dst = *NewVRegs.begin();
150 // If we repair a definition, swap the source and destination for
151 // the repairing.
152 if (MO.isDef())
153 std::swap(Src, Dst);
155 assert((RepairPt.getNumInsertPoints() == 1 ||
156 TargetRegisterInfo::isPhysicalRegister(Dst)) &&
157 "We are about to create several defs for Dst");
159 // Build the instruction used to repair, then clone it at the right
160 // places. Avoiding buildCopy bypasses the check that Src and Dst have the
161 // same types because the type is a placeholder when this function is called.
162 MachineInstr *MI =
163 MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY).addDef(Dst).addUse(Src);
164 LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
165 << '\n');
166 // TODO:
167 // Check if MI is legal. if not, we need to legalize all the
168 // instructions we are going to insert.
169 std::unique_ptr<MachineInstr *[]> NewInstrs(
170 new MachineInstr *[RepairPt.getNumInsertPoints()]);
171 bool IsFirst = true;
172 unsigned Idx = 0;
173 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
174 MachineInstr *CurMI;
175 if (IsFirst)
176 CurMI = MI;
177 else
178 CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
179 InsertPt->insert(*CurMI);
180 NewInstrs[Idx++] = CurMI;
181 IsFirst = false;
183 // TODO:
184 // Legalize NewInstrs if need be.
185 return true;
188 uint64_t RegBankSelect::getRepairCost(
189 const MachineOperand &MO,
190 const RegisterBankInfo::ValueMapping &ValMapping) const {
191 assert(MO.isReg() && "We should only repair register operand");
192 assert(ValMapping.NumBreakDowns && "Nothing to map??");
194 bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
195 const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
196 // If MO does not have a register bank, we should have just been
197 // able to set one unless we have to break the value down.
198 assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair");
199 // Def: Val <- NewDefs
200 // Same number of values: copy
201 // Different number: Val = build_sequence Defs1, Defs2, ...
202 // Use: NewSources <- Val.
203 // Same number of values: copy.
204 // Different number: Src1, Src2, ... =
205 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
206 // We should remember that this value is available somewhere else to
207 // coalesce the value.
209 if (IsSameNumOfValues) {
210 const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
211 // If we repair a definition, swap the source and destination for
212 // the repairing.
213 if (MO.isDef())
214 std::swap(CurRegBank, DesiredRegBrank);
215 // TODO: It may be possible to actually avoid the copy.
216 // If we repair something where the source is defined by a copy
217 // and the source of that copy is on the right bank, we can reuse
218 // it for free.
219 // E.g.,
220 // RegToRepair<BankA> = copy AlternativeSrc<BankB>
221 // = op RegToRepair<BankA>
222 // We can simply propagate AlternativeSrc instead of copying RegToRepair
223 // into a new virtual register.
224 // We would also need to propagate this information in the
225 // repairing placement.
226 unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank,
227 RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
228 // TODO: use a dedicated constant for ImpossibleCost.
229 if (Cost != std::numeric_limits<unsigned>::max())
230 return Cost;
231 // Return the legalization cost of that repairing.
233 return std::numeric_limits<unsigned>::max();
236 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
237 MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
238 SmallVectorImpl<RepairingPlacement> &RepairPts) {
239 assert(!PossibleMappings.empty() &&
240 "Do not know how to map this instruction");
242 const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
243 MappingCost Cost = MappingCost::ImpossibleCost();
244 SmallVector<RepairingPlacement, 4> LocalRepairPts;
245 for (const RegisterBankInfo::InstructionMapping *CurMapping :
246 PossibleMappings) {
247 MappingCost CurCost =
248 computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
249 if (CurCost < Cost) {
250 LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
251 Cost = CurCost;
252 BestMapping = CurMapping;
253 RepairPts.clear();
254 for (RepairingPlacement &RepairPt : LocalRepairPts)
255 RepairPts.emplace_back(std::move(RepairPt));
258 if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
259 // If none of the mapping worked that means they are all impossible.
260 // Thus, pick the first one and set an impossible repairing point.
261 // It will trigger the failed isel mode.
262 BestMapping = *PossibleMappings.begin();
263 RepairPts.emplace_back(
264 RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
265 } else
266 assert(BestMapping && "No suitable mapping for instruction");
267 return *BestMapping;
270 void RegBankSelect::tryAvoidingSplit(
271 RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
272 const RegisterBankInfo::ValueMapping &ValMapping) const {
273 const MachineInstr &MI = *MO.getParent();
274 assert(RepairPt.hasSplit() && "We should not have to adjust for split");
275 // Splitting should only occur for PHIs or between terminators,
276 // because we only do local repairing.
277 assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
279 assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
280 "Repairing placement does not match operand");
282 // If we need splitting for phis, that means it is because we
283 // could not find an insertion point before the terminators of
284 // the predecessor block for this argument. In other words,
285 // the input value is defined by one of the terminators.
286 assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
288 // We split to repair the use of a phi or a terminator.
289 if (!MO.isDef()) {
290 if (MI.isTerminator()) {
291 assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
292 "Need to split for the first terminator?!");
293 } else {
294 // For the PHI case, the split may not be actually required.
295 // In the copy case, a phi is already a copy on the incoming edge,
296 // therefore there is no need to split.
297 if (ValMapping.NumBreakDowns == 1)
298 // This is a already a copy, there is nothing to do.
299 RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
301 return;
304 // At this point, we need to repair a defintion of a terminator.
306 // Technically we need to fix the def of MI on all outgoing
307 // edges of MI to keep the repairing local. In other words, we
308 // will create several definitions of the same register. This
309 // does not work for SSA unless that definition is a physical
310 // register.
311 // However, there are other cases where we can get away with
312 // that while still keeping the repairing local.
313 assert(MI.isTerminator() && MO.isDef() &&
314 "This code is for the def of a terminator");
316 // Since we use RPO traversal, if we need to repair a definition
317 // this means this definition could be:
318 // 1. Used by PHIs (i.e., this VReg has been visited as part of the
319 // uses of a phi.), or
320 // 2. Part of a target specific instruction (i.e., the target applied
321 // some register class constraints when creating the instruction.)
322 // If the constraints come for #2, the target said that another mapping
323 // is supported so we may just drop them. Indeed, if we do not change
324 // the number of registers holding that value, the uses will get fixed
325 // when we get to them.
326 // Uses in PHIs may have already been proceeded though.
327 // If the constraints come for #1, then, those are weak constraints and
328 // no actual uses may rely on them. However, the problem remains mainly
329 // the same as for #2. If the value stays in one register, we could
330 // just switch the register bank of the definition, but we would need to
331 // account for a repairing cost for each phi we silently change.
333 // In any case, if the value needs to be broken down into several
334 // registers, the repairing is not local anymore as we need to patch
335 // every uses to rebuild the value in just one register.
337 // To summarize:
338 // - If the value is in a physical register, we can do the split and
339 // fix locally.
340 // Otherwise if the value is in a virtual register:
341 // - If the value remains in one register, we do not have to split
342 // just switching the register bank would do, but we need to account
343 // in the repairing cost all the phi we changed.
344 // - If the value spans several registers, then we cannot do a local
345 // repairing.
347 // Check if this is a physical or virtual register.
348 unsigned Reg = MO.getReg();
349 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
350 // We are going to split every outgoing edges.
351 // Check that this is possible.
352 // FIXME: The machine representation is currently broken
353 // since it also several terminators in one basic block.
354 // Because of that we would technically need a way to get
355 // the targets of just one terminator to know which edges
356 // we have to split.
357 // Assert that we do not hit the ill-formed representation.
359 // If there are other terminators before that one, some of
360 // the outgoing edges may not be dominated by this definition.
361 assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
362 "Do not know which outgoing edges are relevant");
363 const MachineInstr *Next = MI.getNextNode();
364 assert((!Next || Next->isUnconditionalBranch()) &&
365 "Do not know where each terminator ends up");
366 if (Next)
367 // If the next terminator uses Reg, this means we have
368 // to split right after MI and thus we need a way to ask
369 // which outgoing edges are affected.
370 assert(!Next->readsRegister(Reg) && "Need to split between terminators");
371 // We will split all the edges and repair there.
372 } else {
373 // This is a virtual register defined by a terminator.
374 if (ValMapping.NumBreakDowns == 1) {
375 // There is nothing to repair, but we may actually lie on
376 // the repairing cost because of the PHIs already proceeded
377 // as already stated.
378 // Though the code will be correct.
379 assert(false && "Repairing cost may not be accurate");
380 } else {
381 // We need to do non-local repairing. Basically, patch all
382 // the uses (i.e., phis) that we already proceeded.
383 // For now, just say this mapping is not possible.
384 RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
389 RegBankSelect::MappingCost RegBankSelect::computeMapping(
390 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
391 SmallVectorImpl<RepairingPlacement> &RepairPts,
392 const RegBankSelect::MappingCost *BestCost) {
393 assert((MBFI || !BestCost) && "Costs comparison require MBFI");
395 if (!InstrMapping.isValid())
396 return MappingCost::ImpossibleCost();
398 // If mapped with InstrMapping, MI will have the recorded cost.
399 MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
400 bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
401 assert(!Saturated && "Possible mapping saturated the cost");
402 LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
403 LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
404 RepairPts.clear();
405 if (BestCost && Cost > *BestCost) {
406 LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
407 return Cost;
410 // Moreover, to realize this mapping, the register bank of each operand must
411 // match this mapping. In other words, we may need to locally reassign the
412 // register banks. Account for that repairing cost as well.
413 // In this context, local means in the surrounding of MI.
414 for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
415 OpIdx != EndOpIdx; ++OpIdx) {
416 const MachineOperand &MO = MI.getOperand(OpIdx);
417 if (!MO.isReg())
418 continue;
419 unsigned Reg = MO.getReg();
420 if (!Reg)
421 continue;
422 LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
423 const RegisterBankInfo::ValueMapping &ValMapping =
424 InstrMapping.getOperandMapping(OpIdx);
425 // If Reg is already properly mapped, this is free.
426 bool Assign;
427 if (assignmentMatch(Reg, ValMapping, Assign)) {
428 LLVM_DEBUG(dbgs() << "=> is free (match).\n");
429 continue;
431 if (Assign) {
432 LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
433 RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
434 RepairingPlacement::Reassign));
435 continue;
438 // Find the insertion point for the repairing code.
439 RepairPts.emplace_back(
440 RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
441 RepairingPlacement &RepairPt = RepairPts.back();
443 // If we need to split a basic block to materialize this insertion point,
444 // we may give a higher cost to this mapping.
445 // Nevertheless, we may get away with the split, so try that first.
446 if (RepairPt.hasSplit())
447 tryAvoidingSplit(RepairPt, MO, ValMapping);
449 // Check that the materialization of the repairing is possible.
450 if (!RepairPt.canMaterialize()) {
451 LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
452 return MappingCost::ImpossibleCost();
455 // Account for the split cost and repair cost.
456 // Unless the cost is already saturated or we do not care about the cost.
457 if (!BestCost || Saturated)
458 continue;
460 // To get accurate information we need MBFI and MBPI.
461 // Thus, if we end up here this information should be here.
462 assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
464 // FIXME: We will have to rework the repairing cost model.
465 // The repairing cost depends on the register bank that MO has.
466 // However, when we break down the value into different values,
467 // MO may not have a register bank while still needing repairing.
468 // For the fast mode, we don't compute the cost so that is fine,
469 // but still for the repairing code, we will have to make a choice.
470 // For the greedy mode, we should choose greedily what is the best
471 // choice based on the next use of MO.
473 // Sums up the repairing cost of MO at each insertion point.
474 uint64_t RepairCost = getRepairCost(MO, ValMapping);
476 // This is an impossible to repair cost.
477 if (RepairCost == std::numeric_limits<unsigned>::max())
478 return MappingCost::ImpossibleCost();
480 // Bias used for splitting: 5%.
481 const uint64_t PercentageForBias = 5;
482 uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
483 // We should not need more than a couple of instructions to repair
484 // an assignment. In other words, the computation should not
485 // overflow because the repairing cost is free of basic block
486 // frequency.
487 assert(((RepairCost < RepairCost * PercentageForBias) &&
488 (RepairCost * PercentageForBias <
489 RepairCost * PercentageForBias + 99)) &&
490 "Repairing involves more than a billion of instructions?!");
491 for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
492 assert(InsertPt->canMaterialize() && "We should not have made it here");
493 // We will applied some basic block frequency and those uses uint64_t.
494 if (!InsertPt->isSplit())
495 Saturated = Cost.addLocalCost(RepairCost);
496 else {
497 uint64_t CostForInsertPt = RepairCost;
498 // Again we shouldn't overflow here givent that
499 // CostForInsertPt is frequency free at this point.
500 assert(CostForInsertPt + Bias > CostForInsertPt &&
501 "Repairing + split bias overflows");
502 CostForInsertPt += Bias;
503 uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
504 // Check if we just overflowed.
505 if ((Saturated = PtCost < CostForInsertPt))
506 Cost.saturate();
507 else
508 Saturated = Cost.addNonLocalCost(PtCost);
511 // Stop looking into what it takes to repair, this is already
512 // too expensive.
513 if (BestCost && Cost > *BestCost) {
514 LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
515 return Cost;
518 // No need to accumulate more cost information.
519 // We need to still gather the repairing information though.
520 if (Saturated)
521 break;
524 LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
525 return Cost;
528 bool RegBankSelect::applyMapping(
529 MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
530 SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
531 // OpdMapper will hold all the information needed for the rewritting.
532 RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
534 // First, place the repairing code.
535 for (RepairingPlacement &RepairPt : RepairPts) {
536 if (!RepairPt.canMaterialize() ||
537 RepairPt.getKind() == RepairingPlacement::Impossible)
538 return false;
539 assert(RepairPt.getKind() != RepairingPlacement::None &&
540 "This should not make its way in the list");
541 unsigned OpIdx = RepairPt.getOpIdx();
542 MachineOperand &MO = MI.getOperand(OpIdx);
543 const RegisterBankInfo::ValueMapping &ValMapping =
544 InstrMapping.getOperandMapping(OpIdx);
545 unsigned Reg = MO.getReg();
547 switch (RepairPt.getKind()) {
548 case RepairingPlacement::Reassign:
549 assert(ValMapping.NumBreakDowns == 1 &&
550 "Reassignment should only be for simple mapping");
551 MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
552 break;
553 case RepairingPlacement::Insert:
554 OpdMapper.createVRegs(OpIdx);
555 if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
556 return false;
557 break;
558 default:
559 llvm_unreachable("Other kind should not happen");
563 // Second, rewrite the instruction.
564 LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
565 RBI->applyMapping(OpdMapper);
567 return true;
570 bool RegBankSelect::assignInstr(MachineInstr &MI) {
571 LLVM_DEBUG(dbgs() << "Assign: " << MI);
572 // Remember the repairing placement for all the operands.
573 SmallVector<RepairingPlacement, 4> RepairPts;
575 const RegisterBankInfo::InstructionMapping *BestMapping;
576 if (OptMode == RegBankSelect::Mode::Fast) {
577 BestMapping = &RBI->getInstrMapping(MI);
578 MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
579 (void)DefaultCost;
580 if (DefaultCost == MappingCost::ImpossibleCost())
581 return false;
582 } else {
583 RegisterBankInfo::InstructionMappings PossibleMappings =
584 RBI->getInstrPossibleMappings(MI);
585 if (PossibleMappings.empty())
586 return false;
587 BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
589 // Make sure the mapping is valid for MI.
590 assert(BestMapping->verify(MI) && "Invalid instruction mapping");
592 LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
594 // After this call, MI may not be valid anymore.
595 // Do not use it.
596 return applyMapping(MI, *BestMapping, RepairPts);
599 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
600 // If the ISel pipeline failed, do not bother running that pass.
601 if (MF.getProperties().hasProperty(
602 MachineFunctionProperties::Property::FailedISel))
603 return false;
605 LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
606 const Function &F = MF.getFunction();
607 Mode SaveOptMode = OptMode;
608 if (F.hasFnAttribute(Attribute::OptimizeNone))
609 OptMode = Mode::Fast;
610 init(MF);
612 #ifndef NDEBUG
613 // Check that our input is fully legal: we require the function to have the
614 // Legalized property, so it should be.
615 // FIXME: This should be in the MachineVerifier.
616 if (!DisableGISelLegalityCheck)
617 if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
618 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
619 "instruction is not legal", *MI);
620 return false;
622 #endif
624 // Walk the function and assign register banks to all operands.
625 // Use a RPOT to make sure all registers are assigned before we choose
626 // the best mapping of the current instruction.
627 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
628 for (MachineBasicBlock *MBB : RPOT) {
629 // Set a sensible insertion point so that subsequent calls to
630 // MIRBuilder.
631 MIRBuilder.setMBB(*MBB);
632 for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
633 MII != End;) {
634 // MI might be invalidated by the assignment, so move the
635 // iterator before hand.
636 MachineInstr &MI = *MII++;
638 // Ignore target-specific instructions: they should use proper regclasses.
639 if (isTargetSpecificOpcode(MI.getOpcode()))
640 continue;
642 if (!assignInstr(MI)) {
643 reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
644 "unable to map instruction", MI);
645 return false;
649 OptMode = SaveOptMode;
650 return false;
653 //------------------------------------------------------------------------------
654 // Helper Classes Implementation
655 //------------------------------------------------------------------------------
656 RegBankSelect::RepairingPlacement::RepairingPlacement(
657 MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
658 RepairingPlacement::RepairingKind Kind)
659 // Default is, we are going to insert code to repair OpIdx.
660 : Kind(Kind), OpIdx(OpIdx),
661 CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
662 const MachineOperand &MO = MI.getOperand(OpIdx);
663 assert(MO.isReg() && "Trying to repair a non-reg operand");
665 if (Kind != RepairingKind::Insert)
666 return;
668 // Repairings for definitions happen after MI, uses happen before.
669 bool Before = !MO.isDef();
671 // Check if we are done with MI.
672 if (!MI.isPHI() && !MI.isTerminator()) {
673 addInsertPoint(MI, Before);
674 // We are done with the initialization.
675 return;
678 // Now, look for the special cases.
679 if (MI.isPHI()) {
680 // - PHI must be the first instructions:
681 // * Before, we have to split the related incoming edge.
682 // * After, move the insertion point past the last phi.
683 if (!Before) {
684 MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
685 if (It != MI.getParent()->end())
686 addInsertPoint(*It, /*Before*/ true);
687 else
688 addInsertPoint(*(--It), /*Before*/ false);
689 return;
691 // We repair a use of a phi, we may need to split the related edge.
692 MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
693 // Check if we can move the insertion point prior to the
694 // terminators of the predecessor.
695 unsigned Reg = MO.getReg();
696 MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
697 for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
698 if (It->modifiesRegister(Reg, &TRI)) {
699 // We cannot hoist the repairing code in the predecessor.
700 // Split the edge.
701 addInsertPoint(Pred, *MI.getParent());
702 return;
704 // At this point, we can insert in Pred.
706 // - If It is invalid, Pred is empty and we can insert in Pred
707 // wherever we want.
708 // - If It is valid, It is the first non-terminator, insert after It.
709 if (It == Pred.end())
710 addInsertPoint(Pred, /*Beginning*/ false);
711 else
712 addInsertPoint(*It, /*Before*/ false);
713 } else {
714 // - Terminators must be the last instructions:
715 // * Before, move the insert point before the first terminator.
716 // * After, we have to split the outcoming edges.
717 unsigned Reg = MO.getReg();
718 if (Before) {
719 // Check whether Reg is defined by any terminator.
720 MachineBasicBlock::iterator It = MI;
721 for (auto Begin = MI.getParent()->begin();
722 --It != Begin && It->isTerminator();)
723 if (It->modifiesRegister(Reg, &TRI)) {
724 // Insert the repairing code right after the definition.
725 addInsertPoint(*It, /*Before*/ false);
726 return;
728 addInsertPoint(*It, /*Before*/ true);
729 return;
731 // Make sure Reg is not redefined by other terminators, otherwise
732 // we do not know how to split.
733 for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
734 ++It != End;)
735 // The machine verifier should reject this kind of code.
736 assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split");
737 // Split each outcoming edges.
738 MachineBasicBlock &Src = *MI.getParent();
739 for (auto &Succ : Src.successors())
740 addInsertPoint(Src, Succ);
744 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
745 bool Before) {
746 addInsertPoint(*new InstrInsertPoint(MI, Before));
749 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
750 bool Beginning) {
751 addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
754 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
755 MachineBasicBlock &Dst) {
756 addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
759 void RegBankSelect::RepairingPlacement::addInsertPoint(
760 RegBankSelect::InsertPoint &Point) {
761 CanMaterialize &= Point.canMaterialize();
762 HasSplit |= Point.isSplit();
763 InsertPoints.emplace_back(&Point);
766 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
767 bool Before)
768 : InsertPoint(), Instr(Instr), Before(Before) {
769 // Since we do not support splitting, we do not need to update
770 // liveness and such, so do not do anything with P.
771 assert((!Before || !Instr.isPHI()) &&
772 "Splitting before phis requires more points");
773 assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
774 "Splitting between phis does not make sense");
777 void RegBankSelect::InstrInsertPoint::materialize() {
778 if (isSplit()) {
779 // Slice and return the beginning of the new block.
780 // If we need to split between the terminators, we theoritically
781 // need to know where the first and second set of terminators end
782 // to update the successors properly.
783 // Now, in pratice, we should have a maximum of 2 branch
784 // instructions; one conditional and one unconditional. Therefore
785 // we know how to update the successor by looking at the target of
786 // the unconditional branch.
787 // If we end up splitting at some point, then, we should update
788 // the liveness information and such. I.e., we would need to
789 // access P here.
790 // The machine verifier should actually make sure such cases
791 // cannot happen.
792 llvm_unreachable("Not yet implemented");
794 // Otherwise the insertion point is just the current or next
795 // instruction depending on Before. I.e., there is nothing to do
796 // here.
799 bool RegBankSelect::InstrInsertPoint::isSplit() const {
800 // If the insertion point is after a terminator, we need to split.
801 if (!Before)
802 return Instr.isTerminator();
803 // If we insert before an instruction that is after a terminator,
804 // we are still after a terminator.
805 return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
808 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
809 // Even if we need to split, because we insert between terminators,
810 // this split has actually the same frequency as the instruction.
811 const MachineBlockFrequencyInfo *MBFI =
812 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
813 if (!MBFI)
814 return 1;
815 return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
818 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
819 const MachineBlockFrequencyInfo *MBFI =
820 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
821 if (!MBFI)
822 return 1;
823 return MBFI->getBlockFreq(&MBB).getFrequency();
826 void RegBankSelect::EdgeInsertPoint::materialize() {
827 // If we end up repairing twice at the same place before materializing the
828 // insertion point, we may think we have to split an edge twice.
829 // We should have a factory for the insert point such that identical points
830 // are the same instance.
831 assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
832 "This point has already been split");
833 MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
834 assert(NewBB && "Invalid call to materialize");
835 // We reuse the destination block to hold the information of the new block.
836 DstOrSplit = NewBB;
839 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
840 const MachineBlockFrequencyInfo *MBFI =
841 P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
842 if (!MBFI)
843 return 1;
844 if (WasMaterialized)
845 return MBFI->getBlockFreq(DstOrSplit).getFrequency();
847 const MachineBranchProbabilityInfo *MBPI =
848 P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
849 if (!MBPI)
850 return 1;
851 // The basic block will be on the edge.
852 return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
853 .getFrequency();
856 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
857 // If this is not a critical edge, we should not have used this insert
858 // point. Indeed, either the successor or the predecessor should
859 // have do.
860 assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
861 "Edge is not critical");
862 return Src.canSplitCriticalEdge(DstOrSplit);
865 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
866 : LocalFreq(LocalFreq.getFrequency()) {}
868 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
869 // Check if this overflows.
870 if (LocalCost + Cost < LocalCost) {
871 saturate();
872 return true;
874 LocalCost += Cost;
875 return isSaturated();
878 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
879 // Check if this overflows.
880 if (NonLocalCost + Cost < NonLocalCost) {
881 saturate();
882 return true;
884 NonLocalCost += Cost;
885 return isSaturated();
888 bool RegBankSelect::MappingCost::isSaturated() const {
889 return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
890 LocalFreq == UINT64_MAX;
893 void RegBankSelect::MappingCost::saturate() {
894 *this = ImpossibleCost();
895 --LocalCost;
898 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
899 return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
902 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
903 // Sort out the easy cases.
904 if (*this == Cost)
905 return false;
906 // If one is impossible to realize the other is cheaper unless it is
907 // impossible as well.
908 if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
909 return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
910 // If one is saturated the other is cheaper, unless it is saturated
911 // as well.
912 if (isSaturated() || Cost.isSaturated())
913 return isSaturated() < Cost.isSaturated();
914 // At this point we know both costs hold sensible values.
916 // If both values have a different base frequency, there is no much
917 // we can do but to scale everything.
918 // However, if they have the same base frequency we can avoid making
919 // complicated computation.
920 uint64_t ThisLocalAdjust;
921 uint64_t OtherLocalAdjust;
922 if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
924 // At this point, we know the local costs are comparable.
925 // Do the case that do not involve potential overflow first.
926 if (NonLocalCost == Cost.NonLocalCost)
927 // Since the non-local costs do not discriminate on the result,
928 // just compare the local costs.
929 return LocalCost < Cost.LocalCost;
931 // The base costs are comparable so we may only keep the relative
932 // value to increase our chances of avoiding overflows.
933 ThisLocalAdjust = 0;
934 OtherLocalAdjust = 0;
935 if (LocalCost < Cost.LocalCost)
936 OtherLocalAdjust = Cost.LocalCost - LocalCost;
937 else
938 ThisLocalAdjust = LocalCost - Cost.LocalCost;
939 } else {
940 ThisLocalAdjust = LocalCost;
941 OtherLocalAdjust = Cost.LocalCost;
944 // The non-local costs are comparable, just keep the relative value.
945 uint64_t ThisNonLocalAdjust = 0;
946 uint64_t OtherNonLocalAdjust = 0;
947 if (NonLocalCost < Cost.NonLocalCost)
948 OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
949 else
950 ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
951 // Scale everything to make them comparable.
952 uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
953 // Check for overflow on that operation.
954 bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
955 ThisScaledCost < LocalFreq);
956 uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
957 // Check for overflow on the last operation.
958 bool OtherOverflows =
959 OtherLocalAdjust &&
960 (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
961 // Add the non-local costs.
962 ThisOverflows |= ThisNonLocalAdjust &&
963 ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
964 ThisScaledCost += ThisNonLocalAdjust;
965 OtherOverflows |= OtherNonLocalAdjust &&
966 OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
967 OtherScaledCost += OtherNonLocalAdjust;
968 // If both overflows, we cannot compare without additional
969 // precision, e.g., APInt. Just give up on that case.
970 if (ThisOverflows && OtherOverflows)
971 return false;
972 // If one overflows but not the other, we can still compare.
973 if (ThisOverflows || OtherOverflows)
974 return ThisOverflows < OtherOverflows;
975 // Otherwise, just compare the values.
976 return ThisScaledCost < OtherScaledCost;
979 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
980 return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
981 LocalFreq == Cost.LocalFreq;
984 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
985 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
986 print(dbgs());
987 dbgs() << '\n';
989 #endif
991 void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
992 if (*this == ImpossibleCost()) {
993 OS << "impossible";
994 return;
996 if (isSaturated()) {
997 OS << "saturated";
998 return;
1000 OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;