[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / CodeGen / InlineSpiller.cpp
blob007e9283d833d22709957f80a054250672f45370
1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The inline spiller modifies the machine function directly instead of
11 // inserting spills and restores in VirtRegMap.
13 //===----------------------------------------------------------------------===//
15 #include "LiveRangeCalc.h"
16 #include "Spiller.h"
17 #include "SplitKit.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/CodeGen/LiveInterval.h"
29 #include "llvm/CodeGen/LiveIntervals.h"
30 #include "llvm/CodeGen/LiveRangeEdit.h"
31 #include "llvm/CodeGen/LiveStacks.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
34 #include "llvm/CodeGen/MachineDominators.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineInstrBundle.h"
40 #include "llvm/CodeGen/MachineLoopInfo.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/SlotIndexes.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetOpcodes.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/TargetSubtargetInfo.h"
48 #include "llvm/CodeGen/VirtRegMap.h"
49 #include "llvm/Config/llvm-config.h"
50 #include "llvm/Support/BlockFrequency.h"
51 #include "llvm/Support/BranchProbability.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <cassert>
58 #include <iterator>
59 #include <tuple>
60 #include <utility>
61 #include <vector>
63 using namespace llvm;
65 #define DEBUG_TYPE "regalloc"
67 STATISTIC(NumSpilledRanges, "Number of spilled live ranges");
68 STATISTIC(NumSnippets, "Number of spilled snippets");
69 STATISTIC(NumSpills, "Number of spills inserted");
70 STATISTIC(NumSpillsRemoved, "Number of spills removed");
71 STATISTIC(NumReloads, "Number of reloads inserted");
72 STATISTIC(NumReloadsRemoved, "Number of reloads removed");
73 STATISTIC(NumFolded, "Number of folded stack accesses");
74 STATISTIC(NumFoldedLoads, "Number of folded loads");
75 STATISTIC(NumRemats, "Number of rematerialized defs for spilling");
77 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
78 cl::desc("Disable inline spill hoisting"));
80 namespace {
82 class HoistSpillHelper : private LiveRangeEdit::Delegate {
83 MachineFunction &MF;
84 LiveIntervals &LIS;
85 LiveStacks &LSS;
86 AliasAnalysis *AA;
87 MachineDominatorTree &MDT;
88 MachineLoopInfo &Loops;
89 VirtRegMap &VRM;
90 MachineRegisterInfo &MRI;
91 const TargetInstrInfo &TII;
92 const TargetRegisterInfo &TRI;
93 const MachineBlockFrequencyInfo &MBFI;
95 InsertPointAnalysis IPA;
97 // Map from StackSlot to the LiveInterval of the original register.
98 // Note the LiveInterval of the original register may have been deleted
99 // after it is spilled. We keep a copy here to track the range where
100 // spills can be moved.
101 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
103 // Map from pair of (StackSlot and Original VNI) to a set of spills which
104 // have the same stackslot and have equal values defined by Original VNI.
105 // These spills are mergeable and are hoist candiates.
106 using MergeableSpillsMap =
107 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
108 MergeableSpillsMap MergeableSpills;
110 /// This is the map from original register to a set containing all its
111 /// siblings. To hoist a spill to another BB, we need to find out a live
112 /// sibling there and use it as the source of the new spill.
113 DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap;
115 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
116 MachineBasicBlock &BB, unsigned &LiveReg);
118 void rmRedundantSpills(
119 SmallPtrSet<MachineInstr *, 16> &Spills,
120 SmallVectorImpl<MachineInstr *> &SpillsToRm,
121 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
123 void getVisitOrders(
124 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
125 SmallVectorImpl<MachineDomTreeNode *> &Orders,
126 SmallVectorImpl<MachineInstr *> &SpillsToRm,
127 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
128 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
130 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
131 SmallPtrSet<MachineInstr *, 16> &Spills,
132 SmallVectorImpl<MachineInstr *> &SpillsToRm,
133 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
135 public:
136 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
137 VirtRegMap &vrm)
138 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
139 LSS(pass.getAnalysis<LiveStacks>()),
140 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
141 MDT(pass.getAnalysis<MachineDominatorTree>()),
142 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
143 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
144 TRI(*mf.getSubtarget().getRegisterInfo()),
145 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
146 IPA(LIS, mf.getNumBlockIDs()) {}
148 void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
149 unsigned Original);
150 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
151 void hoistAllSpills();
152 void LRE_DidCloneVirtReg(unsigned, unsigned) override;
155 class InlineSpiller : public Spiller {
156 MachineFunction &MF;
157 LiveIntervals &LIS;
158 LiveStacks &LSS;
159 AliasAnalysis *AA;
160 MachineDominatorTree &MDT;
161 MachineLoopInfo &Loops;
162 VirtRegMap &VRM;
163 MachineRegisterInfo &MRI;
164 const TargetInstrInfo &TII;
165 const TargetRegisterInfo &TRI;
166 const MachineBlockFrequencyInfo &MBFI;
168 // Variables that are valid during spill(), but used by multiple methods.
169 LiveRangeEdit *Edit;
170 LiveInterval *StackInt;
171 int StackSlot;
172 unsigned Original;
174 // All registers to spill to StackSlot, including the main register.
175 SmallVector<unsigned, 8> RegsToSpill;
177 // All COPY instructions to/from snippets.
178 // They are ignored since both operands refer to the same stack slot.
179 SmallPtrSet<MachineInstr*, 8> SnippetCopies;
181 // Values that failed to remat at some point.
182 SmallPtrSet<VNInfo*, 8> UsedValues;
184 // Dead defs generated during spilling.
185 SmallVector<MachineInstr*, 8> DeadDefs;
187 // Object records spills information and does the hoisting.
188 HoistSpillHelper HSpiller;
190 ~InlineSpiller() override = default;
192 public:
193 InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
194 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
195 LSS(pass.getAnalysis<LiveStacks>()),
196 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
197 MDT(pass.getAnalysis<MachineDominatorTree>()),
198 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
199 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
200 TRI(*mf.getSubtarget().getRegisterInfo()),
201 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
202 HSpiller(pass, mf, vrm) {}
204 void spill(LiveRangeEdit &) override;
205 void postOptimization() override;
207 private:
208 bool isSnippet(const LiveInterval &SnipLI);
209 void collectRegsToSpill();
211 bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); }
213 bool isSibling(unsigned Reg);
214 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
215 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
217 void markValueUsed(LiveInterval*, VNInfo*);
218 bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
219 void reMaterializeAll();
221 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
222 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
223 MachineInstr *LoadMI = nullptr);
224 void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI);
225 void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI);
227 void spillAroundUses(unsigned Reg);
228 void spillAll();
231 } // end anonymous namespace
233 Spiller::~Spiller() = default;
235 void Spiller::anchor() {}
237 Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass,
238 MachineFunction &mf,
239 VirtRegMap &vrm) {
240 return new InlineSpiller(pass, mf, vrm);
243 //===----------------------------------------------------------------------===//
244 // Snippets
245 //===----------------------------------------------------------------------===//
247 // When spilling a virtual register, we also spill any snippets it is connected
248 // to. The snippets are small live ranges that only have a single real use,
249 // leftovers from live range splitting. Spilling them enables memory operand
250 // folding or tightens the live range around the single use.
252 // This minimizes register pressure and maximizes the store-to-load distance for
253 // spill slots which can be important in tight loops.
255 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
256 /// otherwise return 0.
257 static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) {
258 if (!MI.isFullCopy())
259 return 0;
260 if (MI.getOperand(0).getReg() == Reg)
261 return MI.getOperand(1).getReg();
262 if (MI.getOperand(1).getReg() == Reg)
263 return MI.getOperand(0).getReg();
264 return 0;
267 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
268 /// It is assumed that SnipLI is a virtual register with the same original as
269 /// Edit->getReg().
270 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
271 unsigned Reg = Edit->getReg();
273 // A snippet is a tiny live range with only a single instruction using it
274 // besides copies to/from Reg or spills/fills. We accept:
276 // %snip = COPY %Reg / FILL fi#
277 // %snip = USE %snip
278 // %Reg = COPY %snip / SPILL %snip, fi#
280 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
281 return false;
283 MachineInstr *UseMI = nullptr;
285 // Check that all uses satisfy our criteria.
286 for (MachineRegisterInfo::reg_instr_nodbg_iterator
287 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg),
288 E = MRI.reg_instr_nodbg_end(); RI != E; ) {
289 MachineInstr &MI = *RI++;
291 // Allow copies to/from Reg.
292 if (isFullCopyOf(MI, Reg))
293 continue;
295 // Allow stack slot loads.
296 int FI;
297 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
298 continue;
300 // Allow stack slot stores.
301 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
302 continue;
304 // Allow a single additional instruction.
305 if (UseMI && &MI != UseMI)
306 return false;
307 UseMI = &MI;
309 return true;
312 /// collectRegsToSpill - Collect live range snippets that only have a single
313 /// real use.
314 void InlineSpiller::collectRegsToSpill() {
315 unsigned Reg = Edit->getReg();
317 // Main register always spills.
318 RegsToSpill.assign(1, Reg);
319 SnippetCopies.clear();
321 // Snippets all have the same original, so there can't be any for an original
322 // register.
323 if (Original == Reg)
324 return;
326 for (MachineRegisterInfo::reg_instr_iterator
327 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
328 MachineInstr &MI = *RI++;
329 unsigned SnipReg = isFullCopyOf(MI, Reg);
330 if (!isSibling(SnipReg))
331 continue;
332 LiveInterval &SnipLI = LIS.getInterval(SnipReg);
333 if (!isSnippet(SnipLI))
334 continue;
335 SnippetCopies.insert(&MI);
336 if (isRegToSpill(SnipReg))
337 continue;
338 RegsToSpill.push_back(SnipReg);
339 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
340 ++NumSnippets;
344 bool InlineSpiller::isSibling(unsigned Reg) {
345 return TargetRegisterInfo::isVirtualRegister(Reg) &&
346 VRM.getOriginal(Reg) == Original;
349 /// It is beneficial to spill to earlier place in the same BB in case
350 /// as follows:
351 /// There is an alternative def earlier in the same MBB.
352 /// Hoist the spill as far as possible in SpillMBB. This can ease
353 /// register pressure:
355 /// x = def
356 /// y = use x
357 /// s = copy x
359 /// Hoisting the spill of s to immediately after the def removes the
360 /// interference between x and y:
362 /// x = def
363 /// spill x
364 /// y = use killed x
366 /// This hoist only helps when the copy kills its source.
368 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
369 MachineInstr &CopyMI) {
370 SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
371 #ifndef NDEBUG
372 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
373 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
374 #endif
376 unsigned SrcReg = CopyMI.getOperand(1).getReg();
377 LiveInterval &SrcLI = LIS.getInterval(SrcReg);
378 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
379 LiveQueryResult SrcQ = SrcLI.Query(Idx);
380 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
381 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
382 return false;
384 // Conservatively extend the stack slot range to the range of the original
385 // value. We may be able to do better with stack slot coloring by being more
386 // careful here.
387 assert(StackInt && "No stack slot assigned yet.");
388 LiveInterval &OrigLI = LIS.getInterval(Original);
389 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
390 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
391 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
392 << *StackInt << '\n');
394 // We are going to spill SrcVNI immediately after its def, so clear out
395 // any later spills of the same value.
396 eliminateRedundantSpills(SrcLI, SrcVNI);
398 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
399 MachineBasicBlock::iterator MII;
400 if (SrcVNI->isPHIDef())
401 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
402 else {
403 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
404 assert(DefMI && "Defining instruction disappeared");
405 MII = DefMI;
406 ++MII;
408 // Insert spill without kill flag immediately after def.
409 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
410 MRI.getRegClass(SrcReg), &TRI);
411 --MII; // Point to store instruction.
412 LIS.InsertMachineInstrInMaps(*MII);
413 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
415 HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
416 ++NumSpills;
417 return true;
420 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
421 /// redundant spills of this value in SLI.reg and sibling copies.
422 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
423 assert(VNI && "Missing value");
424 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
425 WorkList.push_back(std::make_pair(&SLI, VNI));
426 assert(StackInt && "No stack slot assigned yet.");
428 do {
429 LiveInterval *LI;
430 std::tie(LI, VNI) = WorkList.pop_back_val();
431 unsigned Reg = LI->reg;
432 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
433 << VNI->def << " in " << *LI << '\n');
435 // Regs to spill are taken care of.
436 if (isRegToSpill(Reg))
437 continue;
439 // Add all of VNI's live range to StackInt.
440 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
441 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
443 // Find all spills and copies of VNI.
444 for (MachineRegisterInfo::use_instr_nodbg_iterator
445 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
446 UI != E; ) {
447 MachineInstr &MI = *UI++;
448 if (!MI.isCopy() && !MI.mayStore())
449 continue;
450 SlotIndex Idx = LIS.getInstructionIndex(MI);
451 if (LI->getVNInfoAt(Idx) != VNI)
452 continue;
454 // Follow sibling copies down the dominator tree.
455 if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
456 if (isSibling(DstReg)) {
457 LiveInterval &DstLI = LIS.getInterval(DstReg);
458 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
459 assert(DstVNI && "Missing defined value");
460 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
461 WorkList.push_back(std::make_pair(&DstLI, DstVNI));
463 continue;
466 // Erase spills.
467 int FI;
468 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
469 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
470 // eliminateDeadDefs won't normally remove stores, so switch opcode.
471 MI.setDesc(TII.get(TargetOpcode::KILL));
472 DeadDefs.push_back(&MI);
473 ++NumSpillsRemoved;
474 if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
475 --NumSpills;
478 } while (!WorkList.empty());
481 //===----------------------------------------------------------------------===//
482 // Rematerialization
483 //===----------------------------------------------------------------------===//
485 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
486 /// instruction cannot be eliminated. See through snippet copies
487 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
488 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
489 WorkList.push_back(std::make_pair(LI, VNI));
490 do {
491 std::tie(LI, VNI) = WorkList.pop_back_val();
492 if (!UsedValues.insert(VNI).second)
493 continue;
495 if (VNI->isPHIDef()) {
496 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
497 for (MachineBasicBlock *P : MBB->predecessors()) {
498 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
499 if (PVNI)
500 WorkList.push_back(std::make_pair(LI, PVNI));
502 continue;
505 // Follow snippet copies.
506 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
507 if (!SnippetCopies.count(MI))
508 continue;
509 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
510 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
511 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
512 assert(SnipVNI && "Snippet undefined before copy");
513 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
514 } while (!WorkList.empty());
517 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
518 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
519 // Analyze instruction
520 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
521 MIBundleOperands::VirtRegInfo RI =
522 MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
524 if (!RI.Reads)
525 return false;
527 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
528 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
530 if (!ParentVNI) {
531 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
532 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
533 MachineOperand &MO = MI.getOperand(i);
534 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
535 MO.setIsUndef();
537 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
538 return true;
541 if (SnippetCopies.count(&MI))
542 return false;
544 LiveInterval &OrigLI = LIS.getInterval(Original);
545 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
546 LiveRangeEdit::Remat RM(ParentVNI);
547 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
549 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
550 markValueUsed(&VirtReg, ParentVNI);
551 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
552 return false;
555 // If the instruction also writes VirtReg.reg, it had better not require the
556 // same register for uses and defs.
557 if (RI.Tied) {
558 markValueUsed(&VirtReg, ParentVNI);
559 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
560 return false;
563 // Before rematerializing into a register for a single instruction, try to
564 // fold a load into the instruction. That avoids allocating a new register.
565 if (RM.OrigMI->canFoldAsLoad() &&
566 foldMemoryOperand(Ops, RM.OrigMI)) {
567 Edit->markRematerialized(RM.ParentVNI);
568 ++NumFoldedLoads;
569 return true;
572 // Allocate a new register for the remat.
573 unsigned NewVReg = Edit->createFrom(Original);
575 // Finally we can rematerialize OrigMI before MI.
576 SlotIndex DefIdx =
577 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
579 // We take the DebugLoc from MI, since OrigMI may be attributed to a
580 // different source location.
581 auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
582 NewMI->setDebugLoc(MI.getDebugLoc());
584 (void)DefIdx;
585 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t'
586 << *LIS.getInstructionFromIndex(DefIdx));
588 // Replace operands
589 for (const auto &OpPair : Ops) {
590 MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
591 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
592 MO.setReg(NewVReg);
593 MO.setIsKill();
596 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n');
598 ++NumRemats;
599 return true;
602 /// reMaterializeAll - Try to rematerialize as many uses as possible,
603 /// and trim the live ranges after.
604 void InlineSpiller::reMaterializeAll() {
605 if (!Edit->anyRematerializable(AA))
606 return;
608 UsedValues.clear();
610 // Try to remat before all uses of snippets.
611 bool anyRemat = false;
612 for (unsigned Reg : RegsToSpill) {
613 LiveInterval &LI = LIS.getInterval(Reg);
614 for (MachineRegisterInfo::reg_bundle_iterator
615 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
616 RegI != E; ) {
617 MachineInstr &MI = *RegI++;
619 // Debug values are not allowed to affect codegen.
620 if (MI.isDebugValue())
621 continue;
623 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
624 "instruction that isn't a DBG_VALUE");
626 anyRemat |= reMaterializeFor(LI, MI);
629 if (!anyRemat)
630 return;
632 // Remove any values that were completely rematted.
633 for (unsigned Reg : RegsToSpill) {
634 LiveInterval &LI = LIS.getInterval(Reg);
635 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
636 I != E; ++I) {
637 VNInfo *VNI = *I;
638 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
639 continue;
640 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
641 MI->addRegisterDead(Reg, &TRI);
642 if (!MI->allDefsAreDead())
643 continue;
644 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
645 DeadDefs.push_back(MI);
649 // Eliminate dead code after remat. Note that some snippet copies may be
650 // deleted here.
651 if (DeadDefs.empty())
652 return;
653 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
654 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
656 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
657 // after rematerialization. To remove a VNI for a vreg from its LiveInterval,
658 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
659 // removed, PHI VNI are still left in the LiveInterval.
660 // So to get rid of unused reg, we need to check whether it has non-dbg
661 // reference instead of whether it has non-empty interval.
662 unsigned ResultPos = 0;
663 for (unsigned Reg : RegsToSpill) {
664 if (MRI.reg_nodbg_empty(Reg)) {
665 Edit->eraseVirtReg(Reg);
666 continue;
669 assert(LIS.hasInterval(Reg) &&
670 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
671 "Empty and not used live-range?!");
673 RegsToSpill[ResultPos++] = Reg;
675 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
676 LLVM_DEBUG(dbgs() << RegsToSpill.size()
677 << " registers to spill after remat.\n");
680 //===----------------------------------------------------------------------===//
681 // Spilling
682 //===----------------------------------------------------------------------===//
684 /// If MI is a load or store of StackSlot, it can be removed.
685 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
686 int FI = 0;
687 unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI);
688 bool IsLoad = InstrReg;
689 if (!IsLoad)
690 InstrReg = TII.isStoreToStackSlot(*MI, FI);
692 // We have a stack access. Is it the right register and slot?
693 if (InstrReg != Reg || FI != StackSlot)
694 return false;
696 if (!IsLoad)
697 HSpiller.rmFromMergeableSpills(*MI, StackSlot);
699 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
700 LIS.RemoveMachineInstrFromMaps(*MI);
701 MI->eraseFromParent();
703 if (IsLoad) {
704 ++NumReloadsRemoved;
705 --NumReloads;
706 } else {
707 ++NumSpillsRemoved;
708 --NumSpills;
711 return true;
714 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
715 LLVM_DUMP_METHOD
716 // Dump the range of instructions from B to E with their slot indexes.
717 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
718 MachineBasicBlock::iterator E,
719 LiveIntervals const &LIS,
720 const char *const header,
721 unsigned VReg =0) {
722 char NextLine = '\n';
723 char SlotIndent = '\t';
725 if (std::next(B) == E) {
726 NextLine = ' ';
727 SlotIndent = ' ';
730 dbgs() << '\t' << header << ": " << NextLine;
732 for (MachineBasicBlock::iterator I = B; I != E; ++I) {
733 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
735 // If a register was passed in and this instruction has it as a
736 // destination that is marked as an early clobber, print the
737 // early-clobber slot index.
738 if (VReg) {
739 MachineOperand *MO = I->findRegisterDefOperand(VReg);
740 if (MO && MO->isEarlyClobber())
741 Idx = Idx.getRegSlot(true);
744 dbgs() << SlotIndent << Idx << '\t' << *I;
747 #endif
749 /// foldMemoryOperand - Try folding stack slot references in Ops into their
750 /// instructions.
752 /// @param Ops Operand indices from analyzeVirtReg().
753 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
754 /// @return True on success.
755 bool InlineSpiller::
756 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
757 MachineInstr *LoadMI) {
758 if (Ops.empty())
759 return false;
760 // Don't attempt folding in bundles.
761 MachineInstr *MI = Ops.front().first;
762 if (Ops.back().first != MI || MI->isBundled())
763 return false;
765 bool WasCopy = MI->isCopy();
766 unsigned ImpReg = 0;
768 // Spill subregs if the target allows it.
769 // We always want to spill subregs for stackmap/patchpoint pseudos.
770 bool SpillSubRegs = TII.isSubregFoldable() ||
771 MI->getOpcode() == TargetOpcode::STATEPOINT ||
772 MI->getOpcode() == TargetOpcode::PATCHPOINT ||
773 MI->getOpcode() == TargetOpcode::STACKMAP;
775 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
776 // operands.
777 SmallVector<unsigned, 8> FoldOps;
778 for (const auto &OpPair : Ops) {
779 unsigned Idx = OpPair.second;
780 assert(MI == OpPair.first && "Instruction conflict during operand folding");
781 MachineOperand &MO = MI->getOperand(Idx);
782 if (MO.isImplicit()) {
783 ImpReg = MO.getReg();
784 continue;
787 if (!SpillSubRegs && MO.getSubReg())
788 return false;
789 // We cannot fold a load instruction into a def.
790 if (LoadMI && MO.isDef())
791 return false;
792 // Tied use operands should not be passed to foldMemoryOperand.
793 if (!MI->isRegTiedToDefOperand(Idx))
794 FoldOps.push_back(Idx);
797 // If we only have implicit uses, we won't be able to fold that.
798 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
799 if (FoldOps.empty())
800 return false;
802 MachineInstrSpan MIS(MI);
804 MachineInstr *FoldMI =
805 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
806 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS);
807 if (!FoldMI)
808 return false;
810 // Remove LIS for any dead defs in the original MI not in FoldMI.
811 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
812 if (!MO->isReg())
813 continue;
814 unsigned Reg = MO->getReg();
815 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
816 MRI.isReserved(Reg)) {
817 continue;
819 // Skip non-Defs, including undef uses and internal reads.
820 if (MO->isUse())
821 continue;
822 MIBundleOperands::PhysRegInfo RI =
823 MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI);
824 if (RI.FullyDefined)
825 continue;
826 // FoldMI does not define this physreg. Remove the LI segment.
827 assert(MO->isDead() && "Cannot fold physreg def");
828 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
829 LIS.removePhysRegDefAt(Reg, Idx);
832 int FI;
833 if (TII.isStoreToStackSlot(*MI, FI) &&
834 HSpiller.rmFromMergeableSpills(*MI, FI))
835 --NumSpills;
836 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
837 MI->eraseFromParent();
839 // Insert any new instructions other than FoldMI into the LIS maps.
840 assert(!MIS.empty() && "Unexpected empty span of instructions!");
841 for (MachineInstr &MI : MIS)
842 if (&MI != FoldMI)
843 LIS.InsertMachineInstrInMaps(MI);
845 // TII.foldMemoryOperand may have left some implicit operands on the
846 // instruction. Strip them.
847 if (ImpReg)
848 for (unsigned i = FoldMI->getNumOperands(); i; --i) {
849 MachineOperand &MO = FoldMI->getOperand(i - 1);
850 if (!MO.isReg() || !MO.isImplicit())
851 break;
852 if (MO.getReg() == ImpReg)
853 FoldMI->RemoveOperand(i - 1);
856 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
857 "folded"));
859 if (!WasCopy)
860 ++NumFolded;
861 else if (Ops.front().second == 0) {
862 ++NumSpills;
863 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
864 } else
865 ++NumReloads;
866 return true;
869 void InlineSpiller::insertReload(unsigned NewVReg,
870 SlotIndex Idx,
871 MachineBasicBlock::iterator MI) {
872 MachineBasicBlock &MBB = *MI->getParent();
874 MachineInstrSpan MIS(MI);
875 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
876 MRI.getRegClass(NewVReg), &TRI);
878 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
880 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
881 NewVReg));
882 ++NumReloads;
885 /// Check if \p Def fully defines a VReg with an undefined value.
886 /// If that's the case, that means the value of VReg is actually
887 /// not relevant.
888 static bool isFullUndefDef(const MachineInstr &Def) {
889 if (!Def.isImplicitDef())
890 return false;
891 assert(Def.getNumOperands() == 1 &&
892 "Implicit def with more than one definition");
893 // We can say that the VReg defined by Def is undef, only if it is
894 // fully defined by Def. Otherwise, some of the lanes may not be
895 // undef and the value of the VReg matters.
896 return !Def.getOperand(0).getSubReg();
899 /// insertSpill - Insert a spill of NewVReg after MI.
900 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill,
901 MachineBasicBlock::iterator MI) {
902 MachineBasicBlock &MBB = *MI->getParent();
904 MachineInstrSpan MIS(MI);
905 bool IsRealSpill = true;
906 if (isFullUndefDef(*MI)) {
907 // Don't spill undef value.
908 // Anything works for undef, in particular keeping the memory
909 // uninitialized is a viable option and it saves code size and
910 // run time.
911 BuildMI(MBB, std::next(MI), MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
912 .addReg(NewVReg, getKillRegState(isKill));
913 IsRealSpill = false;
914 } else
915 TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot,
916 MRI.getRegClass(NewVReg), &TRI);
918 LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end());
920 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS,
921 "spill"));
922 ++NumSpills;
923 if (IsRealSpill)
924 HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original);
927 /// spillAroundUses - insert spill code around each use of Reg.
928 void InlineSpiller::spillAroundUses(unsigned Reg) {
929 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
930 LiveInterval &OldLI = LIS.getInterval(Reg);
932 // Iterate over instructions using Reg.
933 for (MachineRegisterInfo::reg_bundle_iterator
934 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
935 RegI != E; ) {
936 MachineInstr *MI = &*(RegI++);
938 // Debug values are not allowed to affect codegen.
939 if (MI->isDebugValue()) {
940 // Modify DBG_VALUE now that the value is in a spill slot.
941 MachineBasicBlock *MBB = MI->getParent();
942 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI);
943 buildDbgValueForSpill(*MBB, MI, *MI, StackSlot);
944 MBB->erase(MI);
945 continue;
948 assert(!MI->isDebugInstr() && "Did not expect to find a use in debug "
949 "instruction that isn't a DBG_VALUE");
951 // Ignore copies to/from snippets. We'll delete them.
952 if (SnippetCopies.count(MI))
953 continue;
955 // Stack slot accesses may coalesce away.
956 if (coalesceStackAccess(MI, Reg))
957 continue;
959 // Analyze instruction.
960 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
961 MIBundleOperands::VirtRegInfo RI =
962 MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops);
964 // Find the slot index where this instruction reads and writes OldLI.
965 // This is usually the def slot, except for tied early clobbers.
966 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
967 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
968 if (SlotIndex::isSameInstr(Idx, VNI->def))
969 Idx = VNI->def;
971 // Check for a sibling copy.
972 unsigned SibReg = isFullCopyOf(*MI, Reg);
973 if (SibReg && isSibling(SibReg)) {
974 // This may actually be a copy between snippets.
975 if (isRegToSpill(SibReg)) {
976 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI);
977 SnippetCopies.insert(MI);
978 continue;
980 if (RI.Writes) {
981 if (hoistSpillInsideBB(OldLI, *MI)) {
982 // This COPY is now dead, the value is already in the stack slot.
983 MI->getOperand(0).setIsDead();
984 DeadDefs.push_back(MI);
985 continue;
987 } else {
988 // This is a reload for a sib-reg copy. Drop spills downstream.
989 LiveInterval &SibLI = LIS.getInterval(SibReg);
990 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
991 // The COPY will fold to a reload below.
995 // Attempt to fold memory ops.
996 if (foldMemoryOperand(Ops))
997 continue;
999 // Create a new virtual register for spill/fill.
1000 // FIXME: Infer regclass from instruction alone.
1001 unsigned NewVReg = Edit->createFrom(Reg);
1003 if (RI.Reads)
1004 insertReload(NewVReg, Idx, MI);
1006 // Rewrite instruction operands.
1007 bool hasLiveDef = false;
1008 for (const auto &OpPair : Ops) {
1009 MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1010 MO.setReg(NewVReg);
1011 if (MO.isUse()) {
1012 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1013 MO.setIsKill();
1014 } else {
1015 if (!MO.isDead())
1016 hasLiveDef = true;
1019 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
1021 // FIXME: Use a second vreg if instruction has no tied ops.
1022 if (RI.Writes)
1023 if (hasLiveDef)
1024 insertSpill(NewVReg, true, MI);
1028 /// spillAll - Spill all registers remaining after rematerialization.
1029 void InlineSpiller::spillAll() {
1030 // Update LiveStacks now that we are committed to spilling.
1031 if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1032 StackSlot = VRM.assignVirt2StackSlot(Original);
1033 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1034 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1035 } else
1036 StackInt = &LSS.getInterval(StackSlot);
1038 if (Original != Edit->getReg())
1039 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1041 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1042 for (unsigned Reg : RegsToSpill)
1043 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1044 StackInt->getValNumInfo(0));
1045 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1047 // Spill around uses of all RegsToSpill.
1048 for (unsigned Reg : RegsToSpill)
1049 spillAroundUses(Reg);
1051 // Hoisted spills may cause dead code.
1052 if (!DeadDefs.empty()) {
1053 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1054 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
1057 // Finally delete the SnippetCopies.
1058 for (unsigned Reg : RegsToSpill) {
1059 for (MachineRegisterInfo::reg_instr_iterator
1060 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
1061 RI != E; ) {
1062 MachineInstr &MI = *(RI++);
1063 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1064 // FIXME: Do this with a LiveRangeEdit callback.
1065 LIS.RemoveMachineInstrFromMaps(MI);
1066 MI.eraseFromParent();
1070 // Delete all spilled registers.
1071 for (unsigned Reg : RegsToSpill)
1072 Edit->eraseVirtReg(Reg);
1075 void InlineSpiller::spill(LiveRangeEdit &edit) {
1076 ++NumSpilledRanges;
1077 Edit = &edit;
1078 assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
1079 && "Trying to spill a stack slot.");
1080 // Share a stack slot among all descendants of Original.
1081 Original = VRM.getOriginal(edit.getReg());
1082 StackSlot = VRM.getStackSlot(Original);
1083 StackInt = nullptr;
1085 LLVM_DEBUG(dbgs() << "Inline spilling "
1086 << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1087 << ':' << edit.getParent() << "\nFrom original "
1088 << printReg(Original) << '\n');
1089 assert(edit.getParent().isSpillable() &&
1090 "Attempting to spill already spilled value.");
1091 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1093 collectRegsToSpill();
1094 reMaterializeAll();
1096 // Remat may handle everything.
1097 if (!RegsToSpill.empty())
1098 spillAll();
1100 Edit->calculateRegClassAndHint(MF, Loops, MBFI);
1103 /// Optimizations after all the reg selections and spills are done.
1104 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1106 /// When a spill is inserted, add the spill to MergeableSpills map.
1107 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1108 unsigned Original) {
1109 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1110 LiveInterval &OrigLI = LIS.getInterval(Original);
1111 // save a copy of LiveInterval in StackSlotToOrigLI because the original
1112 // LiveInterval may be cleared after all its references are spilled.
1113 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
1114 auto LI = llvm::make_unique<LiveInterval>(OrigLI.reg, OrigLI.weight);
1115 LI->assign(OrigLI, Allocator);
1116 StackSlotToOrigLI[StackSlot] = std::move(LI);
1118 SlotIndex Idx = LIS.getInstructionIndex(Spill);
1119 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
1120 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1121 MergeableSpills[MIdx].insert(&Spill);
1124 /// When a spill is removed, remove the spill from MergeableSpills map.
1125 /// Return true if the spill is removed successfully.
1126 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1127 int StackSlot) {
1128 auto It = StackSlotToOrigLI.find(StackSlot);
1129 if (It == StackSlotToOrigLI.end())
1130 return false;
1131 SlotIndex Idx = LIS.getInstructionIndex(Spill);
1132 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1133 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1134 return MergeableSpills[MIdx].erase(&Spill);
1137 /// Check BB to see if it is a possible target BB to place a hoisted spill,
1138 /// i.e., there should be a living sibling of OrigReg at the insert point.
1139 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1140 MachineBasicBlock &BB, unsigned &LiveReg) {
1141 SlotIndex Idx;
1142 unsigned OrigReg = OrigLI.reg;
1143 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB);
1144 if (MI != BB.end())
1145 Idx = LIS.getInstructionIndex(*MI);
1146 else
1147 Idx = LIS.getMBBEndIdx(&BB).getPrevSlot();
1148 SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1149 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");
1151 for (auto const SibReg : Siblings) {
1152 LiveInterval &LI = LIS.getInterval(SibReg);
1153 VNInfo *VNI = LI.getVNInfoAt(Idx);
1154 if (VNI) {
1155 LiveReg = SibReg;
1156 return true;
1159 return false;
1162 /// Remove redundant spills in the same BB. Save those redundant spills in
1163 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1164 void HoistSpillHelper::rmRedundantSpills(
1165 SmallPtrSet<MachineInstr *, 16> &Spills,
1166 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1167 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1168 // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1169 // another spill inside. If a BB contains more than one spill, only keep the
1170 // earlier spill with smaller SlotIndex.
1171 for (const auto CurrentSpill : Spills) {
1172 MachineBasicBlock *Block = CurrentSpill->getParent();
1173 MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
1174 MachineInstr *PrevSpill = SpillBBToSpill[Node];
1175 if (PrevSpill) {
1176 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1177 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1178 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1179 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1180 SpillsToRm.push_back(SpillToRm);
1181 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
1182 } else {
1183 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
1186 for (const auto SpillToRm : SpillsToRm)
1187 Spills.erase(SpillToRm);
1190 /// Starting from \p Root find a top-down traversal order of the dominator
1191 /// tree to visit all basic blocks containing the elements of \p Spills.
1192 /// Redundant spills will be found and put into \p SpillsToRm at the same
1193 /// time. \p SpillBBToSpill will be populated as part of the process and
1194 /// maps a basic block to the first store occurring in the basic block.
1195 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1196 void HoistSpillHelper::getVisitOrders(
1197 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1198 SmallVectorImpl<MachineDomTreeNode *> &Orders,
1199 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1200 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1201 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1202 // The set contains all the possible BB nodes to which we may hoist
1203 // original spills.
1204 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1205 // Save the BB nodes on the path from the first BB node containing
1206 // non-redundant spill to the Root node.
1207 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1208 // All the spills to be hoisted must originate from a single def instruction
1209 // to the OrigReg. It means the def instruction should dominate all the spills
1210 // to be hoisted. We choose the BB where the def instruction is located as
1211 // the Root.
1212 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1213 // For every node on the dominator tree with spill, walk up on the dominator
1214 // tree towards the Root node until it is reached. If there is other node
1215 // containing spill in the middle of the path, the previous spill saw will
1216 // be redundant and the node containing it will be removed. All the nodes on
1217 // the path starting from the first node with non-redundant spill to the Root
1218 // node will be added to the WorkSet, which will contain all the possible
1219 // locations where spills may be hoisted to after the loop below is done.
1220 for (const auto Spill : Spills) {
1221 MachineBasicBlock *Block = Spill->getParent();
1222 MachineDomTreeNode *Node = MDT[Block];
1223 MachineInstr *SpillToRm = nullptr;
1224 while (Node != RootIDomNode) {
1225 // If Node dominates Block, and it already contains a spill, the spill in
1226 // Block will be redundant.
1227 if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1228 SpillToRm = SpillBBToSpill[MDT[Block]];
1229 break;
1230 /// If we see the Node already in WorkSet, the path from the Node to
1231 /// the Root node must already be traversed by another spill.
1232 /// Then no need to repeat.
1233 } else if (WorkSet.count(Node)) {
1234 break;
1235 } else {
1236 NodesOnPath.insert(Node);
1238 Node = Node->getIDom();
1240 if (SpillToRm) {
1241 SpillsToRm.push_back(SpillToRm);
1242 } else {
1243 // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1244 // set the initial status before hoisting start. The value of BBs
1245 // containing original spills is set to 0, in order to descriminate
1246 // with BBs containing hoisted spills which will be inserted to
1247 // SpillsToKeep later during hoisting.
1248 SpillsToKeep[MDT[Block]] = 0;
1249 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1251 NodesOnPath.clear();
1254 // Sort the nodes in WorkSet in top-down order and save the nodes
1255 // in Orders. Orders will be used for hoisting in runHoistSpills.
1256 unsigned idx = 0;
1257 Orders.push_back(MDT.getBase().getNode(Root));
1258 do {
1259 MachineDomTreeNode *Node = Orders[idx++];
1260 const std::vector<MachineDomTreeNode *> &Children = Node->getChildren();
1261 unsigned NumChildren = Children.size();
1262 for (unsigned i = 0; i != NumChildren; ++i) {
1263 MachineDomTreeNode *Child = Children[i];
1264 if (WorkSet.count(Child))
1265 Orders.push_back(Child);
1267 } while (idx != Orders.size());
1268 assert(Orders.size() == WorkSet.size() &&
1269 "Orders have different size with WorkSet");
1271 #ifndef NDEBUG
1272 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1273 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1274 for (; RIt != Orders.rend(); RIt++)
1275 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1276 LLVM_DEBUG(dbgs() << "\n");
1277 #endif
1280 /// Try to hoist spills according to BB hotness. The spills to removed will
1281 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1282 /// \p SpillsToIns.
1283 void HoistSpillHelper::runHoistSpills(
1284 LiveInterval &OrigLI, VNInfo &OrigVNI,
1285 SmallPtrSet<MachineInstr *, 16> &Spills,
1286 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1287 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1288 // Visit order of dominator tree nodes.
1289 SmallVector<MachineDomTreeNode *, 32> Orders;
1290 // SpillsToKeep contains all the nodes where spills are to be inserted
1291 // during hoisting. If the spill to be inserted is an original spill
1292 // (not a hoisted one), the value of the map entry is 0. If the spill
1293 // is a hoisted spill, the value of the map entry is the VReg to be used
1294 // as the source of the spill.
1295 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1296 // Map from BB to the first spill inside of it.
1297 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1299 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1301 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1302 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1303 SpillBBToSpill);
1305 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1306 // nodes set and the cost of all the spills inside those nodes.
1307 // The nodes set are the locations where spills are to be inserted
1308 // in the subtree of current node.
1309 using NodesCostPair =
1310 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1311 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1313 // Iterate Orders set in reverse order, which will be a bottom-up order
1314 // in the dominator tree. Once we visit a dom tree node, we know its
1315 // children have already been visited and the spill locations in the
1316 // subtrees of all the children have been determined.
1317 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1318 for (; RIt != Orders.rend(); RIt++) {
1319 MachineBasicBlock *Block = (*RIt)->getBlock();
1321 // If Block contains an original spill, simply continue.
1322 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
1323 SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1324 // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1325 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1326 continue;
1329 // Collect spills in subtree of current node (*RIt) to
1330 // SpillsInSubTreeMap[*RIt].first.
1331 const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren();
1332 unsigned NumChildren = Children.size();
1333 for (unsigned i = 0; i != NumChildren; ++i) {
1334 MachineDomTreeNode *Child = Children[i];
1335 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
1336 continue;
1337 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1338 // should be placed before getting the begin and end iterators of
1339 // SpillsInSubTreeMap[Child].first, or else the iterators may be
1340 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1341 // and the map grows and then the original buckets in the map are moved.
1342 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1343 SpillsInSubTreeMap[*RIt].first;
1344 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1345 SubTreeCost += SpillsInSubTreeMap[Child].second;
1346 auto BI = SpillsInSubTreeMap[Child].first.begin();
1347 auto EI = SpillsInSubTreeMap[Child].first.end();
1348 SpillsInSubTree.insert(BI, EI);
1349 SpillsInSubTreeMap.erase(Child);
1352 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1353 SpillsInSubTreeMap[*RIt].first;
1354 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1355 // No spills in subtree, simply continue.
1356 if (SpillsInSubTree.empty())
1357 continue;
1359 // Check whether Block is a possible candidate to insert spill.
1360 unsigned LiveReg = 0;
1361 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1362 continue;
1364 // If there are multiple spills that could be merged, bias a little
1365 // to hoist the spill.
1366 BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1367 ? BranchProbability(9, 10)
1368 : BranchProbability(1, 1);
1369 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1370 // Hoist: Move spills to current Block.
1371 for (const auto SpillBB : SpillsInSubTree) {
1372 // When SpillBB is a BB contains original spill, insert the spill
1373 // to SpillsToRm.
1374 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
1375 !SpillsToKeep[SpillBB]) {
1376 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1377 SpillsToRm.push_back(SpillToRm);
1379 // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1380 SpillsToKeep.erase(SpillBB);
1382 // Current Block is the BB containing the new hoisted spill. Add it to
1383 // SpillsToKeep. LiveReg is the source of the new spill.
1384 SpillsToKeep[*RIt] = LiveReg;
1385 LLVM_DEBUG({
1386 dbgs() << "spills in BB: ";
1387 for (const auto Rspill : SpillsInSubTree)
1388 dbgs() << Rspill->getBlock()->getNumber() << " ";
1389 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1390 << "\n";
1392 SpillsInSubTree.clear();
1393 SpillsInSubTree.insert(*RIt);
1394 SubTreeCost = MBFI.getBlockFreq(Block);
1397 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1398 // save them to SpillsToIns.
1399 for (const auto Ent : SpillsToKeep) {
1400 if (Ent.second)
1401 SpillsToIns[Ent.first->getBlock()] = Ent.second;
1405 /// For spills with equal values, remove redundant spills and hoist those left
1406 /// to less hot spots.
1408 /// Spills with equal values will be collected into the same set in
1409 /// MergeableSpills when spill is inserted. These equal spills are originated
1410 /// from the same defining instruction and are dominated by the instruction.
1411 /// Before hoisting all the equal spills, redundant spills inside in the same
1412 /// BB are first marked to be deleted. Then starting from the spills left, walk
1413 /// up on the dominator tree towards the Root node where the define instruction
1414 /// is located, mark the dominated spills to be deleted along the way and
1415 /// collect the BB nodes on the path from non-dominated spills to the define
1416 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1417 /// where we are considering to hoist the spills. We iterate the WorkSet in
1418 /// bottom-up order, and for each node, we will decide whether to hoist spills
1419 /// inside its subtree to that node. In this way, we can get benefit locally
1420 /// even if hoisting all the equal spills to one cold place is impossible.
1421 void HoistSpillHelper::hoistAllSpills() {
1422 SmallVector<unsigned, 4> NewVRegs;
1423 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1425 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1426 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1427 unsigned Original = VRM.getPreSplitReg(Reg);
1428 if (!MRI.def_empty(Reg))
1429 Virt2SiblingsMap[Original].insert(Reg);
1432 // Each entry in MergeableSpills contains a spill set with equal values.
1433 for (auto &Ent : MergeableSpills) {
1434 int Slot = Ent.first.first;
1435 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1436 VNInfo *OrigVNI = Ent.first.second;
1437 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1438 if (Ent.second.empty())
1439 continue;
1441 LLVM_DEBUG({
1442 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1443 << "Equal spills in BB: ";
1444 for (const auto spill : EqValSpills)
1445 dbgs() << spill->getParent()->getNumber() << " ";
1446 dbgs() << "\n";
1449 // SpillsToRm is the spill set to be removed from EqValSpills.
1450 SmallVector<MachineInstr *, 16> SpillsToRm;
1451 // SpillsToIns is the spill set to be newly inserted after hoisting.
1452 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1454 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1456 LLVM_DEBUG({
1457 dbgs() << "Finally inserted spills in BB: ";
1458 for (const auto Ispill : SpillsToIns)
1459 dbgs() << Ispill.first->getNumber() << " ";
1460 dbgs() << "\nFinally removed spills in BB: ";
1461 for (const auto Rspill : SpillsToRm)
1462 dbgs() << Rspill->getParent()->getNumber() << " ";
1463 dbgs() << "\n";
1466 // Stack live range update.
1467 LiveInterval &StackIntvl = LSS.getInterval(Slot);
1468 if (!SpillsToIns.empty() || !SpillsToRm.empty())
1469 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1470 StackIntvl.getValNumInfo(0));
1472 // Insert hoisted spills.
1473 for (auto const Insert : SpillsToIns) {
1474 MachineBasicBlock *BB = Insert.first;
1475 unsigned LiveReg = Insert.second;
1476 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB);
1477 TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot,
1478 MRI.getRegClass(LiveReg), &TRI);
1479 LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI);
1480 ++NumSpills;
1483 // Remove redundant spills or change them to dead instructions.
1484 NumSpills -= SpillsToRm.size();
1485 for (auto const RMEnt : SpillsToRm) {
1486 RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1487 for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1488 MachineOperand &MO = RMEnt->getOperand(i - 1);
1489 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1490 RMEnt->RemoveOperand(i - 1);
1493 Edit.eliminateDeadDefs(SpillsToRm, None, AA);
1497 /// For VirtReg clone, the \p New register should have the same physreg or
1498 /// stackslot as the \p old register.
1499 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
1500 if (VRM.hasPhys(Old))
1501 VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1502 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1503 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1504 else
1505 llvm_unreachable("VReg should be assigned either physreg or stackslot");