1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Interleaved Access pass, which identifies
11 // interleaved memory accesses and transforms them into target specific
14 // An interleaved load reads data from memory into several vectors, with
15 // DE-interleaving the data on a factor. An interleaved store writes several
16 // vectors to memory with RE-interleaving the data on a factor.
18 // As interleaved accesses are difficult to identified in CodeGen (mainly
19 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
20 // IR), we identify and transform them to intrinsics in this pass so the
21 // intrinsics can be easily matched into target specific instructions later in
24 // E.g. An interleaved load (Factor = 2):
25 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr
26 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
27 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
29 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
30 // intrinsic in ARM backend.
32 // In X86, this can be further optimized into a set of target
33 // specific loads followed by an optimized sequence of shuffles.
35 // E.g. An interleaved store (Factor = 3):
36 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
37 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
38 // store <12 x i32> %i.vec, <12 x i32>* %ptr
40 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
41 // intrinsic in ARM backend.
43 // Similarly, a set of interleaved stores can be transformed into an optimized
44 // sequence of shuffles followed by a set of target specific stores for X86.
46 //===----------------------------------------------------------------------===//
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/CodeGen/TargetLowering.h"
52 #include "llvm/CodeGen/TargetPassConfig.h"
53 #include "llvm/CodeGen/TargetSubtargetInfo.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InstIterator.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
74 #define DEBUG_TYPE "interleaved-access"
76 static cl::opt
<bool> LowerInterleavedAccesses(
77 "lower-interleaved-accesses",
78 cl::desc("Enable lowering interleaved accesses to intrinsics"),
79 cl::init(true), cl::Hidden
);
83 class InterleavedAccess
: public FunctionPass
{
87 InterleavedAccess() : FunctionPass(ID
) {
88 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
91 StringRef
getPassName() const override
{ return "Interleaved Access Pass"; }
93 bool runOnFunction(Function
&F
) override
;
95 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
96 AU
.addRequired
<DominatorTreeWrapperPass
>();
97 AU
.addPreserved
<DominatorTreeWrapperPass
>();
101 DominatorTree
*DT
= nullptr;
102 const TargetLowering
*TLI
= nullptr;
104 /// The maximum supported interleave factor.
107 /// Transform an interleaved load into target specific intrinsics.
108 bool lowerInterleavedLoad(LoadInst
*LI
,
109 SmallVector
<Instruction
*, 32> &DeadInsts
);
111 /// Transform an interleaved store into target specific intrinsics.
112 bool lowerInterleavedStore(StoreInst
*SI
,
113 SmallVector
<Instruction
*, 32> &DeadInsts
);
115 /// Returns true if the uses of an interleaved load by the
116 /// extractelement instructions in \p Extracts can be replaced by uses of the
117 /// shufflevector instructions in \p Shuffles instead. If so, the necessary
118 /// replacements are also performed.
119 bool tryReplaceExtracts(ArrayRef
<ExtractElementInst
*> Extracts
,
120 ArrayRef
<ShuffleVectorInst
*> Shuffles
);
123 } // end anonymous namespace.
125 char InterleavedAccess::ID
= 0;
127 INITIALIZE_PASS_BEGIN(InterleavedAccess
, DEBUG_TYPE
,
128 "Lower interleaved memory accesses to target specific intrinsics", false,
130 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
131 INITIALIZE_PASS_END(InterleavedAccess
, DEBUG_TYPE
,
132 "Lower interleaved memory accesses to target specific intrinsics", false,
135 FunctionPass
*llvm::createInterleavedAccessPass() {
136 return new InterleavedAccess();
139 /// Check if the mask is a DE-interleave mask of the given factor
141 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
142 static bool isDeInterleaveMaskOfFactor(ArrayRef
<int> Mask
, unsigned Factor
,
144 // Check all potential start indices from 0 to (Factor - 1).
145 for (Index
= 0; Index
< Factor
; Index
++) {
148 // Check that elements are in ascending order by Factor. Ignore undef
150 for (; i
< Mask
.size(); i
++)
151 if (Mask
[i
] >= 0 && static_cast<unsigned>(Mask
[i
]) != Index
+ i
* Factor
)
154 if (i
== Mask
.size())
161 /// Check if the mask is a DE-interleave mask for an interleaved load.
163 /// E.g. DE-interleave masks (Factor = 2) could be:
164 /// <0, 2, 4, 6> (mask of index 0 to extract even elements)
165 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
166 static bool isDeInterleaveMask(ArrayRef
<int> Mask
, unsigned &Factor
,
167 unsigned &Index
, unsigned MaxFactor
) {
171 // Check potential Factors.
172 for (Factor
= 2; Factor
<= MaxFactor
; Factor
++)
173 if (isDeInterleaveMaskOfFactor(Mask
, Factor
, Index
))
179 /// Check if the mask can be used in an interleaved store.
181 /// It checks for a more general pattern than the RE-interleave mask.
182 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
183 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
184 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
185 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
187 /// The particular case of an RE-interleave mask is:
188 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
189 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
190 static bool isReInterleaveMask(ArrayRef
<int> Mask
, unsigned &Factor
,
191 unsigned MaxFactor
, unsigned OpNumElts
) {
192 unsigned NumElts
= Mask
.size();
196 // Check potential Factors.
197 for (Factor
= 2; Factor
<= MaxFactor
; Factor
++) {
198 if (NumElts
% Factor
)
201 unsigned LaneLen
= NumElts
/ Factor
;
202 if (!isPowerOf2_32(LaneLen
))
205 // Check whether each element matches the general interleaved rule.
206 // Ignore undef elements, as long as the defined elements match the rule.
207 // Outer loop processes all factors (x, y, z in the above example)
209 for (; I
< Factor
; I
++) {
210 unsigned SavedLaneValue
;
211 unsigned SavedNoUndefs
= 0;
213 // Inner loop processes consecutive accesses (x, x+1... in the example)
214 for (J
= 0; J
< LaneLen
- 1; J
++) {
215 // Lane computes x's position in the Mask
216 unsigned Lane
= J
* Factor
+ I
;
217 unsigned NextLane
= Lane
+ Factor
;
218 int LaneValue
= Mask
[Lane
];
219 int NextLaneValue
= Mask
[NextLane
];
221 // If both are defined, values must be sequential
222 if (LaneValue
>= 0 && NextLaneValue
>= 0 &&
223 LaneValue
+ 1 != NextLaneValue
)
226 // If the next value is undef, save the current one as reference
227 if (LaneValue
>= 0 && NextLaneValue
< 0) {
228 SavedLaneValue
= LaneValue
;
232 // Undefs are allowed, but defined elements must still be consecutive:
233 // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
234 // Verify this by storing the last non-undef followed by an undef
235 // Check that following non-undef masks are incremented with the
236 // corresponding distance.
237 if (SavedNoUndefs
> 0 && LaneValue
< 0) {
239 if (NextLaneValue
>= 0 &&
240 SavedLaneValue
+ SavedNoUndefs
!= (unsigned)NextLaneValue
)
250 // Check that the start of the I range (J=0) is greater than 0
252 } else if (Mask
[(LaneLen
- 1) * Factor
+ I
] >= 0) {
253 // StartMask defined by the last value in lane
254 StartMask
= Mask
[(LaneLen
- 1) * Factor
+ I
] - J
;
255 } else if (SavedNoUndefs
> 0) {
256 // StartMask defined by some non-zero value in the j loop
257 StartMask
= SavedLaneValue
- (LaneLen
- 1 - SavedNoUndefs
);
259 // else StartMask remains set to 0, i.e. all elements are undefs
263 // We must stay within the vectors; This case can happen with undefs.
264 if (StartMask
+ LaneLen
> OpNumElts
*2)
268 // Found an interleaved mask of current factor.
276 bool InterleavedAccess::lowerInterleavedLoad(
277 LoadInst
*LI
, SmallVector
<Instruction
*, 32> &DeadInsts
) {
281 SmallVector
<ShuffleVectorInst
*, 4> Shuffles
;
282 SmallVector
<ExtractElementInst
*, 4> Extracts
;
284 // Check if all users of this load are shufflevectors. If we encounter any
285 // users that are extractelement instructions, we save them to later check if
286 // they can be modifed to extract from one of the shufflevectors instead of
288 for (auto UI
= LI
->user_begin(), E
= LI
->user_end(); UI
!= E
; UI
++) {
289 auto *Extract
= dyn_cast
<ExtractElementInst
>(*UI
);
290 if (Extract
&& isa
<ConstantInt
>(Extract
->getIndexOperand())) {
291 Extracts
.push_back(Extract
);
294 ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(*UI
);
295 if (!SVI
|| !isa
<UndefValue
>(SVI
->getOperand(1)))
298 Shuffles
.push_back(SVI
);
301 if (Shuffles
.empty())
304 unsigned Factor
, Index
;
306 // Check if the first shufflevector is DE-interleave shuffle.
307 if (!isDeInterleaveMask(Shuffles
[0]->getShuffleMask(), Factor
, Index
,
311 // Holds the corresponding index for each DE-interleave shuffle.
312 SmallVector
<unsigned, 4> Indices
;
313 Indices
.push_back(Index
);
315 Type
*VecTy
= Shuffles
[0]->getType();
317 // Check if other shufflevectors are also DE-interleaved of the same type
318 // and factor as the first shufflevector.
319 for (unsigned i
= 1; i
< Shuffles
.size(); i
++) {
320 if (Shuffles
[i
]->getType() != VecTy
)
323 if (!isDeInterleaveMaskOfFactor(Shuffles
[i
]->getShuffleMask(), Factor
,
327 Indices
.push_back(Index
);
330 // Try and modify users of the load that are extractelement instructions to
331 // use the shufflevector instructions instead of the load.
332 if (!tryReplaceExtracts(Extracts
, Shuffles
))
335 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI
<< "\n");
337 // Try to create target specific intrinsics to replace the load and shuffles.
338 if (!TLI
->lowerInterleavedLoad(LI
, Shuffles
, Indices
, Factor
))
341 for (auto SVI
: Shuffles
)
342 DeadInsts
.push_back(SVI
);
344 DeadInsts
.push_back(LI
);
348 bool InterleavedAccess::tryReplaceExtracts(
349 ArrayRef
<ExtractElementInst
*> Extracts
,
350 ArrayRef
<ShuffleVectorInst
*> Shuffles
) {
351 // If there aren't any extractelement instructions to modify, there's nothing
353 if (Extracts
.empty())
356 // Maps extractelement instructions to vector-index pairs. The extractlement
357 // instructions will be modified to use the new vector and index operands.
358 DenseMap
<ExtractElementInst
*, std::pair
<Value
*, int>> ReplacementMap
;
360 for (auto *Extract
: Extracts
) {
361 // The vector index that is extracted.
362 auto *IndexOperand
= cast
<ConstantInt
>(Extract
->getIndexOperand());
363 auto Index
= IndexOperand
->getSExtValue();
365 // Look for a suitable shufflevector instruction. The goal is to modify the
366 // extractelement instruction (which uses an interleaved load) to use one
367 // of the shufflevector instructions instead of the load.
368 for (auto *Shuffle
: Shuffles
) {
369 // If the shufflevector instruction doesn't dominate the extract, we
370 // can't create a use of it.
371 if (!DT
->dominates(Shuffle
, Extract
))
374 // Inspect the indices of the shufflevector instruction. If the shuffle
375 // selects the same index that is extracted, we can modify the
376 // extractelement instruction.
377 SmallVector
<int, 4> Indices
;
378 Shuffle
->getShuffleMask(Indices
);
379 for (unsigned I
= 0; I
< Indices
.size(); ++I
)
380 if (Indices
[I
] == Index
) {
381 assert(Extract
->getOperand(0) == Shuffle
->getOperand(0) &&
382 "Vector operations do not match");
383 ReplacementMap
[Extract
] = std::make_pair(Shuffle
, I
);
387 // If we found a suitable shufflevector instruction, stop looking.
388 if (ReplacementMap
.count(Extract
))
392 // If we did not find a suitable shufflevector instruction, the
393 // extractelement instruction cannot be modified, so we must give up.
394 if (!ReplacementMap
.count(Extract
))
398 // Finally, perform the replacements.
399 IRBuilder
<> Builder(Extracts
[0]->getContext());
400 for (auto &Replacement
: ReplacementMap
) {
401 auto *Extract
= Replacement
.first
;
402 auto *Vector
= Replacement
.second
.first
;
403 auto Index
= Replacement
.second
.second
;
404 Builder
.SetInsertPoint(Extract
);
405 Extract
->replaceAllUsesWith(Builder
.CreateExtractElement(Vector
, Index
));
406 Extract
->eraseFromParent();
412 bool InterleavedAccess::lowerInterleavedStore(
413 StoreInst
*SI
, SmallVector
<Instruction
*, 32> &DeadInsts
) {
417 ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(SI
->getValueOperand());
418 if (!SVI
|| !SVI
->hasOneUse())
421 // Check if the shufflevector is RE-interleave shuffle.
423 unsigned OpNumElts
= SVI
->getOperand(0)->getType()->getVectorNumElements();
424 if (!isReInterleaveMask(SVI
->getShuffleMask(), Factor
, MaxFactor
, OpNumElts
))
427 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI
<< "\n");
429 // Try to create target specific intrinsics to replace the store and shuffle.
430 if (!TLI
->lowerInterleavedStore(SI
, SVI
, Factor
))
433 // Already have a new target specific interleaved store. Erase the old store.
434 DeadInsts
.push_back(SI
);
435 DeadInsts
.push_back(SVI
);
439 bool InterleavedAccess::runOnFunction(Function
&F
) {
440 auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>();
441 if (!TPC
|| !LowerInterleavedAccesses
)
444 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F
.getName() << "\n");
446 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
447 auto &TM
= TPC
->getTM
<TargetMachine
>();
448 TLI
= TM
.getSubtargetImpl(F
)->getTargetLowering();
449 MaxFactor
= TLI
->getMaxSupportedInterleaveFactor();
451 // Holds dead instructions that will be erased later.
452 SmallVector
<Instruction
*, 32> DeadInsts
;
453 bool Changed
= false;
455 for (auto &I
: instructions(F
)) {
456 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(&I
))
457 Changed
|= lowerInterleavedLoad(LI
, DeadInsts
);
459 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
))
460 Changed
|= lowerInterleavedStore(SI
, DeadInsts
);
463 for (auto I
: DeadInsts
)
464 I
->eraseFromParent();