1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs global common subexpression elimination on machine
11 // instructions using a scoped hash table based value numbering scheme. It
12 // must be run while the machine function is still in SSA form.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/ScopedHashTable.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/CodeGen/TargetInstrInfo.h"
32 #include "llvm/CodeGen/TargetOpcodes.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/MC/MCInstrDesc.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Allocator.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/RecyclingAllocator.h"
41 #include "llvm/Support/raw_ostream.h"
49 #define DEBUG_TYPE "machine-cse"
51 STATISTIC(NumCoalesces
, "Number of copies coalesced");
52 STATISTIC(NumCSEs
, "Number of common subexpression eliminated");
53 STATISTIC(NumPhysCSEs
,
54 "Number of physreg referencing common subexpr eliminated");
55 STATISTIC(NumCrossBBCSEs
,
56 "Number of cross-MBB physreg referencing CS eliminated");
57 STATISTIC(NumCommutes
, "Number of copies coalesced after commuting");
61 class MachineCSE
: public MachineFunctionPass
{
62 const TargetInstrInfo
*TII
;
63 const TargetRegisterInfo
*TRI
;
65 MachineDominatorTree
*DT
;
66 MachineRegisterInfo
*MRI
;
69 static char ID
; // Pass identification
71 MachineCSE() : MachineFunctionPass(ID
) {
72 initializeMachineCSEPass(*PassRegistry::getPassRegistry());
75 bool runOnMachineFunction(MachineFunction
&MF
) override
;
77 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
79 MachineFunctionPass::getAnalysisUsage(AU
);
80 AU
.addRequired
<AAResultsWrapperPass
>();
81 AU
.addPreservedID(MachineLoopInfoID
);
82 AU
.addRequired
<MachineDominatorTree
>();
83 AU
.addPreserved
<MachineDominatorTree
>();
86 void releaseMemory() override
{
92 using AllocatorTy
= RecyclingAllocator
<BumpPtrAllocator
,
93 ScopedHashTableVal
<MachineInstr
*, unsigned>>;
95 ScopedHashTable
<MachineInstr
*, unsigned, MachineInstrExpressionTrait
,
97 using ScopeType
= ScopedHTType::ScopeTy
;
99 unsigned LookAheadLimit
= 0;
100 DenseMap
<MachineBasicBlock
*, ScopeType
*> ScopeMap
;
102 SmallVector
<MachineInstr
*, 64> Exps
;
105 bool PerformTrivialCopyPropagation(MachineInstr
*MI
,
106 MachineBasicBlock
*MBB
);
107 bool isPhysDefTriviallyDead(unsigned Reg
,
108 MachineBasicBlock::const_iterator I
,
109 MachineBasicBlock::const_iterator E
) const;
110 bool hasLivePhysRegDefUses(const MachineInstr
*MI
,
111 const MachineBasicBlock
*MBB
,
112 SmallSet
<unsigned,8> &PhysRefs
,
113 SmallVectorImpl
<unsigned> &PhysDefs
,
114 bool &PhysUseDef
) const;
115 bool PhysRegDefsReach(MachineInstr
*CSMI
, MachineInstr
*MI
,
116 SmallSet
<unsigned,8> &PhysRefs
,
117 SmallVectorImpl
<unsigned> &PhysDefs
,
118 bool &NonLocal
) const;
119 bool isCSECandidate(MachineInstr
*MI
);
120 bool isProfitableToCSE(unsigned CSReg
, unsigned Reg
,
121 MachineInstr
*CSMI
, MachineInstr
*MI
);
122 void EnterScope(MachineBasicBlock
*MBB
);
123 void ExitScope(MachineBasicBlock
*MBB
);
124 bool ProcessBlock(MachineBasicBlock
*MBB
);
125 void ExitScopeIfDone(MachineDomTreeNode
*Node
,
126 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
);
127 bool PerformCSE(MachineDomTreeNode
*Node
);
130 } // end anonymous namespace
132 char MachineCSE::ID
= 0;
134 char &llvm::MachineCSEID
= MachineCSE::ID
;
136 INITIALIZE_PASS_BEGIN(MachineCSE
, DEBUG_TYPE
,
137 "Machine Common Subexpression Elimination", false, false)
138 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
139 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
140 INITIALIZE_PASS_END(MachineCSE
, DEBUG_TYPE
,
141 "Machine Common Subexpression Elimination", false, false)
143 /// The source register of a COPY machine instruction can be propagated to all
144 /// its users, and this propagation could increase the probability of finding
145 /// common subexpressions. If the COPY has only one user, the COPY itself can
147 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr
*MI
,
148 MachineBasicBlock
*MBB
) {
149 bool Changed
= false;
150 for (MachineOperand
&MO
: MI
->operands()) {
151 if (!MO
.isReg() || !MO
.isUse())
153 unsigned Reg
= MO
.getReg();
154 if (!TargetRegisterInfo::isVirtualRegister(Reg
))
156 bool OnlyOneUse
= MRI
->hasOneNonDBGUse(Reg
);
157 MachineInstr
*DefMI
= MRI
->getVRegDef(Reg
);
158 if (!DefMI
->isCopy())
160 unsigned SrcReg
= DefMI
->getOperand(1).getReg();
161 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
163 if (DefMI
->getOperand(0).getSubReg())
165 // FIXME: We should trivially coalesce subregister copies to expose CSE
166 // opportunities on instructions with truncated operands (see
167 // cse-add-with-overflow.ll). This can be done here as follows:
169 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
171 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
173 // The 2-addr pass has been updated to handle coalesced subregs. However,
174 // some machine-specific code still can't handle it.
175 // To handle it properly we also need a way find a constrained subregister
176 // class given a super-reg class and subreg index.
177 if (DefMI
->getOperand(1).getSubReg())
179 if (!MRI
->constrainRegAttrs(SrcReg
, Reg
))
181 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI
);
182 LLVM_DEBUG(dbgs() << "*** to: " << *MI
);
184 // Update matching debug values.
185 DefMI
->changeDebugValuesDefReg(SrcReg
);
187 // Propagate SrcReg of copies to MI.
189 MRI
->clearKillFlags(SrcReg
);
190 // Coalesce single use copies.
192 DefMI
->eraseFromParent();
202 MachineCSE::isPhysDefTriviallyDead(unsigned Reg
,
203 MachineBasicBlock::const_iterator I
,
204 MachineBasicBlock::const_iterator E
) const {
205 unsigned LookAheadLeft
= LookAheadLimit
;
206 while (LookAheadLeft
) {
207 // Skip over dbg_value's.
208 I
= skipDebugInstructionsForward(I
, E
);
211 // Reached end of block, we don't know if register is dead or not.
214 bool SeenDef
= false;
215 for (const MachineOperand
&MO
: I
->operands()) {
216 if (MO
.isRegMask() && MO
.clobbersPhysReg(Reg
))
218 if (!MO
.isReg() || !MO
.getReg())
220 if (!TRI
->regsOverlap(MO
.getReg(), Reg
))
228 // See a def of Reg (or an alias) before encountering any use, it's
238 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
239 /// physical registers (except for dead defs of physical registers). It also
240 /// returns the physical register def by reference if it's the only one and the
241 /// instruction does not uses a physical register.
242 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr
*MI
,
243 const MachineBasicBlock
*MBB
,
244 SmallSet
<unsigned,8> &PhysRefs
,
245 SmallVectorImpl
<unsigned> &PhysDefs
,
246 bool &PhysUseDef
) const{
247 // First, add all uses to PhysRefs.
248 for (const MachineOperand
&MO
: MI
->operands()) {
249 if (!MO
.isReg() || MO
.isDef())
251 unsigned Reg
= MO
.getReg();
254 if (TargetRegisterInfo::isVirtualRegister(Reg
))
256 // Reading either caller preserved or constant physregs is ok.
257 if (!MRI
->isCallerPreservedOrConstPhysReg(Reg
))
258 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
259 PhysRefs
.insert(*AI
);
262 // Next, collect all defs into PhysDefs. If any is already in PhysRefs
263 // (which currently contains only uses), set the PhysUseDef flag.
265 MachineBasicBlock::const_iterator I
= MI
; I
= std::next(I
);
266 for (const MachineOperand
&MO
: MI
->operands()) {
267 if (!MO
.isReg() || !MO
.isDef())
269 unsigned Reg
= MO
.getReg();
272 if (TargetRegisterInfo::isVirtualRegister(Reg
))
274 // Check against PhysRefs even if the def is "dead".
275 if (PhysRefs
.count(Reg
))
277 // If the def is dead, it's ok. But the def may not marked "dead". That's
278 // common since this pass is run before livevariables. We can scan
279 // forward a few instructions and check if it is obviously dead.
280 if (!MO
.isDead() && !isPhysDefTriviallyDead(Reg
, I
, MBB
->end()))
281 PhysDefs
.push_back(Reg
);
284 // Finally, add all defs to PhysRefs as well.
285 for (unsigned i
= 0, e
= PhysDefs
.size(); i
!= e
; ++i
)
286 for (MCRegAliasIterator
AI(PhysDefs
[i
], TRI
, true); AI
.isValid(); ++AI
)
287 PhysRefs
.insert(*AI
);
289 return !PhysRefs
.empty();
292 bool MachineCSE::PhysRegDefsReach(MachineInstr
*CSMI
, MachineInstr
*MI
,
293 SmallSet
<unsigned,8> &PhysRefs
,
294 SmallVectorImpl
<unsigned> &PhysDefs
,
295 bool &NonLocal
) const {
296 // For now conservatively returns false if the common subexpression is
297 // not in the same basic block as the given instruction. The only exception
298 // is if the common subexpression is in the sole predecessor block.
299 const MachineBasicBlock
*MBB
= MI
->getParent();
300 const MachineBasicBlock
*CSMBB
= CSMI
->getParent();
302 bool CrossMBB
= false;
304 if (MBB
->pred_size() != 1 || *MBB
->pred_begin() != CSMBB
)
307 for (unsigned i
= 0, e
= PhysDefs
.size(); i
!= e
; ++i
) {
308 if (MRI
->isAllocatable(PhysDefs
[i
]) || MRI
->isReserved(PhysDefs
[i
]))
309 // Avoid extending live range of physical registers if they are
310 //allocatable or reserved.
315 MachineBasicBlock::const_iterator I
= CSMI
; I
= std::next(I
);
316 MachineBasicBlock::const_iterator E
= MI
;
317 MachineBasicBlock::const_iterator EE
= CSMBB
->end();
318 unsigned LookAheadLeft
= LookAheadLimit
;
319 while (LookAheadLeft
) {
320 // Skip over dbg_value's.
321 while (I
!= E
&& I
!= EE
&& I
->isDebugInstr())
325 assert(CrossMBB
&& "Reaching end-of-MBB without finding MI?");
337 for (const MachineOperand
&MO
: I
->operands()) {
338 // RegMasks go on instructions like calls that clobber lots of physregs.
339 // Don't attempt to CSE across such an instruction.
342 if (!MO
.isReg() || !MO
.isDef())
344 unsigned MOReg
= MO
.getReg();
345 if (TargetRegisterInfo::isVirtualRegister(MOReg
))
347 if (PhysRefs
.count(MOReg
))
358 bool MachineCSE::isCSECandidate(MachineInstr
*MI
) {
359 if (MI
->isPosition() || MI
->isPHI() || MI
->isImplicitDef() || MI
->isKill() ||
360 MI
->isInlineAsm() || MI
->isDebugInstr())
364 if (MI
->isCopyLike())
367 // Ignore stuff that we obviously can't move.
368 if (MI
->mayStore() || MI
->isCall() || MI
->isTerminator() ||
369 MI
->hasUnmodeledSideEffects())
373 // Okay, this instruction does a load. As a refinement, we allow the target
374 // to decide whether the loaded value is actually a constant. If so, we can
375 // actually use it as a load.
376 if (!MI
->isDereferenceableInvariantLoad(AA
))
377 // FIXME: we should be able to hoist loads with no other side effects if
378 // there are no other instructions which can change memory in this loop.
379 // This is a trivial form of alias analysis.
383 // Ignore stack guard loads, otherwise the register that holds CSEed value may
384 // be spilled and get loaded back with corrupted data.
385 if (MI
->getOpcode() == TargetOpcode::LOAD_STACK_GUARD
)
391 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
392 /// common expression that defines Reg.
393 bool MachineCSE::isProfitableToCSE(unsigned CSReg
, unsigned Reg
,
394 MachineInstr
*CSMI
, MachineInstr
*MI
) {
395 // FIXME: Heuristics that works around the lack the live range splitting.
397 // If CSReg is used at all uses of Reg, CSE should not increase register
398 // pressure of CSReg.
399 bool MayIncreasePressure
= true;
400 if (TargetRegisterInfo::isVirtualRegister(CSReg
) &&
401 TargetRegisterInfo::isVirtualRegister(Reg
)) {
402 MayIncreasePressure
= false;
403 SmallPtrSet
<MachineInstr
*, 8> CSUses
;
404 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(CSReg
)) {
407 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(Reg
)) {
408 if (!CSUses
.count(&MI
)) {
409 MayIncreasePressure
= true;
414 if (!MayIncreasePressure
) return true;
416 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
417 // an immediate predecessor. We don't want to increase register pressure and
418 // end up causing other computation to be spilled.
419 if (TII
->isAsCheapAsAMove(*MI
)) {
420 MachineBasicBlock
*CSBB
= CSMI
->getParent();
421 MachineBasicBlock
*BB
= MI
->getParent();
422 if (CSBB
!= BB
&& !CSBB
->isSuccessor(BB
))
426 // Heuristics #2: If the expression doesn't not use a vr and the only use
427 // of the redundant computation are copies, do not cse.
428 bool HasVRegUse
= false;
429 for (const MachineOperand
&MO
: MI
->operands()) {
430 if (MO
.isReg() && MO
.isUse() &&
431 TargetRegisterInfo::isVirtualRegister(MO
.getReg())) {
437 bool HasNonCopyUse
= false;
438 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(Reg
)) {
440 if (!MI
.isCopyLike()) {
441 HasNonCopyUse
= true;
449 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
450 // it unless the defined value is already used in the BB of the new use.
452 for (MachineInstr
&UseMI
: MRI
->use_nodbg_instructions(CSReg
)) {
453 HasPHI
|= UseMI
.isPHI();
454 if (UseMI
.getParent() == MI
->getParent())
461 void MachineCSE::EnterScope(MachineBasicBlock
*MBB
) {
462 LLVM_DEBUG(dbgs() << "Entering: " << MBB
->getName() << '\n');
463 ScopeType
*Scope
= new ScopeType(VNT
);
464 ScopeMap
[MBB
] = Scope
;
467 void MachineCSE::ExitScope(MachineBasicBlock
*MBB
) {
468 LLVM_DEBUG(dbgs() << "Exiting: " << MBB
->getName() << '\n');
469 DenseMap
<MachineBasicBlock
*, ScopeType
*>::iterator SI
= ScopeMap
.find(MBB
);
470 assert(SI
!= ScopeMap
.end());
475 bool MachineCSE::ProcessBlock(MachineBasicBlock
*MBB
) {
476 bool Changed
= false;
478 SmallVector
<std::pair
<unsigned, unsigned>, 8> CSEPairs
;
479 SmallVector
<unsigned, 2> ImplicitDefsToUpdate
;
480 SmallVector
<unsigned, 2> ImplicitDefs
;
481 for (MachineBasicBlock::iterator I
= MBB
->begin(), E
= MBB
->end(); I
!= E
; ) {
482 MachineInstr
*MI
= &*I
;
485 if (!isCSECandidate(MI
))
488 bool FoundCSE
= VNT
.count(MI
);
490 // Using trivial copy propagation to find more CSE opportunities.
491 if (PerformTrivialCopyPropagation(MI
, MBB
)) {
494 // After coalescing MI itself may become a copy.
495 if (MI
->isCopyLike())
498 // Try again to see if CSE is possible.
499 FoundCSE
= VNT
.count(MI
);
503 // Commute commutable instructions.
504 bool Commuted
= false;
505 if (!FoundCSE
&& MI
->isCommutable()) {
506 if (MachineInstr
*NewMI
= TII
->commuteInstruction(*MI
)) {
508 FoundCSE
= VNT
.count(NewMI
);
510 // New instruction. It doesn't need to be kept.
511 NewMI
->eraseFromParent();
513 } else if (!FoundCSE
)
514 // MI was changed but it didn't help, commute it back!
515 (void)TII
->commuteInstruction(*MI
);
519 // If the instruction defines physical registers and the values *may* be
520 // used, then it's not safe to replace it with a common subexpression.
521 // It's also not safe if the instruction uses physical registers.
522 bool CrossMBBPhysDef
= false;
523 SmallSet
<unsigned, 8> PhysRefs
;
524 SmallVector
<unsigned, 2> PhysDefs
;
525 bool PhysUseDef
= false;
526 if (FoundCSE
&& hasLivePhysRegDefUses(MI
, MBB
, PhysRefs
,
527 PhysDefs
, PhysUseDef
)) {
530 // ... Unless the CS is local or is in the sole predecessor block
531 // and it also defines the physical register which is not clobbered
532 // in between and the physical register uses were not clobbered.
533 // This can never be the case if the instruction both uses and
534 // defines the same physical register, which was detected above.
536 unsigned CSVN
= VNT
.lookup(MI
);
537 MachineInstr
*CSMI
= Exps
[CSVN
];
538 if (PhysRegDefsReach(CSMI
, MI
, PhysRefs
, PhysDefs
, CrossMBBPhysDef
))
544 VNT
.insert(MI
, CurrVN
++);
549 // Found a common subexpression, eliminate it.
550 unsigned CSVN
= VNT
.lookup(MI
);
551 MachineInstr
*CSMI
= Exps
[CSVN
];
552 LLVM_DEBUG(dbgs() << "Examining: " << *MI
);
553 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI
);
555 // Check if it's profitable to perform this CSE.
557 unsigned NumDefs
= MI
->getNumDefs();
559 for (unsigned i
= 0, e
= MI
->getNumOperands(); NumDefs
&& i
!= e
; ++i
) {
560 MachineOperand
&MO
= MI
->getOperand(i
);
561 if (!MO
.isReg() || !MO
.isDef())
563 unsigned OldReg
= MO
.getReg();
564 unsigned NewReg
= CSMI
->getOperand(i
).getReg();
566 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
567 // we should make sure it is not dead at CSMI.
568 if (MO
.isImplicit() && !MO
.isDead() && CSMI
->getOperand(i
).isDead())
569 ImplicitDefsToUpdate
.push_back(i
);
571 // Keep track of implicit defs of CSMI and MI, to clear possibly
572 // made-redundant kill flags.
573 if (MO
.isImplicit() && !MO
.isDead() && OldReg
== NewReg
)
574 ImplicitDefs
.push_back(OldReg
);
576 if (OldReg
== NewReg
) {
581 assert(TargetRegisterInfo::isVirtualRegister(OldReg
) &&
582 TargetRegisterInfo::isVirtualRegister(NewReg
) &&
583 "Do not CSE physical register defs!");
585 if (!isProfitableToCSE(NewReg
, OldReg
, CSMI
, MI
)) {
586 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
591 // Don't perform CSE if the result of the new instruction cannot exist
592 // within the constraints (register class, bank, or low-level type) of
593 // the old instruction.
594 if (!MRI
->constrainRegAttrs(NewReg
, OldReg
)) {
596 dbgs() << "*** Not the same register constraints, avoid CSE!\n");
601 CSEPairs
.push_back(std::make_pair(OldReg
, NewReg
));
605 // Actually perform the elimination.
607 for (std::pair
<unsigned, unsigned> &CSEPair
: CSEPairs
) {
608 unsigned OldReg
= CSEPair
.first
;
609 unsigned NewReg
= CSEPair
.second
;
610 // OldReg may have been unused but is used now, clear the Dead flag
611 MachineInstr
*Def
= MRI
->getUniqueVRegDef(NewReg
);
612 assert(Def
!= nullptr && "CSEd register has no unique definition?");
613 Def
->clearRegisterDeads(NewReg
);
614 // Replace with NewReg and clear kill flags which may be wrong now.
615 MRI
->replaceRegWith(OldReg
, NewReg
);
616 MRI
->clearKillFlags(NewReg
);
619 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
620 // we should make sure it is not dead at CSMI.
621 for (unsigned ImplicitDefToUpdate
: ImplicitDefsToUpdate
)
622 CSMI
->getOperand(ImplicitDefToUpdate
).setIsDead(false);
624 // Go through implicit defs of CSMI and MI, and clear the kill flags on
625 // their uses in all the instructions between CSMI and MI.
626 // We might have made some of the kill flags redundant, consider:
627 // subs ... implicit-def %nzcv <- CSMI
628 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
629 // subs ... implicit-def %nzcv <- MI, to be eliminated
630 // csinc ... implicit killed %nzcv
631 // Since we eliminated MI, and reused a register imp-def'd by CSMI
632 // (here %nzcv), that register, if it was killed before MI, should have
633 // that kill flag removed, because it's lifetime was extended.
634 if (CSMI
->getParent() == MI
->getParent()) {
635 for (MachineBasicBlock::iterator II
= CSMI
, IE
= MI
; II
!= IE
; ++II
)
636 for (auto ImplicitDef
: ImplicitDefs
)
637 if (MachineOperand
*MO
= II
->findRegisterUseOperand(
638 ImplicitDef
, /*isKill=*/true, TRI
))
639 MO
->setIsKill(false);
641 // If the instructions aren't in the same BB, bail out and clear the
642 // kill flag on all uses of the imp-def'd register.
643 for (auto ImplicitDef
: ImplicitDefs
)
644 MRI
->clearKillFlags(ImplicitDef
);
647 if (CrossMBBPhysDef
) {
648 // Add physical register defs now coming in from a predecessor to MBB
650 while (!PhysDefs
.empty()) {
651 unsigned LiveIn
= PhysDefs
.pop_back_val();
652 if (!MBB
->isLiveIn(LiveIn
))
653 MBB
->addLiveIn(LiveIn
);
658 MI
->eraseFromParent();
660 if (!PhysRefs
.empty())
666 VNT
.insert(MI
, CurrVN
++);
670 ImplicitDefsToUpdate
.clear();
671 ImplicitDefs
.clear();
677 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
678 /// dominator tree node if its a leaf or all of its children are done. Walk
679 /// up the dominator tree to destroy ancestors which are now done.
681 MachineCSE::ExitScopeIfDone(MachineDomTreeNode
*Node
,
682 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
) {
683 if (OpenChildren
[Node
])
687 ExitScope(Node
->getBlock());
689 // Now traverse upwards to pop ancestors whose offsprings are all done.
690 while (MachineDomTreeNode
*Parent
= Node
->getIDom()) {
691 unsigned Left
= --OpenChildren
[Parent
];
694 ExitScope(Parent
->getBlock());
699 bool MachineCSE::PerformCSE(MachineDomTreeNode
*Node
) {
700 SmallVector
<MachineDomTreeNode
*, 32> Scopes
;
701 SmallVector
<MachineDomTreeNode
*, 8> WorkList
;
702 DenseMap
<MachineDomTreeNode
*, unsigned> OpenChildren
;
706 // Perform a DFS walk to determine the order of visit.
707 WorkList
.push_back(Node
);
709 Node
= WorkList
.pop_back_val();
710 Scopes
.push_back(Node
);
711 const std::vector
<MachineDomTreeNode
*> &Children
= Node
->getChildren();
712 OpenChildren
[Node
] = Children
.size();
713 for (MachineDomTreeNode
*Child
: Children
)
714 WorkList
.push_back(Child
);
715 } while (!WorkList
.empty());
718 bool Changed
= false;
719 for (MachineDomTreeNode
*Node
: Scopes
) {
720 MachineBasicBlock
*MBB
= Node
->getBlock();
722 Changed
|= ProcessBlock(MBB
);
723 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
724 ExitScopeIfDone(Node
, OpenChildren
);
730 bool MachineCSE::runOnMachineFunction(MachineFunction
&MF
) {
731 if (skipFunction(MF
.getFunction()))
734 TII
= MF
.getSubtarget().getInstrInfo();
735 TRI
= MF
.getSubtarget().getRegisterInfo();
736 MRI
= &MF
.getRegInfo();
737 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
738 DT
= &getAnalysis
<MachineDominatorTree
>();
739 LookAheadLimit
= TII
->getMachineCSELookAheadLimit();
740 return PerformCSE(DT
->getRootNode());