[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / CodeGen / MachineCSE.cpp
blobdcb6f7cca4f5892dccb86fe62787b3c33a76c4ba
1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global common subexpression elimination on machine
11 // instructions using a scoped hash table based value numbering scheme. It
12 // must be run while the machine function is still in SSA form.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/ScopedHashTable.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/CodeGen/TargetInstrInfo.h"
32 #include "llvm/CodeGen/TargetOpcodes.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/MC/MCInstrDesc.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Allocator.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/RecyclingAllocator.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cassert>
43 #include <iterator>
44 #include <utility>
45 #include <vector>
47 using namespace llvm;
49 #define DEBUG_TYPE "machine-cse"
51 STATISTIC(NumCoalesces, "Number of copies coalesced");
52 STATISTIC(NumCSEs, "Number of common subexpression eliminated");
53 STATISTIC(NumPhysCSEs,
54 "Number of physreg referencing common subexpr eliminated");
55 STATISTIC(NumCrossBBCSEs,
56 "Number of cross-MBB physreg referencing CS eliminated");
57 STATISTIC(NumCommutes, "Number of copies coalesced after commuting");
59 namespace {
61 class MachineCSE : public MachineFunctionPass {
62 const TargetInstrInfo *TII;
63 const TargetRegisterInfo *TRI;
64 AliasAnalysis *AA;
65 MachineDominatorTree *DT;
66 MachineRegisterInfo *MRI;
68 public:
69 static char ID; // Pass identification
71 MachineCSE() : MachineFunctionPass(ID) {
72 initializeMachineCSEPass(*PassRegistry::getPassRegistry());
75 bool runOnMachineFunction(MachineFunction &MF) override;
77 void getAnalysisUsage(AnalysisUsage &AU) const override {
78 AU.setPreservesCFG();
79 MachineFunctionPass::getAnalysisUsage(AU);
80 AU.addRequired<AAResultsWrapperPass>();
81 AU.addPreservedID(MachineLoopInfoID);
82 AU.addRequired<MachineDominatorTree>();
83 AU.addPreserved<MachineDominatorTree>();
86 void releaseMemory() override {
87 ScopeMap.clear();
88 Exps.clear();
91 private:
92 using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
93 ScopedHashTableVal<MachineInstr *, unsigned>>;
94 using ScopedHTType =
95 ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
96 AllocatorTy>;
97 using ScopeType = ScopedHTType::ScopeTy;
99 unsigned LookAheadLimit = 0;
100 DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
101 ScopedHTType VNT;
102 SmallVector<MachineInstr *, 64> Exps;
103 unsigned CurrVN = 0;
105 bool PerformTrivialCopyPropagation(MachineInstr *MI,
106 MachineBasicBlock *MBB);
107 bool isPhysDefTriviallyDead(unsigned Reg,
108 MachineBasicBlock::const_iterator I,
109 MachineBasicBlock::const_iterator E) const;
110 bool hasLivePhysRegDefUses(const MachineInstr *MI,
111 const MachineBasicBlock *MBB,
112 SmallSet<unsigned,8> &PhysRefs,
113 SmallVectorImpl<unsigned> &PhysDefs,
114 bool &PhysUseDef) const;
115 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
116 SmallSet<unsigned,8> &PhysRefs,
117 SmallVectorImpl<unsigned> &PhysDefs,
118 bool &NonLocal) const;
119 bool isCSECandidate(MachineInstr *MI);
120 bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
121 MachineInstr *CSMI, MachineInstr *MI);
122 void EnterScope(MachineBasicBlock *MBB);
123 void ExitScope(MachineBasicBlock *MBB);
124 bool ProcessBlock(MachineBasicBlock *MBB);
125 void ExitScopeIfDone(MachineDomTreeNode *Node,
126 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
127 bool PerformCSE(MachineDomTreeNode *Node);
130 } // end anonymous namespace
132 char MachineCSE::ID = 0;
134 char &llvm::MachineCSEID = MachineCSE::ID;
136 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
137 "Machine Common Subexpression Elimination", false, false)
138 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
139 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
140 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
141 "Machine Common Subexpression Elimination", false, false)
143 /// The source register of a COPY machine instruction can be propagated to all
144 /// its users, and this propagation could increase the probability of finding
145 /// common subexpressions. If the COPY has only one user, the COPY itself can
146 /// be removed.
147 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
148 MachineBasicBlock *MBB) {
149 bool Changed = false;
150 for (MachineOperand &MO : MI->operands()) {
151 if (!MO.isReg() || !MO.isUse())
152 continue;
153 unsigned Reg = MO.getReg();
154 if (!TargetRegisterInfo::isVirtualRegister(Reg))
155 continue;
156 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
157 MachineInstr *DefMI = MRI->getVRegDef(Reg);
158 if (!DefMI->isCopy())
159 continue;
160 unsigned SrcReg = DefMI->getOperand(1).getReg();
161 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
162 continue;
163 if (DefMI->getOperand(0).getSubReg())
164 continue;
165 // FIXME: We should trivially coalesce subregister copies to expose CSE
166 // opportunities on instructions with truncated operands (see
167 // cse-add-with-overflow.ll). This can be done here as follows:
168 // if (SrcSubReg)
169 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
170 // SrcSubReg);
171 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
173 // The 2-addr pass has been updated to handle coalesced subregs. However,
174 // some machine-specific code still can't handle it.
175 // To handle it properly we also need a way find a constrained subregister
176 // class given a super-reg class and subreg index.
177 if (DefMI->getOperand(1).getSubReg())
178 continue;
179 if (!MRI->constrainRegAttrs(SrcReg, Reg))
180 continue;
181 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
182 LLVM_DEBUG(dbgs() << "*** to: " << *MI);
184 // Update matching debug values.
185 DefMI->changeDebugValuesDefReg(SrcReg);
187 // Propagate SrcReg of copies to MI.
188 MO.setReg(SrcReg);
189 MRI->clearKillFlags(SrcReg);
190 // Coalesce single use copies.
191 if (OnlyOneUse) {
192 DefMI->eraseFromParent();
193 ++NumCoalesces;
195 Changed = true;
198 return Changed;
201 bool
202 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
203 MachineBasicBlock::const_iterator I,
204 MachineBasicBlock::const_iterator E) const {
205 unsigned LookAheadLeft = LookAheadLimit;
206 while (LookAheadLeft) {
207 // Skip over dbg_value's.
208 I = skipDebugInstructionsForward(I, E);
210 if (I == E)
211 // Reached end of block, we don't know if register is dead or not.
212 return false;
214 bool SeenDef = false;
215 for (const MachineOperand &MO : I->operands()) {
216 if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
217 SeenDef = true;
218 if (!MO.isReg() || !MO.getReg())
219 continue;
220 if (!TRI->regsOverlap(MO.getReg(), Reg))
221 continue;
222 if (MO.isUse())
223 // Found a use!
224 return false;
225 SeenDef = true;
227 if (SeenDef)
228 // See a def of Reg (or an alias) before encountering any use, it's
229 // trivially dead.
230 return true;
232 --LookAheadLeft;
233 ++I;
235 return false;
238 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
239 /// physical registers (except for dead defs of physical registers). It also
240 /// returns the physical register def by reference if it's the only one and the
241 /// instruction does not uses a physical register.
242 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
243 const MachineBasicBlock *MBB,
244 SmallSet<unsigned,8> &PhysRefs,
245 SmallVectorImpl<unsigned> &PhysDefs,
246 bool &PhysUseDef) const{
247 // First, add all uses to PhysRefs.
248 for (const MachineOperand &MO : MI->operands()) {
249 if (!MO.isReg() || MO.isDef())
250 continue;
251 unsigned Reg = MO.getReg();
252 if (!Reg)
253 continue;
254 if (TargetRegisterInfo::isVirtualRegister(Reg))
255 continue;
256 // Reading either caller preserved or constant physregs is ok.
257 if (!MRI->isCallerPreservedOrConstPhysReg(Reg))
258 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
259 PhysRefs.insert(*AI);
262 // Next, collect all defs into PhysDefs. If any is already in PhysRefs
263 // (which currently contains only uses), set the PhysUseDef flag.
264 PhysUseDef = false;
265 MachineBasicBlock::const_iterator I = MI; I = std::next(I);
266 for (const MachineOperand &MO : MI->operands()) {
267 if (!MO.isReg() || !MO.isDef())
268 continue;
269 unsigned Reg = MO.getReg();
270 if (!Reg)
271 continue;
272 if (TargetRegisterInfo::isVirtualRegister(Reg))
273 continue;
274 // Check against PhysRefs even if the def is "dead".
275 if (PhysRefs.count(Reg))
276 PhysUseDef = true;
277 // If the def is dead, it's ok. But the def may not marked "dead". That's
278 // common since this pass is run before livevariables. We can scan
279 // forward a few instructions and check if it is obviously dead.
280 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
281 PhysDefs.push_back(Reg);
284 // Finally, add all defs to PhysRefs as well.
285 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
286 for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
287 PhysRefs.insert(*AI);
289 return !PhysRefs.empty();
292 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
293 SmallSet<unsigned,8> &PhysRefs,
294 SmallVectorImpl<unsigned> &PhysDefs,
295 bool &NonLocal) const {
296 // For now conservatively returns false if the common subexpression is
297 // not in the same basic block as the given instruction. The only exception
298 // is if the common subexpression is in the sole predecessor block.
299 const MachineBasicBlock *MBB = MI->getParent();
300 const MachineBasicBlock *CSMBB = CSMI->getParent();
302 bool CrossMBB = false;
303 if (CSMBB != MBB) {
304 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
305 return false;
307 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
308 if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
309 // Avoid extending live range of physical registers if they are
310 //allocatable or reserved.
311 return false;
313 CrossMBB = true;
315 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
316 MachineBasicBlock::const_iterator E = MI;
317 MachineBasicBlock::const_iterator EE = CSMBB->end();
318 unsigned LookAheadLeft = LookAheadLimit;
319 while (LookAheadLeft) {
320 // Skip over dbg_value's.
321 while (I != E && I != EE && I->isDebugInstr())
322 ++I;
324 if (I == EE) {
325 assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
326 (void)CrossMBB;
327 CrossMBB = false;
328 NonLocal = true;
329 I = MBB->begin();
330 EE = MBB->end();
331 continue;
334 if (I == E)
335 return true;
337 for (const MachineOperand &MO : I->operands()) {
338 // RegMasks go on instructions like calls that clobber lots of physregs.
339 // Don't attempt to CSE across such an instruction.
340 if (MO.isRegMask())
341 return false;
342 if (!MO.isReg() || !MO.isDef())
343 continue;
344 unsigned MOReg = MO.getReg();
345 if (TargetRegisterInfo::isVirtualRegister(MOReg))
346 continue;
347 if (PhysRefs.count(MOReg))
348 return false;
351 --LookAheadLeft;
352 ++I;
355 return false;
358 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
359 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
360 MI->isInlineAsm() || MI->isDebugInstr())
361 return false;
363 // Ignore copies.
364 if (MI->isCopyLike())
365 return false;
367 // Ignore stuff that we obviously can't move.
368 if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
369 MI->hasUnmodeledSideEffects())
370 return false;
372 if (MI->mayLoad()) {
373 // Okay, this instruction does a load. As a refinement, we allow the target
374 // to decide whether the loaded value is actually a constant. If so, we can
375 // actually use it as a load.
376 if (!MI->isDereferenceableInvariantLoad(AA))
377 // FIXME: we should be able to hoist loads with no other side effects if
378 // there are no other instructions which can change memory in this loop.
379 // This is a trivial form of alias analysis.
380 return false;
383 // Ignore stack guard loads, otherwise the register that holds CSEed value may
384 // be spilled and get loaded back with corrupted data.
385 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
386 return false;
388 return true;
391 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
392 /// common expression that defines Reg.
393 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
394 MachineInstr *CSMI, MachineInstr *MI) {
395 // FIXME: Heuristics that works around the lack the live range splitting.
397 // If CSReg is used at all uses of Reg, CSE should not increase register
398 // pressure of CSReg.
399 bool MayIncreasePressure = true;
400 if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
401 TargetRegisterInfo::isVirtualRegister(Reg)) {
402 MayIncreasePressure = false;
403 SmallPtrSet<MachineInstr*, 8> CSUses;
404 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
405 CSUses.insert(&MI);
407 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
408 if (!CSUses.count(&MI)) {
409 MayIncreasePressure = true;
410 break;
414 if (!MayIncreasePressure) return true;
416 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
417 // an immediate predecessor. We don't want to increase register pressure and
418 // end up causing other computation to be spilled.
419 if (TII->isAsCheapAsAMove(*MI)) {
420 MachineBasicBlock *CSBB = CSMI->getParent();
421 MachineBasicBlock *BB = MI->getParent();
422 if (CSBB != BB && !CSBB->isSuccessor(BB))
423 return false;
426 // Heuristics #2: If the expression doesn't not use a vr and the only use
427 // of the redundant computation are copies, do not cse.
428 bool HasVRegUse = false;
429 for (const MachineOperand &MO : MI->operands()) {
430 if (MO.isReg() && MO.isUse() &&
431 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
432 HasVRegUse = true;
433 break;
436 if (!HasVRegUse) {
437 bool HasNonCopyUse = false;
438 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
439 // Ignore copies.
440 if (!MI.isCopyLike()) {
441 HasNonCopyUse = true;
442 break;
445 if (!HasNonCopyUse)
446 return false;
449 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
450 // it unless the defined value is already used in the BB of the new use.
451 bool HasPHI = false;
452 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
453 HasPHI |= UseMI.isPHI();
454 if (UseMI.getParent() == MI->getParent())
455 return true;
458 return !HasPHI;
461 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
462 LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
463 ScopeType *Scope = new ScopeType(VNT);
464 ScopeMap[MBB] = Scope;
467 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
468 LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
469 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
470 assert(SI != ScopeMap.end());
471 delete SI->second;
472 ScopeMap.erase(SI);
475 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
476 bool Changed = false;
478 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
479 SmallVector<unsigned, 2> ImplicitDefsToUpdate;
480 SmallVector<unsigned, 2> ImplicitDefs;
481 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
482 MachineInstr *MI = &*I;
483 ++I;
485 if (!isCSECandidate(MI))
486 continue;
488 bool FoundCSE = VNT.count(MI);
489 if (!FoundCSE) {
490 // Using trivial copy propagation to find more CSE opportunities.
491 if (PerformTrivialCopyPropagation(MI, MBB)) {
492 Changed = true;
494 // After coalescing MI itself may become a copy.
495 if (MI->isCopyLike())
496 continue;
498 // Try again to see if CSE is possible.
499 FoundCSE = VNT.count(MI);
503 // Commute commutable instructions.
504 bool Commuted = false;
505 if (!FoundCSE && MI->isCommutable()) {
506 if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
507 Commuted = true;
508 FoundCSE = VNT.count(NewMI);
509 if (NewMI != MI) {
510 // New instruction. It doesn't need to be kept.
511 NewMI->eraseFromParent();
512 Changed = true;
513 } else if (!FoundCSE)
514 // MI was changed but it didn't help, commute it back!
515 (void)TII->commuteInstruction(*MI);
519 // If the instruction defines physical registers and the values *may* be
520 // used, then it's not safe to replace it with a common subexpression.
521 // It's also not safe if the instruction uses physical registers.
522 bool CrossMBBPhysDef = false;
523 SmallSet<unsigned, 8> PhysRefs;
524 SmallVector<unsigned, 2> PhysDefs;
525 bool PhysUseDef = false;
526 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
527 PhysDefs, PhysUseDef)) {
528 FoundCSE = false;
530 // ... Unless the CS is local or is in the sole predecessor block
531 // and it also defines the physical register which is not clobbered
532 // in between and the physical register uses were not clobbered.
533 // This can never be the case if the instruction both uses and
534 // defines the same physical register, which was detected above.
535 if (!PhysUseDef) {
536 unsigned CSVN = VNT.lookup(MI);
537 MachineInstr *CSMI = Exps[CSVN];
538 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
539 FoundCSE = true;
543 if (!FoundCSE) {
544 VNT.insert(MI, CurrVN++);
545 Exps.push_back(MI);
546 continue;
549 // Found a common subexpression, eliminate it.
550 unsigned CSVN = VNT.lookup(MI);
551 MachineInstr *CSMI = Exps[CSVN];
552 LLVM_DEBUG(dbgs() << "Examining: " << *MI);
553 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
555 // Check if it's profitable to perform this CSE.
556 bool DoCSE = true;
557 unsigned NumDefs = MI->getNumDefs();
559 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
560 MachineOperand &MO = MI->getOperand(i);
561 if (!MO.isReg() || !MO.isDef())
562 continue;
563 unsigned OldReg = MO.getReg();
564 unsigned NewReg = CSMI->getOperand(i).getReg();
566 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
567 // we should make sure it is not dead at CSMI.
568 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
569 ImplicitDefsToUpdate.push_back(i);
571 // Keep track of implicit defs of CSMI and MI, to clear possibly
572 // made-redundant kill flags.
573 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
574 ImplicitDefs.push_back(OldReg);
576 if (OldReg == NewReg) {
577 --NumDefs;
578 continue;
581 assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
582 TargetRegisterInfo::isVirtualRegister(NewReg) &&
583 "Do not CSE physical register defs!");
585 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
586 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
587 DoCSE = false;
588 break;
591 // Don't perform CSE if the result of the new instruction cannot exist
592 // within the constraints (register class, bank, or low-level type) of
593 // the old instruction.
594 if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
595 LLVM_DEBUG(
596 dbgs() << "*** Not the same register constraints, avoid CSE!\n");
597 DoCSE = false;
598 break;
601 CSEPairs.push_back(std::make_pair(OldReg, NewReg));
602 --NumDefs;
605 // Actually perform the elimination.
606 if (DoCSE) {
607 for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
608 unsigned OldReg = CSEPair.first;
609 unsigned NewReg = CSEPair.second;
610 // OldReg may have been unused but is used now, clear the Dead flag
611 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
612 assert(Def != nullptr && "CSEd register has no unique definition?");
613 Def->clearRegisterDeads(NewReg);
614 // Replace with NewReg and clear kill flags which may be wrong now.
615 MRI->replaceRegWith(OldReg, NewReg);
616 MRI->clearKillFlags(NewReg);
619 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
620 // we should make sure it is not dead at CSMI.
621 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
622 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
624 // Go through implicit defs of CSMI and MI, and clear the kill flags on
625 // their uses in all the instructions between CSMI and MI.
626 // We might have made some of the kill flags redundant, consider:
627 // subs ... implicit-def %nzcv <- CSMI
628 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
629 // subs ... implicit-def %nzcv <- MI, to be eliminated
630 // csinc ... implicit killed %nzcv
631 // Since we eliminated MI, and reused a register imp-def'd by CSMI
632 // (here %nzcv), that register, if it was killed before MI, should have
633 // that kill flag removed, because it's lifetime was extended.
634 if (CSMI->getParent() == MI->getParent()) {
635 for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
636 for (auto ImplicitDef : ImplicitDefs)
637 if (MachineOperand *MO = II->findRegisterUseOperand(
638 ImplicitDef, /*isKill=*/true, TRI))
639 MO->setIsKill(false);
640 } else {
641 // If the instructions aren't in the same BB, bail out and clear the
642 // kill flag on all uses of the imp-def'd register.
643 for (auto ImplicitDef : ImplicitDefs)
644 MRI->clearKillFlags(ImplicitDef);
647 if (CrossMBBPhysDef) {
648 // Add physical register defs now coming in from a predecessor to MBB
649 // livein list.
650 while (!PhysDefs.empty()) {
651 unsigned LiveIn = PhysDefs.pop_back_val();
652 if (!MBB->isLiveIn(LiveIn))
653 MBB->addLiveIn(LiveIn);
655 ++NumCrossBBCSEs;
658 MI->eraseFromParent();
659 ++NumCSEs;
660 if (!PhysRefs.empty())
661 ++NumPhysCSEs;
662 if (Commuted)
663 ++NumCommutes;
664 Changed = true;
665 } else {
666 VNT.insert(MI, CurrVN++);
667 Exps.push_back(MI);
669 CSEPairs.clear();
670 ImplicitDefsToUpdate.clear();
671 ImplicitDefs.clear();
674 return Changed;
677 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
678 /// dominator tree node if its a leaf or all of its children are done. Walk
679 /// up the dominator tree to destroy ancestors which are now done.
680 void
681 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
682 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
683 if (OpenChildren[Node])
684 return;
686 // Pop scope.
687 ExitScope(Node->getBlock());
689 // Now traverse upwards to pop ancestors whose offsprings are all done.
690 while (MachineDomTreeNode *Parent = Node->getIDom()) {
691 unsigned Left = --OpenChildren[Parent];
692 if (Left != 0)
693 break;
694 ExitScope(Parent->getBlock());
695 Node = Parent;
699 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
700 SmallVector<MachineDomTreeNode*, 32> Scopes;
701 SmallVector<MachineDomTreeNode*, 8> WorkList;
702 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
704 CurrVN = 0;
706 // Perform a DFS walk to determine the order of visit.
707 WorkList.push_back(Node);
708 do {
709 Node = WorkList.pop_back_val();
710 Scopes.push_back(Node);
711 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
712 OpenChildren[Node] = Children.size();
713 for (MachineDomTreeNode *Child : Children)
714 WorkList.push_back(Child);
715 } while (!WorkList.empty());
717 // Now perform CSE.
718 bool Changed = false;
719 for (MachineDomTreeNode *Node : Scopes) {
720 MachineBasicBlock *MBB = Node->getBlock();
721 EnterScope(MBB);
722 Changed |= ProcessBlock(MBB);
723 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
724 ExitScopeIfDone(Node, OpenChildren);
727 return Changed;
730 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
731 if (skipFunction(MF.getFunction()))
732 return false;
734 TII = MF.getSubtarget().getInstrInfo();
735 TRI = MF.getSubtarget().getRegisterInfo();
736 MRI = &MF.getRegInfo();
737 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
738 DT = &getAnalysis<MachineDominatorTree>();
739 LookAheadLimit = TII->getMachineCSELookAheadLimit();
740 return PerformCSE(DT->getRootNode());