1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Methods common to all machine instructions.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallBitVector.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/MC/MCInstrDesc.h"
57 #include "llvm/MC/MCRegisterInfo.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/LowLevelTypeImpl.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetIntrinsicInfo.h"
68 #include "llvm/Target/TargetMachine.h"
79 static const MachineFunction
*getMFIfAvailable(const MachineInstr
&MI
) {
80 if (const MachineBasicBlock
*MBB
= MI
.getParent())
81 if (const MachineFunction
*MF
= MBB
->getParent())
86 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
88 static void tryToGetTargetInfo(const MachineInstr
&MI
,
89 const TargetRegisterInfo
*&TRI
,
90 const MachineRegisterInfo
*&MRI
,
91 const TargetIntrinsicInfo
*&IntrinsicInfo
,
92 const TargetInstrInfo
*&TII
) {
94 if (const MachineFunction
*MF
= getMFIfAvailable(MI
)) {
95 TRI
= MF
->getSubtarget().getRegisterInfo();
96 MRI
= &MF
->getRegInfo();
97 IntrinsicInfo
= MF
->getTarget().getIntrinsicInfo();
98 TII
= MF
->getSubtarget().getInstrInfo();
102 void MachineInstr::addImplicitDefUseOperands(MachineFunction
&MF
) {
103 if (MCID
->ImplicitDefs
)
104 for (const MCPhysReg
*ImpDefs
= MCID
->getImplicitDefs(); *ImpDefs
;
106 addOperand(MF
, MachineOperand::CreateReg(*ImpDefs
, true, true));
107 if (MCID
->ImplicitUses
)
108 for (const MCPhysReg
*ImpUses
= MCID
->getImplicitUses(); *ImpUses
;
110 addOperand(MF
, MachineOperand::CreateReg(*ImpUses
, false, true));
113 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
114 /// implicit operands. It reserves space for the number of operands specified by
116 MachineInstr::MachineInstr(MachineFunction
&MF
, const MCInstrDesc
&tid
,
117 DebugLoc dl
, bool NoImp
)
118 : MCID(&tid
), debugLoc(std::move(dl
)) {
119 assert(debugLoc
.hasTrivialDestructor() && "Expected trivial destructor");
121 // Reserve space for the expected number of operands.
122 if (unsigned NumOps
= MCID
->getNumOperands() +
123 MCID
->getNumImplicitDefs() + MCID
->getNumImplicitUses()) {
124 CapOperands
= OperandCapacity::get(NumOps
);
125 Operands
= MF
.allocateOperandArray(CapOperands
);
129 addImplicitDefUseOperands(MF
);
132 /// MachineInstr ctor - Copies MachineInstr arg exactly
134 MachineInstr::MachineInstr(MachineFunction
&MF
, const MachineInstr
&MI
)
135 : MCID(&MI
.getDesc()), Info(MI
.Info
), debugLoc(MI
.getDebugLoc()) {
136 assert(debugLoc
.hasTrivialDestructor() && "Expected trivial destructor");
138 CapOperands
= OperandCapacity::get(MI
.getNumOperands());
139 Operands
= MF
.allocateOperandArray(CapOperands
);
142 for (const MachineOperand
&MO
: MI
.operands())
145 // Copy all the sensible flags.
149 /// getRegInfo - If this instruction is embedded into a MachineFunction,
150 /// return the MachineRegisterInfo object for the current function, otherwise
152 MachineRegisterInfo
*MachineInstr::getRegInfo() {
153 if (MachineBasicBlock
*MBB
= getParent())
154 return &MBB
->getParent()->getRegInfo();
158 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
159 /// this instruction from their respective use lists. This requires that the
160 /// operands already be on their use lists.
161 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo
&MRI
) {
162 for (MachineOperand
&MO
: operands())
164 MRI
.removeRegOperandFromUseList(&MO
);
167 /// AddRegOperandsToUseLists - Add all of the register operands in
168 /// this instruction from their respective use lists. This requires that the
169 /// operands not be on their use lists yet.
170 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo
&MRI
) {
171 for (MachineOperand
&MO
: operands())
173 MRI
.addRegOperandToUseList(&MO
);
176 void MachineInstr::addOperand(const MachineOperand
&Op
) {
177 MachineBasicBlock
*MBB
= getParent();
178 assert(MBB
&& "Use MachineInstrBuilder to add operands to dangling instrs");
179 MachineFunction
*MF
= MBB
->getParent();
180 assert(MF
&& "Use MachineInstrBuilder to add operands to dangling instrs");
184 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
185 /// ranges. If MRI is non-null also update use-def chains.
186 static void moveOperands(MachineOperand
*Dst
, MachineOperand
*Src
,
187 unsigned NumOps
, MachineRegisterInfo
*MRI
) {
189 return MRI
->moveOperands(Dst
, Src
, NumOps
);
191 // MachineOperand is a trivially copyable type so we can just use memmove.
192 std::memmove(Dst
, Src
, NumOps
* sizeof(MachineOperand
));
195 /// addOperand - Add the specified operand to the instruction. If it is an
196 /// implicit operand, it is added to the end of the operand list. If it is
197 /// an explicit operand it is added at the end of the explicit operand list
198 /// (before the first implicit operand).
199 void MachineInstr::addOperand(MachineFunction
&MF
, const MachineOperand
&Op
) {
200 assert(MCID
&& "Cannot add operands before providing an instr descriptor");
202 // Check if we're adding one of our existing operands.
203 if (&Op
>= Operands
&& &Op
< Operands
+ NumOperands
) {
204 // This is unusual: MI->addOperand(MI->getOperand(i)).
205 // If adding Op requires reallocating or moving existing operands around,
206 // the Op reference could go stale. Support it by copying Op.
207 MachineOperand
CopyOp(Op
);
208 return addOperand(MF
, CopyOp
);
211 // Find the insert location for the new operand. Implicit registers go at
212 // the end, everything else goes before the implicit regs.
214 // FIXME: Allow mixed explicit and implicit operands on inline asm.
215 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
216 // implicit-defs, but they must not be moved around. See the FIXME in
218 unsigned OpNo
= getNumOperands();
219 bool isImpReg
= Op
.isReg() && Op
.isImplicit();
220 if (!isImpReg
&& !isInlineAsm()) {
221 while (OpNo
&& Operands
[OpNo
-1].isReg() && Operands
[OpNo
-1].isImplicit()) {
223 assert(!Operands
[OpNo
].isTied() && "Cannot move tied operands");
228 bool isMetaDataOp
= Op
.getType() == MachineOperand::MO_Metadata
;
229 // OpNo now points as the desired insertion point. Unless this is a variadic
230 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
231 // RegMask operands go between the explicit and implicit operands.
232 assert((isImpReg
|| Op
.isRegMask() || MCID
->isVariadic() ||
233 OpNo
< MCID
->getNumOperands() || isMetaDataOp
) &&
234 "Trying to add an operand to a machine instr that is already done!");
237 MachineRegisterInfo
*MRI
= getRegInfo();
239 // Determine if the Operands array needs to be reallocated.
240 // Save the old capacity and operand array.
241 OperandCapacity OldCap
= CapOperands
;
242 MachineOperand
*OldOperands
= Operands
;
243 if (!OldOperands
|| OldCap
.getSize() == getNumOperands()) {
244 CapOperands
= OldOperands
? OldCap
.getNext() : OldCap
.get(1);
245 Operands
= MF
.allocateOperandArray(CapOperands
);
246 // Move the operands before the insertion point.
248 moveOperands(Operands
, OldOperands
, OpNo
, MRI
);
251 // Move the operands following the insertion point.
252 if (OpNo
!= NumOperands
)
253 moveOperands(Operands
+ OpNo
+ 1, OldOperands
+ OpNo
, NumOperands
- OpNo
,
257 // Deallocate the old operand array.
258 if (OldOperands
!= Operands
&& OldOperands
)
259 MF
.deallocateOperandArray(OldCap
, OldOperands
);
261 // Copy Op into place. It still needs to be inserted into the MRI use lists.
262 MachineOperand
*NewMO
= new (Operands
+ OpNo
) MachineOperand(Op
);
263 NewMO
->ParentMI
= this;
265 // When adding a register operand, tell MRI about it.
266 if (NewMO
->isReg()) {
267 // Ensure isOnRegUseList() returns false, regardless of Op's status.
268 NewMO
->Contents
.Reg
.Prev
= nullptr;
269 // Ignore existing ties. This is not a property that can be copied.
271 // Add the new operand to MRI, but only for instructions in an MBB.
273 MRI
->addRegOperandToUseList(NewMO
);
274 // The MCID operand information isn't accurate until we start adding
275 // explicit operands. The implicit operands are added first, then the
276 // explicits are inserted before them.
278 // Tie uses to defs as indicated in MCInstrDesc.
279 if (NewMO
->isUse()) {
280 int DefIdx
= MCID
->getOperandConstraint(OpNo
, MCOI::TIED_TO
);
282 tieOperands(DefIdx
, OpNo
);
284 // If the register operand is flagged as early, mark the operand as such.
285 if (MCID
->getOperandConstraint(OpNo
, MCOI::EARLY_CLOBBER
) != -1)
286 NewMO
->setIsEarlyClobber(true);
291 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
292 /// fewer operand than it started with.
294 void MachineInstr::RemoveOperand(unsigned OpNo
) {
295 assert(OpNo
< getNumOperands() && "Invalid operand number");
296 untieRegOperand(OpNo
);
299 // Moving tied operands would break the ties.
300 for (unsigned i
= OpNo
+ 1, e
= getNumOperands(); i
!= e
; ++i
)
301 if (Operands
[i
].isReg())
302 assert(!Operands
[i
].isTied() && "Cannot move tied operands");
305 MachineRegisterInfo
*MRI
= getRegInfo();
306 if (MRI
&& Operands
[OpNo
].isReg())
307 MRI
->removeRegOperandFromUseList(Operands
+ OpNo
);
309 // Don't call the MachineOperand destructor. A lot of this code depends on
310 // MachineOperand having a trivial destructor anyway, and adding a call here
311 // wouldn't make it 'destructor-correct'.
313 if (unsigned N
= NumOperands
- 1 - OpNo
)
314 moveOperands(Operands
+ OpNo
, Operands
+ OpNo
+ 1, N
, MRI
);
318 void MachineInstr::dropMemRefs(MachineFunction
&MF
) {
319 if (memoperands_empty())
322 // See if we can just drop all of our extra info.
323 if (!getPreInstrSymbol() && !getPostInstrSymbol()) {
327 if (!getPostInstrSymbol()) {
328 Info
.set
<EIIK_PreInstrSymbol
>(getPreInstrSymbol());
331 if (!getPreInstrSymbol()) {
332 Info
.set
<EIIK_PostInstrSymbol
>(getPostInstrSymbol());
336 // Otherwise allocate a fresh extra info with just these symbols.
337 Info
.set
<EIIK_OutOfLine
>(
338 MF
.createMIExtraInfo({}, getPreInstrSymbol(), getPostInstrSymbol()));
341 void MachineInstr::setMemRefs(MachineFunction
&MF
,
342 ArrayRef
<MachineMemOperand
*> MMOs
) {
348 // Try to store a single MMO inline.
349 if (MMOs
.size() == 1 && !getPreInstrSymbol() && !getPostInstrSymbol()) {
350 Info
.set
<EIIK_MMO
>(MMOs
[0]);
354 // Otherwise create an extra info struct with all of our info.
355 Info
.set
<EIIK_OutOfLine
>(
356 MF
.createMIExtraInfo(MMOs
, getPreInstrSymbol(), getPostInstrSymbol()));
359 void MachineInstr::addMemOperand(MachineFunction
&MF
,
360 MachineMemOperand
*MO
) {
361 SmallVector
<MachineMemOperand
*, 2> MMOs
;
362 MMOs
.append(memoperands_begin(), memoperands_end());
364 setMemRefs(MF
, MMOs
);
367 void MachineInstr::cloneMemRefs(MachineFunction
&MF
, const MachineInstr
&MI
) {
369 // Nothing to do for a self-clone!
372 assert(&MF
== MI
.getMF() &&
373 "Invalid machine functions when cloning memory refrences!");
374 // See if we can just steal the extra info already allocated for the
375 // instruction. We can do this whenever the pre- and post-instruction symbols
376 // are the same (including null).
377 if (getPreInstrSymbol() == MI
.getPreInstrSymbol() &&
378 getPostInstrSymbol() == MI
.getPostInstrSymbol()) {
383 // Otherwise, fall back on a copy-based clone.
384 setMemRefs(MF
, MI
.memoperands());
387 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
389 static bool hasIdenticalMMOs(ArrayRef
<MachineMemOperand
*> LHS
,
390 ArrayRef
<MachineMemOperand
*> RHS
) {
391 if (LHS
.size() != RHS
.size())
394 auto LHSPointees
= make_pointee_range(LHS
);
395 auto RHSPointees
= make_pointee_range(RHS
);
396 return std::equal(LHSPointees
.begin(), LHSPointees
.end(),
397 RHSPointees
.begin());
400 void MachineInstr::cloneMergedMemRefs(MachineFunction
&MF
,
401 ArrayRef
<const MachineInstr
*> MIs
) {
402 // Try handling easy numbers of MIs with simpler mechanisms.
407 if (MIs
.size() == 1) {
408 cloneMemRefs(MF
, *MIs
[0]);
411 // Because an empty memoperands list provides *no* information and must be
412 // handled conservatively (assuming the instruction can do anything), the only
413 // way to merge with it is to drop all other memoperands.
414 if (MIs
[0]->memoperands_empty()) {
419 // Handle the general case.
420 SmallVector
<MachineMemOperand
*, 2> MergedMMOs
;
421 // Start with the first instruction.
422 assert(&MF
== MIs
[0]->getMF() &&
423 "Invalid machine functions when cloning memory references!");
424 MergedMMOs
.append(MIs
[0]->memoperands_begin(), MIs
[0]->memoperands_end());
425 // Now walk all the other instructions and accumulate any different MMOs.
426 for (const MachineInstr
&MI
: make_pointee_range(MIs
.slice(1))) {
427 assert(&MF
== MI
.getMF() &&
428 "Invalid machine functions when cloning memory references!");
430 // Skip MIs with identical operands to the first. This is a somewhat
431 // arbitrary hack but will catch common cases without being quadratic.
432 // TODO: We could fully implement merge semantics here if needed.
433 if (hasIdenticalMMOs(MIs
[0]->memoperands(), MI
.memoperands()))
436 // Because an empty memoperands list provides *no* information and must be
437 // handled conservatively (assuming the instruction can do anything), the
438 // only way to merge with it is to drop all other memoperands.
439 if (MI
.memoperands_empty()) {
444 // Otherwise accumulate these into our temporary buffer of the merged state.
445 MergedMMOs
.append(MI
.memoperands_begin(), MI
.memoperands_end());
448 setMemRefs(MF
, MergedMMOs
);
451 void MachineInstr::setPreInstrSymbol(MachineFunction
&MF
, MCSymbol
*Symbol
) {
452 MCSymbol
*OldSymbol
= getPreInstrSymbol();
453 if (OldSymbol
== Symbol
)
455 if (OldSymbol
&& !Symbol
) {
456 // We're removing a symbol rather than adding one. Try to clean up any
457 // extra info carried around.
458 if (Info
.is
<EIIK_PreInstrSymbol
>()) {
463 if (memoperands_empty()) {
464 assert(getPostInstrSymbol() &&
465 "Should never have only a single symbol allocated out-of-line!");
466 Info
.set
<EIIK_PostInstrSymbol
>(getPostInstrSymbol());
470 // Otherwise fallback on the generic update.
471 } else if (!Info
|| Info
.is
<EIIK_PreInstrSymbol
>()) {
472 // If we don't have any other extra info, we can store this inline.
473 Info
.set
<EIIK_PreInstrSymbol
>(Symbol
);
477 // Otherwise, allocate a full new set of extra info.
478 // FIXME: Maybe we should make the symbols in the extra info mutable?
479 Info
.set
<EIIK_OutOfLine
>(
480 MF
.createMIExtraInfo(memoperands(), Symbol
, getPostInstrSymbol()));
483 void MachineInstr::setPostInstrSymbol(MachineFunction
&MF
, MCSymbol
*Symbol
) {
484 MCSymbol
*OldSymbol
= getPostInstrSymbol();
485 if (OldSymbol
== Symbol
)
487 if (OldSymbol
&& !Symbol
) {
488 // We're removing a symbol rather than adding one. Try to clean up any
489 // extra info carried around.
490 if (Info
.is
<EIIK_PostInstrSymbol
>()) {
495 if (memoperands_empty()) {
496 assert(getPreInstrSymbol() &&
497 "Should never have only a single symbol allocated out-of-line!");
498 Info
.set
<EIIK_PreInstrSymbol
>(getPreInstrSymbol());
502 // Otherwise fallback on the generic update.
503 } else if (!Info
|| Info
.is
<EIIK_PostInstrSymbol
>()) {
504 // If we don't have any other extra info, we can store this inline.
505 Info
.set
<EIIK_PostInstrSymbol
>(Symbol
);
509 // Otherwise, allocate a full new set of extra info.
510 // FIXME: Maybe we should make the symbols in the extra info mutable?
511 Info
.set
<EIIK_OutOfLine
>(
512 MF
.createMIExtraInfo(memoperands(), getPreInstrSymbol(), Symbol
));
515 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr
&Other
) const {
516 // For now, the just return the union of the flags. If the flags get more
517 // complicated over time, we might need more logic here.
518 return getFlags() | Other
.getFlags();
521 void MachineInstr::copyIRFlags(const Instruction
&I
) {
522 // Copy the wrapping flags.
523 if (const OverflowingBinaryOperator
*OB
=
524 dyn_cast
<OverflowingBinaryOperator
>(&I
)) {
525 if (OB
->hasNoSignedWrap())
526 setFlag(MachineInstr::MIFlag::NoSWrap
);
527 if (OB
->hasNoUnsignedWrap())
528 setFlag(MachineInstr::MIFlag::NoUWrap
);
531 // Copy the exact flag.
532 if (const PossiblyExactOperator
*PE
= dyn_cast
<PossiblyExactOperator
>(&I
))
534 setFlag(MachineInstr::MIFlag::IsExact
);
536 // Copy the fast-math flags.
537 if (const FPMathOperator
*FP
= dyn_cast
<FPMathOperator
>(&I
)) {
538 const FastMathFlags Flags
= FP
->getFastMathFlags();
540 setFlag(MachineInstr::MIFlag::FmNoNans
);
542 setFlag(MachineInstr::MIFlag::FmNoInfs
);
543 if (Flags
.noSignedZeros())
544 setFlag(MachineInstr::MIFlag::FmNsz
);
545 if (Flags
.allowReciprocal())
546 setFlag(MachineInstr::MIFlag::FmArcp
);
547 if (Flags
.allowContract())
548 setFlag(MachineInstr::MIFlag::FmContract
);
549 if (Flags
.approxFunc())
550 setFlag(MachineInstr::MIFlag::FmAfn
);
551 if (Flags
.allowReassoc())
552 setFlag(MachineInstr::MIFlag::FmReassoc
);
556 bool MachineInstr::hasPropertyInBundle(uint64_t Mask
, QueryType Type
) const {
557 assert(!isBundledWithPred() && "Must be called on bundle header");
558 for (MachineBasicBlock::const_instr_iterator MII
= getIterator();; ++MII
) {
559 if (MII
->getDesc().getFlags() & Mask
) {
560 if (Type
== AnyInBundle
)
563 if (Type
== AllInBundle
&& !MII
->isBundle())
566 // This was the last instruction in the bundle.
567 if (!MII
->isBundledWithSucc())
568 return Type
== AllInBundle
;
572 bool MachineInstr::isIdenticalTo(const MachineInstr
&Other
,
573 MICheckType Check
) const {
574 // If opcodes or number of operands are not the same then the two
575 // instructions are obviously not identical.
576 if (Other
.getOpcode() != getOpcode() ||
577 Other
.getNumOperands() != getNumOperands())
581 // We have passed the test above that both instructions have the same
582 // opcode, so we know that both instructions are bundles here. Let's compare
583 // MIs inside the bundle.
584 assert(Other
.isBundle() && "Expected that both instructions are bundles.");
585 MachineBasicBlock::const_instr_iterator I1
= getIterator();
586 MachineBasicBlock::const_instr_iterator I2
= Other
.getIterator();
587 // Loop until we analysed the last intruction inside at least one of the
589 while (I1
->isBundledWithSucc() && I2
->isBundledWithSucc()) {
592 if (!I1
->isIdenticalTo(*I2
, Check
))
595 // If we've reached the end of just one of the two bundles, but not both,
596 // the instructions are not identical.
597 if (I1
->isBundledWithSucc() || I2
->isBundledWithSucc())
601 // Check operands to make sure they match.
602 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
603 const MachineOperand
&MO
= getOperand(i
);
604 const MachineOperand
&OMO
= Other
.getOperand(i
);
606 if (!MO
.isIdenticalTo(OMO
))
611 // Clients may or may not want to ignore defs when testing for equality.
612 // For example, machine CSE pass only cares about finding common
613 // subexpressions, so it's safe to ignore virtual register defs.
615 if (Check
== IgnoreDefs
)
617 else if (Check
== IgnoreVRegDefs
) {
618 if (!TargetRegisterInfo::isVirtualRegister(MO
.getReg()) ||
619 !TargetRegisterInfo::isVirtualRegister(OMO
.getReg()))
620 if (!MO
.isIdenticalTo(OMO
))
623 if (!MO
.isIdenticalTo(OMO
))
625 if (Check
== CheckKillDead
&& MO
.isDead() != OMO
.isDead())
629 if (!MO
.isIdenticalTo(OMO
))
631 if (Check
== CheckKillDead
&& MO
.isKill() != OMO
.isKill())
635 // If DebugLoc does not match then two debug instructions are not identical.
637 if (getDebugLoc() && Other
.getDebugLoc() &&
638 getDebugLoc() != Other
.getDebugLoc())
643 const MachineFunction
*MachineInstr::getMF() const {
644 return getParent()->getParent();
647 MachineInstr
*MachineInstr::removeFromParent() {
648 assert(getParent() && "Not embedded in a basic block!");
649 return getParent()->remove(this);
652 MachineInstr
*MachineInstr::removeFromBundle() {
653 assert(getParent() && "Not embedded in a basic block!");
654 return getParent()->remove_instr(this);
657 void MachineInstr::eraseFromParent() {
658 assert(getParent() && "Not embedded in a basic block!");
659 getParent()->erase(this);
662 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
663 assert(getParent() && "Not embedded in a basic block!");
664 MachineBasicBlock
*MBB
= getParent();
665 MachineFunction
*MF
= MBB
->getParent();
666 assert(MF
&& "Not embedded in a function!");
668 MachineInstr
*MI
= (MachineInstr
*)this;
669 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
671 for (const MachineOperand
&MO
: MI
->operands()) {
672 if (!MO
.isReg() || !MO
.isDef())
674 unsigned Reg
= MO
.getReg();
675 if (!TargetRegisterInfo::isVirtualRegister(Reg
))
677 MRI
.markUsesInDebugValueAsUndef(Reg
);
679 MI
->eraseFromParent();
682 void MachineInstr::eraseFromBundle() {
683 assert(getParent() && "Not embedded in a basic block!");
684 getParent()->erase_instr(this);
687 unsigned MachineInstr::getNumExplicitOperands() const {
688 unsigned NumOperands
= MCID
->getNumOperands();
689 if (!MCID
->isVariadic())
692 for (unsigned I
= NumOperands
, E
= getNumOperands(); I
!= E
; ++I
) {
693 const MachineOperand
&MO
= getOperand(I
);
694 // The operands must always be in the following order:
695 // - explicit reg defs,
696 // - other explicit operands (reg uses, immediates, etc.),
697 // - implicit reg defs
698 // - implicit reg uses
699 if (MO
.isReg() && MO
.isImplicit())
706 unsigned MachineInstr::getNumExplicitDefs() const {
707 unsigned NumDefs
= MCID
->getNumDefs();
708 if (!MCID
->isVariadic())
711 for (unsigned I
= NumDefs
, E
= getNumOperands(); I
!= E
; ++I
) {
712 const MachineOperand
&MO
= getOperand(I
);
713 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
720 void MachineInstr::bundleWithPred() {
721 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
722 setFlag(BundledPred
);
723 MachineBasicBlock::instr_iterator Pred
= getIterator();
725 assert(!Pred
->isBundledWithSucc() && "Inconsistent bundle flags");
726 Pred
->setFlag(BundledSucc
);
729 void MachineInstr::bundleWithSucc() {
730 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
731 setFlag(BundledSucc
);
732 MachineBasicBlock::instr_iterator Succ
= getIterator();
734 assert(!Succ
->isBundledWithPred() && "Inconsistent bundle flags");
735 Succ
->setFlag(BundledPred
);
738 void MachineInstr::unbundleFromPred() {
739 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
740 clearFlag(BundledPred
);
741 MachineBasicBlock::instr_iterator Pred
= getIterator();
743 assert(Pred
->isBundledWithSucc() && "Inconsistent bundle flags");
744 Pred
->clearFlag(BundledSucc
);
747 void MachineInstr::unbundleFromSucc() {
748 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
749 clearFlag(BundledSucc
);
750 MachineBasicBlock::instr_iterator Succ
= getIterator();
752 assert(Succ
->isBundledWithPred() && "Inconsistent bundle flags");
753 Succ
->clearFlag(BundledPred
);
756 bool MachineInstr::isStackAligningInlineAsm() const {
758 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
759 if (ExtraInfo
& InlineAsm::Extra_IsAlignStack
)
765 InlineAsm::AsmDialect
MachineInstr::getInlineAsmDialect() const {
766 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
767 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
768 return InlineAsm::AsmDialect((ExtraInfo
& InlineAsm::Extra_AsmDialect
) != 0);
771 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx
,
772 unsigned *GroupNo
) const {
773 assert(isInlineAsm() && "Expected an inline asm instruction");
774 assert(OpIdx
< getNumOperands() && "OpIdx out of range");
776 // Ignore queries about the initial operands.
777 if (OpIdx
< InlineAsm::MIOp_FirstOperand
)
782 for (unsigned i
= InlineAsm::MIOp_FirstOperand
, e
= getNumOperands(); i
< e
;
784 const MachineOperand
&FlagMO
= getOperand(i
);
785 // If we reach the implicit register operands, stop looking.
788 NumOps
= 1 + InlineAsm::getNumOperandRegisters(FlagMO
.getImm());
789 if (i
+ NumOps
> OpIdx
) {
799 const DILabel
*MachineInstr::getDebugLabel() const {
800 assert(isDebugLabel() && "not a DBG_LABEL");
801 return cast
<DILabel
>(getOperand(0).getMetadata());
804 const DILocalVariable
*MachineInstr::getDebugVariable() const {
805 assert(isDebugValue() && "not a DBG_VALUE");
806 return cast
<DILocalVariable
>(getOperand(2).getMetadata());
809 const DIExpression
*MachineInstr::getDebugExpression() const {
810 assert(isDebugValue() && "not a DBG_VALUE");
811 return cast
<DIExpression
>(getOperand(3).getMetadata());
814 const TargetRegisterClass
*
815 MachineInstr::getRegClassConstraint(unsigned OpIdx
,
816 const TargetInstrInfo
*TII
,
817 const TargetRegisterInfo
*TRI
) const {
818 assert(getParent() && "Can't have an MBB reference here!");
819 assert(getMF() && "Can't have an MF reference here!");
820 const MachineFunction
&MF
= *getMF();
822 // Most opcodes have fixed constraints in their MCInstrDesc.
824 return TII
->getRegClass(getDesc(), OpIdx
, TRI
, MF
);
826 if (!getOperand(OpIdx
).isReg())
829 // For tied uses on inline asm, get the constraint from the def.
831 if (getOperand(OpIdx
).isUse() && isRegTiedToDefOperand(OpIdx
, &DefIdx
))
834 // Inline asm stores register class constraints in the flag word.
835 int FlagIdx
= findInlineAsmFlagIdx(OpIdx
);
839 unsigned Flag
= getOperand(FlagIdx
).getImm();
841 if ((InlineAsm::getKind(Flag
) == InlineAsm::Kind_RegUse
||
842 InlineAsm::getKind(Flag
) == InlineAsm::Kind_RegDef
||
843 InlineAsm::getKind(Flag
) == InlineAsm::Kind_RegDefEarlyClobber
) &&
844 InlineAsm::hasRegClassConstraint(Flag
, RCID
))
845 return TRI
->getRegClass(RCID
);
847 // Assume that all registers in a memory operand are pointers.
848 if (InlineAsm::getKind(Flag
) == InlineAsm::Kind_Mem
)
849 return TRI
->getPointerRegClass(MF
);
854 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffectForVReg(
855 unsigned Reg
, const TargetRegisterClass
*CurRC
, const TargetInstrInfo
*TII
,
856 const TargetRegisterInfo
*TRI
, bool ExploreBundle
) const {
857 // Check every operands inside the bundle if we have
860 for (ConstMIBundleOperands
OpndIt(*this); OpndIt
.isValid() && CurRC
;
862 CurRC
= OpndIt
->getParent()->getRegClassConstraintEffectForVRegImpl(
863 OpndIt
.getOperandNo(), Reg
, CurRC
, TII
, TRI
);
865 // Otherwise, just check the current operands.
866 for (unsigned i
= 0, e
= NumOperands
; i
< e
&& CurRC
; ++i
)
867 CurRC
= getRegClassConstraintEffectForVRegImpl(i
, Reg
, CurRC
, TII
, TRI
);
871 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffectForVRegImpl(
872 unsigned OpIdx
, unsigned Reg
, const TargetRegisterClass
*CurRC
,
873 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
) const {
874 assert(CurRC
&& "Invalid initial register class");
875 // Check if Reg is constrained by some of its use/def from MI.
876 const MachineOperand
&MO
= getOperand(OpIdx
);
877 if (!MO
.isReg() || MO
.getReg() != Reg
)
879 // If yes, accumulate the constraints through the operand.
880 return getRegClassConstraintEffect(OpIdx
, CurRC
, TII
, TRI
);
883 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffect(
884 unsigned OpIdx
, const TargetRegisterClass
*CurRC
,
885 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
) const {
886 const TargetRegisterClass
*OpRC
= getRegClassConstraint(OpIdx
, TII
, TRI
);
887 const MachineOperand
&MO
= getOperand(OpIdx
);
889 "Cannot get register constraints for non-register operand");
890 assert(CurRC
&& "Invalid initial register class");
891 if (unsigned SubIdx
= MO
.getSubReg()) {
893 CurRC
= TRI
->getMatchingSuperRegClass(CurRC
, OpRC
, SubIdx
);
895 CurRC
= TRI
->getSubClassWithSubReg(CurRC
, SubIdx
);
897 CurRC
= TRI
->getCommonSubClass(CurRC
, OpRC
);
901 /// Return the number of instructions inside the MI bundle, not counting the
902 /// header instruction.
903 unsigned MachineInstr::getBundleSize() const {
904 MachineBasicBlock::const_instr_iterator I
= getIterator();
906 while (I
->isBundledWithSucc()) {
913 /// Returns true if the MachineInstr has an implicit-use operand of exactly
914 /// the given register (not considering sub/super-registers).
915 bool MachineInstr::hasRegisterImplicitUseOperand(unsigned Reg
) const {
916 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
917 const MachineOperand
&MO
= getOperand(i
);
918 if (MO
.isReg() && MO
.isUse() && MO
.isImplicit() && MO
.getReg() == Reg
)
924 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
925 /// the specific register or -1 if it is not found. It further tightens
926 /// the search criteria to a use that kills the register if isKill is true.
927 int MachineInstr::findRegisterUseOperandIdx(
928 unsigned Reg
, bool isKill
, const TargetRegisterInfo
*TRI
) const {
929 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
930 const MachineOperand
&MO
= getOperand(i
);
931 if (!MO
.isReg() || !MO
.isUse())
933 unsigned MOReg
= MO
.getReg();
936 if (MOReg
== Reg
|| (TRI
&& TargetRegisterInfo::isPhysicalRegister(MOReg
) &&
937 TargetRegisterInfo::isPhysicalRegister(Reg
) &&
938 TRI
->isSubRegister(MOReg
, Reg
)))
939 if (!isKill
|| MO
.isKill())
945 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
946 /// indicating if this instruction reads or writes Reg. This also considers
949 MachineInstr::readsWritesVirtualRegister(unsigned Reg
,
950 SmallVectorImpl
<unsigned> *Ops
) const {
951 bool PartDef
= false; // Partial redefine.
952 bool FullDef
= false; // Full define.
955 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
956 const MachineOperand
&MO
= getOperand(i
);
957 if (!MO
.isReg() || MO
.getReg() != Reg
)
962 Use
|= !MO
.isUndef();
963 else if (MO
.getSubReg() && !MO
.isUndef())
964 // A partial def undef doesn't count as reading the register.
969 // A partial redefine uses Reg unless there is also a full define.
970 return std::make_pair(Use
|| (PartDef
&& !FullDef
), PartDef
|| FullDef
);
973 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
974 /// the specified register or -1 if it is not found. If isDead is true, defs
975 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
976 /// also checks if there is a def of a super-register.
978 MachineInstr::findRegisterDefOperandIdx(unsigned Reg
, bool isDead
, bool Overlap
,
979 const TargetRegisterInfo
*TRI
) const {
980 bool isPhys
= TargetRegisterInfo::isPhysicalRegister(Reg
);
981 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
982 const MachineOperand
&MO
= getOperand(i
);
983 // Accept regmask operands when Overlap is set.
984 // Ignore them when looking for a specific def operand (Overlap == false).
985 if (isPhys
&& Overlap
&& MO
.isRegMask() && MO
.clobbersPhysReg(Reg
))
987 if (!MO
.isReg() || !MO
.isDef())
989 unsigned MOReg
= MO
.getReg();
990 bool Found
= (MOReg
== Reg
);
991 if (!Found
&& TRI
&& isPhys
&&
992 TargetRegisterInfo::isPhysicalRegister(MOReg
)) {
994 Found
= TRI
->regsOverlap(MOReg
, Reg
);
996 Found
= TRI
->isSubRegister(MOReg
, Reg
);
998 if (Found
&& (!isDead
|| MO
.isDead()))
1004 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1005 /// operand list that is used to represent the predicate. It returns -1 if
1007 int MachineInstr::findFirstPredOperandIdx() const {
1008 // Don't call MCID.findFirstPredOperandIdx() because this variant
1009 // is sometimes called on an instruction that's not yet complete, and
1010 // so the number of operands is less than the MCID indicates. In
1011 // particular, the PTX target does this.
1012 const MCInstrDesc
&MCID
= getDesc();
1013 if (MCID
.isPredicable()) {
1014 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
1015 if (MCID
.OpInfo
[i
].isPredicate())
1022 // MachineOperand::TiedTo is 4 bits wide.
1023 const unsigned TiedMax
= 15;
1025 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1027 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1028 /// field. TiedTo can have these values:
1030 /// 0: Operand is not tied to anything.
1031 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1032 /// TiedMax: Tied to an operand >= TiedMax-1.
1034 /// The tied def must be one of the first TiedMax operands on a normal
1035 /// instruction. INLINEASM instructions allow more tied defs.
1037 void MachineInstr::tieOperands(unsigned DefIdx
, unsigned UseIdx
) {
1038 MachineOperand
&DefMO
= getOperand(DefIdx
);
1039 MachineOperand
&UseMO
= getOperand(UseIdx
);
1040 assert(DefMO
.isDef() && "DefIdx must be a def operand");
1041 assert(UseMO
.isUse() && "UseIdx must be a use operand");
1042 assert(!DefMO
.isTied() && "Def is already tied to another use");
1043 assert(!UseMO
.isTied() && "Use is already tied to another def");
1045 if (DefIdx
< TiedMax
)
1046 UseMO
.TiedTo
= DefIdx
+ 1;
1048 // Inline asm can use the group descriptors to find tied operands, but on
1049 // normal instruction, the tied def must be within the first TiedMax
1051 assert(isInlineAsm() && "DefIdx out of range");
1052 UseMO
.TiedTo
= TiedMax
;
1055 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1056 DefMO
.TiedTo
= std::min(UseIdx
+ 1, TiedMax
);
1059 /// Given the index of a tied register operand, find the operand it is tied to.
1060 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1061 /// which must exist.
1062 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx
) const {
1063 const MachineOperand
&MO
= getOperand(OpIdx
);
1064 assert(MO
.isTied() && "Operand isn't tied");
1066 // Normally TiedTo is in range.
1067 if (MO
.TiedTo
< TiedMax
)
1068 return MO
.TiedTo
- 1;
1070 // Uses on normal instructions can be out of range.
1071 if (!isInlineAsm()) {
1072 // Normal tied defs must be in the 0..TiedMax-1 range.
1075 // MO is a def. Search for the tied use.
1076 for (unsigned i
= TiedMax
- 1, e
= getNumOperands(); i
!= e
; ++i
) {
1077 const MachineOperand
&UseMO
= getOperand(i
);
1078 if (UseMO
.isReg() && UseMO
.isUse() && UseMO
.TiedTo
== OpIdx
+ 1)
1081 llvm_unreachable("Can't find tied use");
1084 // Now deal with inline asm by parsing the operand group descriptor flags.
1085 // Find the beginning of each operand group.
1086 SmallVector
<unsigned, 8> GroupIdx
;
1087 unsigned OpIdxGroup
= ~0u;
1089 for (unsigned i
= InlineAsm::MIOp_FirstOperand
, e
= getNumOperands(); i
< e
;
1091 const MachineOperand
&FlagMO
= getOperand(i
);
1092 assert(FlagMO
.isImm() && "Invalid tied operand on inline asm");
1093 unsigned CurGroup
= GroupIdx
.size();
1094 GroupIdx
.push_back(i
);
1095 NumOps
= 1 + InlineAsm::getNumOperandRegisters(FlagMO
.getImm());
1096 // OpIdx belongs to this operand group.
1097 if (OpIdx
> i
&& OpIdx
< i
+ NumOps
)
1098 OpIdxGroup
= CurGroup
;
1100 if (!InlineAsm::isUseOperandTiedToDef(FlagMO
.getImm(), TiedGroup
))
1102 // Operands in this group are tied to operands in TiedGroup which must be
1103 // earlier. Find the number of operands between the two groups.
1104 unsigned Delta
= i
- GroupIdx
[TiedGroup
];
1106 // OpIdx is a use tied to TiedGroup.
1107 if (OpIdxGroup
== CurGroup
)
1108 return OpIdx
- Delta
;
1110 // OpIdx is a def tied to this use group.
1111 if (OpIdxGroup
== TiedGroup
)
1112 return OpIdx
+ Delta
;
1114 llvm_unreachable("Invalid tied operand on inline asm");
1117 /// clearKillInfo - Clears kill flags on all operands.
1119 void MachineInstr::clearKillInfo() {
1120 for (MachineOperand
&MO
: operands()) {
1121 if (MO
.isReg() && MO
.isUse())
1122 MO
.setIsKill(false);
1126 void MachineInstr::substituteRegister(unsigned FromReg
, unsigned ToReg
,
1128 const TargetRegisterInfo
&RegInfo
) {
1129 if (TargetRegisterInfo::isPhysicalRegister(ToReg
)) {
1131 ToReg
= RegInfo
.getSubReg(ToReg
, SubIdx
);
1132 for (MachineOperand
&MO
: operands()) {
1133 if (!MO
.isReg() || MO
.getReg() != FromReg
)
1135 MO
.substPhysReg(ToReg
, RegInfo
);
1138 for (MachineOperand
&MO
: operands()) {
1139 if (!MO
.isReg() || MO
.getReg() != FromReg
)
1141 MO
.substVirtReg(ToReg
, SubIdx
, RegInfo
);
1146 /// isSafeToMove - Return true if it is safe to move this instruction. If
1147 /// SawStore is set to true, it means that there is a store (or call) between
1148 /// the instruction's location and its intended destination.
1149 bool MachineInstr::isSafeToMove(AliasAnalysis
*AA
, bool &SawStore
) const {
1150 // Ignore stuff that we obviously can't move.
1152 // Treat volatile loads as stores. This is not strictly necessary for
1153 // volatiles, but it is required for atomic loads. It is not allowed to move
1154 // a load across an atomic load with Ordering > Monotonic.
1155 if (mayStore() || isCall() || isPHI() ||
1156 (mayLoad() && hasOrderedMemoryRef())) {
1161 if (isPosition() || isDebugInstr() || isTerminator() ||
1162 hasUnmodeledSideEffects())
1165 // See if this instruction does a load. If so, we have to guarantee that the
1166 // loaded value doesn't change between the load and the its intended
1167 // destination. The check for isInvariantLoad gives the targe the chance to
1168 // classify the load as always returning a constant, e.g. a constant pool
1170 if (mayLoad() && !isDereferenceableInvariantLoad(AA
))
1171 // Otherwise, this is a real load. If there is a store between the load and
1172 // end of block, we can't move it.
1178 bool MachineInstr::mayAlias(AliasAnalysis
*AA
, MachineInstr
&Other
,
1180 const MachineFunction
*MF
= getMF();
1181 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
1182 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1184 // If neither instruction stores to memory, they can't alias in any
1185 // meaningful way, even if they read from the same address.
1186 if (!mayStore() && !Other
.mayStore())
1189 // Let the target decide if memory accesses cannot possibly overlap.
1190 if (TII
->areMemAccessesTriviallyDisjoint(*this, Other
, AA
))
1193 // FIXME: Need to handle multiple memory operands to support all targets.
1194 if (!hasOneMemOperand() || !Other
.hasOneMemOperand())
1197 MachineMemOperand
*MMOa
= *memoperands_begin();
1198 MachineMemOperand
*MMOb
= *Other
.memoperands_begin();
1200 // The following interface to AA is fashioned after DAGCombiner::isAlias
1201 // and operates with MachineMemOperand offset with some important
1203 // - LLVM fundamentally assumes flat address spaces.
1204 // - MachineOperand offset can *only* result from legalization and
1205 // cannot affect queries other than the trivial case of overlap
1207 // - These offsets never wrap and never step outside
1208 // of allocated objects.
1209 // - There should never be any negative offsets here.
1211 // FIXME: Modify API to hide this math from "user"
1212 // Even before we go to AA we can reason locally about some
1213 // memory objects. It can save compile time, and possibly catch some
1214 // corner cases not currently covered.
1216 int64_t OffsetA
= MMOa
->getOffset();
1217 int64_t OffsetB
= MMOb
->getOffset();
1218 int64_t MinOffset
= std::min(OffsetA
, OffsetB
);
1220 uint64_t WidthA
= MMOa
->getSize();
1221 uint64_t WidthB
= MMOb
->getSize();
1222 bool KnownWidthA
= WidthA
!= MemoryLocation::UnknownSize
;
1223 bool KnownWidthB
= WidthB
!= MemoryLocation::UnknownSize
;
1225 const Value
*ValA
= MMOa
->getValue();
1226 const Value
*ValB
= MMOb
->getValue();
1227 bool SameVal
= (ValA
&& ValB
&& (ValA
== ValB
));
1229 const PseudoSourceValue
*PSVa
= MMOa
->getPseudoValue();
1230 const PseudoSourceValue
*PSVb
= MMOb
->getPseudoValue();
1231 if (PSVa
&& ValB
&& !PSVa
->mayAlias(&MFI
))
1233 if (PSVb
&& ValA
&& !PSVb
->mayAlias(&MFI
))
1235 if (PSVa
&& PSVb
&& (PSVa
== PSVb
))
1240 if (!KnownWidthA
|| !KnownWidthB
)
1242 int64_t MaxOffset
= std::max(OffsetA
, OffsetB
);
1243 int64_t LowWidth
= (MinOffset
== OffsetA
) ? WidthA
: WidthB
;
1244 return (MinOffset
+ LowWidth
> MaxOffset
);
1253 assert((OffsetA
>= 0) && "Negative MachineMemOperand offset");
1254 assert((OffsetB
>= 0) && "Negative MachineMemOperand offset");
1256 int64_t OverlapA
= KnownWidthA
? WidthA
+ OffsetA
- MinOffset
1257 : MemoryLocation::UnknownSize
;
1258 int64_t OverlapB
= KnownWidthB
? WidthB
+ OffsetB
- MinOffset
1259 : MemoryLocation::UnknownSize
;
1261 AliasResult AAResult
= AA
->alias(
1262 MemoryLocation(ValA
, OverlapA
,
1263 UseTBAA
? MMOa
->getAAInfo() : AAMDNodes()),
1264 MemoryLocation(ValB
, OverlapB
,
1265 UseTBAA
? MMOb
->getAAInfo() : AAMDNodes()));
1267 return (AAResult
!= NoAlias
);
1270 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1271 /// or volatile memory reference, or if the information describing the memory
1272 /// reference is not available. Return false if it is known to have no ordered
1273 /// memory references.
1274 bool MachineInstr::hasOrderedMemoryRef() const {
1275 // An instruction known never to access memory won't have a volatile access.
1279 !hasUnmodeledSideEffects())
1282 // Otherwise, if the instruction has no memory reference information,
1283 // conservatively assume it wasn't preserved.
1284 if (memoperands_empty())
1287 // Check if any of our memory operands are ordered.
1288 return llvm::any_of(memoperands(), [](const MachineMemOperand
*MMO
) {
1289 return !MMO
->isUnordered();
1293 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1294 /// trap and is loading from a location whose value is invariant across a run of
1296 bool MachineInstr::isDereferenceableInvariantLoad(AliasAnalysis
*AA
) const {
1297 // If the instruction doesn't load at all, it isn't an invariant load.
1301 // If the instruction has lost its memoperands, conservatively assume that
1302 // it may not be an invariant load.
1303 if (memoperands_empty())
1306 const MachineFrameInfo
&MFI
= getParent()->getParent()->getFrameInfo();
1308 for (MachineMemOperand
*MMO
: memoperands()) {
1309 if (MMO
->isVolatile()) return false;
1310 if (MMO
->isStore()) return false;
1311 if (MMO
->isInvariant() && MMO
->isDereferenceable())
1314 // A load from a constant PseudoSourceValue is invariant.
1315 if (const PseudoSourceValue
*PSV
= MMO
->getPseudoValue())
1316 if (PSV
->isConstant(&MFI
))
1319 if (const Value
*V
= MMO
->getValue()) {
1320 // If we have an AliasAnalysis, ask it whether the memory is constant.
1322 AA
->pointsToConstantMemory(
1323 MemoryLocation(V
, MMO
->getSize(), MMO
->getAAInfo())))
1327 // Otherwise assume conservatively.
1331 // Everything checks out.
1335 /// isConstantValuePHI - If the specified instruction is a PHI that always
1336 /// merges together the same virtual register, return the register, otherwise
1338 unsigned MachineInstr::isConstantValuePHI() const {
1341 assert(getNumOperands() >= 3 &&
1342 "It's illegal to have a PHI without source operands");
1344 unsigned Reg
= getOperand(1).getReg();
1345 for (unsigned i
= 3, e
= getNumOperands(); i
< e
; i
+= 2)
1346 if (getOperand(i
).getReg() != Reg
)
1351 bool MachineInstr::hasUnmodeledSideEffects() const {
1352 if (hasProperty(MCID::UnmodeledSideEffects
))
1354 if (isInlineAsm()) {
1355 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
1356 if (ExtraInfo
& InlineAsm::Extra_HasSideEffects
)
1363 bool MachineInstr::isLoadFoldBarrier() const {
1364 return mayStore() || isCall() || hasUnmodeledSideEffects();
1367 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1369 bool MachineInstr::allDefsAreDead() const {
1370 for (const MachineOperand
&MO
: operands()) {
1371 if (!MO
.isReg() || MO
.isUse())
1379 /// copyImplicitOps - Copy implicit register operands from specified
1380 /// instruction to this instruction.
1381 void MachineInstr::copyImplicitOps(MachineFunction
&MF
,
1382 const MachineInstr
&MI
) {
1383 for (unsigned i
= MI
.getDesc().getNumOperands(), e
= MI
.getNumOperands();
1385 const MachineOperand
&MO
= MI
.getOperand(i
);
1386 if ((MO
.isReg() && MO
.isImplicit()) || MO
.isRegMask())
1391 bool MachineInstr::hasComplexRegisterTies() const {
1392 const MCInstrDesc
&MCID
= getDesc();
1393 for (unsigned I
= 0, E
= getNumOperands(); I
< E
; ++I
) {
1394 const auto &Operand
= getOperand(I
);
1395 if (!Operand
.isReg() || Operand
.isDef())
1396 // Ignore the defined registers as MCID marks only the uses as tied.
1398 int ExpectedTiedIdx
= MCID
.getOperandConstraint(I
, MCOI::TIED_TO
);
1399 int TiedIdx
= Operand
.isTied() ? int(findTiedOperandIdx(I
)) : -1;
1400 if (ExpectedTiedIdx
!= TiedIdx
)
1406 LLT
MachineInstr::getTypeToPrint(unsigned OpIdx
, SmallBitVector
&PrintedTypes
,
1407 const MachineRegisterInfo
&MRI
) const {
1408 const MachineOperand
&Op
= getOperand(OpIdx
);
1412 if (isVariadic() || OpIdx
>= getNumExplicitOperands())
1413 return MRI
.getType(Op
.getReg());
1415 auto &OpInfo
= getDesc().OpInfo
[OpIdx
];
1416 if (!OpInfo
.isGenericType())
1417 return MRI
.getType(Op
.getReg());
1419 if (PrintedTypes
[OpInfo
.getGenericTypeIndex()])
1422 LLT TypeToPrint
= MRI
.getType(Op
.getReg());
1423 // Don't mark the type index printed if it wasn't actually printed: maybe
1424 // another operand with the same type index has an actual type attached:
1425 if (TypeToPrint
.isValid())
1426 PrintedTypes
.set(OpInfo
.getGenericTypeIndex());
1430 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1431 LLVM_DUMP_METHOD
void MachineInstr::dump() const {
1437 void MachineInstr::print(raw_ostream
&OS
, bool IsStandalone
, bool SkipOpers
,
1438 bool SkipDebugLoc
, bool AddNewLine
,
1439 const TargetInstrInfo
*TII
) const {
1440 const Module
*M
= nullptr;
1441 const Function
*F
= nullptr;
1442 if (const MachineFunction
*MF
= getMFIfAvailable(*this)) {
1443 F
= &MF
->getFunction();
1446 TII
= MF
->getSubtarget().getInstrInfo();
1449 ModuleSlotTracker
MST(M
);
1451 MST
.incorporateFunction(*F
);
1452 print(OS
, MST
, IsStandalone
, SkipOpers
, SkipDebugLoc
, TII
);
1455 void MachineInstr::print(raw_ostream
&OS
, ModuleSlotTracker
&MST
,
1456 bool IsStandalone
, bool SkipOpers
, bool SkipDebugLoc
,
1457 bool AddNewLine
, const TargetInstrInfo
*TII
) const {
1458 // We can be a bit tidier if we know the MachineFunction.
1459 const MachineFunction
*MF
= nullptr;
1460 const TargetRegisterInfo
*TRI
= nullptr;
1461 const MachineRegisterInfo
*MRI
= nullptr;
1462 const TargetIntrinsicInfo
*IntrinsicInfo
= nullptr;
1463 tryToGetTargetInfo(*this, TRI
, MRI
, IntrinsicInfo
, TII
);
1465 if (isCFIInstruction())
1466 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1468 SmallBitVector
PrintedTypes(8);
1469 bool ShouldPrintRegisterTies
= IsStandalone
|| hasComplexRegisterTies();
1470 auto getTiedOperandIdx
= [&](unsigned OpIdx
) {
1471 if (!ShouldPrintRegisterTies
)
1473 const MachineOperand
&MO
= getOperand(OpIdx
);
1474 if (MO
.isReg() && MO
.isTied() && !MO
.isDef())
1475 return findTiedOperandIdx(OpIdx
);
1478 unsigned StartOp
= 0;
1479 unsigned e
= getNumOperands();
1481 // Print explicitly defined operands on the left of an assignment syntax.
1482 while (StartOp
< e
) {
1483 const MachineOperand
&MO
= getOperand(StartOp
);
1484 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
1490 LLT TypeToPrint
= MRI
? getTypeToPrint(StartOp
, PrintedTypes
, *MRI
) : LLT
{};
1491 unsigned TiedOperandIdx
= getTiedOperandIdx(StartOp
);
1492 MO
.print(OS
, MST
, TypeToPrint
, /*PrintDef=*/false, IsStandalone
,
1493 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1500 if (getFlag(MachineInstr::FrameSetup
))
1501 OS
<< "frame-setup ";
1502 if (getFlag(MachineInstr::FrameDestroy
))
1503 OS
<< "frame-destroy ";
1504 if (getFlag(MachineInstr::FmNoNans
))
1506 if (getFlag(MachineInstr::FmNoInfs
))
1508 if (getFlag(MachineInstr::FmNsz
))
1510 if (getFlag(MachineInstr::FmArcp
))
1512 if (getFlag(MachineInstr::FmContract
))
1514 if (getFlag(MachineInstr::FmAfn
))
1516 if (getFlag(MachineInstr::FmReassoc
))
1518 if (getFlag(MachineInstr::NoUWrap
))
1520 if (getFlag(MachineInstr::NoSWrap
))
1522 if (getFlag(MachineInstr::IsExact
))
1525 // Print the opcode name.
1527 OS
<< TII
->getName(getOpcode());
1534 // Print the rest of the operands.
1535 bool FirstOp
= true;
1536 unsigned AsmDescOp
= ~0u;
1537 unsigned AsmOpCount
= 0;
1539 if (isInlineAsm() && e
>= InlineAsm::MIOp_FirstOperand
) {
1540 // Print asm string.
1542 const unsigned OpIdx
= InlineAsm::MIOp_AsmString
;
1543 LLT TypeToPrint
= MRI
? getTypeToPrint(OpIdx
, PrintedTypes
, *MRI
) : LLT
{};
1544 unsigned TiedOperandIdx
= getTiedOperandIdx(OpIdx
);
1545 getOperand(OpIdx
).print(OS
, MST
, TypeToPrint
, /*PrintDef=*/true, IsStandalone
,
1546 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
,
1549 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1550 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
1551 if (ExtraInfo
& InlineAsm::Extra_HasSideEffects
)
1552 OS
<< " [sideeffect]";
1553 if (ExtraInfo
& InlineAsm::Extra_MayLoad
)
1555 if (ExtraInfo
& InlineAsm::Extra_MayStore
)
1556 OS
<< " [maystore]";
1557 if (ExtraInfo
& InlineAsm::Extra_IsConvergent
)
1558 OS
<< " [isconvergent]";
1559 if (ExtraInfo
& InlineAsm::Extra_IsAlignStack
)
1560 OS
<< " [alignstack]";
1561 if (getInlineAsmDialect() == InlineAsm::AD_ATT
)
1562 OS
<< " [attdialect]";
1563 if (getInlineAsmDialect() == InlineAsm::AD_Intel
)
1564 OS
<< " [inteldialect]";
1566 StartOp
= AsmDescOp
= InlineAsm::MIOp_FirstOperand
;
1570 for (unsigned i
= StartOp
, e
= getNumOperands(); i
!= e
; ++i
) {
1571 const MachineOperand
&MO
= getOperand(i
);
1573 if (FirstOp
) FirstOp
= false; else OS
<< ",";
1576 if (isDebugValue() && MO
.isMetadata()) {
1577 // Pretty print DBG_VALUE instructions.
1578 auto *DIV
= dyn_cast
<DILocalVariable
>(MO
.getMetadata());
1579 if (DIV
&& !DIV
->getName().empty())
1580 OS
<< "!\"" << DIV
->getName() << '\"';
1582 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1583 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1584 MO
.print(OS
, MST
, TypeToPrint
, /*PrintDef=*/true, IsStandalone
,
1585 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1587 } else if (isDebugLabel() && MO
.isMetadata()) {
1588 // Pretty print DBG_LABEL instructions.
1589 auto *DIL
= dyn_cast
<DILabel
>(MO
.getMetadata());
1590 if (DIL
&& !DIL
->getName().empty())
1591 OS
<< "\"" << DIL
->getName() << '\"';
1593 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1594 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1595 MO
.print(OS
, MST
, TypeToPrint
, /*PrintDef=*/true, IsStandalone
,
1596 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1598 } else if (i
== AsmDescOp
&& MO
.isImm()) {
1599 // Pretty print the inline asm operand descriptor.
1600 OS
<< '$' << AsmOpCount
++;
1601 unsigned Flag
= MO
.getImm();
1602 switch (InlineAsm::getKind(Flag
)) {
1603 case InlineAsm::Kind_RegUse
: OS
<< ":[reguse"; break;
1604 case InlineAsm::Kind_RegDef
: OS
<< ":[regdef"; break;
1605 case InlineAsm::Kind_RegDefEarlyClobber
: OS
<< ":[regdef-ec"; break;
1606 case InlineAsm::Kind_Clobber
: OS
<< ":[clobber"; break;
1607 case InlineAsm::Kind_Imm
: OS
<< ":[imm"; break;
1608 case InlineAsm::Kind_Mem
: OS
<< ":[mem"; break;
1609 default: OS
<< ":[??" << InlineAsm::getKind(Flag
); break;
1613 if (!InlineAsm::isImmKind(Flag
) && !InlineAsm::isMemKind(Flag
) &&
1614 InlineAsm::hasRegClassConstraint(Flag
, RCID
)) {
1616 OS
<< ':' << TRI
->getRegClassName(TRI
->getRegClass(RCID
));
1618 OS
<< ":RC" << RCID
;
1621 if (InlineAsm::isMemKind(Flag
)) {
1622 unsigned MCID
= InlineAsm::getMemoryConstraintID(Flag
);
1624 case InlineAsm::Constraint_es
: OS
<< ":es"; break;
1625 case InlineAsm::Constraint_i
: OS
<< ":i"; break;
1626 case InlineAsm::Constraint_m
: OS
<< ":m"; break;
1627 case InlineAsm::Constraint_o
: OS
<< ":o"; break;
1628 case InlineAsm::Constraint_v
: OS
<< ":v"; break;
1629 case InlineAsm::Constraint_Q
: OS
<< ":Q"; break;
1630 case InlineAsm::Constraint_R
: OS
<< ":R"; break;
1631 case InlineAsm::Constraint_S
: OS
<< ":S"; break;
1632 case InlineAsm::Constraint_T
: OS
<< ":T"; break;
1633 case InlineAsm::Constraint_Um
: OS
<< ":Um"; break;
1634 case InlineAsm::Constraint_Un
: OS
<< ":Un"; break;
1635 case InlineAsm::Constraint_Uq
: OS
<< ":Uq"; break;
1636 case InlineAsm::Constraint_Us
: OS
<< ":Us"; break;
1637 case InlineAsm::Constraint_Ut
: OS
<< ":Ut"; break;
1638 case InlineAsm::Constraint_Uv
: OS
<< ":Uv"; break;
1639 case InlineAsm::Constraint_Uy
: OS
<< ":Uy"; break;
1640 case InlineAsm::Constraint_X
: OS
<< ":X"; break;
1641 case InlineAsm::Constraint_Z
: OS
<< ":Z"; break;
1642 case InlineAsm::Constraint_ZC
: OS
<< ":ZC"; break;
1643 case InlineAsm::Constraint_Zy
: OS
<< ":Zy"; break;
1644 default: OS
<< ":?"; break;
1648 unsigned TiedTo
= 0;
1649 if (InlineAsm::isUseOperandTiedToDef(Flag
, TiedTo
))
1650 OS
<< " tiedto:$" << TiedTo
;
1654 // Compute the index of the next operand descriptor.
1655 AsmDescOp
+= 1 + InlineAsm::getNumOperandRegisters(Flag
);
1657 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1658 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1659 if (MO
.isImm() && isOperandSubregIdx(i
))
1660 MachineOperand::printSubRegIdx(OS
, MO
.getImm(), TRI
);
1662 MO
.print(OS
, MST
, TypeToPrint
, /*PrintDef=*/true, IsStandalone
,
1663 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1667 // Print any optional symbols attached to this instruction as-if they were
1669 if (MCSymbol
*PreInstrSymbol
= getPreInstrSymbol()) {
1674 OS
<< " pre-instr-symbol ";
1675 MachineOperand::printSymbol(OS
, *PreInstrSymbol
);
1677 if (MCSymbol
*PostInstrSymbol
= getPostInstrSymbol()) {
1682 OS
<< " post-instr-symbol ";
1683 MachineOperand::printSymbol(OS
, *PostInstrSymbol
);
1686 if (!SkipDebugLoc
) {
1687 if (const DebugLoc
&DL
= getDebugLoc()) {
1690 OS
<< " debug-location ";
1691 DL
->printAsOperand(OS
, MST
);
1695 if (!memoperands_empty()) {
1696 SmallVector
<StringRef
, 0> SSNs
;
1697 const LLVMContext
*Context
= nullptr;
1698 std::unique_ptr
<LLVMContext
> CtxPtr
;
1699 const MachineFrameInfo
*MFI
= nullptr;
1700 if (const MachineFunction
*MF
= getMFIfAvailable(*this)) {
1701 MFI
= &MF
->getFrameInfo();
1702 Context
= &MF
->getFunction().getContext();
1704 CtxPtr
= llvm::make_unique
<LLVMContext
>();
1705 Context
= CtxPtr
.get();
1709 bool NeedComma
= false;
1710 for (const MachineMemOperand
*Op
: memoperands()) {
1713 Op
->print(OS
, MST
, SSNs
, *Context
, MFI
, TII
);
1721 bool HaveSemi
= false;
1723 // Print debug location information.
1724 if (const DebugLoc
&DL
= getDebugLoc()) {
1733 // Print extra comments for DEBUG_VALUE.
1734 if (isDebugValue() && getOperand(e
- 2).isMetadata()) {
1739 auto *DV
= cast
<DILocalVariable
>(getOperand(e
- 2).getMetadata());
1740 OS
<< " line no:" << DV
->getLine();
1741 if (auto *InlinedAt
= debugLoc
->getInlinedAt()) {
1742 DebugLoc
InlinedAtDL(InlinedAt
);
1743 if (InlinedAtDL
&& MF
) {
1744 OS
<< " inlined @[ ";
1745 InlinedAtDL
.print(OS
);
1749 if (isIndirectDebugValue())
1758 bool MachineInstr::addRegisterKilled(unsigned IncomingReg
,
1759 const TargetRegisterInfo
*RegInfo
,
1760 bool AddIfNotFound
) {
1761 bool isPhysReg
= TargetRegisterInfo::isPhysicalRegister(IncomingReg
);
1762 bool hasAliases
= isPhysReg
&&
1763 MCRegAliasIterator(IncomingReg
, RegInfo
, false).isValid();
1765 SmallVector
<unsigned,4> DeadOps
;
1766 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1767 MachineOperand
&MO
= getOperand(i
);
1768 if (!MO
.isReg() || !MO
.isUse() || MO
.isUndef())
1771 // DEBUG_VALUE nodes do not contribute to code generation and should
1772 // always be ignored. Failure to do so may result in trying to modify
1773 // KILL flags on DEBUG_VALUE nodes.
1777 unsigned Reg
= MO
.getReg();
1781 if (Reg
== IncomingReg
) {
1784 // The register is already marked kill.
1786 if (isPhysReg
&& isRegTiedToDefOperand(i
))
1787 // Two-address uses of physregs must not be marked kill.
1792 } else if (hasAliases
&& MO
.isKill() &&
1793 TargetRegisterInfo::isPhysicalRegister(Reg
)) {
1794 // A super-register kill already exists.
1795 if (RegInfo
->isSuperRegister(IncomingReg
, Reg
))
1797 if (RegInfo
->isSubRegister(IncomingReg
, Reg
))
1798 DeadOps
.push_back(i
);
1802 // Trim unneeded kill operands.
1803 while (!DeadOps
.empty()) {
1804 unsigned OpIdx
= DeadOps
.back();
1805 if (getOperand(OpIdx
).isImplicit() &&
1806 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx
) < 0))
1807 RemoveOperand(OpIdx
);
1809 getOperand(OpIdx
).setIsKill(false);
1813 // If not found, this means an alias of one of the operands is killed. Add a
1814 // new implicit operand if required.
1815 if (!Found
&& AddIfNotFound
) {
1816 addOperand(MachineOperand::CreateReg(IncomingReg
,
1825 void MachineInstr::clearRegisterKills(unsigned Reg
,
1826 const TargetRegisterInfo
*RegInfo
) {
1827 if (!TargetRegisterInfo::isPhysicalRegister(Reg
))
1829 for (MachineOperand
&MO
: operands()) {
1830 if (!MO
.isReg() || !MO
.isUse() || !MO
.isKill())
1832 unsigned OpReg
= MO
.getReg();
1833 if ((RegInfo
&& RegInfo
->regsOverlap(Reg
, OpReg
)) || Reg
== OpReg
)
1834 MO
.setIsKill(false);
1838 bool MachineInstr::addRegisterDead(unsigned Reg
,
1839 const TargetRegisterInfo
*RegInfo
,
1840 bool AddIfNotFound
) {
1841 bool isPhysReg
= TargetRegisterInfo::isPhysicalRegister(Reg
);
1842 bool hasAliases
= isPhysReg
&&
1843 MCRegAliasIterator(Reg
, RegInfo
, false).isValid();
1845 SmallVector
<unsigned,4> DeadOps
;
1846 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1847 MachineOperand
&MO
= getOperand(i
);
1848 if (!MO
.isReg() || !MO
.isDef())
1850 unsigned MOReg
= MO
.getReg();
1857 } else if (hasAliases
&& MO
.isDead() &&
1858 TargetRegisterInfo::isPhysicalRegister(MOReg
)) {
1859 // There exists a super-register that's marked dead.
1860 if (RegInfo
->isSuperRegister(Reg
, MOReg
))
1862 if (RegInfo
->isSubRegister(Reg
, MOReg
))
1863 DeadOps
.push_back(i
);
1867 // Trim unneeded dead operands.
1868 while (!DeadOps
.empty()) {
1869 unsigned OpIdx
= DeadOps
.back();
1870 if (getOperand(OpIdx
).isImplicit() &&
1871 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx
) < 0))
1872 RemoveOperand(OpIdx
);
1874 getOperand(OpIdx
).setIsDead(false);
1878 // If not found, this means an alias of one of the operands is dead. Add a
1879 // new implicit operand if required.
1880 if (Found
|| !AddIfNotFound
)
1883 addOperand(MachineOperand::CreateReg(Reg
,
1891 void MachineInstr::clearRegisterDeads(unsigned Reg
) {
1892 for (MachineOperand
&MO
: operands()) {
1893 if (!MO
.isReg() || !MO
.isDef() || MO
.getReg() != Reg
)
1895 MO
.setIsDead(false);
1899 void MachineInstr::setRegisterDefReadUndef(unsigned Reg
, bool IsUndef
) {
1900 for (MachineOperand
&MO
: operands()) {
1901 if (!MO
.isReg() || !MO
.isDef() || MO
.getReg() != Reg
|| MO
.getSubReg() == 0)
1903 MO
.setIsUndef(IsUndef
);
1907 void MachineInstr::addRegisterDefined(unsigned Reg
,
1908 const TargetRegisterInfo
*RegInfo
) {
1909 if (TargetRegisterInfo::isPhysicalRegister(Reg
)) {
1910 MachineOperand
*MO
= findRegisterDefOperand(Reg
, false, RegInfo
);
1914 for (const MachineOperand
&MO
: operands()) {
1915 if (MO
.isReg() && MO
.getReg() == Reg
&& MO
.isDef() &&
1916 MO
.getSubReg() == 0)
1920 addOperand(MachineOperand::CreateReg(Reg
,
1925 void MachineInstr::setPhysRegsDeadExcept(ArrayRef
<unsigned> UsedRegs
,
1926 const TargetRegisterInfo
&TRI
) {
1927 bool HasRegMask
= false;
1928 for (MachineOperand
&MO
: operands()) {
1929 if (MO
.isRegMask()) {
1933 if (!MO
.isReg() || !MO
.isDef()) continue;
1934 unsigned Reg
= MO
.getReg();
1935 if (!TargetRegisterInfo::isPhysicalRegister(Reg
)) continue;
1936 // If there are no uses, including partial uses, the def is dead.
1937 if (llvm::none_of(UsedRegs
,
1938 [&](unsigned Use
) { return TRI
.regsOverlap(Use
, Reg
); }))
1942 // This is a call with a register mask operand.
1943 // Mask clobbers are always dead, so add defs for the non-dead defines.
1945 for (ArrayRef
<unsigned>::iterator I
= UsedRegs
.begin(), E
= UsedRegs
.end();
1947 addRegisterDefined(*I
, &TRI
);
1951 MachineInstrExpressionTrait::getHashValue(const MachineInstr
* const &MI
) {
1952 // Build up a buffer of hash code components.
1953 SmallVector
<size_t, 8> HashComponents
;
1954 HashComponents
.reserve(MI
->getNumOperands() + 1);
1955 HashComponents
.push_back(MI
->getOpcode());
1956 for (const MachineOperand
&MO
: MI
->operands()) {
1957 if (MO
.isReg() && MO
.isDef() &&
1958 TargetRegisterInfo::isVirtualRegister(MO
.getReg()))
1959 continue; // Skip virtual register defs.
1961 HashComponents
.push_back(hash_value(MO
));
1963 return hash_combine_range(HashComponents
.begin(), HashComponents
.end());
1966 void MachineInstr::emitError(StringRef Msg
) const {
1967 // Find the source location cookie.
1968 unsigned LocCookie
= 0;
1969 const MDNode
*LocMD
= nullptr;
1970 for (unsigned i
= getNumOperands(); i
!= 0; --i
) {
1971 if (getOperand(i
-1).isMetadata() &&
1972 (LocMD
= getOperand(i
-1).getMetadata()) &&
1973 LocMD
->getNumOperands() != 0) {
1974 if (const ConstantInt
*CI
=
1975 mdconst::dyn_extract
<ConstantInt
>(LocMD
->getOperand(0))) {
1976 LocCookie
= CI
->getZExtValue();
1982 if (const MachineBasicBlock
*MBB
= getParent())
1983 if (const MachineFunction
*MF
= MBB
->getParent())
1984 return MF
->getMMI().getModule()->getContext().emitError(LocCookie
, Msg
);
1985 report_fatal_error(Msg
);
1988 MachineInstrBuilder
llvm::BuildMI(MachineFunction
&MF
, const DebugLoc
&DL
,
1989 const MCInstrDesc
&MCID
, bool IsIndirect
,
1990 unsigned Reg
, const MDNode
*Variable
,
1991 const MDNode
*Expr
) {
1992 assert(isa
<DILocalVariable
>(Variable
) && "not a variable");
1993 assert(cast
<DIExpression
>(Expr
)->isValid() && "not an expression");
1994 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
1995 "Expected inlined-at fields to agree");
1996 auto MIB
= BuildMI(MF
, DL
, MCID
).addReg(Reg
, RegState::Debug
);
2000 MIB
.addReg(0U, RegState::Debug
);
2001 return MIB
.addMetadata(Variable
).addMetadata(Expr
);
2004 MachineInstrBuilder
llvm::BuildMI(MachineFunction
&MF
, const DebugLoc
&DL
,
2005 const MCInstrDesc
&MCID
, bool IsIndirect
,
2006 MachineOperand
&MO
, const MDNode
*Variable
,
2007 const MDNode
*Expr
) {
2008 assert(isa
<DILocalVariable
>(Variable
) && "not a variable");
2009 assert(cast
<DIExpression
>(Expr
)->isValid() && "not an expression");
2010 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
2011 "Expected inlined-at fields to agree");
2013 return BuildMI(MF
, DL
, MCID
, IsIndirect
, MO
.getReg(), Variable
, Expr
);
2015 auto MIB
= BuildMI(MF
, DL
, MCID
).add(MO
);
2019 MIB
.addReg(0U, RegState::Debug
);
2020 return MIB
.addMetadata(Variable
).addMetadata(Expr
);
2023 MachineInstrBuilder
llvm::BuildMI(MachineBasicBlock
&BB
,
2024 MachineBasicBlock::iterator I
,
2025 const DebugLoc
&DL
, const MCInstrDesc
&MCID
,
2026 bool IsIndirect
, unsigned Reg
,
2027 const MDNode
*Variable
, const MDNode
*Expr
) {
2028 MachineFunction
&MF
= *BB
.getParent();
2029 MachineInstr
*MI
= BuildMI(MF
, DL
, MCID
, IsIndirect
, Reg
, Variable
, Expr
);
2031 return MachineInstrBuilder(MF
, MI
);
2034 MachineInstrBuilder
llvm::BuildMI(MachineBasicBlock
&BB
,
2035 MachineBasicBlock::iterator I
,
2036 const DebugLoc
&DL
, const MCInstrDesc
&MCID
,
2037 bool IsIndirect
, MachineOperand
&MO
,
2038 const MDNode
*Variable
, const MDNode
*Expr
) {
2039 MachineFunction
&MF
= *BB
.getParent();
2040 MachineInstr
*MI
= BuildMI(MF
, DL
, MCID
, IsIndirect
, MO
, Variable
, Expr
);
2042 return MachineInstrBuilder(MF
, *MI
);
2045 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2046 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2047 static const DIExpression
*computeExprForSpill(const MachineInstr
&MI
) {
2048 assert(MI
.getOperand(0).isReg() && "can't spill non-register");
2049 assert(MI
.getDebugVariable()->isValidLocationForIntrinsic(MI
.getDebugLoc()) &&
2050 "Expected inlined-at fields to agree");
2052 const DIExpression
*Expr
= MI
.getDebugExpression();
2053 if (MI
.isIndirectDebugValue()) {
2054 assert(MI
.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
2055 Expr
= DIExpression::prepend(Expr
, DIExpression::WithDeref
);
2060 MachineInstr
*llvm::buildDbgValueForSpill(MachineBasicBlock
&BB
,
2061 MachineBasicBlock::iterator I
,
2062 const MachineInstr
&Orig
,
2064 const DIExpression
*Expr
= computeExprForSpill(Orig
);
2065 return BuildMI(BB
, I
, Orig
.getDebugLoc(), Orig
.getDesc())
2066 .addFrameIndex(FrameIndex
)
2068 .addMetadata(Orig
.getDebugVariable())
2072 void llvm::updateDbgValueForSpill(MachineInstr
&Orig
, int FrameIndex
) {
2073 const DIExpression
*Expr
= computeExprForSpill(Orig
);
2074 Orig
.getOperand(0).ChangeToFrameIndex(FrameIndex
);
2075 Orig
.getOperand(1).ChangeToImmediate(0U);
2076 Orig
.getOperand(3).setMetadata(Expr
);
2079 void MachineInstr::collectDebugValues(
2080 SmallVectorImpl
<MachineInstr
*> &DbgValues
) {
2081 MachineInstr
&MI
= *this;
2082 if (!MI
.getOperand(0).isReg())
2085 MachineBasicBlock::iterator DI
= MI
; ++DI
;
2086 for (MachineBasicBlock::iterator DE
= MI
.getParent()->end();
2088 if (!DI
->isDebugValue())
2090 if (DI
->getOperand(0).isReg() &&
2091 DI
->getOperand(0).getReg() == MI
.getOperand(0).getReg())
2092 DbgValues
.push_back(&*DI
);
2096 void MachineInstr::changeDebugValuesDefReg(unsigned Reg
) {
2097 // Collect matching debug values.
2098 SmallVector
<MachineInstr
*, 2> DbgValues
;
2099 collectDebugValues(DbgValues
);
2101 // Propagate Reg to debug value instructions.
2102 for (auto *DBI
: DbgValues
)
2103 DBI
->getOperand(0).setReg(Reg
);