1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
11 /// Replaces repeated sequences of instructions with function calls.
13 /// This works by placing every instruction from every basic block in a
14 /// suffix tree, and repeatedly querying that tree for repeated sequences of
15 /// instructions. If a sequence of instructions appears often, then it ought
16 /// to be beneficial to pull out into a function.
18 /// The MachineOutliner communicates with a given target using hooks defined in
19 /// TargetInstrInfo.h. The target supplies the outliner with information on how
20 /// a specific sequence of instructions should be outlined. This information
21 /// is used to deduce the number of instructions necessary to
23 /// * Create an outlined function
24 /// * Call that outlined function
26 /// Targets must implement
27 /// * getOutliningCandidateInfo
28 /// * buildOutlinedFrame
29 /// * insertOutlinedCall
30 /// * isFunctionSafeToOutlineFrom
32 /// in order to make use of the MachineOutliner.
34 /// This was originally presented at the 2016 LLVM Developers' Meeting in the
35 /// talk "Reducing Code Size Using Outlining". For a high-level overview of
36 /// how this pass works, the talk is available on YouTube at
38 /// https://www.youtube.com/watch?v=yorld-WSOeU
40 /// The slides for the talk are available at
42 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
44 /// The talk provides an overview of how the outliner finds candidates and
45 /// ultimately outlines them. It describes how the main data structure for this
46 /// pass, the suffix tree, is queried and purged for candidates. It also gives
47 /// a simplified suffix tree construction algorithm for suffix trees based off
48 /// of the algorithm actually used here, Ukkonen's algorithm.
50 /// For the original RFC for this pass, please see
52 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
54 /// For more information on the suffix tree data structure, please see
55 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
57 //===----------------------------------------------------------------------===//
58 #include "llvm/CodeGen/MachineOutliner.h"
59 #include "llvm/ADT/DenseMap.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/CodeGen/MachineFunction.h"
63 #include "llvm/CodeGen/MachineModuleInfo.h"
64 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
65 #include "llvm/CodeGen/MachineRegisterInfo.h"
66 #include "llvm/CodeGen/Passes.h"
67 #include "llvm/CodeGen/TargetInstrInfo.h"
68 #include "llvm/CodeGen/TargetSubtargetInfo.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/Mangler.h"
72 #include "llvm/Support/Allocator.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/raw_ostream.h"
82 #define DEBUG_TYPE "machine-outliner"
86 using namespace outliner
;
88 STATISTIC(NumOutlined
, "Number of candidates outlined");
89 STATISTIC(FunctionsCreated
, "Number of functions created");
91 // Set to true if the user wants the outliner to run on linkonceodr linkage
92 // functions. This is false by default because the linker can dedupe linkonceodr
93 // functions. Since the outliner is confined to a single module (modulo LTO),
94 // this is off by default. It should, however, be the default behaviour in
96 static cl::opt
<bool> EnableLinkOnceODROutlining(
97 "enable-linkonceodr-outlining",
99 cl::desc("Enable the machine outliner on linkonceodr functions"),
104 /// Represents an undefined index in the suffix tree.
105 const unsigned EmptyIdx
= -1;
107 /// A node in a suffix tree which represents a substring or suffix.
109 /// Each node has either no children or at least two children, with the root
110 /// being a exception in the empty tree.
112 /// Children are represented as a map between unsigned integers and nodes. If
113 /// a node N has a child M on unsigned integer k, then the mapping represented
114 /// by N is a proper prefix of the mapping represented by M. Note that this,
115 /// although similar to a trie is somewhat different: each node stores a full
116 /// substring of the full mapping rather than a single character state.
118 /// Each internal node contains a pointer to the internal node representing
119 /// the same string, but with the first character chopped off. This is stored
120 /// in \p Link. Each leaf node stores the start index of its respective
121 /// suffix in \p SuffixIdx.
122 struct SuffixTreeNode
{
124 /// The children of this node.
126 /// A child existing on an unsigned integer implies that from the mapping
127 /// represented by the current node, there is a way to reach another
128 /// mapping by tacking that character on the end of the current string.
129 DenseMap
<unsigned, SuffixTreeNode
*> Children
;
131 /// A flag set to false if the node has been pruned from the tree.
132 bool IsInTree
= true;
134 /// The start index of this node's substring in the main string.
135 unsigned StartIdx
= EmptyIdx
;
137 /// The end index of this node's substring in the main string.
139 /// Every leaf node must have its \p EndIdx incremented at the end of every
140 /// step in the construction algorithm. To avoid having to update O(N)
141 /// nodes individually at the end of every step, the end index is stored
143 unsigned *EndIdx
= nullptr;
145 /// For leaves, the start index of the suffix represented by this node.
147 /// For all other nodes, this is ignored.
148 unsigned SuffixIdx
= EmptyIdx
;
150 /// For internal nodes, a pointer to the internal node representing
151 /// the same sequence with the first character chopped off.
153 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
154 /// Ukkonen's algorithm does to achieve linear-time construction is
155 /// keep track of which node the next insert should be at. This makes each
156 /// insert O(1), and there are a total of O(N) inserts. The suffix link
157 /// helps with inserting children of internal nodes.
159 /// Say we add a child to an internal node with associated mapping S. The
160 /// next insertion must be at the node representing S - its first character.
161 /// This is given by the way that we iteratively build the tree in Ukkonen's
162 /// algorithm. The main idea is to look at the suffixes of each prefix in the
163 /// string, starting with the longest suffix of the prefix, and ending with
164 /// the shortest. Therefore, if we keep pointers between such nodes, we can
165 /// move to the next insertion point in O(1) time. If we don't, then we'd
166 /// have to query from the root, which takes O(N) time. This would make the
167 /// construction algorithm O(N^2) rather than O(N).
168 SuffixTreeNode
*Link
= nullptr;
170 /// The parent of this node. Every node except for the root has a parent.
171 SuffixTreeNode
*Parent
= nullptr;
173 /// The number of times this node's string appears in the tree.
175 /// This is equal to the number of leaf children of the string. It represents
176 /// the number of suffixes that the node's string is a prefix of.
177 unsigned OccurrenceCount
= 0;
179 /// The length of the string formed by concatenating the edge labels from the
180 /// root to this node.
181 unsigned ConcatLen
= 0;
183 /// Returns true if this node is a leaf.
184 bool isLeaf() const { return SuffixIdx
!= EmptyIdx
; }
186 /// Returns true if this node is the root of its owning \p SuffixTree.
187 bool isRoot() const { return StartIdx
== EmptyIdx
; }
189 /// Return the number of elements in the substring associated with this node.
190 size_t size() const {
192 // Is it the root? If so, it's the empty string so return 0.
196 assert(*EndIdx
!= EmptyIdx
&& "EndIdx is undefined!");
198 // Size = the number of elements in the string.
199 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
200 return *EndIdx
- StartIdx
+ 1;
203 SuffixTreeNode(unsigned StartIdx
, unsigned *EndIdx
, SuffixTreeNode
*Link
,
204 SuffixTreeNode
*Parent
)
205 : StartIdx(StartIdx
), EndIdx(EndIdx
), Link(Link
), Parent(Parent
) {}
210 /// A data structure for fast substring queries.
212 /// Suffix trees represent the suffixes of their input strings in their leaves.
213 /// A suffix tree is a type of compressed trie structure where each node
214 /// represents an entire substring rather than a single character. Each leaf
215 /// of the tree is a suffix.
217 /// A suffix tree can be seen as a type of state machine where each state is a
218 /// substring of the full string. The tree is structured so that, for a string
219 /// of length N, there are exactly N leaves in the tree. This structure allows
220 /// us to quickly find repeated substrings of the input string.
222 /// In this implementation, a "string" is a vector of unsigned integers.
223 /// These integers may result from hashing some data type. A suffix tree can
224 /// contain 1 or many strings, which can then be queried as one large string.
226 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
227 /// suffix tree construction. Ukkonen's algorithm is explained in more detail
228 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
229 /// paper is available at
231 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
234 /// Stores each leaf node in the tree.
236 /// This is used for finding outlining candidates.
237 std::vector
<SuffixTreeNode
*> LeafVector
;
239 /// Each element is an integer representing an instruction in the module.
240 ArrayRef
<unsigned> Str
;
243 /// Maintains each node in the tree.
244 SpecificBumpPtrAllocator
<SuffixTreeNode
> NodeAllocator
;
246 /// The root of the suffix tree.
248 /// The root represents the empty string. It is maintained by the
249 /// \p NodeAllocator like every other node in the tree.
250 SuffixTreeNode
*Root
= nullptr;
252 /// Maintains the end indices of the internal nodes in the tree.
254 /// Each internal node is guaranteed to never have its end index change
255 /// during the construction algorithm; however, leaves must be updated at
256 /// every step. Therefore, we need to store leaf end indices by reference
257 /// to avoid updating O(N) leaves at every step of construction. Thus,
258 /// every internal node must be allocated its own end index.
259 BumpPtrAllocator InternalEndIdxAllocator
;
261 /// The end index of each leaf in the tree.
262 unsigned LeafEndIdx
= -1;
264 /// Helper struct which keeps track of the next insertion point in
265 /// Ukkonen's algorithm.
267 /// The next node to insert at.
268 SuffixTreeNode
*Node
;
270 /// The index of the first character in the substring currently being added.
271 unsigned Idx
= EmptyIdx
;
273 /// The length of the substring we have to add at the current step.
277 /// The point the next insertion will take place at in the
278 /// construction algorithm.
281 /// Allocate a leaf node and add it to the tree.
283 /// \param Parent The parent of this node.
284 /// \param StartIdx The start index of this node's associated string.
285 /// \param Edge The label on the edge leaving \p Parent to this node.
287 /// \returns A pointer to the allocated leaf node.
288 SuffixTreeNode
*insertLeaf(SuffixTreeNode
&Parent
, unsigned StartIdx
,
291 assert(StartIdx
<= LeafEndIdx
&& "String can't start after it ends!");
293 SuffixTreeNode
*N
= new (NodeAllocator
.Allocate())
294 SuffixTreeNode(StartIdx
, &LeafEndIdx
, nullptr, &Parent
);
295 Parent
.Children
[Edge
] = N
;
300 /// Allocate an internal node and add it to the tree.
302 /// \param Parent The parent of this node. Only null when allocating the root.
303 /// \param StartIdx The start index of this node's associated string.
304 /// \param EndIdx The end index of this node's associated string.
305 /// \param Edge The label on the edge leaving \p Parent to this node.
307 /// \returns A pointer to the allocated internal node.
308 SuffixTreeNode
*insertInternalNode(SuffixTreeNode
*Parent
, unsigned StartIdx
,
309 unsigned EndIdx
, unsigned Edge
) {
311 assert(StartIdx
<= EndIdx
&& "String can't start after it ends!");
312 assert(!(!Parent
&& StartIdx
!= EmptyIdx
) &&
313 "Non-root internal nodes must have parents!");
315 unsigned *E
= new (InternalEndIdxAllocator
) unsigned(EndIdx
);
316 SuffixTreeNode
*N
= new (NodeAllocator
.Allocate())
317 SuffixTreeNode(StartIdx
, E
, Root
, Parent
);
319 Parent
->Children
[Edge
] = N
;
324 /// Set the suffix indices of the leaves to the start indices of their
325 /// respective suffixes. Also stores each leaf in \p LeafVector at its
326 /// respective suffix index.
328 /// \param[in] CurrNode The node currently being visited.
329 /// \param CurrIdx The current index of the string being visited.
330 void setSuffixIndices(SuffixTreeNode
&CurrNode
, unsigned CurrIdx
) {
332 bool IsLeaf
= CurrNode
.Children
.size() == 0 && !CurrNode
.isRoot();
334 // Store the length of the concatenation of all strings from the root to
336 if (!CurrNode
.isRoot()) {
337 if (CurrNode
.ConcatLen
== 0)
338 CurrNode
.ConcatLen
= CurrNode
.size();
341 CurrNode
.ConcatLen
+= CurrNode
.Parent
->ConcatLen
;
344 // Traverse the tree depth-first.
345 for (auto &ChildPair
: CurrNode
.Children
) {
346 assert(ChildPair
.second
&& "Node had a null child!");
347 setSuffixIndices(*ChildPair
.second
, CurrIdx
+ ChildPair
.second
->size());
350 // Is this node a leaf?
352 // If yes, give it a suffix index and bump its parent's occurrence count.
353 CurrNode
.SuffixIdx
= Str
.size() - CurrIdx
;
354 assert(CurrNode
.Parent
&& "CurrNode had no parent!");
355 CurrNode
.Parent
->OccurrenceCount
++;
357 // Store the leaf in the leaf vector for pruning later.
358 LeafVector
[CurrNode
.SuffixIdx
] = &CurrNode
;
362 /// Construct the suffix tree for the prefix of the input ending at
365 /// Used to construct the full suffix tree iteratively. At the end of each
366 /// step, the constructed suffix tree is either a valid suffix tree, or a
367 /// suffix tree with implicit suffixes. At the end of the final step, the
368 /// suffix tree is a valid tree.
370 /// \param EndIdx The end index of the current prefix in the main string.
371 /// \param SuffixesToAdd The number of suffixes that must be added
372 /// to complete the suffix tree at the current phase.
374 /// \returns The number of suffixes that have not been added at the end of
376 unsigned extend(unsigned EndIdx
, unsigned SuffixesToAdd
) {
377 SuffixTreeNode
*NeedsLink
= nullptr;
379 while (SuffixesToAdd
> 0) {
381 // Are we waiting to add anything other than just the last character?
382 if (Active
.Len
== 0) {
383 // If not, then say the active index is the end index.
387 assert(Active
.Idx
<= EndIdx
&& "Start index can't be after end index!");
389 // The first character in the current substring we're looking at.
390 unsigned FirstChar
= Str
[Active
.Idx
];
392 // Have we inserted anything starting with FirstChar at the current node?
393 if (Active
.Node
->Children
.count(FirstChar
) == 0) {
394 // If not, then we can just insert a leaf and move too the next step.
395 insertLeaf(*Active
.Node
, EndIdx
, FirstChar
);
397 // The active node is an internal node, and we visited it, so it must
398 // need a link if it doesn't have one.
400 NeedsLink
->Link
= Active
.Node
;
404 // There's a match with FirstChar, so look for the point in the tree to
405 // insert a new node.
406 SuffixTreeNode
*NextNode
= Active
.Node
->Children
[FirstChar
];
408 unsigned SubstringLen
= NextNode
->size();
410 // Is the current suffix we're trying to insert longer than the size of
411 // the child we want to move to?
412 if (Active
.Len
>= SubstringLen
) {
413 // If yes, then consume the characters we've seen and move to the next
415 Active
.Idx
+= SubstringLen
;
416 Active
.Len
-= SubstringLen
;
417 Active
.Node
= NextNode
;
421 // Otherwise, the suffix we're trying to insert must be contained in the
422 // next node we want to move to.
423 unsigned LastChar
= Str
[EndIdx
];
425 // Is the string we're trying to insert a substring of the next node?
426 if (Str
[NextNode
->StartIdx
+ Active
.Len
] == LastChar
) {
427 // If yes, then we're done for this step. Remember our insertion point
428 // and move to the next end index. At this point, we have an implicit
430 if (NeedsLink
&& !Active
.Node
->isRoot()) {
431 NeedsLink
->Link
= Active
.Node
;
439 // The string we're trying to insert isn't a substring of the next node,
440 // but matches up to a point. Split the node.
442 // For example, say we ended our search at a node n and we're trying to
443 // insert ABD. Then we'll create a new node s for AB, reduce n to just
444 // representing C, and insert a new leaf node l to represent d. This
445 // allows us to ensure that if n was a leaf, it remains a leaf.
447 // | ABC ---split---> | AB
452 // The node s from the diagram
453 SuffixTreeNode
*SplitNode
=
454 insertInternalNode(Active
.Node
, NextNode
->StartIdx
,
455 NextNode
->StartIdx
+ Active
.Len
- 1, FirstChar
);
457 // Insert the new node representing the new substring into the tree as
458 // a child of the split node. This is the node l from the diagram.
459 insertLeaf(*SplitNode
, EndIdx
, LastChar
);
461 // Make the old node a child of the split node and update its start
462 // index. This is the node n from the diagram.
463 NextNode
->StartIdx
+= Active
.Len
;
464 NextNode
->Parent
= SplitNode
;
465 SplitNode
->Children
[Str
[NextNode
->StartIdx
]] = NextNode
;
467 // SplitNode is an internal node, update the suffix link.
469 NeedsLink
->Link
= SplitNode
;
471 NeedsLink
= SplitNode
;
474 // We've added something new to the tree, so there's one less suffix to
478 if (Active
.Node
->isRoot()) {
479 if (Active
.Len
> 0) {
481 Active
.Idx
= EndIdx
- SuffixesToAdd
+ 1;
484 // Start the next phase at the next smallest suffix.
485 Active
.Node
= Active
.Node
->Link
;
489 return SuffixesToAdd
;
493 /// Construct a suffix tree from a sequence of unsigned integers.
495 /// \param Str The string to construct the suffix tree for.
496 SuffixTree(const std::vector
<unsigned> &Str
) : Str(Str
) {
497 Root
= insertInternalNode(nullptr, EmptyIdx
, EmptyIdx
, 0);
498 Root
->IsInTree
= true;
500 LeafVector
= std::vector
<SuffixTreeNode
*>(Str
.size());
502 // Keep track of the number of suffixes we have to add of the current
504 unsigned SuffixesToAdd
= 0;
507 // Construct the suffix tree iteratively on each prefix of the string.
508 // PfxEndIdx is the end index of the current prefix.
509 // End is one past the last element in the string.
510 for (unsigned PfxEndIdx
= 0, End
= Str
.size(); PfxEndIdx
< End
;
513 LeafEndIdx
= PfxEndIdx
; // Extend each of the leaves.
514 SuffixesToAdd
= extend(PfxEndIdx
, SuffixesToAdd
);
517 // Set the suffix indices of each leaf.
518 assert(Root
&& "Root node can't be nullptr!");
519 setSuffixIndices(*Root
, 0);
523 /// Maps \p MachineInstrs to unsigned integers and stores the mappings.
524 struct InstructionMapper
{
526 /// The next available integer to assign to a \p MachineInstr that
527 /// cannot be outlined.
529 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
530 unsigned IllegalInstrNumber
= -3;
532 /// The next available integer to assign to a \p MachineInstr that can
534 unsigned LegalInstrNumber
= 0;
536 /// Correspondence from \p MachineInstrs to unsigned integers.
537 DenseMap
<MachineInstr
*, unsigned, MachineInstrExpressionTrait
>
538 InstructionIntegerMap
;
540 /// Corresponcence from unsigned integers to \p MachineInstrs.
541 /// Inverse of \p InstructionIntegerMap.
542 DenseMap
<unsigned, MachineInstr
*> IntegerInstructionMap
;
544 /// The vector of unsigned integers that the module is mapped to.
545 std::vector
<unsigned> UnsignedVec
;
547 /// Stores the location of the instruction associated with the integer
548 /// at index i in \p UnsignedVec for each index i.
549 std::vector
<MachineBasicBlock::iterator
> InstrList
;
551 /// Maps \p *It to a legal integer.
553 /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
554 /// \p IntegerInstructionMap, and \p LegalInstrNumber.
556 /// \returns The integer that \p *It was mapped to.
557 unsigned mapToLegalUnsigned(MachineBasicBlock::iterator
&It
) {
559 // Get the integer for this instruction or give it the current
561 InstrList
.push_back(It
);
562 MachineInstr
&MI
= *It
;
564 DenseMap
<MachineInstr
*, unsigned, MachineInstrExpressionTrait
>::iterator
566 std::tie(ResultIt
, WasInserted
) =
567 InstructionIntegerMap
.insert(std::make_pair(&MI
, LegalInstrNumber
));
568 unsigned MINumber
= ResultIt
->second
;
570 // There was an insertion.
573 IntegerInstructionMap
.insert(std::make_pair(MINumber
, &MI
));
576 UnsignedVec
.push_back(MINumber
);
578 // Make sure we don't overflow or use any integers reserved by the DenseMap.
579 if (LegalInstrNumber
>= IllegalInstrNumber
)
580 report_fatal_error("Instruction mapping overflow!");
582 assert(LegalInstrNumber
!= DenseMapInfo
<unsigned>::getEmptyKey() &&
583 "Tried to assign DenseMap tombstone or empty key to instruction.");
584 assert(LegalInstrNumber
!= DenseMapInfo
<unsigned>::getTombstoneKey() &&
585 "Tried to assign DenseMap tombstone or empty key to instruction.");
590 /// Maps \p *It to an illegal integer.
592 /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
594 /// \returns The integer that \p *It was mapped to.
595 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator
&It
) {
596 unsigned MINumber
= IllegalInstrNumber
;
598 InstrList
.push_back(It
);
599 UnsignedVec
.push_back(IllegalInstrNumber
);
600 IllegalInstrNumber
--;
602 assert(LegalInstrNumber
< IllegalInstrNumber
&&
603 "Instruction mapping overflow!");
605 assert(IllegalInstrNumber
!= DenseMapInfo
<unsigned>::getEmptyKey() &&
606 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
608 assert(IllegalInstrNumber
!= DenseMapInfo
<unsigned>::getTombstoneKey() &&
609 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
614 /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
615 /// and appends it to \p UnsignedVec and \p InstrList.
617 /// Two instructions are assigned the same integer if they are identical.
618 /// If an instruction is deemed unsafe to outline, then it will be assigned an
619 /// unique integer. The resulting mapping is placed into a suffix tree and
620 /// queried for candidates.
622 /// \param MBB The \p MachineBasicBlock to be translated into integers.
623 /// \param TII \p TargetInstrInfo for the function.
624 void convertToUnsignedVec(MachineBasicBlock
&MBB
,
625 const TargetInstrInfo
&TII
) {
626 unsigned Flags
= TII
.getMachineOutlinerMBBFlags(MBB
);
628 // Set to true whenever we map an illegal number.
629 bool AddedIllegalLastTime
= false;
630 for (MachineBasicBlock::iterator It
= MBB
.begin(), Et
= MBB
.end(); It
!= Et
;
633 // Keep track of where this instruction is in the module.
634 switch (TII
.getOutliningType(It
, Flags
)) {
635 case InstrType::Illegal
:
636 // If we added an illegal number last time, then don't add more of them.
637 // One number is all that is necessary to prevent matches on illegal
639 if (AddedIllegalLastTime
)
641 AddedIllegalLastTime
= true;
642 mapToIllegalUnsigned(It
);
645 case InstrType::Legal
:
646 AddedIllegalLastTime
= false;
647 mapToLegalUnsigned(It
);
650 case InstrType::LegalTerminator
:
651 mapToLegalUnsigned(It
);
652 InstrList
.push_back(It
);
653 AddedIllegalLastTime
= true;
654 UnsignedVec
.push_back(IllegalInstrNumber
);
655 IllegalInstrNumber
--;
658 case InstrType::Invisible
:
659 AddedIllegalLastTime
= false;
664 // After we're done every insertion, uniquely terminate this part of the
665 // "string". This makes sure we won't match across basic block or function
666 // boundaries since the "end" is encoded uniquely and thus appears in no
667 // repeated substring.
668 InstrList
.push_back(MBB
.end());
669 UnsignedVec
.push_back(IllegalInstrNumber
);
670 IllegalInstrNumber
--;
673 InstructionMapper() {
674 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
676 assert(DenseMapInfo
<unsigned>::getEmptyKey() == (unsigned)-1 &&
677 "DenseMapInfo<unsigned>'s empty key isn't -1!");
678 assert(DenseMapInfo
<unsigned>::getTombstoneKey() == (unsigned)-2 &&
679 "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
683 /// An interprocedural pass which finds repeated sequences of
684 /// instructions and replaces them with calls to functions.
686 /// Each instruction is mapped to an unsigned integer and placed in a string.
687 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
688 /// is then repeatedly queried for repeated sequences of instructions. Each
689 /// non-overlapping repeated sequence is then placed in its own
690 /// \p MachineFunction and each instance is then replaced with a call to that
692 struct MachineOutliner
: public ModulePass
{
696 /// Set to true if the outliner should consider functions with
697 /// linkonceodr linkage.
698 bool OutlineFromLinkOnceODRs
= false;
700 /// Set to true if the outliner should run on all functions in the module
701 /// considered safe for outlining.
702 /// Set to true by default for compatibility with llc's -run-pass option.
703 /// Set when the pass is constructed in TargetPassConfig.
704 bool RunOnAllFunctions
= true;
706 StringRef
getPassName() const override
{ return "Machine Outliner"; }
708 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
709 AU
.addRequired
<MachineModuleInfo
>();
710 AU
.addPreserved
<MachineModuleInfo
>();
711 AU
.setPreservesAll();
712 ModulePass::getAnalysisUsage(AU
);
715 MachineOutliner() : ModulePass(ID
) {
716 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
719 /// Remark output explaining that not outlining a set of candidates would be
720 /// better than outlining that set.
721 void emitNotOutliningCheaperRemark(
722 unsigned StringLen
, std::vector
<Candidate
> &CandidatesForRepeatedSeq
,
723 OutlinedFunction
&OF
);
725 /// Remark output explaining that a function was outlined.
726 void emitOutlinedFunctionRemark(OutlinedFunction
&OF
);
728 /// Find all repeated substrings that satisfy the outlining cost model.
730 /// If a substring appears at least twice, then it must be represented by
731 /// an internal node which appears in at least two suffixes. Each suffix
732 /// is represented by a leaf node. To do this, we visit each internal node
733 /// in the tree, using the leaf children of each internal node. If an
734 /// internal node represents a beneficial substring, then we use each of
735 /// its leaf children to find the locations of its substring.
737 /// \param ST A suffix tree to query.
738 /// \param Mapper Contains outlining mapping information.
739 /// \param[out] CandidateList Filled with candidates representing each
740 /// beneficial substring.
741 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions
742 /// each type of candidate.
744 /// \returns The length of the longest candidate found.
746 findCandidates(SuffixTree
&ST
,
747 InstructionMapper
&Mapper
,
748 std::vector
<std::shared_ptr
<Candidate
>> &CandidateList
,
749 std::vector
<OutlinedFunction
> &FunctionList
);
751 /// Replace the sequences of instructions represented by the
752 /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
753 /// described in \p FunctionList.
755 /// \param M The module we are outlining from.
756 /// \param CandidateList A list of candidates to be outlined.
757 /// \param FunctionList A list of functions to be inserted into the module.
758 /// \param Mapper Contains the instruction mappings for the module.
759 bool outline(Module
&M
,
760 const ArrayRef
<std::shared_ptr
<Candidate
>> &CandidateList
,
761 std::vector
<OutlinedFunction
> &FunctionList
,
762 InstructionMapper
&Mapper
);
764 /// Creates a function for \p OF and inserts it into the module.
765 MachineFunction
*createOutlinedFunction(Module
&M
, const OutlinedFunction
&OF
,
766 InstructionMapper
&Mapper
);
768 /// Find potential outlining candidates and store them in \p CandidateList.
770 /// For each type of potential candidate, also build an \p OutlinedFunction
771 /// struct containing the information to build the function for that
774 /// \param[out] CandidateList Filled with outlining candidates for the module.
775 /// \param[out] FunctionList Filled with functions corresponding to each type
777 /// \param ST The suffix tree for the module.
779 /// \returns The length of the longest candidate found. 0 if there are none.
781 buildCandidateList(std::vector
<std::shared_ptr
<Candidate
>> &CandidateList
,
782 std::vector
<OutlinedFunction
> &FunctionList
,
783 SuffixTree
&ST
, InstructionMapper
&Mapper
);
785 /// Helper function for pruneOverlaps.
786 /// Removes \p C from the candidate list, and updates its \p OutlinedFunction.
787 void prune(Candidate
&C
, std::vector
<OutlinedFunction
> &FunctionList
);
789 /// Remove any overlapping candidates that weren't handled by the
790 /// suffix tree's pruning method.
792 /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
793 /// If a short candidate is chosen for outlining, then a longer candidate
794 /// which has that short candidate as a suffix is chosen, the tree's pruning
795 /// method will not find it. Thus, we need to prune before outlining as well.
797 /// \param[in,out] CandidateList A list of outlining candidates.
798 /// \param[in,out] FunctionList A list of functions to be outlined.
799 /// \param Mapper Contains instruction mapping info for outlining.
800 /// \param MaxCandidateLen The length of the longest candidate.
801 void pruneOverlaps(std::vector
<std::shared_ptr
<Candidate
>> &CandidateList
,
802 std::vector
<OutlinedFunction
> &FunctionList
,
803 InstructionMapper
&Mapper
, unsigned MaxCandidateLen
);
805 /// Construct a suffix tree on the instructions in \p M and outline repeated
806 /// strings from that tree.
807 bool runOnModule(Module
&M
) override
;
809 /// Return a DISubprogram for OF if one exists, and null otherwise. Helper
810 /// function for remark emission.
811 DISubprogram
*getSubprogramOrNull(const OutlinedFunction
&OF
) {
813 for (const std::shared_ptr
<Candidate
> &C
: OF
.Candidates
)
814 if (C
&& C
->getMF() && (SP
= C
->getMF()->getFunction().getSubprogram()))
819 /// Populate and \p InstructionMapper with instruction-to-integer mappings.
820 /// These are used to construct a suffix tree.
821 void populateMapper(InstructionMapper
&Mapper
, Module
&M
,
822 MachineModuleInfo
&MMI
);
824 /// Initialize information necessary to output a size remark.
825 /// FIXME: This should be handled by the pass manager, not the outliner.
826 /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy
828 void initSizeRemarkInfo(
829 const Module
&M
, const MachineModuleInfo
&MMI
,
830 StringMap
<unsigned> &FunctionToInstrCount
);
833 // FIXME: This should be handled by the pass manager, not the outliner.
834 void emitInstrCountChangedRemark(
835 const Module
&M
, const MachineModuleInfo
&MMI
,
836 const StringMap
<unsigned> &FunctionToInstrCount
);
838 } // Anonymous namespace.
840 char MachineOutliner::ID
= 0;
843 ModulePass
*createMachineOutlinerPass(bool RunOnAllFunctions
) {
844 MachineOutliner
*OL
= new MachineOutliner();
845 OL
->RunOnAllFunctions
= RunOnAllFunctions
;
851 INITIALIZE_PASS(MachineOutliner
, DEBUG_TYPE
, "Machine Function Outliner", false,
854 void MachineOutliner::emitNotOutliningCheaperRemark(
855 unsigned StringLen
, std::vector
<Candidate
> &CandidatesForRepeatedSeq
,
856 OutlinedFunction
&OF
) {
857 Candidate
&C
= CandidatesForRepeatedSeq
.front();
858 MachineOptimizationRemarkEmitter
MORE(*(C
.getMF()), nullptr);
860 MachineOptimizationRemarkMissed
R(DEBUG_TYPE
, "NotOutliningCheaper",
861 C
.front()->getDebugLoc(), C
.getMBB());
862 R
<< "Did not outline " << NV("Length", StringLen
) << " instructions"
863 << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq
.size())
865 << " Bytes from outlining all occurrences ("
866 << NV("OutliningCost", OF
.getOutliningCost()) << ")"
867 << " >= Unoutlined instruction bytes ("
868 << NV("NotOutliningCost", OF
.getNotOutlinedCost()) << ")"
869 << " (Also found at: ";
871 // Tell the user the other places the candidate was found.
872 for (unsigned i
= 1, e
= CandidatesForRepeatedSeq
.size(); i
< e
; i
++) {
873 R
<< NV((Twine("OtherStartLoc") + Twine(i
)).str(),
874 CandidatesForRepeatedSeq
[i
].front()->getDebugLoc());
884 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction
&OF
) {
885 MachineBasicBlock
*MBB
= &*OF
.MF
->begin();
886 MachineOptimizationRemarkEmitter
MORE(*OF
.MF
, nullptr);
887 MachineOptimizationRemark
R(DEBUG_TYPE
, "OutlinedFunction",
888 MBB
->findDebugLoc(MBB
->begin()), MBB
);
889 R
<< "Saved " << NV("OutliningBenefit", OF
.getBenefit()) << " bytes by "
890 << "outlining " << NV("Length", OF
.Sequence
.size()) << " instructions "
891 << "from " << NV("NumOccurrences", OF
.getOccurrenceCount())
895 // Tell the user the other places the candidate was found.
896 for (size_t i
= 0, e
= OF
.Candidates
.size(); i
< e
; i
++) {
898 // Skip over things that were pruned.
899 if (!OF
.Candidates
[i
]->InCandidateList
)
902 R
<< NV((Twine("StartLoc") + Twine(i
)).str(),
903 OF
.Candidates
[i
]->front()->getDebugLoc());
913 unsigned MachineOutliner::findCandidates(
914 SuffixTree
&ST
, InstructionMapper
&Mapper
,
915 std::vector
<std::shared_ptr
<Candidate
>> &CandidateList
,
916 std::vector
<OutlinedFunction
> &FunctionList
) {
917 CandidateList
.clear();
918 FunctionList
.clear();
921 // FIXME: Visit internal nodes instead of leaves.
922 for (SuffixTreeNode
*Leaf
: ST
.LeafVector
) {
923 assert(Leaf
&& "Leaves in LeafVector cannot be null!");
927 assert(Leaf
->Parent
&& "All leaves must have parents!");
928 SuffixTreeNode
&Parent
= *(Leaf
->Parent
);
930 // If it doesn't appear enough, or we already outlined from it, skip it.
931 if (Parent
.OccurrenceCount
< 2 || Parent
.isRoot() || !Parent
.IsInTree
)
934 // Figure out if this candidate is beneficial.
935 unsigned StringLen
= Leaf
->ConcatLen
- (unsigned)Leaf
->size();
937 // Too short to be beneficial; skip it.
938 // FIXME: This isn't necessarily true for, say, X86. If we factor in
939 // instruction lengths we need more information than this.
943 // If this is a beneficial class of candidate, then every one is stored in
945 std::vector
<Candidate
> CandidatesForRepeatedSeq
;
947 // Figure out the call overhead for each instance of the sequence.
948 for (auto &ChildPair
: Parent
.Children
) {
949 SuffixTreeNode
*M
= ChildPair
.second
;
951 if (M
&& M
->IsInTree
&& M
->isLeaf()) {
952 // Never visit this leaf again.
954 unsigned StartIdx
= M
->SuffixIdx
;
955 unsigned EndIdx
= StartIdx
+ StringLen
- 1;
957 // Trick: Discard some candidates that would be incompatible with the
958 // ones we've already found for this sequence. This will save us some
959 // work in candidate selection.
961 // If two candidates overlap, then we can't outline them both. This
962 // happens when we have candidates that look like, say
964 // AA (where each "A" is an instruction).
966 // We might have some portion of the module that looks like this:
969 // In this case, there are 5 different copies of "AA" in this range, but
970 // at most 3 can be outlined. If only outlining 3 of these is going to
971 // be unbeneficial, then we ought to not bother.
973 // Note that two things DON'T overlap when they look like this:
974 // start1...end1 .... start2...end2
975 // That is, one must either
976 // * End before the other starts
977 // * Start after the other ends
978 if (std::all_of(CandidatesForRepeatedSeq
.begin(),
979 CandidatesForRepeatedSeq
.end(),
980 [&StartIdx
, &EndIdx
](const Candidate
&C
) {
981 return (EndIdx
< C
.getStartIdx() ||
982 StartIdx
> C
.getEndIdx());
984 // It doesn't overlap with anything, so we can outline it.
985 // Each sequence is over [StartIt, EndIt].
986 // Save the candidate and its location.
988 MachineBasicBlock::iterator StartIt
= Mapper
.InstrList
[StartIdx
];
989 MachineBasicBlock::iterator EndIt
= Mapper
.InstrList
[EndIdx
];
991 CandidatesForRepeatedSeq
.emplace_back(StartIdx
, StringLen
, StartIt
,
992 EndIt
, StartIt
->getParent(),
993 FunctionList
.size());
998 // We've found something we might want to outline.
999 // Create an OutlinedFunction to store it and check if it'd be beneficial
1001 if (CandidatesForRepeatedSeq
.empty())
1004 // Arbitrarily choose a TII from the first candidate.
1005 // FIXME: Should getOutliningCandidateInfo move to TargetMachine?
1006 const TargetInstrInfo
*TII
=
1007 CandidatesForRepeatedSeq
[0].getMF()->getSubtarget().getInstrInfo();
1009 OutlinedFunction OF
=
1010 TII
->getOutliningCandidateInfo(CandidatesForRepeatedSeq
);
1012 // If we deleted every candidate, then there's nothing to outline.
1013 if (OF
.Candidates
.empty())
1016 std::vector
<unsigned> Seq
;
1017 for (unsigned i
= Leaf
->SuffixIdx
; i
< Leaf
->SuffixIdx
+ StringLen
; i
++)
1018 Seq
.push_back(ST
.Str
[i
]);
1020 OF
.Name
= FunctionList
.size();
1022 // Is it better to outline this candidate than not?
1023 if (OF
.getBenefit() < 1) {
1024 emitNotOutliningCheaperRemark(StringLen
, CandidatesForRepeatedSeq
, OF
);
1028 if (StringLen
> MaxLen
)
1031 // The function is beneficial. Save its candidates to the candidate list
1033 for (std::shared_ptr
<Candidate
> &C
: OF
.Candidates
)
1034 CandidateList
.push_back(C
);
1035 FunctionList
.push_back(OF
);
1037 // Move to the next function.
1038 Parent
.IsInTree
= false;
1044 // Remove C from the candidate space, and update its OutlinedFunction.
1045 void MachineOutliner::prune(Candidate
&C
,
1046 std::vector
<OutlinedFunction
> &FunctionList
) {
1047 // Get the OutlinedFunction associated with this Candidate.
1048 OutlinedFunction
&F
= FunctionList
[C
.FunctionIdx
];
1050 // Update C's associated function's occurrence count.
1053 // Remove C from the CandidateList.
1054 C
.InCandidateList
= false;
1056 LLVM_DEBUG(dbgs() << "- Removed a Candidate \n";
1057 dbgs() << "--- Num fns left for candidate: "
1058 << F
.getOccurrenceCount() << "\n";
1059 dbgs() << "--- Candidate's functions's benefit: " << F
.getBenefit()
1063 void MachineOutliner::pruneOverlaps(
1064 std::vector
<std::shared_ptr
<Candidate
>> &CandidateList
,
1065 std::vector
<OutlinedFunction
> &FunctionList
, InstructionMapper
&Mapper
,
1066 unsigned MaxCandidateLen
) {
1068 // Return true if this candidate became unbeneficial for outlining in a
1070 auto ShouldSkipCandidate
= [&FunctionList
, this](Candidate
&C
) {
1072 // Check if the candidate was removed in a previous step.
1073 if (!C
.InCandidateList
)
1076 // C must be alive. Check if we should remove it.
1077 if (FunctionList
[C
.FunctionIdx
].getBenefit() < 1) {
1078 prune(C
, FunctionList
);
1082 // C is in the list, and F is still beneficial.
1086 // TODO: Experiment with interval trees or other interval-checking structures
1087 // to lower the time complexity of this function.
1088 // TODO: Can we do better than the simple greedy choice?
1089 // Check for overlaps in the range.
1090 // This is O(MaxCandidateLen * CandidateList.size()).
1091 for (auto It
= CandidateList
.begin(), Et
= CandidateList
.end(); It
!= Et
;
1093 Candidate
&C1
= **It
;
1095 // If C1 was already pruned, or its function is no longer beneficial for
1096 // outlining, move to the next candidate.
1097 if (ShouldSkipCandidate(C1
))
1100 // The minimum start index of any candidate that could overlap with this
1102 unsigned FarthestPossibleIdx
= 0;
1104 // Either the index is 0, or it's at most MaxCandidateLen indices away.
1105 if (C1
.getStartIdx() > MaxCandidateLen
)
1106 FarthestPossibleIdx
= C1
.getStartIdx() - MaxCandidateLen
;
1108 // Compare against the candidates in the list that start at most
1109 // FarthestPossibleIdx indices away from C1. There are at most
1110 // MaxCandidateLen of these.
1111 for (auto Sit
= It
+ 1; Sit
!= Et
; Sit
++) {
1112 Candidate
&C2
= **Sit
;
1114 // Is this candidate too far away to overlap?
1115 if (C2
.getStartIdx() < FarthestPossibleIdx
)
1118 // If C2 was already pruned, or its function is no longer beneficial for
1119 // outlining, move to the next candidate.
1120 if (ShouldSkipCandidate(C2
))
1123 // Do C1 and C2 overlap?
1126 // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
1128 // We sorted our candidate list so C2Start <= C1Start. We know that
1129 // C2End > C2Start since each candidate has length >= 2. Therefore, all we
1130 // have to check is C2End < C2Start to see if we overlap.
1131 if (C2
.getEndIdx() < C1
.getStartIdx())
1134 // C1 and C2 overlap.
1135 // We need to choose the better of the two.
1137 // Approximate this by picking the one which would have saved us the
1138 // most instructions before any pruning.
1140 // Is C2 a better candidate?
1141 if (C2
.Benefit
> C1
.Benefit
) {
1142 // Yes, so prune C1. Since C1 is dead, we don't have to compare it
1143 // against anything anymore, so break.
1144 prune(C1
, FunctionList
);
1148 // Prune C2 and move on to the next candidate.
1149 prune(C2
, FunctionList
);
1154 unsigned MachineOutliner::buildCandidateList(
1155 std::vector
<std::shared_ptr
<Candidate
>> &CandidateList
,
1156 std::vector
<OutlinedFunction
> &FunctionList
, SuffixTree
&ST
,
1157 InstructionMapper
&Mapper
) {
1159 std::vector
<unsigned> CandidateSequence
; // Current outlining candidate.
1160 unsigned MaxCandidateLen
= 0; // Length of the longest candidate.
1163 findCandidates(ST
, Mapper
, CandidateList
, FunctionList
);
1165 // Sort the candidates in decending order. This will simplify the outlining
1166 // process when we have to remove the candidates from the mapping by
1167 // allowing us to cut them out without keeping track of an offset.
1169 CandidateList
.begin(), CandidateList
.end(),
1170 [](const std::shared_ptr
<Candidate
> &LHS
,
1171 const std::shared_ptr
<Candidate
> &RHS
) { return *LHS
< *RHS
; });
1173 return MaxCandidateLen
;
1177 MachineOutliner::createOutlinedFunction(Module
&M
, const OutlinedFunction
&OF
,
1178 InstructionMapper
&Mapper
) {
1180 // Create the function name. This should be unique. For now, just hash the
1181 // module name and include it in the function name plus the number of this
1183 std::ostringstream NameStream
;
1184 NameStream
<< "OUTLINED_FUNCTION_" << OF
.Name
;
1186 // Create the function using an IR-level function.
1187 LLVMContext
&C
= M
.getContext();
1188 Function
*F
= dyn_cast
<Function
>(
1189 M
.getOrInsertFunction(NameStream
.str(), Type::getVoidTy(C
)));
1190 assert(F
&& "Function was null!");
1192 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1193 // which gives us better results when we outline from linkonceodr functions.
1194 F
->setLinkage(GlobalValue::InternalLinkage
);
1195 F
->setUnnamedAddr(GlobalValue::UnnamedAddr::Global
);
1197 // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's
1200 // Set optsize/minsize, so we don't insert padding between outlined
1202 F
->addFnAttr(Attribute::OptimizeForSize
);
1203 F
->addFnAttr(Attribute::MinSize
);
1205 BasicBlock
*EntryBB
= BasicBlock::Create(C
, "entry", F
);
1206 IRBuilder
<> Builder(EntryBB
);
1207 Builder
.CreateRetVoid();
1209 MachineModuleInfo
&MMI
= getAnalysis
<MachineModuleInfo
>();
1210 MachineFunction
&MF
= MMI
.getOrCreateMachineFunction(*F
);
1211 MachineBasicBlock
&MBB
= *MF
.CreateMachineBasicBlock();
1212 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
1213 const TargetInstrInfo
&TII
= *STI
.getInstrInfo();
1215 // Insert the new function into the module.
1216 MF
.insert(MF
.begin(), &MBB
);
1218 // Copy over the instructions for the function using the integer mappings in
1220 for (unsigned Str
: OF
.Sequence
) {
1221 MachineInstr
*NewMI
=
1222 MF
.CloneMachineInstr(Mapper
.IntegerInstructionMap
.find(Str
)->second
);
1223 NewMI
->dropMemRefs(MF
);
1225 // Don't keep debug information for outlined instructions.
1226 NewMI
->setDebugLoc(DebugLoc());
1227 MBB
.insert(MBB
.end(), NewMI
);
1230 TII
.buildOutlinedFrame(MBB
, MF
, OF
);
1232 // Outlined functions shouldn't preserve liveness.
1233 MF
.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness
);
1234 MF
.getRegInfo().freezeReservedRegs(MF
);
1236 // If there's a DISubprogram associated with this outlined function, then
1237 // emit debug info for the outlined function.
1238 if (DISubprogram
*SP
= getSubprogramOrNull(OF
)) {
1239 // We have a DISubprogram. Get its DICompileUnit.
1240 DICompileUnit
*CU
= SP
->getUnit();
1241 DIBuilder
DB(M
, true, CU
);
1242 DIFile
*Unit
= SP
->getFile();
1244 // Get the mangled name of the function for the linkage name.
1246 llvm::raw_string_ostream
MangledNameStream(Dummy
);
1247 Mg
.getNameWithPrefix(MangledNameStream
, F
, false);
1249 DISubprogram
*OutlinedSP
= DB
.createFunction(
1250 Unit
/* Context */, F
->getName(), StringRef(MangledNameStream
.str()),
1252 0 /* Line 0 is reserved for compiler-generated code. */,
1253 DB
.createSubroutineType(DB
.getOrCreateTypeArray(None
)), /* void type */
1254 false, true, 0, /* Line 0 is reserved for compiler-generated code. */
1255 DINode::DIFlags::FlagArtificial
/* Compiler-generated code. */,
1256 true /* Outlined code is optimized code by definition. */);
1258 // Don't add any new variables to the subprogram.
1259 DB
.finalizeSubprogram(OutlinedSP
);
1261 // Attach subprogram to the function.
1262 F
->setSubprogram(OutlinedSP
);
1263 // We're done with the DIBuilder.
1270 bool MachineOutliner::outline(
1271 Module
&M
, const ArrayRef
<std::shared_ptr
<Candidate
>> &CandidateList
,
1272 std::vector
<OutlinedFunction
> &FunctionList
, InstructionMapper
&Mapper
) {
1274 bool OutlinedSomething
= false;
1275 // Replace the candidates with calls to their respective outlined functions.
1276 for (const std::shared_ptr
<Candidate
> &Cptr
: CandidateList
) {
1277 Candidate
&C
= *Cptr
;
1278 // Was the candidate removed during pruneOverlaps?
1279 if (!C
.InCandidateList
)
1282 // If not, then look at its OutlinedFunction.
1283 OutlinedFunction
&OF
= FunctionList
[C
.FunctionIdx
];
1285 // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
1286 if (OF
.getBenefit() < 1)
1289 // Does this candidate have a function yet?
1291 OF
.MF
= createOutlinedFunction(M
, OF
, Mapper
);
1292 emitOutlinedFunctionRemark(OF
);
1296 MachineFunction
*MF
= OF
.MF
;
1297 MachineBasicBlock
&MBB
= *C
.getMBB();
1298 MachineBasicBlock::iterator StartIt
= C
.front();
1299 MachineBasicBlock::iterator EndIt
= C
.back();
1300 assert(StartIt
!= C
.getMBB()->end() && "StartIt out of bounds!");
1301 assert(EndIt
!= C
.getMBB()->end() && "EndIt out of bounds!");
1303 const TargetSubtargetInfo
&STI
= MF
->getSubtarget();
1304 const TargetInstrInfo
&TII
= *STI
.getInstrInfo();
1306 // Insert a call to the new function and erase the old sequence.
1307 auto CallInst
= TII
.insertOutlinedCall(M
, MBB
, StartIt
, *OF
.MF
, C
);
1309 // If the caller tracks liveness, then we need to make sure that anything
1310 // we outline doesn't break liveness assumptions.
1311 // The outlined functions themselves currently don't track liveness, but
1312 // we should make sure that the ranges we yank things out of aren't
1314 if (MBB
.getParent()->getProperties().hasProperty(
1315 MachineFunctionProperties::Property::TracksLiveness
)) {
1316 // Helper lambda for adding implicit def operands to the call instruction.
1317 auto CopyDefs
= [&CallInst
](MachineInstr
&MI
) {
1318 for (MachineOperand
&MOP
: MI
.operands()) {
1319 // Skip over anything that isn't a register.
1323 // If it's a def, add it to the call instruction.
1325 CallInst
->addOperand(
1326 MachineOperand::CreateReg(MOP
.getReg(), true, /* isDef = true */
1327 true /* isImp = true */));
1331 // Copy over the defs in the outlined range.
1332 // First inst in outlined range <-- Anything that's defined in this
1333 // ... .. range has to be added as an implicit
1334 // Last inst in outlined range <-- def to the call instruction.
1335 std::for_each(CallInst
, std::next(EndIt
), CopyDefs
);
1338 // Erase from the point after where the call was inserted up to, and
1339 // including, the final instruction in the sequence.
1340 // Erase needs one past the end, so we need std::next there too.
1341 MBB
.erase(std::next(StartIt
), std::next(EndIt
));
1342 OutlinedSomething
= true;
1348 LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething
<< "\n";);
1350 return OutlinedSomething
;
1353 void MachineOutliner::populateMapper(InstructionMapper
&Mapper
, Module
&M
,
1354 MachineModuleInfo
&MMI
) {
1355 // Build instruction mappings for each function in the module. Start by
1356 // iterating over each Function in M.
1357 for (Function
&F
: M
) {
1359 // If there's nothing in F, then there's no reason to try and outline from
1364 // There's something in F. Check if it has a MachineFunction associated with
1366 MachineFunction
*MF
= MMI
.getMachineFunction(F
);
1368 // If it doesn't, then there's nothing to outline from. Move to the next
1373 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
1375 if (!RunOnAllFunctions
&& !TII
->shouldOutlineFromFunctionByDefault(*MF
))
1378 // We have a MachineFunction. Ask the target if it's suitable for outlining.
1379 // If it isn't, then move on to the next Function in the module.
1380 if (!TII
->isFunctionSafeToOutlineFrom(*MF
, OutlineFromLinkOnceODRs
))
1383 // We have a function suitable for outlining. Iterate over every
1384 // MachineBasicBlock in MF and try to map its instructions to a list of
1385 // unsigned integers.
1386 for (MachineBasicBlock
&MBB
: *MF
) {
1387 // If there isn't anything in MBB, then there's no point in outlining from
1389 // If there are fewer than 2 instructions in the MBB, then it can't ever
1390 // contain something worth outlining.
1391 // FIXME: This should be based off of the maximum size in B of an outlined
1392 // call versus the size in B of the MBB.
1393 if (MBB
.empty() || MBB
.size() < 2)
1396 // Check if MBB could be the target of an indirect branch. If it is, then
1397 // we don't want to outline from it.
1398 if (MBB
.hasAddressTaken())
1401 // MBB is suitable for outlining. Map it to a list of unsigneds.
1402 Mapper
.convertToUnsignedVec(MBB
, *TII
);
1407 void MachineOutliner::initSizeRemarkInfo(
1408 const Module
&M
, const MachineModuleInfo
&MMI
,
1409 StringMap
<unsigned> &FunctionToInstrCount
) {
1410 // Collect instruction counts for every function. We'll use this to emit
1411 // per-function size remarks later.
1412 for (const Function
&F
: M
) {
1413 MachineFunction
*MF
= MMI
.getMachineFunction(F
);
1415 // We only care about MI counts here. If there's no MachineFunction at this
1416 // point, then there won't be after the outliner runs, so let's move on.
1419 FunctionToInstrCount
[F
.getName().str()] = MF
->getInstructionCount();
1423 void MachineOutliner::emitInstrCountChangedRemark(
1424 const Module
&M
, const MachineModuleInfo
&MMI
,
1425 const StringMap
<unsigned> &FunctionToInstrCount
) {
1426 // Iterate over each function in the module and emit remarks.
1427 // Note that we won't miss anything by doing this, because the outliner never
1428 // deletes functions.
1429 for (const Function
&F
: M
) {
1430 MachineFunction
*MF
= MMI
.getMachineFunction(F
);
1432 // The outliner never deletes functions. If we don't have a MF here, then we
1433 // didn't have one prior to outlining either.
1437 std::string Fname
= F
.getName();
1438 unsigned FnCountAfter
= MF
->getInstructionCount();
1439 unsigned FnCountBefore
= 0;
1441 // Check if the function was recorded before.
1442 auto It
= FunctionToInstrCount
.find(Fname
);
1444 // Did we have a previously-recorded size? If yes, then set FnCountBefore
1446 if (It
!= FunctionToInstrCount
.end())
1447 FnCountBefore
= It
->second
;
1449 // Compute the delta and emit a remark if there was a change.
1450 int64_t FnDelta
= static_cast<int64_t>(FnCountAfter
) -
1451 static_cast<int64_t>(FnCountBefore
);
1455 MachineOptimizationRemarkEmitter
MORE(*MF
, nullptr);
1457 MachineOptimizationRemarkAnalysis
R("size-info", "FunctionMISizeChange",
1458 DiagnosticLocation(),
1460 R
<< DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner")
1462 << DiagnosticInfoOptimizationBase::Argument("Function", F
.getName())
1463 << ": MI instruction count changed from "
1464 << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore",
1467 << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter",
1470 << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta
);
1476 bool MachineOutliner::runOnModule(Module
&M
) {
1477 // Check if there's anything in the module. If it's empty, then there's
1478 // nothing to outline.
1482 MachineModuleInfo
&MMI
= getAnalysis
<MachineModuleInfo
>();
1484 // If the user passed -enable-machine-outliner=always or
1485 // -enable-machine-outliner, the pass will run on all functions in the module.
1486 // Otherwise, if the target supports default outlining, it will run on all
1487 // functions deemed by the target to be worth outlining from by default. Tell
1488 // the user how the outliner is running.
1490 dbgs() << "Machine Outliner: Running on ";
1491 if (RunOnAllFunctions
)
1492 dbgs() << "all functions";
1494 dbgs() << "target-default functions";
1498 // If the user specifies that they want to outline from linkonceodrs, set
1500 OutlineFromLinkOnceODRs
= EnableLinkOnceODROutlining
;
1501 InstructionMapper Mapper
;
1503 // Prepare instruction mappings for the suffix tree.
1504 populateMapper(Mapper
, M
, MMI
);
1506 // Construct a suffix tree, use it to find candidates, and then outline them.
1507 SuffixTree
ST(Mapper
.UnsignedVec
);
1508 std::vector
<std::shared_ptr
<Candidate
>> CandidateList
;
1509 std::vector
<OutlinedFunction
> FunctionList
;
1511 // Find all of the outlining candidates.
1512 unsigned MaxCandidateLen
=
1513 buildCandidateList(CandidateList
, FunctionList
, ST
, Mapper
);
1515 // Remove candidates that overlap with other candidates.
1516 pruneOverlaps(CandidateList
, FunctionList
, Mapper
, MaxCandidateLen
);
1518 // If we've requested size remarks, then collect the MI counts of every
1519 // function before outlining, and the MI counts after outlining.
1520 // FIXME: This shouldn't be in the outliner at all; it should ultimately be
1521 // the pass manager's responsibility.
1522 // This could pretty easily be placed in outline instead, but because we
1523 // really ultimately *don't* want this here, it's done like this for now
1526 // Check if we want size remarks.
1527 bool ShouldEmitSizeRemarks
= M
.shouldEmitInstrCountChangedRemark();
1528 StringMap
<unsigned> FunctionToInstrCount
;
1529 if (ShouldEmitSizeRemarks
)
1530 initSizeRemarkInfo(M
, MMI
, FunctionToInstrCount
);
1532 // Outline each of the candidates and return true if something was outlined.
1533 bool OutlinedSomething
= outline(M
, CandidateList
, FunctionList
, Mapper
);
1535 // If we outlined something, we definitely changed the MI count of the
1536 // module. If we've asked for size remarks, then output them.
1537 // FIXME: This should be in the pass manager.
1538 if (ShouldEmitSizeRemarks
&& OutlinedSomething
)
1539 emitInstrCountChangedRemark(M
, MMI
, FunctionToInstrCount
);
1541 return OutlinedSomething
;