[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / CodeGen / RegAllocGreedy.cpp
blob64da8485389f2bb896e02f20e3e08d757a60eb61
1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RAGreedy function pass for register allocation in
11 // optimized builds.
13 //===----------------------------------------------------------------------===//
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "SpillPlacement.h"
20 #include "Spiller.h"
21 #include "SplitKit.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/MapVector.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/CodeGen/CalcSpillWeights.h"
36 #include "llvm/CodeGen/EdgeBundles.h"
37 #include "llvm/CodeGen/LiveInterval.h"
38 #include "llvm/CodeGen/LiveIntervalUnion.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveRangeEdit.h"
41 #include "llvm/CodeGen/LiveRegMatrix.h"
42 #include "llvm/CodeGen/LiveStacks.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineFrameInfo.h"
47 #include "llvm/CodeGen/MachineFunction.h"
48 #include "llvm/CodeGen/MachineFunctionPass.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RegAllocRegistry.h"
55 #include "llvm/CodeGen/RegisterClassInfo.h"
56 #include "llvm/CodeGen/SlotIndexes.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/VirtRegMap.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/MC/MCRegisterInfo.h"
64 #include "llvm/Pass.h"
65 #include "llvm/Support/BlockFrequency.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Target/TargetMachine.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <memory>
77 #include <queue>
78 #include <tuple>
79 #include <utility>
81 using namespace llvm;
83 #define DEBUG_TYPE "regalloc"
85 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
86 STATISTIC(NumLocalSplits, "Number of split local live ranges");
87 STATISTIC(NumEvicted, "Number of interferences evicted");
89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
90 "split-spill-mode", cl::Hidden,
91 cl::desc("Spill mode for splitting live ranges"),
92 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
93 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
94 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
95 cl::init(SplitEditor::SM_Speed));
97 static cl::opt<unsigned>
98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
99 cl::desc("Last chance recoloring max depth"),
100 cl::init(5));
102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
103 "lcr-max-interf", cl::Hidden,
104 cl::desc("Last chance recoloring maximum number of considered"
105 " interference at a time"),
106 cl::init(8));
108 static cl::opt<bool> ExhaustiveSearch(
109 "exhaustive-register-search", cl::NotHidden,
110 cl::desc("Exhaustive Search for registers bypassing the depth "
111 "and interference cutoffs of last chance recoloring"),
112 cl::Hidden);
114 static cl::opt<bool> EnableLocalReassignment(
115 "enable-local-reassign", cl::Hidden,
116 cl::desc("Local reassignment can yield better allocation decisions, but "
117 "may be compile time intensive"),
118 cl::init(false));
120 static cl::opt<bool> EnableDeferredSpilling(
121 "enable-deferred-spilling", cl::Hidden,
122 cl::desc("Instead of spilling a variable right away, defer the actual "
123 "code insertion to the end of the allocation. That way the "
124 "allocator might still find a suitable coloring for this "
125 "variable because of other evicted variables."),
126 cl::init(false));
128 static cl::opt<unsigned>
129 HugeSizeForSplit("huge-size-for-split", cl::Hidden,
130 cl::desc("A threshold of live range size which may cause "
131 "high compile time cost in global splitting."),
132 cl::init(5000));
134 // FIXME: Find a good default for this flag and remove the flag.
135 static cl::opt<unsigned>
136 CSRFirstTimeCost("regalloc-csr-first-time-cost",
137 cl::desc("Cost for first time use of callee-saved register."),
138 cl::init(0), cl::Hidden);
140 static cl::opt<bool> ConsiderLocalIntervalCost(
141 "condsider-local-interval-cost", cl::Hidden,
142 cl::desc("Consider the cost of local intervals created by a split "
143 "candidate when choosing the best split candidate."),
144 cl::init(false));
146 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
147 createGreedyRegisterAllocator);
149 namespace {
151 class RAGreedy : public MachineFunctionPass,
152 public RegAllocBase,
153 private LiveRangeEdit::Delegate {
154 // Convenient shortcuts.
155 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
156 using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
157 using SmallVirtRegSet = SmallSet<unsigned, 16>;
159 // context
160 MachineFunction *MF;
162 // Shortcuts to some useful interface.
163 const TargetInstrInfo *TII;
164 const TargetRegisterInfo *TRI;
165 RegisterClassInfo RCI;
167 // analyses
168 SlotIndexes *Indexes;
169 MachineBlockFrequencyInfo *MBFI;
170 MachineDominatorTree *DomTree;
171 MachineLoopInfo *Loops;
172 MachineOptimizationRemarkEmitter *ORE;
173 EdgeBundles *Bundles;
174 SpillPlacement *SpillPlacer;
175 LiveDebugVariables *DebugVars;
176 AliasAnalysis *AA;
178 // state
179 std::unique_ptr<Spiller> SpillerInstance;
180 PQueue Queue;
181 unsigned NextCascade;
183 // Live ranges pass through a number of stages as we try to allocate them.
184 // Some of the stages may also create new live ranges:
186 // - Region splitting.
187 // - Per-block splitting.
188 // - Local splitting.
189 // - Spilling.
191 // Ranges produced by one of the stages skip the previous stages when they are
192 // dequeued. This improves performance because we can skip interference checks
193 // that are unlikely to give any results. It also guarantees that the live
194 // range splitting algorithm terminates, something that is otherwise hard to
195 // ensure.
196 enum LiveRangeStage {
197 /// Newly created live range that has never been queued.
198 RS_New,
200 /// Only attempt assignment and eviction. Then requeue as RS_Split.
201 RS_Assign,
203 /// Attempt live range splitting if assignment is impossible.
204 RS_Split,
206 /// Attempt more aggressive live range splitting that is guaranteed to make
207 /// progress. This is used for split products that may not be making
208 /// progress.
209 RS_Split2,
211 /// Live range will be spilled. No more splitting will be attempted.
212 RS_Spill,
215 /// Live range is in memory. Because of other evictions, it might get moved
216 /// in a register in the end.
217 RS_Memory,
219 /// There is nothing more we can do to this live range. Abort compilation
220 /// if it can't be assigned.
221 RS_Done
224 // Enum CutOffStage to keep a track whether the register allocation failed
225 // because of the cutoffs encountered in last chance recoloring.
226 // Note: This is used as bitmask. New value should be next power of 2.
227 enum CutOffStage {
228 // No cutoffs encountered
229 CO_None = 0,
231 // lcr-max-depth cutoff encountered
232 CO_Depth = 1,
234 // lcr-max-interf cutoff encountered
235 CO_Interf = 2
238 uint8_t CutOffInfo;
240 #ifndef NDEBUG
241 static const char *const StageName[];
242 #endif
244 // RegInfo - Keep additional information about each live range.
245 struct RegInfo {
246 LiveRangeStage Stage = RS_New;
248 // Cascade - Eviction loop prevention. See canEvictInterference().
249 unsigned Cascade = 0;
251 RegInfo() = default;
254 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
256 LiveRangeStage getStage(const LiveInterval &VirtReg) const {
257 return ExtraRegInfo[VirtReg.reg].Stage;
260 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
261 ExtraRegInfo.resize(MRI->getNumVirtRegs());
262 ExtraRegInfo[VirtReg.reg].Stage = Stage;
265 template<typename Iterator>
266 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
267 ExtraRegInfo.resize(MRI->getNumVirtRegs());
268 for (;Begin != End; ++Begin) {
269 unsigned Reg = *Begin;
270 if (ExtraRegInfo[Reg].Stage == RS_New)
271 ExtraRegInfo[Reg].Stage = NewStage;
275 /// Cost of evicting interference.
276 struct EvictionCost {
277 unsigned BrokenHints = 0; ///< Total number of broken hints.
278 float MaxWeight = 0; ///< Maximum spill weight evicted.
280 EvictionCost() = default;
282 bool isMax() const { return BrokenHints == ~0u; }
284 void setMax() { BrokenHints = ~0u; }
286 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
288 bool operator<(const EvictionCost &O) const {
289 return std::tie(BrokenHints, MaxWeight) <
290 std::tie(O.BrokenHints, O.MaxWeight);
294 /// EvictionTrack - Keeps track of past evictions in order to optimize region
295 /// split decision.
296 class EvictionTrack {
298 public:
299 using EvictorInfo =
300 std::pair<unsigned /* evictor */, unsigned /* physreg */>;
301 using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>;
303 private:
304 /// Each Vreg that has been evicted in the last stage of selectOrSplit will
305 /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
306 EvicteeInfo Evictees;
308 public:
309 /// Clear all eviction information.
310 void clear() { Evictees.clear(); }
312 /// Clear eviction information for the given evictee Vreg.
313 /// E.g. when Vreg get's a new allocation, the old eviction info is no
314 /// longer relevant.
315 /// \param Evictee The evictee Vreg for whom we want to clear collected
316 /// eviction info.
317 void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); }
319 /// Track new eviction.
320 /// The Evictor vreg has evicted the Evictee vreg from Physreg.
321 /// \param PhysReg The phisical register Evictee was evicted from.
322 /// \param Evictor The evictor Vreg that evicted Evictee.
323 /// \param Evictee The evictee Vreg.
324 void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) {
325 Evictees[Evictee].first = Evictor;
326 Evictees[Evictee].second = PhysReg;
329 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
330 /// \param Evictee The evictee vreg.
331 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
332 /// nobody has evicted Evictee from PhysReg.
333 EvictorInfo getEvictor(unsigned Evictee) {
334 if (Evictees.count(Evictee)) {
335 return Evictees[Evictee];
338 return EvictorInfo(0, 0);
342 // Keeps track of past evictions in order to optimize region split decision.
343 EvictionTrack LastEvicted;
345 // splitting state.
346 std::unique_ptr<SplitAnalysis> SA;
347 std::unique_ptr<SplitEditor> SE;
349 /// Cached per-block interference maps
350 InterferenceCache IntfCache;
352 /// All basic blocks where the current register has uses.
353 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
355 /// Global live range splitting candidate info.
356 struct GlobalSplitCandidate {
357 // Register intended for assignment, or 0.
358 unsigned PhysReg;
360 // SplitKit interval index for this candidate.
361 unsigned IntvIdx;
363 // Interference for PhysReg.
364 InterferenceCache::Cursor Intf;
366 // Bundles where this candidate should be live.
367 BitVector LiveBundles;
368 SmallVector<unsigned, 8> ActiveBlocks;
370 void reset(InterferenceCache &Cache, unsigned Reg) {
371 PhysReg = Reg;
372 IntvIdx = 0;
373 Intf.setPhysReg(Cache, Reg);
374 LiveBundles.clear();
375 ActiveBlocks.clear();
378 // Set B[i] = C for every live bundle where B[i] was NoCand.
379 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
380 unsigned Count = 0;
381 for (unsigned i : LiveBundles.set_bits())
382 if (B[i] == NoCand) {
383 B[i] = C;
384 Count++;
386 return Count;
390 /// Candidate info for each PhysReg in AllocationOrder.
391 /// This vector never shrinks, but grows to the size of the largest register
392 /// class.
393 SmallVector<GlobalSplitCandidate, 32> GlobalCand;
395 enum : unsigned { NoCand = ~0u };
397 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
398 /// NoCand which indicates the stack interval.
399 SmallVector<unsigned, 32> BundleCand;
401 /// Callee-save register cost, calculated once per machine function.
402 BlockFrequency CSRCost;
404 /// Run or not the local reassignment heuristic. This information is
405 /// obtained from the TargetSubtargetInfo.
406 bool EnableLocalReassign;
408 /// Enable or not the consideration of the cost of local intervals created
409 /// by a split candidate when choosing the best split candidate.
410 bool EnableAdvancedRASplitCost;
412 /// Set of broken hints that may be reconciled later because of eviction.
413 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
415 public:
416 RAGreedy();
418 /// Return the pass name.
419 StringRef getPassName() const override { return "Greedy Register Allocator"; }
421 /// RAGreedy analysis usage.
422 void getAnalysisUsage(AnalysisUsage &AU) const override;
423 void releaseMemory() override;
424 Spiller &spiller() override { return *SpillerInstance; }
425 void enqueue(LiveInterval *LI) override;
426 LiveInterval *dequeue() override;
427 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
428 void aboutToRemoveInterval(LiveInterval &) override;
430 /// Perform register allocation.
431 bool runOnMachineFunction(MachineFunction &mf) override;
433 MachineFunctionProperties getRequiredProperties() const override {
434 return MachineFunctionProperties().set(
435 MachineFunctionProperties::Property::NoPHIs);
438 static char ID;
440 private:
441 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
442 SmallVirtRegSet &, unsigned = 0);
444 bool LRE_CanEraseVirtReg(unsigned) override;
445 void LRE_WillShrinkVirtReg(unsigned) override;
446 void LRE_DidCloneVirtReg(unsigned, unsigned) override;
447 void enqueue(PQueue &CurQueue, LiveInterval *LI);
448 LiveInterval *dequeue(PQueue &CurQueue);
450 BlockFrequency calcSpillCost();
451 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
452 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
453 bool growRegion(GlobalSplitCandidate &Cand);
454 bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand,
455 unsigned BBNumber,
456 const AllocationOrder &Order);
457 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
458 GlobalSplitCandidate &Cand, unsigned BBNumber,
459 const AllocationOrder &Order);
460 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
461 const AllocationOrder &Order,
462 bool *CanCauseEvictionChain);
463 bool calcCompactRegion(GlobalSplitCandidate&);
464 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
465 void calcGapWeights(unsigned, SmallVectorImpl<float>&);
466 unsigned canReassign(LiveInterval &VirtReg, unsigned PrevReg);
467 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
468 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
469 bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg,
470 SlotIndex Start, SlotIndex End,
471 EvictionCost &MaxCost);
472 unsigned getCheapestEvicteeWeight(const AllocationOrder &Order,
473 LiveInterval &VirtReg, SlotIndex Start,
474 SlotIndex End, float *BestEvictWeight);
475 void evictInterference(LiveInterval&, unsigned,
476 SmallVectorImpl<unsigned>&);
477 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
478 SmallLISet &RecoloringCandidates,
479 const SmallVirtRegSet &FixedRegisters);
481 unsigned tryAssign(LiveInterval&, AllocationOrder&,
482 SmallVectorImpl<unsigned>&);
483 unsigned tryEvict(LiveInterval&, AllocationOrder&,
484 SmallVectorImpl<unsigned>&, unsigned = ~0u);
485 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
486 SmallVectorImpl<unsigned>&);
487 unsigned isSplitBenefitWorthCost(LiveInterval &VirtReg);
488 /// Calculate cost of region splitting.
489 unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
490 AllocationOrder &Order,
491 BlockFrequency &BestCost,
492 unsigned &NumCands, bool IgnoreCSR,
493 bool *CanCauseEvictionChain = nullptr);
494 /// Perform region splitting.
495 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
496 bool HasCompact,
497 SmallVectorImpl<unsigned> &NewVRegs);
498 /// Check other options before using a callee-saved register for the first
499 /// time.
500 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
501 unsigned PhysReg, unsigned &CostPerUseLimit,
502 SmallVectorImpl<unsigned> &NewVRegs);
503 void initializeCSRCost();
504 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
505 SmallVectorImpl<unsigned>&);
506 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
507 SmallVectorImpl<unsigned>&);
508 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
509 SmallVectorImpl<unsigned>&);
510 unsigned trySplit(LiveInterval&, AllocationOrder&,
511 SmallVectorImpl<unsigned>&);
512 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
513 SmallVectorImpl<unsigned> &,
514 SmallVirtRegSet &, unsigned);
515 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
516 SmallVirtRegSet &, unsigned);
517 void tryHintRecoloring(LiveInterval &);
518 void tryHintsRecoloring();
520 /// Model the information carried by one end of a copy.
521 struct HintInfo {
522 /// The frequency of the copy.
523 BlockFrequency Freq;
524 /// The virtual register or physical register.
525 unsigned Reg;
526 /// Its currently assigned register.
527 /// In case of a physical register Reg == PhysReg.
528 unsigned PhysReg;
530 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
531 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
533 using HintsInfo = SmallVector<HintInfo, 4>;
535 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
536 void collectHintInfo(unsigned, HintsInfo &);
538 bool isUnusedCalleeSavedReg(unsigned PhysReg) const;
540 /// Compute and report the number of spills and reloads for a loop.
541 void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
542 unsigned &FoldedReloads, unsigned &Spills,
543 unsigned &FoldedSpills);
545 /// Report the number of spills and reloads for each loop.
546 void reportNumberOfSplillsReloads() {
547 for (MachineLoop *L : *Loops) {
548 unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
549 reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
550 FoldedSpills);
555 } // end anonymous namespace
557 char RAGreedy::ID = 0;
558 char &llvm::RAGreedyID = RAGreedy::ID;
560 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
561 "Greedy Register Allocator", false, false)
562 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
563 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
564 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
565 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
566 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
567 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
568 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
569 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
570 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
571 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
572 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
573 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
574 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
575 INITIALIZE_PASS_END(RAGreedy, "greedy",
576 "Greedy Register Allocator", false, false)
578 #ifndef NDEBUG
579 const char *const RAGreedy::StageName[] = {
580 "RS_New",
581 "RS_Assign",
582 "RS_Split",
583 "RS_Split2",
584 "RS_Spill",
585 "RS_Memory",
586 "RS_Done"
588 #endif
590 // Hysteresis to use when comparing floats.
591 // This helps stabilize decisions based on float comparisons.
592 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
594 FunctionPass* llvm::createGreedyRegisterAllocator() {
595 return new RAGreedy();
598 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
601 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
602 AU.setPreservesCFG();
603 AU.addRequired<MachineBlockFrequencyInfo>();
604 AU.addPreserved<MachineBlockFrequencyInfo>();
605 AU.addRequired<AAResultsWrapperPass>();
606 AU.addPreserved<AAResultsWrapperPass>();
607 AU.addRequired<LiveIntervals>();
608 AU.addPreserved<LiveIntervals>();
609 AU.addRequired<SlotIndexes>();
610 AU.addPreserved<SlotIndexes>();
611 AU.addRequired<LiveDebugVariables>();
612 AU.addPreserved<LiveDebugVariables>();
613 AU.addRequired<LiveStacks>();
614 AU.addPreserved<LiveStacks>();
615 AU.addRequired<MachineDominatorTree>();
616 AU.addPreserved<MachineDominatorTree>();
617 AU.addRequired<MachineLoopInfo>();
618 AU.addPreserved<MachineLoopInfo>();
619 AU.addRequired<VirtRegMap>();
620 AU.addPreserved<VirtRegMap>();
621 AU.addRequired<LiveRegMatrix>();
622 AU.addPreserved<LiveRegMatrix>();
623 AU.addRequired<EdgeBundles>();
624 AU.addRequired<SpillPlacement>();
625 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
626 MachineFunctionPass::getAnalysisUsage(AU);
629 //===----------------------------------------------------------------------===//
630 // LiveRangeEdit delegate methods
631 //===----------------------------------------------------------------------===//
633 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
634 LiveInterval &LI = LIS->getInterval(VirtReg);
635 if (VRM->hasPhys(VirtReg)) {
636 Matrix->unassign(LI);
637 aboutToRemoveInterval(LI);
638 return true;
640 // Unassigned virtreg is probably in the priority queue.
641 // RegAllocBase will erase it after dequeueing.
642 // Nonetheless, clear the live-range so that the debug
643 // dump will show the right state for that VirtReg.
644 LI.clear();
645 return false;
648 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
649 if (!VRM->hasPhys(VirtReg))
650 return;
652 // Register is assigned, put it back on the queue for reassignment.
653 LiveInterval &LI = LIS->getInterval(VirtReg);
654 Matrix->unassign(LI);
655 enqueue(&LI);
658 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
659 // Cloning a register we haven't even heard about yet? Just ignore it.
660 if (!ExtraRegInfo.inBounds(Old))
661 return;
663 // LRE may clone a virtual register because dead code elimination causes it to
664 // be split into connected components. The new components are much smaller
665 // than the original, so they should get a new chance at being assigned.
666 // same stage as the parent.
667 ExtraRegInfo[Old].Stage = RS_Assign;
668 ExtraRegInfo.grow(New);
669 ExtraRegInfo[New] = ExtraRegInfo[Old];
672 void RAGreedy::releaseMemory() {
673 SpillerInstance.reset();
674 ExtraRegInfo.clear();
675 GlobalCand.clear();
678 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
680 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
681 // Prioritize live ranges by size, assigning larger ranges first.
682 // The queue holds (size, reg) pairs.
683 const unsigned Size = LI->getSize();
684 const unsigned Reg = LI->reg;
685 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
686 "Can only enqueue virtual registers");
687 unsigned Prio;
689 ExtraRegInfo.grow(Reg);
690 if (ExtraRegInfo[Reg].Stage == RS_New)
691 ExtraRegInfo[Reg].Stage = RS_Assign;
693 if (ExtraRegInfo[Reg].Stage == RS_Split) {
694 // Unsplit ranges that couldn't be allocated immediately are deferred until
695 // everything else has been allocated.
696 Prio = Size;
697 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
698 // Memory operand should be considered last.
699 // Change the priority such that Memory operand are assigned in
700 // the reverse order that they came in.
701 // TODO: Make this a member variable and probably do something about hints.
702 static unsigned MemOp = 0;
703 Prio = MemOp++;
704 } else {
705 // Giant live ranges fall back to the global assignment heuristic, which
706 // prevents excessive spilling in pathological cases.
707 bool ReverseLocal = TRI->reverseLocalAssignment();
708 const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
709 bool ForceGlobal = !ReverseLocal &&
710 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
712 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
713 LIS->intervalIsInOneMBB(*LI)) {
714 // Allocate original local ranges in linear instruction order. Since they
715 // are singly defined, this produces optimal coloring in the absence of
716 // global interference and other constraints.
717 if (!ReverseLocal)
718 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
719 else {
720 // Allocating bottom up may allow many short LRGs to be assigned first
721 // to one of the cheap registers. This could be much faster for very
722 // large blocks on targets with many physical registers.
723 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
725 Prio |= RC.AllocationPriority << 24;
726 } else {
727 // Allocate global and split ranges in long->short order. Long ranges that
728 // don't fit should be spilled (or split) ASAP so they don't create
729 // interference. Mark a bit to prioritize global above local ranges.
730 Prio = (1u << 29) + Size;
732 // Mark a higher bit to prioritize global and local above RS_Split.
733 Prio |= (1u << 31);
735 // Boost ranges that have a physical register hint.
736 if (VRM->hasKnownPreference(Reg))
737 Prio |= (1u << 30);
739 // The virtual register number is a tie breaker for same-sized ranges.
740 // Give lower vreg numbers higher priority to assign them first.
741 CurQueue.push(std::make_pair(Prio, ~Reg));
744 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
746 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
747 if (CurQueue.empty())
748 return nullptr;
749 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
750 CurQueue.pop();
751 return LI;
754 //===----------------------------------------------------------------------===//
755 // Direct Assignment
756 //===----------------------------------------------------------------------===//
758 /// tryAssign - Try to assign VirtReg to an available register.
759 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
760 AllocationOrder &Order,
761 SmallVectorImpl<unsigned> &NewVRegs) {
762 Order.rewind();
763 unsigned PhysReg;
764 while ((PhysReg = Order.next()))
765 if (!Matrix->checkInterference(VirtReg, PhysReg))
766 break;
767 if (!PhysReg || Order.isHint())
768 return PhysReg;
770 // PhysReg is available, but there may be a better choice.
772 // If we missed a simple hint, try to cheaply evict interference from the
773 // preferred register.
774 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
775 if (Order.isHint(Hint)) {
776 LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n');
777 EvictionCost MaxCost;
778 MaxCost.setBrokenHints(1);
779 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
780 evictInterference(VirtReg, Hint, NewVRegs);
781 return Hint;
783 // Record the missed hint, we may be able to recover
784 // at the end if the surrounding allocation changed.
785 SetOfBrokenHints.insert(&VirtReg);
788 // Try to evict interference from a cheaper alternative.
789 unsigned Cost = TRI->getCostPerUse(PhysReg);
791 // Most registers have 0 additional cost.
792 if (!Cost)
793 return PhysReg;
795 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
796 << Cost << '\n');
797 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
798 return CheapReg ? CheapReg : PhysReg;
801 //===----------------------------------------------------------------------===//
802 // Interference eviction
803 //===----------------------------------------------------------------------===//
805 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
806 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
807 unsigned PhysReg;
808 while ((PhysReg = Order.next())) {
809 if (PhysReg == PrevReg)
810 continue;
812 MCRegUnitIterator Units(PhysReg, TRI);
813 for (; Units.isValid(); ++Units) {
814 // Instantiate a "subquery", not to be confused with the Queries array.
815 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
816 if (subQ.checkInterference())
817 break;
819 // If no units have interference, break out with the current PhysReg.
820 if (!Units.isValid())
821 break;
823 if (PhysReg)
824 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
825 << printReg(PrevReg, TRI) << " to "
826 << printReg(PhysReg, TRI) << '\n');
827 return PhysReg;
830 /// shouldEvict - determine if A should evict the assigned live range B. The
831 /// eviction policy defined by this function together with the allocation order
832 /// defined by enqueue() decides which registers ultimately end up being split
833 /// and spilled.
835 /// Cascade numbers are used to prevent infinite loops if this function is a
836 /// cyclic relation.
838 /// @param A The live range to be assigned.
839 /// @param IsHint True when A is about to be assigned to its preferred
840 /// register.
841 /// @param B The live range to be evicted.
842 /// @param BreaksHint True when B is already assigned to its preferred register.
843 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
844 LiveInterval &B, bool BreaksHint) {
845 bool CanSplit = getStage(B) < RS_Spill;
847 // Be fairly aggressive about following hints as long as the evictee can be
848 // split.
849 if (CanSplit && IsHint && !BreaksHint)
850 return true;
852 if (A.weight > B.weight) {
853 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
854 return true;
856 return false;
859 /// canEvictInterference - Return true if all interferences between VirtReg and
860 /// PhysReg can be evicted.
862 /// @param VirtReg Live range that is about to be assigned.
863 /// @param PhysReg Desired register for assignment.
864 /// @param IsHint True when PhysReg is VirtReg's preferred register.
865 /// @param MaxCost Only look for cheaper candidates and update with new cost
866 /// when returning true.
867 /// @returns True when interference can be evicted cheaper than MaxCost.
868 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
869 bool IsHint, EvictionCost &MaxCost) {
870 // It is only possible to evict virtual register interference.
871 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
872 return false;
874 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
876 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
877 // involved in an eviction before. If a cascade number was assigned, deny
878 // evicting anything with the same or a newer cascade number. This prevents
879 // infinite eviction loops.
881 // This works out so a register without a cascade number is allowed to evict
882 // anything, and it can be evicted by anything.
883 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
884 if (!Cascade)
885 Cascade = NextCascade;
887 EvictionCost Cost;
888 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
889 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
890 // If there is 10 or more interferences, chances are one is heavier.
891 if (Q.collectInterferingVRegs(10) >= 10)
892 return false;
894 // Check if any interfering live range is heavier than MaxWeight.
895 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
896 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
897 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
898 "Only expecting virtual register interference from query");
899 // Never evict spill products. They cannot split or spill.
900 if (getStage(*Intf) == RS_Done)
901 return false;
902 // Once a live range becomes small enough, it is urgent that we find a
903 // register for it. This is indicated by an infinite spill weight. These
904 // urgent live ranges get to evict almost anything.
906 // Also allow urgent evictions of unspillable ranges from a strictly
907 // larger allocation order.
908 bool Urgent = !VirtReg.isSpillable() &&
909 (Intf->isSpillable() ||
910 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
911 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
912 // Only evict older cascades or live ranges without a cascade.
913 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
914 if (Cascade <= IntfCascade) {
915 if (!Urgent)
916 return false;
917 // We permit breaking cascades for urgent evictions. It should be the
918 // last resort, though, so make it really expensive.
919 Cost.BrokenHints += 10;
921 // Would this break a satisfied hint?
922 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
923 // Update eviction cost.
924 Cost.BrokenHints += BreaksHint;
925 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
926 // Abort if this would be too expensive.
927 if (!(Cost < MaxCost))
928 return false;
929 if (Urgent)
930 continue;
931 // Apply the eviction policy for non-urgent evictions.
932 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
933 return false;
934 // If !MaxCost.isMax(), then we're just looking for a cheap register.
935 // Evicting another local live range in this case could lead to suboptimal
936 // coloring.
937 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
938 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
939 return false;
943 MaxCost = Cost;
944 return true;
947 /// Return true if all interferences between VirtReg and PhysReg between
948 /// Start and End can be evicted.
950 /// \param VirtReg Live range that is about to be assigned.
951 /// \param PhysReg Desired register for assignment.
952 /// \param Start Start of range to look for interferences.
953 /// \param End End of range to look for interferences.
954 /// \param MaxCost Only look for cheaper candidates and update with new cost
955 /// when returning true.
956 /// \return True when interference can be evicted cheaper than MaxCost.
957 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
958 unsigned PhysReg, SlotIndex Start,
959 SlotIndex End,
960 EvictionCost &MaxCost) {
961 EvictionCost Cost;
963 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
964 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
966 // Check if any interfering live range is heavier than MaxWeight.
967 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
968 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
970 // Check if interference overlast the segment in interest.
971 if (!Intf->overlaps(Start, End))
972 continue;
974 // Cannot evict non virtual reg interference.
975 if (!TargetRegisterInfo::isVirtualRegister(Intf->reg))
976 return false;
977 // Never evict spill products. They cannot split or spill.
978 if (getStage(*Intf) == RS_Done)
979 return false;
981 // Would this break a satisfied hint?
982 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
983 // Update eviction cost.
984 Cost.BrokenHints += BreaksHint;
985 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
986 // Abort if this would be too expensive.
987 if (!(Cost < MaxCost))
988 return false;
992 if (Cost.MaxWeight == 0)
993 return false;
995 MaxCost = Cost;
996 return true;
999 /// Return the physical register that will be best
1000 /// candidate for eviction by a local split interval that will be created
1001 /// between Start and End.
1003 /// \param Order The allocation order
1004 /// \param VirtReg Live range that is about to be assigned.
1005 /// \param Start Start of range to look for interferences
1006 /// \param End End of range to look for interferences
1007 /// \param BestEvictweight The eviction cost of that eviction
1008 /// \return The PhysReg which is the best candidate for eviction and the
1009 /// eviction cost in BestEvictweight
1010 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1011 LiveInterval &VirtReg,
1012 SlotIndex Start, SlotIndex End,
1013 float *BestEvictweight) {
1014 EvictionCost BestEvictCost;
1015 BestEvictCost.setMax();
1016 BestEvictCost.MaxWeight = VirtReg.weight;
1017 unsigned BestEvicteePhys = 0;
1019 // Go over all physical registers and find the best candidate for eviction
1020 for (auto PhysReg : Order.getOrder()) {
1022 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1023 BestEvictCost))
1024 continue;
1026 // Best so far.
1027 BestEvicteePhys = PhysReg;
1029 *BestEvictweight = BestEvictCost.MaxWeight;
1030 return BestEvicteePhys;
1033 /// evictInterference - Evict any interferring registers that prevent VirtReg
1034 /// from being assigned to Physreg. This assumes that canEvictInterference
1035 /// returned true.
1036 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
1037 SmallVectorImpl<unsigned> &NewVRegs) {
1038 // Make sure that VirtReg has a cascade number, and assign that cascade
1039 // number to every evicted register. These live ranges than then only be
1040 // evicted by a newer cascade, preventing infinite loops.
1041 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
1042 if (!Cascade)
1043 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
1045 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1046 << " interference: Cascade " << Cascade << '\n');
1048 // Collect all interfering virtregs first.
1049 SmallVector<LiveInterval*, 8> Intfs;
1050 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1051 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1052 // We usually have the interfering VRegs cached so collectInterferingVRegs()
1053 // should be fast, we may need to recalculate if when different physregs
1054 // overlap the same register unit so we had different SubRanges queried
1055 // against it.
1056 Q.collectInterferingVRegs();
1057 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1058 Intfs.append(IVR.begin(), IVR.end());
1061 // Evict them second. This will invalidate the queries.
1062 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
1063 LiveInterval *Intf = Intfs[i];
1064 // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1065 if (!VRM->hasPhys(Intf->reg))
1066 continue;
1068 LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg);
1070 Matrix->unassign(*Intf);
1071 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
1072 VirtReg.isSpillable() < Intf->isSpillable()) &&
1073 "Cannot decrease cascade number, illegal eviction");
1074 ExtraRegInfo[Intf->reg].Cascade = Cascade;
1075 ++NumEvicted;
1076 NewVRegs.push_back(Intf->reg);
1080 /// Returns true if the given \p PhysReg is a callee saved register and has not
1081 /// been used for allocation yet.
1082 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
1083 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1084 if (CSR == 0)
1085 return false;
1087 return !Matrix->isPhysRegUsed(PhysReg);
1090 /// tryEvict - Try to evict all interferences for a physreg.
1091 /// @param VirtReg Currently unassigned virtual register.
1092 /// @param Order Physregs to try.
1093 /// @return Physreg to assign VirtReg, or 0.
1094 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
1095 AllocationOrder &Order,
1096 SmallVectorImpl<unsigned> &NewVRegs,
1097 unsigned CostPerUseLimit) {
1098 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1099 TimePassesIsEnabled);
1101 // Keep track of the cheapest interference seen so far.
1102 EvictionCost BestCost;
1103 BestCost.setMax();
1104 unsigned BestPhys = 0;
1105 unsigned OrderLimit = Order.getOrder().size();
1107 // When we are just looking for a reduced cost per use, don't break any
1108 // hints, and only evict smaller spill weights.
1109 if (CostPerUseLimit < ~0u) {
1110 BestCost.BrokenHints = 0;
1111 BestCost.MaxWeight = VirtReg.weight;
1113 // Check of any registers in RC are below CostPerUseLimit.
1114 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
1115 unsigned MinCost = RegClassInfo.getMinCost(RC);
1116 if (MinCost >= CostPerUseLimit) {
1117 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1118 << MinCost << ", no cheaper registers to be found.\n");
1119 return 0;
1122 // It is normal for register classes to have a long tail of registers with
1123 // the same cost. We don't need to look at them if they're too expensive.
1124 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
1125 OrderLimit = RegClassInfo.getLastCostChange(RC);
1126 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1127 << " regs.\n");
1131 Order.rewind();
1132 while (unsigned PhysReg = Order.next(OrderLimit)) {
1133 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
1134 continue;
1135 // The first use of a callee-saved register in a function has cost 1.
1136 // Don't start using a CSR when the CostPerUseLimit is low.
1137 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1138 LLVM_DEBUG(
1139 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1140 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1141 << '\n');
1142 continue;
1145 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
1146 continue;
1148 // Best so far.
1149 BestPhys = PhysReg;
1151 // Stop if the hint can be used.
1152 if (Order.isHint())
1153 break;
1156 if (!BestPhys)
1157 return 0;
1159 evictInterference(VirtReg, BestPhys, NewVRegs);
1160 return BestPhys;
1163 //===----------------------------------------------------------------------===//
1164 // Region Splitting
1165 //===----------------------------------------------------------------------===//
1167 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1168 /// interference pattern in Physreg and its aliases. Add the constraints to
1169 /// SpillPlacement and return the static cost of this split in Cost, assuming
1170 /// that all preferences in SplitConstraints are met.
1171 /// Return false if there are no bundles with positive bias.
1172 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1173 BlockFrequency &Cost) {
1174 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1176 // Reset interference dependent info.
1177 SplitConstraints.resize(UseBlocks.size());
1178 BlockFrequency StaticCost = 0;
1179 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1180 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1181 SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1183 BC.Number = BI.MBB->getNumber();
1184 Intf.moveToBlock(BC.Number);
1185 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1186 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1187 BC.ChangesValue = BI.FirstDef.isValid();
1189 if (!Intf.hasInterference())
1190 continue;
1192 // Number of spill code instructions to insert.
1193 unsigned Ins = 0;
1195 // Interference for the live-in value.
1196 if (BI.LiveIn) {
1197 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1198 BC.Entry = SpillPlacement::MustSpill;
1199 ++Ins;
1200 } else if (Intf.first() < BI.FirstInstr) {
1201 BC.Entry = SpillPlacement::PrefSpill;
1202 ++Ins;
1203 } else if (Intf.first() < BI.LastInstr) {
1204 ++Ins;
1207 // Abort if the spill cannot be inserted at the MBB' start
1208 if (((BC.Entry == SpillPlacement::MustSpill) ||
1209 (BC.Entry == SpillPlacement::PrefSpill)) &&
1210 SlotIndex::isEarlierInstr(BI.FirstInstr,
1211 SA->getFirstSplitPoint(BC.Number)))
1212 return false;
1215 // Interference for the live-out value.
1216 if (BI.LiveOut) {
1217 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1218 BC.Exit = SpillPlacement::MustSpill;
1219 ++Ins;
1220 } else if (Intf.last() > BI.LastInstr) {
1221 BC.Exit = SpillPlacement::PrefSpill;
1222 ++Ins;
1223 } else if (Intf.last() > BI.FirstInstr) {
1224 ++Ins;
1228 // Accumulate the total frequency of inserted spill code.
1229 while (Ins--)
1230 StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1232 Cost = StaticCost;
1234 // Add constraints for use-blocks. Note that these are the only constraints
1235 // that may add a positive bias, it is downhill from here.
1236 SpillPlacer->addConstraints(SplitConstraints);
1237 return SpillPlacer->scanActiveBundles();
1240 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1241 /// live-through blocks in Blocks.
1242 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1243 ArrayRef<unsigned> Blocks) {
1244 const unsigned GroupSize = 8;
1245 SpillPlacement::BlockConstraint BCS[GroupSize];
1246 unsigned TBS[GroupSize];
1247 unsigned B = 0, T = 0;
1249 for (unsigned i = 0; i != Blocks.size(); ++i) {
1250 unsigned Number = Blocks[i];
1251 Intf.moveToBlock(Number);
1253 if (!Intf.hasInterference()) {
1254 assert(T < GroupSize && "Array overflow");
1255 TBS[T] = Number;
1256 if (++T == GroupSize) {
1257 SpillPlacer->addLinks(makeArrayRef(TBS, T));
1258 T = 0;
1260 continue;
1263 assert(B < GroupSize && "Array overflow");
1264 BCS[B].Number = Number;
1266 // Abort if the spill cannot be inserted at the MBB' start
1267 MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1268 if (!MBB->empty() &&
1269 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()),
1270 SA->getFirstSplitPoint(Number)))
1271 return false;
1272 // Interference for the live-in value.
1273 if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1274 BCS[B].Entry = SpillPlacement::MustSpill;
1275 else
1276 BCS[B].Entry = SpillPlacement::PrefSpill;
1278 // Interference for the live-out value.
1279 if (Intf.last() >= SA->getLastSplitPoint(Number))
1280 BCS[B].Exit = SpillPlacement::MustSpill;
1281 else
1282 BCS[B].Exit = SpillPlacement::PrefSpill;
1284 if (++B == GroupSize) {
1285 SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1286 B = 0;
1290 SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1291 SpillPlacer->addLinks(makeArrayRef(TBS, T));
1292 return true;
1295 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1296 // Keep track of through blocks that have not been added to SpillPlacer.
1297 BitVector Todo = SA->getThroughBlocks();
1298 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1299 unsigned AddedTo = 0;
1300 #ifndef NDEBUG
1301 unsigned Visited = 0;
1302 #endif
1304 while (true) {
1305 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1306 // Find new through blocks in the periphery of PrefRegBundles.
1307 for (int i = 0, e = NewBundles.size(); i != e; ++i) {
1308 unsigned Bundle = NewBundles[i];
1309 // Look at all blocks connected to Bundle in the full graph.
1310 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1311 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1312 I != E; ++I) {
1313 unsigned Block = *I;
1314 if (!Todo.test(Block))
1315 continue;
1316 Todo.reset(Block);
1317 // This is a new through block. Add it to SpillPlacer later.
1318 ActiveBlocks.push_back(Block);
1319 #ifndef NDEBUG
1320 ++Visited;
1321 #endif
1324 // Any new blocks to add?
1325 if (ActiveBlocks.size() == AddedTo)
1326 break;
1328 // Compute through constraints from the interference, or assume that all
1329 // through blocks prefer spilling when forming compact regions.
1330 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1331 if (Cand.PhysReg) {
1332 if (!addThroughConstraints(Cand.Intf, NewBlocks))
1333 return false;
1334 } else
1335 // Provide a strong negative bias on through blocks to prevent unwanted
1336 // liveness on loop backedges.
1337 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1338 AddedTo = ActiveBlocks.size();
1340 // Perhaps iterating can enable more bundles?
1341 SpillPlacer->iterate();
1343 LLVM_DEBUG(dbgs() << ", v=" << Visited);
1344 return true;
1347 /// calcCompactRegion - Compute the set of edge bundles that should be live
1348 /// when splitting the current live range into compact regions. Compact
1349 /// regions can be computed without looking at interference. They are the
1350 /// regions formed by removing all the live-through blocks from the live range.
1352 /// Returns false if the current live range is already compact, or if the
1353 /// compact regions would form single block regions anyway.
1354 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1355 // Without any through blocks, the live range is already compact.
1356 if (!SA->getNumThroughBlocks())
1357 return false;
1359 // Compact regions don't correspond to any physreg.
1360 Cand.reset(IntfCache, 0);
1362 LLVM_DEBUG(dbgs() << "Compact region bundles");
1364 // Use the spill placer to determine the live bundles. GrowRegion pretends
1365 // that all the through blocks have interference when PhysReg is unset.
1366 SpillPlacer->prepare(Cand.LiveBundles);
1368 // The static split cost will be zero since Cand.Intf reports no interference.
1369 BlockFrequency Cost;
1370 if (!addSplitConstraints(Cand.Intf, Cost)) {
1371 LLVM_DEBUG(dbgs() << ", none.\n");
1372 return false;
1375 if (!growRegion(Cand)) {
1376 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1377 return false;
1380 SpillPlacer->finish();
1382 if (!Cand.LiveBundles.any()) {
1383 LLVM_DEBUG(dbgs() << ", none.\n");
1384 return false;
1387 LLVM_DEBUG({
1388 for (int i : Cand.LiveBundles.set_bits())
1389 dbgs() << " EB#" << i;
1390 dbgs() << ".\n";
1392 return true;
1395 /// calcSpillCost - Compute how expensive it would be to split the live range in
1396 /// SA around all use blocks instead of forming bundle regions.
1397 BlockFrequency RAGreedy::calcSpillCost() {
1398 BlockFrequency Cost = 0;
1399 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1400 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1401 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1402 unsigned Number = BI.MBB->getNumber();
1403 // We normally only need one spill instruction - a load or a store.
1404 Cost += SpillPlacer->getBlockFrequency(Number);
1406 // Unless the value is redefined in the block.
1407 if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1408 Cost += SpillPlacer->getBlockFrequency(Number);
1410 return Cost;
1413 /// Check if splitting Evictee will create a local split interval in
1414 /// basic block number BBNumber that may cause a bad eviction chain. This is
1415 /// intended to prevent bad eviction sequences like:
1416 /// movl %ebp, 8(%esp) # 4-byte Spill
1417 /// movl %ecx, %ebp
1418 /// movl %ebx, %ecx
1419 /// movl %edi, %ebx
1420 /// movl %edx, %edi
1421 /// cltd
1422 /// idivl %esi
1423 /// movl %edi, %edx
1424 /// movl %ebx, %edi
1425 /// movl %ecx, %ebx
1426 /// movl %ebp, %ecx
1427 /// movl 16(%esp), %ebp # 4 - byte Reload
1429 /// Such sequences are created in 2 scenarios:
1431 /// Scenario #1:
1432 /// %0 is evicted from physreg0 by %1.
1433 /// Evictee %0 is intended for region splitting with split candidate
1434 /// physreg0 (the reg %0 was evicted from).
1435 /// Region splitting creates a local interval because of interference with the
1436 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1437 /// and "by stack" intervals and local interval created when interference
1438 /// occurs).
1439 /// One of the split intervals ends up evicting %2 from physreg1.
1440 /// Evictee %2 is intended for region splitting with split candidate
1441 /// physreg1.
1442 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1444 /// Scenario #2
1445 /// %0 is evicted from physreg0 by %1.
1446 /// %2 is evicted from physreg2 by %3 etc.
1447 /// Evictee %0 is intended for region splitting with split candidate
1448 /// physreg1.
1449 /// Region splitting creates a local interval because of interference with the
1450 /// evictor %1.
1451 /// One of the split intervals ends up evicting back original evictor %1
1452 /// from physreg0 (the reg %0 was evicted from).
1453 /// Another evictee %2 is intended for region splitting with split candidate
1454 /// physreg1.
1455 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1457 /// \param Evictee The register considered to be split.
1458 /// \param Cand The split candidate that determines the physical register
1459 /// we are splitting for and the interferences.
1460 /// \param BBNumber The number of a BB for which the region split process will
1461 /// create a local split interval.
1462 /// \param Order The physical registers that may get evicted by a split
1463 /// artifact of Evictee.
1464 /// \return True if splitting Evictee may cause a bad eviction chain, false
1465 /// otherwise.
1466 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee,
1467 GlobalSplitCandidate &Cand,
1468 unsigned BBNumber,
1469 const AllocationOrder &Order) {
1470 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1471 unsigned Evictor = VregEvictorInfo.first;
1472 unsigned PhysReg = VregEvictorInfo.second;
1474 // No actual evictor.
1475 if (!Evictor || !PhysReg)
1476 return false;
1478 float MaxWeight = 0;
1479 unsigned FutureEvictedPhysReg =
1480 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1481 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1483 // The bad eviction chain occurs when either the split candidate is the
1484 // evicting reg or one of the split artifact will evict the evicting reg.
1485 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1486 return false;
1488 Cand.Intf.moveToBlock(BBNumber);
1490 // Check to see if the Evictor contains interference (with Evictee) in the
1491 // given BB. If so, this interference caused the eviction of Evictee from
1492 // PhysReg. This suggest that we will create a local interval during the
1493 // region split to avoid this interference This local interval may cause a bad
1494 // eviction chain.
1495 if (!LIS->hasInterval(Evictor))
1496 return false;
1497 LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1498 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1499 return false;
1501 // Now, check to see if the local interval we will create is going to be
1502 // expensive enough to evict somebody If so, this may cause a bad eviction
1503 // chain.
1504 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1505 float splitArtifactWeight =
1506 VRAI.futureWeight(LIS->getInterval(Evictee),
1507 Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1508 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1509 return false;
1511 return true;
1514 /// Check if splitting VirtRegToSplit will create a local split interval
1515 /// in basic block number BBNumber that may cause a spill.
1517 /// \param VirtRegToSplit The register considered to be split.
1518 /// \param Cand The split candidate that determines the physical
1519 /// register we are splitting for and the interferences.
1520 /// \param BBNumber The number of a BB for which the region split process
1521 /// will create a local split interval.
1522 /// \param Order The physical registers that may get evicted by a
1523 /// split artifact of VirtRegToSplit.
1524 /// \return True if splitting VirtRegToSplit may cause a spill, false
1525 /// otherwise.
1526 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1527 GlobalSplitCandidate &Cand,
1528 unsigned BBNumber,
1529 const AllocationOrder &Order) {
1530 Cand.Intf.moveToBlock(BBNumber);
1532 // Check if the local interval will find a non interfereing assignment.
1533 for (auto PhysReg : Order.getOrder()) {
1534 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1535 Cand.Intf.last(), PhysReg))
1536 return false;
1539 // Check if the local interval will evict a cheaper interval.
1540 float CheapestEvictWeight = 0;
1541 unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight(
1542 Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
1543 Cand.Intf.last(), &CheapestEvictWeight);
1545 // Have we found an interval that can be evicted?
1546 if (FutureEvictedPhysReg) {
1547 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1548 float splitArtifactWeight =
1549 VRAI.futureWeight(LIS->getInterval(VirtRegToSplit),
1550 Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1551 // Will the weight of the local interval be higher than the cheapest evictee
1552 // weight? If so it will evict it and will not cause a spill.
1553 if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
1554 return false;
1557 // The local interval is not able to find non interferencing assignment and
1558 // not able to evict a less worthy interval, therfore, it can cause a spill.
1559 return true;
1562 /// calcGlobalSplitCost - Return the global split cost of following the split
1563 /// pattern in LiveBundles. This cost should be added to the local cost of the
1564 /// interference pattern in SplitConstraints.
1566 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1567 const AllocationOrder &Order,
1568 bool *CanCauseEvictionChain) {
1569 BlockFrequency GlobalCost = 0;
1570 const BitVector &LiveBundles = Cand.LiveBundles;
1571 unsigned VirtRegToSplit = SA->getParent().reg;
1572 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1573 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1574 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1575 SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1576 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)];
1577 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1578 unsigned Ins = 0;
1580 Cand.Intf.moveToBlock(BC.Number);
1581 // Check wheather a local interval is going to be created during the region
1582 // split. Calculate adavanced spilt cost (cost of local intervals) if option
1583 // is enabled.
1584 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1585 BI.LiveOut && RegIn && RegOut) {
1587 if (CanCauseEvictionChain &&
1588 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1589 // This interference causes our eviction from this assignment, we might
1590 // evict somebody else and eventually someone will spill, add that cost.
1591 // See splitCanCauseEvictionChain for detailed description of scenarios.
1592 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1593 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1595 *CanCauseEvictionChain = true;
1597 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1598 Order)) {
1599 // This interference causes local interval to spill, add that cost.
1600 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1601 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1605 if (BI.LiveIn)
1606 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1607 if (BI.LiveOut)
1608 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1609 while (Ins--)
1610 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1613 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1614 unsigned Number = Cand.ActiveBlocks[i];
1615 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)];
1616 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1617 if (!RegIn && !RegOut)
1618 continue;
1619 if (RegIn && RegOut) {
1620 // We need double spill code if this block has interference.
1621 Cand.Intf.moveToBlock(Number);
1622 if (Cand.Intf.hasInterference()) {
1623 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1624 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1626 // Check wheather a local interval is going to be created during the
1627 // region split.
1628 if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1629 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1630 // This interference cause our eviction from this assignment, we might
1631 // evict somebody else, add that cost.
1632 // See splitCanCauseEvictionChain for detailed description of
1633 // scenarios.
1634 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1635 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1637 *CanCauseEvictionChain = true;
1640 continue;
1642 // live-in / stack-out or stack-in live-out.
1643 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1645 return GlobalCost;
1648 /// splitAroundRegion - Split the current live range around the regions
1649 /// determined by BundleCand and GlobalCand.
1651 /// Before calling this function, GlobalCand and BundleCand must be initialized
1652 /// so each bundle is assigned to a valid candidate, or NoCand for the
1653 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
1654 /// objects must be initialized for the current live range, and intervals
1655 /// created for the used candidates.
1657 /// @param LREdit The LiveRangeEdit object handling the current split.
1658 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1659 /// must appear in this list.
1660 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1661 ArrayRef<unsigned> UsedCands) {
1662 // These are the intervals created for new global ranges. We may create more
1663 // intervals for local ranges.
1664 const unsigned NumGlobalIntvs = LREdit.size();
1665 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1666 << " globals.\n");
1667 assert(NumGlobalIntvs && "No global intervals configured");
1669 // Isolate even single instructions when dealing with a proper sub-class.
1670 // That guarantees register class inflation for the stack interval because it
1671 // is all copies.
1672 unsigned Reg = SA->getParent().reg;
1673 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1675 // First handle all the blocks with uses.
1676 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1677 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1678 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1679 unsigned Number = BI.MBB->getNumber();
1680 unsigned IntvIn = 0, IntvOut = 0;
1681 SlotIndex IntfIn, IntfOut;
1682 if (BI.LiveIn) {
1683 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1684 if (CandIn != NoCand) {
1685 GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1686 IntvIn = Cand.IntvIdx;
1687 Cand.Intf.moveToBlock(Number);
1688 IntfIn = Cand.Intf.first();
1691 if (BI.LiveOut) {
1692 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1693 if (CandOut != NoCand) {
1694 GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1695 IntvOut = Cand.IntvIdx;
1696 Cand.Intf.moveToBlock(Number);
1697 IntfOut = Cand.Intf.last();
1701 // Create separate intervals for isolated blocks with multiple uses.
1702 if (!IntvIn && !IntvOut) {
1703 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1704 if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1705 SE->splitSingleBlock(BI);
1706 continue;
1709 if (IntvIn && IntvOut)
1710 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1711 else if (IntvIn)
1712 SE->splitRegInBlock(BI, IntvIn, IntfIn);
1713 else
1714 SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1717 // Handle live-through blocks. The relevant live-through blocks are stored in
1718 // the ActiveBlocks list with each candidate. We need to filter out
1719 // duplicates.
1720 BitVector Todo = SA->getThroughBlocks();
1721 for (unsigned c = 0; c != UsedCands.size(); ++c) {
1722 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1723 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1724 unsigned Number = Blocks[i];
1725 if (!Todo.test(Number))
1726 continue;
1727 Todo.reset(Number);
1729 unsigned IntvIn = 0, IntvOut = 0;
1730 SlotIndex IntfIn, IntfOut;
1732 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1733 if (CandIn != NoCand) {
1734 GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1735 IntvIn = Cand.IntvIdx;
1736 Cand.Intf.moveToBlock(Number);
1737 IntfIn = Cand.Intf.first();
1740 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1741 if (CandOut != NoCand) {
1742 GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1743 IntvOut = Cand.IntvIdx;
1744 Cand.Intf.moveToBlock(Number);
1745 IntfOut = Cand.Intf.last();
1747 if (!IntvIn && !IntvOut)
1748 continue;
1749 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1753 ++NumGlobalSplits;
1755 SmallVector<unsigned, 8> IntvMap;
1756 SE->finish(&IntvMap);
1757 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1759 ExtraRegInfo.resize(MRI->getNumVirtRegs());
1760 unsigned OrigBlocks = SA->getNumLiveBlocks();
1762 // Sort out the new intervals created by splitting. We get four kinds:
1763 // - Remainder intervals should not be split again.
1764 // - Candidate intervals can be assigned to Cand.PhysReg.
1765 // - Block-local splits are candidates for local splitting.
1766 // - DCE leftovers should go back on the queue.
1767 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1768 LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1770 // Ignore old intervals from DCE.
1771 if (getStage(Reg) != RS_New)
1772 continue;
1774 // Remainder interval. Don't try splitting again, spill if it doesn't
1775 // allocate.
1776 if (IntvMap[i] == 0) {
1777 setStage(Reg, RS_Spill);
1778 continue;
1781 // Global intervals. Allow repeated splitting as long as the number of live
1782 // blocks is strictly decreasing.
1783 if (IntvMap[i] < NumGlobalIntvs) {
1784 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1785 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1786 << " blocks as original.\n");
1787 // Don't allow repeated splitting as a safe guard against looping.
1788 setStage(Reg, RS_Split2);
1790 continue;
1793 // Other intervals are treated as new. This includes local intervals created
1794 // for blocks with multiple uses, and anything created by DCE.
1797 if (VerifyEnabled)
1798 MF->verify(this, "After splitting live range around region");
1801 // Global split has high compile time cost especially for large live range.
1802 // Return false for the case here where the potential benefit will never
1803 // worth the cost.
1804 unsigned RAGreedy::isSplitBenefitWorthCost(LiveInterval &VirtReg) {
1805 MachineInstr *MI = MRI->getUniqueVRegDef(VirtReg.reg);
1806 if (MI && TII->isTriviallyReMaterializable(*MI, AA) &&
1807 VirtReg.size() > HugeSizeForSplit)
1808 return false;
1809 return true;
1812 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1813 SmallVectorImpl<unsigned> &NewVRegs) {
1814 if (!isSplitBenefitWorthCost(VirtReg))
1815 return 0;
1816 unsigned NumCands = 0;
1817 BlockFrequency SpillCost = calcSpillCost();
1818 BlockFrequency BestCost;
1820 // Check if we can split this live range around a compact region.
1821 bool HasCompact = calcCompactRegion(GlobalCand.front());
1822 if (HasCompact) {
1823 // Yes, keep GlobalCand[0] as the compact region candidate.
1824 NumCands = 1;
1825 BestCost = BlockFrequency::getMaxFrequency();
1826 } else {
1827 // No benefit from the compact region, our fallback will be per-block
1828 // splitting. Make sure we find a solution that is cheaper than spilling.
1829 BestCost = SpillCost;
1830 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1831 MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1834 bool CanCauseEvictionChain = false;
1835 unsigned BestCand =
1836 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1837 false /*IgnoreCSR*/, &CanCauseEvictionChain);
1839 // Split candidates with compact regions can cause a bad eviction sequence.
1840 // See splitCanCauseEvictionChain for detailed description of scenarios.
1841 // To avoid it, we need to comapre the cost with the spill cost and not the
1842 // current max frequency.
1843 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1844 CanCauseEvictionChain) {
1845 return 0;
1848 // No solutions found, fall back to single block splitting.
1849 if (!HasCompact && BestCand == NoCand)
1850 return 0;
1852 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1855 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1856 AllocationOrder &Order,
1857 BlockFrequency &BestCost,
1858 unsigned &NumCands, bool IgnoreCSR,
1859 bool *CanCauseEvictionChain) {
1860 unsigned BestCand = NoCand;
1861 Order.rewind();
1862 while (unsigned PhysReg = Order.next()) {
1863 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1864 continue;
1866 // Discard bad candidates before we run out of interference cache cursors.
1867 // This will only affect register classes with a lot of registers (>32).
1868 if (NumCands == IntfCache.getMaxCursors()) {
1869 unsigned WorstCount = ~0u;
1870 unsigned Worst = 0;
1871 for (unsigned i = 0; i != NumCands; ++i) {
1872 if (i == BestCand || !GlobalCand[i].PhysReg)
1873 continue;
1874 unsigned Count = GlobalCand[i].LiveBundles.count();
1875 if (Count < WorstCount) {
1876 Worst = i;
1877 WorstCount = Count;
1880 --NumCands;
1881 GlobalCand[Worst] = GlobalCand[NumCands];
1882 if (BestCand == NumCands)
1883 BestCand = Worst;
1886 if (GlobalCand.size() <= NumCands)
1887 GlobalCand.resize(NumCands+1);
1888 GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1889 Cand.reset(IntfCache, PhysReg);
1891 SpillPlacer->prepare(Cand.LiveBundles);
1892 BlockFrequency Cost;
1893 if (!addSplitConstraints(Cand.Intf, Cost)) {
1894 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1895 continue;
1897 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1898 MBFI->printBlockFreq(dbgs(), Cost));
1899 if (Cost >= BestCost) {
1900 LLVM_DEBUG({
1901 if (BestCand == NoCand)
1902 dbgs() << " worse than no bundles\n";
1903 else
1904 dbgs() << " worse than "
1905 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1907 continue;
1909 if (!growRegion(Cand)) {
1910 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1911 continue;
1914 SpillPlacer->finish();
1916 // No live bundles, defer to splitSingleBlocks().
1917 if (!Cand.LiveBundles.any()) {
1918 LLVM_DEBUG(dbgs() << " no bundles.\n");
1919 continue;
1922 bool HasEvictionChain = false;
1923 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1924 LLVM_DEBUG({
1925 dbgs() << ", total = ";
1926 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1927 for (int i : Cand.LiveBundles.set_bits())
1928 dbgs() << " EB#" << i;
1929 dbgs() << ".\n";
1931 if (Cost < BestCost) {
1932 BestCand = NumCands;
1933 BestCost = Cost;
1934 // See splitCanCauseEvictionChain for detailed description of bad
1935 // eviction chain scenarios.
1936 if (CanCauseEvictionChain)
1937 *CanCauseEvictionChain = HasEvictionChain;
1939 ++NumCands;
1942 if (CanCauseEvictionChain && BestCand != NoCand) {
1943 // See splitCanCauseEvictionChain for detailed description of bad
1944 // eviction chain scenarios.
1945 LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1946 << printReg(VirtReg.reg, TRI) << " may ");
1947 if (!(*CanCauseEvictionChain))
1948 LLVM_DEBUG(dbgs() << "not ");
1949 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1952 return BestCand;
1955 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1956 bool HasCompact,
1957 SmallVectorImpl<unsigned> &NewVRegs) {
1958 SmallVector<unsigned, 8> UsedCands;
1959 // Prepare split editor.
1960 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1961 SE->reset(LREdit, SplitSpillMode);
1963 // Assign all edge bundles to the preferred candidate, or NoCand.
1964 BundleCand.assign(Bundles->getNumBundles(), NoCand);
1966 // Assign bundles for the best candidate region.
1967 if (BestCand != NoCand) {
1968 GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1969 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1970 UsedCands.push_back(BestCand);
1971 Cand.IntvIdx = SE->openIntv();
1972 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1973 << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1974 (void)B;
1978 // Assign bundles for the compact region.
1979 if (HasCompact) {
1980 GlobalSplitCandidate &Cand = GlobalCand.front();
1981 assert(!Cand.PhysReg && "Compact region has no physreg");
1982 if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1983 UsedCands.push_back(0);
1984 Cand.IntvIdx = SE->openIntv();
1985 LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1986 << " bundles, intv " << Cand.IntvIdx << ".\n");
1987 (void)B;
1991 splitAroundRegion(LREdit, UsedCands);
1992 return 0;
1995 //===----------------------------------------------------------------------===//
1996 // Per-Block Splitting
1997 //===----------------------------------------------------------------------===//
1999 /// tryBlockSplit - Split a global live range around every block with uses. This
2000 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2001 /// they don't allocate.
2002 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2003 SmallVectorImpl<unsigned> &NewVRegs) {
2004 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
2005 unsigned Reg = VirtReg.reg;
2006 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
2007 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2008 SE->reset(LREdit, SplitSpillMode);
2009 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2010 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
2011 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
2012 if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2013 SE->splitSingleBlock(BI);
2015 // No blocks were split.
2016 if (LREdit.empty())
2017 return 0;
2019 // We did split for some blocks.
2020 SmallVector<unsigned, 8> IntvMap;
2021 SE->finish(&IntvMap);
2023 // Tell LiveDebugVariables about the new ranges.
2024 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2026 ExtraRegInfo.resize(MRI->getNumVirtRegs());
2028 // Sort out the new intervals created by splitting. The remainder interval
2029 // goes straight to spilling, the new local ranges get to stay RS_New.
2030 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
2031 LiveInterval &LI = LIS->getInterval(LREdit.get(i));
2032 if (getStage(LI) == RS_New && IntvMap[i] == 0)
2033 setStage(LI, RS_Spill);
2036 if (VerifyEnabled)
2037 MF->verify(this, "After splitting live range around basic blocks");
2038 return 0;
2041 //===----------------------------------------------------------------------===//
2042 // Per-Instruction Splitting
2043 //===----------------------------------------------------------------------===//
2045 /// Get the number of allocatable registers that match the constraints of \p Reg
2046 /// on \p MI and that are also in \p SuperRC.
2047 static unsigned getNumAllocatableRegsForConstraints(
2048 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
2049 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2050 const RegisterClassInfo &RCI) {
2051 assert(SuperRC && "Invalid register class");
2053 const TargetRegisterClass *ConstrainedRC =
2054 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2055 /* ExploreBundle */ true);
2056 if (!ConstrainedRC)
2057 return 0;
2058 return RCI.getNumAllocatableRegs(ConstrainedRC);
2061 /// tryInstructionSplit - Split a live range around individual instructions.
2062 /// This is normally not worthwhile since the spiller is doing essentially the
2063 /// same thing. However, when the live range is in a constrained register
2064 /// class, it may help to insert copies such that parts of the live range can
2065 /// be moved to a larger register class.
2067 /// This is similar to spilling to a larger register class.
2068 unsigned
2069 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2070 SmallVectorImpl<unsigned> &NewVRegs) {
2071 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2072 // There is no point to this if there are no larger sub-classes.
2073 if (!RegClassInfo.isProperSubClass(CurRC))
2074 return 0;
2076 // Always enable split spill mode, since we're effectively spilling to a
2077 // register.
2078 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2079 SE->reset(LREdit, SplitEditor::SM_Size);
2081 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2082 if (Uses.size() <= 1)
2083 return 0;
2085 LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2086 << " individual instrs.\n");
2088 const TargetRegisterClass *SuperRC =
2089 TRI->getLargestLegalSuperClass(CurRC, *MF);
2090 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2091 // Split around every non-copy instruction if this split will relax
2092 // the constraints on the virtual register.
2093 // Otherwise, splitting just inserts uncoalescable copies that do not help
2094 // the allocation.
2095 for (unsigned i = 0; i != Uses.size(); ++i) {
2096 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
2097 if (MI->isFullCopy() ||
2098 SuperRCNumAllocatableRegs ==
2099 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
2100 TRI, RCI)) {
2101 LLVM_DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI);
2102 continue;
2104 SE->openIntv();
2105 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
2106 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]);
2107 SE->useIntv(SegStart, SegStop);
2110 if (LREdit.empty()) {
2111 LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2112 return 0;
2115 SmallVector<unsigned, 8> IntvMap;
2116 SE->finish(&IntvMap);
2117 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
2118 ExtraRegInfo.resize(MRI->getNumVirtRegs());
2120 // Assign all new registers to RS_Spill. This was the last chance.
2121 setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2122 return 0;
2125 //===----------------------------------------------------------------------===//
2126 // Local Splitting
2127 //===----------------------------------------------------------------------===//
2129 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2130 /// in order to use PhysReg between two entries in SA->UseSlots.
2132 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
2134 void RAGreedy::calcGapWeights(unsigned PhysReg,
2135 SmallVectorImpl<float> &GapWeight) {
2136 assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2137 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2138 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2139 const unsigned NumGaps = Uses.size()-1;
2141 // Start and end points for the interference check.
2142 SlotIndex StartIdx =
2143 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2144 SlotIndex StopIdx =
2145 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2147 GapWeight.assign(NumGaps, 0.0f);
2149 // Add interference from each overlapping register.
2150 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2151 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2152 .checkInterference())
2153 continue;
2155 // We know that VirtReg is a continuous interval from FirstInstr to
2156 // LastInstr, so we don't need InterferenceQuery.
2158 // Interference that overlaps an instruction is counted in both gaps
2159 // surrounding the instruction. The exception is interference before
2160 // StartIdx and after StopIdx.
2162 LiveIntervalUnion::SegmentIter IntI =
2163 Matrix->getLiveUnions()[*Units] .find(StartIdx);
2164 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2165 // Skip the gaps before IntI.
2166 while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2167 if (++Gap == NumGaps)
2168 break;
2169 if (Gap == NumGaps)
2170 break;
2172 // Update the gaps covered by IntI.
2173 const float weight = IntI.value()->weight;
2174 for (; Gap != NumGaps; ++Gap) {
2175 GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2176 if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2177 break;
2179 if (Gap == NumGaps)
2180 break;
2184 // Add fixed interference.
2185 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2186 const LiveRange &LR = LIS->getRegUnit(*Units);
2187 LiveRange::const_iterator I = LR.find(StartIdx);
2188 LiveRange::const_iterator E = LR.end();
2190 // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2191 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2192 while (Uses[Gap+1].getBoundaryIndex() < I->start)
2193 if (++Gap == NumGaps)
2194 break;
2195 if (Gap == NumGaps)
2196 break;
2198 for (; Gap != NumGaps; ++Gap) {
2199 GapWeight[Gap] = huge_valf;
2200 if (Uses[Gap+1].getBaseIndex() >= I->end)
2201 break;
2203 if (Gap == NumGaps)
2204 break;
2209 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2210 /// basic block.
2212 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2213 SmallVectorImpl<unsigned> &NewVRegs) {
2214 // TODO: the function currently only handles a single UseBlock; it should be
2215 // possible to generalize.
2216 if (SA->getUseBlocks().size() != 1)
2217 return 0;
2219 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2221 // Note that it is possible to have an interval that is live-in or live-out
2222 // while only covering a single block - A phi-def can use undef values from
2223 // predecessors, and the block could be a single-block loop.
2224 // We don't bother doing anything clever about such a case, we simply assume
2225 // that the interval is continuous from FirstInstr to LastInstr. We should
2226 // make sure that we don't do anything illegal to such an interval, though.
2228 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2229 if (Uses.size() <= 2)
2230 return 0;
2231 const unsigned NumGaps = Uses.size()-1;
2233 LLVM_DEBUG({
2234 dbgs() << "tryLocalSplit: ";
2235 for (unsigned i = 0, e = Uses.size(); i != e; ++i)
2236 dbgs() << ' ' << Uses[i];
2237 dbgs() << '\n';
2240 // If VirtReg is live across any register mask operands, compute a list of
2241 // gaps with register masks.
2242 SmallVector<unsigned, 8> RegMaskGaps;
2243 if (Matrix->checkRegMaskInterference(VirtReg)) {
2244 // Get regmask slots for the whole block.
2245 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2246 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2247 // Constrain to VirtReg's live range.
2248 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
2249 Uses.front().getRegSlot()) - RMS.begin();
2250 unsigned re = RMS.size();
2251 for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
2252 // Look for Uses[i] <= RMS <= Uses[i+1].
2253 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
2254 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
2255 continue;
2256 // Skip a regmask on the same instruction as the last use. It doesn't
2257 // overlap the live range.
2258 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
2259 break;
2260 LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-'
2261 << Uses[i + 1]);
2262 RegMaskGaps.push_back(i);
2263 // Advance ri to the next gap. A regmask on one of the uses counts in
2264 // both gaps.
2265 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
2266 ++ri;
2268 LLVM_DEBUG(dbgs() << '\n');
2271 // Since we allow local split results to be split again, there is a risk of
2272 // creating infinite loops. It is tempting to require that the new live
2273 // ranges have less instructions than the original. That would guarantee
2274 // convergence, but it is too strict. A live range with 3 instructions can be
2275 // split 2+3 (including the COPY), and we want to allow that.
2277 // Instead we use these rules:
2279 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2280 // noop split, of course).
2281 // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2282 // the new ranges must have fewer instructions than before the split.
2283 // 3. New ranges with the same number of instructions are marked RS_Split2,
2284 // smaller ranges are marked RS_New.
2286 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2287 // excessive splitting and infinite loops.
2289 bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2291 // Best split candidate.
2292 unsigned BestBefore = NumGaps;
2293 unsigned BestAfter = 0;
2294 float BestDiff = 0;
2296 const float blockFreq =
2297 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2298 (1.0f / MBFI->getEntryFreq());
2299 SmallVector<float, 8> GapWeight;
2301 Order.rewind();
2302 while (unsigned PhysReg = Order.next()) {
2303 // Keep track of the largest spill weight that would need to be evicted in
2304 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
2305 calcGapWeights(PhysReg, GapWeight);
2307 // Remove any gaps with regmask clobbers.
2308 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2309 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
2310 GapWeight[RegMaskGaps[i]] = huge_valf;
2312 // Try to find the best sequence of gaps to close.
2313 // The new spill weight must be larger than any gap interference.
2315 // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2316 unsigned SplitBefore = 0, SplitAfter = 1;
2318 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2319 // It is the spill weight that needs to be evicted.
2320 float MaxGap = GapWeight[0];
2322 while (true) {
2323 // Live before/after split?
2324 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2325 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2327 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2328 << '-' << Uses[SplitAfter] << " i=" << MaxGap);
2330 // Stop before the interval gets so big we wouldn't be making progress.
2331 if (!LiveBefore && !LiveAfter) {
2332 LLVM_DEBUG(dbgs() << " all\n");
2333 break;
2335 // Should the interval be extended or shrunk?
2336 bool Shrink = true;
2338 // How many gaps would the new range have?
2339 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2341 // Legally, without causing looping?
2342 bool Legal = !ProgressRequired || NewGaps < NumGaps;
2344 if (Legal && MaxGap < huge_valf) {
2345 // Estimate the new spill weight. Each instruction reads or writes the
2346 // register. Conservatively assume there are no read-modify-write
2347 // instructions.
2349 // Try to guess the size of the new interval.
2350 const float EstWeight = normalizeSpillWeight(
2351 blockFreq * (NewGaps + 1),
2352 Uses[SplitBefore].distance(Uses[SplitAfter]) +
2353 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2355 // Would this split be possible to allocate?
2356 // Never allocate all gaps, we wouldn't be making progress.
2357 LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2358 if (EstWeight * Hysteresis >= MaxGap) {
2359 Shrink = false;
2360 float Diff = EstWeight - MaxGap;
2361 if (Diff > BestDiff) {
2362 LLVM_DEBUG(dbgs() << " (best)");
2363 BestDiff = Hysteresis * Diff;
2364 BestBefore = SplitBefore;
2365 BestAfter = SplitAfter;
2370 // Try to shrink.
2371 if (Shrink) {
2372 if (++SplitBefore < SplitAfter) {
2373 LLVM_DEBUG(dbgs() << " shrink\n");
2374 // Recompute the max when necessary.
2375 if (GapWeight[SplitBefore - 1] >= MaxGap) {
2376 MaxGap = GapWeight[SplitBefore];
2377 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
2378 MaxGap = std::max(MaxGap, GapWeight[i]);
2380 continue;
2382 MaxGap = 0;
2385 // Try to extend the interval.
2386 if (SplitAfter >= NumGaps) {
2387 LLVM_DEBUG(dbgs() << " end\n");
2388 break;
2391 LLVM_DEBUG(dbgs() << " extend\n");
2392 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2396 // Didn't find any candidates?
2397 if (BestBefore == NumGaps)
2398 return 0;
2400 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2401 << Uses[BestAfter] << ", " << BestDiff << ", "
2402 << (BestAfter - BestBefore + 1) << " instrs\n");
2404 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2405 SE->reset(LREdit);
2407 SE->openIntv();
2408 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2409 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
2410 SE->useIntv(SegStart, SegStop);
2411 SmallVector<unsigned, 8> IntvMap;
2412 SE->finish(&IntvMap);
2413 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
2415 // If the new range has the same number of instructions as before, mark it as
2416 // RS_Split2 so the next split will be forced to make progress. Otherwise,
2417 // leave the new intervals as RS_New so they can compete.
2418 bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2419 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2420 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2421 if (NewGaps >= NumGaps) {
2422 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2423 assert(!ProgressRequired && "Didn't make progress when it was required.");
2424 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
2425 if (IntvMap[i] == 1) {
2426 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
2427 LLVM_DEBUG(dbgs() << printReg(LREdit.get(i)));
2429 LLVM_DEBUG(dbgs() << '\n');
2431 ++NumLocalSplits;
2433 return 0;
2436 //===----------------------------------------------------------------------===//
2437 // Live Range Splitting
2438 //===----------------------------------------------------------------------===//
2440 /// trySplit - Try to split VirtReg or one of its interferences, making it
2441 /// assignable.
2442 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2443 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2444 SmallVectorImpl<unsigned>&NewVRegs) {
2445 // Ranges must be Split2 or less.
2446 if (getStage(VirtReg) >= RS_Spill)
2447 return 0;
2449 // Local intervals are handled separately.
2450 if (LIS->intervalIsInOneMBB(VirtReg)) {
2451 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2452 TimerGroupDescription, TimePassesIsEnabled);
2453 SA->analyze(&VirtReg);
2454 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2455 if (PhysReg || !NewVRegs.empty())
2456 return PhysReg;
2457 return tryInstructionSplit(VirtReg, Order, NewVRegs);
2460 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2461 TimerGroupDescription, TimePassesIsEnabled);
2463 SA->analyze(&VirtReg);
2465 // FIXME: SplitAnalysis may repair broken live ranges coming from the
2466 // coalescer. That may cause the range to become allocatable which means that
2467 // tryRegionSplit won't be making progress. This check should be replaced with
2468 // an assertion when the coalescer is fixed.
2469 if (SA->didRepairRange()) {
2470 // VirtReg has changed, so all cached queries are invalid.
2471 Matrix->invalidateVirtRegs();
2472 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
2473 return PhysReg;
2476 // First try to split around a region spanning multiple blocks. RS_Split2
2477 // ranges already made dubious progress with region splitting, so they go
2478 // straight to single block splitting.
2479 if (getStage(VirtReg) < RS_Split2) {
2480 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2481 if (PhysReg || !NewVRegs.empty())
2482 return PhysReg;
2485 // Then isolate blocks.
2486 return tryBlockSplit(VirtReg, Order, NewVRegs);
2489 //===----------------------------------------------------------------------===//
2490 // Last Chance Recoloring
2491 //===----------------------------------------------------------------------===//
2493 /// Return true if \p reg has any tied def operand.
2494 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2495 for (const MachineOperand &MO : MRI->def_operands(reg))
2496 if (MO.isTied())
2497 return true;
2499 return false;
2502 /// mayRecolorAllInterferences - Check if the virtual registers that
2503 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2504 /// recolored to free \p PhysReg.
2505 /// When true is returned, \p RecoloringCandidates has been augmented with all
2506 /// the live intervals that need to be recolored in order to free \p PhysReg
2507 /// for \p VirtReg.
2508 /// \p FixedRegisters contains all the virtual registers that cannot be
2509 /// recolored.
2510 bool
2511 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2512 SmallLISet &RecoloringCandidates,
2513 const SmallVirtRegSet &FixedRegisters) {
2514 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2516 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2517 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2518 // If there is LastChanceRecoloringMaxInterference or more interferences,
2519 // chances are one would not be recolorable.
2520 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2521 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2522 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2523 CutOffInfo |= CO_Interf;
2524 return false;
2526 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
2527 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
2528 // If Intf is done and sit on the same register class as VirtReg,
2529 // it would not be recolorable as it is in the same state as VirtReg.
2530 // However, if VirtReg has tied defs and Intf doesn't, then
2531 // there is still a point in examining if it can be recolorable.
2532 if (((getStage(*Intf) == RS_Done &&
2533 MRI->getRegClass(Intf->reg) == CurRC) &&
2534 !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) ||
2535 FixedRegisters.count(Intf->reg)) {
2536 LLVM_DEBUG(
2537 dbgs() << "Early abort: the interference is not recolorable.\n");
2538 return false;
2540 RecoloringCandidates.insert(Intf);
2543 return true;
2546 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2547 /// its interferences.
2548 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2549 /// virtual register that was using it. The recoloring process may recursively
2550 /// use the last chance recoloring. Therefore, when a virtual register has been
2551 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2552 /// be last-chance-recolored again during this recoloring "session".
2553 /// E.g.,
2554 /// Let
2555 /// vA can use {R1, R2 }
2556 /// vB can use { R2, R3}
2557 /// vC can use {R1 }
2558 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2559 /// instance) and they all interfere.
2561 /// vA is assigned R1
2562 /// vB is assigned R2
2563 /// vC tries to evict vA but vA is already done.
2564 /// Regular register allocation fails.
2566 /// Last chance recoloring kicks in:
2567 /// vC does as if vA was evicted => vC uses R1.
2568 /// vC is marked as fixed.
2569 /// vA needs to find a color.
2570 /// None are available.
2571 /// vA cannot evict vC: vC is a fixed virtual register now.
2572 /// vA does as if vB was evicted => vA uses R2.
2573 /// vB needs to find a color.
2574 /// R3 is available.
2575 /// Recoloring => vC = R1, vA = R2, vB = R3
2577 /// \p Order defines the preferred allocation order for \p VirtReg.
2578 /// \p NewRegs will contain any new virtual register that have been created
2579 /// (split, spill) during the process and that must be assigned.
2580 /// \p FixedRegisters contains all the virtual registers that cannot be
2581 /// recolored.
2582 /// \p Depth gives the current depth of the last chance recoloring.
2583 /// \return a physical register that can be used for VirtReg or ~0u if none
2584 /// exists.
2585 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2586 AllocationOrder &Order,
2587 SmallVectorImpl<unsigned> &NewVRegs,
2588 SmallVirtRegSet &FixedRegisters,
2589 unsigned Depth) {
2590 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2591 // Ranges must be Done.
2592 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2593 "Last chance recoloring should really be last chance");
2594 // Set the max depth to LastChanceRecoloringMaxDepth.
2595 // We may want to reconsider that if we end up with a too large search space
2596 // for target with hundreds of registers.
2597 // Indeed, in that case we may want to cut the search space earlier.
2598 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2599 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2600 CutOffInfo |= CO_Depth;
2601 return ~0u;
2604 // Set of Live intervals that will need to be recolored.
2605 SmallLISet RecoloringCandidates;
2606 // Record the original mapping virtual register to physical register in case
2607 // the recoloring fails.
2608 DenseMap<unsigned, unsigned> VirtRegToPhysReg;
2609 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2610 // this recoloring "session".
2611 FixedRegisters.insert(VirtReg.reg);
2612 SmallVector<unsigned, 4> CurrentNewVRegs;
2614 Order.rewind();
2615 while (unsigned PhysReg = Order.next()) {
2616 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2617 << printReg(PhysReg, TRI) << '\n');
2618 RecoloringCandidates.clear();
2619 VirtRegToPhysReg.clear();
2620 CurrentNewVRegs.clear();
2622 // It is only possible to recolor virtual register interference.
2623 if (Matrix->checkInterference(VirtReg, PhysReg) >
2624 LiveRegMatrix::IK_VirtReg) {
2625 LLVM_DEBUG(
2626 dbgs() << "Some interferences are not with virtual registers.\n");
2628 continue;
2631 // Early give up on this PhysReg if it is obvious we cannot recolor all
2632 // the interferences.
2633 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2634 FixedRegisters)) {
2635 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2636 continue;
2639 // RecoloringCandidates contains all the virtual registers that interfer
2640 // with VirtReg on PhysReg (or one of its aliases).
2641 // Enqueue them for recoloring and perform the actual recoloring.
2642 PQueue RecoloringQueue;
2643 for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2644 EndIt = RecoloringCandidates.end();
2645 It != EndIt; ++It) {
2646 unsigned ItVirtReg = (*It)->reg;
2647 enqueue(RecoloringQueue, *It);
2648 assert(VRM->hasPhys(ItVirtReg) &&
2649 "Interferences are supposed to be with allocated variables");
2651 // Record the current allocation.
2652 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2653 // unset the related struct.
2654 Matrix->unassign(**It);
2657 // Do as if VirtReg was assigned to PhysReg so that the underlying
2658 // recoloring has the right information about the interferes and
2659 // available colors.
2660 Matrix->assign(VirtReg, PhysReg);
2662 // Save the current recoloring state.
2663 // If we cannot recolor all the interferences, we will have to start again
2664 // at this point for the next physical register.
2665 SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2666 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2667 FixedRegisters, Depth)) {
2668 // Push the queued vregs into the main queue.
2669 for (unsigned NewVReg : CurrentNewVRegs)
2670 NewVRegs.push_back(NewVReg);
2671 // Do not mess up with the global assignment process.
2672 // I.e., VirtReg must be unassigned.
2673 Matrix->unassign(VirtReg);
2674 return PhysReg;
2677 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2678 << printReg(PhysReg, TRI) << '\n');
2680 // The recoloring attempt failed, undo the changes.
2681 FixedRegisters = SaveFixedRegisters;
2682 Matrix->unassign(VirtReg);
2684 // For a newly created vreg which is also in RecoloringCandidates,
2685 // don't add it to NewVRegs because its physical register will be restored
2686 // below. Other vregs in CurrentNewVRegs are created by calling
2687 // selectOrSplit and should be added into NewVRegs.
2688 for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(),
2689 End = CurrentNewVRegs.end();
2690 Next != End; ++Next) {
2691 if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2692 continue;
2693 NewVRegs.push_back(*Next);
2696 for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2697 EndIt = RecoloringCandidates.end();
2698 It != EndIt; ++It) {
2699 unsigned ItVirtReg = (*It)->reg;
2700 if (VRM->hasPhys(ItVirtReg))
2701 Matrix->unassign(**It);
2702 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2703 Matrix->assign(**It, ItPhysReg);
2707 // Last chance recoloring did not worked either, give up.
2708 return ~0u;
2711 /// tryRecoloringCandidates - Try to assign a new color to every register
2712 /// in \RecoloringQueue.
2713 /// \p NewRegs will contain any new virtual register created during the
2714 /// recoloring process.
2715 /// \p FixedRegisters[in/out] contains all the registers that have been
2716 /// recolored.
2717 /// \return true if all virtual registers in RecoloringQueue were successfully
2718 /// recolored, false otherwise.
2719 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2720 SmallVectorImpl<unsigned> &NewVRegs,
2721 SmallVirtRegSet &FixedRegisters,
2722 unsigned Depth) {
2723 while (!RecoloringQueue.empty()) {
2724 LiveInterval *LI = dequeue(RecoloringQueue);
2725 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2726 unsigned PhysReg;
2727 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2728 // When splitting happens, the live-range may actually be empty.
2729 // In that case, this is okay to continue the recoloring even
2730 // if we did not find an alternative color for it. Indeed,
2731 // there will not be anything to color for LI in the end.
2732 if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2733 return false;
2735 if (!PhysReg) {
2736 assert(LI->empty() && "Only empty live-range do not require a register");
2737 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2738 << " succeeded. Empty LI.\n");
2739 continue;
2741 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2742 << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2744 Matrix->assign(*LI, PhysReg);
2745 FixedRegisters.insert(LI->reg);
2747 return true;
2750 //===----------------------------------------------------------------------===//
2751 // Main Entry Point
2752 //===----------------------------------------------------------------------===//
2754 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2755 SmallVectorImpl<unsigned> &NewVRegs) {
2756 CutOffInfo = CO_None;
2757 LLVMContext &Ctx = MF->getFunction().getContext();
2758 SmallVirtRegSet FixedRegisters;
2759 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2760 if (Reg == ~0U && (CutOffInfo != CO_None)) {
2761 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2762 if (CutOffEncountered == CO_Depth)
2763 Ctx.emitError("register allocation failed: maximum depth for recoloring "
2764 "reached. Use -fexhaustive-register-search to skip "
2765 "cutoffs");
2766 else if (CutOffEncountered == CO_Interf)
2767 Ctx.emitError("register allocation failed: maximum interference for "
2768 "recoloring reached. Use -fexhaustive-register-search "
2769 "to skip cutoffs");
2770 else if (CutOffEncountered == (CO_Depth | CO_Interf))
2771 Ctx.emitError("register allocation failed: maximum interference and "
2772 "depth for recoloring reached. Use "
2773 "-fexhaustive-register-search to skip cutoffs");
2775 return Reg;
2778 /// Using a CSR for the first time has a cost because it causes push|pop
2779 /// to be added to prologue|epilogue. Splitting a cold section of the live
2780 /// range can have lower cost than using the CSR for the first time;
2781 /// Spilling a live range in the cold path can have lower cost than using
2782 /// the CSR for the first time. Returns the physical register if we decide
2783 /// to use the CSR; otherwise return 0.
2784 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2785 AllocationOrder &Order,
2786 unsigned PhysReg,
2787 unsigned &CostPerUseLimit,
2788 SmallVectorImpl<unsigned> &NewVRegs) {
2789 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2790 // We choose spill over using the CSR for the first time if the spill cost
2791 // is lower than CSRCost.
2792 SA->analyze(&VirtReg);
2793 if (calcSpillCost() >= CSRCost)
2794 return PhysReg;
2796 // We are going to spill, set CostPerUseLimit to 1 to make sure that
2797 // we will not use a callee-saved register in tryEvict.
2798 CostPerUseLimit = 1;
2799 return 0;
2801 if (getStage(VirtReg) < RS_Split) {
2802 // We choose pre-splitting over using the CSR for the first time if
2803 // the cost of splitting is lower than CSRCost.
2804 SA->analyze(&VirtReg);
2805 unsigned NumCands = 0;
2806 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2807 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2808 NumCands, true /*IgnoreCSR*/);
2809 if (BestCand == NoCand)
2810 // Use the CSR if we can't find a region split below CSRCost.
2811 return PhysReg;
2813 // Perform the actual pre-splitting.
2814 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2815 return 0;
2817 return PhysReg;
2820 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2821 // Do not keep invalid information around.
2822 SetOfBrokenHints.remove(&LI);
2825 void RAGreedy::initializeCSRCost() {
2826 // We use the larger one out of the command-line option and the value report
2827 // by TRI.
2828 CSRCost = BlockFrequency(
2829 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2830 if (!CSRCost.getFrequency())
2831 return;
2833 // Raw cost is relative to Entry == 2^14; scale it appropriately.
2834 uint64_t ActualEntry = MBFI->getEntryFreq();
2835 if (!ActualEntry) {
2836 CSRCost = 0;
2837 return;
2839 uint64_t FixedEntry = 1 << 14;
2840 if (ActualEntry < FixedEntry)
2841 CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2842 else if (ActualEntry <= UINT32_MAX)
2843 // Invert the fraction and divide.
2844 CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2845 else
2846 // Can't use BranchProbability in general, since it takes 32-bit numbers.
2847 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2850 /// Collect the hint info for \p Reg.
2851 /// The results are stored into \p Out.
2852 /// \p Out is not cleared before being populated.
2853 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2854 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2855 if (!Instr.isFullCopy())
2856 continue;
2857 // Look for the other end of the copy.
2858 unsigned OtherReg = Instr.getOperand(0).getReg();
2859 if (OtherReg == Reg) {
2860 OtherReg = Instr.getOperand(1).getReg();
2861 if (OtherReg == Reg)
2862 continue;
2864 // Get the current assignment.
2865 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg)
2866 ? OtherReg
2867 : VRM->getPhys(OtherReg);
2868 // Push the collected information.
2869 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2870 OtherPhysReg));
2874 /// Using the given \p List, compute the cost of the broken hints if
2875 /// \p PhysReg was used.
2876 /// \return The cost of \p List for \p PhysReg.
2877 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2878 unsigned PhysReg) {
2879 BlockFrequency Cost = 0;
2880 for (const HintInfo &Info : List) {
2881 if (Info.PhysReg != PhysReg)
2882 Cost += Info.Freq;
2884 return Cost;
2887 /// Using the register assigned to \p VirtReg, try to recolor
2888 /// all the live ranges that are copy-related with \p VirtReg.
2889 /// The recoloring is then propagated to all the live-ranges that have
2890 /// been recolored and so on, until no more copies can be coalesced or
2891 /// it is not profitable.
2892 /// For a given live range, profitability is determined by the sum of the
2893 /// frequencies of the non-identity copies it would introduce with the old
2894 /// and new register.
2895 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2896 // We have a broken hint, check if it is possible to fix it by
2897 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2898 // some register and PhysReg may be available for the other live-ranges.
2899 SmallSet<unsigned, 4> Visited;
2900 SmallVector<unsigned, 2> RecoloringCandidates;
2901 HintsInfo Info;
2902 unsigned Reg = VirtReg.reg;
2903 unsigned PhysReg = VRM->getPhys(Reg);
2904 // Start the recoloring algorithm from the input live-interval, then
2905 // it will propagate to the ones that are copy-related with it.
2906 Visited.insert(Reg);
2907 RecoloringCandidates.push_back(Reg);
2909 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2910 << '(' << printReg(PhysReg, TRI) << ")\n");
2912 do {
2913 Reg = RecoloringCandidates.pop_back_val();
2915 // We cannot recolor physical register.
2916 if (TargetRegisterInfo::isPhysicalRegister(Reg))
2917 continue;
2919 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2921 // Get the live interval mapped with this virtual register to be able
2922 // to check for the interference with the new color.
2923 LiveInterval &LI = LIS->getInterval(Reg);
2924 unsigned CurrPhys = VRM->getPhys(Reg);
2925 // Check that the new color matches the register class constraints and
2926 // that it is free for this live range.
2927 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2928 Matrix->checkInterference(LI, PhysReg)))
2929 continue;
2931 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2932 << ") is recolorable.\n");
2934 // Gather the hint info.
2935 Info.clear();
2936 collectHintInfo(Reg, Info);
2937 // Check if recoloring the live-range will increase the cost of the
2938 // non-identity copies.
2939 if (CurrPhys != PhysReg) {
2940 LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2941 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2942 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2943 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2944 << "\nNew Cost: " << NewCopiesCost.getFrequency()
2945 << '\n');
2946 if (OldCopiesCost < NewCopiesCost) {
2947 LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2948 continue;
2950 // At this point, the cost is either cheaper or equal. If it is
2951 // equal, we consider this is profitable because it may expose
2952 // more recoloring opportunities.
2953 LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2954 // Recolor the live-range.
2955 Matrix->unassign(LI);
2956 Matrix->assign(LI, PhysReg);
2958 // Push all copy-related live-ranges to keep reconciling the broken
2959 // hints.
2960 for (const HintInfo &HI : Info) {
2961 if (Visited.insert(HI.Reg).second)
2962 RecoloringCandidates.push_back(HI.Reg);
2964 } while (!RecoloringCandidates.empty());
2967 /// Try to recolor broken hints.
2968 /// Broken hints may be repaired by recoloring when an evicted variable
2969 /// freed up a register for a larger live-range.
2970 /// Consider the following example:
2971 /// BB1:
2972 /// a =
2973 /// b =
2974 /// BB2:
2975 /// ...
2976 /// = b
2977 /// = a
2978 /// Let us assume b gets split:
2979 /// BB1:
2980 /// a =
2981 /// b =
2982 /// BB2:
2983 /// c = b
2984 /// ...
2985 /// d = c
2986 /// = d
2987 /// = a
2988 /// Because of how the allocation work, b, c, and d may be assigned different
2989 /// colors. Now, if a gets evicted later:
2990 /// BB1:
2991 /// a =
2992 /// st a, SpillSlot
2993 /// b =
2994 /// BB2:
2995 /// c = b
2996 /// ...
2997 /// d = c
2998 /// = d
2999 /// e = ld SpillSlot
3000 /// = e
3001 /// This is likely that we can assign the same register for b, c, and d,
3002 /// getting rid of 2 copies.
3003 void RAGreedy::tryHintsRecoloring() {
3004 for (LiveInterval *LI : SetOfBrokenHints) {
3005 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) &&
3006 "Recoloring is possible only for virtual registers");
3007 // Some dead defs may be around (e.g., because of debug uses).
3008 // Ignore those.
3009 if (!VRM->hasPhys(LI->reg))
3010 continue;
3011 tryHintRecoloring(*LI);
3015 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3016 SmallVectorImpl<unsigned> &NewVRegs,
3017 SmallVirtRegSet &FixedRegisters,
3018 unsigned Depth) {
3019 unsigned CostPerUseLimit = ~0u;
3020 // First try assigning a free register.
3021 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
3022 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
3023 // If VirtReg got an assignment, the eviction info is no longre relevant.
3024 LastEvicted.clearEvicteeInfo(VirtReg.reg);
3025 // When NewVRegs is not empty, we may have made decisions such as evicting
3026 // a virtual register, go with the earlier decisions and use the physical
3027 // register.
3028 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3029 NewVRegs.empty()) {
3030 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3031 CostPerUseLimit, NewVRegs);
3032 if (CSRReg || !NewVRegs.empty())
3033 // Return now if we decide to use a CSR or create new vregs due to
3034 // pre-splitting.
3035 return CSRReg;
3036 } else
3037 return PhysReg;
3040 LiveRangeStage Stage = getStage(VirtReg);
3041 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3042 << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
3044 // Try to evict a less worthy live range, but only for ranges from the primary
3045 // queue. The RS_Split ranges already failed to do this, and they should not
3046 // get a second chance until they have been split.
3047 if (Stage != RS_Split)
3048 if (unsigned PhysReg =
3049 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) {
3050 unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
3051 // If VirtReg has a hint and that hint is broken record this
3052 // virtual register as a recoloring candidate for broken hint.
3053 // Indeed, since we evicted a variable in its neighborhood it is
3054 // likely we can at least partially recolor some of the
3055 // copy-related live-ranges.
3056 if (Hint && Hint != PhysReg)
3057 SetOfBrokenHints.insert(&VirtReg);
3058 // If VirtReg eviction someone, the eviction info for it as an evictee is
3059 // no longre relevant.
3060 LastEvicted.clearEvicteeInfo(VirtReg.reg);
3061 return PhysReg;
3064 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3066 // The first time we see a live range, don't try to split or spill.
3067 // Wait until the second time, when all smaller ranges have been allocated.
3068 // This gives a better picture of the interference to split around.
3069 if (Stage < RS_Split) {
3070 setStage(VirtReg, RS_Split);
3071 LLVM_DEBUG(dbgs() << "wait for second round\n");
3072 NewVRegs.push_back(VirtReg.reg);
3073 return 0;
3076 if (Stage < RS_Spill) {
3077 // Try splitting VirtReg or interferences.
3078 unsigned NewVRegSizeBefore = NewVRegs.size();
3079 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
3080 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3081 // If VirtReg got split, the eviction info is no longre relevant.
3082 LastEvicted.clearEvicteeInfo(VirtReg.reg);
3083 return PhysReg;
3087 // If we couldn't allocate a register from spilling, there is probably some
3088 // invalid inline assembly. The base class will report it.
3089 if (Stage >= RS_Done || !VirtReg.isSpillable())
3090 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3091 Depth);
3093 // Finally spill VirtReg itself.
3094 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
3095 // TODO: This is experimental and in particular, we do not model
3096 // the live range splitting done by spilling correctly.
3097 // We would need a deep integration with the spiller to do the
3098 // right thing here. Anyway, that is still good for early testing.
3099 setStage(VirtReg, RS_Memory);
3100 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3101 NewVRegs.push_back(VirtReg.reg);
3102 } else {
3103 NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3104 TimerGroupDescription, TimePassesIsEnabled);
3105 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3106 spiller().spill(LRE);
3107 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3109 if (VerifyEnabled)
3110 MF->verify(this, "After spilling");
3113 // The live virtual register requesting allocation was spilled, so tell
3114 // the caller not to allocate anything during this round.
3115 return 0;
3118 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
3119 unsigned &FoldedReloads,
3120 unsigned &Spills,
3121 unsigned &FoldedSpills) {
3122 Reloads = 0;
3123 FoldedReloads = 0;
3124 Spills = 0;
3125 FoldedSpills = 0;
3127 // Sum up the spill and reloads in subloops.
3128 for (MachineLoop *SubLoop : *L) {
3129 unsigned SubReloads;
3130 unsigned SubFoldedReloads;
3131 unsigned SubSpills;
3132 unsigned SubFoldedSpills;
3134 reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
3135 SubSpills, SubFoldedSpills);
3136 Reloads += SubReloads;
3137 FoldedReloads += SubFoldedReloads;
3138 Spills += SubSpills;
3139 FoldedSpills += SubFoldedSpills;
3142 const MachineFrameInfo &MFI = MF->getFrameInfo();
3143 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
3144 int FI;
3146 for (MachineBasicBlock *MBB : L->getBlocks())
3147 // Handle blocks that were not included in subloops.
3148 if (Loops->getLoopFor(MBB) == L)
3149 for (MachineInstr &MI : *MBB) {
3150 SmallVector<const MachineMemOperand *, 2> Accesses;
3151 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3152 return MFI.isSpillSlotObjectIndex(
3153 cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
3154 ->getFrameIndex());
3157 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
3158 ++Reloads;
3159 else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3160 llvm::any_of(Accesses, isSpillSlotAccess))
3161 ++FoldedReloads;
3162 else if (TII->isStoreToStackSlot(MI, FI) &&
3163 MFI.isSpillSlotObjectIndex(FI))
3164 ++Spills;
3165 else if (TII->hasStoreToStackSlot(MI, Accesses) &&
3166 llvm::any_of(Accesses, isSpillSlotAccess))
3167 ++FoldedSpills;
3170 if (Reloads || FoldedReloads || Spills || FoldedSpills) {
3171 using namespace ore;
3173 ORE->emit([&]() {
3174 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
3175 L->getStartLoc(), L->getHeader());
3176 if (Spills)
3177 R << NV("NumSpills", Spills) << " spills ";
3178 if (FoldedSpills)
3179 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3180 if (Reloads)
3181 R << NV("NumReloads", Reloads) << " reloads ";
3182 if (FoldedReloads)
3183 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3184 R << "generated in loop";
3185 return R;
3190 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3191 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3192 << "********** Function: " << mf.getName() << '\n');
3194 MF = &mf;
3195 TRI = MF->getSubtarget().getRegisterInfo();
3196 TII = MF->getSubtarget().getInstrInfo();
3197 RCI.runOnMachineFunction(mf);
3199 EnableLocalReassign = EnableLocalReassignment ||
3200 MF->getSubtarget().enableRALocalReassignment(
3201 MF->getTarget().getOptLevel());
3203 EnableAdvancedRASplitCost = ConsiderLocalIntervalCost ||
3204 MF->getSubtarget().enableAdvancedRASplitCost();
3206 if (VerifyEnabled)
3207 MF->verify(this, "Before greedy register allocator");
3209 RegAllocBase::init(getAnalysis<VirtRegMap>(),
3210 getAnalysis<LiveIntervals>(),
3211 getAnalysis<LiveRegMatrix>());
3212 Indexes = &getAnalysis<SlotIndexes>();
3213 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3214 DomTree = &getAnalysis<MachineDominatorTree>();
3215 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3216 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
3217 Loops = &getAnalysis<MachineLoopInfo>();
3218 Bundles = &getAnalysis<EdgeBundles>();
3219 SpillPlacer = &getAnalysis<SpillPlacement>();
3220 DebugVars = &getAnalysis<LiveDebugVariables>();
3221 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3223 initializeCSRCost();
3225 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
3227 LLVM_DEBUG(LIS->dump());
3229 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3230 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
3231 ExtraRegInfo.clear();
3232 ExtraRegInfo.resize(MRI->getNumVirtRegs());
3233 NextCascade = 1;
3234 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3235 GlobalCand.resize(32); // This will grow as needed.
3236 SetOfBrokenHints.clear();
3237 LastEvicted.clear();
3239 allocatePhysRegs();
3240 tryHintsRecoloring();
3241 postOptimization();
3242 reportNumberOfSplillsReloads();
3244 releaseMemory();
3245 return true;