1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the RAGreedy function pass for register allocation in
13 //===----------------------------------------------------------------------===//
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "SpillPlacement.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/MapVector.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/CodeGen/CalcSpillWeights.h"
36 #include "llvm/CodeGen/EdgeBundles.h"
37 #include "llvm/CodeGen/LiveInterval.h"
38 #include "llvm/CodeGen/LiveIntervalUnion.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveRangeEdit.h"
41 #include "llvm/CodeGen/LiveRegMatrix.h"
42 #include "llvm/CodeGen/LiveStacks.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineFrameInfo.h"
47 #include "llvm/CodeGen/MachineFunction.h"
48 #include "llvm/CodeGen/MachineFunctionPass.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RegAllocRegistry.h"
55 #include "llvm/CodeGen/RegisterClassInfo.h"
56 #include "llvm/CodeGen/SlotIndexes.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/VirtRegMap.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/MC/MCRegisterInfo.h"
64 #include "llvm/Pass.h"
65 #include "llvm/Support/BlockFrequency.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Target/TargetMachine.h"
83 #define DEBUG_TYPE "regalloc"
85 STATISTIC(NumGlobalSplits
, "Number of split global live ranges");
86 STATISTIC(NumLocalSplits
, "Number of split local live ranges");
87 STATISTIC(NumEvicted
, "Number of interferences evicted");
89 static cl::opt
<SplitEditor::ComplementSpillMode
> SplitSpillMode(
90 "split-spill-mode", cl::Hidden
,
91 cl::desc("Spill mode for splitting live ranges"),
92 cl::values(clEnumValN(SplitEditor::SM_Partition
, "default", "Default"),
93 clEnumValN(SplitEditor::SM_Size
, "size", "Optimize for size"),
94 clEnumValN(SplitEditor::SM_Speed
, "speed", "Optimize for speed")),
95 cl::init(SplitEditor::SM_Speed
));
97 static cl::opt
<unsigned>
98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden
,
99 cl::desc("Last chance recoloring max depth"),
102 static cl::opt
<unsigned> LastChanceRecoloringMaxInterference(
103 "lcr-max-interf", cl::Hidden
,
104 cl::desc("Last chance recoloring maximum number of considered"
105 " interference at a time"),
108 static cl::opt
<bool> ExhaustiveSearch(
109 "exhaustive-register-search", cl::NotHidden
,
110 cl::desc("Exhaustive Search for registers bypassing the depth "
111 "and interference cutoffs of last chance recoloring"),
114 static cl::opt
<bool> EnableLocalReassignment(
115 "enable-local-reassign", cl::Hidden
,
116 cl::desc("Local reassignment can yield better allocation decisions, but "
117 "may be compile time intensive"),
120 static cl::opt
<bool> EnableDeferredSpilling(
121 "enable-deferred-spilling", cl::Hidden
,
122 cl::desc("Instead of spilling a variable right away, defer the actual "
123 "code insertion to the end of the allocation. That way the "
124 "allocator might still find a suitable coloring for this "
125 "variable because of other evicted variables."),
128 static cl::opt
<unsigned>
129 HugeSizeForSplit("huge-size-for-split", cl::Hidden
,
130 cl::desc("A threshold of live range size which may cause "
131 "high compile time cost in global splitting."),
134 // FIXME: Find a good default for this flag and remove the flag.
135 static cl::opt
<unsigned>
136 CSRFirstTimeCost("regalloc-csr-first-time-cost",
137 cl::desc("Cost for first time use of callee-saved register."),
138 cl::init(0), cl::Hidden
);
140 static cl::opt
<bool> ConsiderLocalIntervalCost(
141 "condsider-local-interval-cost", cl::Hidden
,
142 cl::desc("Consider the cost of local intervals created by a split "
143 "candidate when choosing the best split candidate."),
146 static RegisterRegAlloc
greedyRegAlloc("greedy", "greedy register allocator",
147 createGreedyRegisterAllocator
);
151 class RAGreedy
: public MachineFunctionPass
,
153 private LiveRangeEdit::Delegate
{
154 // Convenient shortcuts.
155 using PQueue
= std::priority_queue
<std::pair
<unsigned, unsigned>>;
156 using SmallLISet
= SmallPtrSet
<LiveInterval
*, 4>;
157 using SmallVirtRegSet
= SmallSet
<unsigned, 16>;
162 // Shortcuts to some useful interface.
163 const TargetInstrInfo
*TII
;
164 const TargetRegisterInfo
*TRI
;
165 RegisterClassInfo RCI
;
168 SlotIndexes
*Indexes
;
169 MachineBlockFrequencyInfo
*MBFI
;
170 MachineDominatorTree
*DomTree
;
171 MachineLoopInfo
*Loops
;
172 MachineOptimizationRemarkEmitter
*ORE
;
173 EdgeBundles
*Bundles
;
174 SpillPlacement
*SpillPlacer
;
175 LiveDebugVariables
*DebugVars
;
179 std::unique_ptr
<Spiller
> SpillerInstance
;
181 unsigned NextCascade
;
183 // Live ranges pass through a number of stages as we try to allocate them.
184 // Some of the stages may also create new live ranges:
186 // - Region splitting.
187 // - Per-block splitting.
188 // - Local splitting.
191 // Ranges produced by one of the stages skip the previous stages when they are
192 // dequeued. This improves performance because we can skip interference checks
193 // that are unlikely to give any results. It also guarantees that the live
194 // range splitting algorithm terminates, something that is otherwise hard to
196 enum LiveRangeStage
{
197 /// Newly created live range that has never been queued.
200 /// Only attempt assignment and eviction. Then requeue as RS_Split.
203 /// Attempt live range splitting if assignment is impossible.
206 /// Attempt more aggressive live range splitting that is guaranteed to make
207 /// progress. This is used for split products that may not be making
211 /// Live range will be spilled. No more splitting will be attempted.
215 /// Live range is in memory. Because of other evictions, it might get moved
216 /// in a register in the end.
219 /// There is nothing more we can do to this live range. Abort compilation
220 /// if it can't be assigned.
224 // Enum CutOffStage to keep a track whether the register allocation failed
225 // because of the cutoffs encountered in last chance recoloring.
226 // Note: This is used as bitmask. New value should be next power of 2.
228 // No cutoffs encountered
231 // lcr-max-depth cutoff encountered
234 // lcr-max-interf cutoff encountered
241 static const char *const StageName
[];
244 // RegInfo - Keep additional information about each live range.
246 LiveRangeStage Stage
= RS_New
;
248 // Cascade - Eviction loop prevention. See canEvictInterference().
249 unsigned Cascade
= 0;
254 IndexedMap
<RegInfo
, VirtReg2IndexFunctor
> ExtraRegInfo
;
256 LiveRangeStage
getStage(const LiveInterval
&VirtReg
) const {
257 return ExtraRegInfo
[VirtReg
.reg
].Stage
;
260 void setStage(const LiveInterval
&VirtReg
, LiveRangeStage Stage
) {
261 ExtraRegInfo
.resize(MRI
->getNumVirtRegs());
262 ExtraRegInfo
[VirtReg
.reg
].Stage
= Stage
;
265 template<typename Iterator
>
266 void setStage(Iterator Begin
, Iterator End
, LiveRangeStage NewStage
) {
267 ExtraRegInfo
.resize(MRI
->getNumVirtRegs());
268 for (;Begin
!= End
; ++Begin
) {
269 unsigned Reg
= *Begin
;
270 if (ExtraRegInfo
[Reg
].Stage
== RS_New
)
271 ExtraRegInfo
[Reg
].Stage
= NewStage
;
275 /// Cost of evicting interference.
276 struct EvictionCost
{
277 unsigned BrokenHints
= 0; ///< Total number of broken hints.
278 float MaxWeight
= 0; ///< Maximum spill weight evicted.
280 EvictionCost() = default;
282 bool isMax() const { return BrokenHints
== ~0u; }
284 void setMax() { BrokenHints
= ~0u; }
286 void setBrokenHints(unsigned NHints
) { BrokenHints
= NHints
; }
288 bool operator<(const EvictionCost
&O
) const {
289 return std::tie(BrokenHints
, MaxWeight
) <
290 std::tie(O
.BrokenHints
, O
.MaxWeight
);
294 /// EvictionTrack - Keeps track of past evictions in order to optimize region
296 class EvictionTrack
{
300 std::pair
<unsigned /* evictor */, unsigned /* physreg */>;
301 using EvicteeInfo
= llvm::DenseMap
<unsigned /* evictee */, EvictorInfo
>;
304 /// Each Vreg that has been evicted in the last stage of selectOrSplit will
305 /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
306 EvicteeInfo Evictees
;
309 /// Clear all eviction information.
310 void clear() { Evictees
.clear(); }
312 /// Clear eviction information for the given evictee Vreg.
313 /// E.g. when Vreg get's a new allocation, the old eviction info is no
315 /// \param Evictee The evictee Vreg for whom we want to clear collected
317 void clearEvicteeInfo(unsigned Evictee
) { Evictees
.erase(Evictee
); }
319 /// Track new eviction.
320 /// The Evictor vreg has evicted the Evictee vreg from Physreg.
321 /// \param PhysReg The phisical register Evictee was evicted from.
322 /// \param Evictor The evictor Vreg that evicted Evictee.
323 /// \param Evictee The evictee Vreg.
324 void addEviction(unsigned PhysReg
, unsigned Evictor
, unsigned Evictee
) {
325 Evictees
[Evictee
].first
= Evictor
;
326 Evictees
[Evictee
].second
= PhysReg
;
329 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
330 /// \param Evictee The evictee vreg.
331 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
332 /// nobody has evicted Evictee from PhysReg.
333 EvictorInfo
getEvictor(unsigned Evictee
) {
334 if (Evictees
.count(Evictee
)) {
335 return Evictees
[Evictee
];
338 return EvictorInfo(0, 0);
342 // Keeps track of past evictions in order to optimize region split decision.
343 EvictionTrack LastEvicted
;
346 std::unique_ptr
<SplitAnalysis
> SA
;
347 std::unique_ptr
<SplitEditor
> SE
;
349 /// Cached per-block interference maps
350 InterferenceCache IntfCache
;
352 /// All basic blocks where the current register has uses.
353 SmallVector
<SpillPlacement::BlockConstraint
, 8> SplitConstraints
;
355 /// Global live range splitting candidate info.
356 struct GlobalSplitCandidate
{
357 // Register intended for assignment, or 0.
360 // SplitKit interval index for this candidate.
363 // Interference for PhysReg.
364 InterferenceCache::Cursor Intf
;
366 // Bundles where this candidate should be live.
367 BitVector LiveBundles
;
368 SmallVector
<unsigned, 8> ActiveBlocks
;
370 void reset(InterferenceCache
&Cache
, unsigned Reg
) {
373 Intf
.setPhysReg(Cache
, Reg
);
375 ActiveBlocks
.clear();
378 // Set B[i] = C for every live bundle where B[i] was NoCand.
379 unsigned getBundles(SmallVectorImpl
<unsigned> &B
, unsigned C
) {
381 for (unsigned i
: LiveBundles
.set_bits())
382 if (B
[i
] == NoCand
) {
390 /// Candidate info for each PhysReg in AllocationOrder.
391 /// This vector never shrinks, but grows to the size of the largest register
393 SmallVector
<GlobalSplitCandidate
, 32> GlobalCand
;
395 enum : unsigned { NoCand
= ~0u };
397 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
398 /// NoCand which indicates the stack interval.
399 SmallVector
<unsigned, 32> BundleCand
;
401 /// Callee-save register cost, calculated once per machine function.
402 BlockFrequency CSRCost
;
404 /// Run or not the local reassignment heuristic. This information is
405 /// obtained from the TargetSubtargetInfo.
406 bool EnableLocalReassign
;
408 /// Enable or not the consideration of the cost of local intervals created
409 /// by a split candidate when choosing the best split candidate.
410 bool EnableAdvancedRASplitCost
;
412 /// Set of broken hints that may be reconciled later because of eviction.
413 SmallSetVector
<LiveInterval
*, 8> SetOfBrokenHints
;
418 /// Return the pass name.
419 StringRef
getPassName() const override
{ return "Greedy Register Allocator"; }
421 /// RAGreedy analysis usage.
422 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
423 void releaseMemory() override
;
424 Spiller
&spiller() override
{ return *SpillerInstance
; }
425 void enqueue(LiveInterval
*LI
) override
;
426 LiveInterval
*dequeue() override
;
427 unsigned selectOrSplit(LiveInterval
&, SmallVectorImpl
<unsigned>&) override
;
428 void aboutToRemoveInterval(LiveInterval
&) override
;
430 /// Perform register allocation.
431 bool runOnMachineFunction(MachineFunction
&mf
) override
;
433 MachineFunctionProperties
getRequiredProperties() const override
{
434 return MachineFunctionProperties().set(
435 MachineFunctionProperties::Property::NoPHIs
);
441 unsigned selectOrSplitImpl(LiveInterval
&, SmallVectorImpl
<unsigned> &,
442 SmallVirtRegSet
&, unsigned = 0);
444 bool LRE_CanEraseVirtReg(unsigned) override
;
445 void LRE_WillShrinkVirtReg(unsigned) override
;
446 void LRE_DidCloneVirtReg(unsigned, unsigned) override
;
447 void enqueue(PQueue
&CurQueue
, LiveInterval
*LI
);
448 LiveInterval
*dequeue(PQueue
&CurQueue
);
450 BlockFrequency
calcSpillCost();
451 bool addSplitConstraints(InterferenceCache::Cursor
, BlockFrequency
&);
452 bool addThroughConstraints(InterferenceCache::Cursor
, ArrayRef
<unsigned>);
453 bool growRegion(GlobalSplitCandidate
&Cand
);
454 bool splitCanCauseEvictionChain(unsigned Evictee
, GlobalSplitCandidate
&Cand
,
456 const AllocationOrder
&Order
);
457 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit
,
458 GlobalSplitCandidate
&Cand
, unsigned BBNumber
,
459 const AllocationOrder
&Order
);
460 BlockFrequency
calcGlobalSplitCost(GlobalSplitCandidate
&,
461 const AllocationOrder
&Order
,
462 bool *CanCauseEvictionChain
);
463 bool calcCompactRegion(GlobalSplitCandidate
&);
464 void splitAroundRegion(LiveRangeEdit
&, ArrayRef
<unsigned>);
465 void calcGapWeights(unsigned, SmallVectorImpl
<float>&);
466 unsigned canReassign(LiveInterval
&VirtReg
, unsigned PrevReg
);
467 bool shouldEvict(LiveInterval
&A
, bool, LiveInterval
&B
, bool);
468 bool canEvictInterference(LiveInterval
&, unsigned, bool, EvictionCost
&);
469 bool canEvictInterferenceInRange(LiveInterval
&VirtReg
, unsigned PhysReg
,
470 SlotIndex Start
, SlotIndex End
,
471 EvictionCost
&MaxCost
);
472 unsigned getCheapestEvicteeWeight(const AllocationOrder
&Order
,
473 LiveInterval
&VirtReg
, SlotIndex Start
,
474 SlotIndex End
, float *BestEvictWeight
);
475 void evictInterference(LiveInterval
&, unsigned,
476 SmallVectorImpl
<unsigned>&);
477 bool mayRecolorAllInterferences(unsigned PhysReg
, LiveInterval
&VirtReg
,
478 SmallLISet
&RecoloringCandidates
,
479 const SmallVirtRegSet
&FixedRegisters
);
481 unsigned tryAssign(LiveInterval
&, AllocationOrder
&,
482 SmallVectorImpl
<unsigned>&);
483 unsigned tryEvict(LiveInterval
&, AllocationOrder
&,
484 SmallVectorImpl
<unsigned>&, unsigned = ~0u);
485 unsigned tryRegionSplit(LiveInterval
&, AllocationOrder
&,
486 SmallVectorImpl
<unsigned>&);
487 unsigned isSplitBenefitWorthCost(LiveInterval
&VirtReg
);
488 /// Calculate cost of region splitting.
489 unsigned calculateRegionSplitCost(LiveInterval
&VirtReg
,
490 AllocationOrder
&Order
,
491 BlockFrequency
&BestCost
,
492 unsigned &NumCands
, bool IgnoreCSR
,
493 bool *CanCauseEvictionChain
= nullptr);
494 /// Perform region splitting.
495 unsigned doRegionSplit(LiveInterval
&VirtReg
, unsigned BestCand
,
497 SmallVectorImpl
<unsigned> &NewVRegs
);
498 /// Check other options before using a callee-saved register for the first
500 unsigned tryAssignCSRFirstTime(LiveInterval
&VirtReg
, AllocationOrder
&Order
,
501 unsigned PhysReg
, unsigned &CostPerUseLimit
,
502 SmallVectorImpl
<unsigned> &NewVRegs
);
503 void initializeCSRCost();
504 unsigned tryBlockSplit(LiveInterval
&, AllocationOrder
&,
505 SmallVectorImpl
<unsigned>&);
506 unsigned tryInstructionSplit(LiveInterval
&, AllocationOrder
&,
507 SmallVectorImpl
<unsigned>&);
508 unsigned tryLocalSplit(LiveInterval
&, AllocationOrder
&,
509 SmallVectorImpl
<unsigned>&);
510 unsigned trySplit(LiveInterval
&, AllocationOrder
&,
511 SmallVectorImpl
<unsigned>&);
512 unsigned tryLastChanceRecoloring(LiveInterval
&, AllocationOrder
&,
513 SmallVectorImpl
<unsigned> &,
514 SmallVirtRegSet
&, unsigned);
515 bool tryRecoloringCandidates(PQueue
&, SmallVectorImpl
<unsigned> &,
516 SmallVirtRegSet
&, unsigned);
517 void tryHintRecoloring(LiveInterval
&);
518 void tryHintsRecoloring();
520 /// Model the information carried by one end of a copy.
522 /// The frequency of the copy.
524 /// The virtual register or physical register.
526 /// Its currently assigned register.
527 /// In case of a physical register Reg == PhysReg.
530 HintInfo(BlockFrequency Freq
, unsigned Reg
, unsigned PhysReg
)
531 : Freq(Freq
), Reg(Reg
), PhysReg(PhysReg
) {}
533 using HintsInfo
= SmallVector
<HintInfo
, 4>;
535 BlockFrequency
getBrokenHintFreq(const HintsInfo
&, unsigned);
536 void collectHintInfo(unsigned, HintsInfo
&);
538 bool isUnusedCalleeSavedReg(unsigned PhysReg
) const;
540 /// Compute and report the number of spills and reloads for a loop.
541 void reportNumberOfSplillsReloads(MachineLoop
*L
, unsigned &Reloads
,
542 unsigned &FoldedReloads
, unsigned &Spills
,
543 unsigned &FoldedSpills
);
545 /// Report the number of spills and reloads for each loop.
546 void reportNumberOfSplillsReloads() {
547 for (MachineLoop
*L
: *Loops
) {
548 unsigned Reloads
, FoldedReloads
, Spills
, FoldedSpills
;
549 reportNumberOfSplillsReloads(L
, Reloads
, FoldedReloads
, Spills
,
555 } // end anonymous namespace
557 char RAGreedy::ID
= 0;
558 char &llvm::RAGreedyID
= RAGreedy::ID
;
560 INITIALIZE_PASS_BEGIN(RAGreedy
, "greedy",
561 "Greedy Register Allocator", false, false)
562 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables
)
563 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
564 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
565 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer
)
566 INITIALIZE_PASS_DEPENDENCY(MachineScheduler
)
567 INITIALIZE_PASS_DEPENDENCY(LiveStacks
)
568 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
569 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
570 INITIALIZE_PASS_DEPENDENCY(VirtRegMap
)
571 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix
)
572 INITIALIZE_PASS_DEPENDENCY(EdgeBundles
)
573 INITIALIZE_PASS_DEPENDENCY(SpillPlacement
)
574 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass
)
575 INITIALIZE_PASS_END(RAGreedy
, "greedy",
576 "Greedy Register Allocator", false, false)
579 const char *const RAGreedy::StageName
[] = {
590 // Hysteresis to use when comparing floats.
591 // This helps stabilize decisions based on float comparisons.
592 const float Hysteresis
= (2007 / 2048.0f
); // 0.97998046875
594 FunctionPass
* llvm::createGreedyRegisterAllocator() {
595 return new RAGreedy();
598 RAGreedy::RAGreedy(): MachineFunctionPass(ID
) {
601 void RAGreedy::getAnalysisUsage(AnalysisUsage
&AU
) const {
602 AU
.setPreservesCFG();
603 AU
.addRequired
<MachineBlockFrequencyInfo
>();
604 AU
.addPreserved
<MachineBlockFrequencyInfo
>();
605 AU
.addRequired
<AAResultsWrapperPass
>();
606 AU
.addPreserved
<AAResultsWrapperPass
>();
607 AU
.addRequired
<LiveIntervals
>();
608 AU
.addPreserved
<LiveIntervals
>();
609 AU
.addRequired
<SlotIndexes
>();
610 AU
.addPreserved
<SlotIndexes
>();
611 AU
.addRequired
<LiveDebugVariables
>();
612 AU
.addPreserved
<LiveDebugVariables
>();
613 AU
.addRequired
<LiveStacks
>();
614 AU
.addPreserved
<LiveStacks
>();
615 AU
.addRequired
<MachineDominatorTree
>();
616 AU
.addPreserved
<MachineDominatorTree
>();
617 AU
.addRequired
<MachineLoopInfo
>();
618 AU
.addPreserved
<MachineLoopInfo
>();
619 AU
.addRequired
<VirtRegMap
>();
620 AU
.addPreserved
<VirtRegMap
>();
621 AU
.addRequired
<LiveRegMatrix
>();
622 AU
.addPreserved
<LiveRegMatrix
>();
623 AU
.addRequired
<EdgeBundles
>();
624 AU
.addRequired
<SpillPlacement
>();
625 AU
.addRequired
<MachineOptimizationRemarkEmitterPass
>();
626 MachineFunctionPass::getAnalysisUsage(AU
);
629 //===----------------------------------------------------------------------===//
630 // LiveRangeEdit delegate methods
631 //===----------------------------------------------------------------------===//
633 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg
) {
634 LiveInterval
&LI
= LIS
->getInterval(VirtReg
);
635 if (VRM
->hasPhys(VirtReg
)) {
636 Matrix
->unassign(LI
);
637 aboutToRemoveInterval(LI
);
640 // Unassigned virtreg is probably in the priority queue.
641 // RegAllocBase will erase it after dequeueing.
642 // Nonetheless, clear the live-range so that the debug
643 // dump will show the right state for that VirtReg.
648 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg
) {
649 if (!VRM
->hasPhys(VirtReg
))
652 // Register is assigned, put it back on the queue for reassignment.
653 LiveInterval
&LI
= LIS
->getInterval(VirtReg
);
654 Matrix
->unassign(LI
);
658 void RAGreedy::LRE_DidCloneVirtReg(unsigned New
, unsigned Old
) {
659 // Cloning a register we haven't even heard about yet? Just ignore it.
660 if (!ExtraRegInfo
.inBounds(Old
))
663 // LRE may clone a virtual register because dead code elimination causes it to
664 // be split into connected components. The new components are much smaller
665 // than the original, so they should get a new chance at being assigned.
666 // same stage as the parent.
667 ExtraRegInfo
[Old
].Stage
= RS_Assign
;
668 ExtraRegInfo
.grow(New
);
669 ExtraRegInfo
[New
] = ExtraRegInfo
[Old
];
672 void RAGreedy::releaseMemory() {
673 SpillerInstance
.reset();
674 ExtraRegInfo
.clear();
678 void RAGreedy::enqueue(LiveInterval
*LI
) { enqueue(Queue
, LI
); }
680 void RAGreedy::enqueue(PQueue
&CurQueue
, LiveInterval
*LI
) {
681 // Prioritize live ranges by size, assigning larger ranges first.
682 // The queue holds (size, reg) pairs.
683 const unsigned Size
= LI
->getSize();
684 const unsigned Reg
= LI
->reg
;
685 assert(TargetRegisterInfo::isVirtualRegister(Reg
) &&
686 "Can only enqueue virtual registers");
689 ExtraRegInfo
.grow(Reg
);
690 if (ExtraRegInfo
[Reg
].Stage
== RS_New
)
691 ExtraRegInfo
[Reg
].Stage
= RS_Assign
;
693 if (ExtraRegInfo
[Reg
].Stage
== RS_Split
) {
694 // Unsplit ranges that couldn't be allocated immediately are deferred until
695 // everything else has been allocated.
697 } else if (ExtraRegInfo
[Reg
].Stage
== RS_Memory
) {
698 // Memory operand should be considered last.
699 // Change the priority such that Memory operand are assigned in
700 // the reverse order that they came in.
701 // TODO: Make this a member variable and probably do something about hints.
702 static unsigned MemOp
= 0;
705 // Giant live ranges fall back to the global assignment heuristic, which
706 // prevents excessive spilling in pathological cases.
707 bool ReverseLocal
= TRI
->reverseLocalAssignment();
708 const TargetRegisterClass
&RC
= *MRI
->getRegClass(Reg
);
709 bool ForceGlobal
= !ReverseLocal
&&
710 (Size
/ SlotIndex::InstrDist
) > (2 * RC
.getNumRegs());
712 if (ExtraRegInfo
[Reg
].Stage
== RS_Assign
&& !ForceGlobal
&& !LI
->empty() &&
713 LIS
->intervalIsInOneMBB(*LI
)) {
714 // Allocate original local ranges in linear instruction order. Since they
715 // are singly defined, this produces optimal coloring in the absence of
716 // global interference and other constraints.
718 Prio
= LI
->beginIndex().getInstrDistance(Indexes
->getLastIndex());
720 // Allocating bottom up may allow many short LRGs to be assigned first
721 // to one of the cheap registers. This could be much faster for very
722 // large blocks on targets with many physical registers.
723 Prio
= Indexes
->getZeroIndex().getInstrDistance(LI
->endIndex());
725 Prio
|= RC
.AllocationPriority
<< 24;
727 // Allocate global and split ranges in long->short order. Long ranges that
728 // don't fit should be spilled (or split) ASAP so they don't create
729 // interference. Mark a bit to prioritize global above local ranges.
730 Prio
= (1u << 29) + Size
;
732 // Mark a higher bit to prioritize global and local above RS_Split.
735 // Boost ranges that have a physical register hint.
736 if (VRM
->hasKnownPreference(Reg
))
739 // The virtual register number is a tie breaker for same-sized ranges.
740 // Give lower vreg numbers higher priority to assign them first.
741 CurQueue
.push(std::make_pair(Prio
, ~Reg
));
744 LiveInterval
*RAGreedy::dequeue() { return dequeue(Queue
); }
746 LiveInterval
*RAGreedy::dequeue(PQueue
&CurQueue
) {
747 if (CurQueue
.empty())
749 LiveInterval
*LI
= &LIS
->getInterval(~CurQueue
.top().second
);
754 //===----------------------------------------------------------------------===//
756 //===----------------------------------------------------------------------===//
758 /// tryAssign - Try to assign VirtReg to an available register.
759 unsigned RAGreedy::tryAssign(LiveInterval
&VirtReg
,
760 AllocationOrder
&Order
,
761 SmallVectorImpl
<unsigned> &NewVRegs
) {
764 while ((PhysReg
= Order
.next()))
765 if (!Matrix
->checkInterference(VirtReg
, PhysReg
))
767 if (!PhysReg
|| Order
.isHint())
770 // PhysReg is available, but there may be a better choice.
772 // If we missed a simple hint, try to cheaply evict interference from the
773 // preferred register.
774 if (unsigned Hint
= MRI
->getSimpleHint(VirtReg
.reg
))
775 if (Order
.isHint(Hint
)) {
776 LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint
, TRI
) << '\n');
777 EvictionCost MaxCost
;
778 MaxCost
.setBrokenHints(1);
779 if (canEvictInterference(VirtReg
, Hint
, true, MaxCost
)) {
780 evictInterference(VirtReg
, Hint
, NewVRegs
);
783 // Record the missed hint, we may be able to recover
784 // at the end if the surrounding allocation changed.
785 SetOfBrokenHints
.insert(&VirtReg
);
788 // Try to evict interference from a cheaper alternative.
789 unsigned Cost
= TRI
->getCostPerUse(PhysReg
);
791 // Most registers have 0 additional cost.
795 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << " is available at cost "
797 unsigned CheapReg
= tryEvict(VirtReg
, Order
, NewVRegs
, Cost
);
798 return CheapReg
? CheapReg
: PhysReg
;
801 //===----------------------------------------------------------------------===//
802 // Interference eviction
803 //===----------------------------------------------------------------------===//
805 unsigned RAGreedy::canReassign(LiveInterval
&VirtReg
, unsigned PrevReg
) {
806 AllocationOrder
Order(VirtReg
.reg
, *VRM
, RegClassInfo
, Matrix
);
808 while ((PhysReg
= Order
.next())) {
809 if (PhysReg
== PrevReg
)
812 MCRegUnitIterator
Units(PhysReg
, TRI
);
813 for (; Units
.isValid(); ++Units
) {
814 // Instantiate a "subquery", not to be confused with the Queries array.
815 LiveIntervalUnion::Query
subQ(VirtReg
, Matrix
->getLiveUnions()[*Units
]);
816 if (subQ
.checkInterference())
819 // If no units have interference, break out with the current PhysReg.
820 if (!Units
.isValid())
824 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg
<< " from "
825 << printReg(PrevReg
, TRI
) << " to "
826 << printReg(PhysReg
, TRI
) << '\n');
830 /// shouldEvict - determine if A should evict the assigned live range B. The
831 /// eviction policy defined by this function together with the allocation order
832 /// defined by enqueue() decides which registers ultimately end up being split
835 /// Cascade numbers are used to prevent infinite loops if this function is a
838 /// @param A The live range to be assigned.
839 /// @param IsHint True when A is about to be assigned to its preferred
841 /// @param B The live range to be evicted.
842 /// @param BreaksHint True when B is already assigned to its preferred register.
843 bool RAGreedy::shouldEvict(LiveInterval
&A
, bool IsHint
,
844 LiveInterval
&B
, bool BreaksHint
) {
845 bool CanSplit
= getStage(B
) < RS_Spill
;
847 // Be fairly aggressive about following hints as long as the evictee can be
849 if (CanSplit
&& IsHint
&& !BreaksHint
)
852 if (A
.weight
> B
.weight
) {
853 LLVM_DEBUG(dbgs() << "should evict: " << B
<< " w= " << B
.weight
<< '\n');
859 /// canEvictInterference - Return true if all interferences between VirtReg and
860 /// PhysReg can be evicted.
862 /// @param VirtReg Live range that is about to be assigned.
863 /// @param PhysReg Desired register for assignment.
864 /// @param IsHint True when PhysReg is VirtReg's preferred register.
865 /// @param MaxCost Only look for cheaper candidates and update with new cost
866 /// when returning true.
867 /// @returns True when interference can be evicted cheaper than MaxCost.
868 bool RAGreedy::canEvictInterference(LiveInterval
&VirtReg
, unsigned PhysReg
,
869 bool IsHint
, EvictionCost
&MaxCost
) {
870 // It is only possible to evict virtual register interference.
871 if (Matrix
->checkInterference(VirtReg
, PhysReg
) > LiveRegMatrix::IK_VirtReg
)
874 bool IsLocal
= LIS
->intervalIsInOneMBB(VirtReg
);
876 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
877 // involved in an eviction before. If a cascade number was assigned, deny
878 // evicting anything with the same or a newer cascade number. This prevents
879 // infinite eviction loops.
881 // This works out so a register without a cascade number is allowed to evict
882 // anything, and it can be evicted by anything.
883 unsigned Cascade
= ExtraRegInfo
[VirtReg
.reg
].Cascade
;
885 Cascade
= NextCascade
;
888 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
889 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, *Units
);
890 // If there is 10 or more interferences, chances are one is heavier.
891 if (Q
.collectInterferingVRegs(10) >= 10)
894 // Check if any interfering live range is heavier than MaxWeight.
895 for (unsigned i
= Q
.interferingVRegs().size(); i
; --i
) {
896 LiveInterval
*Intf
= Q
.interferingVRegs()[i
- 1];
897 assert(TargetRegisterInfo::isVirtualRegister(Intf
->reg
) &&
898 "Only expecting virtual register interference from query");
899 // Never evict spill products. They cannot split or spill.
900 if (getStage(*Intf
) == RS_Done
)
902 // Once a live range becomes small enough, it is urgent that we find a
903 // register for it. This is indicated by an infinite spill weight. These
904 // urgent live ranges get to evict almost anything.
906 // Also allow urgent evictions of unspillable ranges from a strictly
907 // larger allocation order.
908 bool Urgent
= !VirtReg
.isSpillable() &&
909 (Intf
->isSpillable() ||
910 RegClassInfo
.getNumAllocatableRegs(MRI
->getRegClass(VirtReg
.reg
)) <
911 RegClassInfo
.getNumAllocatableRegs(MRI
->getRegClass(Intf
->reg
)));
912 // Only evict older cascades or live ranges without a cascade.
913 unsigned IntfCascade
= ExtraRegInfo
[Intf
->reg
].Cascade
;
914 if (Cascade
<= IntfCascade
) {
917 // We permit breaking cascades for urgent evictions. It should be the
918 // last resort, though, so make it really expensive.
919 Cost
.BrokenHints
+= 10;
921 // Would this break a satisfied hint?
922 bool BreaksHint
= VRM
->hasPreferredPhys(Intf
->reg
);
923 // Update eviction cost.
924 Cost
.BrokenHints
+= BreaksHint
;
925 Cost
.MaxWeight
= std::max(Cost
.MaxWeight
, Intf
->weight
);
926 // Abort if this would be too expensive.
927 if (!(Cost
< MaxCost
))
931 // Apply the eviction policy for non-urgent evictions.
932 if (!shouldEvict(VirtReg
, IsHint
, *Intf
, BreaksHint
))
934 // If !MaxCost.isMax(), then we're just looking for a cheap register.
935 // Evicting another local live range in this case could lead to suboptimal
937 if (!MaxCost
.isMax() && IsLocal
&& LIS
->intervalIsInOneMBB(*Intf
) &&
938 (!EnableLocalReassign
|| !canReassign(*Intf
, PhysReg
))) {
947 /// Return true if all interferences between VirtReg and PhysReg between
948 /// Start and End can be evicted.
950 /// \param VirtReg Live range that is about to be assigned.
951 /// \param PhysReg Desired register for assignment.
952 /// \param Start Start of range to look for interferences.
953 /// \param End End of range to look for interferences.
954 /// \param MaxCost Only look for cheaper candidates and update with new cost
955 /// when returning true.
956 /// \return True when interference can be evicted cheaper than MaxCost.
957 bool RAGreedy::canEvictInterferenceInRange(LiveInterval
&VirtReg
,
958 unsigned PhysReg
, SlotIndex Start
,
960 EvictionCost
&MaxCost
) {
963 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
964 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, *Units
);
966 // Check if any interfering live range is heavier than MaxWeight.
967 for (unsigned i
= Q
.interferingVRegs().size(); i
; --i
) {
968 LiveInterval
*Intf
= Q
.interferingVRegs()[i
- 1];
970 // Check if interference overlast the segment in interest.
971 if (!Intf
->overlaps(Start
, End
))
974 // Cannot evict non virtual reg interference.
975 if (!TargetRegisterInfo::isVirtualRegister(Intf
->reg
))
977 // Never evict spill products. They cannot split or spill.
978 if (getStage(*Intf
) == RS_Done
)
981 // Would this break a satisfied hint?
982 bool BreaksHint
= VRM
->hasPreferredPhys(Intf
->reg
);
983 // Update eviction cost.
984 Cost
.BrokenHints
+= BreaksHint
;
985 Cost
.MaxWeight
= std::max(Cost
.MaxWeight
, Intf
->weight
);
986 // Abort if this would be too expensive.
987 if (!(Cost
< MaxCost
))
992 if (Cost
.MaxWeight
== 0)
999 /// Return the physical register that will be best
1000 /// candidate for eviction by a local split interval that will be created
1001 /// between Start and End.
1003 /// \param Order The allocation order
1004 /// \param VirtReg Live range that is about to be assigned.
1005 /// \param Start Start of range to look for interferences
1006 /// \param End End of range to look for interferences
1007 /// \param BestEvictweight The eviction cost of that eviction
1008 /// \return The PhysReg which is the best candidate for eviction and the
1009 /// eviction cost in BestEvictweight
1010 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder
&Order
,
1011 LiveInterval
&VirtReg
,
1012 SlotIndex Start
, SlotIndex End
,
1013 float *BestEvictweight
) {
1014 EvictionCost BestEvictCost
;
1015 BestEvictCost
.setMax();
1016 BestEvictCost
.MaxWeight
= VirtReg
.weight
;
1017 unsigned BestEvicteePhys
= 0;
1019 // Go over all physical registers and find the best candidate for eviction
1020 for (auto PhysReg
: Order
.getOrder()) {
1022 if (!canEvictInterferenceInRange(VirtReg
, PhysReg
, Start
, End
,
1027 BestEvicteePhys
= PhysReg
;
1029 *BestEvictweight
= BestEvictCost
.MaxWeight
;
1030 return BestEvicteePhys
;
1033 /// evictInterference - Evict any interferring registers that prevent VirtReg
1034 /// from being assigned to Physreg. This assumes that canEvictInterference
1036 void RAGreedy::evictInterference(LiveInterval
&VirtReg
, unsigned PhysReg
,
1037 SmallVectorImpl
<unsigned> &NewVRegs
) {
1038 // Make sure that VirtReg has a cascade number, and assign that cascade
1039 // number to every evicted register. These live ranges than then only be
1040 // evicted by a newer cascade, preventing infinite loops.
1041 unsigned Cascade
= ExtraRegInfo
[VirtReg
.reg
].Cascade
;
1043 Cascade
= ExtraRegInfo
[VirtReg
.reg
].Cascade
= NextCascade
++;
1045 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg
, TRI
)
1046 << " interference: Cascade " << Cascade
<< '\n');
1048 // Collect all interfering virtregs first.
1049 SmallVector
<LiveInterval
*, 8> Intfs
;
1050 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
1051 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, *Units
);
1052 // We usually have the interfering VRegs cached so collectInterferingVRegs()
1053 // should be fast, we may need to recalculate if when different physregs
1054 // overlap the same register unit so we had different SubRanges queried
1056 Q
.collectInterferingVRegs();
1057 ArrayRef
<LiveInterval
*> IVR
= Q
.interferingVRegs();
1058 Intfs
.append(IVR
.begin(), IVR
.end());
1061 // Evict them second. This will invalidate the queries.
1062 for (unsigned i
= 0, e
= Intfs
.size(); i
!= e
; ++i
) {
1063 LiveInterval
*Intf
= Intfs
[i
];
1064 // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1065 if (!VRM
->hasPhys(Intf
->reg
))
1068 LastEvicted
.addEviction(PhysReg
, VirtReg
.reg
, Intf
->reg
);
1070 Matrix
->unassign(*Intf
);
1071 assert((ExtraRegInfo
[Intf
->reg
].Cascade
< Cascade
||
1072 VirtReg
.isSpillable() < Intf
->isSpillable()) &&
1073 "Cannot decrease cascade number, illegal eviction");
1074 ExtraRegInfo
[Intf
->reg
].Cascade
= Cascade
;
1076 NewVRegs
.push_back(Intf
->reg
);
1080 /// Returns true if the given \p PhysReg is a callee saved register and has not
1081 /// been used for allocation yet.
1082 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg
) const {
1083 unsigned CSR
= RegClassInfo
.getLastCalleeSavedAlias(PhysReg
);
1087 return !Matrix
->isPhysRegUsed(PhysReg
);
1090 /// tryEvict - Try to evict all interferences for a physreg.
1091 /// @param VirtReg Currently unassigned virtual register.
1092 /// @param Order Physregs to try.
1093 /// @return Physreg to assign VirtReg, or 0.
1094 unsigned RAGreedy::tryEvict(LiveInterval
&VirtReg
,
1095 AllocationOrder
&Order
,
1096 SmallVectorImpl
<unsigned> &NewVRegs
,
1097 unsigned CostPerUseLimit
) {
1098 NamedRegionTimer
T("evict", "Evict", TimerGroupName
, TimerGroupDescription
,
1099 TimePassesIsEnabled
);
1101 // Keep track of the cheapest interference seen so far.
1102 EvictionCost BestCost
;
1104 unsigned BestPhys
= 0;
1105 unsigned OrderLimit
= Order
.getOrder().size();
1107 // When we are just looking for a reduced cost per use, don't break any
1108 // hints, and only evict smaller spill weights.
1109 if (CostPerUseLimit
< ~0u) {
1110 BestCost
.BrokenHints
= 0;
1111 BestCost
.MaxWeight
= VirtReg
.weight
;
1113 // Check of any registers in RC are below CostPerUseLimit.
1114 const TargetRegisterClass
*RC
= MRI
->getRegClass(VirtReg
.reg
);
1115 unsigned MinCost
= RegClassInfo
.getMinCost(RC
);
1116 if (MinCost
>= CostPerUseLimit
) {
1117 LLVM_DEBUG(dbgs() << TRI
->getRegClassName(RC
) << " minimum cost = "
1118 << MinCost
<< ", no cheaper registers to be found.\n");
1122 // It is normal for register classes to have a long tail of registers with
1123 // the same cost. We don't need to look at them if they're too expensive.
1124 if (TRI
->getCostPerUse(Order
.getOrder().back()) >= CostPerUseLimit
) {
1125 OrderLimit
= RegClassInfo
.getLastCostChange(RC
);
1126 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1132 while (unsigned PhysReg
= Order
.next(OrderLimit
)) {
1133 if (TRI
->getCostPerUse(PhysReg
) >= CostPerUseLimit
)
1135 // The first use of a callee-saved register in a function has cost 1.
1136 // Don't start using a CSR when the CostPerUseLimit is low.
1137 if (CostPerUseLimit
== 1 && isUnusedCalleeSavedReg(PhysReg
)) {
1139 dbgs() << printReg(PhysReg
, TRI
) << " would clobber CSR "
1140 << printReg(RegClassInfo
.getLastCalleeSavedAlias(PhysReg
), TRI
)
1145 if (!canEvictInterference(VirtReg
, PhysReg
, false, BestCost
))
1151 // Stop if the hint can be used.
1159 evictInterference(VirtReg
, BestPhys
, NewVRegs
);
1163 //===----------------------------------------------------------------------===//
1165 //===----------------------------------------------------------------------===//
1167 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1168 /// interference pattern in Physreg and its aliases. Add the constraints to
1169 /// SpillPlacement and return the static cost of this split in Cost, assuming
1170 /// that all preferences in SplitConstraints are met.
1171 /// Return false if there are no bundles with positive bias.
1172 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf
,
1173 BlockFrequency
&Cost
) {
1174 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
1176 // Reset interference dependent info.
1177 SplitConstraints
.resize(UseBlocks
.size());
1178 BlockFrequency StaticCost
= 0;
1179 for (unsigned i
= 0; i
!= UseBlocks
.size(); ++i
) {
1180 const SplitAnalysis::BlockInfo
&BI
= UseBlocks
[i
];
1181 SpillPlacement::BlockConstraint
&BC
= SplitConstraints
[i
];
1183 BC
.Number
= BI
.MBB
->getNumber();
1184 Intf
.moveToBlock(BC
.Number
);
1185 BC
.Entry
= BI
.LiveIn
? SpillPlacement::PrefReg
: SpillPlacement::DontCare
;
1186 BC
.Exit
= BI
.LiveOut
? SpillPlacement::PrefReg
: SpillPlacement::DontCare
;
1187 BC
.ChangesValue
= BI
.FirstDef
.isValid();
1189 if (!Intf
.hasInterference())
1192 // Number of spill code instructions to insert.
1195 // Interference for the live-in value.
1197 if (Intf
.first() <= Indexes
->getMBBStartIdx(BC
.Number
)) {
1198 BC
.Entry
= SpillPlacement::MustSpill
;
1200 } else if (Intf
.first() < BI
.FirstInstr
) {
1201 BC
.Entry
= SpillPlacement::PrefSpill
;
1203 } else if (Intf
.first() < BI
.LastInstr
) {
1207 // Abort if the spill cannot be inserted at the MBB' start
1208 if (((BC
.Entry
== SpillPlacement::MustSpill
) ||
1209 (BC
.Entry
== SpillPlacement::PrefSpill
)) &&
1210 SlotIndex::isEarlierInstr(BI
.FirstInstr
,
1211 SA
->getFirstSplitPoint(BC
.Number
)))
1215 // Interference for the live-out value.
1217 if (Intf
.last() >= SA
->getLastSplitPoint(BC
.Number
)) {
1218 BC
.Exit
= SpillPlacement::MustSpill
;
1220 } else if (Intf
.last() > BI
.LastInstr
) {
1221 BC
.Exit
= SpillPlacement::PrefSpill
;
1223 } else if (Intf
.last() > BI
.FirstInstr
) {
1228 // Accumulate the total frequency of inserted spill code.
1230 StaticCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
1234 // Add constraints for use-blocks. Note that these are the only constraints
1235 // that may add a positive bias, it is downhill from here.
1236 SpillPlacer
->addConstraints(SplitConstraints
);
1237 return SpillPlacer
->scanActiveBundles();
1240 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1241 /// live-through blocks in Blocks.
1242 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf
,
1243 ArrayRef
<unsigned> Blocks
) {
1244 const unsigned GroupSize
= 8;
1245 SpillPlacement::BlockConstraint BCS
[GroupSize
];
1246 unsigned TBS
[GroupSize
];
1247 unsigned B
= 0, T
= 0;
1249 for (unsigned i
= 0; i
!= Blocks
.size(); ++i
) {
1250 unsigned Number
= Blocks
[i
];
1251 Intf
.moveToBlock(Number
);
1253 if (!Intf
.hasInterference()) {
1254 assert(T
< GroupSize
&& "Array overflow");
1256 if (++T
== GroupSize
) {
1257 SpillPlacer
->addLinks(makeArrayRef(TBS
, T
));
1263 assert(B
< GroupSize
&& "Array overflow");
1264 BCS
[B
].Number
= Number
;
1266 // Abort if the spill cannot be inserted at the MBB' start
1267 MachineBasicBlock
*MBB
= MF
->getBlockNumbered(Number
);
1268 if (!MBB
->empty() &&
1269 SlotIndex::isEarlierInstr(LIS
->getInstructionIndex(MBB
->instr_front()),
1270 SA
->getFirstSplitPoint(Number
)))
1272 // Interference for the live-in value.
1273 if (Intf
.first() <= Indexes
->getMBBStartIdx(Number
))
1274 BCS
[B
].Entry
= SpillPlacement::MustSpill
;
1276 BCS
[B
].Entry
= SpillPlacement::PrefSpill
;
1278 // Interference for the live-out value.
1279 if (Intf
.last() >= SA
->getLastSplitPoint(Number
))
1280 BCS
[B
].Exit
= SpillPlacement::MustSpill
;
1282 BCS
[B
].Exit
= SpillPlacement::PrefSpill
;
1284 if (++B
== GroupSize
) {
1285 SpillPlacer
->addConstraints(makeArrayRef(BCS
, B
));
1290 SpillPlacer
->addConstraints(makeArrayRef(BCS
, B
));
1291 SpillPlacer
->addLinks(makeArrayRef(TBS
, T
));
1295 bool RAGreedy::growRegion(GlobalSplitCandidate
&Cand
) {
1296 // Keep track of through blocks that have not been added to SpillPlacer.
1297 BitVector Todo
= SA
->getThroughBlocks();
1298 SmallVectorImpl
<unsigned> &ActiveBlocks
= Cand
.ActiveBlocks
;
1299 unsigned AddedTo
= 0;
1301 unsigned Visited
= 0;
1305 ArrayRef
<unsigned> NewBundles
= SpillPlacer
->getRecentPositive();
1306 // Find new through blocks in the periphery of PrefRegBundles.
1307 for (int i
= 0, e
= NewBundles
.size(); i
!= e
; ++i
) {
1308 unsigned Bundle
= NewBundles
[i
];
1309 // Look at all blocks connected to Bundle in the full graph.
1310 ArrayRef
<unsigned> Blocks
= Bundles
->getBlocks(Bundle
);
1311 for (ArrayRef
<unsigned>::iterator I
= Blocks
.begin(), E
= Blocks
.end();
1313 unsigned Block
= *I
;
1314 if (!Todo
.test(Block
))
1317 // This is a new through block. Add it to SpillPlacer later.
1318 ActiveBlocks
.push_back(Block
);
1324 // Any new blocks to add?
1325 if (ActiveBlocks
.size() == AddedTo
)
1328 // Compute through constraints from the interference, or assume that all
1329 // through blocks prefer spilling when forming compact regions.
1330 auto NewBlocks
= makeArrayRef(ActiveBlocks
).slice(AddedTo
);
1332 if (!addThroughConstraints(Cand
.Intf
, NewBlocks
))
1335 // Provide a strong negative bias on through blocks to prevent unwanted
1336 // liveness on loop backedges.
1337 SpillPlacer
->addPrefSpill(NewBlocks
, /* Strong= */ true);
1338 AddedTo
= ActiveBlocks
.size();
1340 // Perhaps iterating can enable more bundles?
1341 SpillPlacer
->iterate();
1343 LLVM_DEBUG(dbgs() << ", v=" << Visited
);
1347 /// calcCompactRegion - Compute the set of edge bundles that should be live
1348 /// when splitting the current live range into compact regions. Compact
1349 /// regions can be computed without looking at interference. They are the
1350 /// regions formed by removing all the live-through blocks from the live range.
1352 /// Returns false if the current live range is already compact, or if the
1353 /// compact regions would form single block regions anyway.
1354 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate
&Cand
) {
1355 // Without any through blocks, the live range is already compact.
1356 if (!SA
->getNumThroughBlocks())
1359 // Compact regions don't correspond to any physreg.
1360 Cand
.reset(IntfCache
, 0);
1362 LLVM_DEBUG(dbgs() << "Compact region bundles");
1364 // Use the spill placer to determine the live bundles. GrowRegion pretends
1365 // that all the through blocks have interference when PhysReg is unset.
1366 SpillPlacer
->prepare(Cand
.LiveBundles
);
1368 // The static split cost will be zero since Cand.Intf reports no interference.
1369 BlockFrequency Cost
;
1370 if (!addSplitConstraints(Cand
.Intf
, Cost
)) {
1371 LLVM_DEBUG(dbgs() << ", none.\n");
1375 if (!growRegion(Cand
)) {
1376 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1380 SpillPlacer
->finish();
1382 if (!Cand
.LiveBundles
.any()) {
1383 LLVM_DEBUG(dbgs() << ", none.\n");
1388 for (int i
: Cand
.LiveBundles
.set_bits())
1389 dbgs() << " EB#" << i
;
1395 /// calcSpillCost - Compute how expensive it would be to split the live range in
1396 /// SA around all use blocks instead of forming bundle regions.
1397 BlockFrequency
RAGreedy::calcSpillCost() {
1398 BlockFrequency Cost
= 0;
1399 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
1400 for (unsigned i
= 0; i
!= UseBlocks
.size(); ++i
) {
1401 const SplitAnalysis::BlockInfo
&BI
= UseBlocks
[i
];
1402 unsigned Number
= BI
.MBB
->getNumber();
1403 // We normally only need one spill instruction - a load or a store.
1404 Cost
+= SpillPlacer
->getBlockFrequency(Number
);
1406 // Unless the value is redefined in the block.
1407 if (BI
.LiveIn
&& BI
.LiveOut
&& BI
.FirstDef
)
1408 Cost
+= SpillPlacer
->getBlockFrequency(Number
);
1413 /// Check if splitting Evictee will create a local split interval in
1414 /// basic block number BBNumber that may cause a bad eviction chain. This is
1415 /// intended to prevent bad eviction sequences like:
1416 /// movl %ebp, 8(%esp) # 4-byte Spill
1427 /// movl 16(%esp), %ebp # 4 - byte Reload
1429 /// Such sequences are created in 2 scenarios:
1432 /// %0 is evicted from physreg0 by %1.
1433 /// Evictee %0 is intended for region splitting with split candidate
1434 /// physreg0 (the reg %0 was evicted from).
1435 /// Region splitting creates a local interval because of interference with the
1436 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1437 /// and "by stack" intervals and local interval created when interference
1439 /// One of the split intervals ends up evicting %2 from physreg1.
1440 /// Evictee %2 is intended for region splitting with split candidate
1442 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1445 /// %0 is evicted from physreg0 by %1.
1446 /// %2 is evicted from physreg2 by %3 etc.
1447 /// Evictee %0 is intended for region splitting with split candidate
1449 /// Region splitting creates a local interval because of interference with the
1451 /// One of the split intervals ends up evicting back original evictor %1
1452 /// from physreg0 (the reg %0 was evicted from).
1453 /// Another evictee %2 is intended for region splitting with split candidate
1455 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1457 /// \param Evictee The register considered to be split.
1458 /// \param Cand The split candidate that determines the physical register
1459 /// we are splitting for and the interferences.
1460 /// \param BBNumber The number of a BB for which the region split process will
1461 /// create a local split interval.
1462 /// \param Order The physical registers that may get evicted by a split
1463 /// artifact of Evictee.
1464 /// \return True if splitting Evictee may cause a bad eviction chain, false
1466 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee
,
1467 GlobalSplitCandidate
&Cand
,
1469 const AllocationOrder
&Order
) {
1470 EvictionTrack::EvictorInfo VregEvictorInfo
= LastEvicted
.getEvictor(Evictee
);
1471 unsigned Evictor
= VregEvictorInfo
.first
;
1472 unsigned PhysReg
= VregEvictorInfo
.second
;
1474 // No actual evictor.
1475 if (!Evictor
|| !PhysReg
)
1478 float MaxWeight
= 0;
1479 unsigned FutureEvictedPhysReg
=
1480 getCheapestEvicteeWeight(Order
, LIS
->getInterval(Evictee
),
1481 Cand
.Intf
.first(), Cand
.Intf
.last(), &MaxWeight
);
1483 // The bad eviction chain occurs when either the split candidate is the
1484 // evicting reg or one of the split artifact will evict the evicting reg.
1485 if ((PhysReg
!= Cand
.PhysReg
) && (PhysReg
!= FutureEvictedPhysReg
))
1488 Cand
.Intf
.moveToBlock(BBNumber
);
1490 // Check to see if the Evictor contains interference (with Evictee) in the
1491 // given BB. If so, this interference caused the eviction of Evictee from
1492 // PhysReg. This suggest that we will create a local interval during the
1493 // region split to avoid this interference This local interval may cause a bad
1495 if (!LIS
->hasInterval(Evictor
))
1497 LiveInterval
&EvictorLI
= LIS
->getInterval(Evictor
);
1498 if (EvictorLI
.FindSegmentContaining(Cand
.Intf
.first()) == EvictorLI
.end())
1501 // Now, check to see if the local interval we will create is going to be
1502 // expensive enough to evict somebody If so, this may cause a bad eviction
1504 VirtRegAuxInfo
VRAI(*MF
, *LIS
, VRM
, getAnalysis
<MachineLoopInfo
>(), *MBFI
);
1505 float splitArtifactWeight
=
1506 VRAI
.futureWeight(LIS
->getInterval(Evictee
),
1507 Cand
.Intf
.first().getPrevIndex(), Cand
.Intf
.last());
1508 if (splitArtifactWeight
>= 0 && splitArtifactWeight
< MaxWeight
)
1514 /// Check if splitting VirtRegToSplit will create a local split interval
1515 /// in basic block number BBNumber that may cause a spill.
1517 /// \param VirtRegToSplit The register considered to be split.
1518 /// \param Cand The split candidate that determines the physical
1519 /// register we are splitting for and the interferences.
1520 /// \param BBNumber The number of a BB for which the region split process
1521 /// will create a local split interval.
1522 /// \param Order The physical registers that may get evicted by a
1523 /// split artifact of VirtRegToSplit.
1524 /// \return True if splitting VirtRegToSplit may cause a spill, false
1526 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit
,
1527 GlobalSplitCandidate
&Cand
,
1529 const AllocationOrder
&Order
) {
1530 Cand
.Intf
.moveToBlock(BBNumber
);
1532 // Check if the local interval will find a non interfereing assignment.
1533 for (auto PhysReg
: Order
.getOrder()) {
1534 if (!Matrix
->checkInterference(Cand
.Intf
.first().getPrevIndex(),
1535 Cand
.Intf
.last(), PhysReg
))
1539 // Check if the local interval will evict a cheaper interval.
1540 float CheapestEvictWeight
= 0;
1541 unsigned FutureEvictedPhysReg
= getCheapestEvicteeWeight(
1542 Order
, LIS
->getInterval(VirtRegToSplit
), Cand
.Intf
.first(),
1543 Cand
.Intf
.last(), &CheapestEvictWeight
);
1545 // Have we found an interval that can be evicted?
1546 if (FutureEvictedPhysReg
) {
1547 VirtRegAuxInfo
VRAI(*MF
, *LIS
, VRM
, getAnalysis
<MachineLoopInfo
>(), *MBFI
);
1548 float splitArtifactWeight
=
1549 VRAI
.futureWeight(LIS
->getInterval(VirtRegToSplit
),
1550 Cand
.Intf
.first().getPrevIndex(), Cand
.Intf
.last());
1551 // Will the weight of the local interval be higher than the cheapest evictee
1552 // weight? If so it will evict it and will not cause a spill.
1553 if (splitArtifactWeight
>= 0 && splitArtifactWeight
> CheapestEvictWeight
)
1557 // The local interval is not able to find non interferencing assignment and
1558 // not able to evict a less worthy interval, therfore, it can cause a spill.
1562 /// calcGlobalSplitCost - Return the global split cost of following the split
1563 /// pattern in LiveBundles. This cost should be added to the local cost of the
1564 /// interference pattern in SplitConstraints.
1566 BlockFrequency
RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate
&Cand
,
1567 const AllocationOrder
&Order
,
1568 bool *CanCauseEvictionChain
) {
1569 BlockFrequency GlobalCost
= 0;
1570 const BitVector
&LiveBundles
= Cand
.LiveBundles
;
1571 unsigned VirtRegToSplit
= SA
->getParent().reg
;
1572 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
1573 for (unsigned i
= 0; i
!= UseBlocks
.size(); ++i
) {
1574 const SplitAnalysis::BlockInfo
&BI
= UseBlocks
[i
];
1575 SpillPlacement::BlockConstraint
&BC
= SplitConstraints
[i
];
1576 bool RegIn
= LiveBundles
[Bundles
->getBundle(BC
.Number
, false)];
1577 bool RegOut
= LiveBundles
[Bundles
->getBundle(BC
.Number
, true)];
1580 Cand
.Intf
.moveToBlock(BC
.Number
);
1581 // Check wheather a local interval is going to be created during the region
1582 // split. Calculate adavanced spilt cost (cost of local intervals) if option
1584 if (EnableAdvancedRASplitCost
&& Cand
.Intf
.hasInterference() && BI
.LiveIn
&&
1585 BI
.LiveOut
&& RegIn
&& RegOut
) {
1587 if (CanCauseEvictionChain
&&
1588 splitCanCauseEvictionChain(VirtRegToSplit
, Cand
, BC
.Number
, Order
)) {
1589 // This interference causes our eviction from this assignment, we might
1590 // evict somebody else and eventually someone will spill, add that cost.
1591 // See splitCanCauseEvictionChain for detailed description of scenarios.
1592 GlobalCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
1593 GlobalCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
1595 *CanCauseEvictionChain
= true;
1597 } else if (splitCanCauseLocalSpill(VirtRegToSplit
, Cand
, BC
.Number
,
1599 // This interference causes local interval to spill, add that cost.
1600 GlobalCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
1601 GlobalCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
1606 Ins
+= RegIn
!= (BC
.Entry
== SpillPlacement::PrefReg
);
1608 Ins
+= RegOut
!= (BC
.Exit
== SpillPlacement::PrefReg
);
1610 GlobalCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
1613 for (unsigned i
= 0, e
= Cand
.ActiveBlocks
.size(); i
!= e
; ++i
) {
1614 unsigned Number
= Cand
.ActiveBlocks
[i
];
1615 bool RegIn
= LiveBundles
[Bundles
->getBundle(Number
, false)];
1616 bool RegOut
= LiveBundles
[Bundles
->getBundle(Number
, true)];
1617 if (!RegIn
&& !RegOut
)
1619 if (RegIn
&& RegOut
) {
1620 // We need double spill code if this block has interference.
1621 Cand
.Intf
.moveToBlock(Number
);
1622 if (Cand
.Intf
.hasInterference()) {
1623 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
1624 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
1626 // Check wheather a local interval is going to be created during the
1628 if (EnableAdvancedRASplitCost
&& CanCauseEvictionChain
&&
1629 splitCanCauseEvictionChain(VirtRegToSplit
, Cand
, Number
, Order
)) {
1630 // This interference cause our eviction from this assignment, we might
1631 // evict somebody else, add that cost.
1632 // See splitCanCauseEvictionChain for detailed description of
1634 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
1635 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
1637 *CanCauseEvictionChain
= true;
1642 // live-in / stack-out or stack-in live-out.
1643 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
1648 /// splitAroundRegion - Split the current live range around the regions
1649 /// determined by BundleCand and GlobalCand.
1651 /// Before calling this function, GlobalCand and BundleCand must be initialized
1652 /// so each bundle is assigned to a valid candidate, or NoCand for the
1653 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
1654 /// objects must be initialized for the current live range, and intervals
1655 /// created for the used candidates.
1657 /// @param LREdit The LiveRangeEdit object handling the current split.
1658 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1659 /// must appear in this list.
1660 void RAGreedy::splitAroundRegion(LiveRangeEdit
&LREdit
,
1661 ArrayRef
<unsigned> UsedCands
) {
1662 // These are the intervals created for new global ranges. We may create more
1663 // intervals for local ranges.
1664 const unsigned NumGlobalIntvs
= LREdit
.size();
1665 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1667 assert(NumGlobalIntvs
&& "No global intervals configured");
1669 // Isolate even single instructions when dealing with a proper sub-class.
1670 // That guarantees register class inflation for the stack interval because it
1672 unsigned Reg
= SA
->getParent().reg
;
1673 bool SingleInstrs
= RegClassInfo
.isProperSubClass(MRI
->getRegClass(Reg
));
1675 // First handle all the blocks with uses.
1676 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
1677 for (unsigned i
= 0; i
!= UseBlocks
.size(); ++i
) {
1678 const SplitAnalysis::BlockInfo
&BI
= UseBlocks
[i
];
1679 unsigned Number
= BI
.MBB
->getNumber();
1680 unsigned IntvIn
= 0, IntvOut
= 0;
1681 SlotIndex IntfIn
, IntfOut
;
1683 unsigned CandIn
= BundleCand
[Bundles
->getBundle(Number
, false)];
1684 if (CandIn
!= NoCand
) {
1685 GlobalSplitCandidate
&Cand
= GlobalCand
[CandIn
];
1686 IntvIn
= Cand
.IntvIdx
;
1687 Cand
.Intf
.moveToBlock(Number
);
1688 IntfIn
= Cand
.Intf
.first();
1692 unsigned CandOut
= BundleCand
[Bundles
->getBundle(Number
, true)];
1693 if (CandOut
!= NoCand
) {
1694 GlobalSplitCandidate
&Cand
= GlobalCand
[CandOut
];
1695 IntvOut
= Cand
.IntvIdx
;
1696 Cand
.Intf
.moveToBlock(Number
);
1697 IntfOut
= Cand
.Intf
.last();
1701 // Create separate intervals for isolated blocks with multiple uses.
1702 if (!IntvIn
&& !IntvOut
) {
1703 LLVM_DEBUG(dbgs() << printMBBReference(*BI
.MBB
) << " isolated.\n");
1704 if (SA
->shouldSplitSingleBlock(BI
, SingleInstrs
))
1705 SE
->splitSingleBlock(BI
);
1709 if (IntvIn
&& IntvOut
)
1710 SE
->splitLiveThroughBlock(Number
, IntvIn
, IntfIn
, IntvOut
, IntfOut
);
1712 SE
->splitRegInBlock(BI
, IntvIn
, IntfIn
);
1714 SE
->splitRegOutBlock(BI
, IntvOut
, IntfOut
);
1717 // Handle live-through blocks. The relevant live-through blocks are stored in
1718 // the ActiveBlocks list with each candidate. We need to filter out
1720 BitVector Todo
= SA
->getThroughBlocks();
1721 for (unsigned c
= 0; c
!= UsedCands
.size(); ++c
) {
1722 ArrayRef
<unsigned> Blocks
= GlobalCand
[UsedCands
[c
]].ActiveBlocks
;
1723 for (unsigned i
= 0, e
= Blocks
.size(); i
!= e
; ++i
) {
1724 unsigned Number
= Blocks
[i
];
1725 if (!Todo
.test(Number
))
1729 unsigned IntvIn
= 0, IntvOut
= 0;
1730 SlotIndex IntfIn
, IntfOut
;
1732 unsigned CandIn
= BundleCand
[Bundles
->getBundle(Number
, false)];
1733 if (CandIn
!= NoCand
) {
1734 GlobalSplitCandidate
&Cand
= GlobalCand
[CandIn
];
1735 IntvIn
= Cand
.IntvIdx
;
1736 Cand
.Intf
.moveToBlock(Number
);
1737 IntfIn
= Cand
.Intf
.first();
1740 unsigned CandOut
= BundleCand
[Bundles
->getBundle(Number
, true)];
1741 if (CandOut
!= NoCand
) {
1742 GlobalSplitCandidate
&Cand
= GlobalCand
[CandOut
];
1743 IntvOut
= Cand
.IntvIdx
;
1744 Cand
.Intf
.moveToBlock(Number
);
1745 IntfOut
= Cand
.Intf
.last();
1747 if (!IntvIn
&& !IntvOut
)
1749 SE
->splitLiveThroughBlock(Number
, IntvIn
, IntfIn
, IntvOut
, IntfOut
);
1755 SmallVector
<unsigned, 8> IntvMap
;
1756 SE
->finish(&IntvMap
);
1757 DebugVars
->splitRegister(Reg
, LREdit
.regs(), *LIS
);
1759 ExtraRegInfo
.resize(MRI
->getNumVirtRegs());
1760 unsigned OrigBlocks
= SA
->getNumLiveBlocks();
1762 // Sort out the new intervals created by splitting. We get four kinds:
1763 // - Remainder intervals should not be split again.
1764 // - Candidate intervals can be assigned to Cand.PhysReg.
1765 // - Block-local splits are candidates for local splitting.
1766 // - DCE leftovers should go back on the queue.
1767 for (unsigned i
= 0, e
= LREdit
.size(); i
!= e
; ++i
) {
1768 LiveInterval
&Reg
= LIS
->getInterval(LREdit
.get(i
));
1770 // Ignore old intervals from DCE.
1771 if (getStage(Reg
) != RS_New
)
1774 // Remainder interval. Don't try splitting again, spill if it doesn't
1776 if (IntvMap
[i
] == 0) {
1777 setStage(Reg
, RS_Spill
);
1781 // Global intervals. Allow repeated splitting as long as the number of live
1782 // blocks is strictly decreasing.
1783 if (IntvMap
[i
] < NumGlobalIntvs
) {
1784 if (SA
->countLiveBlocks(&Reg
) >= OrigBlocks
) {
1785 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1786 << " blocks as original.\n");
1787 // Don't allow repeated splitting as a safe guard against looping.
1788 setStage(Reg
, RS_Split2
);
1793 // Other intervals are treated as new. This includes local intervals created
1794 // for blocks with multiple uses, and anything created by DCE.
1798 MF
->verify(this, "After splitting live range around region");
1801 // Global split has high compile time cost especially for large live range.
1802 // Return false for the case here where the potential benefit will never
1804 unsigned RAGreedy::isSplitBenefitWorthCost(LiveInterval
&VirtReg
) {
1805 MachineInstr
*MI
= MRI
->getUniqueVRegDef(VirtReg
.reg
);
1806 if (MI
&& TII
->isTriviallyReMaterializable(*MI
, AA
) &&
1807 VirtReg
.size() > HugeSizeForSplit
)
1812 unsigned RAGreedy::tryRegionSplit(LiveInterval
&VirtReg
, AllocationOrder
&Order
,
1813 SmallVectorImpl
<unsigned> &NewVRegs
) {
1814 if (!isSplitBenefitWorthCost(VirtReg
))
1816 unsigned NumCands
= 0;
1817 BlockFrequency SpillCost
= calcSpillCost();
1818 BlockFrequency BestCost
;
1820 // Check if we can split this live range around a compact region.
1821 bool HasCompact
= calcCompactRegion(GlobalCand
.front());
1823 // Yes, keep GlobalCand[0] as the compact region candidate.
1825 BestCost
= BlockFrequency::getMaxFrequency();
1827 // No benefit from the compact region, our fallback will be per-block
1828 // splitting. Make sure we find a solution that is cheaper than spilling.
1829 BestCost
= SpillCost
;
1830 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1831 MBFI
->printBlockFreq(dbgs(), BestCost
) << '\n');
1834 bool CanCauseEvictionChain
= false;
1836 calculateRegionSplitCost(VirtReg
, Order
, BestCost
, NumCands
,
1837 false /*IgnoreCSR*/, &CanCauseEvictionChain
);
1839 // Split candidates with compact regions can cause a bad eviction sequence.
1840 // See splitCanCauseEvictionChain for detailed description of scenarios.
1841 // To avoid it, we need to comapre the cost with the spill cost and not the
1842 // current max frequency.
1843 if (HasCompact
&& (BestCost
> SpillCost
) && (BestCand
!= NoCand
) &&
1844 CanCauseEvictionChain
) {
1848 // No solutions found, fall back to single block splitting.
1849 if (!HasCompact
&& BestCand
== NoCand
)
1852 return doRegionSplit(VirtReg
, BestCand
, HasCompact
, NewVRegs
);
1855 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval
&VirtReg
,
1856 AllocationOrder
&Order
,
1857 BlockFrequency
&BestCost
,
1858 unsigned &NumCands
, bool IgnoreCSR
,
1859 bool *CanCauseEvictionChain
) {
1860 unsigned BestCand
= NoCand
;
1862 while (unsigned PhysReg
= Order
.next()) {
1863 if (IgnoreCSR
&& isUnusedCalleeSavedReg(PhysReg
))
1866 // Discard bad candidates before we run out of interference cache cursors.
1867 // This will only affect register classes with a lot of registers (>32).
1868 if (NumCands
== IntfCache
.getMaxCursors()) {
1869 unsigned WorstCount
= ~0u;
1871 for (unsigned i
= 0; i
!= NumCands
; ++i
) {
1872 if (i
== BestCand
|| !GlobalCand
[i
].PhysReg
)
1874 unsigned Count
= GlobalCand
[i
].LiveBundles
.count();
1875 if (Count
< WorstCount
) {
1881 GlobalCand
[Worst
] = GlobalCand
[NumCands
];
1882 if (BestCand
== NumCands
)
1886 if (GlobalCand
.size() <= NumCands
)
1887 GlobalCand
.resize(NumCands
+1);
1888 GlobalSplitCandidate
&Cand
= GlobalCand
[NumCands
];
1889 Cand
.reset(IntfCache
, PhysReg
);
1891 SpillPlacer
->prepare(Cand
.LiveBundles
);
1892 BlockFrequency Cost
;
1893 if (!addSplitConstraints(Cand
.Intf
, Cost
)) {
1894 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << "\tno positive bundles\n");
1897 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << "\tstatic = ";
1898 MBFI
->printBlockFreq(dbgs(), Cost
));
1899 if (Cost
>= BestCost
) {
1901 if (BestCand
== NoCand
)
1902 dbgs() << " worse than no bundles\n";
1904 dbgs() << " worse than "
1905 << printReg(GlobalCand
[BestCand
].PhysReg
, TRI
) << '\n';
1909 if (!growRegion(Cand
)) {
1910 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1914 SpillPlacer
->finish();
1916 // No live bundles, defer to splitSingleBlocks().
1917 if (!Cand
.LiveBundles
.any()) {
1918 LLVM_DEBUG(dbgs() << " no bundles.\n");
1922 bool HasEvictionChain
= false;
1923 Cost
+= calcGlobalSplitCost(Cand
, Order
, &HasEvictionChain
);
1925 dbgs() << ", total = ";
1926 MBFI
->printBlockFreq(dbgs(), Cost
) << " with bundles";
1927 for (int i
: Cand
.LiveBundles
.set_bits())
1928 dbgs() << " EB#" << i
;
1931 if (Cost
< BestCost
) {
1932 BestCand
= NumCands
;
1934 // See splitCanCauseEvictionChain for detailed description of bad
1935 // eviction chain scenarios.
1936 if (CanCauseEvictionChain
)
1937 *CanCauseEvictionChain
= HasEvictionChain
;
1942 if (CanCauseEvictionChain
&& BestCand
!= NoCand
) {
1943 // See splitCanCauseEvictionChain for detailed description of bad
1944 // eviction chain scenarios.
1945 LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1946 << printReg(VirtReg
.reg
, TRI
) << " may ");
1947 if (!(*CanCauseEvictionChain
))
1948 LLVM_DEBUG(dbgs() << "not ");
1949 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1955 unsigned RAGreedy::doRegionSplit(LiveInterval
&VirtReg
, unsigned BestCand
,
1957 SmallVectorImpl
<unsigned> &NewVRegs
) {
1958 SmallVector
<unsigned, 8> UsedCands
;
1959 // Prepare split editor.
1960 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
1961 SE
->reset(LREdit
, SplitSpillMode
);
1963 // Assign all edge bundles to the preferred candidate, or NoCand.
1964 BundleCand
.assign(Bundles
->getNumBundles(), NoCand
);
1966 // Assign bundles for the best candidate region.
1967 if (BestCand
!= NoCand
) {
1968 GlobalSplitCandidate
&Cand
= GlobalCand
[BestCand
];
1969 if (unsigned B
= Cand
.getBundles(BundleCand
, BestCand
)) {
1970 UsedCands
.push_back(BestCand
);
1971 Cand
.IntvIdx
= SE
->openIntv();
1972 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand
.PhysReg
, TRI
) << " in "
1973 << B
<< " bundles, intv " << Cand
.IntvIdx
<< ".\n");
1978 // Assign bundles for the compact region.
1980 GlobalSplitCandidate
&Cand
= GlobalCand
.front();
1981 assert(!Cand
.PhysReg
&& "Compact region has no physreg");
1982 if (unsigned B
= Cand
.getBundles(BundleCand
, 0)) {
1983 UsedCands
.push_back(0);
1984 Cand
.IntvIdx
= SE
->openIntv();
1985 LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1986 << " bundles, intv " << Cand
.IntvIdx
<< ".\n");
1991 splitAroundRegion(LREdit
, UsedCands
);
1995 //===----------------------------------------------------------------------===//
1996 // Per-Block Splitting
1997 //===----------------------------------------------------------------------===//
1999 /// tryBlockSplit - Split a global live range around every block with uses. This
2000 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2001 /// they don't allocate.
2002 unsigned RAGreedy::tryBlockSplit(LiveInterval
&VirtReg
, AllocationOrder
&Order
,
2003 SmallVectorImpl
<unsigned> &NewVRegs
) {
2004 assert(&SA
->getParent() == &VirtReg
&& "Live range wasn't analyzed");
2005 unsigned Reg
= VirtReg
.reg
;
2006 bool SingleInstrs
= RegClassInfo
.isProperSubClass(MRI
->getRegClass(Reg
));
2007 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
2008 SE
->reset(LREdit
, SplitSpillMode
);
2009 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
2010 for (unsigned i
= 0; i
!= UseBlocks
.size(); ++i
) {
2011 const SplitAnalysis::BlockInfo
&BI
= UseBlocks
[i
];
2012 if (SA
->shouldSplitSingleBlock(BI
, SingleInstrs
))
2013 SE
->splitSingleBlock(BI
);
2015 // No blocks were split.
2019 // We did split for some blocks.
2020 SmallVector
<unsigned, 8> IntvMap
;
2021 SE
->finish(&IntvMap
);
2023 // Tell LiveDebugVariables about the new ranges.
2024 DebugVars
->splitRegister(Reg
, LREdit
.regs(), *LIS
);
2026 ExtraRegInfo
.resize(MRI
->getNumVirtRegs());
2028 // Sort out the new intervals created by splitting. The remainder interval
2029 // goes straight to spilling, the new local ranges get to stay RS_New.
2030 for (unsigned i
= 0, e
= LREdit
.size(); i
!= e
; ++i
) {
2031 LiveInterval
&LI
= LIS
->getInterval(LREdit
.get(i
));
2032 if (getStage(LI
) == RS_New
&& IntvMap
[i
] == 0)
2033 setStage(LI
, RS_Spill
);
2037 MF
->verify(this, "After splitting live range around basic blocks");
2041 //===----------------------------------------------------------------------===//
2042 // Per-Instruction Splitting
2043 //===----------------------------------------------------------------------===//
2045 /// Get the number of allocatable registers that match the constraints of \p Reg
2046 /// on \p MI and that are also in \p SuperRC.
2047 static unsigned getNumAllocatableRegsForConstraints(
2048 const MachineInstr
*MI
, unsigned Reg
, const TargetRegisterClass
*SuperRC
,
2049 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
,
2050 const RegisterClassInfo
&RCI
) {
2051 assert(SuperRC
&& "Invalid register class");
2053 const TargetRegisterClass
*ConstrainedRC
=
2054 MI
->getRegClassConstraintEffectForVReg(Reg
, SuperRC
, TII
, TRI
,
2055 /* ExploreBundle */ true);
2058 return RCI
.getNumAllocatableRegs(ConstrainedRC
);
2061 /// tryInstructionSplit - Split a live range around individual instructions.
2062 /// This is normally not worthwhile since the spiller is doing essentially the
2063 /// same thing. However, when the live range is in a constrained register
2064 /// class, it may help to insert copies such that parts of the live range can
2065 /// be moved to a larger register class.
2067 /// This is similar to spilling to a larger register class.
2069 RAGreedy::tryInstructionSplit(LiveInterval
&VirtReg
, AllocationOrder
&Order
,
2070 SmallVectorImpl
<unsigned> &NewVRegs
) {
2071 const TargetRegisterClass
*CurRC
= MRI
->getRegClass(VirtReg
.reg
);
2072 // There is no point to this if there are no larger sub-classes.
2073 if (!RegClassInfo
.isProperSubClass(CurRC
))
2076 // Always enable split spill mode, since we're effectively spilling to a
2078 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
2079 SE
->reset(LREdit
, SplitEditor::SM_Size
);
2081 ArrayRef
<SlotIndex
> Uses
= SA
->getUseSlots();
2082 if (Uses
.size() <= 1)
2085 LLVM_DEBUG(dbgs() << "Split around " << Uses
.size()
2086 << " individual instrs.\n");
2088 const TargetRegisterClass
*SuperRC
=
2089 TRI
->getLargestLegalSuperClass(CurRC
, *MF
);
2090 unsigned SuperRCNumAllocatableRegs
= RCI
.getNumAllocatableRegs(SuperRC
);
2091 // Split around every non-copy instruction if this split will relax
2092 // the constraints on the virtual register.
2093 // Otherwise, splitting just inserts uncoalescable copies that do not help
2095 for (unsigned i
= 0; i
!= Uses
.size(); ++i
) {
2096 if (const MachineInstr
*MI
= Indexes
->getInstructionFromIndex(Uses
[i
]))
2097 if (MI
->isFullCopy() ||
2098 SuperRCNumAllocatableRegs
==
2099 getNumAllocatableRegsForConstraints(MI
, VirtReg
.reg
, SuperRC
, TII
,
2101 LLVM_DEBUG(dbgs() << " skip:\t" << Uses
[i
] << '\t' << *MI
);
2105 SlotIndex SegStart
= SE
->enterIntvBefore(Uses
[i
]);
2106 SlotIndex SegStop
= SE
->leaveIntvAfter(Uses
[i
]);
2107 SE
->useIntv(SegStart
, SegStop
);
2110 if (LREdit
.empty()) {
2111 LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2115 SmallVector
<unsigned, 8> IntvMap
;
2116 SE
->finish(&IntvMap
);
2117 DebugVars
->splitRegister(VirtReg
.reg
, LREdit
.regs(), *LIS
);
2118 ExtraRegInfo
.resize(MRI
->getNumVirtRegs());
2120 // Assign all new registers to RS_Spill. This was the last chance.
2121 setStage(LREdit
.begin(), LREdit
.end(), RS_Spill
);
2125 //===----------------------------------------------------------------------===//
2127 //===----------------------------------------------------------------------===//
2129 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2130 /// in order to use PhysReg between two entries in SA->UseSlots.
2132 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
2134 void RAGreedy::calcGapWeights(unsigned PhysReg
,
2135 SmallVectorImpl
<float> &GapWeight
) {
2136 assert(SA
->getUseBlocks().size() == 1 && "Not a local interval");
2137 const SplitAnalysis::BlockInfo
&BI
= SA
->getUseBlocks().front();
2138 ArrayRef
<SlotIndex
> Uses
= SA
->getUseSlots();
2139 const unsigned NumGaps
= Uses
.size()-1;
2141 // Start and end points for the interference check.
2142 SlotIndex StartIdx
=
2143 BI
.LiveIn
? BI
.FirstInstr
.getBaseIndex() : BI
.FirstInstr
;
2145 BI
.LiveOut
? BI
.LastInstr
.getBoundaryIndex() : BI
.LastInstr
;
2147 GapWeight
.assign(NumGaps
, 0.0f
);
2149 // Add interference from each overlapping register.
2150 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
2151 if (!Matrix
->query(const_cast<LiveInterval
&>(SA
->getParent()), *Units
)
2152 .checkInterference())
2155 // We know that VirtReg is a continuous interval from FirstInstr to
2156 // LastInstr, so we don't need InterferenceQuery.
2158 // Interference that overlaps an instruction is counted in both gaps
2159 // surrounding the instruction. The exception is interference before
2160 // StartIdx and after StopIdx.
2162 LiveIntervalUnion::SegmentIter IntI
=
2163 Matrix
->getLiveUnions()[*Units
] .find(StartIdx
);
2164 for (unsigned Gap
= 0; IntI
.valid() && IntI
.start() < StopIdx
; ++IntI
) {
2165 // Skip the gaps before IntI.
2166 while (Uses
[Gap
+1].getBoundaryIndex() < IntI
.start())
2167 if (++Gap
== NumGaps
)
2172 // Update the gaps covered by IntI.
2173 const float weight
= IntI
.value()->weight
;
2174 for (; Gap
!= NumGaps
; ++Gap
) {
2175 GapWeight
[Gap
] = std::max(GapWeight
[Gap
], weight
);
2176 if (Uses
[Gap
+1].getBaseIndex() >= IntI
.stop())
2184 // Add fixed interference.
2185 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
2186 const LiveRange
&LR
= LIS
->getRegUnit(*Units
);
2187 LiveRange::const_iterator I
= LR
.find(StartIdx
);
2188 LiveRange::const_iterator E
= LR
.end();
2190 // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2191 for (unsigned Gap
= 0; I
!= E
&& I
->start
< StopIdx
; ++I
) {
2192 while (Uses
[Gap
+1].getBoundaryIndex() < I
->start
)
2193 if (++Gap
== NumGaps
)
2198 for (; Gap
!= NumGaps
; ++Gap
) {
2199 GapWeight
[Gap
] = huge_valf
;
2200 if (Uses
[Gap
+1].getBaseIndex() >= I
->end
)
2209 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2212 unsigned RAGreedy::tryLocalSplit(LiveInterval
&VirtReg
, AllocationOrder
&Order
,
2213 SmallVectorImpl
<unsigned> &NewVRegs
) {
2214 // TODO: the function currently only handles a single UseBlock; it should be
2215 // possible to generalize.
2216 if (SA
->getUseBlocks().size() != 1)
2219 const SplitAnalysis::BlockInfo
&BI
= SA
->getUseBlocks().front();
2221 // Note that it is possible to have an interval that is live-in or live-out
2222 // while only covering a single block - A phi-def can use undef values from
2223 // predecessors, and the block could be a single-block loop.
2224 // We don't bother doing anything clever about such a case, we simply assume
2225 // that the interval is continuous from FirstInstr to LastInstr. We should
2226 // make sure that we don't do anything illegal to such an interval, though.
2228 ArrayRef
<SlotIndex
> Uses
= SA
->getUseSlots();
2229 if (Uses
.size() <= 2)
2231 const unsigned NumGaps
= Uses
.size()-1;
2234 dbgs() << "tryLocalSplit: ";
2235 for (unsigned i
= 0, e
= Uses
.size(); i
!= e
; ++i
)
2236 dbgs() << ' ' << Uses
[i
];
2240 // If VirtReg is live across any register mask operands, compute a list of
2241 // gaps with register masks.
2242 SmallVector
<unsigned, 8> RegMaskGaps
;
2243 if (Matrix
->checkRegMaskInterference(VirtReg
)) {
2244 // Get regmask slots for the whole block.
2245 ArrayRef
<SlotIndex
> RMS
= LIS
->getRegMaskSlotsInBlock(BI
.MBB
->getNumber());
2246 LLVM_DEBUG(dbgs() << RMS
.size() << " regmasks in block:");
2247 // Constrain to VirtReg's live range.
2248 unsigned ri
= std::lower_bound(RMS
.begin(), RMS
.end(),
2249 Uses
.front().getRegSlot()) - RMS
.begin();
2250 unsigned re
= RMS
.size();
2251 for (unsigned i
= 0; i
!= NumGaps
&& ri
!= re
; ++i
) {
2252 // Look for Uses[i] <= RMS <= Uses[i+1].
2253 assert(!SlotIndex::isEarlierInstr(RMS
[ri
], Uses
[i
]));
2254 if (SlotIndex::isEarlierInstr(Uses
[i
+1], RMS
[ri
]))
2256 // Skip a regmask on the same instruction as the last use. It doesn't
2257 // overlap the live range.
2258 if (SlotIndex::isSameInstr(Uses
[i
+1], RMS
[ri
]) && i
+1 == NumGaps
)
2260 LLVM_DEBUG(dbgs() << ' ' << RMS
[ri
] << ':' << Uses
[i
] << '-'
2262 RegMaskGaps
.push_back(i
);
2263 // Advance ri to the next gap. A regmask on one of the uses counts in
2265 while (ri
!= re
&& SlotIndex::isEarlierInstr(RMS
[ri
], Uses
[i
+1]))
2268 LLVM_DEBUG(dbgs() << '\n');
2271 // Since we allow local split results to be split again, there is a risk of
2272 // creating infinite loops. It is tempting to require that the new live
2273 // ranges have less instructions than the original. That would guarantee
2274 // convergence, but it is too strict. A live range with 3 instructions can be
2275 // split 2+3 (including the COPY), and we want to allow that.
2277 // Instead we use these rules:
2279 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2280 // noop split, of course).
2281 // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2282 // the new ranges must have fewer instructions than before the split.
2283 // 3. New ranges with the same number of instructions are marked RS_Split2,
2284 // smaller ranges are marked RS_New.
2286 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2287 // excessive splitting and infinite loops.
2289 bool ProgressRequired
= getStage(VirtReg
) >= RS_Split2
;
2291 // Best split candidate.
2292 unsigned BestBefore
= NumGaps
;
2293 unsigned BestAfter
= 0;
2296 const float blockFreq
=
2297 SpillPlacer
->getBlockFrequency(BI
.MBB
->getNumber()).getFrequency() *
2298 (1.0f
/ MBFI
->getEntryFreq());
2299 SmallVector
<float, 8> GapWeight
;
2302 while (unsigned PhysReg
= Order
.next()) {
2303 // Keep track of the largest spill weight that would need to be evicted in
2304 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
2305 calcGapWeights(PhysReg
, GapWeight
);
2307 // Remove any gaps with regmask clobbers.
2308 if (Matrix
->checkRegMaskInterference(VirtReg
, PhysReg
))
2309 for (unsigned i
= 0, e
= RegMaskGaps
.size(); i
!= e
; ++i
)
2310 GapWeight
[RegMaskGaps
[i
]] = huge_valf
;
2312 // Try to find the best sequence of gaps to close.
2313 // The new spill weight must be larger than any gap interference.
2315 // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2316 unsigned SplitBefore
= 0, SplitAfter
= 1;
2318 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2319 // It is the spill weight that needs to be evicted.
2320 float MaxGap
= GapWeight
[0];
2323 // Live before/after split?
2324 const bool LiveBefore
= SplitBefore
!= 0 || BI
.LiveIn
;
2325 const bool LiveAfter
= SplitAfter
!= NumGaps
|| BI
.LiveOut
;
2327 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << ' ' << Uses
[SplitBefore
]
2328 << '-' << Uses
[SplitAfter
] << " i=" << MaxGap
);
2330 // Stop before the interval gets so big we wouldn't be making progress.
2331 if (!LiveBefore
&& !LiveAfter
) {
2332 LLVM_DEBUG(dbgs() << " all\n");
2335 // Should the interval be extended or shrunk?
2338 // How many gaps would the new range have?
2339 unsigned NewGaps
= LiveBefore
+ SplitAfter
- SplitBefore
+ LiveAfter
;
2341 // Legally, without causing looping?
2342 bool Legal
= !ProgressRequired
|| NewGaps
< NumGaps
;
2344 if (Legal
&& MaxGap
< huge_valf
) {
2345 // Estimate the new spill weight. Each instruction reads or writes the
2346 // register. Conservatively assume there are no read-modify-write
2349 // Try to guess the size of the new interval.
2350 const float EstWeight
= normalizeSpillWeight(
2351 blockFreq
* (NewGaps
+ 1),
2352 Uses
[SplitBefore
].distance(Uses
[SplitAfter
]) +
2353 (LiveBefore
+ LiveAfter
) * SlotIndex::InstrDist
,
2355 // Would this split be possible to allocate?
2356 // Never allocate all gaps, we wouldn't be making progress.
2357 LLVM_DEBUG(dbgs() << " w=" << EstWeight
);
2358 if (EstWeight
* Hysteresis
>= MaxGap
) {
2360 float Diff
= EstWeight
- MaxGap
;
2361 if (Diff
> BestDiff
) {
2362 LLVM_DEBUG(dbgs() << " (best)");
2363 BestDiff
= Hysteresis
* Diff
;
2364 BestBefore
= SplitBefore
;
2365 BestAfter
= SplitAfter
;
2372 if (++SplitBefore
< SplitAfter
) {
2373 LLVM_DEBUG(dbgs() << " shrink\n");
2374 // Recompute the max when necessary.
2375 if (GapWeight
[SplitBefore
- 1] >= MaxGap
) {
2376 MaxGap
= GapWeight
[SplitBefore
];
2377 for (unsigned i
= SplitBefore
+ 1; i
!= SplitAfter
; ++i
)
2378 MaxGap
= std::max(MaxGap
, GapWeight
[i
]);
2385 // Try to extend the interval.
2386 if (SplitAfter
>= NumGaps
) {
2387 LLVM_DEBUG(dbgs() << " end\n");
2391 LLVM_DEBUG(dbgs() << " extend\n");
2392 MaxGap
= std::max(MaxGap
, GapWeight
[SplitAfter
++]);
2396 // Didn't find any candidates?
2397 if (BestBefore
== NumGaps
)
2400 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses
[BestBefore
] << '-'
2401 << Uses
[BestAfter
] << ", " << BestDiff
<< ", "
2402 << (BestAfter
- BestBefore
+ 1) << " instrs\n");
2404 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
2408 SlotIndex SegStart
= SE
->enterIntvBefore(Uses
[BestBefore
]);
2409 SlotIndex SegStop
= SE
->leaveIntvAfter(Uses
[BestAfter
]);
2410 SE
->useIntv(SegStart
, SegStop
);
2411 SmallVector
<unsigned, 8> IntvMap
;
2412 SE
->finish(&IntvMap
);
2413 DebugVars
->splitRegister(VirtReg
.reg
, LREdit
.regs(), *LIS
);
2415 // If the new range has the same number of instructions as before, mark it as
2416 // RS_Split2 so the next split will be forced to make progress. Otherwise,
2417 // leave the new intervals as RS_New so they can compete.
2418 bool LiveBefore
= BestBefore
!= 0 || BI
.LiveIn
;
2419 bool LiveAfter
= BestAfter
!= NumGaps
|| BI
.LiveOut
;
2420 unsigned NewGaps
= LiveBefore
+ BestAfter
- BestBefore
+ LiveAfter
;
2421 if (NewGaps
>= NumGaps
) {
2422 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2423 assert(!ProgressRequired
&& "Didn't make progress when it was required.");
2424 for (unsigned i
= 0, e
= IntvMap
.size(); i
!= e
; ++i
)
2425 if (IntvMap
[i
] == 1) {
2426 setStage(LIS
->getInterval(LREdit
.get(i
)), RS_Split2
);
2427 LLVM_DEBUG(dbgs() << printReg(LREdit
.get(i
)));
2429 LLVM_DEBUG(dbgs() << '\n');
2436 //===----------------------------------------------------------------------===//
2437 // Live Range Splitting
2438 //===----------------------------------------------------------------------===//
2440 /// trySplit - Try to split VirtReg or one of its interferences, making it
2442 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2443 unsigned RAGreedy::trySplit(LiveInterval
&VirtReg
, AllocationOrder
&Order
,
2444 SmallVectorImpl
<unsigned>&NewVRegs
) {
2445 // Ranges must be Split2 or less.
2446 if (getStage(VirtReg
) >= RS_Spill
)
2449 // Local intervals are handled separately.
2450 if (LIS
->intervalIsInOneMBB(VirtReg
)) {
2451 NamedRegionTimer
T("local_split", "Local Splitting", TimerGroupName
,
2452 TimerGroupDescription
, TimePassesIsEnabled
);
2453 SA
->analyze(&VirtReg
);
2454 unsigned PhysReg
= tryLocalSplit(VirtReg
, Order
, NewVRegs
);
2455 if (PhysReg
|| !NewVRegs
.empty())
2457 return tryInstructionSplit(VirtReg
, Order
, NewVRegs
);
2460 NamedRegionTimer
T("global_split", "Global Splitting", TimerGroupName
,
2461 TimerGroupDescription
, TimePassesIsEnabled
);
2463 SA
->analyze(&VirtReg
);
2465 // FIXME: SplitAnalysis may repair broken live ranges coming from the
2466 // coalescer. That may cause the range to become allocatable which means that
2467 // tryRegionSplit won't be making progress. This check should be replaced with
2468 // an assertion when the coalescer is fixed.
2469 if (SA
->didRepairRange()) {
2470 // VirtReg has changed, so all cached queries are invalid.
2471 Matrix
->invalidateVirtRegs();
2472 if (unsigned PhysReg
= tryAssign(VirtReg
, Order
, NewVRegs
))
2476 // First try to split around a region spanning multiple blocks. RS_Split2
2477 // ranges already made dubious progress with region splitting, so they go
2478 // straight to single block splitting.
2479 if (getStage(VirtReg
) < RS_Split2
) {
2480 unsigned PhysReg
= tryRegionSplit(VirtReg
, Order
, NewVRegs
);
2481 if (PhysReg
|| !NewVRegs
.empty())
2485 // Then isolate blocks.
2486 return tryBlockSplit(VirtReg
, Order
, NewVRegs
);
2489 //===----------------------------------------------------------------------===//
2490 // Last Chance Recoloring
2491 //===----------------------------------------------------------------------===//
2493 /// Return true if \p reg has any tied def operand.
2494 static bool hasTiedDef(MachineRegisterInfo
*MRI
, unsigned reg
) {
2495 for (const MachineOperand
&MO
: MRI
->def_operands(reg
))
2502 /// mayRecolorAllInterferences - Check if the virtual registers that
2503 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2504 /// recolored to free \p PhysReg.
2505 /// When true is returned, \p RecoloringCandidates has been augmented with all
2506 /// the live intervals that need to be recolored in order to free \p PhysReg
2508 /// \p FixedRegisters contains all the virtual registers that cannot be
2511 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg
, LiveInterval
&VirtReg
,
2512 SmallLISet
&RecoloringCandidates
,
2513 const SmallVirtRegSet
&FixedRegisters
) {
2514 const TargetRegisterClass
*CurRC
= MRI
->getRegClass(VirtReg
.reg
);
2516 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
2517 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, *Units
);
2518 // If there is LastChanceRecoloringMaxInterference or more interferences,
2519 // chances are one would not be recolorable.
2520 if (Q
.collectInterferingVRegs(LastChanceRecoloringMaxInterference
) >=
2521 LastChanceRecoloringMaxInterference
&& !ExhaustiveSearch
) {
2522 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2523 CutOffInfo
|= CO_Interf
;
2526 for (unsigned i
= Q
.interferingVRegs().size(); i
; --i
) {
2527 LiveInterval
*Intf
= Q
.interferingVRegs()[i
- 1];
2528 // If Intf is done and sit on the same register class as VirtReg,
2529 // it would not be recolorable as it is in the same state as VirtReg.
2530 // However, if VirtReg has tied defs and Intf doesn't, then
2531 // there is still a point in examining if it can be recolorable.
2532 if (((getStage(*Intf
) == RS_Done
&&
2533 MRI
->getRegClass(Intf
->reg
) == CurRC
) &&
2534 !(hasTiedDef(MRI
, VirtReg
.reg
) && !hasTiedDef(MRI
, Intf
->reg
))) ||
2535 FixedRegisters
.count(Intf
->reg
)) {
2537 dbgs() << "Early abort: the interference is not recolorable.\n");
2540 RecoloringCandidates
.insert(Intf
);
2546 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2547 /// its interferences.
2548 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2549 /// virtual register that was using it. The recoloring process may recursively
2550 /// use the last chance recoloring. Therefore, when a virtual register has been
2551 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2552 /// be last-chance-recolored again during this recoloring "session".
2555 /// vA can use {R1, R2 }
2556 /// vB can use { R2, R3}
2557 /// vC can use {R1 }
2558 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2559 /// instance) and they all interfere.
2561 /// vA is assigned R1
2562 /// vB is assigned R2
2563 /// vC tries to evict vA but vA is already done.
2564 /// Regular register allocation fails.
2566 /// Last chance recoloring kicks in:
2567 /// vC does as if vA was evicted => vC uses R1.
2568 /// vC is marked as fixed.
2569 /// vA needs to find a color.
2570 /// None are available.
2571 /// vA cannot evict vC: vC is a fixed virtual register now.
2572 /// vA does as if vB was evicted => vA uses R2.
2573 /// vB needs to find a color.
2574 /// R3 is available.
2575 /// Recoloring => vC = R1, vA = R2, vB = R3
2577 /// \p Order defines the preferred allocation order for \p VirtReg.
2578 /// \p NewRegs will contain any new virtual register that have been created
2579 /// (split, spill) during the process and that must be assigned.
2580 /// \p FixedRegisters contains all the virtual registers that cannot be
2582 /// \p Depth gives the current depth of the last chance recoloring.
2583 /// \return a physical register that can be used for VirtReg or ~0u if none
2585 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval
&VirtReg
,
2586 AllocationOrder
&Order
,
2587 SmallVectorImpl
<unsigned> &NewVRegs
,
2588 SmallVirtRegSet
&FixedRegisters
,
2590 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg
<< '\n');
2591 // Ranges must be Done.
2592 assert((getStage(VirtReg
) >= RS_Done
|| !VirtReg
.isSpillable()) &&
2593 "Last chance recoloring should really be last chance");
2594 // Set the max depth to LastChanceRecoloringMaxDepth.
2595 // We may want to reconsider that if we end up with a too large search space
2596 // for target with hundreds of registers.
2597 // Indeed, in that case we may want to cut the search space earlier.
2598 if (Depth
>= LastChanceRecoloringMaxDepth
&& !ExhaustiveSearch
) {
2599 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2600 CutOffInfo
|= CO_Depth
;
2604 // Set of Live intervals that will need to be recolored.
2605 SmallLISet RecoloringCandidates
;
2606 // Record the original mapping virtual register to physical register in case
2607 // the recoloring fails.
2608 DenseMap
<unsigned, unsigned> VirtRegToPhysReg
;
2609 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2610 // this recoloring "session".
2611 FixedRegisters
.insert(VirtReg
.reg
);
2612 SmallVector
<unsigned, 4> CurrentNewVRegs
;
2615 while (unsigned PhysReg
= Order
.next()) {
2616 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg
<< " to "
2617 << printReg(PhysReg
, TRI
) << '\n');
2618 RecoloringCandidates
.clear();
2619 VirtRegToPhysReg
.clear();
2620 CurrentNewVRegs
.clear();
2622 // It is only possible to recolor virtual register interference.
2623 if (Matrix
->checkInterference(VirtReg
, PhysReg
) >
2624 LiveRegMatrix::IK_VirtReg
) {
2626 dbgs() << "Some interferences are not with virtual registers.\n");
2631 // Early give up on this PhysReg if it is obvious we cannot recolor all
2632 // the interferences.
2633 if (!mayRecolorAllInterferences(PhysReg
, VirtReg
, RecoloringCandidates
,
2635 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2639 // RecoloringCandidates contains all the virtual registers that interfer
2640 // with VirtReg on PhysReg (or one of its aliases).
2641 // Enqueue them for recoloring and perform the actual recoloring.
2642 PQueue RecoloringQueue
;
2643 for (SmallLISet::iterator It
= RecoloringCandidates
.begin(),
2644 EndIt
= RecoloringCandidates
.end();
2645 It
!= EndIt
; ++It
) {
2646 unsigned ItVirtReg
= (*It
)->reg
;
2647 enqueue(RecoloringQueue
, *It
);
2648 assert(VRM
->hasPhys(ItVirtReg
) &&
2649 "Interferences are supposed to be with allocated variables");
2651 // Record the current allocation.
2652 VirtRegToPhysReg
[ItVirtReg
] = VRM
->getPhys(ItVirtReg
);
2653 // unset the related struct.
2654 Matrix
->unassign(**It
);
2657 // Do as if VirtReg was assigned to PhysReg so that the underlying
2658 // recoloring has the right information about the interferes and
2659 // available colors.
2660 Matrix
->assign(VirtReg
, PhysReg
);
2662 // Save the current recoloring state.
2663 // If we cannot recolor all the interferences, we will have to start again
2664 // at this point for the next physical register.
2665 SmallVirtRegSet
SaveFixedRegisters(FixedRegisters
);
2666 if (tryRecoloringCandidates(RecoloringQueue
, CurrentNewVRegs
,
2667 FixedRegisters
, Depth
)) {
2668 // Push the queued vregs into the main queue.
2669 for (unsigned NewVReg
: CurrentNewVRegs
)
2670 NewVRegs
.push_back(NewVReg
);
2671 // Do not mess up with the global assignment process.
2672 // I.e., VirtReg must be unassigned.
2673 Matrix
->unassign(VirtReg
);
2677 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg
<< " to "
2678 << printReg(PhysReg
, TRI
) << '\n');
2680 // The recoloring attempt failed, undo the changes.
2681 FixedRegisters
= SaveFixedRegisters
;
2682 Matrix
->unassign(VirtReg
);
2684 // For a newly created vreg which is also in RecoloringCandidates,
2685 // don't add it to NewVRegs because its physical register will be restored
2686 // below. Other vregs in CurrentNewVRegs are created by calling
2687 // selectOrSplit and should be added into NewVRegs.
2688 for (SmallVectorImpl
<unsigned>::iterator Next
= CurrentNewVRegs
.begin(),
2689 End
= CurrentNewVRegs
.end();
2690 Next
!= End
; ++Next
) {
2691 if (RecoloringCandidates
.count(&LIS
->getInterval(*Next
)))
2693 NewVRegs
.push_back(*Next
);
2696 for (SmallLISet::iterator It
= RecoloringCandidates
.begin(),
2697 EndIt
= RecoloringCandidates
.end();
2698 It
!= EndIt
; ++It
) {
2699 unsigned ItVirtReg
= (*It
)->reg
;
2700 if (VRM
->hasPhys(ItVirtReg
))
2701 Matrix
->unassign(**It
);
2702 unsigned ItPhysReg
= VirtRegToPhysReg
[ItVirtReg
];
2703 Matrix
->assign(**It
, ItPhysReg
);
2707 // Last chance recoloring did not worked either, give up.
2711 /// tryRecoloringCandidates - Try to assign a new color to every register
2712 /// in \RecoloringQueue.
2713 /// \p NewRegs will contain any new virtual register created during the
2714 /// recoloring process.
2715 /// \p FixedRegisters[in/out] contains all the registers that have been
2717 /// \return true if all virtual registers in RecoloringQueue were successfully
2718 /// recolored, false otherwise.
2719 bool RAGreedy::tryRecoloringCandidates(PQueue
&RecoloringQueue
,
2720 SmallVectorImpl
<unsigned> &NewVRegs
,
2721 SmallVirtRegSet
&FixedRegisters
,
2723 while (!RecoloringQueue
.empty()) {
2724 LiveInterval
*LI
= dequeue(RecoloringQueue
);
2725 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI
<< '\n');
2727 PhysReg
= selectOrSplitImpl(*LI
, NewVRegs
, FixedRegisters
, Depth
+ 1);
2728 // When splitting happens, the live-range may actually be empty.
2729 // In that case, this is okay to continue the recoloring even
2730 // if we did not find an alternative color for it. Indeed,
2731 // there will not be anything to color for LI in the end.
2732 if (PhysReg
== ~0u || (!PhysReg
&& !LI
->empty()))
2736 assert(LI
->empty() && "Only empty live-range do not require a register");
2737 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2738 << " succeeded. Empty LI.\n");
2741 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2742 << " succeeded with: " << printReg(PhysReg
, TRI
) << '\n');
2744 Matrix
->assign(*LI
, PhysReg
);
2745 FixedRegisters
.insert(LI
->reg
);
2750 //===----------------------------------------------------------------------===//
2752 //===----------------------------------------------------------------------===//
2754 unsigned RAGreedy::selectOrSplit(LiveInterval
&VirtReg
,
2755 SmallVectorImpl
<unsigned> &NewVRegs
) {
2756 CutOffInfo
= CO_None
;
2757 LLVMContext
&Ctx
= MF
->getFunction().getContext();
2758 SmallVirtRegSet FixedRegisters
;
2759 unsigned Reg
= selectOrSplitImpl(VirtReg
, NewVRegs
, FixedRegisters
);
2760 if (Reg
== ~0U && (CutOffInfo
!= CO_None
)) {
2761 uint8_t CutOffEncountered
= CutOffInfo
& (CO_Depth
| CO_Interf
);
2762 if (CutOffEncountered
== CO_Depth
)
2763 Ctx
.emitError("register allocation failed: maximum depth for recoloring "
2764 "reached. Use -fexhaustive-register-search to skip "
2766 else if (CutOffEncountered
== CO_Interf
)
2767 Ctx
.emitError("register allocation failed: maximum interference for "
2768 "recoloring reached. Use -fexhaustive-register-search "
2770 else if (CutOffEncountered
== (CO_Depth
| CO_Interf
))
2771 Ctx
.emitError("register allocation failed: maximum interference and "
2772 "depth for recoloring reached. Use "
2773 "-fexhaustive-register-search to skip cutoffs");
2778 /// Using a CSR for the first time has a cost because it causes push|pop
2779 /// to be added to prologue|epilogue. Splitting a cold section of the live
2780 /// range can have lower cost than using the CSR for the first time;
2781 /// Spilling a live range in the cold path can have lower cost than using
2782 /// the CSR for the first time. Returns the physical register if we decide
2783 /// to use the CSR; otherwise return 0.
2784 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval
&VirtReg
,
2785 AllocationOrder
&Order
,
2787 unsigned &CostPerUseLimit
,
2788 SmallVectorImpl
<unsigned> &NewVRegs
) {
2789 if (getStage(VirtReg
) == RS_Spill
&& VirtReg
.isSpillable()) {
2790 // We choose spill over using the CSR for the first time if the spill cost
2791 // is lower than CSRCost.
2792 SA
->analyze(&VirtReg
);
2793 if (calcSpillCost() >= CSRCost
)
2796 // We are going to spill, set CostPerUseLimit to 1 to make sure that
2797 // we will not use a callee-saved register in tryEvict.
2798 CostPerUseLimit
= 1;
2801 if (getStage(VirtReg
) < RS_Split
) {
2802 // We choose pre-splitting over using the CSR for the first time if
2803 // the cost of splitting is lower than CSRCost.
2804 SA
->analyze(&VirtReg
);
2805 unsigned NumCands
= 0;
2806 BlockFrequency BestCost
= CSRCost
; // Don't modify CSRCost.
2807 unsigned BestCand
= calculateRegionSplitCost(VirtReg
, Order
, BestCost
,
2808 NumCands
, true /*IgnoreCSR*/);
2809 if (BestCand
== NoCand
)
2810 // Use the CSR if we can't find a region split below CSRCost.
2813 // Perform the actual pre-splitting.
2814 doRegionSplit(VirtReg
, BestCand
, false/*HasCompact*/, NewVRegs
);
2820 void RAGreedy::aboutToRemoveInterval(LiveInterval
&LI
) {
2821 // Do not keep invalid information around.
2822 SetOfBrokenHints
.remove(&LI
);
2825 void RAGreedy::initializeCSRCost() {
2826 // We use the larger one out of the command-line option and the value report
2828 CSRCost
= BlockFrequency(
2829 std::max((unsigned)CSRFirstTimeCost
, TRI
->getCSRFirstUseCost()));
2830 if (!CSRCost
.getFrequency())
2833 // Raw cost is relative to Entry == 2^14; scale it appropriately.
2834 uint64_t ActualEntry
= MBFI
->getEntryFreq();
2839 uint64_t FixedEntry
= 1 << 14;
2840 if (ActualEntry
< FixedEntry
)
2841 CSRCost
*= BranchProbability(ActualEntry
, FixedEntry
);
2842 else if (ActualEntry
<= UINT32_MAX
)
2843 // Invert the fraction and divide.
2844 CSRCost
/= BranchProbability(FixedEntry
, ActualEntry
);
2846 // Can't use BranchProbability in general, since it takes 32-bit numbers.
2847 CSRCost
= CSRCost
.getFrequency() * (ActualEntry
/ FixedEntry
);
2850 /// Collect the hint info for \p Reg.
2851 /// The results are stored into \p Out.
2852 /// \p Out is not cleared before being populated.
2853 void RAGreedy::collectHintInfo(unsigned Reg
, HintsInfo
&Out
) {
2854 for (const MachineInstr
&Instr
: MRI
->reg_nodbg_instructions(Reg
)) {
2855 if (!Instr
.isFullCopy())
2857 // Look for the other end of the copy.
2858 unsigned OtherReg
= Instr
.getOperand(0).getReg();
2859 if (OtherReg
== Reg
) {
2860 OtherReg
= Instr
.getOperand(1).getReg();
2861 if (OtherReg
== Reg
)
2864 // Get the current assignment.
2865 unsigned OtherPhysReg
= TargetRegisterInfo::isPhysicalRegister(OtherReg
)
2867 : VRM
->getPhys(OtherReg
);
2868 // Push the collected information.
2869 Out
.push_back(HintInfo(MBFI
->getBlockFreq(Instr
.getParent()), OtherReg
,
2874 /// Using the given \p List, compute the cost of the broken hints if
2875 /// \p PhysReg was used.
2876 /// \return The cost of \p List for \p PhysReg.
2877 BlockFrequency
RAGreedy::getBrokenHintFreq(const HintsInfo
&List
,
2879 BlockFrequency Cost
= 0;
2880 for (const HintInfo
&Info
: List
) {
2881 if (Info
.PhysReg
!= PhysReg
)
2887 /// Using the register assigned to \p VirtReg, try to recolor
2888 /// all the live ranges that are copy-related with \p VirtReg.
2889 /// The recoloring is then propagated to all the live-ranges that have
2890 /// been recolored and so on, until no more copies can be coalesced or
2891 /// it is not profitable.
2892 /// For a given live range, profitability is determined by the sum of the
2893 /// frequencies of the non-identity copies it would introduce with the old
2894 /// and new register.
2895 void RAGreedy::tryHintRecoloring(LiveInterval
&VirtReg
) {
2896 // We have a broken hint, check if it is possible to fix it by
2897 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2898 // some register and PhysReg may be available for the other live-ranges.
2899 SmallSet
<unsigned, 4> Visited
;
2900 SmallVector
<unsigned, 2> RecoloringCandidates
;
2902 unsigned Reg
= VirtReg
.reg
;
2903 unsigned PhysReg
= VRM
->getPhys(Reg
);
2904 // Start the recoloring algorithm from the input live-interval, then
2905 // it will propagate to the ones that are copy-related with it.
2906 Visited
.insert(Reg
);
2907 RecoloringCandidates
.push_back(Reg
);
2909 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg
, TRI
)
2910 << '(' << printReg(PhysReg
, TRI
) << ")\n");
2913 Reg
= RecoloringCandidates
.pop_back_val();
2915 // We cannot recolor physical register.
2916 if (TargetRegisterInfo::isPhysicalRegister(Reg
))
2919 assert(VRM
->hasPhys(Reg
) && "We have unallocated variable!!");
2921 // Get the live interval mapped with this virtual register to be able
2922 // to check for the interference with the new color.
2923 LiveInterval
&LI
= LIS
->getInterval(Reg
);
2924 unsigned CurrPhys
= VRM
->getPhys(Reg
);
2925 // Check that the new color matches the register class constraints and
2926 // that it is free for this live range.
2927 if (CurrPhys
!= PhysReg
&& (!MRI
->getRegClass(Reg
)->contains(PhysReg
) ||
2928 Matrix
->checkInterference(LI
, PhysReg
)))
2931 LLVM_DEBUG(dbgs() << printReg(Reg
, TRI
) << '(' << printReg(CurrPhys
, TRI
)
2932 << ") is recolorable.\n");
2934 // Gather the hint info.
2936 collectHintInfo(Reg
, Info
);
2937 // Check if recoloring the live-range will increase the cost of the
2938 // non-identity copies.
2939 if (CurrPhys
!= PhysReg
) {
2940 LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2941 BlockFrequency OldCopiesCost
= getBrokenHintFreq(Info
, CurrPhys
);
2942 BlockFrequency NewCopiesCost
= getBrokenHintFreq(Info
, PhysReg
);
2943 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost
.getFrequency()
2944 << "\nNew Cost: " << NewCopiesCost
.getFrequency()
2946 if (OldCopiesCost
< NewCopiesCost
) {
2947 LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2950 // At this point, the cost is either cheaper or equal. If it is
2951 // equal, we consider this is profitable because it may expose
2952 // more recoloring opportunities.
2953 LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2954 // Recolor the live-range.
2955 Matrix
->unassign(LI
);
2956 Matrix
->assign(LI
, PhysReg
);
2958 // Push all copy-related live-ranges to keep reconciling the broken
2960 for (const HintInfo
&HI
: Info
) {
2961 if (Visited
.insert(HI
.Reg
).second
)
2962 RecoloringCandidates
.push_back(HI
.Reg
);
2964 } while (!RecoloringCandidates
.empty());
2967 /// Try to recolor broken hints.
2968 /// Broken hints may be repaired by recoloring when an evicted variable
2969 /// freed up a register for a larger live-range.
2970 /// Consider the following example:
2978 /// Let us assume b gets split:
2988 /// Because of how the allocation work, b, c, and d may be assigned different
2989 /// colors. Now, if a gets evicted later:
2999 /// e = ld SpillSlot
3001 /// This is likely that we can assign the same register for b, c, and d,
3002 /// getting rid of 2 copies.
3003 void RAGreedy::tryHintsRecoloring() {
3004 for (LiveInterval
*LI
: SetOfBrokenHints
) {
3005 assert(TargetRegisterInfo::isVirtualRegister(LI
->reg
) &&
3006 "Recoloring is possible only for virtual registers");
3007 // Some dead defs may be around (e.g., because of debug uses).
3009 if (!VRM
->hasPhys(LI
->reg
))
3011 tryHintRecoloring(*LI
);
3015 unsigned RAGreedy::selectOrSplitImpl(LiveInterval
&VirtReg
,
3016 SmallVectorImpl
<unsigned> &NewVRegs
,
3017 SmallVirtRegSet
&FixedRegisters
,
3019 unsigned CostPerUseLimit
= ~0u;
3020 // First try assigning a free register.
3021 AllocationOrder
Order(VirtReg
.reg
, *VRM
, RegClassInfo
, Matrix
);
3022 if (unsigned PhysReg
= tryAssign(VirtReg
, Order
, NewVRegs
)) {
3023 // If VirtReg got an assignment, the eviction info is no longre relevant.
3024 LastEvicted
.clearEvicteeInfo(VirtReg
.reg
);
3025 // When NewVRegs is not empty, we may have made decisions such as evicting
3026 // a virtual register, go with the earlier decisions and use the physical
3028 if (CSRCost
.getFrequency() && isUnusedCalleeSavedReg(PhysReg
) &&
3030 unsigned CSRReg
= tryAssignCSRFirstTime(VirtReg
, Order
, PhysReg
,
3031 CostPerUseLimit
, NewVRegs
);
3032 if (CSRReg
|| !NewVRegs
.empty())
3033 // Return now if we decide to use a CSR or create new vregs due to
3040 LiveRangeStage Stage
= getStage(VirtReg
);
3041 LLVM_DEBUG(dbgs() << StageName
[Stage
] << " Cascade "
3042 << ExtraRegInfo
[VirtReg
.reg
].Cascade
<< '\n');
3044 // Try to evict a less worthy live range, but only for ranges from the primary
3045 // queue. The RS_Split ranges already failed to do this, and they should not
3046 // get a second chance until they have been split.
3047 if (Stage
!= RS_Split
)
3048 if (unsigned PhysReg
=
3049 tryEvict(VirtReg
, Order
, NewVRegs
, CostPerUseLimit
)) {
3050 unsigned Hint
= MRI
->getSimpleHint(VirtReg
.reg
);
3051 // If VirtReg has a hint and that hint is broken record this
3052 // virtual register as a recoloring candidate for broken hint.
3053 // Indeed, since we evicted a variable in its neighborhood it is
3054 // likely we can at least partially recolor some of the
3055 // copy-related live-ranges.
3056 if (Hint
&& Hint
!= PhysReg
)
3057 SetOfBrokenHints
.insert(&VirtReg
);
3058 // If VirtReg eviction someone, the eviction info for it as an evictee is
3059 // no longre relevant.
3060 LastEvicted
.clearEvicteeInfo(VirtReg
.reg
);
3064 assert((NewVRegs
.empty() || Depth
) && "Cannot append to existing NewVRegs");
3066 // The first time we see a live range, don't try to split or spill.
3067 // Wait until the second time, when all smaller ranges have been allocated.
3068 // This gives a better picture of the interference to split around.
3069 if (Stage
< RS_Split
) {
3070 setStage(VirtReg
, RS_Split
);
3071 LLVM_DEBUG(dbgs() << "wait for second round\n");
3072 NewVRegs
.push_back(VirtReg
.reg
);
3076 if (Stage
< RS_Spill
) {
3077 // Try splitting VirtReg or interferences.
3078 unsigned NewVRegSizeBefore
= NewVRegs
.size();
3079 unsigned PhysReg
= trySplit(VirtReg
, Order
, NewVRegs
);
3080 if (PhysReg
|| (NewVRegs
.size() - NewVRegSizeBefore
)) {
3081 // If VirtReg got split, the eviction info is no longre relevant.
3082 LastEvicted
.clearEvicteeInfo(VirtReg
.reg
);
3087 // If we couldn't allocate a register from spilling, there is probably some
3088 // invalid inline assembly. The base class will report it.
3089 if (Stage
>= RS_Done
|| !VirtReg
.isSpillable())
3090 return tryLastChanceRecoloring(VirtReg
, Order
, NewVRegs
, FixedRegisters
,
3093 // Finally spill VirtReg itself.
3094 if (EnableDeferredSpilling
&& getStage(VirtReg
) < RS_Memory
) {
3095 // TODO: This is experimental and in particular, we do not model
3096 // the live range splitting done by spilling correctly.
3097 // We would need a deep integration with the spiller to do the
3098 // right thing here. Anyway, that is still good for early testing.
3099 setStage(VirtReg
, RS_Memory
);
3100 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3101 NewVRegs
.push_back(VirtReg
.reg
);
3103 NamedRegionTimer
T("spill", "Spiller", TimerGroupName
,
3104 TimerGroupDescription
, TimePassesIsEnabled
);
3105 LiveRangeEdit
LRE(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
3106 spiller().spill(LRE
);
3107 setStage(NewVRegs
.begin(), NewVRegs
.end(), RS_Done
);
3110 MF
->verify(this, "After spilling");
3113 // The live virtual register requesting allocation was spilled, so tell
3114 // the caller not to allocate anything during this round.
3118 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop
*L
, unsigned &Reloads
,
3119 unsigned &FoldedReloads
,
3121 unsigned &FoldedSpills
) {
3127 // Sum up the spill and reloads in subloops.
3128 for (MachineLoop
*SubLoop
: *L
) {
3129 unsigned SubReloads
;
3130 unsigned SubFoldedReloads
;
3132 unsigned SubFoldedSpills
;
3134 reportNumberOfSplillsReloads(SubLoop
, SubReloads
, SubFoldedReloads
,
3135 SubSpills
, SubFoldedSpills
);
3136 Reloads
+= SubReloads
;
3137 FoldedReloads
+= SubFoldedReloads
;
3138 Spills
+= SubSpills
;
3139 FoldedSpills
+= SubFoldedSpills
;
3142 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
3143 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
3146 for (MachineBasicBlock
*MBB
: L
->getBlocks())
3147 // Handle blocks that were not included in subloops.
3148 if (Loops
->getLoopFor(MBB
) == L
)
3149 for (MachineInstr
&MI
: *MBB
) {
3150 SmallVector
<const MachineMemOperand
*, 2> Accesses
;
3151 auto isSpillSlotAccess
= [&MFI
](const MachineMemOperand
*A
) {
3152 return MFI
.isSpillSlotObjectIndex(
3153 cast
<FixedStackPseudoSourceValue
>(A
->getPseudoValue())
3157 if (TII
->isLoadFromStackSlot(MI
, FI
) && MFI
.isSpillSlotObjectIndex(FI
))
3159 else if (TII
->hasLoadFromStackSlot(MI
, Accesses
) &&
3160 llvm::any_of(Accesses
, isSpillSlotAccess
))
3162 else if (TII
->isStoreToStackSlot(MI
, FI
) &&
3163 MFI
.isSpillSlotObjectIndex(FI
))
3165 else if (TII
->hasStoreToStackSlot(MI
, Accesses
) &&
3166 llvm::any_of(Accesses
, isSpillSlotAccess
))
3170 if (Reloads
|| FoldedReloads
|| Spills
|| FoldedSpills
) {
3171 using namespace ore
;
3174 MachineOptimizationRemarkMissed
R(DEBUG_TYPE
, "LoopSpillReload",
3175 L
->getStartLoc(), L
->getHeader());
3177 R
<< NV("NumSpills", Spills
) << " spills ";
3179 R
<< NV("NumFoldedSpills", FoldedSpills
) << " folded spills ";
3181 R
<< NV("NumReloads", Reloads
) << " reloads ";
3183 R
<< NV("NumFoldedReloads", FoldedReloads
) << " folded reloads ";
3184 R
<< "generated in loop";
3190 bool RAGreedy::runOnMachineFunction(MachineFunction
&mf
) {
3191 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3192 << "********** Function: " << mf
.getName() << '\n');
3195 TRI
= MF
->getSubtarget().getRegisterInfo();
3196 TII
= MF
->getSubtarget().getInstrInfo();
3197 RCI
.runOnMachineFunction(mf
);
3199 EnableLocalReassign
= EnableLocalReassignment
||
3200 MF
->getSubtarget().enableRALocalReassignment(
3201 MF
->getTarget().getOptLevel());
3203 EnableAdvancedRASplitCost
= ConsiderLocalIntervalCost
||
3204 MF
->getSubtarget().enableAdvancedRASplitCost();
3207 MF
->verify(this, "Before greedy register allocator");
3209 RegAllocBase::init(getAnalysis
<VirtRegMap
>(),
3210 getAnalysis
<LiveIntervals
>(),
3211 getAnalysis
<LiveRegMatrix
>());
3212 Indexes
= &getAnalysis
<SlotIndexes
>();
3213 MBFI
= &getAnalysis
<MachineBlockFrequencyInfo
>();
3214 DomTree
= &getAnalysis
<MachineDominatorTree
>();
3215 ORE
= &getAnalysis
<MachineOptimizationRemarkEmitterPass
>().getORE();
3216 SpillerInstance
.reset(createInlineSpiller(*this, *MF
, *VRM
));
3217 Loops
= &getAnalysis
<MachineLoopInfo
>();
3218 Bundles
= &getAnalysis
<EdgeBundles
>();
3219 SpillPlacer
= &getAnalysis
<SpillPlacement
>();
3220 DebugVars
= &getAnalysis
<LiveDebugVariables
>();
3221 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
3223 initializeCSRCost();
3225 calculateSpillWeightsAndHints(*LIS
, mf
, VRM
, *Loops
, *MBFI
);
3227 LLVM_DEBUG(LIS
->dump());
3229 SA
.reset(new SplitAnalysis(*VRM
, *LIS
, *Loops
));
3230 SE
.reset(new SplitEditor(*SA
, *AA
, *LIS
, *VRM
, *DomTree
, *MBFI
));
3231 ExtraRegInfo
.clear();
3232 ExtraRegInfo
.resize(MRI
->getNumVirtRegs());
3234 IntfCache
.init(MF
, Matrix
->getLiveUnions(), Indexes
, LIS
, TRI
);
3235 GlobalCand
.resize(32); // This will grow as needed.
3236 SetOfBrokenHints
.clear();
3237 LastEvicted
.clear();
3240 tryHintsRecoloring();
3242 reportNumberOfSplillsReloads();