1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/TargetInstrInfo.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/PseudoSourceValue.h"
20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
21 #include "llvm/CodeGen/StackMaps.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSchedule.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCInstrItineraries.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetMachine.h"
37 static cl::opt
<bool> DisableHazardRecognizer(
38 "disable-sched-hazard", cl::Hidden
, cl::init(false),
39 cl::desc("Disable hazard detection during preRA scheduling"));
41 TargetInstrInfo::~TargetInstrInfo() {
44 const TargetRegisterClass
*
45 TargetInstrInfo::getRegClass(const MCInstrDesc
&MCID
, unsigned OpNum
,
46 const TargetRegisterInfo
*TRI
,
47 const MachineFunction
&MF
) const {
48 if (OpNum
>= MCID
.getNumOperands())
51 short RegClass
= MCID
.OpInfo
[OpNum
].RegClass
;
52 if (MCID
.OpInfo
[OpNum
].isLookupPtrRegClass())
53 return TRI
->getPointerRegClass(MF
, RegClass
);
55 // Instructions like INSERT_SUBREG do not have fixed register classes.
59 // Otherwise just look it up normally.
60 return TRI
->getRegClass(RegClass
);
63 /// insertNoop - Insert a noop into the instruction stream at the specified
65 void TargetInstrInfo::insertNoop(MachineBasicBlock
&MBB
,
66 MachineBasicBlock::iterator MI
) const {
67 llvm_unreachable("Target didn't implement insertNoop!");
70 static bool isAsmComment(const char *Str
, const MCAsmInfo
&MAI
) {
71 return strncmp(Str
, MAI
.getCommentString().data(),
72 MAI
.getCommentString().size()) == 0;
75 /// Measure the specified inline asm to determine an approximation of its
77 /// Comments (which run till the next SeparatorString or newline) do not
78 /// count as an instruction.
79 /// Any other non-whitespace text is considered an instruction, with
80 /// multiple instructions separated by SeparatorString or newlines.
81 /// Variable-length instructions are not handled here; this function
82 /// may be overloaded in the target code to do that.
83 /// We implement a special case of the .space directive which takes only a
84 /// single integer argument in base 10 that is the size in bytes. This is a
85 /// restricted form of the GAS directive in that we only interpret
86 /// simple--i.e. not a logical or arithmetic expression--size values without
87 /// the optional fill value. This is primarily used for creating arbitrary
88 /// sized inline asm blocks for testing purposes.
89 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str
,
90 const MCAsmInfo
&MAI
) const {
91 // Count the number of instructions in the asm.
92 bool AtInsnStart
= true;
95 if (*Str
== '\n' || strncmp(Str
, MAI
.getSeparatorString(),
96 strlen(MAI
.getSeparatorString())) == 0) {
98 } else if (isAsmComment(Str
, MAI
)) {
99 // Stop counting as an instruction after a comment until the next
104 if (AtInsnStart
&& !std::isspace(static_cast<unsigned char>(*Str
))) {
105 unsigned AddLength
= MAI
.getMaxInstLength();
106 if (strncmp(Str
, ".space", 6) == 0) {
109 SpaceSize
= strtol(Str
+ 6, &EStr
, 10);
110 SpaceSize
= SpaceSize
< 0 ? 0 : SpaceSize
;
111 while (*EStr
!= '\n' && std::isspace(static_cast<unsigned char>(*EStr
)))
113 if (*EStr
== '\0' || *EStr
== '\n' ||
114 isAsmComment(EStr
, MAI
)) // Successfully parsed .space argument
115 AddLength
= SpaceSize
;
125 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
126 /// after it, replacing it with an unconditional branch to NewDest.
128 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail
,
129 MachineBasicBlock
*NewDest
) const {
130 MachineBasicBlock
*MBB
= Tail
->getParent();
132 // Remove all the old successors of MBB from the CFG.
133 while (!MBB
->succ_empty())
134 MBB
->removeSuccessor(MBB
->succ_begin());
136 // Save off the debug loc before erasing the instruction.
137 DebugLoc DL
= Tail
->getDebugLoc();
139 // Remove all the dead instructions from the end of MBB.
140 MBB
->erase(Tail
, MBB
->end());
142 // If MBB isn't immediately before MBB, insert a branch to it.
143 if (++MachineFunction::iterator(MBB
) != MachineFunction::iterator(NewDest
))
144 insertBranch(*MBB
, NewDest
, nullptr, SmallVector
<MachineOperand
, 0>(), DL
);
145 MBB
->addSuccessor(NewDest
);
148 MachineInstr
*TargetInstrInfo::commuteInstructionImpl(MachineInstr
&MI
,
149 bool NewMI
, unsigned Idx1
,
150 unsigned Idx2
) const {
151 const MCInstrDesc
&MCID
= MI
.getDesc();
152 bool HasDef
= MCID
.getNumDefs();
153 if (HasDef
&& !MI
.getOperand(0).isReg())
154 // No idea how to commute this instruction. Target should implement its own.
157 unsigned CommutableOpIdx1
= Idx1
; (void)CommutableOpIdx1
;
158 unsigned CommutableOpIdx2
= Idx2
; (void)CommutableOpIdx2
;
159 assert(findCommutedOpIndices(MI
, CommutableOpIdx1
, CommutableOpIdx2
) &&
160 CommutableOpIdx1
== Idx1
&& CommutableOpIdx2
== Idx2
&&
161 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
162 assert(MI
.getOperand(Idx1
).isReg() && MI
.getOperand(Idx2
).isReg() &&
163 "This only knows how to commute register operands so far");
165 unsigned Reg0
= HasDef
? MI
.getOperand(0).getReg() : 0;
166 unsigned Reg1
= MI
.getOperand(Idx1
).getReg();
167 unsigned Reg2
= MI
.getOperand(Idx2
).getReg();
168 unsigned SubReg0
= HasDef
? MI
.getOperand(0).getSubReg() : 0;
169 unsigned SubReg1
= MI
.getOperand(Idx1
).getSubReg();
170 unsigned SubReg2
= MI
.getOperand(Idx2
).getSubReg();
171 bool Reg1IsKill
= MI
.getOperand(Idx1
).isKill();
172 bool Reg2IsKill
= MI
.getOperand(Idx2
).isKill();
173 bool Reg1IsUndef
= MI
.getOperand(Idx1
).isUndef();
174 bool Reg2IsUndef
= MI
.getOperand(Idx2
).isUndef();
175 bool Reg1IsInternal
= MI
.getOperand(Idx1
).isInternalRead();
176 bool Reg2IsInternal
= MI
.getOperand(Idx2
).isInternalRead();
177 // Avoid calling isRenamable for virtual registers since we assert that
178 // renamable property is only queried/set for physical registers.
179 bool Reg1IsRenamable
= TargetRegisterInfo::isPhysicalRegister(Reg1
)
180 ? MI
.getOperand(Idx1
).isRenamable()
182 bool Reg2IsRenamable
= TargetRegisterInfo::isPhysicalRegister(Reg2
)
183 ? MI
.getOperand(Idx2
).isRenamable()
185 // If destination is tied to either of the commuted source register, then
186 // it must be updated.
187 if (HasDef
&& Reg0
== Reg1
&&
188 MI
.getDesc().getOperandConstraint(Idx1
, MCOI::TIED_TO
) == 0) {
192 } else if (HasDef
&& Reg0
== Reg2
&&
193 MI
.getDesc().getOperandConstraint(Idx2
, MCOI::TIED_TO
) == 0) {
199 MachineInstr
*CommutedMI
= nullptr;
201 // Create a new instruction.
202 MachineFunction
&MF
= *MI
.getMF();
203 CommutedMI
= MF
.CloneMachineInstr(&MI
);
209 CommutedMI
->getOperand(0).setReg(Reg0
);
210 CommutedMI
->getOperand(0).setSubReg(SubReg0
);
212 CommutedMI
->getOperand(Idx2
).setReg(Reg1
);
213 CommutedMI
->getOperand(Idx1
).setReg(Reg2
);
214 CommutedMI
->getOperand(Idx2
).setSubReg(SubReg1
);
215 CommutedMI
->getOperand(Idx1
).setSubReg(SubReg2
);
216 CommutedMI
->getOperand(Idx2
).setIsKill(Reg1IsKill
);
217 CommutedMI
->getOperand(Idx1
).setIsKill(Reg2IsKill
);
218 CommutedMI
->getOperand(Idx2
).setIsUndef(Reg1IsUndef
);
219 CommutedMI
->getOperand(Idx1
).setIsUndef(Reg2IsUndef
);
220 CommutedMI
->getOperand(Idx2
).setIsInternalRead(Reg1IsInternal
);
221 CommutedMI
->getOperand(Idx1
).setIsInternalRead(Reg2IsInternal
);
222 // Avoid calling setIsRenamable for virtual registers since we assert that
223 // renamable property is only queried/set for physical registers.
224 if (TargetRegisterInfo::isPhysicalRegister(Reg1
))
225 CommutedMI
->getOperand(Idx2
).setIsRenamable(Reg1IsRenamable
);
226 if (TargetRegisterInfo::isPhysicalRegister(Reg2
))
227 CommutedMI
->getOperand(Idx1
).setIsRenamable(Reg2IsRenamable
);
231 MachineInstr
*TargetInstrInfo::commuteInstruction(MachineInstr
&MI
, bool NewMI
,
233 unsigned OpIdx2
) const {
234 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
235 // any commutable operand, which is done in findCommutedOpIndices() method
237 if ((OpIdx1
== CommuteAnyOperandIndex
|| OpIdx2
== CommuteAnyOperandIndex
) &&
238 !findCommutedOpIndices(MI
, OpIdx1
, OpIdx2
)) {
239 assert(MI
.isCommutable() &&
240 "Precondition violation: MI must be commutable.");
243 return commuteInstructionImpl(MI
, NewMI
, OpIdx1
, OpIdx2
);
246 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1
,
247 unsigned &ResultIdx2
,
248 unsigned CommutableOpIdx1
,
249 unsigned CommutableOpIdx2
) {
250 if (ResultIdx1
== CommuteAnyOperandIndex
&&
251 ResultIdx2
== CommuteAnyOperandIndex
) {
252 ResultIdx1
= CommutableOpIdx1
;
253 ResultIdx2
= CommutableOpIdx2
;
254 } else if (ResultIdx1
== CommuteAnyOperandIndex
) {
255 if (ResultIdx2
== CommutableOpIdx1
)
256 ResultIdx1
= CommutableOpIdx2
;
257 else if (ResultIdx2
== CommutableOpIdx2
)
258 ResultIdx1
= CommutableOpIdx1
;
261 } else if (ResultIdx2
== CommuteAnyOperandIndex
) {
262 if (ResultIdx1
== CommutableOpIdx1
)
263 ResultIdx2
= CommutableOpIdx2
;
264 else if (ResultIdx1
== CommutableOpIdx2
)
265 ResultIdx2
= CommutableOpIdx1
;
269 // Check that the result operand indices match the given commutable
271 return (ResultIdx1
== CommutableOpIdx1
&& ResultIdx2
== CommutableOpIdx2
) ||
272 (ResultIdx1
== CommutableOpIdx2
&& ResultIdx2
== CommutableOpIdx1
);
277 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr
&MI
,
279 unsigned &SrcOpIdx2
) const {
280 assert(!MI
.isBundle() &&
281 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
283 const MCInstrDesc
&MCID
= MI
.getDesc();
284 if (!MCID
.isCommutable())
287 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
288 // is not true, then the target must implement this.
289 unsigned CommutableOpIdx1
= MCID
.getNumDefs();
290 unsigned CommutableOpIdx2
= CommutableOpIdx1
+ 1;
291 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
,
292 CommutableOpIdx1
, CommutableOpIdx2
))
295 if (!MI
.getOperand(SrcOpIdx1
).isReg() || !MI
.getOperand(SrcOpIdx2
).isReg())
301 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr
&MI
) const {
302 if (!MI
.isTerminator()) return false;
304 // Conditional branch is a special case.
305 if (MI
.isBranch() && !MI
.isBarrier())
307 if (!MI
.isPredicable())
309 return !isPredicated(MI
);
312 bool TargetInstrInfo::PredicateInstruction(
313 MachineInstr
&MI
, ArrayRef
<MachineOperand
> Pred
) const {
314 bool MadeChange
= false;
316 assert(!MI
.isBundle() &&
317 "TargetInstrInfo::PredicateInstruction() can't handle bundles");
319 const MCInstrDesc
&MCID
= MI
.getDesc();
320 if (!MI
.isPredicable())
323 for (unsigned j
= 0, i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
324 if (MCID
.OpInfo
[i
].isPredicate()) {
325 MachineOperand
&MO
= MI
.getOperand(i
);
327 MO
.setReg(Pred
[j
].getReg());
329 } else if (MO
.isImm()) {
330 MO
.setImm(Pred
[j
].getImm());
332 } else if (MO
.isMBB()) {
333 MO
.setMBB(Pred
[j
].getMBB());
342 bool TargetInstrInfo::hasLoadFromStackSlot(
343 const MachineInstr
&MI
,
344 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const {
345 size_t StartSize
= Accesses
.size();
346 for (MachineInstr::mmo_iterator o
= MI
.memoperands_begin(),
347 oe
= MI
.memoperands_end();
349 if ((*o
)->isLoad() &&
350 dyn_cast_or_null
<FixedStackPseudoSourceValue
>((*o
)->getPseudoValue()))
351 Accesses
.push_back(*o
);
353 return Accesses
.size() != StartSize
;
356 bool TargetInstrInfo::hasStoreToStackSlot(
357 const MachineInstr
&MI
,
358 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const {
359 size_t StartSize
= Accesses
.size();
360 for (MachineInstr::mmo_iterator o
= MI
.memoperands_begin(),
361 oe
= MI
.memoperands_end();
363 if ((*o
)->isStore() &&
364 dyn_cast_or_null
<FixedStackPseudoSourceValue
>((*o
)->getPseudoValue()))
365 Accesses
.push_back(*o
);
367 return Accesses
.size() != StartSize
;
370 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass
*RC
,
371 unsigned SubIdx
, unsigned &Size
,
373 const MachineFunction
&MF
) const {
374 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
376 Size
= TRI
->getSpillSize(*RC
);
380 unsigned BitSize
= TRI
->getSubRegIdxSize(SubIdx
);
381 // Convert bit size to byte size.
385 int BitOffset
= TRI
->getSubRegIdxOffset(SubIdx
);
386 if (BitOffset
< 0 || BitOffset
% 8)
390 Offset
= (unsigned)BitOffset
/ 8;
392 assert(TRI
->getSpillSize(*RC
) >= (Offset
+ Size
) && "bad subregister range");
394 if (!MF
.getDataLayout().isLittleEndian()) {
395 Offset
= TRI
->getSpillSize(*RC
) - (Offset
+ Size
);
400 void TargetInstrInfo::reMaterialize(MachineBasicBlock
&MBB
,
401 MachineBasicBlock::iterator I
,
402 unsigned DestReg
, unsigned SubIdx
,
403 const MachineInstr
&Orig
,
404 const TargetRegisterInfo
&TRI
) const {
405 MachineInstr
*MI
= MBB
.getParent()->CloneMachineInstr(&Orig
);
406 MI
->substituteRegister(MI
->getOperand(0).getReg(), DestReg
, SubIdx
, TRI
);
410 bool TargetInstrInfo::produceSameValue(const MachineInstr
&MI0
,
411 const MachineInstr
&MI1
,
412 const MachineRegisterInfo
*MRI
) const {
413 return MI0
.isIdenticalTo(MI1
, MachineInstr::IgnoreVRegDefs
);
416 MachineInstr
&TargetInstrInfo::duplicate(MachineBasicBlock
&MBB
,
417 MachineBasicBlock::iterator InsertBefore
, const MachineInstr
&Orig
) const {
418 assert(!Orig
.isNotDuplicable() && "Instruction cannot be duplicated");
419 MachineFunction
&MF
= *MBB
.getParent();
420 return MF
.CloneMachineInstrBundle(MBB
, InsertBefore
, Orig
);
423 // If the COPY instruction in MI can be folded to a stack operation, return
424 // the register class to use.
425 static const TargetRegisterClass
*canFoldCopy(const MachineInstr
&MI
,
427 assert(MI
.isCopy() && "MI must be a COPY instruction");
428 if (MI
.getNumOperands() != 2)
430 assert(FoldIdx
<2 && "FoldIdx refers no nonexistent operand");
432 const MachineOperand
&FoldOp
= MI
.getOperand(FoldIdx
);
433 const MachineOperand
&LiveOp
= MI
.getOperand(1 - FoldIdx
);
435 if (FoldOp
.getSubReg() || LiveOp
.getSubReg())
438 unsigned FoldReg
= FoldOp
.getReg();
439 unsigned LiveReg
= LiveOp
.getReg();
441 assert(TargetRegisterInfo::isVirtualRegister(FoldReg
) &&
442 "Cannot fold physregs");
444 const MachineRegisterInfo
&MRI
= MI
.getMF()->getRegInfo();
445 const TargetRegisterClass
*RC
= MRI
.getRegClass(FoldReg
);
447 if (TargetRegisterInfo::isPhysicalRegister(LiveOp
.getReg()))
448 return RC
->contains(LiveOp
.getReg()) ? RC
: nullptr;
450 if (RC
->hasSubClassEq(MRI
.getRegClass(LiveReg
)))
453 // FIXME: Allow folding when register classes are memory compatible.
457 void TargetInstrInfo::getNoop(MCInst
&NopInst
) const {
458 llvm_unreachable("Not implemented");
461 static MachineInstr
*foldPatchpoint(MachineFunction
&MF
, MachineInstr
&MI
,
462 ArrayRef
<unsigned> Ops
, int FrameIndex
,
463 const TargetInstrInfo
&TII
) {
464 unsigned StartIdx
= 0;
465 switch (MI
.getOpcode()) {
466 case TargetOpcode::STACKMAP
: {
467 // StackMapLiveValues are foldable
468 StartIdx
= StackMapOpers(&MI
).getVarIdx();
471 case TargetOpcode::PATCHPOINT
: {
472 // For PatchPoint, the call args are not foldable (even if reported in the
473 // stackmap e.g. via anyregcc).
474 StartIdx
= PatchPointOpers(&MI
).getVarIdx();
477 case TargetOpcode::STATEPOINT
: {
478 // For statepoints, fold deopt and gc arguments, but not call arguments.
479 StartIdx
= StatepointOpers(&MI
).getVarIdx();
483 llvm_unreachable("unexpected stackmap opcode");
486 // Return false if any operands requested for folding are not foldable (not
487 // part of the stackmap's live values).
488 for (unsigned Op
: Ops
) {
493 MachineInstr
*NewMI
=
494 MF
.CreateMachineInstr(TII
.get(MI
.getOpcode()), MI
.getDebugLoc(), true);
495 MachineInstrBuilder
MIB(MF
, NewMI
);
497 // No need to fold return, the meta data, and function arguments
498 for (unsigned i
= 0; i
< StartIdx
; ++i
)
499 MIB
.add(MI
.getOperand(i
));
501 for (unsigned i
= StartIdx
; i
< MI
.getNumOperands(); ++i
) {
502 MachineOperand
&MO
= MI
.getOperand(i
);
503 if (is_contained(Ops
, i
)) {
505 unsigned SpillOffset
;
506 // Compute the spill slot size and offset.
507 const TargetRegisterClass
*RC
=
508 MF
.getRegInfo().getRegClass(MO
.getReg());
510 TII
.getStackSlotRange(RC
, MO
.getSubReg(), SpillSize
, SpillOffset
, MF
);
512 report_fatal_error("cannot spill patchpoint subregister operand");
513 MIB
.addImm(StackMaps::IndirectMemRefOp
);
514 MIB
.addImm(SpillSize
);
515 MIB
.addFrameIndex(FrameIndex
);
516 MIB
.addImm(SpillOffset
);
524 MachineInstr
*TargetInstrInfo::foldMemoryOperand(MachineInstr
&MI
,
525 ArrayRef
<unsigned> Ops
, int FI
,
526 LiveIntervals
*LIS
) const {
527 auto Flags
= MachineMemOperand::MONone
;
528 for (unsigned OpIdx
: Ops
)
529 Flags
|= MI
.getOperand(OpIdx
).isDef() ? MachineMemOperand::MOStore
530 : MachineMemOperand::MOLoad
;
532 MachineBasicBlock
*MBB
= MI
.getParent();
533 assert(MBB
&& "foldMemoryOperand needs an inserted instruction");
534 MachineFunction
&MF
= *MBB
->getParent();
536 // If we're not folding a load into a subreg, the size of the load is the
537 // size of the spill slot. But if we are, we need to figure out what the
538 // actual load size is.
540 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
541 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
543 if (Flags
& MachineMemOperand::MOStore
) {
544 MemSize
= MFI
.getObjectSize(FI
);
546 for (unsigned OpIdx
: Ops
) {
547 int64_t OpSize
= MFI
.getObjectSize(FI
);
549 if (auto SubReg
= MI
.getOperand(OpIdx
).getSubReg()) {
550 unsigned SubRegSize
= TRI
->getSubRegIdxSize(SubReg
);
551 if (SubRegSize
> 0 && !(SubRegSize
% 8))
552 OpSize
= SubRegSize
/ 8;
555 MemSize
= std::max(MemSize
, OpSize
);
559 assert(MemSize
&& "Did not expect a zero-sized stack slot");
561 MachineInstr
*NewMI
= nullptr;
563 if (MI
.getOpcode() == TargetOpcode::STACKMAP
||
564 MI
.getOpcode() == TargetOpcode::PATCHPOINT
||
565 MI
.getOpcode() == TargetOpcode::STATEPOINT
) {
566 // Fold stackmap/patchpoint.
567 NewMI
= foldPatchpoint(MF
, MI
, Ops
, FI
, *this);
569 MBB
->insert(MI
, NewMI
);
571 // Ask the target to do the actual folding.
572 NewMI
= foldMemoryOperandImpl(MF
, MI
, Ops
, MI
, FI
, LIS
);
576 NewMI
->setMemRefs(MF
, MI
.memoperands());
577 // Add a memory operand, foldMemoryOperandImpl doesn't do that.
578 assert((!(Flags
& MachineMemOperand::MOStore
) ||
579 NewMI
->mayStore()) &&
580 "Folded a def to a non-store!");
581 assert((!(Flags
& MachineMemOperand::MOLoad
) ||
583 "Folded a use to a non-load!");
584 assert(MFI
.getObjectOffset(FI
) != -1);
585 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
586 MachinePointerInfo::getFixedStack(MF
, FI
), Flags
, MemSize
,
587 MFI
.getObjectAlignment(FI
));
588 NewMI
->addMemOperand(MF
, MMO
);
593 // Straight COPY may fold as load/store.
594 if (!MI
.isCopy() || Ops
.size() != 1)
597 const TargetRegisterClass
*RC
= canFoldCopy(MI
, Ops
[0]);
601 const MachineOperand
&MO
= MI
.getOperand(1 - Ops
[0]);
602 MachineBasicBlock::iterator Pos
= MI
;
604 if (Flags
== MachineMemOperand::MOStore
)
605 storeRegToStackSlot(*MBB
, Pos
, MO
.getReg(), MO
.isKill(), FI
, RC
, TRI
);
607 loadRegFromStackSlot(*MBB
, Pos
, MO
.getReg(), FI
, RC
, TRI
);
611 MachineInstr
*TargetInstrInfo::foldMemoryOperand(MachineInstr
&MI
,
612 ArrayRef
<unsigned> Ops
,
613 MachineInstr
&LoadMI
,
614 LiveIntervals
*LIS
) const {
615 assert(LoadMI
.canFoldAsLoad() && "LoadMI isn't foldable!");
617 for (unsigned OpIdx
: Ops
)
618 assert(MI
.getOperand(OpIdx
).isUse() && "Folding load into def!");
621 MachineBasicBlock
&MBB
= *MI
.getParent();
622 MachineFunction
&MF
= *MBB
.getParent();
624 // Ask the target to do the actual folding.
625 MachineInstr
*NewMI
= nullptr;
628 if ((MI
.getOpcode() == TargetOpcode::STACKMAP
||
629 MI
.getOpcode() == TargetOpcode::PATCHPOINT
||
630 MI
.getOpcode() == TargetOpcode::STATEPOINT
) &&
631 isLoadFromStackSlot(LoadMI
, FrameIndex
)) {
632 // Fold stackmap/patchpoint.
633 NewMI
= foldPatchpoint(MF
, MI
, Ops
, FrameIndex
, *this);
635 NewMI
= &*MBB
.insert(MI
, NewMI
);
637 // Ask the target to do the actual folding.
638 NewMI
= foldMemoryOperandImpl(MF
, MI
, Ops
, MI
, LoadMI
, LIS
);
644 // Copy the memoperands from the load to the folded instruction.
645 if (MI
.memoperands_empty()) {
646 NewMI
->setMemRefs(MF
, LoadMI
.memoperands());
648 // Handle the rare case of folding multiple loads.
649 NewMI
->setMemRefs(MF
, MI
.memoperands());
650 for (MachineInstr::mmo_iterator I
= LoadMI
.memoperands_begin(),
651 E
= LoadMI
.memoperands_end();
653 NewMI
->addMemOperand(MF
, *I
);
659 bool TargetInstrInfo::hasReassociableOperands(
660 const MachineInstr
&Inst
, const MachineBasicBlock
*MBB
) const {
661 const MachineOperand
&Op1
= Inst
.getOperand(1);
662 const MachineOperand
&Op2
= Inst
.getOperand(2);
663 const MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
665 // We need virtual register definitions for the operands that we will
667 MachineInstr
*MI1
= nullptr;
668 MachineInstr
*MI2
= nullptr;
669 if (Op1
.isReg() && TargetRegisterInfo::isVirtualRegister(Op1
.getReg()))
670 MI1
= MRI
.getUniqueVRegDef(Op1
.getReg());
671 if (Op2
.isReg() && TargetRegisterInfo::isVirtualRegister(Op2
.getReg()))
672 MI2
= MRI
.getUniqueVRegDef(Op2
.getReg());
674 // And they need to be in the trace (otherwise, they won't have a depth).
675 return MI1
&& MI2
&& MI1
->getParent() == MBB
&& MI2
->getParent() == MBB
;
678 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr
&Inst
,
679 bool &Commuted
) const {
680 const MachineBasicBlock
*MBB
= Inst
.getParent();
681 const MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
682 MachineInstr
*MI1
= MRI
.getUniqueVRegDef(Inst
.getOperand(1).getReg());
683 MachineInstr
*MI2
= MRI
.getUniqueVRegDef(Inst
.getOperand(2).getReg());
684 unsigned AssocOpcode
= Inst
.getOpcode();
686 // If only one operand has the same opcode and it's the second source operand,
687 // the operands must be commuted.
688 Commuted
= MI1
->getOpcode() != AssocOpcode
&& MI2
->getOpcode() == AssocOpcode
;
692 // 1. The previous instruction must be the same type as Inst.
693 // 2. The previous instruction must have virtual register definitions for its
694 // operands in the same basic block as Inst.
695 // 3. The previous instruction's result must only be used by Inst.
696 return MI1
->getOpcode() == AssocOpcode
&&
697 hasReassociableOperands(*MI1
, MBB
) &&
698 MRI
.hasOneNonDBGUse(MI1
->getOperand(0).getReg());
701 // 1. The operation must be associative and commutative.
702 // 2. The instruction must have virtual register definitions for its
703 // operands in the same basic block.
704 // 3. The instruction must have a reassociable sibling.
705 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr
&Inst
,
706 bool &Commuted
) const {
707 return isAssociativeAndCommutative(Inst
) &&
708 hasReassociableOperands(Inst
, Inst
.getParent()) &&
709 hasReassociableSibling(Inst
, Commuted
);
712 // The concept of the reassociation pass is that these operations can benefit
713 // from this kind of transformation:
723 // breaking the dependency between A and B, allowing them to be executed in
724 // parallel (or back-to-back in a pipeline) instead of depending on each other.
726 // FIXME: This has the potential to be expensive (compile time) while not
727 // improving the code at all. Some ways to limit the overhead:
728 // 1. Track successful transforms; bail out if hit rate gets too low.
729 // 2. Only enable at -O3 or some other non-default optimization level.
730 // 3. Pre-screen pattern candidates here: if an operand of the previous
731 // instruction is known to not increase the critical path, then don't match
733 bool TargetInstrInfo::getMachineCombinerPatterns(
735 SmallVectorImpl
<MachineCombinerPattern
> &Patterns
) const {
737 if (isReassociationCandidate(Root
, Commute
)) {
738 // We found a sequence of instructions that may be suitable for a
739 // reassociation of operands to increase ILP. Specify each commutation
740 // possibility for the Prev instruction in the sequence and let the
741 // machine combiner decide if changing the operands is worthwhile.
743 Patterns
.push_back(MachineCombinerPattern::REASSOC_AX_YB
);
744 Patterns
.push_back(MachineCombinerPattern::REASSOC_XA_YB
);
746 Patterns
.push_back(MachineCombinerPattern::REASSOC_AX_BY
);
747 Patterns
.push_back(MachineCombinerPattern::REASSOC_XA_BY
);
755 /// Return true when a code sequence can improve loop throughput.
757 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern
) const {
761 /// Attempt the reassociation transformation to reduce critical path length.
762 /// See the above comments before getMachineCombinerPatterns().
763 void TargetInstrInfo::reassociateOps(
764 MachineInstr
&Root
, MachineInstr
&Prev
,
765 MachineCombinerPattern Pattern
,
766 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
767 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
768 DenseMap
<unsigned, unsigned> &InstrIdxForVirtReg
) const {
769 MachineFunction
*MF
= Root
.getMF();
770 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
771 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
772 const TargetRegisterInfo
*TRI
= MF
->getSubtarget().getRegisterInfo();
773 const TargetRegisterClass
*RC
= Root
.getRegClassConstraint(0, TII
, TRI
);
775 // This array encodes the operand index for each parameter because the
776 // operands may be commuted. Each row corresponds to a pattern value,
777 // and each column specifies the index of A, B, X, Y.
778 unsigned OpIdx
[4][4] = {
787 case MachineCombinerPattern::REASSOC_AX_BY
: Row
= 0; break;
788 case MachineCombinerPattern::REASSOC_AX_YB
: Row
= 1; break;
789 case MachineCombinerPattern::REASSOC_XA_BY
: Row
= 2; break;
790 case MachineCombinerPattern::REASSOC_XA_YB
: Row
= 3; break;
791 default: llvm_unreachable("unexpected MachineCombinerPattern");
794 MachineOperand
&OpA
= Prev
.getOperand(OpIdx
[Row
][0]);
795 MachineOperand
&OpB
= Root
.getOperand(OpIdx
[Row
][1]);
796 MachineOperand
&OpX
= Prev
.getOperand(OpIdx
[Row
][2]);
797 MachineOperand
&OpY
= Root
.getOperand(OpIdx
[Row
][3]);
798 MachineOperand
&OpC
= Root
.getOperand(0);
800 unsigned RegA
= OpA
.getReg();
801 unsigned RegB
= OpB
.getReg();
802 unsigned RegX
= OpX
.getReg();
803 unsigned RegY
= OpY
.getReg();
804 unsigned RegC
= OpC
.getReg();
806 if (TargetRegisterInfo::isVirtualRegister(RegA
))
807 MRI
.constrainRegClass(RegA
, RC
);
808 if (TargetRegisterInfo::isVirtualRegister(RegB
))
809 MRI
.constrainRegClass(RegB
, RC
);
810 if (TargetRegisterInfo::isVirtualRegister(RegX
))
811 MRI
.constrainRegClass(RegX
, RC
);
812 if (TargetRegisterInfo::isVirtualRegister(RegY
))
813 MRI
.constrainRegClass(RegY
, RC
);
814 if (TargetRegisterInfo::isVirtualRegister(RegC
))
815 MRI
.constrainRegClass(RegC
, RC
);
817 // Create a new virtual register for the result of (X op Y) instead of
818 // recycling RegB because the MachineCombiner's computation of the critical
819 // path requires a new register definition rather than an existing one.
820 unsigned NewVR
= MRI
.createVirtualRegister(RC
);
821 InstrIdxForVirtReg
.insert(std::make_pair(NewVR
, 0));
823 unsigned Opcode
= Root
.getOpcode();
824 bool KillA
= OpA
.isKill();
825 bool KillX
= OpX
.isKill();
826 bool KillY
= OpY
.isKill();
828 // Create new instructions for insertion.
829 MachineInstrBuilder MIB1
=
830 BuildMI(*MF
, Prev
.getDebugLoc(), TII
->get(Opcode
), NewVR
)
831 .addReg(RegX
, getKillRegState(KillX
))
832 .addReg(RegY
, getKillRegState(KillY
));
833 MachineInstrBuilder MIB2
=
834 BuildMI(*MF
, Root
.getDebugLoc(), TII
->get(Opcode
), RegC
)
835 .addReg(RegA
, getKillRegState(KillA
))
836 .addReg(NewVR
, getKillRegState(true));
838 setSpecialOperandAttr(Root
, Prev
, *MIB1
, *MIB2
);
840 // Record new instructions for insertion and old instructions for deletion.
841 InsInstrs
.push_back(MIB1
);
842 InsInstrs
.push_back(MIB2
);
843 DelInstrs
.push_back(&Prev
);
844 DelInstrs
.push_back(&Root
);
847 void TargetInstrInfo::genAlternativeCodeSequence(
848 MachineInstr
&Root
, MachineCombinerPattern Pattern
,
849 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
850 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
851 DenseMap
<unsigned, unsigned> &InstIdxForVirtReg
) const {
852 MachineRegisterInfo
&MRI
= Root
.getMF()->getRegInfo();
854 // Select the previous instruction in the sequence based on the input pattern.
855 MachineInstr
*Prev
= nullptr;
857 case MachineCombinerPattern::REASSOC_AX_BY
:
858 case MachineCombinerPattern::REASSOC_XA_BY
:
859 Prev
= MRI
.getUniqueVRegDef(Root
.getOperand(1).getReg());
861 case MachineCombinerPattern::REASSOC_AX_YB
:
862 case MachineCombinerPattern::REASSOC_XA_YB
:
863 Prev
= MRI
.getUniqueVRegDef(Root
.getOperand(2).getReg());
869 assert(Prev
&& "Unknown pattern for machine combiner");
871 reassociateOps(Root
, *Prev
, Pattern
, InsInstrs
, DelInstrs
, InstIdxForVirtReg
);
874 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
875 const MachineInstr
&MI
, AliasAnalysis
*AA
) const {
876 const MachineFunction
&MF
= *MI
.getMF();
877 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
879 // Remat clients assume operand 0 is the defined register.
880 if (!MI
.getNumOperands() || !MI
.getOperand(0).isReg())
882 unsigned DefReg
= MI
.getOperand(0).getReg();
884 // A sub-register definition can only be rematerialized if the instruction
885 // doesn't read the other parts of the register. Otherwise it is really a
886 // read-modify-write operation on the full virtual register which cannot be
888 if (TargetRegisterInfo::isVirtualRegister(DefReg
) &&
889 MI
.getOperand(0).getSubReg() && MI
.readsVirtualRegister(DefReg
))
892 // A load from a fixed stack slot can be rematerialized. This may be
893 // redundant with subsequent checks, but it's target-independent,
894 // simple, and a common case.
896 if (isLoadFromStackSlot(MI
, FrameIdx
) &&
897 MF
.getFrameInfo().isImmutableObjectIndex(FrameIdx
))
900 // Avoid instructions obviously unsafe for remat.
901 if (MI
.isNotDuplicable() || MI
.mayStore() || MI
.hasUnmodeledSideEffects())
904 // Don't remat inline asm. We have no idea how expensive it is
905 // even if it's side effect free.
906 if (MI
.isInlineAsm())
909 // Avoid instructions which load from potentially varying memory.
910 if (MI
.mayLoad() && !MI
.isDereferenceableInvariantLoad(AA
))
913 // If any of the registers accessed are non-constant, conservatively assume
914 // the instruction is not rematerializable.
915 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
916 const MachineOperand
&MO
= MI
.getOperand(i
);
917 if (!MO
.isReg()) continue;
918 unsigned Reg
= MO
.getReg();
922 // Check for a well-behaved physical register.
923 if (TargetRegisterInfo::isPhysicalRegister(Reg
)) {
925 // If the physreg has no defs anywhere, it's just an ambient register
926 // and we can freely move its uses. Alternatively, if it's allocatable,
927 // it could get allocated to something with a def during allocation.
928 if (!MRI
.isConstantPhysReg(Reg
))
931 // A physreg def. We can't remat it.
937 // Only allow one virtual-register def. There may be multiple defs of the
938 // same virtual register, though.
939 if (MO
.isDef() && Reg
!= DefReg
)
942 // Don't allow any virtual-register uses. Rematting an instruction with
943 // virtual register uses would length the live ranges of the uses, which
944 // is not necessarily a good idea, certainly not "trivial".
949 // Everything checked out.
953 int TargetInstrInfo::getSPAdjust(const MachineInstr
&MI
) const {
954 const MachineFunction
*MF
= MI
.getMF();
955 const TargetFrameLowering
*TFI
= MF
->getSubtarget().getFrameLowering();
956 bool StackGrowsDown
=
957 TFI
->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown
;
959 unsigned FrameSetupOpcode
= getCallFrameSetupOpcode();
960 unsigned FrameDestroyOpcode
= getCallFrameDestroyOpcode();
962 if (!isFrameInstr(MI
))
965 int SPAdj
= TFI
->alignSPAdjust(getFrameSize(MI
));
967 if ((!StackGrowsDown
&& MI
.getOpcode() == FrameSetupOpcode
) ||
968 (StackGrowsDown
&& MI
.getOpcode() == FrameDestroyOpcode
))
974 /// isSchedulingBoundary - Test if the given instruction should be
975 /// considered a scheduling boundary. This primarily includes labels
977 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr
&MI
,
978 const MachineBasicBlock
*MBB
,
979 const MachineFunction
&MF
) const {
980 // Terminators and labels can't be scheduled around.
981 if (MI
.isTerminator() || MI
.isPosition())
984 // Don't attempt to schedule around any instruction that defines
985 // a stack-oriented pointer, as it's unlikely to be profitable. This
986 // saves compile time, because it doesn't require every single
987 // stack slot reference to depend on the instruction that does the
989 const TargetLowering
&TLI
= *MF
.getSubtarget().getTargetLowering();
990 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
991 return MI
.modifiesRegister(TLI
.getStackPointerRegisterToSaveRestore(), TRI
);
994 // Provide a global flag for disabling the PreRA hazard recognizer that targets
995 // may choose to honor.
996 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
997 return !DisableHazardRecognizer
;
1000 // Default implementation of CreateTargetRAHazardRecognizer.
1001 ScheduleHazardRecognizer
*TargetInstrInfo::
1002 CreateTargetHazardRecognizer(const TargetSubtargetInfo
*STI
,
1003 const ScheduleDAG
*DAG
) const {
1004 // Dummy hazard recognizer allows all instructions to issue.
1005 return new ScheduleHazardRecognizer();
1008 // Default implementation of CreateTargetMIHazardRecognizer.
1009 ScheduleHazardRecognizer
*TargetInstrInfo::
1010 CreateTargetMIHazardRecognizer(const InstrItineraryData
*II
,
1011 const ScheduleDAG
*DAG
) const {
1012 return (ScheduleHazardRecognizer
*)
1013 new ScoreboardHazardRecognizer(II
, DAG
, "misched");
1016 // Default implementation of CreateTargetPostRAHazardRecognizer.
1017 ScheduleHazardRecognizer
*TargetInstrInfo::
1018 CreateTargetPostRAHazardRecognizer(const InstrItineraryData
*II
,
1019 const ScheduleDAG
*DAG
) const {
1020 return (ScheduleHazardRecognizer
*)
1021 new ScoreboardHazardRecognizer(II
, DAG
, "post-RA-sched");
1024 //===----------------------------------------------------------------------===//
1025 // SelectionDAG latency interface.
1026 //===----------------------------------------------------------------------===//
1029 TargetInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
1030 SDNode
*DefNode
, unsigned DefIdx
,
1031 SDNode
*UseNode
, unsigned UseIdx
) const {
1032 if (!ItinData
|| ItinData
->isEmpty())
1035 if (!DefNode
->isMachineOpcode())
1038 unsigned DefClass
= get(DefNode
->getMachineOpcode()).getSchedClass();
1039 if (!UseNode
->isMachineOpcode())
1040 return ItinData
->getOperandCycle(DefClass
, DefIdx
);
1041 unsigned UseClass
= get(UseNode
->getMachineOpcode()).getSchedClass();
1042 return ItinData
->getOperandLatency(DefClass
, DefIdx
, UseClass
, UseIdx
);
1045 int TargetInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
1047 if (!ItinData
|| ItinData
->isEmpty())
1050 if (!N
->isMachineOpcode())
1053 return ItinData
->getStageLatency(get(N
->getMachineOpcode()).getSchedClass());
1056 //===----------------------------------------------------------------------===//
1057 // MachineInstr latency interface.
1058 //===----------------------------------------------------------------------===//
1060 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData
*ItinData
,
1061 const MachineInstr
&MI
) const {
1062 if (!ItinData
|| ItinData
->isEmpty())
1065 unsigned Class
= MI
.getDesc().getSchedClass();
1066 int UOps
= ItinData
->Itineraries
[Class
].NumMicroOps
;
1070 // The # of u-ops is dynamically determined. The specific target should
1071 // override this function to return the right number.
1075 /// Return the default expected latency for a def based on it's opcode.
1076 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel
&SchedModel
,
1077 const MachineInstr
&DefMI
) const {
1078 if (DefMI
.isTransient())
1080 if (DefMI
.mayLoad())
1081 return SchedModel
.LoadLatency
;
1082 if (isHighLatencyDef(DefMI
.getOpcode()))
1083 return SchedModel
.HighLatency
;
1087 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr
&) const {
1091 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
1092 const MachineInstr
&MI
,
1093 unsigned *PredCost
) const {
1094 // Default to one cycle for no itinerary. However, an "empty" itinerary may
1095 // still have a MinLatency property, which getStageLatency checks.
1097 return MI
.mayLoad() ? 2 : 1;
1099 return ItinData
->getStageLatency(MI
.getDesc().getSchedClass());
1102 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel
&SchedModel
,
1103 const MachineInstr
&DefMI
,
1104 unsigned DefIdx
) const {
1105 const InstrItineraryData
*ItinData
= SchedModel
.getInstrItineraries();
1106 if (!ItinData
|| ItinData
->isEmpty())
1109 unsigned DefClass
= DefMI
.getDesc().getSchedClass();
1110 int DefCycle
= ItinData
->getOperandCycle(DefClass
, DefIdx
);
1111 return (DefCycle
!= -1 && DefCycle
<= 1);
1114 /// Both DefMI and UseMI must be valid. By default, call directly to the
1115 /// itinerary. This may be overriden by the target.
1116 int TargetInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
1117 const MachineInstr
&DefMI
,
1119 const MachineInstr
&UseMI
,
1120 unsigned UseIdx
) const {
1121 unsigned DefClass
= DefMI
.getDesc().getSchedClass();
1122 unsigned UseClass
= UseMI
.getDesc().getSchedClass();
1123 return ItinData
->getOperandLatency(DefClass
, DefIdx
, UseClass
, UseIdx
);
1126 /// If we can determine the operand latency from the def only, without itinerary
1127 /// lookup, do so. Otherwise return -1.
1128 int TargetInstrInfo::computeDefOperandLatency(
1129 const InstrItineraryData
*ItinData
, const MachineInstr
&DefMI
) const {
1131 // Let the target hook getInstrLatency handle missing itineraries.
1133 return getInstrLatency(ItinData
, DefMI
);
1135 if(ItinData
->isEmpty())
1136 return defaultDefLatency(ItinData
->SchedModel
, DefMI
);
1138 // ...operand lookup required
1142 bool TargetInstrInfo::getRegSequenceInputs(
1143 const MachineInstr
&MI
, unsigned DefIdx
,
1144 SmallVectorImpl
<RegSubRegPairAndIdx
> &InputRegs
) const {
1145 assert((MI
.isRegSequence() ||
1146 MI
.isRegSequenceLike()) && "Instruction do not have the proper type");
1148 if (!MI
.isRegSequence())
1149 return getRegSequenceLikeInputs(MI
, DefIdx
, InputRegs
);
1151 // We are looking at:
1152 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1153 assert(DefIdx
== 0 && "REG_SEQUENCE only has one def");
1154 for (unsigned OpIdx
= 1, EndOpIdx
= MI
.getNumOperands(); OpIdx
!= EndOpIdx
;
1156 const MachineOperand
&MOReg
= MI
.getOperand(OpIdx
);
1157 if (MOReg
.isUndef())
1159 const MachineOperand
&MOSubIdx
= MI
.getOperand(OpIdx
+ 1);
1160 assert(MOSubIdx
.isImm() &&
1161 "One of the subindex of the reg_sequence is not an immediate");
1162 // Record Reg:SubReg, SubIdx.
1163 InputRegs
.push_back(RegSubRegPairAndIdx(MOReg
.getReg(), MOReg
.getSubReg(),
1164 (unsigned)MOSubIdx
.getImm()));
1169 bool TargetInstrInfo::getExtractSubregInputs(
1170 const MachineInstr
&MI
, unsigned DefIdx
,
1171 RegSubRegPairAndIdx
&InputReg
) const {
1172 assert((MI
.isExtractSubreg() ||
1173 MI
.isExtractSubregLike()) && "Instruction do not have the proper type");
1175 if (!MI
.isExtractSubreg())
1176 return getExtractSubregLikeInputs(MI
, DefIdx
, InputReg
);
1178 // We are looking at:
1179 // Def = EXTRACT_SUBREG v0.sub1, sub0.
1180 assert(DefIdx
== 0 && "EXTRACT_SUBREG only has one def");
1181 const MachineOperand
&MOReg
= MI
.getOperand(1);
1182 if (MOReg
.isUndef())
1184 const MachineOperand
&MOSubIdx
= MI
.getOperand(2);
1185 assert(MOSubIdx
.isImm() &&
1186 "The subindex of the extract_subreg is not an immediate");
1188 InputReg
.Reg
= MOReg
.getReg();
1189 InputReg
.SubReg
= MOReg
.getSubReg();
1190 InputReg
.SubIdx
= (unsigned)MOSubIdx
.getImm();
1194 bool TargetInstrInfo::getInsertSubregInputs(
1195 const MachineInstr
&MI
, unsigned DefIdx
,
1196 RegSubRegPair
&BaseReg
, RegSubRegPairAndIdx
&InsertedReg
) const {
1197 assert((MI
.isInsertSubreg() ||
1198 MI
.isInsertSubregLike()) && "Instruction do not have the proper type");
1200 if (!MI
.isInsertSubreg())
1201 return getInsertSubregLikeInputs(MI
, DefIdx
, BaseReg
, InsertedReg
);
1203 // We are looking at:
1204 // Def = INSERT_SEQUENCE v0, v1, sub0.
1205 assert(DefIdx
== 0 && "INSERT_SUBREG only has one def");
1206 const MachineOperand
&MOBaseReg
= MI
.getOperand(1);
1207 const MachineOperand
&MOInsertedReg
= MI
.getOperand(2);
1208 if (MOInsertedReg
.isUndef())
1210 const MachineOperand
&MOSubIdx
= MI
.getOperand(3);
1211 assert(MOSubIdx
.isImm() &&
1212 "One of the subindex of the reg_sequence is not an immediate");
1213 BaseReg
.Reg
= MOBaseReg
.getReg();
1214 BaseReg
.SubReg
= MOBaseReg
.getSubReg();
1216 InsertedReg
.Reg
= MOInsertedReg
.getReg();
1217 InsertedReg
.SubReg
= MOInsertedReg
.getSubReg();
1218 InsertedReg
.SubIdx
= (unsigned)MOSubIdx
.getImm();