1 //==- TargetRegisterInfo.cpp - Target Register Information Implementation --==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the TargetRegisterInfo interface.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/TargetRegisterInfo.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/CodeGen/VirtRegMap.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/MachineValueType.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/Printable.h"
34 #include "llvm/Support/raw_ostream.h"
38 #define DEBUG_TYPE "target-reg-info"
42 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc
*ID
,
43 regclass_iterator RCB
, regclass_iterator RCE
,
44 const char *const *SRINames
,
45 const LaneBitmask
*SRILaneMasks
,
46 LaneBitmask SRICoveringLanes
,
47 const RegClassInfo
*const RCIs
,
49 : InfoDesc(ID
), SubRegIndexNames(SRINames
),
50 SubRegIndexLaneMasks(SRILaneMasks
),
51 RegClassBegin(RCB
), RegClassEnd(RCE
),
52 CoveringLanes(SRICoveringLanes
),
53 RCInfos(RCIs
), HwMode(Mode
) {
56 TargetRegisterInfo::~TargetRegisterInfo() = default;
58 void TargetRegisterInfo::markSuperRegs(BitVector
&RegisterSet
, unsigned Reg
)
60 for (MCSuperRegIterator
AI(Reg
, this, true); AI
.isValid(); ++AI
)
64 bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector
&RegisterSet
,
65 ArrayRef
<MCPhysReg
> Exceptions
) const {
66 // Check that all super registers of reserved regs are reserved as well.
67 BitVector
Checked(getNumRegs());
68 for (unsigned Reg
: RegisterSet
.set_bits()) {
71 for (MCSuperRegIterator
SR(Reg
, this); SR
.isValid(); ++SR
) {
72 if (!RegisterSet
[*SR
] && !is_contained(Exceptions
, Reg
)) {
73 dbgs() << "Error: Super register " << printReg(*SR
, this)
74 << " of reserved register " << printReg(Reg
, this)
75 << " is not reserved.\n";
79 // We transitively check superregs. So we can remember this for later
80 // to avoid compiletime explosion in deep register hierarchies.
89 Printable
printReg(unsigned Reg
, const TargetRegisterInfo
*TRI
,
90 unsigned SubIdx
, const MachineRegisterInfo
*MRI
) {
91 return Printable([Reg
, TRI
, SubIdx
, MRI
](raw_ostream
&OS
) {
94 else if (TargetRegisterInfo::isStackSlot(Reg
))
95 OS
<< "SS#" << TargetRegisterInfo::stackSlot2Index(Reg
);
96 else if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
97 StringRef Name
= MRI
? MRI
->getVRegName(Reg
) : "";
101 OS
<< '%' << TargetRegisterInfo::virtReg2Index(Reg
);
105 OS
<< '$' << "physreg" << Reg
;
106 else if (Reg
< TRI
->getNumRegs()) {
108 printLowerCase(TRI
->getName(Reg
), OS
);
110 llvm_unreachable("Register kind is unsupported.");
114 OS
<< ':' << TRI
->getSubRegIndexName(SubIdx
);
116 OS
<< ":sub(" << SubIdx
<< ')';
121 Printable
printRegUnit(unsigned Unit
, const TargetRegisterInfo
*TRI
) {
122 return Printable([Unit
, TRI
](raw_ostream
&OS
) {
123 // Generic printout when TRI is missing.
125 OS
<< "Unit~" << Unit
;
129 // Check for invalid register units.
130 if (Unit
>= TRI
->getNumRegUnits()) {
131 OS
<< "BadUnit~" << Unit
;
135 // Normal units have at least one root.
136 MCRegUnitRootIterator
Roots(Unit
, TRI
);
137 assert(Roots
.isValid() && "Unit has no roots.");
138 OS
<< TRI
->getName(*Roots
);
139 for (++Roots
; Roots
.isValid(); ++Roots
)
140 OS
<< '~' << TRI
->getName(*Roots
);
144 Printable
printVRegOrUnit(unsigned Unit
, const TargetRegisterInfo
*TRI
) {
145 return Printable([Unit
, TRI
](raw_ostream
&OS
) {
146 if (TRI
&& TRI
->isVirtualRegister(Unit
)) {
147 OS
<< '%' << TargetRegisterInfo::virtReg2Index(Unit
);
149 OS
<< printRegUnit(Unit
, TRI
);
154 Printable
printRegClassOrBank(unsigned Reg
, const MachineRegisterInfo
&RegInfo
,
155 const TargetRegisterInfo
*TRI
) {
156 return Printable([Reg
, &RegInfo
, TRI
](raw_ostream
&OS
) {
157 if (RegInfo
.getRegClassOrNull(Reg
))
158 OS
<< StringRef(TRI
->getRegClassName(RegInfo
.getRegClass(Reg
))).lower();
159 else if (RegInfo
.getRegBankOrNull(Reg
))
160 OS
<< StringRef(RegInfo
.getRegBankOrNull(Reg
)->getName()).lower();
163 assert((RegInfo
.def_empty(Reg
) || RegInfo
.getType(Reg
).isValid()) &&
164 "Generic registers must have a valid type");
169 } // end namespace llvm
171 /// getAllocatableClass - Return the maximal subclass of the given register
172 /// class that is alloctable, or NULL.
173 const TargetRegisterClass
*
174 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass
*RC
) const {
175 if (!RC
|| RC
->isAllocatable())
178 for (BitMaskClassIterator
It(RC
->getSubClassMask(), *this); It
.isValid();
180 const TargetRegisterClass
*SubRC
= getRegClass(It
.getID());
181 if (SubRC
->isAllocatable())
187 /// getMinimalPhysRegClass - Returns the Register Class of a physical
188 /// register of the given type, picking the most sub register class of
189 /// the right type that contains this physreg.
190 const TargetRegisterClass
*
191 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg
, MVT VT
) const {
192 assert(isPhysicalRegister(reg
) && "reg must be a physical register");
194 // Pick the most sub register class of the right type that contains
196 const TargetRegisterClass
* BestRC
= nullptr;
197 for (const TargetRegisterClass
* RC
: regclasses()) {
198 if ((VT
== MVT::Other
|| isTypeLegalForClass(*RC
, VT
)) &&
199 RC
->contains(reg
) && (!BestRC
|| BestRC
->hasSubClass(RC
)))
203 assert(BestRC
&& "Couldn't find the register class");
207 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
208 /// registers for the specific register class.
209 static void getAllocatableSetForRC(const MachineFunction
&MF
,
210 const TargetRegisterClass
*RC
, BitVector
&R
){
211 assert(RC
->isAllocatable() && "invalid for nonallocatable sets");
212 ArrayRef
<MCPhysReg
> Order
= RC
->getRawAllocationOrder(MF
);
213 for (unsigned i
= 0; i
!= Order
.size(); ++i
)
217 BitVector
TargetRegisterInfo::getAllocatableSet(const MachineFunction
&MF
,
218 const TargetRegisterClass
*RC
) const {
219 BitVector
Allocatable(getNumRegs());
221 // A register class with no allocatable subclass returns an empty set.
222 const TargetRegisterClass
*SubClass
= getAllocatableClass(RC
);
224 getAllocatableSetForRC(MF
, SubClass
, Allocatable
);
226 for (const TargetRegisterClass
*C
: regclasses())
227 if (C
->isAllocatable())
228 getAllocatableSetForRC(MF
, C
, Allocatable
);
231 // Mask out the reserved registers
232 BitVector Reserved
= getReservedRegs(MF
);
233 Allocatable
&= Reserved
.flip();
239 const TargetRegisterClass
*firstCommonClass(const uint32_t *A
,
241 const TargetRegisterInfo
*TRI
,
242 const MVT::SimpleValueType SVT
=
243 MVT::SimpleValueType::Any
) {
245 for (unsigned I
= 0, E
= TRI
->getNumRegClasses(); I
< E
; I
+= 32)
246 if (unsigned Common
= *A
++ & *B
++) {
247 const TargetRegisterClass
*RC
=
248 TRI
->getRegClass(I
+ countTrailingZeros(Common
));
249 if (SVT
== MVT::SimpleValueType::Any
|| TRI
->isTypeLegalForClass(*RC
, VT
))
255 const TargetRegisterClass
*
256 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass
*A
,
257 const TargetRegisterClass
*B
,
258 const MVT::SimpleValueType SVT
) const {
259 // First take care of the trivial cases.
265 // Register classes are ordered topologically, so the largest common
266 // sub-class it the common sub-class with the smallest ID.
267 return firstCommonClass(A
->getSubClassMask(), B
->getSubClassMask(), this, SVT
);
270 const TargetRegisterClass
*
271 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass
*A
,
272 const TargetRegisterClass
*B
,
273 unsigned Idx
) const {
274 assert(A
&& B
&& "Missing register class");
275 assert(Idx
&& "Bad sub-register index");
277 // Find Idx in the list of super-register indices.
278 for (SuperRegClassIterator
RCI(B
, this); RCI
.isValid(); ++RCI
)
279 if (RCI
.getSubReg() == Idx
)
280 // The bit mask contains all register classes that are projected into B
281 // by Idx. Find a class that is also a sub-class of A.
282 return firstCommonClass(RCI
.getMask(), A
->getSubClassMask(), this);
286 const TargetRegisterClass
*TargetRegisterInfo::
287 getCommonSuperRegClass(const TargetRegisterClass
*RCA
, unsigned SubA
,
288 const TargetRegisterClass
*RCB
, unsigned SubB
,
289 unsigned &PreA
, unsigned &PreB
) const {
290 assert(RCA
&& SubA
&& RCB
&& SubB
&& "Invalid arguments");
292 // Search all pairs of sub-register indices that project into RCA and RCB
293 // respectively. This is quadratic, but usually the sets are very small. On
294 // most targets like X86, there will only be a single sub-register index
295 // (e.g., sub_16bit projecting into GR16).
297 // The worst case is a register class like DPR on ARM.
298 // We have indices dsub_0..dsub_7 projecting into that class.
300 // It is very common that one register class is a sub-register of the other.
301 // Arrange for RCA to be the larger register so the answer will be found in
302 // the first iteration. This makes the search linear for the most common
304 const TargetRegisterClass
*BestRC
= nullptr;
305 unsigned *BestPreA
= &PreA
;
306 unsigned *BestPreB
= &PreB
;
307 if (getRegSizeInBits(*RCA
) < getRegSizeInBits(*RCB
)) {
309 std::swap(SubA
, SubB
);
310 std::swap(BestPreA
, BestPreB
);
313 // Also terminate the search one we have found a register class as small as
315 unsigned MinSize
= getRegSizeInBits(*RCA
);
317 for (SuperRegClassIterator
IA(RCA
, this, true); IA
.isValid(); ++IA
) {
318 unsigned FinalA
= composeSubRegIndices(IA
.getSubReg(), SubA
);
319 for (SuperRegClassIterator
IB(RCB
, this, true); IB
.isValid(); ++IB
) {
320 // Check if a common super-register class exists for this index pair.
321 const TargetRegisterClass
*RC
=
322 firstCommonClass(IA
.getMask(), IB
.getMask(), this);
323 if (!RC
|| getRegSizeInBits(*RC
) < MinSize
)
326 // The indexes must compose identically: PreA+SubA == PreB+SubB.
327 unsigned FinalB
= composeSubRegIndices(IB
.getSubReg(), SubB
);
328 if (FinalA
!= FinalB
)
331 // Is RC a better candidate than BestRC?
332 if (BestRC
&& getRegSizeInBits(*RC
) >= getRegSizeInBits(*BestRC
))
335 // Yes, RC is the smallest super-register seen so far.
337 *BestPreA
= IA
.getSubReg();
338 *BestPreB
= IB
.getSubReg();
340 // Bail early if we reached MinSize. We won't find a better candidate.
341 if (getRegSizeInBits(*BestRC
) == MinSize
)
348 /// Check if the registers defined by the pair (RegisterClass, SubReg)
349 /// share the same register file.
350 static bool shareSameRegisterFile(const TargetRegisterInfo
&TRI
,
351 const TargetRegisterClass
*DefRC
,
353 const TargetRegisterClass
*SrcRC
,
354 unsigned SrcSubReg
) {
355 // Same register class.
359 // Both operands are sub registers. Check if they share a register class.
360 unsigned SrcIdx
, DefIdx
;
361 if (SrcSubReg
&& DefSubReg
) {
362 return TRI
.getCommonSuperRegClass(SrcRC
, SrcSubReg
, DefRC
, DefSubReg
,
363 SrcIdx
, DefIdx
) != nullptr;
366 // At most one of the register is a sub register, make it Src to avoid
367 // duplicating the test.
369 std::swap(DefSubReg
, SrcSubReg
);
370 std::swap(DefRC
, SrcRC
);
373 // One of the register is a sub register, check if we can get a superclass.
375 return TRI
.getMatchingSuperRegClass(SrcRC
, DefRC
, SrcSubReg
) != nullptr;
378 return TRI
.getCommonSubClass(DefRC
, SrcRC
) != nullptr;
381 bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass
*DefRC
,
383 const TargetRegisterClass
*SrcRC
,
384 unsigned SrcSubReg
) const {
385 // If this source does not incur a cross register bank copy, use it.
386 return shareSameRegisterFile(*this, DefRC
, DefSubReg
, SrcRC
, SrcSubReg
);
389 // Compute target-independent register allocator hints to help eliminate copies.
391 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg
,
392 ArrayRef
<MCPhysReg
> Order
,
393 SmallVectorImpl
<MCPhysReg
> &Hints
,
394 const MachineFunction
&MF
,
395 const VirtRegMap
*VRM
,
396 const LiveRegMatrix
*Matrix
) const {
397 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
398 const std::pair
<unsigned, SmallVector
<unsigned, 4>> &Hints_MRI
=
399 MRI
.getRegAllocationHints(VirtReg
);
401 // First hint may be a target hint.
402 bool Skip
= (Hints_MRI
.first
!= 0);
403 for (auto Reg
: Hints_MRI
.second
) {
409 // Target-independent hints are either a physical or a virtual register.
411 if (VRM
&& isVirtualRegister(Phys
))
412 Phys
= VRM
->getPhys(Phys
);
414 // Check that Phys is a valid hint in VirtReg's register class.
415 if (!isPhysicalRegister(Phys
))
417 if (MRI
.isReserved(Phys
))
419 // Check that Phys is in the allocation order. We shouldn't heed hints
420 // from VirtReg's register class if they aren't in the allocation order. The
421 // target probably has a reason for removing the register.
422 if (!is_contained(Order
, Phys
))
425 // All clear, tell the register allocator to prefer this register.
426 Hints
.push_back(Phys
);
431 bool TargetRegisterInfo::canRealignStack(const MachineFunction
&MF
) const {
432 return !MF
.getFunction().hasFnAttribute("no-realign-stack");
435 bool TargetRegisterInfo::needsStackRealignment(
436 const MachineFunction
&MF
) const {
437 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
438 const TargetFrameLowering
*TFI
= MF
.getSubtarget().getFrameLowering();
439 const Function
&F
= MF
.getFunction();
440 unsigned StackAlign
= TFI
->getStackAlignment();
441 bool requiresRealignment
= ((MFI
.getMaxAlignment() > StackAlign
) ||
442 F
.hasFnAttribute(Attribute::StackAlignment
));
443 if (F
.hasFnAttribute("stackrealign") || requiresRealignment
) {
444 if (canRealignStack(MF
))
446 LLVM_DEBUG(dbgs() << "Can't realign function's stack: " << F
.getName()
452 bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0
,
453 const uint32_t *mask1
) const {
454 unsigned N
= (getNumRegs()+31) / 32;
455 for (unsigned I
= 0; I
< N
; ++I
)
456 if ((mask0
[I
] & mask1
[I
]) != mask0
[I
])
461 unsigned TargetRegisterInfo::getRegSizeInBits(unsigned Reg
,
462 const MachineRegisterInfo
&MRI
) const {
463 const TargetRegisterClass
*RC
{};
464 if (isPhysicalRegister(Reg
)) {
465 // The size is not directly available for physical registers.
466 // Instead, we need to access a register class that contains Reg and
467 // get the size of that register class.
468 RC
= getMinimalPhysRegClass(Reg
);
470 LLT Ty
= MRI
.getType(Reg
);
471 unsigned RegSize
= Ty
.isValid() ? Ty
.getSizeInBits() : 0;
472 // If Reg is not a generic register, query the register class to
476 // Since Reg is not a generic register, it must have a register class.
477 RC
= MRI
.getRegClass(Reg
);
479 assert(RC
&& "Unable to deduce the register class");
480 return getRegSizeInBits(*RC
);
484 TargetRegisterInfo::lookThruCopyLike(unsigned SrcReg
,
485 const MachineRegisterInfo
*MRI
) const {
487 const MachineInstr
*MI
= MRI
->getVRegDef(SrcReg
);
488 if (!MI
->isCopyLike())
493 CopySrcReg
= MI
->getOperand(1).getReg();
495 assert(MI
->isSubregToReg() && "Bad opcode for lookThruCopyLike");
496 CopySrcReg
= MI
->getOperand(2).getReg();
499 if (!isVirtualRegister(CopySrcReg
))
506 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
508 void TargetRegisterInfo::dumpReg(unsigned Reg
, unsigned SubRegIndex
,
509 const TargetRegisterInfo
*TRI
) {
510 dbgs() << printReg(Reg
, TRI
, SubRegIndex
) << "\n";