[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / CodeGen / VirtRegMap.cpp
blobed7bef667e77e82a69910d6202f66decfbc40917
1 //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the VirtRegMap class.
12 // It also contains implementations of the Spiller interface, which, given a
13 // virtual register map and a machine function, eliminates all virtual
14 // references by replacing them with physical register references - adding spill
15 // code as necessary.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/CodeGen/VirtRegMap.h"
20 #include "LiveDebugVariables.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/CodeGen/LiveIntervals.h"
25 #include "llvm/CodeGen/LiveStacks.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SlotIndexes.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/Config/llvm-config.h"
39 #include "llvm/MC/LaneBitmask.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <iterator>
46 #include <utility>
48 using namespace llvm;
50 #define DEBUG_TYPE "regalloc"
52 STATISTIC(NumSpillSlots, "Number of spill slots allocated");
53 STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting");
55 //===----------------------------------------------------------------------===//
56 // VirtRegMap implementation
57 //===----------------------------------------------------------------------===//
59 char VirtRegMap::ID = 0;
61 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
63 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
64 MRI = &mf.getRegInfo();
65 TII = mf.getSubtarget().getInstrInfo();
66 TRI = mf.getSubtarget().getRegisterInfo();
67 MF = &mf;
69 Virt2PhysMap.clear();
70 Virt2StackSlotMap.clear();
71 Virt2SplitMap.clear();
73 grow();
74 return false;
77 void VirtRegMap::grow() {
78 unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
79 Virt2PhysMap.resize(NumRegs);
80 Virt2StackSlotMap.resize(NumRegs);
81 Virt2SplitMap.resize(NumRegs);
84 void VirtRegMap::assignVirt2Phys(unsigned virtReg, MCPhysReg physReg) {
85 assert(TargetRegisterInfo::isVirtualRegister(virtReg) &&
86 TargetRegisterInfo::isPhysicalRegister(physReg));
87 assert(Virt2PhysMap[virtReg] == NO_PHYS_REG &&
88 "attempt to assign physical register to already mapped "
89 "virtual register");
90 assert(!getRegInfo().isReserved(physReg) &&
91 "Attempt to map virtReg to a reserved physReg");
92 Virt2PhysMap[virtReg] = physReg;
95 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
96 unsigned Size = TRI->getSpillSize(*RC);
97 unsigned Align = TRI->getSpillAlignment(*RC);
98 int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Align);
99 ++NumSpillSlots;
100 return SS;
103 bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) {
104 unsigned Hint = MRI->getSimpleHint(VirtReg);
105 if (!Hint)
106 return false;
107 if (TargetRegisterInfo::isVirtualRegister(Hint))
108 Hint = getPhys(Hint);
109 return getPhys(VirtReg) == Hint;
112 bool VirtRegMap::hasKnownPreference(unsigned VirtReg) {
113 std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
114 if (TargetRegisterInfo::isPhysicalRegister(Hint.second))
115 return true;
116 if (TargetRegisterInfo::isVirtualRegister(Hint.second))
117 return hasPhys(Hint.second);
118 return false;
121 int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
122 assert(TargetRegisterInfo::isVirtualRegister(virtReg));
123 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
124 "attempt to assign stack slot to already spilled register");
125 const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
126 return Virt2StackSlotMap[virtReg] = createSpillSlot(RC);
129 void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
130 assert(TargetRegisterInfo::isVirtualRegister(virtReg));
131 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
132 "attempt to assign stack slot to already spilled register");
133 assert((SS >= 0 ||
134 (SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
135 "illegal fixed frame index");
136 Virt2StackSlotMap[virtReg] = SS;
139 void VirtRegMap::print(raw_ostream &OS, const Module*) const {
140 OS << "********** REGISTER MAP **********\n";
141 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
142 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
143 if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
144 OS << '[' << printReg(Reg, TRI) << " -> "
145 << printReg(Virt2PhysMap[Reg], TRI) << "] "
146 << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
150 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
151 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
152 if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
153 OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
154 << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
157 OS << '\n';
160 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
161 LLVM_DUMP_METHOD void VirtRegMap::dump() const {
162 print(dbgs());
164 #endif
166 //===----------------------------------------------------------------------===//
167 // VirtRegRewriter
168 //===----------------------------------------------------------------------===//
170 // The VirtRegRewriter is the last of the register allocator passes.
171 // It rewrites virtual registers to physical registers as specified in the
172 // VirtRegMap analysis. It also updates live-in information on basic blocks
173 // according to LiveIntervals.
175 namespace {
177 class VirtRegRewriter : public MachineFunctionPass {
178 MachineFunction *MF;
179 const TargetRegisterInfo *TRI;
180 const TargetInstrInfo *TII;
181 MachineRegisterInfo *MRI;
182 SlotIndexes *Indexes;
183 LiveIntervals *LIS;
184 VirtRegMap *VRM;
186 void rewrite();
187 void addMBBLiveIns();
188 bool readsUndefSubreg(const MachineOperand &MO) const;
189 void addLiveInsForSubRanges(const LiveInterval &LI, unsigned PhysReg) const;
190 void handleIdentityCopy(MachineInstr &MI) const;
191 void expandCopyBundle(MachineInstr &MI) const;
192 bool subRegLiveThrough(const MachineInstr &MI, unsigned SuperPhysReg) const;
194 public:
195 static char ID;
197 VirtRegRewriter() : MachineFunctionPass(ID) {}
199 void getAnalysisUsage(AnalysisUsage &AU) const override;
201 bool runOnMachineFunction(MachineFunction&) override;
203 MachineFunctionProperties getSetProperties() const override {
204 return MachineFunctionProperties().set(
205 MachineFunctionProperties::Property::NoVRegs);
209 } // end anonymous namespace
211 char VirtRegRewriter::ID = 0;
213 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
215 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
216 "Virtual Register Rewriter", false, false)
217 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
218 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
219 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
220 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
221 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
222 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
223 "Virtual Register Rewriter", false, false)
225 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
226 AU.setPreservesCFG();
227 AU.addRequired<LiveIntervals>();
228 AU.addRequired<SlotIndexes>();
229 AU.addPreserved<SlotIndexes>();
230 AU.addRequired<LiveDebugVariables>();
231 AU.addRequired<LiveStacks>();
232 AU.addPreserved<LiveStacks>();
233 AU.addRequired<VirtRegMap>();
234 MachineFunctionPass::getAnalysisUsage(AU);
237 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
238 MF = &fn;
239 TRI = MF->getSubtarget().getRegisterInfo();
240 TII = MF->getSubtarget().getInstrInfo();
241 MRI = &MF->getRegInfo();
242 Indexes = &getAnalysis<SlotIndexes>();
243 LIS = &getAnalysis<LiveIntervals>();
244 VRM = &getAnalysis<VirtRegMap>();
245 LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
246 << "********** Function: " << MF->getName() << '\n');
247 LLVM_DEBUG(VRM->dump());
249 // Add kill flags while we still have virtual registers.
250 LIS->addKillFlags(VRM);
252 // Live-in lists on basic blocks are required for physregs.
253 addMBBLiveIns();
255 // Rewrite virtual registers.
256 rewrite();
258 // Write out new DBG_VALUE instructions.
259 getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
261 // All machine operands and other references to virtual registers have been
262 // replaced. Remove the virtual registers and release all the transient data.
263 VRM->clearAllVirt();
264 MRI->clearVirtRegs();
265 return true;
268 void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
269 unsigned PhysReg) const {
270 assert(!LI.empty());
271 assert(LI.hasSubRanges());
273 using SubRangeIteratorPair =
274 std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>;
276 SmallVector<SubRangeIteratorPair, 4> SubRanges;
277 SlotIndex First;
278 SlotIndex Last;
279 for (const LiveInterval::SubRange &SR : LI.subranges()) {
280 SubRanges.push_back(std::make_pair(&SR, SR.begin()));
281 if (!First.isValid() || SR.segments.front().start < First)
282 First = SR.segments.front().start;
283 if (!Last.isValid() || SR.segments.back().end > Last)
284 Last = SR.segments.back().end;
287 // Check all mbb start positions between First and Last while
288 // simulatenously advancing an iterator for each subrange.
289 for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
290 MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
291 SlotIndex MBBBegin = MBBI->first;
292 // Advance all subrange iterators so that their end position is just
293 // behind MBBBegin (or the iterator is at the end).
294 LaneBitmask LaneMask;
295 for (auto &RangeIterPair : SubRanges) {
296 const LiveInterval::SubRange *SR = RangeIterPair.first;
297 LiveInterval::const_iterator &SRI = RangeIterPair.second;
298 while (SRI != SR->end() && SRI->end <= MBBBegin)
299 ++SRI;
300 if (SRI == SR->end())
301 continue;
302 if (SRI->start <= MBBBegin)
303 LaneMask |= SR->LaneMask;
305 if (LaneMask.none())
306 continue;
307 MachineBasicBlock *MBB = MBBI->second;
308 MBB->addLiveIn(PhysReg, LaneMask);
312 // Compute MBB live-in lists from virtual register live ranges and their
313 // assignments.
314 void VirtRegRewriter::addMBBLiveIns() {
315 for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
316 unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx);
317 if (MRI->reg_nodbg_empty(VirtReg))
318 continue;
319 LiveInterval &LI = LIS->getInterval(VirtReg);
320 if (LI.empty() || LIS->intervalIsInOneMBB(LI))
321 continue;
322 // This is a virtual register that is live across basic blocks. Its
323 // assigned PhysReg must be marked as live-in to those blocks.
324 unsigned PhysReg = VRM->getPhys(VirtReg);
325 assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
327 if (LI.hasSubRanges()) {
328 addLiveInsForSubRanges(LI, PhysReg);
329 } else {
330 // Go over MBB begin positions and see if we have segments covering them.
331 // The following works because segments and the MBBIndex list are both
332 // sorted by slot indexes.
333 SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
334 for (const auto &Seg : LI) {
335 I = Indexes->advanceMBBIndex(I, Seg.start);
336 for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
337 MachineBasicBlock *MBB = I->second;
338 MBB->addLiveIn(PhysReg);
344 // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
345 // each MBB's LiveIns set before calling addLiveIn on them.
346 for (MachineBasicBlock &MBB : *MF)
347 MBB.sortUniqueLiveIns();
350 /// Returns true if the given machine operand \p MO only reads undefined lanes.
351 /// The function only works for use operands with a subregister set.
352 bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
353 // Shortcut if the operand is already marked undef.
354 if (MO.isUndef())
355 return true;
357 unsigned Reg = MO.getReg();
358 const LiveInterval &LI = LIS->getInterval(Reg);
359 const MachineInstr &MI = *MO.getParent();
360 SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
361 // This code is only meant to handle reading undefined subregisters which
362 // we couldn't properly detect before.
363 assert(LI.liveAt(BaseIndex) &&
364 "Reads of completely dead register should be marked undef already");
365 unsigned SubRegIdx = MO.getSubReg();
366 assert(SubRegIdx != 0 && LI.hasSubRanges());
367 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
368 // See if any of the relevant subregister liveranges is defined at this point.
369 for (const LiveInterval::SubRange &SR : LI.subranges()) {
370 if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
371 return false;
373 return true;
376 void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) const {
377 if (!MI.isIdentityCopy())
378 return;
379 LLVM_DEBUG(dbgs() << "Identity copy: " << MI);
380 ++NumIdCopies;
382 // Copies like:
383 // %r0 = COPY undef %r0
384 // %al = COPY %al, implicit-def %eax
385 // give us additional liveness information: The target (super-)register
386 // must not be valid before this point. Replace the COPY with a KILL
387 // instruction to maintain this information.
388 if (MI.getOperand(0).isUndef() || MI.getNumOperands() > 2) {
389 MI.setDesc(TII->get(TargetOpcode::KILL));
390 LLVM_DEBUG(dbgs() << " replace by: " << MI);
391 return;
394 if (Indexes)
395 Indexes->removeSingleMachineInstrFromMaps(MI);
396 MI.eraseFromBundle();
397 LLVM_DEBUG(dbgs() << " deleted.\n");
400 /// The liverange splitting logic sometimes produces bundles of copies when
401 /// subregisters are involved. Expand these into a sequence of copy instructions
402 /// after processing the last in the bundle. Does not update LiveIntervals
403 /// which we shouldn't need for this instruction anymore.
404 void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const {
405 if (!MI.isCopy())
406 return;
408 if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) {
409 SmallVector<MachineInstr *, 2> MIs({&MI});
411 // Only do this when the complete bundle is made out of COPYs.
412 MachineBasicBlock &MBB = *MI.getParent();
413 for (MachineBasicBlock::reverse_instr_iterator I =
414 std::next(MI.getReverseIterator()), E = MBB.instr_rend();
415 I != E && I->isBundledWithSucc(); ++I) {
416 if (!I->isCopy())
417 return;
418 MIs.push_back(&*I);
420 MachineInstr *FirstMI = MIs.back();
422 auto anyRegsAlias = [](const MachineInstr *Dst,
423 ArrayRef<MachineInstr *> Srcs,
424 const TargetRegisterInfo *TRI) {
425 for (const MachineInstr *Src : Srcs)
426 if (Src != Dst)
427 if (TRI->regsOverlap(Dst->getOperand(0).getReg(),
428 Src->getOperand(1).getReg()))
429 return true;
430 return false;
433 // If any of the destination registers in the bundle of copies alias any of
434 // the source registers, try to schedule the instructions to avoid any
435 // clobbering.
436 for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) {
437 for (int I = E; I--; )
438 if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) {
439 if (I + 1 != E)
440 std::swap(MIs[I], MIs[E - 1]);
441 --E;
443 if (PrevE == E) {
444 MF->getFunction().getContext().emitError(
445 "register rewriting failed: cycle in copy bundle");
446 break;
450 MachineInstr *BundleStart = FirstMI;
451 for (MachineInstr *BundledMI : llvm::reverse(MIs)) {
452 // If instruction is in the middle of the bundle, move it before the
453 // bundle starts, otherwise, just unbundle it. When we get to the last
454 // instruction, the bundle will have been completely undone.
455 if (BundledMI != BundleStart) {
456 BundledMI->removeFromBundle();
457 MBB.insert(FirstMI, BundledMI);
458 } else if (BundledMI->isBundledWithSucc()) {
459 BundledMI->unbundleFromSucc();
460 BundleStart = &*std::next(BundledMI->getIterator());
463 if (Indexes && BundledMI != FirstMI)
464 Indexes->insertMachineInstrInMaps(*BundledMI);
469 /// Check whether (part of) \p SuperPhysReg is live through \p MI.
470 /// \pre \p MI defines a subregister of a virtual register that
471 /// has been assigned to \p SuperPhysReg.
472 bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI,
473 unsigned SuperPhysReg) const {
474 SlotIndex MIIndex = LIS->getInstructionIndex(MI);
475 SlotIndex BeforeMIUses = MIIndex.getBaseIndex();
476 SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex();
477 for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) {
478 const LiveRange &UnitRange = LIS->getRegUnit(*Unit);
479 // If the regunit is live both before and after MI,
480 // we assume it is live through.
481 // Generally speaking, this is not true, because something like
482 // "RU = op RU" would match that description.
483 // However, we know that we are trying to assess whether
484 // a def of a virtual reg, vreg, is live at the same time of RU.
485 // If we are in the "RU = op RU" situation, that means that vreg
486 // is defined at the same time as RU (i.e., "vreg, RU = op RU").
487 // Thus, vreg and RU interferes and vreg cannot be assigned to
488 // SuperPhysReg. Therefore, this situation cannot happen.
489 if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses))
490 return true;
492 return false;
495 void VirtRegRewriter::rewrite() {
496 bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
497 SmallVector<unsigned, 8> SuperDeads;
498 SmallVector<unsigned, 8> SuperDefs;
499 SmallVector<unsigned, 8> SuperKills;
501 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
502 MBBI != MBBE; ++MBBI) {
503 LLVM_DEBUG(MBBI->print(dbgs(), Indexes));
504 for (MachineBasicBlock::instr_iterator
505 MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
506 MachineInstr *MI = &*MII;
507 ++MII;
509 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
510 MOE = MI->operands_end(); MOI != MOE; ++MOI) {
511 MachineOperand &MO = *MOI;
513 // Make sure MRI knows about registers clobbered by regmasks.
514 if (MO.isRegMask())
515 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
517 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
518 continue;
519 unsigned VirtReg = MO.getReg();
520 unsigned PhysReg = VRM->getPhys(VirtReg);
521 assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
522 "Instruction uses unmapped VirtReg");
523 assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
525 // Preserve semantics of sub-register operands.
526 unsigned SubReg = MO.getSubReg();
527 if (SubReg != 0) {
528 if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) {
529 // A virtual register kill refers to the whole register, so we may
530 // have to add implicit killed operands for the super-register. A
531 // partial redef always kills and redefines the super-register.
532 if ((MO.readsReg() && (MO.isDef() || MO.isKill())) ||
533 (MO.isDef() && subRegLiveThrough(*MI, PhysReg)))
534 SuperKills.push_back(PhysReg);
536 if (MO.isDef()) {
537 // Also add implicit defs for the super-register.
538 if (MO.isDead())
539 SuperDeads.push_back(PhysReg);
540 else
541 SuperDefs.push_back(PhysReg);
543 } else {
544 if (MO.isUse()) {
545 if (readsUndefSubreg(MO))
546 // We need to add an <undef> flag if the subregister is
547 // completely undefined (and we are not adding super-register
548 // defs).
549 MO.setIsUndef(true);
550 } else if (!MO.isDead()) {
551 assert(MO.isDef());
555 // The def undef and def internal flags only make sense for
556 // sub-register defs, and we are substituting a full physreg. An
557 // implicit killed operand from the SuperKills list will represent the
558 // partial read of the super-register.
559 if (MO.isDef()) {
560 MO.setIsUndef(false);
561 MO.setIsInternalRead(false);
564 // PhysReg operands cannot have subregister indexes.
565 PhysReg = TRI->getSubReg(PhysReg, SubReg);
566 assert(PhysReg && "Invalid SubReg for physical register");
567 MO.setSubReg(0);
569 // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
570 // we need the inlining here.
571 MO.setReg(PhysReg);
572 MO.setIsRenamable(true);
575 // Add any missing super-register kills after rewriting the whole
576 // instruction.
577 while (!SuperKills.empty())
578 MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
580 while (!SuperDeads.empty())
581 MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
583 while (!SuperDefs.empty())
584 MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
586 LLVM_DEBUG(dbgs() << "> " << *MI);
588 expandCopyBundle(*MI);
590 // We can remove identity copies right now.
591 handleIdentityCopy(*MI);