1 //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the VirtRegMap class.
12 // It also contains implementations of the Spiller interface, which, given a
13 // virtual register map and a machine function, eliminates all virtual
14 // references by replacing them with physical register references - adding spill
17 //===----------------------------------------------------------------------===//
19 #include "llvm/CodeGen/VirtRegMap.h"
20 #include "LiveDebugVariables.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/CodeGen/LiveIntervals.h"
25 #include "llvm/CodeGen/LiveStacks.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SlotIndexes.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/Config/llvm-config.h"
39 #include "llvm/MC/LaneBitmask.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
50 #define DEBUG_TYPE "regalloc"
52 STATISTIC(NumSpillSlots
, "Number of spill slots allocated");
53 STATISTIC(NumIdCopies
, "Number of identity moves eliminated after rewriting");
55 //===----------------------------------------------------------------------===//
56 // VirtRegMap implementation
57 //===----------------------------------------------------------------------===//
59 char VirtRegMap::ID
= 0;
61 INITIALIZE_PASS(VirtRegMap
, "virtregmap", "Virtual Register Map", false, false)
63 bool VirtRegMap::runOnMachineFunction(MachineFunction
&mf
) {
64 MRI
= &mf
.getRegInfo();
65 TII
= mf
.getSubtarget().getInstrInfo();
66 TRI
= mf
.getSubtarget().getRegisterInfo();
70 Virt2StackSlotMap
.clear();
71 Virt2SplitMap
.clear();
77 void VirtRegMap::grow() {
78 unsigned NumRegs
= MF
->getRegInfo().getNumVirtRegs();
79 Virt2PhysMap
.resize(NumRegs
);
80 Virt2StackSlotMap
.resize(NumRegs
);
81 Virt2SplitMap
.resize(NumRegs
);
84 void VirtRegMap::assignVirt2Phys(unsigned virtReg
, MCPhysReg physReg
) {
85 assert(TargetRegisterInfo::isVirtualRegister(virtReg
) &&
86 TargetRegisterInfo::isPhysicalRegister(physReg
));
87 assert(Virt2PhysMap
[virtReg
] == NO_PHYS_REG
&&
88 "attempt to assign physical register to already mapped "
90 assert(!getRegInfo().isReserved(physReg
) &&
91 "Attempt to map virtReg to a reserved physReg");
92 Virt2PhysMap
[virtReg
] = physReg
;
95 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass
*RC
) {
96 unsigned Size
= TRI
->getSpillSize(*RC
);
97 unsigned Align
= TRI
->getSpillAlignment(*RC
);
98 int SS
= MF
->getFrameInfo().CreateSpillStackObject(Size
, Align
);
103 bool VirtRegMap::hasPreferredPhys(unsigned VirtReg
) {
104 unsigned Hint
= MRI
->getSimpleHint(VirtReg
);
107 if (TargetRegisterInfo::isVirtualRegister(Hint
))
108 Hint
= getPhys(Hint
);
109 return getPhys(VirtReg
) == Hint
;
112 bool VirtRegMap::hasKnownPreference(unsigned VirtReg
) {
113 std::pair
<unsigned, unsigned> Hint
= MRI
->getRegAllocationHint(VirtReg
);
114 if (TargetRegisterInfo::isPhysicalRegister(Hint
.second
))
116 if (TargetRegisterInfo::isVirtualRegister(Hint
.second
))
117 return hasPhys(Hint
.second
);
121 int VirtRegMap::assignVirt2StackSlot(unsigned virtReg
) {
122 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
123 assert(Virt2StackSlotMap
[virtReg
] == NO_STACK_SLOT
&&
124 "attempt to assign stack slot to already spilled register");
125 const TargetRegisterClass
* RC
= MF
->getRegInfo().getRegClass(virtReg
);
126 return Virt2StackSlotMap
[virtReg
] = createSpillSlot(RC
);
129 void VirtRegMap::assignVirt2StackSlot(unsigned virtReg
, int SS
) {
130 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
131 assert(Virt2StackSlotMap
[virtReg
] == NO_STACK_SLOT
&&
132 "attempt to assign stack slot to already spilled register");
134 (SS
>= MF
->getFrameInfo().getObjectIndexBegin())) &&
135 "illegal fixed frame index");
136 Virt2StackSlotMap
[virtReg
] = SS
;
139 void VirtRegMap::print(raw_ostream
&OS
, const Module
*) const {
140 OS
<< "********** REGISTER MAP **********\n";
141 for (unsigned i
= 0, e
= MRI
->getNumVirtRegs(); i
!= e
; ++i
) {
142 unsigned Reg
= TargetRegisterInfo::index2VirtReg(i
);
143 if (Virt2PhysMap
[Reg
] != (unsigned)VirtRegMap::NO_PHYS_REG
) {
144 OS
<< '[' << printReg(Reg
, TRI
) << " -> "
145 << printReg(Virt2PhysMap
[Reg
], TRI
) << "] "
146 << TRI
->getRegClassName(MRI
->getRegClass(Reg
)) << "\n";
150 for (unsigned i
= 0, e
= MRI
->getNumVirtRegs(); i
!= e
; ++i
) {
151 unsigned Reg
= TargetRegisterInfo::index2VirtReg(i
);
152 if (Virt2StackSlotMap
[Reg
] != VirtRegMap::NO_STACK_SLOT
) {
153 OS
<< '[' << printReg(Reg
, TRI
) << " -> fi#" << Virt2StackSlotMap
[Reg
]
154 << "] " << TRI
->getRegClassName(MRI
->getRegClass(Reg
)) << "\n";
160 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
161 LLVM_DUMP_METHOD
void VirtRegMap::dump() const {
166 //===----------------------------------------------------------------------===//
168 //===----------------------------------------------------------------------===//
170 // The VirtRegRewriter is the last of the register allocator passes.
171 // It rewrites virtual registers to physical registers as specified in the
172 // VirtRegMap analysis. It also updates live-in information on basic blocks
173 // according to LiveIntervals.
177 class VirtRegRewriter
: public MachineFunctionPass
{
179 const TargetRegisterInfo
*TRI
;
180 const TargetInstrInfo
*TII
;
181 MachineRegisterInfo
*MRI
;
182 SlotIndexes
*Indexes
;
187 void addMBBLiveIns();
188 bool readsUndefSubreg(const MachineOperand
&MO
) const;
189 void addLiveInsForSubRanges(const LiveInterval
&LI
, unsigned PhysReg
) const;
190 void handleIdentityCopy(MachineInstr
&MI
) const;
191 void expandCopyBundle(MachineInstr
&MI
) const;
192 bool subRegLiveThrough(const MachineInstr
&MI
, unsigned SuperPhysReg
) const;
197 VirtRegRewriter() : MachineFunctionPass(ID
) {}
199 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
201 bool runOnMachineFunction(MachineFunction
&) override
;
203 MachineFunctionProperties
getSetProperties() const override
{
204 return MachineFunctionProperties().set(
205 MachineFunctionProperties::Property::NoVRegs
);
209 } // end anonymous namespace
211 char VirtRegRewriter::ID
= 0;
213 char &llvm::VirtRegRewriterID
= VirtRegRewriter::ID
;
215 INITIALIZE_PASS_BEGIN(VirtRegRewriter
, "virtregrewriter",
216 "Virtual Register Rewriter", false, false)
217 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
218 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
219 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables
)
220 INITIALIZE_PASS_DEPENDENCY(LiveStacks
)
221 INITIALIZE_PASS_DEPENDENCY(VirtRegMap
)
222 INITIALIZE_PASS_END(VirtRegRewriter
, "virtregrewriter",
223 "Virtual Register Rewriter", false, false)
225 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage
&AU
) const {
226 AU
.setPreservesCFG();
227 AU
.addRequired
<LiveIntervals
>();
228 AU
.addRequired
<SlotIndexes
>();
229 AU
.addPreserved
<SlotIndexes
>();
230 AU
.addRequired
<LiveDebugVariables
>();
231 AU
.addRequired
<LiveStacks
>();
232 AU
.addPreserved
<LiveStacks
>();
233 AU
.addRequired
<VirtRegMap
>();
234 MachineFunctionPass::getAnalysisUsage(AU
);
237 bool VirtRegRewriter::runOnMachineFunction(MachineFunction
&fn
) {
239 TRI
= MF
->getSubtarget().getRegisterInfo();
240 TII
= MF
->getSubtarget().getInstrInfo();
241 MRI
= &MF
->getRegInfo();
242 Indexes
= &getAnalysis
<SlotIndexes
>();
243 LIS
= &getAnalysis
<LiveIntervals
>();
244 VRM
= &getAnalysis
<VirtRegMap
>();
245 LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
246 << "********** Function: " << MF
->getName() << '\n');
247 LLVM_DEBUG(VRM
->dump());
249 // Add kill flags while we still have virtual registers.
250 LIS
->addKillFlags(VRM
);
252 // Live-in lists on basic blocks are required for physregs.
255 // Rewrite virtual registers.
258 // Write out new DBG_VALUE instructions.
259 getAnalysis
<LiveDebugVariables
>().emitDebugValues(VRM
);
261 // All machine operands and other references to virtual registers have been
262 // replaced. Remove the virtual registers and release all the transient data.
264 MRI
->clearVirtRegs();
268 void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval
&LI
,
269 unsigned PhysReg
) const {
271 assert(LI
.hasSubRanges());
273 using SubRangeIteratorPair
=
274 std::pair
<const LiveInterval::SubRange
*, LiveInterval::const_iterator
>;
276 SmallVector
<SubRangeIteratorPair
, 4> SubRanges
;
279 for (const LiveInterval::SubRange
&SR
: LI
.subranges()) {
280 SubRanges
.push_back(std::make_pair(&SR
, SR
.begin()));
281 if (!First
.isValid() || SR
.segments
.front().start
< First
)
282 First
= SR
.segments
.front().start
;
283 if (!Last
.isValid() || SR
.segments
.back().end
> Last
)
284 Last
= SR
.segments
.back().end
;
287 // Check all mbb start positions between First and Last while
288 // simulatenously advancing an iterator for each subrange.
289 for (SlotIndexes::MBBIndexIterator MBBI
= Indexes
->findMBBIndex(First
);
290 MBBI
!= Indexes
->MBBIndexEnd() && MBBI
->first
<= Last
; ++MBBI
) {
291 SlotIndex MBBBegin
= MBBI
->first
;
292 // Advance all subrange iterators so that their end position is just
293 // behind MBBBegin (or the iterator is at the end).
294 LaneBitmask LaneMask
;
295 for (auto &RangeIterPair
: SubRanges
) {
296 const LiveInterval::SubRange
*SR
= RangeIterPair
.first
;
297 LiveInterval::const_iterator
&SRI
= RangeIterPair
.second
;
298 while (SRI
!= SR
->end() && SRI
->end
<= MBBBegin
)
300 if (SRI
== SR
->end())
302 if (SRI
->start
<= MBBBegin
)
303 LaneMask
|= SR
->LaneMask
;
307 MachineBasicBlock
*MBB
= MBBI
->second
;
308 MBB
->addLiveIn(PhysReg
, LaneMask
);
312 // Compute MBB live-in lists from virtual register live ranges and their
314 void VirtRegRewriter::addMBBLiveIns() {
315 for (unsigned Idx
= 0, IdxE
= MRI
->getNumVirtRegs(); Idx
!= IdxE
; ++Idx
) {
316 unsigned VirtReg
= TargetRegisterInfo::index2VirtReg(Idx
);
317 if (MRI
->reg_nodbg_empty(VirtReg
))
319 LiveInterval
&LI
= LIS
->getInterval(VirtReg
);
320 if (LI
.empty() || LIS
->intervalIsInOneMBB(LI
))
322 // This is a virtual register that is live across basic blocks. Its
323 // assigned PhysReg must be marked as live-in to those blocks.
324 unsigned PhysReg
= VRM
->getPhys(VirtReg
);
325 assert(PhysReg
!= VirtRegMap::NO_PHYS_REG
&& "Unmapped virtual register.");
327 if (LI
.hasSubRanges()) {
328 addLiveInsForSubRanges(LI
, PhysReg
);
330 // Go over MBB begin positions and see if we have segments covering them.
331 // The following works because segments and the MBBIndex list are both
332 // sorted by slot indexes.
333 SlotIndexes::MBBIndexIterator I
= Indexes
->MBBIndexBegin();
334 for (const auto &Seg
: LI
) {
335 I
= Indexes
->advanceMBBIndex(I
, Seg
.start
);
336 for (; I
!= Indexes
->MBBIndexEnd() && I
->first
< Seg
.end
; ++I
) {
337 MachineBasicBlock
*MBB
= I
->second
;
338 MBB
->addLiveIn(PhysReg
);
344 // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
345 // each MBB's LiveIns set before calling addLiveIn on them.
346 for (MachineBasicBlock
&MBB
: *MF
)
347 MBB
.sortUniqueLiveIns();
350 /// Returns true if the given machine operand \p MO only reads undefined lanes.
351 /// The function only works for use operands with a subregister set.
352 bool VirtRegRewriter::readsUndefSubreg(const MachineOperand
&MO
) const {
353 // Shortcut if the operand is already marked undef.
357 unsigned Reg
= MO
.getReg();
358 const LiveInterval
&LI
= LIS
->getInterval(Reg
);
359 const MachineInstr
&MI
= *MO
.getParent();
360 SlotIndex BaseIndex
= LIS
->getInstructionIndex(MI
);
361 // This code is only meant to handle reading undefined subregisters which
362 // we couldn't properly detect before.
363 assert(LI
.liveAt(BaseIndex
) &&
364 "Reads of completely dead register should be marked undef already");
365 unsigned SubRegIdx
= MO
.getSubReg();
366 assert(SubRegIdx
!= 0 && LI
.hasSubRanges());
367 LaneBitmask UseMask
= TRI
->getSubRegIndexLaneMask(SubRegIdx
);
368 // See if any of the relevant subregister liveranges is defined at this point.
369 for (const LiveInterval::SubRange
&SR
: LI
.subranges()) {
370 if ((SR
.LaneMask
& UseMask
).any() && SR
.liveAt(BaseIndex
))
376 void VirtRegRewriter::handleIdentityCopy(MachineInstr
&MI
) const {
377 if (!MI
.isIdentityCopy())
379 LLVM_DEBUG(dbgs() << "Identity copy: " << MI
);
383 // %r0 = COPY undef %r0
384 // %al = COPY %al, implicit-def %eax
385 // give us additional liveness information: The target (super-)register
386 // must not be valid before this point. Replace the COPY with a KILL
387 // instruction to maintain this information.
388 if (MI
.getOperand(0).isUndef() || MI
.getNumOperands() > 2) {
389 MI
.setDesc(TII
->get(TargetOpcode::KILL
));
390 LLVM_DEBUG(dbgs() << " replace by: " << MI
);
395 Indexes
->removeSingleMachineInstrFromMaps(MI
);
396 MI
.eraseFromBundle();
397 LLVM_DEBUG(dbgs() << " deleted.\n");
400 /// The liverange splitting logic sometimes produces bundles of copies when
401 /// subregisters are involved. Expand these into a sequence of copy instructions
402 /// after processing the last in the bundle. Does not update LiveIntervals
403 /// which we shouldn't need for this instruction anymore.
404 void VirtRegRewriter::expandCopyBundle(MachineInstr
&MI
) const {
408 if (MI
.isBundledWithPred() && !MI
.isBundledWithSucc()) {
409 SmallVector
<MachineInstr
*, 2> MIs({&MI
});
411 // Only do this when the complete bundle is made out of COPYs.
412 MachineBasicBlock
&MBB
= *MI
.getParent();
413 for (MachineBasicBlock::reverse_instr_iterator I
=
414 std::next(MI
.getReverseIterator()), E
= MBB
.instr_rend();
415 I
!= E
&& I
->isBundledWithSucc(); ++I
) {
420 MachineInstr
*FirstMI
= MIs
.back();
422 auto anyRegsAlias
= [](const MachineInstr
*Dst
,
423 ArrayRef
<MachineInstr
*> Srcs
,
424 const TargetRegisterInfo
*TRI
) {
425 for (const MachineInstr
*Src
: Srcs
)
427 if (TRI
->regsOverlap(Dst
->getOperand(0).getReg(),
428 Src
->getOperand(1).getReg()))
433 // If any of the destination registers in the bundle of copies alias any of
434 // the source registers, try to schedule the instructions to avoid any
436 for (int E
= MIs
.size(), PrevE
= E
; E
> 1; PrevE
= E
) {
437 for (int I
= E
; I
--; )
438 if (!anyRegsAlias(MIs
[I
], makeArrayRef(MIs
).take_front(E
), TRI
)) {
440 std::swap(MIs
[I
], MIs
[E
- 1]);
444 MF
->getFunction().getContext().emitError(
445 "register rewriting failed: cycle in copy bundle");
450 MachineInstr
*BundleStart
= FirstMI
;
451 for (MachineInstr
*BundledMI
: llvm::reverse(MIs
)) {
452 // If instruction is in the middle of the bundle, move it before the
453 // bundle starts, otherwise, just unbundle it. When we get to the last
454 // instruction, the bundle will have been completely undone.
455 if (BundledMI
!= BundleStart
) {
456 BundledMI
->removeFromBundle();
457 MBB
.insert(FirstMI
, BundledMI
);
458 } else if (BundledMI
->isBundledWithSucc()) {
459 BundledMI
->unbundleFromSucc();
460 BundleStart
= &*std::next(BundledMI
->getIterator());
463 if (Indexes
&& BundledMI
!= FirstMI
)
464 Indexes
->insertMachineInstrInMaps(*BundledMI
);
469 /// Check whether (part of) \p SuperPhysReg is live through \p MI.
470 /// \pre \p MI defines a subregister of a virtual register that
471 /// has been assigned to \p SuperPhysReg.
472 bool VirtRegRewriter::subRegLiveThrough(const MachineInstr
&MI
,
473 unsigned SuperPhysReg
) const {
474 SlotIndex MIIndex
= LIS
->getInstructionIndex(MI
);
475 SlotIndex BeforeMIUses
= MIIndex
.getBaseIndex();
476 SlotIndex AfterMIDefs
= MIIndex
.getBoundaryIndex();
477 for (MCRegUnitIterator
Unit(SuperPhysReg
, TRI
); Unit
.isValid(); ++Unit
) {
478 const LiveRange
&UnitRange
= LIS
->getRegUnit(*Unit
);
479 // If the regunit is live both before and after MI,
480 // we assume it is live through.
481 // Generally speaking, this is not true, because something like
482 // "RU = op RU" would match that description.
483 // However, we know that we are trying to assess whether
484 // a def of a virtual reg, vreg, is live at the same time of RU.
485 // If we are in the "RU = op RU" situation, that means that vreg
486 // is defined at the same time as RU (i.e., "vreg, RU = op RU").
487 // Thus, vreg and RU interferes and vreg cannot be assigned to
488 // SuperPhysReg. Therefore, this situation cannot happen.
489 if (UnitRange
.liveAt(AfterMIDefs
) && UnitRange
.liveAt(BeforeMIUses
))
495 void VirtRegRewriter::rewrite() {
496 bool NoSubRegLiveness
= !MRI
->subRegLivenessEnabled();
497 SmallVector
<unsigned, 8> SuperDeads
;
498 SmallVector
<unsigned, 8> SuperDefs
;
499 SmallVector
<unsigned, 8> SuperKills
;
501 for (MachineFunction::iterator MBBI
= MF
->begin(), MBBE
= MF
->end();
502 MBBI
!= MBBE
; ++MBBI
) {
503 LLVM_DEBUG(MBBI
->print(dbgs(), Indexes
));
504 for (MachineBasicBlock::instr_iterator
505 MII
= MBBI
->instr_begin(), MIE
= MBBI
->instr_end(); MII
!= MIE
;) {
506 MachineInstr
*MI
= &*MII
;
509 for (MachineInstr::mop_iterator MOI
= MI
->operands_begin(),
510 MOE
= MI
->operands_end(); MOI
!= MOE
; ++MOI
) {
511 MachineOperand
&MO
= *MOI
;
513 // Make sure MRI knows about registers clobbered by regmasks.
515 MRI
->addPhysRegsUsedFromRegMask(MO
.getRegMask());
517 if (!MO
.isReg() || !TargetRegisterInfo::isVirtualRegister(MO
.getReg()))
519 unsigned VirtReg
= MO
.getReg();
520 unsigned PhysReg
= VRM
->getPhys(VirtReg
);
521 assert(PhysReg
!= VirtRegMap::NO_PHYS_REG
&&
522 "Instruction uses unmapped VirtReg");
523 assert(!MRI
->isReserved(PhysReg
) && "Reserved register assignment");
525 // Preserve semantics of sub-register operands.
526 unsigned SubReg
= MO
.getSubReg();
528 if (NoSubRegLiveness
|| !MRI
->shouldTrackSubRegLiveness(VirtReg
)) {
529 // A virtual register kill refers to the whole register, so we may
530 // have to add implicit killed operands for the super-register. A
531 // partial redef always kills and redefines the super-register.
532 if ((MO
.readsReg() && (MO
.isDef() || MO
.isKill())) ||
533 (MO
.isDef() && subRegLiveThrough(*MI
, PhysReg
)))
534 SuperKills
.push_back(PhysReg
);
537 // Also add implicit defs for the super-register.
539 SuperDeads
.push_back(PhysReg
);
541 SuperDefs
.push_back(PhysReg
);
545 if (readsUndefSubreg(MO
))
546 // We need to add an <undef> flag if the subregister is
547 // completely undefined (and we are not adding super-register
550 } else if (!MO
.isDead()) {
555 // The def undef and def internal flags only make sense for
556 // sub-register defs, and we are substituting a full physreg. An
557 // implicit killed operand from the SuperKills list will represent the
558 // partial read of the super-register.
560 MO
.setIsUndef(false);
561 MO
.setIsInternalRead(false);
564 // PhysReg operands cannot have subregister indexes.
565 PhysReg
= TRI
->getSubReg(PhysReg
, SubReg
);
566 assert(PhysReg
&& "Invalid SubReg for physical register");
569 // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
570 // we need the inlining here.
572 MO
.setIsRenamable(true);
575 // Add any missing super-register kills after rewriting the whole
577 while (!SuperKills
.empty())
578 MI
->addRegisterKilled(SuperKills
.pop_back_val(), TRI
, true);
580 while (!SuperDeads
.empty())
581 MI
->addRegisterDead(SuperDeads
.pop_back_val(), TRI
, true);
583 while (!SuperDefs
.empty())
584 MI
->addRegisterDefined(SuperDefs
.pop_back_val(), TRI
);
586 LLVM_DEBUG(dbgs() << "> " << *MI
);
588 expandCopyBundle(*MI
);
590 // We can remove identity copies right now.
591 handleIdentityCopy(*MI
);