[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / IR / AsmWriter.cpp
blobeb2311da63bafc8c3e8a0ccd04b2317c843bd3af
1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library implements `print` family of functions in classes like
11 // Module, Function, Value, etc. In-memory representation of those classes is
12 // converted to IR strings.
14 // Note that these routines must be extremely tolerant of various errors in the
15 // LLVM code, because it can be used for debugging transformations.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/None.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/iterator_range.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/Config/llvm-config.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/AssemblyAnnotationWriter.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/CallSite.h"
40 #include "llvm/IR/CallingConv.h"
41 #include "llvm/IR/Comdat.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GlobalAlias.h"
48 #include "llvm/IR/GlobalIFunc.h"
49 #include "llvm/IR/GlobalIndirectSymbol.h"
50 #include "llvm/IR/GlobalObject.h"
51 #include "llvm/IR/GlobalValue.h"
52 #include "llvm/IR/GlobalVariable.h"
53 #include "llvm/IR/IRPrintingPasses.h"
54 #include "llvm/IR/InlineAsm.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ModuleSlotTracker.h"
62 #include "llvm/IR/ModuleSummaryIndex.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/IR/Statepoint.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/IR/TypeFinder.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/UseListOrder.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/Support/AtomicOrdering.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/Compiler.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/Format.h"
77 #include "llvm/Support/FormattedStream.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <cctype>
82 #include <cstddef>
83 #include <cstdint>
84 #include <iterator>
85 #include <memory>
86 #include <string>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
91 using namespace llvm;
93 // Make virtual table appear in this compilation unit.
94 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
96 //===----------------------------------------------------------------------===//
97 // Helper Functions
98 //===----------------------------------------------------------------------===//
100 namespace {
102 struct OrderMap {
103 DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
105 unsigned size() const { return IDs.size(); }
106 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
108 std::pair<unsigned, bool> lookup(const Value *V) const {
109 return IDs.lookup(V);
112 void index(const Value *V) {
113 // Explicitly sequence get-size and insert-value operations to avoid UB.
114 unsigned ID = IDs.size() + 1;
115 IDs[V].first = ID;
119 } // end anonymous namespace
121 static void orderValue(const Value *V, OrderMap &OM) {
122 if (OM.lookup(V).first)
123 return;
125 if (const Constant *C = dyn_cast<Constant>(V))
126 if (C->getNumOperands() && !isa<GlobalValue>(C))
127 for (const Value *Op : C->operands())
128 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
129 orderValue(Op, OM);
131 // Note: we cannot cache this lookup above, since inserting into the map
132 // changes the map's size, and thus affects the other IDs.
133 OM.index(V);
136 static OrderMap orderModule(const Module *M) {
137 // This needs to match the order used by ValueEnumerator::ValueEnumerator()
138 // and ValueEnumerator::incorporateFunction().
139 OrderMap OM;
141 for (const GlobalVariable &G : M->globals()) {
142 if (G.hasInitializer())
143 if (!isa<GlobalValue>(G.getInitializer()))
144 orderValue(G.getInitializer(), OM);
145 orderValue(&G, OM);
147 for (const GlobalAlias &A : M->aliases()) {
148 if (!isa<GlobalValue>(A.getAliasee()))
149 orderValue(A.getAliasee(), OM);
150 orderValue(&A, OM);
152 for (const GlobalIFunc &I : M->ifuncs()) {
153 if (!isa<GlobalValue>(I.getResolver()))
154 orderValue(I.getResolver(), OM);
155 orderValue(&I, OM);
157 for (const Function &F : *M) {
158 for (const Use &U : F.operands())
159 if (!isa<GlobalValue>(U.get()))
160 orderValue(U.get(), OM);
162 orderValue(&F, OM);
164 if (F.isDeclaration())
165 continue;
167 for (const Argument &A : F.args())
168 orderValue(&A, OM);
169 for (const BasicBlock &BB : F) {
170 orderValue(&BB, OM);
171 for (const Instruction &I : BB) {
172 for (const Value *Op : I.operands())
173 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
174 isa<InlineAsm>(*Op))
175 orderValue(Op, OM);
176 orderValue(&I, OM);
180 return OM;
183 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
184 unsigned ID, const OrderMap &OM,
185 UseListOrderStack &Stack) {
186 // Predict use-list order for this one.
187 using Entry = std::pair<const Use *, unsigned>;
188 SmallVector<Entry, 64> List;
189 for (const Use &U : V->uses())
190 // Check if this user will be serialized.
191 if (OM.lookup(U.getUser()).first)
192 List.push_back(std::make_pair(&U, List.size()));
194 if (List.size() < 2)
195 // We may have lost some users.
196 return;
198 bool GetsReversed =
199 !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
200 if (auto *BA = dyn_cast<BlockAddress>(V))
201 ID = OM.lookup(BA->getBasicBlock()).first;
202 llvm::sort(List, [&](const Entry &L, const Entry &R) {
203 const Use *LU = L.first;
204 const Use *RU = R.first;
205 if (LU == RU)
206 return false;
208 auto LID = OM.lookup(LU->getUser()).first;
209 auto RID = OM.lookup(RU->getUser()).first;
211 // If ID is 4, then expect: 7 6 5 1 2 3.
212 if (LID < RID) {
213 if (GetsReversed)
214 if (RID <= ID)
215 return true;
216 return false;
218 if (RID < LID) {
219 if (GetsReversed)
220 if (LID <= ID)
221 return false;
222 return true;
225 // LID and RID are equal, so we have different operands of the same user.
226 // Assume operands are added in order for all instructions.
227 if (GetsReversed)
228 if (LID <= ID)
229 return LU->getOperandNo() < RU->getOperandNo();
230 return LU->getOperandNo() > RU->getOperandNo();
233 if (std::is_sorted(
234 List.begin(), List.end(),
235 [](const Entry &L, const Entry &R) { return L.second < R.second; }))
236 // Order is already correct.
237 return;
239 // Store the shuffle.
240 Stack.emplace_back(V, F, List.size());
241 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
242 for (size_t I = 0, E = List.size(); I != E; ++I)
243 Stack.back().Shuffle[I] = List[I].second;
246 static void predictValueUseListOrder(const Value *V, const Function *F,
247 OrderMap &OM, UseListOrderStack &Stack) {
248 auto &IDPair = OM[V];
249 assert(IDPair.first && "Unmapped value");
250 if (IDPair.second)
251 // Already predicted.
252 return;
254 // Do the actual prediction.
255 IDPair.second = true;
256 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
257 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
259 // Recursive descent into constants.
260 if (const Constant *C = dyn_cast<Constant>(V))
261 if (C->getNumOperands()) // Visit GlobalValues.
262 for (const Value *Op : C->operands())
263 if (isa<Constant>(Op)) // Visit GlobalValues.
264 predictValueUseListOrder(Op, F, OM, Stack);
267 static UseListOrderStack predictUseListOrder(const Module *M) {
268 OrderMap OM = orderModule(M);
270 // Use-list orders need to be serialized after all the users have been added
271 // to a value, or else the shuffles will be incomplete. Store them per
272 // function in a stack.
274 // Aside from function order, the order of values doesn't matter much here.
275 UseListOrderStack Stack;
277 // We want to visit the functions backward now so we can list function-local
278 // constants in the last Function they're used in. Module-level constants
279 // have already been visited above.
280 for (const Function &F : make_range(M->rbegin(), M->rend())) {
281 if (F.isDeclaration())
282 continue;
283 for (const BasicBlock &BB : F)
284 predictValueUseListOrder(&BB, &F, OM, Stack);
285 for (const Argument &A : F.args())
286 predictValueUseListOrder(&A, &F, OM, Stack);
287 for (const BasicBlock &BB : F)
288 for (const Instruction &I : BB)
289 for (const Value *Op : I.operands())
290 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
291 predictValueUseListOrder(Op, &F, OM, Stack);
292 for (const BasicBlock &BB : F)
293 for (const Instruction &I : BB)
294 predictValueUseListOrder(&I, &F, OM, Stack);
297 // Visit globals last.
298 for (const GlobalVariable &G : M->globals())
299 predictValueUseListOrder(&G, nullptr, OM, Stack);
300 for (const Function &F : *M)
301 predictValueUseListOrder(&F, nullptr, OM, Stack);
302 for (const GlobalAlias &A : M->aliases())
303 predictValueUseListOrder(&A, nullptr, OM, Stack);
304 for (const GlobalIFunc &I : M->ifuncs())
305 predictValueUseListOrder(&I, nullptr, OM, Stack);
306 for (const GlobalVariable &G : M->globals())
307 if (G.hasInitializer())
308 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
309 for (const GlobalAlias &A : M->aliases())
310 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
311 for (const GlobalIFunc &I : M->ifuncs())
312 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
313 for (const Function &F : *M)
314 for (const Use &U : F.operands())
315 predictValueUseListOrder(U.get(), nullptr, OM, Stack);
317 return Stack;
320 static const Module *getModuleFromVal(const Value *V) {
321 if (const Argument *MA = dyn_cast<Argument>(V))
322 return MA->getParent() ? MA->getParent()->getParent() : nullptr;
324 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
325 return BB->getParent() ? BB->getParent()->getParent() : nullptr;
327 if (const Instruction *I = dyn_cast<Instruction>(V)) {
328 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
329 return M ? M->getParent() : nullptr;
332 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
333 return GV->getParent();
335 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
336 for (const User *U : MAV->users())
337 if (isa<Instruction>(U))
338 if (const Module *M = getModuleFromVal(U))
339 return M;
340 return nullptr;
343 return nullptr;
346 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
347 switch (cc) {
348 default: Out << "cc" << cc; break;
349 case CallingConv::Fast: Out << "fastcc"; break;
350 case CallingConv::Cold: Out << "coldcc"; break;
351 case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
352 case CallingConv::AnyReg: Out << "anyregcc"; break;
353 case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
354 case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
355 case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break;
356 case CallingConv::GHC: Out << "ghccc"; break;
357 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
358 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
359 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
360 case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break;
361 case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
362 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
363 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
364 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
365 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
366 case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
367 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
368 case CallingConv::AVR_INTR: Out << "avr_intrcc "; break;
369 case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break;
370 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
371 case CallingConv::PTX_Device: Out << "ptx_device"; break;
372 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
373 case CallingConv::Win64: Out << "win64cc"; break;
374 case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
375 case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
376 case CallingConv::Swift: Out << "swiftcc"; break;
377 case CallingConv::X86_INTR: Out << "x86_intrcc"; break;
378 case CallingConv::HHVM: Out << "hhvmcc"; break;
379 case CallingConv::HHVM_C: Out << "hhvm_ccc"; break;
380 case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break;
381 case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break;
382 case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break;
383 case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break;
384 case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break;
385 case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break;
386 case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break;
387 case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
391 enum PrefixType {
392 GlobalPrefix,
393 ComdatPrefix,
394 LabelPrefix,
395 LocalPrefix,
396 NoPrefix
399 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
400 assert(!Name.empty() && "Cannot get empty name!");
402 // Scan the name to see if it needs quotes first.
403 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
404 if (!NeedsQuotes) {
405 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
406 // By making this unsigned, the value passed in to isalnum will always be
407 // in the range 0-255. This is important when building with MSVC because
408 // its implementation will assert. This situation can arise when dealing
409 // with UTF-8 multibyte characters.
410 unsigned char C = Name[i];
411 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
412 C != '_') {
413 NeedsQuotes = true;
414 break;
419 // If we didn't need any quotes, just write out the name in one blast.
420 if (!NeedsQuotes) {
421 OS << Name;
422 return;
425 // Okay, we need quotes. Output the quotes and escape any scary characters as
426 // needed.
427 OS << '"';
428 printEscapedString(Name, OS);
429 OS << '"';
432 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
433 /// (if the string only contains simple characters) or is surrounded with ""'s
434 /// (if it has special chars in it). Print it out.
435 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
436 switch (Prefix) {
437 case NoPrefix:
438 break;
439 case GlobalPrefix:
440 OS << '@';
441 break;
442 case ComdatPrefix:
443 OS << '$';
444 break;
445 case LabelPrefix:
446 break;
447 case LocalPrefix:
448 OS << '%';
449 break;
451 printLLVMNameWithoutPrefix(OS, Name);
454 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
455 /// (if the string only contains simple characters) or is surrounded with ""'s
456 /// (if it has special chars in it). Print it out.
457 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
458 PrintLLVMName(OS, V->getName(),
459 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
462 namespace {
464 class TypePrinting {
465 public:
466 TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
468 TypePrinting(const TypePrinting &) = delete;
469 TypePrinting &operator=(const TypePrinting &) = delete;
471 /// The named types that are used by the current module.
472 TypeFinder &getNamedTypes();
474 /// The numbered types, number to type mapping.
475 std::vector<StructType *> &getNumberedTypes();
477 bool empty();
479 void print(Type *Ty, raw_ostream &OS);
481 void printStructBody(StructType *Ty, raw_ostream &OS);
483 private:
484 void incorporateTypes();
486 /// A module to process lazily when needed. Set to nullptr as soon as used.
487 const Module *DeferredM;
489 TypeFinder NamedTypes;
491 // The numbered types, along with their value.
492 DenseMap<StructType *, unsigned> Type2Number;
494 std::vector<StructType *> NumberedTypes;
497 } // end anonymous namespace
499 TypeFinder &TypePrinting::getNamedTypes() {
500 incorporateTypes();
501 return NamedTypes;
504 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
505 incorporateTypes();
507 // We know all the numbers that each type is used and we know that it is a
508 // dense assignment. Convert the map to an index table, if it's not done
509 // already (judging from the sizes):
510 if (NumberedTypes.size() == Type2Number.size())
511 return NumberedTypes;
513 NumberedTypes.resize(Type2Number.size());
514 for (const auto &P : Type2Number) {
515 assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
516 assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
517 NumberedTypes[P.second] = P.first;
519 return NumberedTypes;
522 bool TypePrinting::empty() {
523 incorporateTypes();
524 return NamedTypes.empty() && Type2Number.empty();
527 void TypePrinting::incorporateTypes() {
528 if (!DeferredM)
529 return;
531 NamedTypes.run(*DeferredM, false);
532 DeferredM = nullptr;
534 // The list of struct types we got back includes all the struct types, split
535 // the unnamed ones out to a numbering and remove the anonymous structs.
536 unsigned NextNumber = 0;
538 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
539 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
540 StructType *STy = *I;
542 // Ignore anonymous types.
543 if (STy->isLiteral())
544 continue;
546 if (STy->getName().empty())
547 Type2Number[STy] = NextNumber++;
548 else
549 *NextToUse++ = STy;
552 NamedTypes.erase(NextToUse, NamedTypes.end());
555 /// Write the specified type to the specified raw_ostream, making use of type
556 /// names or up references to shorten the type name where possible.
557 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
558 switch (Ty->getTypeID()) {
559 case Type::VoidTyID: OS << "void"; return;
560 case Type::HalfTyID: OS << "half"; return;
561 case Type::FloatTyID: OS << "float"; return;
562 case Type::DoubleTyID: OS << "double"; return;
563 case Type::X86_FP80TyID: OS << "x86_fp80"; return;
564 case Type::FP128TyID: OS << "fp128"; return;
565 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
566 case Type::LabelTyID: OS << "label"; return;
567 case Type::MetadataTyID: OS << "metadata"; return;
568 case Type::X86_MMXTyID: OS << "x86_mmx"; return;
569 case Type::TokenTyID: OS << "token"; return;
570 case Type::IntegerTyID:
571 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
572 return;
574 case Type::FunctionTyID: {
575 FunctionType *FTy = cast<FunctionType>(Ty);
576 print(FTy->getReturnType(), OS);
577 OS << " (";
578 for (FunctionType::param_iterator I = FTy->param_begin(),
579 E = FTy->param_end(); I != E; ++I) {
580 if (I != FTy->param_begin())
581 OS << ", ";
582 print(*I, OS);
584 if (FTy->isVarArg()) {
585 if (FTy->getNumParams()) OS << ", ";
586 OS << "...";
588 OS << ')';
589 return;
591 case Type::StructTyID: {
592 StructType *STy = cast<StructType>(Ty);
594 if (STy->isLiteral())
595 return printStructBody(STy, OS);
597 if (!STy->getName().empty())
598 return PrintLLVMName(OS, STy->getName(), LocalPrefix);
600 incorporateTypes();
601 const auto I = Type2Number.find(STy);
602 if (I != Type2Number.end())
603 OS << '%' << I->second;
604 else // Not enumerated, print the hex address.
605 OS << "%\"type " << STy << '\"';
606 return;
608 case Type::PointerTyID: {
609 PointerType *PTy = cast<PointerType>(Ty);
610 print(PTy->getElementType(), OS);
611 if (unsigned AddressSpace = PTy->getAddressSpace())
612 OS << " addrspace(" << AddressSpace << ')';
613 OS << '*';
614 return;
616 case Type::ArrayTyID: {
617 ArrayType *ATy = cast<ArrayType>(Ty);
618 OS << '[' << ATy->getNumElements() << " x ";
619 print(ATy->getElementType(), OS);
620 OS << ']';
621 return;
623 case Type::VectorTyID: {
624 VectorType *PTy = cast<VectorType>(Ty);
625 OS << "<" << PTy->getNumElements() << " x ";
626 print(PTy->getElementType(), OS);
627 OS << '>';
628 return;
631 llvm_unreachable("Invalid TypeID");
634 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
635 if (STy->isOpaque()) {
636 OS << "opaque";
637 return;
640 if (STy->isPacked())
641 OS << '<';
643 if (STy->getNumElements() == 0) {
644 OS << "{}";
645 } else {
646 StructType::element_iterator I = STy->element_begin();
647 OS << "{ ";
648 print(*I++, OS);
649 for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
650 OS << ", ";
651 print(*I, OS);
654 OS << " }";
656 if (STy->isPacked())
657 OS << '>';
660 namespace llvm {
662 //===----------------------------------------------------------------------===//
663 // SlotTracker Class: Enumerate slot numbers for unnamed values
664 //===----------------------------------------------------------------------===//
665 /// This class provides computation of slot numbers for LLVM Assembly writing.
667 class SlotTracker {
668 public:
669 /// ValueMap - A mapping of Values to slot numbers.
670 using ValueMap = DenseMap<const Value *, unsigned>;
672 private:
673 /// TheModule - The module for which we are holding slot numbers.
674 const Module* TheModule;
676 /// TheFunction - The function for which we are holding slot numbers.
677 const Function* TheFunction = nullptr;
678 bool FunctionProcessed = false;
679 bool ShouldInitializeAllMetadata;
681 /// The summary index for which we are holding slot numbers.
682 const ModuleSummaryIndex *TheIndex = nullptr;
684 /// mMap - The slot map for the module level data.
685 ValueMap mMap;
686 unsigned mNext = 0;
688 /// fMap - The slot map for the function level data.
689 ValueMap fMap;
690 unsigned fNext = 0;
692 /// mdnMap - Map for MDNodes.
693 DenseMap<const MDNode*, unsigned> mdnMap;
694 unsigned mdnNext = 0;
696 /// asMap - The slot map for attribute sets.
697 DenseMap<AttributeSet, unsigned> asMap;
698 unsigned asNext = 0;
700 /// ModulePathMap - The slot map for Module paths used in the summary index.
701 StringMap<unsigned> ModulePathMap;
702 unsigned ModulePathNext = 0;
704 /// GUIDMap - The slot map for GUIDs used in the summary index.
705 DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
706 unsigned GUIDNext = 0;
708 /// TypeIdMap - The slot map for type ids used in the summary index.
709 StringMap<unsigned> TypeIdMap;
710 unsigned TypeIdNext = 0;
712 public:
713 /// Construct from a module.
715 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
716 /// functions, giving correct numbering for metadata referenced only from
717 /// within a function (even if no functions have been initialized).
718 explicit SlotTracker(const Module *M,
719 bool ShouldInitializeAllMetadata = false);
721 /// Construct from a function, starting out in incorp state.
723 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
724 /// functions, giving correct numbering for metadata referenced only from
725 /// within a function (even if no functions have been initialized).
726 explicit SlotTracker(const Function *F,
727 bool ShouldInitializeAllMetadata = false);
729 /// Construct from a module summary index.
730 explicit SlotTracker(const ModuleSummaryIndex *Index);
732 SlotTracker(const SlotTracker &) = delete;
733 SlotTracker &operator=(const SlotTracker &) = delete;
735 /// Return the slot number of the specified value in it's type
736 /// plane. If something is not in the SlotTracker, return -1.
737 int getLocalSlot(const Value *V);
738 int getGlobalSlot(const GlobalValue *V);
739 int getMetadataSlot(const MDNode *N);
740 int getAttributeGroupSlot(AttributeSet AS);
741 int getModulePathSlot(StringRef Path);
742 int getGUIDSlot(GlobalValue::GUID GUID);
743 int getTypeIdSlot(StringRef Id);
745 /// If you'd like to deal with a function instead of just a module, use
746 /// this method to get its data into the SlotTracker.
747 void incorporateFunction(const Function *F) {
748 TheFunction = F;
749 FunctionProcessed = false;
752 const Function *getFunction() const { return TheFunction; }
754 /// After calling incorporateFunction, use this method to remove the
755 /// most recently incorporated function from the SlotTracker. This
756 /// will reset the state of the machine back to just the module contents.
757 void purgeFunction();
759 /// MDNode map iterators.
760 using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
762 mdn_iterator mdn_begin() { return mdnMap.begin(); }
763 mdn_iterator mdn_end() { return mdnMap.end(); }
764 unsigned mdn_size() const { return mdnMap.size(); }
765 bool mdn_empty() const { return mdnMap.empty(); }
767 /// AttributeSet map iterators.
768 using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
770 as_iterator as_begin() { return asMap.begin(); }
771 as_iterator as_end() { return asMap.end(); }
772 unsigned as_size() const { return asMap.size(); }
773 bool as_empty() const { return asMap.empty(); }
775 /// GUID map iterators.
776 using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
778 /// These functions do the actual initialization.
779 inline void initializeIfNeeded();
780 void initializeIndexIfNeeded();
782 // Implementation Details
783 private:
784 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
785 void CreateModuleSlot(const GlobalValue *V);
787 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
788 void CreateMetadataSlot(const MDNode *N);
790 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
791 void CreateFunctionSlot(const Value *V);
793 /// Insert the specified AttributeSet into the slot table.
794 void CreateAttributeSetSlot(AttributeSet AS);
796 inline void CreateModulePathSlot(StringRef Path);
797 void CreateGUIDSlot(GlobalValue::GUID GUID);
798 void CreateTypeIdSlot(StringRef Id);
800 /// Add all of the module level global variables (and their initializers)
801 /// and function declarations, but not the contents of those functions.
802 void processModule();
803 void processIndex();
805 /// Add all of the functions arguments, basic blocks, and instructions.
806 void processFunction();
808 /// Add the metadata directly attached to a GlobalObject.
809 void processGlobalObjectMetadata(const GlobalObject &GO);
811 /// Add all of the metadata from a function.
812 void processFunctionMetadata(const Function &F);
814 /// Add all of the metadata from an instruction.
815 void processInstructionMetadata(const Instruction &I);
818 } // end namespace llvm
820 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
821 const Function *F)
822 : M(M), F(F), Machine(&Machine) {}
824 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
825 bool ShouldInitializeAllMetadata)
826 : ShouldCreateStorage(M),
827 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
829 ModuleSlotTracker::~ModuleSlotTracker() = default;
831 SlotTracker *ModuleSlotTracker::getMachine() {
832 if (!ShouldCreateStorage)
833 return Machine;
835 ShouldCreateStorage = false;
836 MachineStorage =
837 llvm::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
838 Machine = MachineStorage.get();
839 return Machine;
842 void ModuleSlotTracker::incorporateFunction(const Function &F) {
843 // Using getMachine() may lazily create the slot tracker.
844 if (!getMachine())
845 return;
847 // Nothing to do if this is the right function already.
848 if (this->F == &F)
849 return;
850 if (this->F)
851 Machine->purgeFunction();
852 Machine->incorporateFunction(&F);
853 this->F = &F;
856 int ModuleSlotTracker::getLocalSlot(const Value *V) {
857 assert(F && "No function incorporated");
858 return Machine->getLocalSlot(V);
861 static SlotTracker *createSlotTracker(const Value *V) {
862 if (const Argument *FA = dyn_cast<Argument>(V))
863 return new SlotTracker(FA->getParent());
865 if (const Instruction *I = dyn_cast<Instruction>(V))
866 if (I->getParent())
867 return new SlotTracker(I->getParent()->getParent());
869 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
870 return new SlotTracker(BB->getParent());
872 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
873 return new SlotTracker(GV->getParent());
875 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
876 return new SlotTracker(GA->getParent());
878 if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
879 return new SlotTracker(GIF->getParent());
881 if (const Function *Func = dyn_cast<Function>(V))
882 return new SlotTracker(Func);
884 return nullptr;
887 #if 0
888 #define ST_DEBUG(X) dbgs() << X
889 #else
890 #define ST_DEBUG(X)
891 #endif
893 // Module level constructor. Causes the contents of the Module (sans functions)
894 // to be added to the slot table.
895 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
896 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
898 // Function level constructor. Causes the contents of the Module and the one
899 // function provided to be added to the slot table.
900 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
901 : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
902 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
904 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
905 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
907 inline void SlotTracker::initializeIfNeeded() {
908 if (TheModule) {
909 processModule();
910 TheModule = nullptr; ///< Prevent re-processing next time we're called.
913 if (TheFunction && !FunctionProcessed)
914 processFunction();
917 void SlotTracker::initializeIndexIfNeeded() {
918 if (!TheIndex)
919 return;
920 processIndex();
921 TheIndex = nullptr; ///< Prevent re-processing next time we're called.
924 // Iterate through all the global variables, functions, and global
925 // variable initializers and create slots for them.
926 void SlotTracker::processModule() {
927 ST_DEBUG("begin processModule!\n");
929 // Add all of the unnamed global variables to the value table.
930 for (const GlobalVariable &Var : TheModule->globals()) {
931 if (!Var.hasName())
932 CreateModuleSlot(&Var);
933 processGlobalObjectMetadata(Var);
934 auto Attrs = Var.getAttributes();
935 if (Attrs.hasAttributes())
936 CreateAttributeSetSlot(Attrs);
939 for (const GlobalAlias &A : TheModule->aliases()) {
940 if (!A.hasName())
941 CreateModuleSlot(&A);
944 for (const GlobalIFunc &I : TheModule->ifuncs()) {
945 if (!I.hasName())
946 CreateModuleSlot(&I);
949 // Add metadata used by named metadata.
950 for (const NamedMDNode &NMD : TheModule->named_metadata()) {
951 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
952 CreateMetadataSlot(NMD.getOperand(i));
955 for (const Function &F : *TheModule) {
956 if (!F.hasName())
957 // Add all the unnamed functions to the table.
958 CreateModuleSlot(&F);
960 if (ShouldInitializeAllMetadata)
961 processFunctionMetadata(F);
963 // Add all the function attributes to the table.
964 // FIXME: Add attributes of other objects?
965 AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
966 if (FnAttrs.hasAttributes())
967 CreateAttributeSetSlot(FnAttrs);
970 ST_DEBUG("end processModule!\n");
973 // Process the arguments, basic blocks, and instructions of a function.
974 void SlotTracker::processFunction() {
975 ST_DEBUG("begin processFunction!\n");
976 fNext = 0;
978 // Process function metadata if it wasn't hit at the module-level.
979 if (!ShouldInitializeAllMetadata)
980 processFunctionMetadata(*TheFunction);
982 // Add all the function arguments with no names.
983 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
984 AE = TheFunction->arg_end(); AI != AE; ++AI)
985 if (!AI->hasName())
986 CreateFunctionSlot(&*AI);
988 ST_DEBUG("Inserting Instructions:\n");
990 // Add all of the basic blocks and instructions with no names.
991 for (auto &BB : *TheFunction) {
992 if (!BB.hasName())
993 CreateFunctionSlot(&BB);
995 for (auto &I : BB) {
996 if (!I.getType()->isVoidTy() && !I.hasName())
997 CreateFunctionSlot(&I);
999 // We allow direct calls to any llvm.foo function here, because the
1000 // target may not be linked into the optimizer.
1001 if (auto CS = ImmutableCallSite(&I)) {
1002 // Add all the call attributes to the table.
1003 AttributeSet Attrs = CS.getAttributes().getFnAttributes();
1004 if (Attrs.hasAttributes())
1005 CreateAttributeSetSlot(Attrs);
1010 FunctionProcessed = true;
1012 ST_DEBUG("end processFunction!\n");
1015 // Iterate through all the GUID in the index and create slots for them.
1016 void SlotTracker::processIndex() {
1017 ST_DEBUG("begin processIndex!\n");
1018 assert(TheIndex);
1020 // The first block of slots are just the module ids, which start at 0 and are
1021 // assigned consecutively. Since the StringMap iteration order isn't
1022 // guaranteed, use a std::map to order by module ID before assigning slots.
1023 std::map<uint64_t, StringRef> ModuleIdToPathMap;
1024 for (auto &ModPath : TheIndex->modulePaths())
1025 ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
1026 for (auto &ModPair : ModuleIdToPathMap)
1027 CreateModulePathSlot(ModPair.second);
1029 // Start numbering the GUIDs after the module ids.
1030 GUIDNext = ModulePathNext;
1032 for (auto &GlobalList : *TheIndex)
1033 CreateGUIDSlot(GlobalList.first);
1035 // Start numbering the TypeIds after the GUIDs.
1036 TypeIdNext = GUIDNext;
1038 for (auto TidIter = TheIndex->typeIds().begin();
1039 TidIter != TheIndex->typeIds().end(); TidIter++)
1040 CreateTypeIdSlot(TidIter->second.first);
1042 ST_DEBUG("end processIndex!\n");
1045 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1046 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1047 GO.getAllMetadata(MDs);
1048 for (auto &MD : MDs)
1049 CreateMetadataSlot(MD.second);
1052 void SlotTracker::processFunctionMetadata(const Function &F) {
1053 processGlobalObjectMetadata(F);
1054 for (auto &BB : F) {
1055 for (auto &I : BB)
1056 processInstructionMetadata(I);
1060 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1061 // Process metadata used directly by intrinsics.
1062 if (const CallInst *CI = dyn_cast<CallInst>(&I))
1063 if (Function *F = CI->getCalledFunction())
1064 if (F->isIntrinsic())
1065 for (auto &Op : I.operands())
1066 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1067 if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1068 CreateMetadataSlot(N);
1070 // Process metadata attached to this instruction.
1071 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1072 I.getAllMetadata(MDs);
1073 for (auto &MD : MDs)
1074 CreateMetadataSlot(MD.second);
1077 /// Clean up after incorporating a function. This is the only way to get out of
1078 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1079 /// incorporation state is indicated by TheFunction != 0.
1080 void SlotTracker::purgeFunction() {
1081 ST_DEBUG("begin purgeFunction!\n");
1082 fMap.clear(); // Simply discard the function level map
1083 TheFunction = nullptr;
1084 FunctionProcessed = false;
1085 ST_DEBUG("end purgeFunction!\n");
1088 /// getGlobalSlot - Get the slot number of a global value.
1089 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1090 // Check for uninitialized state and do lazy initialization.
1091 initializeIfNeeded();
1093 // Find the value in the module map
1094 ValueMap::iterator MI = mMap.find(V);
1095 return MI == mMap.end() ? -1 : (int)MI->second;
1098 /// getMetadataSlot - Get the slot number of a MDNode.
1099 int SlotTracker::getMetadataSlot(const MDNode *N) {
1100 // Check for uninitialized state and do lazy initialization.
1101 initializeIfNeeded();
1103 // Find the MDNode in the module map
1104 mdn_iterator MI = mdnMap.find(N);
1105 return MI == mdnMap.end() ? -1 : (int)MI->second;
1108 /// getLocalSlot - Get the slot number for a value that is local to a function.
1109 int SlotTracker::getLocalSlot(const Value *V) {
1110 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1112 // Check for uninitialized state and do lazy initialization.
1113 initializeIfNeeded();
1115 ValueMap::iterator FI = fMap.find(V);
1116 return FI == fMap.end() ? -1 : (int)FI->second;
1119 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1120 // Check for uninitialized state and do lazy initialization.
1121 initializeIfNeeded();
1123 // Find the AttributeSet in the module map.
1124 as_iterator AI = asMap.find(AS);
1125 return AI == asMap.end() ? -1 : (int)AI->second;
1128 int SlotTracker::getModulePathSlot(StringRef Path) {
1129 // Check for uninitialized state and do lazy initialization.
1130 initializeIndexIfNeeded();
1132 // Find the Module path in the map
1133 auto I = ModulePathMap.find(Path);
1134 return I == ModulePathMap.end() ? -1 : (int)I->second;
1137 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1138 // Check for uninitialized state and do lazy initialization.
1139 initializeIndexIfNeeded();
1141 // Find the GUID in the map
1142 guid_iterator I = GUIDMap.find(GUID);
1143 return I == GUIDMap.end() ? -1 : (int)I->second;
1146 int SlotTracker::getTypeIdSlot(StringRef Id) {
1147 // Check for uninitialized state and do lazy initialization.
1148 initializeIndexIfNeeded();
1150 // Find the TypeId string in the map
1151 auto I = TypeIdMap.find(Id);
1152 return I == TypeIdMap.end() ? -1 : (int)I->second;
1155 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1156 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1157 assert(V && "Can't insert a null Value into SlotTracker!");
1158 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1159 assert(!V->hasName() && "Doesn't need a slot!");
1161 unsigned DestSlot = mNext++;
1162 mMap[V] = DestSlot;
1164 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1165 DestSlot << " [");
1166 // G = Global, F = Function, A = Alias, I = IFunc, o = other
1167 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1168 (isa<Function>(V) ? 'F' :
1169 (isa<GlobalAlias>(V) ? 'A' :
1170 (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1173 /// CreateSlot - Create a new slot for the specified value if it has no name.
1174 void SlotTracker::CreateFunctionSlot(const Value *V) {
1175 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1177 unsigned DestSlot = fNext++;
1178 fMap[V] = DestSlot;
1180 // G = Global, F = Function, o = other
1181 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1182 DestSlot << " [o]\n");
1185 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1186 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1187 assert(N && "Can't insert a null Value into SlotTracker!");
1189 // Don't make slots for DIExpressions. We just print them inline everywhere.
1190 if (isa<DIExpression>(N))
1191 return;
1193 unsigned DestSlot = mdnNext;
1194 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1195 return;
1196 ++mdnNext;
1198 // Recursively add any MDNodes referenced by operands.
1199 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1200 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1201 CreateMetadataSlot(Op);
1204 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1205 assert(AS.hasAttributes() && "Doesn't need a slot!");
1207 as_iterator I = asMap.find(AS);
1208 if (I != asMap.end())
1209 return;
1211 unsigned DestSlot = asNext++;
1212 asMap[AS] = DestSlot;
1215 /// Create a new slot for the specified Module
1216 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1217 ModulePathMap[Path] = ModulePathNext++;
1220 /// Create a new slot for the specified GUID
1221 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1222 GUIDMap[GUID] = GUIDNext++;
1225 /// Create a new slot for the specified Id
1226 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1227 TypeIdMap[Id] = TypeIdNext++;
1230 //===----------------------------------------------------------------------===//
1231 // AsmWriter Implementation
1232 //===----------------------------------------------------------------------===//
1234 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1235 TypePrinting *TypePrinter,
1236 SlotTracker *Machine,
1237 const Module *Context);
1239 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1240 TypePrinting *TypePrinter,
1241 SlotTracker *Machine, const Module *Context,
1242 bool FromValue = false);
1244 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1245 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1246 // 'Fast' is an abbreviation for all fast-math-flags.
1247 if (FPO->isFast())
1248 Out << " fast";
1249 else {
1250 if (FPO->hasAllowReassoc())
1251 Out << " reassoc";
1252 if (FPO->hasNoNaNs())
1253 Out << " nnan";
1254 if (FPO->hasNoInfs())
1255 Out << " ninf";
1256 if (FPO->hasNoSignedZeros())
1257 Out << " nsz";
1258 if (FPO->hasAllowReciprocal())
1259 Out << " arcp";
1260 if (FPO->hasAllowContract())
1261 Out << " contract";
1262 if (FPO->hasApproxFunc())
1263 Out << " afn";
1267 if (const OverflowingBinaryOperator *OBO =
1268 dyn_cast<OverflowingBinaryOperator>(U)) {
1269 if (OBO->hasNoUnsignedWrap())
1270 Out << " nuw";
1271 if (OBO->hasNoSignedWrap())
1272 Out << " nsw";
1273 } else if (const PossiblyExactOperator *Div =
1274 dyn_cast<PossiblyExactOperator>(U)) {
1275 if (Div->isExact())
1276 Out << " exact";
1277 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1278 if (GEP->isInBounds())
1279 Out << " inbounds";
1283 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1284 TypePrinting &TypePrinter,
1285 SlotTracker *Machine,
1286 const Module *Context) {
1287 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1288 if (CI->getType()->isIntegerTy(1)) {
1289 Out << (CI->getZExtValue() ? "true" : "false");
1290 return;
1292 Out << CI->getValue();
1293 return;
1296 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1297 const APFloat &APF = CFP->getValueAPF();
1298 if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1299 &APF.getSemantics() == &APFloat::IEEEdouble()) {
1300 // We would like to output the FP constant value in exponential notation,
1301 // but we cannot do this if doing so will lose precision. Check here to
1302 // make sure that we only output it in exponential format if we can parse
1303 // the value back and get the same value.
1305 bool ignored;
1306 bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1307 bool isInf = APF.isInfinity();
1308 bool isNaN = APF.isNaN();
1309 if (!isInf && !isNaN) {
1310 double Val = isDouble ? APF.convertToDouble() : APF.convertToFloat();
1311 SmallString<128> StrVal;
1312 APF.toString(StrVal, 6, 0, false);
1313 // Check to make sure that the stringized number is not some string like
1314 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
1315 // that the string matches the "[-+]?[0-9]" regex.
1317 assert(((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1318 ((StrVal[0] == '-' || StrVal[0] == '+') &&
1319 (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
1320 "[-+]?[0-9] regex does not match!");
1321 // Reparse stringized version!
1322 if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1323 Out << StrVal;
1324 return;
1327 // Otherwise we could not reparse it to exactly the same value, so we must
1328 // output the string in hexadecimal format! Note that loading and storing
1329 // floating point types changes the bits of NaNs on some hosts, notably
1330 // x86, so we must not use these types.
1331 static_assert(sizeof(double) == sizeof(uint64_t),
1332 "assuming that double is 64 bits!");
1333 APFloat apf = APF;
1334 // Floats are represented in ASCII IR as double, convert.
1335 if (!isDouble)
1336 apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1337 &ignored);
1338 Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1339 return;
1342 // Either half, or some form of long double.
1343 // These appear as a magic letter identifying the type, then a
1344 // fixed number of hex digits.
1345 Out << "0x";
1346 APInt API = APF.bitcastToAPInt();
1347 if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1348 Out << 'K';
1349 Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1350 /*Upper=*/true);
1351 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1352 /*Upper=*/true);
1353 return;
1354 } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1355 Out << 'L';
1356 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1357 /*Upper=*/true);
1358 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1359 /*Upper=*/true);
1360 } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1361 Out << 'M';
1362 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1363 /*Upper=*/true);
1364 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1365 /*Upper=*/true);
1366 } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1367 Out << 'H';
1368 Out << format_hex_no_prefix(API.getZExtValue(), 4,
1369 /*Upper=*/true);
1370 } else
1371 llvm_unreachable("Unsupported floating point type");
1372 return;
1375 if (isa<ConstantAggregateZero>(CV)) {
1376 Out << "zeroinitializer";
1377 return;
1380 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1381 Out << "blockaddress(";
1382 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1383 Context);
1384 Out << ", ";
1385 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1386 Context);
1387 Out << ")";
1388 return;
1391 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1392 Type *ETy = CA->getType()->getElementType();
1393 Out << '[';
1394 TypePrinter.print(ETy, Out);
1395 Out << ' ';
1396 WriteAsOperandInternal(Out, CA->getOperand(0),
1397 &TypePrinter, Machine,
1398 Context);
1399 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1400 Out << ", ";
1401 TypePrinter.print(ETy, Out);
1402 Out << ' ';
1403 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1404 Context);
1406 Out << ']';
1407 return;
1410 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1411 // As a special case, print the array as a string if it is an array of
1412 // i8 with ConstantInt values.
1413 if (CA->isString()) {
1414 Out << "c\"";
1415 printEscapedString(CA->getAsString(), Out);
1416 Out << '"';
1417 return;
1420 Type *ETy = CA->getType()->getElementType();
1421 Out << '[';
1422 TypePrinter.print(ETy, Out);
1423 Out << ' ';
1424 WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1425 &TypePrinter, Machine,
1426 Context);
1427 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1428 Out << ", ";
1429 TypePrinter.print(ETy, Out);
1430 Out << ' ';
1431 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1432 Machine, Context);
1434 Out << ']';
1435 return;
1438 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1439 if (CS->getType()->isPacked())
1440 Out << '<';
1441 Out << '{';
1442 unsigned N = CS->getNumOperands();
1443 if (N) {
1444 Out << ' ';
1445 TypePrinter.print(CS->getOperand(0)->getType(), Out);
1446 Out << ' ';
1448 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1449 Context);
1451 for (unsigned i = 1; i < N; i++) {
1452 Out << ", ";
1453 TypePrinter.print(CS->getOperand(i)->getType(), Out);
1454 Out << ' ';
1456 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1457 Context);
1459 Out << ' ';
1462 Out << '}';
1463 if (CS->getType()->isPacked())
1464 Out << '>';
1465 return;
1468 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1469 Type *ETy = CV->getType()->getVectorElementType();
1470 Out << '<';
1471 TypePrinter.print(ETy, Out);
1472 Out << ' ';
1473 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1474 Machine, Context);
1475 for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1476 Out << ", ";
1477 TypePrinter.print(ETy, Out);
1478 Out << ' ';
1479 WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1480 Machine, Context);
1482 Out << '>';
1483 return;
1486 if (isa<ConstantPointerNull>(CV)) {
1487 Out << "null";
1488 return;
1491 if (isa<ConstantTokenNone>(CV)) {
1492 Out << "none";
1493 return;
1496 if (isa<UndefValue>(CV)) {
1497 Out << "undef";
1498 return;
1501 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1502 Out << CE->getOpcodeName();
1503 WriteOptimizationInfo(Out, CE);
1504 if (CE->isCompare())
1505 Out << ' ' << CmpInst::getPredicateName(
1506 static_cast<CmpInst::Predicate>(CE->getPredicate()));
1507 Out << " (";
1509 Optional<unsigned> InRangeOp;
1510 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1511 TypePrinter.print(GEP->getSourceElementType(), Out);
1512 Out << ", ";
1513 InRangeOp = GEP->getInRangeIndex();
1514 if (InRangeOp)
1515 ++*InRangeOp;
1518 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1519 if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1520 Out << "inrange ";
1521 TypePrinter.print((*OI)->getType(), Out);
1522 Out << ' ';
1523 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1524 if (OI+1 != CE->op_end())
1525 Out << ", ";
1528 if (CE->hasIndices()) {
1529 ArrayRef<unsigned> Indices = CE->getIndices();
1530 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1531 Out << ", " << Indices[i];
1534 if (CE->isCast()) {
1535 Out << " to ";
1536 TypePrinter.print(CE->getType(), Out);
1539 Out << ')';
1540 return;
1543 Out << "<placeholder or erroneous Constant>";
1546 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1547 TypePrinting *TypePrinter, SlotTracker *Machine,
1548 const Module *Context) {
1549 Out << "!{";
1550 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1551 const Metadata *MD = Node->getOperand(mi);
1552 if (!MD)
1553 Out << "null";
1554 else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1555 Value *V = MDV->getValue();
1556 TypePrinter->print(V->getType(), Out);
1557 Out << ' ';
1558 WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1559 } else {
1560 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1562 if (mi + 1 != me)
1563 Out << ", ";
1566 Out << "}";
1569 namespace {
1571 struct FieldSeparator {
1572 bool Skip = true;
1573 const char *Sep;
1575 FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1578 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1579 if (FS.Skip) {
1580 FS.Skip = false;
1581 return OS;
1583 return OS << FS.Sep;
1586 struct MDFieldPrinter {
1587 raw_ostream &Out;
1588 FieldSeparator FS;
1589 TypePrinting *TypePrinter = nullptr;
1590 SlotTracker *Machine = nullptr;
1591 const Module *Context = nullptr;
1593 explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {}
1594 MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1595 SlotTracker *Machine, const Module *Context)
1596 : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1599 void printTag(const DINode *N);
1600 void printMacinfoType(const DIMacroNode *N);
1601 void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1602 void printString(StringRef Name, StringRef Value,
1603 bool ShouldSkipEmpty = true);
1604 void printMetadata(StringRef Name, const Metadata *MD,
1605 bool ShouldSkipNull = true);
1606 template <class IntTy>
1607 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1608 void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1609 void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1610 template <class IntTy, class Stringifier>
1611 void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1612 bool ShouldSkipZero = true);
1613 void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1614 void printNameTableKind(StringRef Name,
1615 DICompileUnit::DebugNameTableKind NTK);
1618 } // end anonymous namespace
1620 void MDFieldPrinter::printTag(const DINode *N) {
1621 Out << FS << "tag: ";
1622 auto Tag = dwarf::TagString(N->getTag());
1623 if (!Tag.empty())
1624 Out << Tag;
1625 else
1626 Out << N->getTag();
1629 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1630 Out << FS << "type: ";
1631 auto Type = dwarf::MacinfoString(N->getMacinfoType());
1632 if (!Type.empty())
1633 Out << Type;
1634 else
1635 Out << N->getMacinfoType();
1638 void MDFieldPrinter::printChecksum(
1639 const DIFile::ChecksumInfo<StringRef> &Checksum) {
1640 Out << FS << "checksumkind: " << Checksum.getKindAsString();
1641 printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1644 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1645 bool ShouldSkipEmpty) {
1646 if (ShouldSkipEmpty && Value.empty())
1647 return;
1649 Out << FS << Name << ": \"";
1650 printEscapedString(Value, Out);
1651 Out << "\"";
1654 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1655 TypePrinting *TypePrinter,
1656 SlotTracker *Machine,
1657 const Module *Context) {
1658 if (!MD) {
1659 Out << "null";
1660 return;
1662 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1665 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1666 bool ShouldSkipNull) {
1667 if (ShouldSkipNull && !MD)
1668 return;
1670 Out << FS << Name << ": ";
1671 writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1674 template <class IntTy>
1675 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1676 if (ShouldSkipZero && !Int)
1677 return;
1679 Out << FS << Name << ": " << Int;
1682 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1683 Optional<bool> Default) {
1684 if (Default && Value == *Default)
1685 return;
1686 Out << FS << Name << ": " << (Value ? "true" : "false");
1689 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1690 if (!Flags)
1691 return;
1693 Out << FS << Name << ": ";
1695 SmallVector<DINode::DIFlags, 8> SplitFlags;
1696 auto Extra = DINode::splitFlags(Flags, SplitFlags);
1698 FieldSeparator FlagsFS(" | ");
1699 for (auto F : SplitFlags) {
1700 auto StringF = DINode::getFlagString(F);
1701 assert(!StringF.empty() && "Expected valid flag");
1702 Out << FlagsFS << StringF;
1704 if (Extra || SplitFlags.empty())
1705 Out << FlagsFS << Extra;
1708 void MDFieldPrinter::printEmissionKind(StringRef Name,
1709 DICompileUnit::DebugEmissionKind EK) {
1710 Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1713 void MDFieldPrinter::printNameTableKind(StringRef Name,
1714 DICompileUnit::DebugNameTableKind NTK) {
1715 if (NTK == DICompileUnit::DebugNameTableKind::Default)
1716 return;
1717 Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1720 template <class IntTy, class Stringifier>
1721 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1722 Stringifier toString, bool ShouldSkipZero) {
1723 if (!Value)
1724 return;
1726 Out << FS << Name << ": ";
1727 auto S = toString(Value);
1728 if (!S.empty())
1729 Out << S;
1730 else
1731 Out << Value;
1734 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1735 TypePrinting *TypePrinter, SlotTracker *Machine,
1736 const Module *Context) {
1737 Out << "!GenericDINode(";
1738 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1739 Printer.printTag(N);
1740 Printer.printString("header", N->getHeader());
1741 if (N->getNumDwarfOperands()) {
1742 Out << Printer.FS << "operands: {";
1743 FieldSeparator IFS;
1744 for (auto &I : N->dwarf_operands()) {
1745 Out << IFS;
1746 writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1748 Out << "}";
1750 Out << ")";
1753 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1754 TypePrinting *TypePrinter, SlotTracker *Machine,
1755 const Module *Context) {
1756 Out << "!DILocation(";
1757 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1758 // Always output the line, since 0 is a relevant and important value for it.
1759 Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1760 Printer.printInt("column", DL->getColumn());
1761 Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1762 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1763 Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1764 /* Default */ false);
1765 Out << ")";
1768 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1769 TypePrinting *TypePrinter, SlotTracker *Machine,
1770 const Module *Context) {
1771 Out << "!DISubrange(";
1772 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1773 if (auto *CE = N->getCount().dyn_cast<ConstantInt*>())
1774 Printer.printInt("count", CE->getSExtValue(), /* ShouldSkipZero */ false);
1775 else
1776 Printer.printMetadata("count", N->getCount().dyn_cast<DIVariable*>(),
1777 /*ShouldSkipNull */ false);
1778 Printer.printInt("lowerBound", N->getLowerBound());
1779 Out << ")";
1782 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1783 TypePrinting *, SlotTracker *, const Module *) {
1784 Out << "!DIEnumerator(";
1785 MDFieldPrinter Printer(Out);
1786 Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1787 if (N->isUnsigned()) {
1788 auto Value = static_cast<uint64_t>(N->getValue());
1789 Printer.printInt("value", Value, /* ShouldSkipZero */ false);
1790 Printer.printBool("isUnsigned", true);
1791 } else {
1792 Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
1794 Out << ")";
1797 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1798 TypePrinting *, SlotTracker *, const Module *) {
1799 Out << "!DIBasicType(";
1800 MDFieldPrinter Printer(Out);
1801 if (N->getTag() != dwarf::DW_TAG_base_type)
1802 Printer.printTag(N);
1803 Printer.printString("name", N->getName());
1804 Printer.printInt("size", N->getSizeInBits());
1805 Printer.printInt("align", N->getAlignInBits());
1806 Printer.printDwarfEnum("encoding", N->getEncoding(),
1807 dwarf::AttributeEncodingString);
1808 Printer.printDIFlags("flags", N->getFlags());
1809 Out << ")";
1812 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1813 TypePrinting *TypePrinter, SlotTracker *Machine,
1814 const Module *Context) {
1815 Out << "!DIDerivedType(";
1816 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1817 Printer.printTag(N);
1818 Printer.printString("name", N->getName());
1819 Printer.printMetadata("scope", N->getRawScope());
1820 Printer.printMetadata("file", N->getRawFile());
1821 Printer.printInt("line", N->getLine());
1822 Printer.printMetadata("baseType", N->getRawBaseType(),
1823 /* ShouldSkipNull */ false);
1824 Printer.printInt("size", N->getSizeInBits());
1825 Printer.printInt("align", N->getAlignInBits());
1826 Printer.printInt("offset", N->getOffsetInBits());
1827 Printer.printDIFlags("flags", N->getFlags());
1828 Printer.printMetadata("extraData", N->getRawExtraData());
1829 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1830 Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
1831 /* ShouldSkipZero */ false);
1832 Out << ")";
1835 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
1836 TypePrinting *TypePrinter,
1837 SlotTracker *Machine, const Module *Context) {
1838 Out << "!DICompositeType(";
1839 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1840 Printer.printTag(N);
1841 Printer.printString("name", N->getName());
1842 Printer.printMetadata("scope", N->getRawScope());
1843 Printer.printMetadata("file", N->getRawFile());
1844 Printer.printInt("line", N->getLine());
1845 Printer.printMetadata("baseType", N->getRawBaseType());
1846 Printer.printInt("size", N->getSizeInBits());
1847 Printer.printInt("align", N->getAlignInBits());
1848 Printer.printInt("offset", N->getOffsetInBits());
1849 Printer.printDIFlags("flags", N->getFlags());
1850 Printer.printMetadata("elements", N->getRawElements());
1851 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
1852 dwarf::LanguageString);
1853 Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
1854 Printer.printMetadata("templateParams", N->getRawTemplateParams());
1855 Printer.printString("identifier", N->getIdentifier());
1856 Printer.printMetadata("discriminator", N->getRawDiscriminator());
1857 Out << ")";
1860 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
1861 TypePrinting *TypePrinter,
1862 SlotTracker *Machine, const Module *Context) {
1863 Out << "!DISubroutineType(";
1864 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1865 Printer.printDIFlags("flags", N->getFlags());
1866 Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
1867 Printer.printMetadata("types", N->getRawTypeArray(),
1868 /* ShouldSkipNull */ false);
1869 Out << ")";
1872 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
1873 SlotTracker *, const Module *) {
1874 Out << "!DIFile(";
1875 MDFieldPrinter Printer(Out);
1876 Printer.printString("filename", N->getFilename(),
1877 /* ShouldSkipEmpty */ false);
1878 Printer.printString("directory", N->getDirectory(),
1879 /* ShouldSkipEmpty */ false);
1880 // Print all values for checksum together, or not at all.
1881 if (N->getChecksum())
1882 Printer.printChecksum(*N->getChecksum());
1883 Printer.printString("source", N->getSource().getValueOr(StringRef()),
1884 /* ShouldSkipEmpty */ true);
1885 Out << ")";
1888 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
1889 TypePrinting *TypePrinter, SlotTracker *Machine,
1890 const Module *Context) {
1891 Out << "!DICompileUnit(";
1892 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1893 Printer.printDwarfEnum("language", N->getSourceLanguage(),
1894 dwarf::LanguageString, /* ShouldSkipZero */ false);
1895 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1896 Printer.printString("producer", N->getProducer());
1897 Printer.printBool("isOptimized", N->isOptimized());
1898 Printer.printString("flags", N->getFlags());
1899 Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
1900 /* ShouldSkipZero */ false);
1901 Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
1902 Printer.printEmissionKind("emissionKind", N->getEmissionKind());
1903 Printer.printMetadata("enums", N->getRawEnumTypes());
1904 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
1905 Printer.printMetadata("globals", N->getRawGlobalVariables());
1906 Printer.printMetadata("imports", N->getRawImportedEntities());
1907 Printer.printMetadata("macros", N->getRawMacros());
1908 Printer.printInt("dwoId", N->getDWOId());
1909 Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
1910 Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
1911 false);
1912 Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
1913 Out << ")";
1916 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
1917 TypePrinting *TypePrinter, SlotTracker *Machine,
1918 const Module *Context) {
1919 Out << "!DISubprogram(";
1920 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1921 Printer.printString("name", N->getName());
1922 Printer.printString("linkageName", N->getLinkageName());
1923 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1924 Printer.printMetadata("file", N->getRawFile());
1925 Printer.printInt("line", N->getLine());
1926 Printer.printMetadata("type", N->getRawType());
1927 Printer.printBool("isLocal", N->isLocalToUnit());
1928 Printer.printBool("isDefinition", N->isDefinition());
1929 Printer.printInt("scopeLine", N->getScopeLine());
1930 Printer.printMetadata("containingType", N->getRawContainingType());
1931 Printer.printDwarfEnum("virtuality", N->getVirtuality(),
1932 dwarf::VirtualityString);
1933 if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
1934 N->getVirtualIndex() != 0)
1935 Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
1936 Printer.printInt("thisAdjustment", N->getThisAdjustment());
1937 Printer.printDIFlags("flags", N->getFlags());
1938 Printer.printBool("isOptimized", N->isOptimized());
1939 Printer.printMetadata("unit", N->getRawUnit());
1940 Printer.printMetadata("templateParams", N->getRawTemplateParams());
1941 Printer.printMetadata("declaration", N->getRawDeclaration());
1942 Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
1943 Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
1944 Out << ")";
1947 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
1948 TypePrinting *TypePrinter, SlotTracker *Machine,
1949 const Module *Context) {
1950 Out << "!DILexicalBlock(";
1951 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1952 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1953 Printer.printMetadata("file", N->getRawFile());
1954 Printer.printInt("line", N->getLine());
1955 Printer.printInt("column", N->getColumn());
1956 Out << ")";
1959 static void writeDILexicalBlockFile(raw_ostream &Out,
1960 const DILexicalBlockFile *N,
1961 TypePrinting *TypePrinter,
1962 SlotTracker *Machine,
1963 const Module *Context) {
1964 Out << "!DILexicalBlockFile(";
1965 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1966 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1967 Printer.printMetadata("file", N->getRawFile());
1968 Printer.printInt("discriminator", N->getDiscriminator(),
1969 /* ShouldSkipZero */ false);
1970 Out << ")";
1973 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
1974 TypePrinting *TypePrinter, SlotTracker *Machine,
1975 const Module *Context) {
1976 Out << "!DINamespace(";
1977 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1978 Printer.printString("name", N->getName());
1979 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1980 Printer.printBool("exportSymbols", N->getExportSymbols(), false);
1981 Out << ")";
1984 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
1985 TypePrinting *TypePrinter, SlotTracker *Machine,
1986 const Module *Context) {
1987 Out << "!DIMacro(";
1988 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1989 Printer.printMacinfoType(N);
1990 Printer.printInt("line", N->getLine());
1991 Printer.printString("name", N->getName());
1992 Printer.printString("value", N->getValue());
1993 Out << ")";
1996 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
1997 TypePrinting *TypePrinter, SlotTracker *Machine,
1998 const Module *Context) {
1999 Out << "!DIMacroFile(";
2000 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2001 Printer.printInt("line", N->getLine());
2002 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2003 Printer.printMetadata("nodes", N->getRawElements());
2004 Out << ")";
2007 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2008 TypePrinting *TypePrinter, SlotTracker *Machine,
2009 const Module *Context) {
2010 Out << "!DIModule(";
2011 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2012 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2013 Printer.printString("name", N->getName());
2014 Printer.printString("configMacros", N->getConfigurationMacros());
2015 Printer.printString("includePath", N->getIncludePath());
2016 Printer.printString("isysroot", N->getISysRoot());
2017 Out << ")";
2021 static void writeDITemplateTypeParameter(raw_ostream &Out,
2022 const DITemplateTypeParameter *N,
2023 TypePrinting *TypePrinter,
2024 SlotTracker *Machine,
2025 const Module *Context) {
2026 Out << "!DITemplateTypeParameter(";
2027 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2028 Printer.printString("name", N->getName());
2029 Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2030 Out << ")";
2033 static void writeDITemplateValueParameter(raw_ostream &Out,
2034 const DITemplateValueParameter *N,
2035 TypePrinting *TypePrinter,
2036 SlotTracker *Machine,
2037 const Module *Context) {
2038 Out << "!DITemplateValueParameter(";
2039 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2040 if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2041 Printer.printTag(N);
2042 Printer.printString("name", N->getName());
2043 Printer.printMetadata("type", N->getRawType());
2044 Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2045 Out << ")";
2048 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2049 TypePrinting *TypePrinter,
2050 SlotTracker *Machine, const Module *Context) {
2051 Out << "!DIGlobalVariable(";
2052 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2053 Printer.printString("name", N->getName());
2054 Printer.printString("linkageName", N->getLinkageName());
2055 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2056 Printer.printMetadata("file", N->getRawFile());
2057 Printer.printInt("line", N->getLine());
2058 Printer.printMetadata("type", N->getRawType());
2059 Printer.printBool("isLocal", N->isLocalToUnit());
2060 Printer.printBool("isDefinition", N->isDefinition());
2061 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2062 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2063 Printer.printInt("align", N->getAlignInBits());
2064 Out << ")";
2067 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2068 TypePrinting *TypePrinter,
2069 SlotTracker *Machine, const Module *Context) {
2070 Out << "!DILocalVariable(";
2071 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2072 Printer.printString("name", N->getName());
2073 Printer.printInt("arg", N->getArg());
2074 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2075 Printer.printMetadata("file", N->getRawFile());
2076 Printer.printInt("line", N->getLine());
2077 Printer.printMetadata("type", N->getRawType());
2078 Printer.printDIFlags("flags", N->getFlags());
2079 Printer.printInt("align", N->getAlignInBits());
2080 Out << ")";
2083 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2084 TypePrinting *TypePrinter,
2085 SlotTracker *Machine, const Module *Context) {
2086 Out << "!DILabel(";
2087 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2088 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2089 Printer.printString("name", N->getName());
2090 Printer.printMetadata("file", N->getRawFile());
2091 Printer.printInt("line", N->getLine());
2092 Out << ")";
2095 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2096 TypePrinting *TypePrinter, SlotTracker *Machine,
2097 const Module *Context) {
2098 Out << "!DIExpression(";
2099 FieldSeparator FS;
2100 if (N->isValid()) {
2101 for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
2102 auto OpStr = dwarf::OperationEncodingString(I->getOp());
2103 assert(!OpStr.empty() && "Expected valid opcode");
2105 Out << FS << OpStr;
2106 for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
2107 Out << FS << I->getArg(A);
2109 } else {
2110 for (const auto &I : N->getElements())
2111 Out << FS << I;
2113 Out << ")";
2116 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2117 const DIGlobalVariableExpression *N,
2118 TypePrinting *TypePrinter,
2119 SlotTracker *Machine,
2120 const Module *Context) {
2121 Out << "!DIGlobalVariableExpression(";
2122 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2123 Printer.printMetadata("var", N->getVariable());
2124 Printer.printMetadata("expr", N->getExpression());
2125 Out << ")";
2128 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2129 TypePrinting *TypePrinter, SlotTracker *Machine,
2130 const Module *Context) {
2131 Out << "!DIObjCProperty(";
2132 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2133 Printer.printString("name", N->getName());
2134 Printer.printMetadata("file", N->getRawFile());
2135 Printer.printInt("line", N->getLine());
2136 Printer.printString("setter", N->getSetterName());
2137 Printer.printString("getter", N->getGetterName());
2138 Printer.printInt("attributes", N->getAttributes());
2139 Printer.printMetadata("type", N->getRawType());
2140 Out << ")";
2143 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2144 TypePrinting *TypePrinter,
2145 SlotTracker *Machine, const Module *Context) {
2146 Out << "!DIImportedEntity(";
2147 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2148 Printer.printTag(N);
2149 Printer.printString("name", N->getName());
2150 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2151 Printer.printMetadata("entity", N->getRawEntity());
2152 Printer.printMetadata("file", N->getRawFile());
2153 Printer.printInt("line", N->getLine());
2154 Out << ")";
2157 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2158 TypePrinting *TypePrinter,
2159 SlotTracker *Machine,
2160 const Module *Context) {
2161 if (Node->isDistinct())
2162 Out << "distinct ";
2163 else if (Node->isTemporary())
2164 Out << "<temporary!> "; // Handle broken code.
2166 switch (Node->getMetadataID()) {
2167 default:
2168 llvm_unreachable("Expected uniquable MDNode");
2169 #define HANDLE_MDNODE_LEAF(CLASS) \
2170 case Metadata::CLASS##Kind: \
2171 write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
2172 break;
2173 #include "llvm/IR/Metadata.def"
2177 // Full implementation of printing a Value as an operand with support for
2178 // TypePrinting, etc.
2179 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2180 TypePrinting *TypePrinter,
2181 SlotTracker *Machine,
2182 const Module *Context) {
2183 if (V->hasName()) {
2184 PrintLLVMName(Out, V);
2185 return;
2188 const Constant *CV = dyn_cast<Constant>(V);
2189 if (CV && !isa<GlobalValue>(CV)) {
2190 assert(TypePrinter && "Constants require TypePrinting!");
2191 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
2192 return;
2195 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2196 Out << "asm ";
2197 if (IA->hasSideEffects())
2198 Out << "sideeffect ";
2199 if (IA->isAlignStack())
2200 Out << "alignstack ";
2201 // We don't emit the AD_ATT dialect as it's the assumed default.
2202 if (IA->getDialect() == InlineAsm::AD_Intel)
2203 Out << "inteldialect ";
2204 Out << '"';
2205 printEscapedString(IA->getAsmString(), Out);
2206 Out << "\", \"";
2207 printEscapedString(IA->getConstraintString(), Out);
2208 Out << '"';
2209 return;
2212 if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2213 WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
2214 Context, /* FromValue */ true);
2215 return;
2218 char Prefix = '%';
2219 int Slot;
2220 // If we have a SlotTracker, use it.
2221 if (Machine) {
2222 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2223 Slot = Machine->getGlobalSlot(GV);
2224 Prefix = '@';
2225 } else {
2226 Slot = Machine->getLocalSlot(V);
2228 // If the local value didn't succeed, then we may be referring to a value
2229 // from a different function. Translate it, as this can happen when using
2230 // address of blocks.
2231 if (Slot == -1)
2232 if ((Machine = createSlotTracker(V))) {
2233 Slot = Machine->getLocalSlot(V);
2234 delete Machine;
2237 } else if ((Machine = createSlotTracker(V))) {
2238 // Otherwise, create one to get the # and then destroy it.
2239 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2240 Slot = Machine->getGlobalSlot(GV);
2241 Prefix = '@';
2242 } else {
2243 Slot = Machine->getLocalSlot(V);
2245 delete Machine;
2246 Machine = nullptr;
2247 } else {
2248 Slot = -1;
2251 if (Slot != -1)
2252 Out << Prefix << Slot;
2253 else
2254 Out << "<badref>";
2257 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2258 TypePrinting *TypePrinter,
2259 SlotTracker *Machine, const Module *Context,
2260 bool FromValue) {
2261 // Write DIExpressions inline when used as a value. Improves readability of
2262 // debug info intrinsics.
2263 if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2264 writeDIExpression(Out, Expr, TypePrinter, Machine, Context);
2265 return;
2268 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2269 std::unique_ptr<SlotTracker> MachineStorage;
2270 if (!Machine) {
2271 MachineStorage = make_unique<SlotTracker>(Context);
2272 Machine = MachineStorage.get();
2274 int Slot = Machine->getMetadataSlot(N);
2275 if (Slot == -1)
2276 // Give the pointer value instead of "badref", since this comes up all
2277 // the time when debugging.
2278 Out << "<" << N << ">";
2279 else
2280 Out << '!' << Slot;
2281 return;
2284 if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2285 Out << "!\"";
2286 printEscapedString(MDS->getString(), Out);
2287 Out << '"';
2288 return;
2291 auto *V = cast<ValueAsMetadata>(MD);
2292 assert(TypePrinter && "TypePrinter required for metadata values");
2293 assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2294 "Unexpected function-local metadata outside of value argument");
2296 TypePrinter->print(V->getValue()->getType(), Out);
2297 Out << ' ';
2298 WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2301 namespace {
2303 class AssemblyWriter {
2304 formatted_raw_ostream &Out;
2305 const Module *TheModule = nullptr;
2306 const ModuleSummaryIndex *TheIndex = nullptr;
2307 std::unique_ptr<SlotTracker> SlotTrackerStorage;
2308 SlotTracker &Machine;
2309 TypePrinting TypePrinter;
2310 AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2311 SetVector<const Comdat *> Comdats;
2312 bool IsForDebug;
2313 bool ShouldPreserveUseListOrder;
2314 UseListOrderStack UseListOrders;
2315 SmallVector<StringRef, 8> MDNames;
2316 /// Synchronization scope names registered with LLVMContext.
2317 SmallVector<StringRef, 8> SSNs;
2318 DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2320 public:
2321 /// Construct an AssemblyWriter with an external SlotTracker
2322 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2323 AssemblyAnnotationWriter *AAW, bool IsForDebug,
2324 bool ShouldPreserveUseListOrder = false);
2326 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2327 const ModuleSummaryIndex *Index, bool IsForDebug);
2329 void printMDNodeBody(const MDNode *MD);
2330 void printNamedMDNode(const NamedMDNode *NMD);
2332 void printModule(const Module *M);
2334 void writeOperand(const Value *Op, bool PrintType);
2335 void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2336 void writeOperandBundles(ImmutableCallSite CS);
2337 void writeSyncScope(const LLVMContext &Context,
2338 SyncScope::ID SSID);
2339 void writeAtomic(const LLVMContext &Context,
2340 AtomicOrdering Ordering,
2341 SyncScope::ID SSID);
2342 void writeAtomicCmpXchg(const LLVMContext &Context,
2343 AtomicOrdering SuccessOrdering,
2344 AtomicOrdering FailureOrdering,
2345 SyncScope::ID SSID);
2347 void writeAllMDNodes();
2348 void writeMDNode(unsigned Slot, const MDNode *Node);
2349 void writeAllAttributeGroups();
2351 void printTypeIdentities();
2352 void printGlobal(const GlobalVariable *GV);
2353 void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2354 void printComdat(const Comdat *C);
2355 void printFunction(const Function *F);
2356 void printArgument(const Argument *FA, AttributeSet Attrs);
2357 void printBasicBlock(const BasicBlock *BB);
2358 void printInstructionLine(const Instruction &I);
2359 void printInstruction(const Instruction &I);
2361 void printUseListOrder(const UseListOrder &Order);
2362 void printUseLists(const Function *F);
2364 void printModuleSummaryIndex();
2365 void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2366 void printSummary(const GlobalValueSummary &Summary);
2367 void printAliasSummary(const AliasSummary *AS);
2368 void printGlobalVarSummary(const GlobalVarSummary *GS);
2369 void printFunctionSummary(const FunctionSummary *FS);
2370 void printTypeIdSummary(const TypeIdSummary &TIS);
2371 void printTypeTestResolution(const TypeTestResolution &TTRes);
2372 void printArgs(const std::vector<uint64_t> &Args);
2373 void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2374 void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2375 void printVFuncId(const FunctionSummary::VFuncId VFId);
2376 void
2377 printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> VCallList,
2378 const char *Tag);
2379 void
2380 printConstVCalls(const std::vector<FunctionSummary::ConstVCall> VCallList,
2381 const char *Tag);
2383 private:
2384 /// Print out metadata attachments.
2385 void printMetadataAttachments(
2386 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2387 StringRef Separator);
2389 // printInfoComment - Print a little comment after the instruction indicating
2390 // which slot it occupies.
2391 void printInfoComment(const Value &V);
2393 // printGCRelocateComment - print comment after call to the gc.relocate
2394 // intrinsic indicating base and derived pointer names.
2395 void printGCRelocateComment(const GCRelocateInst &Relocate);
2398 } // end anonymous namespace
2400 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2401 const Module *M, AssemblyAnnotationWriter *AAW,
2402 bool IsForDebug, bool ShouldPreserveUseListOrder)
2403 : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2404 IsForDebug(IsForDebug),
2405 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2406 if (!TheModule)
2407 return;
2408 for (const GlobalObject &GO : TheModule->global_objects())
2409 if (const Comdat *C = GO.getComdat())
2410 Comdats.insert(C);
2413 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2414 const ModuleSummaryIndex *Index, bool IsForDebug)
2415 : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2416 IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2418 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2419 if (!Operand) {
2420 Out << "<null operand!>";
2421 return;
2423 if (PrintType) {
2424 TypePrinter.print(Operand->getType(), Out);
2425 Out << ' ';
2427 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2430 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2431 SyncScope::ID SSID) {
2432 switch (SSID) {
2433 case SyncScope::System: {
2434 break;
2436 default: {
2437 if (SSNs.empty())
2438 Context.getSyncScopeNames(SSNs);
2440 Out << " syncscope(\"";
2441 printEscapedString(SSNs[SSID], Out);
2442 Out << "\")";
2443 break;
2448 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2449 AtomicOrdering Ordering,
2450 SyncScope::ID SSID) {
2451 if (Ordering == AtomicOrdering::NotAtomic)
2452 return;
2454 writeSyncScope(Context, SSID);
2455 Out << " " << toIRString(Ordering);
2458 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2459 AtomicOrdering SuccessOrdering,
2460 AtomicOrdering FailureOrdering,
2461 SyncScope::ID SSID) {
2462 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2463 FailureOrdering != AtomicOrdering::NotAtomic);
2465 writeSyncScope(Context, SSID);
2466 Out << " " << toIRString(SuccessOrdering);
2467 Out << " " << toIRString(FailureOrdering);
2470 void AssemblyWriter::writeParamOperand(const Value *Operand,
2471 AttributeSet Attrs) {
2472 if (!Operand) {
2473 Out << "<null operand!>";
2474 return;
2477 // Print the type
2478 TypePrinter.print(Operand->getType(), Out);
2479 // Print parameter attributes list
2480 if (Attrs.hasAttributes())
2481 Out << ' ' << Attrs.getAsString();
2482 Out << ' ';
2483 // Print the operand
2484 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2487 void AssemblyWriter::writeOperandBundles(ImmutableCallSite CS) {
2488 if (!CS.hasOperandBundles())
2489 return;
2491 Out << " [ ";
2493 bool FirstBundle = true;
2494 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2495 OperandBundleUse BU = CS.getOperandBundleAt(i);
2497 if (!FirstBundle)
2498 Out << ", ";
2499 FirstBundle = false;
2501 Out << '"';
2502 printEscapedString(BU.getTagName(), Out);
2503 Out << '"';
2505 Out << '(';
2507 bool FirstInput = true;
2508 for (const auto &Input : BU.Inputs) {
2509 if (!FirstInput)
2510 Out << ", ";
2511 FirstInput = false;
2513 TypePrinter.print(Input->getType(), Out);
2514 Out << " ";
2515 WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2518 Out << ')';
2521 Out << " ]";
2524 void AssemblyWriter::printModule(const Module *M) {
2525 Machine.initializeIfNeeded();
2527 if (ShouldPreserveUseListOrder)
2528 UseListOrders = predictUseListOrder(M);
2530 if (!M->getModuleIdentifier().empty() &&
2531 // Don't print the ID if it will start a new line (which would
2532 // require a comment char before it).
2533 M->getModuleIdentifier().find('\n') == std::string::npos)
2534 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2536 if (!M->getSourceFileName().empty()) {
2537 Out << "source_filename = \"";
2538 printEscapedString(M->getSourceFileName(), Out);
2539 Out << "\"\n";
2542 const std::string &DL = M->getDataLayoutStr();
2543 if (!DL.empty())
2544 Out << "target datalayout = \"" << DL << "\"\n";
2545 if (!M->getTargetTriple().empty())
2546 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2548 if (!M->getModuleInlineAsm().empty()) {
2549 Out << '\n';
2551 // Split the string into lines, to make it easier to read the .ll file.
2552 StringRef Asm = M->getModuleInlineAsm();
2553 do {
2554 StringRef Front;
2555 std::tie(Front, Asm) = Asm.split('\n');
2557 // We found a newline, print the portion of the asm string from the
2558 // last newline up to this newline.
2559 Out << "module asm \"";
2560 printEscapedString(Front, Out);
2561 Out << "\"\n";
2562 } while (!Asm.empty());
2565 printTypeIdentities();
2567 // Output all comdats.
2568 if (!Comdats.empty())
2569 Out << '\n';
2570 for (const Comdat *C : Comdats) {
2571 printComdat(C);
2572 if (C != Comdats.back())
2573 Out << '\n';
2576 // Output all globals.
2577 if (!M->global_empty()) Out << '\n';
2578 for (const GlobalVariable &GV : M->globals()) {
2579 printGlobal(&GV); Out << '\n';
2582 // Output all aliases.
2583 if (!M->alias_empty()) Out << "\n";
2584 for (const GlobalAlias &GA : M->aliases())
2585 printIndirectSymbol(&GA);
2587 // Output all ifuncs.
2588 if (!M->ifunc_empty()) Out << "\n";
2589 for (const GlobalIFunc &GI : M->ifuncs())
2590 printIndirectSymbol(&GI);
2592 // Output global use-lists.
2593 printUseLists(nullptr);
2595 // Output all of the functions.
2596 for (const Function &F : *M)
2597 printFunction(&F);
2598 assert(UseListOrders.empty() && "All use-lists should have been consumed");
2600 // Output all attribute groups.
2601 if (!Machine.as_empty()) {
2602 Out << '\n';
2603 writeAllAttributeGroups();
2606 // Output named metadata.
2607 if (!M->named_metadata_empty()) Out << '\n';
2609 for (const NamedMDNode &Node : M->named_metadata())
2610 printNamedMDNode(&Node);
2612 // Output metadata.
2613 if (!Machine.mdn_empty()) {
2614 Out << '\n';
2615 writeAllMDNodes();
2619 void AssemblyWriter::printModuleSummaryIndex() {
2620 assert(TheIndex);
2621 Machine.initializeIndexIfNeeded();
2623 Out << "\n";
2625 // Print module path entries. To print in order, add paths to a vector
2626 // indexed by module slot.
2627 std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2628 std::string RegularLTOModuleName = "[Regular LTO]";
2629 moduleVec.resize(TheIndex->modulePaths().size());
2630 for (auto &ModPath : TheIndex->modulePaths())
2631 moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
2632 // A module id of -1 is a special entry for a regular LTO module created
2633 // during the thin link.
2634 ModPath.second.first == -1u ? RegularLTOModuleName
2635 : (std::string)ModPath.first(),
2636 ModPath.second.second);
2638 unsigned i = 0;
2639 for (auto &ModPair : moduleVec) {
2640 Out << "^" << i++ << " = module: (";
2641 Out << "path: \"";
2642 printEscapedString(ModPair.first, Out);
2643 Out << "\", hash: (";
2644 FieldSeparator FS;
2645 for (auto Hash : ModPair.second)
2646 Out << FS << Hash;
2647 Out << "))\n";
2650 // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2651 // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2652 for (auto &GlobalList : *TheIndex) {
2653 auto GUID = GlobalList.first;
2654 for (auto &Summary : GlobalList.second.SummaryList)
2655 SummaryToGUIDMap[Summary.get()] = GUID;
2658 // Print the global value summary entries.
2659 for (auto &GlobalList : *TheIndex) {
2660 auto GUID = GlobalList.first;
2661 auto VI = TheIndex->getValueInfo(GlobalList);
2662 printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2665 // Print the TypeIdMap entries.
2666 for (auto TidIter = TheIndex->typeIds().begin();
2667 TidIter != TheIndex->typeIds().end(); TidIter++) {
2668 Out << "^" << Machine.getTypeIdSlot(TidIter->second.first)
2669 << " = typeid: (name: \"" << TidIter->second.first << "\"";
2670 printTypeIdSummary(TidIter->second.second);
2671 Out << ") ; guid = " << TidIter->first << "\n";
2675 static const char *
2676 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2677 switch (K) {
2678 case WholeProgramDevirtResolution::Indir:
2679 return "indir";
2680 case WholeProgramDevirtResolution::SingleImpl:
2681 return "singleImpl";
2682 case WholeProgramDevirtResolution::BranchFunnel:
2683 return "branchFunnel";
2685 llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2688 static const char *getWholeProgDevirtResByArgKindName(
2689 WholeProgramDevirtResolution::ByArg::Kind K) {
2690 switch (K) {
2691 case WholeProgramDevirtResolution::ByArg::Indir:
2692 return "indir";
2693 case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2694 return "uniformRetVal";
2695 case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2696 return "uniqueRetVal";
2697 case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
2698 return "virtualConstProp";
2700 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2703 static const char *getTTResKindName(TypeTestResolution::Kind K) {
2704 switch (K) {
2705 case TypeTestResolution::Unsat:
2706 return "unsat";
2707 case TypeTestResolution::ByteArray:
2708 return "byteArray";
2709 case TypeTestResolution::Inline:
2710 return "inline";
2711 case TypeTestResolution::Single:
2712 return "single";
2713 case TypeTestResolution::AllOnes:
2714 return "allOnes";
2716 llvm_unreachable("invalid TypeTestResolution kind");
2719 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
2720 Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
2721 << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
2723 // The following fields are only used if the target does not support the use
2724 // of absolute symbols to store constants. Print only if non-zero.
2725 if (TTRes.AlignLog2)
2726 Out << ", alignLog2: " << TTRes.AlignLog2;
2727 if (TTRes.SizeM1)
2728 Out << ", sizeM1: " << TTRes.SizeM1;
2729 if (TTRes.BitMask)
2730 // BitMask is uint8_t which causes it to print the corresponding char.
2731 Out << ", bitMask: " << (unsigned)TTRes.BitMask;
2732 if (TTRes.InlineBits)
2733 Out << ", inlineBits: " << TTRes.InlineBits;
2735 Out << ")";
2738 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
2739 Out << ", summary: (";
2740 printTypeTestResolution(TIS.TTRes);
2741 if (!TIS.WPDRes.empty()) {
2742 Out << ", wpdResolutions: (";
2743 FieldSeparator FS;
2744 for (auto &WPDRes : TIS.WPDRes) {
2745 Out << FS;
2746 Out << "(offset: " << WPDRes.first << ", ";
2747 printWPDRes(WPDRes.second);
2748 Out << ")";
2750 Out << ")";
2752 Out << ")";
2755 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
2756 Out << "args: (";
2757 FieldSeparator FS;
2758 for (auto arg : Args) {
2759 Out << FS;
2760 Out << arg;
2762 Out << ")";
2765 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
2766 Out << "wpdRes: (kind: ";
2767 Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
2769 if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
2770 Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
2772 if (!WPDRes.ResByArg.empty()) {
2773 Out << ", resByArg: (";
2774 FieldSeparator FS;
2775 for (auto &ResByArg : WPDRes.ResByArg) {
2776 Out << FS;
2777 printArgs(ResByArg.first);
2778 Out << ", byArg: (kind: ";
2779 Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
2780 if (ResByArg.second.TheKind ==
2781 WholeProgramDevirtResolution::ByArg::UniformRetVal ||
2782 ResByArg.second.TheKind ==
2783 WholeProgramDevirtResolution::ByArg::UniqueRetVal)
2784 Out << ", info: " << ResByArg.second.Info;
2786 // The following fields are only used if the target does not support the
2787 // use of absolute symbols to store constants. Print only if non-zero.
2788 if (ResByArg.second.Byte || ResByArg.second.Bit)
2789 Out << ", byte: " << ResByArg.second.Byte
2790 << ", bit: " << ResByArg.second.Bit;
2792 Out << ")";
2794 Out << ")";
2796 Out << ")";
2799 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
2800 switch (SK) {
2801 case GlobalValueSummary::AliasKind:
2802 return "alias";
2803 case GlobalValueSummary::FunctionKind:
2804 return "function";
2805 case GlobalValueSummary::GlobalVarKind:
2806 return "variable";
2808 llvm_unreachable("invalid summary kind");
2811 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
2812 Out << ", aliasee: ";
2813 // The indexes emitted for distributed backends may not include the
2814 // aliasee summary (only if it is being imported directly). Handle
2815 // that case by just emitting "null" as the aliasee.
2816 if (AS->hasAliasee())
2817 Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
2818 else
2819 Out << "null";
2822 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
2823 // Nothing for now
2826 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
2827 switch (LT) {
2828 case GlobalValue::ExternalLinkage:
2829 return "external";
2830 case GlobalValue::PrivateLinkage:
2831 return "private";
2832 case GlobalValue::InternalLinkage:
2833 return "internal";
2834 case GlobalValue::LinkOnceAnyLinkage:
2835 return "linkonce";
2836 case GlobalValue::LinkOnceODRLinkage:
2837 return "linkonce_odr";
2838 case GlobalValue::WeakAnyLinkage:
2839 return "weak";
2840 case GlobalValue::WeakODRLinkage:
2841 return "weak_odr";
2842 case GlobalValue::CommonLinkage:
2843 return "common";
2844 case GlobalValue::AppendingLinkage:
2845 return "appending";
2846 case GlobalValue::ExternalWeakLinkage:
2847 return "extern_weak";
2848 case GlobalValue::AvailableExternallyLinkage:
2849 return "available_externally";
2851 llvm_unreachable("invalid linkage");
2854 // When printing the linkage types in IR where the ExternalLinkage is
2855 // not printed, and other linkage types are expected to be printed with
2856 // a space after the name.
2857 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
2858 if (LT == GlobalValue::ExternalLinkage)
2859 return "";
2860 return getLinkageName(LT) + " ";
2863 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
2864 Out << ", insts: " << FS->instCount();
2866 FunctionSummary::FFlags FFlags = FS->fflags();
2867 if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse |
2868 FFlags.ReturnDoesNotAlias) {
2869 Out << ", funcFlags: (";
2870 Out << "readNone: " << FFlags.ReadNone;
2871 Out << ", readOnly: " << FFlags.ReadOnly;
2872 Out << ", noRecurse: " << FFlags.NoRecurse;
2873 Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias;
2874 Out << ")";
2876 if (!FS->calls().empty()) {
2877 Out << ", calls: (";
2878 FieldSeparator IFS;
2879 for (auto &Call : FS->calls()) {
2880 Out << IFS;
2881 Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
2882 if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
2883 Out << ", hotness: " << getHotnessName(Call.second.getHotness());
2884 else if (Call.second.RelBlockFreq)
2885 Out << ", relbf: " << Call.second.RelBlockFreq;
2886 Out << ")";
2888 Out << ")";
2891 if (const auto *TIdInfo = FS->getTypeIdInfo())
2892 printTypeIdInfo(*TIdInfo);
2895 void AssemblyWriter::printTypeIdInfo(
2896 const FunctionSummary::TypeIdInfo &TIDInfo) {
2897 Out << ", typeIdInfo: (";
2898 FieldSeparator TIDFS;
2899 if (!TIDInfo.TypeTests.empty()) {
2900 Out << TIDFS;
2901 Out << "typeTests: (";
2902 FieldSeparator FS;
2903 for (auto &GUID : TIDInfo.TypeTests) {
2904 auto TidIter = TheIndex->typeIds().equal_range(GUID);
2905 if (TidIter.first == TidIter.second) {
2906 Out << FS;
2907 Out << GUID;
2908 continue;
2910 // Print all type id that correspond to this GUID.
2911 for (auto It = TidIter.first; It != TidIter.second; ++It) {
2912 Out << FS;
2913 auto Slot = Machine.getTypeIdSlot(It->second.first);
2914 assert(Slot != -1);
2915 Out << "^" << Slot;
2918 Out << ")";
2920 if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
2921 Out << TIDFS;
2922 printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
2924 if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
2925 Out << TIDFS;
2926 printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
2928 if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
2929 Out << TIDFS;
2930 printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
2931 "typeTestAssumeConstVCalls");
2933 if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
2934 Out << TIDFS;
2935 printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
2936 "typeCheckedLoadConstVCalls");
2938 Out << ")";
2941 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
2942 auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
2943 if (TidIter.first == TidIter.second) {
2944 Out << "vFuncId: (";
2945 Out << "guid: " << VFId.GUID;
2946 Out << ", offset: " << VFId.Offset;
2947 Out << ")";
2948 return;
2950 // Print all type id that correspond to this GUID.
2951 FieldSeparator FS;
2952 for (auto It = TidIter.first; It != TidIter.second; ++It) {
2953 Out << FS;
2954 Out << "vFuncId: (";
2955 auto Slot = Machine.getTypeIdSlot(It->second.first);
2956 assert(Slot != -1);
2957 Out << "^" << Slot;
2958 Out << ", offset: " << VFId.Offset;
2959 Out << ")";
2963 void AssemblyWriter::printNonConstVCalls(
2964 const std::vector<FunctionSummary::VFuncId> VCallList, const char *Tag) {
2965 Out << Tag << ": (";
2966 FieldSeparator FS;
2967 for (auto &VFuncId : VCallList) {
2968 Out << FS;
2969 printVFuncId(VFuncId);
2971 Out << ")";
2974 void AssemblyWriter::printConstVCalls(
2975 const std::vector<FunctionSummary::ConstVCall> VCallList, const char *Tag) {
2976 Out << Tag << ": (";
2977 FieldSeparator FS;
2978 for (auto &ConstVCall : VCallList) {
2979 Out << FS;
2980 Out << "(";
2981 printVFuncId(ConstVCall.VFunc);
2982 if (!ConstVCall.Args.empty()) {
2983 Out << ", ";
2984 printArgs(ConstVCall.Args);
2986 Out << ")";
2988 Out << ")";
2991 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
2992 GlobalValueSummary::GVFlags GVFlags = Summary.flags();
2993 GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
2994 Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
2995 Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
2996 << ", flags: (";
2997 Out << "linkage: " << getLinkageName(LT);
2998 Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
2999 Out << ", live: " << GVFlags.Live;
3000 Out << ", dsoLocal: " << GVFlags.DSOLocal;
3001 Out << ")";
3003 if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3004 printAliasSummary(cast<AliasSummary>(&Summary));
3005 else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3006 printFunctionSummary(cast<FunctionSummary>(&Summary));
3007 else
3008 printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3010 auto RefList = Summary.refs();
3011 if (!RefList.empty()) {
3012 Out << ", refs: (";
3013 FieldSeparator FS;
3014 for (auto &Ref : RefList) {
3015 Out << FS;
3016 Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3018 Out << ")";
3021 Out << ")";
3024 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3025 Out << "^" << Slot << " = gv: (";
3026 if (!VI.name().empty())
3027 Out << "name: \"" << VI.name() << "\"";
3028 else
3029 Out << "guid: " << VI.getGUID();
3030 if (!VI.getSummaryList().empty()) {
3031 Out << ", summaries: (";
3032 FieldSeparator FS;
3033 for (auto &Summary : VI.getSummaryList()) {
3034 Out << FS;
3035 printSummary(*Summary);
3037 Out << ")";
3039 Out << ")";
3040 if (!VI.name().empty())
3041 Out << " ; guid = " << VI.getGUID();
3042 Out << "\n";
3045 static void printMetadataIdentifier(StringRef Name,
3046 formatted_raw_ostream &Out) {
3047 if (Name.empty()) {
3048 Out << "<empty name> ";
3049 } else {
3050 if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3051 Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3052 Out << Name[0];
3053 else
3054 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3055 for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3056 unsigned char C = Name[i];
3057 if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3058 C == '.' || C == '_')
3059 Out << C;
3060 else
3061 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3066 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3067 Out << '!';
3068 printMetadataIdentifier(NMD->getName(), Out);
3069 Out << " = !{";
3070 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3071 if (i)
3072 Out << ", ";
3074 // Write DIExpressions inline.
3075 // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3076 MDNode *Op = NMD->getOperand(i);
3077 if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3078 writeDIExpression(Out, Expr, nullptr, nullptr, nullptr);
3079 continue;
3082 int Slot = Machine.getMetadataSlot(Op);
3083 if (Slot == -1)
3084 Out << "<badref>";
3085 else
3086 Out << '!' << Slot;
3088 Out << "}\n";
3091 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3092 formatted_raw_ostream &Out) {
3093 switch (Vis) {
3094 case GlobalValue::DefaultVisibility: break;
3095 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
3096 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3100 static void PrintDSOLocation(const GlobalValue &GV,
3101 formatted_raw_ostream &Out) {
3102 // GVs with local linkage or non default visibility are implicitly dso_local,
3103 // so we don't print it.
3104 bool Implicit = GV.hasLocalLinkage() ||
3105 (!GV.hasExternalWeakLinkage() && !GV.hasDefaultVisibility());
3106 if (GV.isDSOLocal() && !Implicit)
3107 Out << "dso_local ";
3110 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3111 formatted_raw_ostream &Out) {
3112 switch (SCT) {
3113 case GlobalValue::DefaultStorageClass: break;
3114 case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3115 case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3119 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3120 formatted_raw_ostream &Out) {
3121 switch (TLM) {
3122 case GlobalVariable::NotThreadLocal:
3123 break;
3124 case GlobalVariable::GeneralDynamicTLSModel:
3125 Out << "thread_local ";
3126 break;
3127 case GlobalVariable::LocalDynamicTLSModel:
3128 Out << "thread_local(localdynamic) ";
3129 break;
3130 case GlobalVariable::InitialExecTLSModel:
3131 Out << "thread_local(initialexec) ";
3132 break;
3133 case GlobalVariable::LocalExecTLSModel:
3134 Out << "thread_local(localexec) ";
3135 break;
3139 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3140 switch (UA) {
3141 case GlobalVariable::UnnamedAddr::None:
3142 return "";
3143 case GlobalVariable::UnnamedAddr::Local:
3144 return "local_unnamed_addr";
3145 case GlobalVariable::UnnamedAddr::Global:
3146 return "unnamed_addr";
3148 llvm_unreachable("Unknown UnnamedAddr");
3151 static void maybePrintComdat(formatted_raw_ostream &Out,
3152 const GlobalObject &GO) {
3153 const Comdat *C = GO.getComdat();
3154 if (!C)
3155 return;
3157 if (isa<GlobalVariable>(GO))
3158 Out << ',';
3159 Out << " comdat";
3161 if (GO.getName() == C->getName())
3162 return;
3164 Out << '(';
3165 PrintLLVMName(Out, C->getName(), ComdatPrefix);
3166 Out << ')';
3169 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3170 if (GV->isMaterializable())
3171 Out << "; Materializable\n";
3173 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
3174 Out << " = ";
3176 if (!GV->hasInitializer() && GV->hasExternalLinkage())
3177 Out << "external ";
3179 Out << getLinkageNameWithSpace(GV->getLinkage());
3180 PrintDSOLocation(*GV, Out);
3181 PrintVisibility(GV->getVisibility(), Out);
3182 PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3183 PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3184 StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3185 if (!UA.empty())
3186 Out << UA << ' ';
3188 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3189 Out << "addrspace(" << AddressSpace << ") ";
3190 if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3191 Out << (GV->isConstant() ? "constant " : "global ");
3192 TypePrinter.print(GV->getValueType(), Out);
3194 if (GV->hasInitializer()) {
3195 Out << ' ';
3196 writeOperand(GV->getInitializer(), false);
3199 if (GV->hasSection()) {
3200 Out << ", section \"";
3201 printEscapedString(GV->getSection(), Out);
3202 Out << '"';
3204 maybePrintComdat(Out, *GV);
3205 if (GV->getAlignment())
3206 Out << ", align " << GV->getAlignment();
3208 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3209 GV->getAllMetadata(MDs);
3210 printMetadataAttachments(MDs, ", ");
3212 auto Attrs = GV->getAttributes();
3213 if (Attrs.hasAttributes())
3214 Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3216 printInfoComment(*GV);
3219 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
3220 if (GIS->isMaterializable())
3221 Out << "; Materializable\n";
3223 WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
3224 Out << " = ";
3226 Out << getLinkageNameWithSpace(GIS->getLinkage());
3227 PrintDSOLocation(*GIS, Out);
3228 PrintVisibility(GIS->getVisibility(), Out);
3229 PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
3230 PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
3231 StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
3232 if (!UA.empty())
3233 Out << UA << ' ';
3235 if (isa<GlobalAlias>(GIS))
3236 Out << "alias ";
3237 else if (isa<GlobalIFunc>(GIS))
3238 Out << "ifunc ";
3239 else
3240 llvm_unreachable("Not an alias or ifunc!");
3242 TypePrinter.print(GIS->getValueType(), Out);
3244 Out << ", ";
3246 const Constant *IS = GIS->getIndirectSymbol();
3248 if (!IS) {
3249 TypePrinter.print(GIS->getType(), Out);
3250 Out << " <<NULL ALIASEE>>";
3251 } else {
3252 writeOperand(IS, !isa<ConstantExpr>(IS));
3255 printInfoComment(*GIS);
3256 Out << '\n';
3259 void AssemblyWriter::printComdat(const Comdat *C) {
3260 C->print(Out);
3263 void AssemblyWriter::printTypeIdentities() {
3264 if (TypePrinter.empty())
3265 return;
3267 Out << '\n';
3269 // Emit all numbered types.
3270 auto &NumberedTypes = TypePrinter.getNumberedTypes();
3271 for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3272 Out << '%' << I << " = type ";
3274 // Make sure we print out at least one level of the type structure, so
3275 // that we do not get %2 = type %2
3276 TypePrinter.printStructBody(NumberedTypes[I], Out);
3277 Out << '\n';
3280 auto &NamedTypes = TypePrinter.getNamedTypes();
3281 for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) {
3282 PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix);
3283 Out << " = type ";
3285 // Make sure we print out at least one level of the type structure, so
3286 // that we do not get %FILE = type %FILE
3287 TypePrinter.printStructBody(NamedTypes[I], Out);
3288 Out << '\n';
3292 /// printFunction - Print all aspects of a function.
3293 void AssemblyWriter::printFunction(const Function *F) {
3294 // Print out the return type and name.
3295 Out << '\n';
3297 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3299 if (F->isMaterializable())
3300 Out << "; Materializable\n";
3302 const AttributeList &Attrs = F->getAttributes();
3303 if (Attrs.hasAttributes(AttributeList::FunctionIndex)) {
3304 AttributeSet AS = Attrs.getFnAttributes();
3305 std::string AttrStr;
3307 for (const Attribute &Attr : AS) {
3308 if (!Attr.isStringAttribute()) {
3309 if (!AttrStr.empty()) AttrStr += ' ';
3310 AttrStr += Attr.getAsString();
3314 if (!AttrStr.empty())
3315 Out << "; Function Attrs: " << AttrStr << '\n';
3318 Machine.incorporateFunction(F);
3320 if (F->isDeclaration()) {
3321 Out << "declare";
3322 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3323 F->getAllMetadata(MDs);
3324 printMetadataAttachments(MDs, " ");
3325 Out << ' ';
3326 } else
3327 Out << "define ";
3329 Out << getLinkageNameWithSpace(F->getLinkage());
3330 PrintDSOLocation(*F, Out);
3331 PrintVisibility(F->getVisibility(), Out);
3332 PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3334 // Print the calling convention.
3335 if (F->getCallingConv() != CallingConv::C) {
3336 PrintCallingConv(F->getCallingConv(), Out);
3337 Out << " ";
3340 FunctionType *FT = F->getFunctionType();
3341 if (Attrs.hasAttributes(AttributeList::ReturnIndex))
3342 Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3343 TypePrinter.print(F->getReturnType(), Out);
3344 Out << ' ';
3345 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
3346 Out << '(';
3348 // Loop over the arguments, printing them...
3349 if (F->isDeclaration() && !IsForDebug) {
3350 // We're only interested in the type here - don't print argument names.
3351 for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3352 // Insert commas as we go... the first arg doesn't get a comma
3353 if (I)
3354 Out << ", ";
3355 // Output type...
3356 TypePrinter.print(FT->getParamType(I), Out);
3358 AttributeSet ArgAttrs = Attrs.getParamAttributes(I);
3359 if (ArgAttrs.hasAttributes())
3360 Out << ' ' << ArgAttrs.getAsString();
3362 } else {
3363 // The arguments are meaningful here, print them in detail.
3364 for (const Argument &Arg : F->args()) {
3365 // Insert commas as we go... the first arg doesn't get a comma
3366 if (Arg.getArgNo() != 0)
3367 Out << ", ";
3368 printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo()));
3372 // Finish printing arguments...
3373 if (FT->isVarArg()) {
3374 if (FT->getNumParams()) Out << ", ";
3375 Out << "..."; // Output varargs portion of signature!
3377 Out << ')';
3378 StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3379 if (!UA.empty())
3380 Out << ' ' << UA;
3381 // We print the function address space if it is non-zero or if we are writing
3382 // a module with a non-zero program address space or if there is no valid
3383 // Module* so that the file can be parsed without the datalayout string.
3384 const Module *Mod = F->getParent();
3385 if (F->getAddressSpace() != 0 || !Mod ||
3386 Mod->getDataLayout().getProgramAddressSpace() != 0)
3387 Out << " addrspace(" << F->getAddressSpace() << ")";
3388 if (Attrs.hasAttributes(AttributeList::FunctionIndex))
3389 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
3390 if (F->hasSection()) {
3391 Out << " section \"";
3392 printEscapedString(F->getSection(), Out);
3393 Out << '"';
3395 maybePrintComdat(Out, *F);
3396 if (F->getAlignment())
3397 Out << " align " << F->getAlignment();
3398 if (F->hasGC())
3399 Out << " gc \"" << F->getGC() << '"';
3400 if (F->hasPrefixData()) {
3401 Out << " prefix ";
3402 writeOperand(F->getPrefixData(), true);
3404 if (F->hasPrologueData()) {
3405 Out << " prologue ";
3406 writeOperand(F->getPrologueData(), true);
3408 if (F->hasPersonalityFn()) {
3409 Out << " personality ";
3410 writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3413 if (F->isDeclaration()) {
3414 Out << '\n';
3415 } else {
3416 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3417 F->getAllMetadata(MDs);
3418 printMetadataAttachments(MDs, " ");
3420 Out << " {";
3421 // Output all of the function's basic blocks.
3422 for (const BasicBlock &BB : *F)
3423 printBasicBlock(&BB);
3425 // Output the function's use-lists.
3426 printUseLists(F);
3428 Out << "}\n";
3431 Machine.purgeFunction();
3434 /// printArgument - This member is called for every argument that is passed into
3435 /// the function. Simply print it out
3436 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3437 // Output type...
3438 TypePrinter.print(Arg->getType(), Out);
3440 // Output parameter attributes list
3441 if (Attrs.hasAttributes())
3442 Out << ' ' << Attrs.getAsString();
3444 // Output name, if available...
3445 if (Arg->hasName()) {
3446 Out << ' ';
3447 PrintLLVMName(Out, Arg);
3451 /// printBasicBlock - This member is called for each basic block in a method.
3452 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3453 if (BB->hasName()) { // Print out the label if it exists...
3454 Out << "\n";
3455 PrintLLVMName(Out, BB->getName(), LabelPrefix);
3456 Out << ':';
3457 } else if (!BB->use_empty()) { // Don't print block # of no uses...
3458 Out << "\n; <label>:";
3459 int Slot = Machine.getLocalSlot(BB);
3460 if (Slot != -1)
3461 Out << Slot << ":";
3462 else
3463 Out << "<badref>";
3466 if (!BB->getParent()) {
3467 Out.PadToColumn(50);
3468 Out << "; Error: Block without parent!";
3469 } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
3470 // Output predecessors for the block.
3471 Out.PadToColumn(50);
3472 Out << ";";
3473 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3475 if (PI == PE) {
3476 Out << " No predecessors!";
3477 } else {
3478 Out << " preds = ";
3479 writeOperand(*PI, false);
3480 for (++PI; PI != PE; ++PI) {
3481 Out << ", ";
3482 writeOperand(*PI, false);
3487 Out << "\n";
3489 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3491 // Output all of the instructions in the basic block...
3492 for (const Instruction &I : *BB) {
3493 printInstructionLine(I);
3496 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3499 /// printInstructionLine - Print an instruction and a newline character.
3500 void AssemblyWriter::printInstructionLine(const Instruction &I) {
3501 printInstruction(I);
3502 Out << '\n';
3505 /// printGCRelocateComment - print comment after call to the gc.relocate
3506 /// intrinsic indicating base and derived pointer names.
3507 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3508 Out << " ; (";
3509 writeOperand(Relocate.getBasePtr(), false);
3510 Out << ", ";
3511 writeOperand(Relocate.getDerivedPtr(), false);
3512 Out << ")";
3515 /// printInfoComment - Print a little comment after the instruction indicating
3516 /// which slot it occupies.
3517 void AssemblyWriter::printInfoComment(const Value &V) {
3518 if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
3519 printGCRelocateComment(*Relocate);
3521 if (AnnotationWriter)
3522 AnnotationWriter->printInfoComment(V, Out);
3525 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
3526 raw_ostream &Out) {
3527 // We print the address space of the call if it is non-zero.
3528 unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
3529 bool PrintAddrSpace = CallAddrSpace != 0;
3530 if (!PrintAddrSpace) {
3531 const Module *Mod = getModuleFromVal(I);
3532 // We also print it if it is zero but not equal to the program address space
3533 // or if we can't find a valid Module* to make it possible to parse
3534 // the resulting file even without a datalayout string.
3535 if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
3536 PrintAddrSpace = true;
3538 if (PrintAddrSpace)
3539 Out << " addrspace(" << CallAddrSpace << ")";
3542 // This member is called for each Instruction in a function..
3543 void AssemblyWriter::printInstruction(const Instruction &I) {
3544 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
3546 // Print out indentation for an instruction.
3547 Out << " ";
3549 // Print out name if it exists...
3550 if (I.hasName()) {
3551 PrintLLVMName(Out, &I);
3552 Out << " = ";
3553 } else if (!I.getType()->isVoidTy()) {
3554 // Print out the def slot taken.
3555 int SlotNum = Machine.getLocalSlot(&I);
3556 if (SlotNum == -1)
3557 Out << "<badref> = ";
3558 else
3559 Out << '%' << SlotNum << " = ";
3562 if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3563 if (CI->isMustTailCall())
3564 Out << "musttail ";
3565 else if (CI->isTailCall())
3566 Out << "tail ";
3567 else if (CI->isNoTailCall())
3568 Out << "notail ";
3571 // Print out the opcode...
3572 Out << I.getOpcodeName();
3574 // If this is an atomic load or store, print out the atomic marker.
3575 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
3576 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
3577 Out << " atomic";
3579 if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
3580 Out << " weak";
3582 // If this is a volatile operation, print out the volatile marker.
3583 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
3584 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
3585 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
3586 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
3587 Out << " volatile";
3589 // Print out optimization information.
3590 WriteOptimizationInfo(Out, &I);
3592 // Print out the compare instruction predicates
3593 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
3594 Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
3596 // Print out the atomicrmw operation
3597 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
3598 Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
3600 // Print out the type of the operands...
3601 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
3603 // Special case conditional branches to swizzle the condition out to the front
3604 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
3605 const BranchInst &BI(cast<BranchInst>(I));
3606 Out << ' ';
3607 writeOperand(BI.getCondition(), true);
3608 Out << ", ";
3609 writeOperand(BI.getSuccessor(0), true);
3610 Out << ", ";
3611 writeOperand(BI.getSuccessor(1), true);
3613 } else if (isa<SwitchInst>(I)) {
3614 const SwitchInst& SI(cast<SwitchInst>(I));
3615 // Special case switch instruction to get formatting nice and correct.
3616 Out << ' ';
3617 writeOperand(SI.getCondition(), true);
3618 Out << ", ";
3619 writeOperand(SI.getDefaultDest(), true);
3620 Out << " [";
3621 for (auto Case : SI.cases()) {
3622 Out << "\n ";
3623 writeOperand(Case.getCaseValue(), true);
3624 Out << ", ";
3625 writeOperand(Case.getCaseSuccessor(), true);
3627 Out << "\n ]";
3628 } else if (isa<IndirectBrInst>(I)) {
3629 // Special case indirectbr instruction to get formatting nice and correct.
3630 Out << ' ';
3631 writeOperand(Operand, true);
3632 Out << ", [";
3634 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
3635 if (i != 1)
3636 Out << ", ";
3637 writeOperand(I.getOperand(i), true);
3639 Out << ']';
3640 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
3641 Out << ' ';
3642 TypePrinter.print(I.getType(), Out);
3643 Out << ' ';
3645 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
3646 if (op) Out << ", ";
3647 Out << "[ ";
3648 writeOperand(PN->getIncomingValue(op), false); Out << ", ";
3649 writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
3651 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
3652 Out << ' ';
3653 writeOperand(I.getOperand(0), true);
3654 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
3655 Out << ", " << *i;
3656 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
3657 Out << ' ';
3658 writeOperand(I.getOperand(0), true); Out << ", ";
3659 writeOperand(I.getOperand(1), true);
3660 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
3661 Out << ", " << *i;
3662 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
3663 Out << ' ';
3664 TypePrinter.print(I.getType(), Out);
3665 if (LPI->isCleanup() || LPI->getNumClauses() != 0)
3666 Out << '\n';
3668 if (LPI->isCleanup())
3669 Out << " cleanup";
3671 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
3672 if (i != 0 || LPI->isCleanup()) Out << "\n";
3673 if (LPI->isCatch(i))
3674 Out << " catch ";
3675 else
3676 Out << " filter ";
3678 writeOperand(LPI->getClause(i), true);
3680 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
3681 Out << " within ";
3682 writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
3683 Out << " [";
3684 unsigned Op = 0;
3685 for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
3686 if (Op > 0)
3687 Out << ", ";
3688 writeOperand(PadBB, /*PrintType=*/true);
3689 ++Op;
3691 Out << "] unwind ";
3692 if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
3693 writeOperand(UnwindDest, /*PrintType=*/true);
3694 else
3695 Out << "to caller";
3696 } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
3697 Out << " within ";
3698 writeOperand(FPI->getParentPad(), /*PrintType=*/false);
3699 Out << " [";
3700 for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
3701 ++Op) {
3702 if (Op > 0)
3703 Out << ", ";
3704 writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
3706 Out << ']';
3707 } else if (isa<ReturnInst>(I) && !Operand) {
3708 Out << " void";
3709 } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
3710 Out << " from ";
3711 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3713 Out << " to ";
3714 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3715 } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
3716 Out << " from ";
3717 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3719 Out << " unwind ";
3720 if (CRI->hasUnwindDest())
3721 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3722 else
3723 Out << "to caller";
3724 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3725 // Print the calling convention being used.
3726 if (CI->getCallingConv() != CallingConv::C) {
3727 Out << " ";
3728 PrintCallingConv(CI->getCallingConv(), Out);
3731 Operand = CI->getCalledValue();
3732 FunctionType *FTy = CI->getFunctionType();
3733 Type *RetTy = FTy->getReturnType();
3734 const AttributeList &PAL = CI->getAttributes();
3736 if (PAL.hasAttributes(AttributeList::ReturnIndex))
3737 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3739 // Only print addrspace(N) if necessary:
3740 maybePrintCallAddrSpace(Operand, &I, Out);
3742 // If possible, print out the short form of the call instruction. We can
3743 // only do this if the first argument is a pointer to a nonvararg function,
3744 // and if the return type is not a pointer to a function.
3746 Out << ' ';
3747 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3748 Out << ' ';
3749 writeOperand(Operand, false);
3750 Out << '(';
3751 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
3752 if (op > 0)
3753 Out << ", ";
3754 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op));
3757 // Emit an ellipsis if this is a musttail call in a vararg function. This
3758 // is only to aid readability, musttail calls forward varargs by default.
3759 if (CI->isMustTailCall() && CI->getParent() &&
3760 CI->getParent()->getParent() &&
3761 CI->getParent()->getParent()->isVarArg())
3762 Out << ", ...";
3764 Out << ')';
3765 if (PAL.hasAttributes(AttributeList::FunctionIndex))
3766 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3768 writeOperandBundles(CI);
3769 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
3770 Operand = II->getCalledValue();
3771 FunctionType *FTy = II->getFunctionType();
3772 Type *RetTy = FTy->getReturnType();
3773 const AttributeList &PAL = II->getAttributes();
3775 // Print the calling convention being used.
3776 if (II->getCallingConv() != CallingConv::C) {
3777 Out << " ";
3778 PrintCallingConv(II->getCallingConv(), Out);
3781 if (PAL.hasAttributes(AttributeList::ReturnIndex))
3782 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3784 // Only print addrspace(N) if necessary:
3785 maybePrintCallAddrSpace(Operand, &I, Out);
3787 // If possible, print out the short form of the invoke instruction. We can
3788 // only do this if the first argument is a pointer to a nonvararg function,
3789 // and if the return type is not a pointer to a function.
3791 Out << ' ';
3792 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3793 Out << ' ';
3794 writeOperand(Operand, false);
3795 Out << '(';
3796 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
3797 if (op)
3798 Out << ", ";
3799 writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op));
3802 Out << ')';
3803 if (PAL.hasAttributes(AttributeList::FunctionIndex))
3804 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3806 writeOperandBundles(II);
3808 Out << "\n to ";
3809 writeOperand(II->getNormalDest(), true);
3810 Out << " unwind ";
3811 writeOperand(II->getUnwindDest(), true);
3812 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
3813 Out << ' ';
3814 if (AI->isUsedWithInAlloca())
3815 Out << "inalloca ";
3816 if (AI->isSwiftError())
3817 Out << "swifterror ";
3818 TypePrinter.print(AI->getAllocatedType(), Out);
3820 // Explicitly write the array size if the code is broken, if it's an array
3821 // allocation, or if the type is not canonical for scalar allocations. The
3822 // latter case prevents the type from mutating when round-tripping through
3823 // assembly.
3824 if (!AI->getArraySize() || AI->isArrayAllocation() ||
3825 !AI->getArraySize()->getType()->isIntegerTy(32)) {
3826 Out << ", ";
3827 writeOperand(AI->getArraySize(), true);
3829 if (AI->getAlignment()) {
3830 Out << ", align " << AI->getAlignment();
3833 unsigned AddrSpace = AI->getType()->getAddressSpace();
3834 if (AddrSpace != 0) {
3835 Out << ", addrspace(" << AddrSpace << ')';
3837 } else if (isa<CastInst>(I)) {
3838 if (Operand) {
3839 Out << ' ';
3840 writeOperand(Operand, true); // Work with broken code
3842 Out << " to ";
3843 TypePrinter.print(I.getType(), Out);
3844 } else if (isa<VAArgInst>(I)) {
3845 if (Operand) {
3846 Out << ' ';
3847 writeOperand(Operand, true); // Work with broken code
3849 Out << ", ";
3850 TypePrinter.print(I.getType(), Out);
3851 } else if (Operand) { // Print the normal way.
3852 if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
3853 Out << ' ';
3854 TypePrinter.print(GEP->getSourceElementType(), Out);
3855 Out << ',';
3856 } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
3857 Out << ' ';
3858 TypePrinter.print(LI->getType(), Out);
3859 Out << ',';
3862 // PrintAllTypes - Instructions who have operands of all the same type
3863 // omit the type from all but the first operand. If the instruction has
3864 // different type operands (for example br), then they are all printed.
3865 bool PrintAllTypes = false;
3866 Type *TheType = Operand->getType();
3868 // Select, Store and ShuffleVector always print all types.
3869 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
3870 || isa<ReturnInst>(I)) {
3871 PrintAllTypes = true;
3872 } else {
3873 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
3874 Operand = I.getOperand(i);
3875 // note that Operand shouldn't be null, but the test helps make dump()
3876 // more tolerant of malformed IR
3877 if (Operand && Operand->getType() != TheType) {
3878 PrintAllTypes = true; // We have differing types! Print them all!
3879 break;
3884 if (!PrintAllTypes) {
3885 Out << ' ';
3886 TypePrinter.print(TheType, Out);
3889 Out << ' ';
3890 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
3891 if (i) Out << ", ";
3892 writeOperand(I.getOperand(i), PrintAllTypes);
3896 // Print atomic ordering/alignment for memory operations
3897 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
3898 if (LI->isAtomic())
3899 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
3900 if (LI->getAlignment())
3901 Out << ", align " << LI->getAlignment();
3902 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
3903 if (SI->isAtomic())
3904 writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
3905 if (SI->getAlignment())
3906 Out << ", align " << SI->getAlignment();
3907 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
3908 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
3909 CXI->getFailureOrdering(), CXI->getSyncScopeID());
3910 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
3911 writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
3912 RMWI->getSyncScopeID());
3913 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
3914 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
3917 // Print Metadata info.
3918 SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
3919 I.getAllMetadata(InstMD);
3920 printMetadataAttachments(InstMD, ", ");
3922 // Print a nice comment.
3923 printInfoComment(I);
3926 void AssemblyWriter::printMetadataAttachments(
3927 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
3928 StringRef Separator) {
3929 if (MDs.empty())
3930 return;
3932 if (MDNames.empty())
3933 MDs[0].second->getContext().getMDKindNames(MDNames);
3935 for (const auto &I : MDs) {
3936 unsigned Kind = I.first;
3937 Out << Separator;
3938 if (Kind < MDNames.size()) {
3939 Out << "!";
3940 printMetadataIdentifier(MDNames[Kind], Out);
3941 } else
3942 Out << "!<unknown kind #" << Kind << ">";
3943 Out << ' ';
3944 WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
3948 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
3949 Out << '!' << Slot << " = ";
3950 printMDNodeBody(Node);
3951 Out << "\n";
3954 void AssemblyWriter::writeAllMDNodes() {
3955 SmallVector<const MDNode *, 16> Nodes;
3956 Nodes.resize(Machine.mdn_size());
3957 for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
3958 I != E; ++I)
3959 Nodes[I->second] = cast<MDNode>(I->first);
3961 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3962 writeMDNode(i, Nodes[i]);
3966 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
3967 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
3970 void AssemblyWriter::writeAllAttributeGroups() {
3971 std::vector<std::pair<AttributeSet, unsigned>> asVec;
3972 asVec.resize(Machine.as_size());
3974 for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
3975 I != E; ++I)
3976 asVec[I->second] = *I;
3978 for (const auto &I : asVec)
3979 Out << "attributes #" << I.second << " = { "
3980 << I.first.getAsString(true) << " }\n";
3983 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
3984 bool IsInFunction = Machine.getFunction();
3985 if (IsInFunction)
3986 Out << " ";
3988 Out << "uselistorder";
3989 if (const BasicBlock *BB =
3990 IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
3991 Out << "_bb ";
3992 writeOperand(BB->getParent(), false);
3993 Out << ", ";
3994 writeOperand(BB, false);
3995 } else {
3996 Out << " ";
3997 writeOperand(Order.V, true);
3999 Out << ", { ";
4001 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
4002 Out << Order.Shuffle[0];
4003 for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
4004 Out << ", " << Order.Shuffle[I];
4005 Out << " }\n";
4008 void AssemblyWriter::printUseLists(const Function *F) {
4009 auto hasMore =
4010 [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
4011 if (!hasMore())
4012 // Nothing to do.
4013 return;
4015 Out << "\n; uselistorder directives\n";
4016 while (hasMore()) {
4017 printUseListOrder(UseListOrders.back());
4018 UseListOrders.pop_back();
4022 //===----------------------------------------------------------------------===//
4023 // External Interface declarations
4024 //===----------------------------------------------------------------------===//
4026 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4027 bool ShouldPreserveUseListOrder,
4028 bool IsForDebug) const {
4029 SlotTracker SlotTable(this->getParent());
4030 formatted_raw_ostream OS(ROS);
4031 AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4032 IsForDebug,
4033 ShouldPreserveUseListOrder);
4034 W.printFunction(this);
4037 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4038 bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4039 SlotTracker SlotTable(this);
4040 formatted_raw_ostream OS(ROS);
4041 AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4042 ShouldPreserveUseListOrder);
4043 W.printModule(this);
4046 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4047 SlotTracker SlotTable(getParent());
4048 formatted_raw_ostream OS(ROS);
4049 AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4050 W.printNamedMDNode(this);
4053 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4054 bool IsForDebug) const {
4055 Optional<SlotTracker> LocalST;
4056 SlotTracker *SlotTable;
4057 if (auto *ST = MST.getMachine())
4058 SlotTable = ST;
4059 else {
4060 LocalST.emplace(getParent());
4061 SlotTable = &*LocalST;
4064 formatted_raw_ostream OS(ROS);
4065 AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4066 W.printNamedMDNode(this);
4069 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4070 PrintLLVMName(ROS, getName(), ComdatPrefix);
4071 ROS << " = comdat ";
4073 switch (getSelectionKind()) {
4074 case Comdat::Any:
4075 ROS << "any";
4076 break;
4077 case Comdat::ExactMatch:
4078 ROS << "exactmatch";
4079 break;
4080 case Comdat::Largest:
4081 ROS << "largest";
4082 break;
4083 case Comdat::NoDuplicates:
4084 ROS << "noduplicates";
4085 break;
4086 case Comdat::SameSize:
4087 ROS << "samesize";
4088 break;
4091 ROS << '\n';
4094 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4095 TypePrinting TP;
4096 TP.print(const_cast<Type*>(this), OS);
4098 if (NoDetails)
4099 return;
4101 // If the type is a named struct type, print the body as well.
4102 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4103 if (!STy->isLiteral()) {
4104 OS << " = type ";
4105 TP.printStructBody(STy, OS);
4109 static bool isReferencingMDNode(const Instruction &I) {
4110 if (const auto *CI = dyn_cast<CallInst>(&I))
4111 if (Function *F = CI->getCalledFunction())
4112 if (F->isIntrinsic())
4113 for (auto &Op : I.operands())
4114 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4115 if (isa<MDNode>(V->getMetadata()))
4116 return true;
4117 return false;
4120 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4121 bool ShouldInitializeAllMetadata = false;
4122 if (auto *I = dyn_cast<Instruction>(this))
4123 ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4124 else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4125 ShouldInitializeAllMetadata = true;
4127 ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4128 print(ROS, MST, IsForDebug);
4131 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4132 bool IsForDebug) const {
4133 formatted_raw_ostream OS(ROS);
4134 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4135 SlotTracker &SlotTable =
4136 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4137 auto incorporateFunction = [&](const Function *F) {
4138 if (F)
4139 MST.incorporateFunction(*F);
4142 if (const Instruction *I = dyn_cast<Instruction>(this)) {
4143 incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4144 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4145 W.printInstruction(*I);
4146 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4147 incorporateFunction(BB->getParent());
4148 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4149 W.printBasicBlock(BB);
4150 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4151 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4152 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4153 W.printGlobal(V);
4154 else if (const Function *F = dyn_cast<Function>(GV))
4155 W.printFunction(F);
4156 else
4157 W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
4158 } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4159 V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4160 } else if (const Constant *C = dyn_cast<Constant>(this)) {
4161 TypePrinting TypePrinter;
4162 TypePrinter.print(C->getType(), OS);
4163 OS << ' ';
4164 WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
4165 } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4166 this->printAsOperand(OS, /* PrintType */ true, MST);
4167 } else {
4168 llvm_unreachable("Unknown value to print out!");
4172 /// Print without a type, skipping the TypePrinting object.
4174 /// \return \c true iff printing was successful.
4175 static bool printWithoutType(const Value &V, raw_ostream &O,
4176 SlotTracker *Machine, const Module *M) {
4177 if (V.hasName() || isa<GlobalValue>(V) ||
4178 (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4179 WriteAsOperandInternal(O, &V, nullptr, Machine, M);
4180 return true;
4182 return false;
4185 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4186 ModuleSlotTracker &MST) {
4187 TypePrinting TypePrinter(MST.getModule());
4188 if (PrintType) {
4189 TypePrinter.print(V.getType(), O);
4190 O << ' ';
4193 WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
4194 MST.getModule());
4197 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4198 const Module *M) const {
4199 if (!M)
4200 M = getModuleFromVal(this);
4202 if (!PrintType)
4203 if (printWithoutType(*this, O, nullptr, M))
4204 return;
4206 SlotTracker Machine(
4207 M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4208 ModuleSlotTracker MST(Machine, M);
4209 printAsOperandImpl(*this, O, PrintType, MST);
4212 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4213 ModuleSlotTracker &MST) const {
4214 if (!PrintType)
4215 if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4216 return;
4218 printAsOperandImpl(*this, O, PrintType, MST);
4221 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4222 ModuleSlotTracker &MST, const Module *M,
4223 bool OnlyAsOperand) {
4224 formatted_raw_ostream OS(ROS);
4226 TypePrinting TypePrinter(M);
4228 WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
4229 /* FromValue */ true);
4231 auto *N = dyn_cast<MDNode>(&MD);
4232 if (OnlyAsOperand || !N || isa<DIExpression>(MD))
4233 return;
4235 OS << " = ";
4236 WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
4239 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4240 ModuleSlotTracker MST(M, isa<MDNode>(this));
4241 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4244 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4245 const Module *M) const {
4246 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4249 void Metadata::print(raw_ostream &OS, const Module *M,
4250 bool /*IsForDebug*/) const {
4251 ModuleSlotTracker MST(M, isa<MDNode>(this));
4252 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4255 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4256 const Module *M, bool /*IsForDebug*/) const {
4257 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4260 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4261 SlotTracker SlotTable(this);
4262 formatted_raw_ostream OS(ROS);
4263 AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4264 W.printModuleSummaryIndex();
4267 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4268 // Value::dump - allow easy printing of Values from the debugger.
4269 LLVM_DUMP_METHOD
4270 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4272 // Type::dump - allow easy printing of Types from the debugger.
4273 LLVM_DUMP_METHOD
4274 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4276 // Module::dump() - Allow printing of Modules from the debugger.
4277 LLVM_DUMP_METHOD
4278 void Module::dump() const {
4279 print(dbgs(), nullptr,
4280 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4283 // Allow printing of Comdats from the debugger.
4284 LLVM_DUMP_METHOD
4285 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4287 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4288 LLVM_DUMP_METHOD
4289 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4291 LLVM_DUMP_METHOD
4292 void Metadata::dump() const { dump(nullptr); }
4294 LLVM_DUMP_METHOD
4295 void Metadata::dump(const Module *M) const {
4296 print(dbgs(), M, /*IsForDebug=*/true);
4297 dbgs() << '\n';
4300 // Allow printing of ModuleSummaryIndex from the debugger.
4301 LLVM_DUMP_METHOD
4302 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4303 #endif