1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the BasicBlock class for the IR library.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/BasicBlock.h"
15 #include "SymbolTableListTraitsImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/IR/CFG.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Type.h"
27 ValueSymbolTable
*BasicBlock::getValueSymbolTable() {
28 if (Function
*F
= getParent())
29 return F
->getValueSymbolTable();
33 LLVMContext
&BasicBlock::getContext() const {
34 return getType()->getContext();
37 // Explicit instantiation of SymbolTableListTraits since some of the methods
38 // are not in the public header file...
39 template class llvm::SymbolTableListTraits
<Instruction
>;
41 BasicBlock::BasicBlock(LLVMContext
&C
, const Twine
&Name
, Function
*NewParent
,
42 BasicBlock
*InsertBefore
)
43 : Value(Type::getLabelTy(C
), Value::BasicBlockVal
), Parent(nullptr) {
46 insertInto(NewParent
, InsertBefore
);
48 assert(!InsertBefore
&&
49 "Cannot insert block before another block with no function!");
54 void BasicBlock::insertInto(Function
*NewParent
, BasicBlock
*InsertBefore
) {
55 assert(NewParent
&& "Expected a parent");
56 assert(!Parent
&& "Already has a parent");
59 NewParent
->getBasicBlockList().insert(InsertBefore
->getIterator(), this);
61 NewParent
->getBasicBlockList().push_back(this);
64 BasicBlock::~BasicBlock() {
65 // If the address of the block is taken and it is being deleted (e.g. because
66 // it is dead), this means that there is either a dangling constant expr
67 // hanging off the block, or an undefined use of the block (source code
68 // expecting the address of a label to keep the block alive even though there
69 // is no indirect branch). Handle these cases by zapping the BlockAddress
70 // nodes. There are no other possible uses at this point.
71 if (hasAddressTaken()) {
72 assert(!use_empty() && "There should be at least one blockaddress!");
73 Constant
*Replacement
=
74 ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
75 while (!use_empty()) {
76 BlockAddress
*BA
= cast
<BlockAddress
>(user_back());
77 BA
->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement
,
79 BA
->destroyConstant();
83 assert(getParent() == nullptr && "BasicBlock still linked into the program!");
88 void BasicBlock::setParent(Function
*parent
) {
89 // Set Parent=parent, updating instruction symtab entries as appropriate.
90 InstList
.setSymTabObject(&Parent
, parent
);
93 iterator_range
<filter_iterator
<BasicBlock::const_iterator
,
94 std::function
<bool(const Instruction
&)>>>
95 BasicBlock::instructionsWithoutDebug() const {
96 std::function
<bool(const Instruction
&)> Fn
= [](const Instruction
&I
) {
97 return !isa
<DbgInfoIntrinsic
>(I
);
99 return make_filter_range(*this, Fn
);
102 iterator_range
<filter_iterator
<BasicBlock::iterator
,
103 std::function
<bool(Instruction
&)>>>
104 BasicBlock::instructionsWithoutDebug() {
105 std::function
<bool(Instruction
&)> Fn
= [](Instruction
&I
) {
106 return !isa
<DbgInfoIntrinsic
>(I
);
108 return make_filter_range(*this, Fn
);
111 void BasicBlock::removeFromParent() {
112 getParent()->getBasicBlockList().remove(getIterator());
115 iplist
<BasicBlock
>::iterator
BasicBlock::eraseFromParent() {
116 return getParent()->getBasicBlockList().erase(getIterator());
119 /// Unlink this basic block from its current function and
120 /// insert it into the function that MovePos lives in, right before MovePos.
121 void BasicBlock::moveBefore(BasicBlock
*MovePos
) {
122 MovePos
->getParent()->getBasicBlockList().splice(
123 MovePos
->getIterator(), getParent()->getBasicBlockList(), getIterator());
126 /// Unlink this basic block from its current function and
127 /// insert it into the function that MovePos lives in, right after MovePos.
128 void BasicBlock::moveAfter(BasicBlock
*MovePos
) {
129 MovePos
->getParent()->getBasicBlockList().splice(
130 ++MovePos
->getIterator(), getParent()->getBasicBlockList(),
134 const Module
*BasicBlock::getModule() const {
135 return getParent()->getParent();
138 const TerminatorInst
*BasicBlock::getTerminator() const {
139 if (InstList
.empty()) return nullptr;
140 return dyn_cast
<TerminatorInst
>(&InstList
.back());
143 const CallInst
*BasicBlock::getTerminatingMustTailCall() const {
144 if (InstList
.empty())
146 const ReturnInst
*RI
= dyn_cast
<ReturnInst
>(&InstList
.back());
147 if (!RI
|| RI
== &InstList
.front())
150 const Instruction
*Prev
= RI
->getPrevNode();
154 if (Value
*RV
= RI
->getReturnValue()) {
158 // Look through the optional bitcast.
159 if (auto *BI
= dyn_cast
<BitCastInst
>(Prev
)) {
160 RV
= BI
->getOperand(0);
161 Prev
= BI
->getPrevNode();
162 if (!Prev
|| RV
!= Prev
)
167 if (auto *CI
= dyn_cast
<CallInst
>(Prev
)) {
168 if (CI
->isMustTailCall())
174 const CallInst
*BasicBlock::getTerminatingDeoptimizeCall() const {
175 if (InstList
.empty())
177 auto *RI
= dyn_cast
<ReturnInst
>(&InstList
.back());
178 if (!RI
|| RI
== &InstList
.front())
181 if (auto *CI
= dyn_cast_or_null
<CallInst
>(RI
->getPrevNode()))
182 if (Function
*F
= CI
->getCalledFunction())
183 if (F
->getIntrinsicID() == Intrinsic::experimental_deoptimize
)
189 const Instruction
* BasicBlock::getFirstNonPHI() const {
190 for (const Instruction
&I
: *this)
191 if (!isa
<PHINode
>(I
))
196 const Instruction
* BasicBlock::getFirstNonPHIOrDbg() const {
197 for (const Instruction
&I
: *this)
198 if (!isa
<PHINode
>(I
) && !isa
<DbgInfoIntrinsic
>(I
))
203 const Instruction
* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const {
204 for (const Instruction
&I
: *this) {
205 if (isa
<PHINode
>(I
) || isa
<DbgInfoIntrinsic
>(I
))
208 if (auto *II
= dyn_cast
<IntrinsicInst
>(&I
))
209 if (II
->getIntrinsicID() == Intrinsic::lifetime_start
||
210 II
->getIntrinsicID() == Intrinsic::lifetime_end
)
218 BasicBlock::const_iterator
BasicBlock::getFirstInsertionPt() const {
219 const Instruction
*FirstNonPHI
= getFirstNonPHI();
223 const_iterator InsertPt
= FirstNonPHI
->getIterator();
224 if (InsertPt
->isEHPad()) ++InsertPt
;
228 void BasicBlock::dropAllReferences() {
229 for (Instruction
&I
: *this)
230 I
.dropAllReferences();
233 /// If this basic block has a single predecessor block,
234 /// return the block, otherwise return a null pointer.
235 const BasicBlock
*BasicBlock::getSinglePredecessor() const {
236 const_pred_iterator PI
= pred_begin(this), E
= pred_end(this);
237 if (PI
== E
) return nullptr; // No preds.
238 const BasicBlock
*ThePred
= *PI
;
240 return (PI
== E
) ? ThePred
: nullptr /*multiple preds*/;
243 /// If this basic block has a unique predecessor block,
244 /// return the block, otherwise return a null pointer.
245 /// Note that unique predecessor doesn't mean single edge, there can be
246 /// multiple edges from the unique predecessor to this block (for example
247 /// a switch statement with multiple cases having the same destination).
248 const BasicBlock
*BasicBlock::getUniquePredecessor() const {
249 const_pred_iterator PI
= pred_begin(this), E
= pred_end(this);
250 if (PI
== E
) return nullptr; // No preds.
251 const BasicBlock
*PredBB
= *PI
;
253 for (;PI
!= E
; ++PI
) {
256 // The same predecessor appears multiple times in the predecessor list.
262 const BasicBlock
*BasicBlock::getSingleSuccessor() const {
263 succ_const_iterator SI
= succ_begin(this), E
= succ_end(this);
264 if (SI
== E
) return nullptr; // no successors
265 const BasicBlock
*TheSucc
= *SI
;
267 return (SI
== E
) ? TheSucc
: nullptr /* multiple successors */;
270 const BasicBlock
*BasicBlock::getUniqueSuccessor() const {
271 succ_const_iterator SI
= succ_begin(this), E
= succ_end(this);
272 if (SI
== E
) return nullptr; // No successors
273 const BasicBlock
*SuccBB
= *SI
;
275 for (;SI
!= E
; ++SI
) {
278 // The same successor appears multiple times in the successor list.
284 iterator_range
<BasicBlock::phi_iterator
> BasicBlock::phis() {
285 PHINode
*P
= empty() ? nullptr : dyn_cast
<PHINode
>(&*begin());
286 return make_range
<phi_iterator
>(P
, nullptr);
289 /// This method is used to notify a BasicBlock that the
290 /// specified Predecessor of the block is no longer able to reach it. This is
291 /// actually not used to update the Predecessor list, but is actually used to
292 /// update the PHI nodes that reside in the block. Note that this should be
293 /// called while the predecessor still refers to this block.
295 void BasicBlock::removePredecessor(BasicBlock
*Pred
,
296 bool DontDeleteUselessPHIs
) {
297 assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
298 find(pred_begin(this), pred_end(this), Pred
) != pred_end(this)) &&
299 "removePredecessor: BB is not a predecessor!");
301 if (InstList
.empty()) return;
302 PHINode
*APN
= dyn_cast
<PHINode
>(&front());
303 if (!APN
) return; // Quick exit.
305 // If there are exactly two predecessors, then we want to nuke the PHI nodes
306 // altogether. However, we cannot do this, if this in this case:
309 // %x = phi [X, Loop]
310 // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1
311 // br Loop ;; %x2 does not dominate all uses
313 // This is because the PHI node input is actually taken from the predecessor
314 // basic block. The only case this can happen is with a self loop, so we
315 // check for this case explicitly now.
317 unsigned max_idx
= APN
->getNumIncomingValues();
318 assert(max_idx
!= 0 && "PHI Node in block with 0 predecessors!?!?!");
320 BasicBlock
*Other
= APN
->getIncomingBlock(APN
->getIncomingBlock(0) == Pred
);
322 // Disable PHI elimination!
323 if (this == Other
) max_idx
= 3;
326 // <= Two predecessors BEFORE I remove one?
327 if (max_idx
<= 2 && !DontDeleteUselessPHIs
) {
328 // Yup, loop through and nuke the PHI nodes
329 while (PHINode
*PN
= dyn_cast
<PHINode
>(&front())) {
330 // Remove the predecessor first.
331 PN
->removeIncomingValue(Pred
, !DontDeleteUselessPHIs
);
333 // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
335 if (PN
->getIncomingValue(0) != PN
)
336 PN
->replaceAllUsesWith(PN
->getIncomingValue(0));
338 // We are left with an infinite loop with no entries: kill the PHI.
339 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
340 getInstList().pop_front(); // Remove the PHI node
343 // If the PHI node already only had one entry, it got deleted by
344 // removeIncomingValue.
347 // Okay, now we know that we need to remove predecessor #pred_idx from all
348 // PHI nodes. Iterate over each PHI node fixing them up
350 for (iterator II
= begin(); (PN
= dyn_cast
<PHINode
>(II
)); ) {
352 PN
->removeIncomingValue(Pred
, false);
353 // If all incoming values to the Phi are the same, we can replace the Phi
355 Value
* PNV
= nullptr;
356 if (!DontDeleteUselessPHIs
&& (PNV
= PN
->hasConstantValue()))
358 PN
->replaceAllUsesWith(PNV
);
359 PN
->eraseFromParent();
365 bool BasicBlock::canSplitPredecessors() const {
366 const Instruction
*FirstNonPHI
= getFirstNonPHI();
367 if (isa
<LandingPadInst
>(FirstNonPHI
))
369 // This is perhaps a little conservative because constructs like
370 // CleanupBlockInst are pretty easy to split. However, SplitBlockPredecessors
371 // cannot handle such things just yet.
372 if (FirstNonPHI
->isEHPad())
377 bool BasicBlock::isLegalToHoistInto() const {
378 auto *Term
= getTerminator();
379 // No terminator means the block is under construction.
383 // If the block has no successors, there can be no instructions to hoist.
384 assert(Term
->getNumSuccessors() > 0);
386 // Instructions should not be hoisted across exception handling boundaries.
387 return !Term
->isExceptionalTerminator();
390 /// This splits a basic block into two at the specified
391 /// instruction. Note that all instructions BEFORE the specified iterator stay
392 /// as part of the original basic block, an unconditional branch is added to
393 /// the new BB, and the rest of the instructions in the BB are moved to the new
394 /// BB, including the old terminator. This invalidates the iterator.
396 /// Note that this only works on well formed basic blocks (must have a
397 /// terminator), and 'I' must not be the end of instruction list (which would
398 /// cause a degenerate basic block to be formed, having a terminator inside of
399 /// the basic block).
401 BasicBlock
*BasicBlock::splitBasicBlock(iterator I
, const Twine
&BBName
) {
402 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
403 assert(I
!= InstList
.end() &&
404 "Trying to get me to create degenerate basic block!");
406 BasicBlock
*New
= BasicBlock::Create(getContext(), BBName
, getParent(),
407 this->getNextNode());
409 // Save DebugLoc of split point before invalidating iterator.
410 DebugLoc Loc
= I
->getDebugLoc();
411 // Move all of the specified instructions from the original basic block into
412 // the new basic block.
413 New
->getInstList().splice(New
->end(), this->getInstList(), I
, end());
415 // Add a branch instruction to the newly formed basic block.
416 BranchInst
*BI
= BranchInst::Create(New
, this);
417 BI
->setDebugLoc(Loc
);
419 // Now we must loop through all of the successors of the New block (which
420 // _were_ the successors of the 'this' block), and update any PHI nodes in
421 // successors. If there were PHI nodes in the successors, then they need to
422 // know that incoming branches will be from New, not from Old.
424 for (succ_iterator I
= succ_begin(New
), E
= succ_end(New
); I
!= E
; ++I
) {
425 // Loop over any phi nodes in the basic block, updating the BB field of
426 // incoming values...
427 BasicBlock
*Successor
= *I
;
428 for (auto &PN
: Successor
->phis()) {
429 int Idx
= PN
.getBasicBlockIndex(this);
431 PN
.setIncomingBlock((unsigned)Idx
, New
);
432 Idx
= PN
.getBasicBlockIndex(this);
439 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock
*New
) {
440 TerminatorInst
*TI
= getTerminator();
442 // Cope with being called on a BasicBlock that doesn't have a terminator
443 // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
445 for (BasicBlock
*Succ
: successors(TI
)) {
446 // N.B. Succ might not be a complete BasicBlock, so don't assume
447 // that it ends with a non-phi instruction.
448 for (iterator II
= Succ
->begin(), IE
= Succ
->end(); II
!= IE
; ++II
) {
449 PHINode
*PN
= dyn_cast
<PHINode
>(II
);
453 while ((i
= PN
->getBasicBlockIndex(this)) >= 0)
454 PN
->setIncomingBlock(i
, New
);
459 /// Return true if this basic block is a landing pad. I.e., it's
460 /// the destination of the 'unwind' edge of an invoke instruction.
461 bool BasicBlock::isLandingPad() const {
462 return isa
<LandingPadInst
>(getFirstNonPHI());
465 /// Return the landingpad instruction associated with the landing pad.
466 const LandingPadInst
*BasicBlock::getLandingPadInst() const {
467 return dyn_cast
<LandingPadInst
>(getFirstNonPHI());
470 Optional
<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const {
471 const TerminatorInst
*TI
= getTerminator();
472 if (MDNode
*MDIrrLoopHeader
=
473 TI
->getMetadata(LLVMContext::MD_irr_loop
)) {
474 MDString
*MDName
= cast
<MDString
>(MDIrrLoopHeader
->getOperand(0));
475 if (MDName
->getString().equals("loop_header_weight")) {
476 auto *CI
= mdconst::extract
<ConstantInt
>(MDIrrLoopHeader
->getOperand(1));
477 return Optional
<uint64_t>(CI
->getValue().getZExtValue());
480 return Optional
<uint64_t>();
483 BasicBlock::iterator
llvm::skipDebugIntrinsics(BasicBlock::iterator It
) {
484 while (isa
<DbgInfoIntrinsic
>(It
))