1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements folding of constants for LLVM. This implements the
11 // (internal) ConstantFold.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
14 // The current constant folding implementation is implemented in two pieces: the
15 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
16 // a dependence in IR on Target.
18 //===----------------------------------------------------------------------===//
20 #include "ConstantFold.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GetElementPtrTypeIterator.h"
27 #include "llvm/IR/GlobalAlias.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
36 using namespace llvm::PatternMatch
;
38 //===----------------------------------------------------------------------===//
39 // ConstantFold*Instruction Implementations
40 //===----------------------------------------------------------------------===//
42 /// Convert the specified vector Constant node to the specified vector type.
43 /// At this point, we know that the elements of the input vector constant are
44 /// all simple integer or FP values.
45 static Constant
*BitCastConstantVector(Constant
*CV
, VectorType
*DstTy
) {
47 if (CV
->isAllOnesValue()) return Constant::getAllOnesValue(DstTy
);
48 if (CV
->isNullValue()) return Constant::getNullValue(DstTy
);
50 // If this cast changes element count then we can't handle it here:
51 // doing so requires endianness information. This should be handled by
52 // Analysis/ConstantFolding.cpp
53 unsigned NumElts
= DstTy
->getNumElements();
54 if (NumElts
!= CV
->getType()->getVectorNumElements())
57 Type
*DstEltTy
= DstTy
->getElementType();
59 SmallVector
<Constant
*, 16> Result
;
60 Type
*Ty
= IntegerType::get(CV
->getContext(), 32);
61 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
63 ConstantExpr::getExtractElement(CV
, ConstantInt::get(Ty
, i
));
64 C
= ConstantExpr::getBitCast(C
, DstEltTy
);
68 return ConstantVector::get(Result
);
71 /// This function determines which opcode to use to fold two constant cast
72 /// expressions together. It uses CastInst::isEliminableCastPair to determine
73 /// the opcode. Consequently its just a wrapper around that function.
74 /// Determine if it is valid to fold a cast of a cast
77 unsigned opc
, ///< opcode of the second cast constant expression
78 ConstantExpr
*Op
, ///< the first cast constant expression
79 Type
*DstTy
///< destination type of the first cast
81 assert(Op
&& Op
->isCast() && "Can't fold cast of cast without a cast!");
82 assert(DstTy
&& DstTy
->isFirstClassType() && "Invalid cast destination type");
83 assert(CastInst::isCast(opc
) && "Invalid cast opcode");
85 // The types and opcodes for the two Cast constant expressions
86 Type
*SrcTy
= Op
->getOperand(0)->getType();
87 Type
*MidTy
= Op
->getType();
88 Instruction::CastOps firstOp
= Instruction::CastOps(Op
->getOpcode());
89 Instruction::CastOps secondOp
= Instruction::CastOps(opc
);
91 // Assume that pointers are never more than 64 bits wide, and only use this
92 // for the middle type. Otherwise we could end up folding away illegal
93 // bitcasts between address spaces with different sizes.
94 IntegerType
*FakeIntPtrTy
= Type::getInt64Ty(DstTy
->getContext());
96 // Let CastInst::isEliminableCastPair do the heavy lifting.
97 return CastInst::isEliminableCastPair(firstOp
, secondOp
, SrcTy
, MidTy
, DstTy
,
98 nullptr, FakeIntPtrTy
, nullptr);
101 static Constant
*FoldBitCast(Constant
*V
, Type
*DestTy
) {
102 Type
*SrcTy
= V
->getType();
104 return V
; // no-op cast
106 // Check to see if we are casting a pointer to an aggregate to a pointer to
107 // the first element. If so, return the appropriate GEP instruction.
108 if (PointerType
*PTy
= dyn_cast
<PointerType
>(V
->getType()))
109 if (PointerType
*DPTy
= dyn_cast
<PointerType
>(DestTy
))
110 if (PTy
->getAddressSpace() == DPTy
->getAddressSpace()
111 && PTy
->getElementType()->isSized()) {
112 SmallVector
<Value
*, 8> IdxList
;
114 Constant::getNullValue(Type::getInt32Ty(DPTy
->getContext()));
115 IdxList
.push_back(Zero
);
116 Type
*ElTy
= PTy
->getElementType();
117 while (ElTy
!= DPTy
->getElementType()) {
118 if (StructType
*STy
= dyn_cast
<StructType
>(ElTy
)) {
119 if (STy
->getNumElements() == 0) break;
120 ElTy
= STy
->getElementType(0);
121 IdxList
.push_back(Zero
);
122 } else if (SequentialType
*STy
=
123 dyn_cast
<SequentialType
>(ElTy
)) {
124 ElTy
= STy
->getElementType();
125 IdxList
.push_back(Zero
);
131 if (ElTy
== DPTy
->getElementType())
132 // This GEP is inbounds because all indices are zero.
133 return ConstantExpr::getInBoundsGetElementPtr(PTy
->getElementType(),
137 // Handle casts from one vector constant to another. We know that the src
138 // and dest type have the same size (otherwise its an illegal cast).
139 if (VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
140 if (VectorType
*SrcTy
= dyn_cast
<VectorType
>(V
->getType())) {
141 assert(DestPTy
->getBitWidth() == SrcTy
->getBitWidth() &&
142 "Not cast between same sized vectors!");
144 // First, check for null. Undef is already handled.
145 if (isa
<ConstantAggregateZero
>(V
))
146 return Constant::getNullValue(DestTy
);
148 // Handle ConstantVector and ConstantAggregateVector.
149 return BitCastConstantVector(V
, DestPTy
);
152 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
153 // This allows for other simplifications (although some of them
154 // can only be handled by Analysis/ConstantFolding.cpp).
155 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
))
156 return ConstantExpr::getBitCast(ConstantVector::get(V
), DestPTy
);
159 // Finally, implement bitcast folding now. The code below doesn't handle
161 if (isa
<ConstantPointerNull
>(V
)) // ptr->ptr cast.
162 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
164 // Handle integral constant input.
165 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
166 if (DestTy
->isIntegerTy())
167 // Integral -> Integral. This is a no-op because the bit widths must
168 // be the same. Consequently, we just fold to V.
171 // See note below regarding the PPC_FP128 restriction.
172 if (DestTy
->isFloatingPointTy() && !DestTy
->isPPC_FP128Ty())
173 return ConstantFP::get(DestTy
->getContext(),
174 APFloat(DestTy
->getFltSemantics(),
177 // Otherwise, can't fold this (vector?)
181 // Handle ConstantFP input: FP -> Integral.
182 if (ConstantFP
*FP
= dyn_cast
<ConstantFP
>(V
)) {
183 // PPC_FP128 is really the sum of two consecutive doubles, where the first
184 // double is always stored first in memory, regardless of the target
185 // endianness. The memory layout of i128, however, depends on the target
186 // endianness, and so we can't fold this without target endianness
187 // information. This should instead be handled by
188 // Analysis/ConstantFolding.cpp
189 if (FP
->getType()->isPPC_FP128Ty())
192 // Make sure dest type is compatible with the folded integer constant.
193 if (!DestTy
->isIntegerTy())
196 return ConstantInt::get(FP
->getContext(),
197 FP
->getValueAPF().bitcastToAPInt());
204 /// V is an integer constant which only has a subset of its bytes used.
205 /// The bytes used are indicated by ByteStart (which is the first byte used,
206 /// counting from the least significant byte) and ByteSize, which is the number
209 /// This function analyzes the specified constant to see if the specified byte
210 /// range can be returned as a simplified constant. If so, the constant is
211 /// returned, otherwise null is returned.
212 static Constant
*ExtractConstantBytes(Constant
*C
, unsigned ByteStart
,
214 assert(C
->getType()->isIntegerTy() &&
215 (cast
<IntegerType
>(C
->getType())->getBitWidth() & 7) == 0 &&
216 "Non-byte sized integer input");
217 unsigned CSize
= cast
<IntegerType
>(C
->getType())->getBitWidth()/8;
218 assert(ByteSize
&& "Must be accessing some piece");
219 assert(ByteStart
+ByteSize
<= CSize
&& "Extracting invalid piece from input");
220 assert(ByteSize
!= CSize
&& "Should not extract everything");
222 // Constant Integers are simple.
223 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
)) {
224 APInt V
= CI
->getValue();
226 V
.lshrInPlace(ByteStart
*8);
227 V
= V
.trunc(ByteSize
*8);
228 return ConstantInt::get(CI
->getContext(), V
);
231 // In the input is a constant expr, we might be able to recursively simplify.
232 // If not, we definitely can't do anything.
233 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
);
234 if (!CE
) return nullptr;
236 switch (CE
->getOpcode()) {
237 default: return nullptr;
238 case Instruction::Or
: {
239 Constant
*RHS
= ExtractConstantBytes(CE
->getOperand(1), ByteStart
,ByteSize
);
244 if (ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(RHS
))
245 if (RHSC
->isMinusOne())
248 Constant
*LHS
= ExtractConstantBytes(CE
->getOperand(0), ByteStart
,ByteSize
);
251 return ConstantExpr::getOr(LHS
, RHS
);
253 case Instruction::And
: {
254 Constant
*RHS
= ExtractConstantBytes(CE
->getOperand(1), ByteStart
,ByteSize
);
259 if (RHS
->isNullValue())
262 Constant
*LHS
= ExtractConstantBytes(CE
->getOperand(0), ByteStart
,ByteSize
);
265 return ConstantExpr::getAnd(LHS
, RHS
);
267 case Instruction::LShr
: {
268 ConstantInt
*Amt
= dyn_cast
<ConstantInt
>(CE
->getOperand(1));
271 unsigned ShAmt
= Amt
->getZExtValue();
272 // Cannot analyze non-byte shifts.
273 if ((ShAmt
& 7) != 0)
277 // If the extract is known to be all zeros, return zero.
278 if (ByteStart
>= CSize
-ShAmt
)
279 return Constant::getNullValue(IntegerType::get(CE
->getContext(),
281 // If the extract is known to be fully in the input, extract it.
282 if (ByteStart
+ByteSize
+ShAmt
<= CSize
)
283 return ExtractConstantBytes(CE
->getOperand(0), ByteStart
+ShAmt
, ByteSize
);
285 // TODO: Handle the 'partially zero' case.
289 case Instruction::Shl
: {
290 ConstantInt
*Amt
= dyn_cast
<ConstantInt
>(CE
->getOperand(1));
293 unsigned ShAmt
= Amt
->getZExtValue();
294 // Cannot analyze non-byte shifts.
295 if ((ShAmt
& 7) != 0)
299 // If the extract is known to be all zeros, return zero.
300 if (ByteStart
+ByteSize
<= ShAmt
)
301 return Constant::getNullValue(IntegerType::get(CE
->getContext(),
303 // If the extract is known to be fully in the input, extract it.
304 if (ByteStart
>= ShAmt
)
305 return ExtractConstantBytes(CE
->getOperand(0), ByteStart
-ShAmt
, ByteSize
);
307 // TODO: Handle the 'partially zero' case.
311 case Instruction::ZExt
: {
312 unsigned SrcBitSize
=
313 cast
<IntegerType
>(CE
->getOperand(0)->getType())->getBitWidth();
315 // If extracting something that is completely zero, return 0.
316 if (ByteStart
*8 >= SrcBitSize
)
317 return Constant::getNullValue(IntegerType::get(CE
->getContext(),
320 // If exactly extracting the input, return it.
321 if (ByteStart
== 0 && ByteSize
*8 == SrcBitSize
)
322 return CE
->getOperand(0);
324 // If extracting something completely in the input, if the input is a
325 // multiple of 8 bits, recurse.
326 if ((SrcBitSize
&7) == 0 && (ByteStart
+ByteSize
)*8 <= SrcBitSize
)
327 return ExtractConstantBytes(CE
->getOperand(0), ByteStart
, ByteSize
);
329 // Otherwise, if extracting a subset of the input, which is not multiple of
330 // 8 bits, do a shift and trunc to get the bits.
331 if ((ByteStart
+ByteSize
)*8 < SrcBitSize
) {
332 assert((SrcBitSize
&7) && "Shouldn't get byte sized case here");
333 Constant
*Res
= CE
->getOperand(0);
335 Res
= ConstantExpr::getLShr(Res
,
336 ConstantInt::get(Res
->getType(), ByteStart
*8));
337 return ConstantExpr::getTrunc(Res
, IntegerType::get(C
->getContext(),
341 // TODO: Handle the 'partially zero' case.
347 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known
348 /// factors factored out. If Folded is false, return null if no factoring was
349 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
350 /// top-level folder.
351 static Constant
*getFoldedSizeOf(Type
*Ty
, Type
*DestTy
, bool Folded
) {
352 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
353 Constant
*N
= ConstantInt::get(DestTy
, ATy
->getNumElements());
354 Constant
*E
= getFoldedSizeOf(ATy
->getElementType(), DestTy
, true);
355 return ConstantExpr::getNUWMul(E
, N
);
358 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
359 if (!STy
->isPacked()) {
360 unsigned NumElems
= STy
->getNumElements();
361 // An empty struct has size zero.
363 return ConstantExpr::getNullValue(DestTy
);
364 // Check for a struct with all members having the same size.
365 Constant
*MemberSize
=
366 getFoldedSizeOf(STy
->getElementType(0), DestTy
, true);
368 for (unsigned i
= 1; i
!= NumElems
; ++i
)
370 getFoldedSizeOf(STy
->getElementType(i
), DestTy
, true)) {
375 Constant
*N
= ConstantInt::get(DestTy
, NumElems
);
376 return ConstantExpr::getNUWMul(MemberSize
, N
);
380 // Pointer size doesn't depend on the pointee type, so canonicalize them
381 // to an arbitrary pointee.
382 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
))
383 if (!PTy
->getElementType()->isIntegerTy(1))
385 getFoldedSizeOf(PointerType::get(IntegerType::get(PTy
->getContext(), 1),
386 PTy
->getAddressSpace()),
389 // If there's no interesting folding happening, bail so that we don't create
390 // a constant that looks like it needs folding but really doesn't.
394 // Base case: Get a regular sizeof expression.
395 Constant
*C
= ConstantExpr::getSizeOf(Ty
);
396 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
402 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known
403 /// factors factored out. If Folded is false, return null if no factoring was
404 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
405 /// top-level folder.
406 static Constant
*getFoldedAlignOf(Type
*Ty
, Type
*DestTy
, bool Folded
) {
407 // The alignment of an array is equal to the alignment of the
408 // array element. Note that this is not always true for vectors.
409 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
410 Constant
*C
= ConstantExpr::getAlignOf(ATy
->getElementType());
411 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
418 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
419 // Packed structs always have an alignment of 1.
421 return ConstantInt::get(DestTy
, 1);
423 // Otherwise, struct alignment is the maximum alignment of any member.
424 // Without target data, we can't compare much, but we can check to see
425 // if all the members have the same alignment.
426 unsigned NumElems
= STy
->getNumElements();
427 // An empty struct has minimal alignment.
429 return ConstantInt::get(DestTy
, 1);
430 // Check for a struct with all members having the same alignment.
431 Constant
*MemberAlign
=
432 getFoldedAlignOf(STy
->getElementType(0), DestTy
, true);
434 for (unsigned i
= 1; i
!= NumElems
; ++i
)
435 if (MemberAlign
!= getFoldedAlignOf(STy
->getElementType(i
), DestTy
, true)) {
443 // Pointer alignment doesn't depend on the pointee type, so canonicalize them
444 // to an arbitrary pointee.
445 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
))
446 if (!PTy
->getElementType()->isIntegerTy(1))
448 getFoldedAlignOf(PointerType::get(IntegerType::get(PTy
->getContext(),
450 PTy
->getAddressSpace()),
453 // If there's no interesting folding happening, bail so that we don't create
454 // a constant that looks like it needs folding but really doesn't.
458 // Base case: Get a regular alignof expression.
459 Constant
*C
= ConstantExpr::getAlignOf(Ty
);
460 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
466 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with
467 /// any known factors factored out. If Folded is false, return null if no
468 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression
469 /// back into the top-level folder.
470 static Constant
*getFoldedOffsetOf(Type
*Ty
, Constant
*FieldNo
, Type
*DestTy
,
472 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
473 Constant
*N
= ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo
, false,
476 Constant
*E
= getFoldedSizeOf(ATy
->getElementType(), DestTy
, true);
477 return ConstantExpr::getNUWMul(E
, N
);
480 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
481 if (!STy
->isPacked()) {
482 unsigned NumElems
= STy
->getNumElements();
483 // An empty struct has no members.
486 // Check for a struct with all members having the same size.
487 Constant
*MemberSize
=
488 getFoldedSizeOf(STy
->getElementType(0), DestTy
, true);
490 for (unsigned i
= 1; i
!= NumElems
; ++i
)
492 getFoldedSizeOf(STy
->getElementType(i
), DestTy
, true)) {
497 Constant
*N
= ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo
,
502 return ConstantExpr::getNUWMul(MemberSize
, N
);
506 // If there's no interesting folding happening, bail so that we don't create
507 // a constant that looks like it needs folding but really doesn't.
511 // Base case: Get a regular offsetof expression.
512 Constant
*C
= ConstantExpr::getOffsetOf(Ty
, FieldNo
);
513 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
519 Constant
*llvm::ConstantFoldCastInstruction(unsigned opc
, Constant
*V
,
521 if (isa
<UndefValue
>(V
)) {
522 // zext(undef) = 0, because the top bits will be zero.
523 // sext(undef) = 0, because the top bits will all be the same.
524 // [us]itofp(undef) = 0, because the result value is bounded.
525 if (opc
== Instruction::ZExt
|| opc
== Instruction::SExt
||
526 opc
== Instruction::UIToFP
|| opc
== Instruction::SIToFP
)
527 return Constant::getNullValue(DestTy
);
528 return UndefValue::get(DestTy
);
531 if (V
->isNullValue() && !DestTy
->isX86_MMXTy() &&
532 opc
!= Instruction::AddrSpaceCast
)
533 return Constant::getNullValue(DestTy
);
535 // If the cast operand is a constant expression, there's a few things we can
536 // do to try to simplify it.
537 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
539 // Try hard to fold cast of cast because they are often eliminable.
540 if (unsigned newOpc
= foldConstantCastPair(opc
, CE
, DestTy
))
541 return ConstantExpr::getCast(newOpc
, CE
->getOperand(0), DestTy
);
542 } else if (CE
->getOpcode() == Instruction::GetElementPtr
&&
543 // Do not fold addrspacecast (gep 0, .., 0). It might make the
544 // addrspacecast uncanonicalized.
545 opc
!= Instruction::AddrSpaceCast
&&
546 // Do not fold bitcast (gep) with inrange index, as this loses
548 !cast
<GEPOperator
>(CE
)->getInRangeIndex().hasValue() &&
549 // Do not fold if the gep type is a vector, as bitcasting
550 // operand 0 of a vector gep will result in a bitcast between
552 !CE
->getType()->isVectorTy()) {
553 // If all of the indexes in the GEP are null values, there is no pointer
554 // adjustment going on. We might as well cast the source pointer.
555 bool isAllNull
= true;
556 for (unsigned i
= 1, e
= CE
->getNumOperands(); i
!= e
; ++i
)
557 if (!CE
->getOperand(i
)->isNullValue()) {
562 // This is casting one pointer type to another, always BitCast
563 return ConstantExpr::getPointerCast(CE
->getOperand(0), DestTy
);
567 // If the cast operand is a constant vector, perform the cast by
568 // operating on each element. In the cast of bitcasts, the element
569 // count may be mismatched; don't attempt to handle that here.
570 if ((isa
<ConstantVector
>(V
) || isa
<ConstantDataVector
>(V
)) &&
571 DestTy
->isVectorTy() &&
572 DestTy
->getVectorNumElements() == V
->getType()->getVectorNumElements()) {
573 SmallVector
<Constant
*, 16> res
;
574 VectorType
*DestVecTy
= cast
<VectorType
>(DestTy
);
575 Type
*DstEltTy
= DestVecTy
->getElementType();
576 Type
*Ty
= IntegerType::get(V
->getContext(), 32);
577 for (unsigned i
= 0, e
= V
->getType()->getVectorNumElements(); i
!= e
; ++i
) {
579 ConstantExpr::getExtractElement(V
, ConstantInt::get(Ty
, i
));
580 res
.push_back(ConstantExpr::getCast(opc
, C
, DstEltTy
));
582 return ConstantVector::get(res
);
585 // We actually have to do a cast now. Perform the cast according to the
589 llvm_unreachable("Failed to cast constant expression");
590 case Instruction::FPTrunc
:
591 case Instruction::FPExt
:
592 if (ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
594 APFloat Val
= FPC
->getValueAPF();
595 Val
.convert(DestTy
->isHalfTy() ? APFloat::IEEEhalf() :
596 DestTy
->isFloatTy() ? APFloat::IEEEsingle() :
597 DestTy
->isDoubleTy() ? APFloat::IEEEdouble() :
598 DestTy
->isX86_FP80Ty() ? APFloat::x87DoubleExtended() :
599 DestTy
->isFP128Ty() ? APFloat::IEEEquad() :
600 DestTy
->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() :
602 APFloat::rmNearestTiesToEven
, &ignored
);
603 return ConstantFP::get(V
->getContext(), Val
);
605 return nullptr; // Can't fold.
606 case Instruction::FPToUI
:
607 case Instruction::FPToSI
:
608 if (ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
609 const APFloat
&V
= FPC
->getValueAPF();
611 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
612 APSInt
IntVal(DestBitWidth
, opc
== Instruction::FPToUI
);
613 if (APFloat::opInvalidOp
==
614 V
.convertToInteger(IntVal
, APFloat::rmTowardZero
, &ignored
)) {
615 // Undefined behavior invoked - the destination type can't represent
616 // the input constant.
617 return UndefValue::get(DestTy
);
619 return ConstantInt::get(FPC
->getContext(), IntVal
);
621 return nullptr; // Can't fold.
622 case Instruction::IntToPtr
: //always treated as unsigned
623 if (V
->isNullValue()) // Is it an integral null value?
624 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
625 return nullptr; // Other pointer types cannot be casted
626 case Instruction::PtrToInt
: // always treated as unsigned
627 // Is it a null pointer value?
628 if (V
->isNullValue())
629 return ConstantInt::get(DestTy
, 0);
630 // If this is a sizeof-like expression, pull out multiplications by
631 // known factors to expose them to subsequent folding. If it's an
632 // alignof-like expression, factor out known factors.
633 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
634 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
635 CE
->getOperand(0)->isNullValue()) {
636 // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and
637 // getFoldedAlignOf() don't handle the case when DestTy is a vector of
638 // pointers yet. We end up in asserts in CastInst::getCastOpcode (see
639 // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this
640 // happen in one "real" C-code test case, so it does not seem to be an
641 // important optimization to handle vectors here. For now, simply bail
643 if (DestTy
->isVectorTy())
645 GEPOperator
*GEPO
= cast
<GEPOperator
>(CE
);
646 Type
*Ty
= GEPO
->getSourceElementType();
647 if (CE
->getNumOperands() == 2) {
648 // Handle a sizeof-like expression.
649 Constant
*Idx
= CE
->getOperand(1);
650 bool isOne
= isa
<ConstantInt
>(Idx
) && cast
<ConstantInt
>(Idx
)->isOne();
651 if (Constant
*C
= getFoldedSizeOf(Ty
, DestTy
, !isOne
)) {
652 Idx
= ConstantExpr::getCast(CastInst::getCastOpcode(Idx
, true,
655 return ConstantExpr::getMul(C
, Idx
);
657 } else if (CE
->getNumOperands() == 3 &&
658 CE
->getOperand(1)->isNullValue()) {
659 // Handle an alignof-like expression.
660 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
661 if (!STy
->isPacked()) {
662 ConstantInt
*CI
= cast
<ConstantInt
>(CE
->getOperand(2));
664 STy
->getNumElements() == 2 &&
665 STy
->getElementType(0)->isIntegerTy(1)) {
666 return getFoldedAlignOf(STy
->getElementType(1), DestTy
, false);
669 // Handle an offsetof-like expression.
670 if (Ty
->isStructTy() || Ty
->isArrayTy()) {
671 if (Constant
*C
= getFoldedOffsetOf(Ty
, CE
->getOperand(2),
677 // Other pointer types cannot be casted
679 case Instruction::UIToFP
:
680 case Instruction::SIToFP
:
681 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
682 const APInt
&api
= CI
->getValue();
683 APFloat
apf(DestTy
->getFltSemantics(),
684 APInt::getNullValue(DestTy
->getPrimitiveSizeInBits()));
685 apf
.convertFromAPInt(api
, opc
==Instruction::SIToFP
,
686 APFloat::rmNearestTiesToEven
);
687 return ConstantFP::get(V
->getContext(), apf
);
690 case Instruction::ZExt
:
691 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
692 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
693 return ConstantInt::get(V
->getContext(),
694 CI
->getValue().zext(BitWidth
));
697 case Instruction::SExt
:
698 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
699 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
700 return ConstantInt::get(V
->getContext(),
701 CI
->getValue().sext(BitWidth
));
704 case Instruction::Trunc
: {
705 if (V
->getType()->isVectorTy())
708 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
709 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
710 return ConstantInt::get(V
->getContext(),
711 CI
->getValue().trunc(DestBitWidth
));
714 // The input must be a constantexpr. See if we can simplify this based on
715 // the bytes we are demanding. Only do this if the source and dest are an
716 // even multiple of a byte.
717 if ((DestBitWidth
& 7) == 0 &&
718 (cast
<IntegerType
>(V
->getType())->getBitWidth() & 7) == 0)
719 if (Constant
*Res
= ExtractConstantBytes(V
, 0, DestBitWidth
/ 8))
724 case Instruction::BitCast
:
725 return FoldBitCast(V
, DestTy
);
726 case Instruction::AddrSpaceCast
:
731 Constant
*llvm::ConstantFoldSelectInstruction(Constant
*Cond
,
732 Constant
*V1
, Constant
*V2
) {
733 // Check for i1 and vector true/false conditions.
734 if (Cond
->isNullValue()) return V2
;
735 if (Cond
->isAllOnesValue()) return V1
;
737 // If the condition is a vector constant, fold the result elementwise.
738 if (ConstantVector
*CondV
= dyn_cast
<ConstantVector
>(Cond
)) {
739 SmallVector
<Constant
*, 16> Result
;
740 Type
*Ty
= IntegerType::get(CondV
->getContext(), 32);
741 for (unsigned i
= 0, e
= V1
->getType()->getVectorNumElements(); i
!= e
;++i
){
743 Constant
*V1Element
= ConstantExpr::getExtractElement(V1
,
744 ConstantInt::get(Ty
, i
));
745 Constant
*V2Element
= ConstantExpr::getExtractElement(V2
,
746 ConstantInt::get(Ty
, i
));
747 Constant
*Cond
= dyn_cast
<Constant
>(CondV
->getOperand(i
));
748 if (V1Element
== V2Element
) {
750 } else if (isa
<UndefValue
>(Cond
)) {
751 V
= isa
<UndefValue
>(V1Element
) ? V1Element
: V2Element
;
753 if (!isa
<ConstantInt
>(Cond
)) break;
754 V
= Cond
->isNullValue() ? V2Element
: V1Element
;
759 // If we were able to build the vector, return it.
760 if (Result
.size() == V1
->getType()->getVectorNumElements())
761 return ConstantVector::get(Result
);
764 if (isa
<UndefValue
>(Cond
)) {
765 if (isa
<UndefValue
>(V1
)) return V1
;
768 if (isa
<UndefValue
>(V1
)) return V2
;
769 if (isa
<UndefValue
>(V2
)) return V1
;
770 if (V1
== V2
) return V1
;
772 if (ConstantExpr
*TrueVal
= dyn_cast
<ConstantExpr
>(V1
)) {
773 if (TrueVal
->getOpcode() == Instruction::Select
)
774 if (TrueVal
->getOperand(0) == Cond
)
775 return ConstantExpr::getSelect(Cond
, TrueVal
->getOperand(1), V2
);
777 if (ConstantExpr
*FalseVal
= dyn_cast
<ConstantExpr
>(V2
)) {
778 if (FalseVal
->getOpcode() == Instruction::Select
)
779 if (FalseVal
->getOperand(0) == Cond
)
780 return ConstantExpr::getSelect(Cond
, V1
, FalseVal
->getOperand(2));
786 Constant
*llvm::ConstantFoldExtractElementInstruction(Constant
*Val
,
788 if (isa
<UndefValue
>(Val
)) // ee(undef, x) -> undef
789 return UndefValue::get(Val
->getType()->getVectorElementType());
790 if (Val
->isNullValue()) // ee(zero, x) -> zero
791 return Constant::getNullValue(Val
->getType()->getVectorElementType());
792 // ee({w,x,y,z}, undef) -> undef
793 if (isa
<UndefValue
>(Idx
))
794 return UndefValue::get(Val
->getType()->getVectorElementType());
796 if (ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
)) {
797 // ee({w,x,y,z}, wrong_value) -> undef
798 if (CIdx
->uge(Val
->getType()->getVectorNumElements()))
799 return UndefValue::get(Val
->getType()->getVectorElementType());
800 return Val
->getAggregateElement(CIdx
->getZExtValue());
805 Constant
*llvm::ConstantFoldInsertElementInstruction(Constant
*Val
,
808 if (isa
<UndefValue
>(Idx
))
809 return UndefValue::get(Val
->getType());
811 ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
);
812 if (!CIdx
) return nullptr;
814 unsigned NumElts
= Val
->getType()->getVectorNumElements();
815 if (CIdx
->uge(NumElts
))
816 return UndefValue::get(Val
->getType());
818 SmallVector
<Constant
*, 16> Result
;
819 Result
.reserve(NumElts
);
820 auto *Ty
= Type::getInt32Ty(Val
->getContext());
821 uint64_t IdxVal
= CIdx
->getZExtValue();
822 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
824 Result
.push_back(Elt
);
828 Constant
*C
= ConstantExpr::getExtractElement(Val
, ConstantInt::get(Ty
, i
));
832 return ConstantVector::get(Result
);
835 Constant
*llvm::ConstantFoldShuffleVectorInstruction(Constant
*V1
,
838 unsigned MaskNumElts
= Mask
->getType()->getVectorNumElements();
839 Type
*EltTy
= V1
->getType()->getVectorElementType();
841 // Undefined shuffle mask -> undefined value.
842 if (isa
<UndefValue
>(Mask
))
843 return UndefValue::get(VectorType::get(EltTy
, MaskNumElts
));
845 // Don't break the bitcode reader hack.
846 if (isa
<ConstantExpr
>(Mask
)) return nullptr;
848 unsigned SrcNumElts
= V1
->getType()->getVectorNumElements();
850 // Loop over the shuffle mask, evaluating each element.
851 SmallVector
<Constant
*, 32> Result
;
852 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
853 int Elt
= ShuffleVectorInst::getMaskValue(Mask
, i
);
855 Result
.push_back(UndefValue::get(EltTy
));
859 if (unsigned(Elt
) >= SrcNumElts
*2)
860 InElt
= UndefValue::get(EltTy
);
861 else if (unsigned(Elt
) >= SrcNumElts
) {
862 Type
*Ty
= IntegerType::get(V2
->getContext(), 32);
864 ConstantExpr::getExtractElement(V2
,
865 ConstantInt::get(Ty
, Elt
- SrcNumElts
));
867 Type
*Ty
= IntegerType::get(V1
->getContext(), 32);
868 InElt
= ConstantExpr::getExtractElement(V1
, ConstantInt::get(Ty
, Elt
));
870 Result
.push_back(InElt
);
873 return ConstantVector::get(Result
);
876 Constant
*llvm::ConstantFoldExtractValueInstruction(Constant
*Agg
,
877 ArrayRef
<unsigned> Idxs
) {
878 // Base case: no indices, so return the entire value.
882 if (Constant
*C
= Agg
->getAggregateElement(Idxs
[0]))
883 return ConstantFoldExtractValueInstruction(C
, Idxs
.slice(1));
888 Constant
*llvm::ConstantFoldInsertValueInstruction(Constant
*Agg
,
890 ArrayRef
<unsigned> Idxs
) {
891 // Base case: no indices, so replace the entire value.
896 if (StructType
*ST
= dyn_cast
<StructType
>(Agg
->getType()))
897 NumElts
= ST
->getNumElements();
899 NumElts
= cast
<SequentialType
>(Agg
->getType())->getNumElements();
901 SmallVector
<Constant
*, 32> Result
;
902 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
903 Constant
*C
= Agg
->getAggregateElement(i
);
904 if (!C
) return nullptr;
907 C
= ConstantFoldInsertValueInstruction(C
, Val
, Idxs
.slice(1));
912 if (StructType
*ST
= dyn_cast
<StructType
>(Agg
->getType()))
913 return ConstantStruct::get(ST
, Result
);
914 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(Agg
->getType()))
915 return ConstantArray::get(AT
, Result
);
916 return ConstantVector::get(Result
);
919 Constant
*llvm::ConstantFoldBinaryInstruction(unsigned Opcode
, Constant
*C1
,
921 assert(Instruction::isBinaryOp(Opcode
) && "Non-binary instruction detected");
923 // Handle scalar UndefValue. Vectors are always evaluated per element.
924 bool HasScalarUndef
= !C1
->getType()->isVectorTy() &&
925 (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
));
926 if (HasScalarUndef
) {
927 switch (static_cast<Instruction::BinaryOps
>(Opcode
)) {
928 case Instruction::Xor
:
929 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
930 // Handle undef ^ undef -> 0 special case. This is a common
932 return Constant::getNullValue(C1
->getType());
934 case Instruction::Add
:
935 case Instruction::Sub
:
936 return UndefValue::get(C1
->getType());
937 case Instruction::And
:
938 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
)) // undef & undef -> undef
940 return Constant::getNullValue(C1
->getType()); // undef & X -> 0
941 case Instruction::Mul
: {
942 // undef * undef -> undef
943 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
946 // X * undef -> undef if X is odd
947 if (match(C1
, m_APInt(CV
)) || match(C2
, m_APInt(CV
)))
949 return UndefValue::get(C1
->getType());
951 // X * undef -> 0 otherwise
952 return Constant::getNullValue(C1
->getType());
954 case Instruction::SDiv
:
955 case Instruction::UDiv
:
956 // X / undef -> undef
957 if (isa
<UndefValue
>(C2
))
959 // undef / 0 -> undef
960 // undef / 1 -> undef
961 if (match(C2
, m_Zero()) || match(C2
, m_One()))
963 // undef / X -> 0 otherwise
964 return Constant::getNullValue(C1
->getType());
965 case Instruction::URem
:
966 case Instruction::SRem
:
967 // X % undef -> undef
968 if (match(C2
, m_Undef()))
970 // undef % 0 -> undef
971 if (match(C2
, m_Zero()))
973 // undef % X -> 0 otherwise
974 return Constant::getNullValue(C1
->getType());
975 case Instruction::Or
: // X | undef -> -1
976 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
)) // undef | undef -> undef
978 return Constant::getAllOnesValue(C1
->getType()); // undef | X -> ~0
979 case Instruction::LShr
:
980 // X >>l undef -> undef
981 if (isa
<UndefValue
>(C2
))
983 // undef >>l 0 -> undef
984 if (match(C2
, m_Zero()))
987 return Constant::getNullValue(C1
->getType());
988 case Instruction::AShr
:
989 // X >>a undef -> undef
990 if (isa
<UndefValue
>(C2
))
992 // undef >>a 0 -> undef
993 if (match(C2
, m_Zero()))
995 // TODO: undef >>a X -> undef if the shift is exact
997 return Constant::getNullValue(C1
->getType());
998 case Instruction::Shl
:
999 // X << undef -> undef
1000 if (isa
<UndefValue
>(C2
))
1002 // undef << 0 -> undef
1003 if (match(C2
, m_Zero()))
1006 return Constant::getNullValue(C1
->getType());
1007 case Instruction::FAdd
:
1008 case Instruction::FSub
:
1009 case Instruction::FMul
:
1010 case Instruction::FDiv
:
1011 case Instruction::FRem
:
1012 // [any flop] undef, undef -> undef
1013 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
1015 // [any flop] C, undef -> NaN
1016 // [any flop] undef, C -> NaN
1017 // We could potentially specialize NaN/Inf constants vs. 'normal'
1018 // constants (possibly differently depending on opcode and operand). This
1019 // would allow returning undef sometimes. But it is always safe to fold to
1020 // NaN because we can choose the undef operand as NaN, and any FP opcode
1021 // with a NaN operand will propagate NaN.
1022 return ConstantFP::getNaN(C1
->getType());
1023 case Instruction::BinaryOpsEnd
:
1024 llvm_unreachable("Invalid BinaryOp");
1028 // Neither constant should be UndefValue, unless these are vector constants.
1029 assert(!HasScalarUndef
&& "Unexpected UndefValue");
1031 // Handle simplifications when the RHS is a constant int.
1032 if (ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
1034 case Instruction::Add
:
1035 if (CI2
->isZero()) return C1
; // X + 0 == X
1037 case Instruction::Sub
:
1038 if (CI2
->isZero()) return C1
; // X - 0 == X
1040 case Instruction::Mul
:
1041 if (CI2
->isZero()) return C2
; // X * 0 == 0
1043 return C1
; // X * 1 == X
1045 case Instruction::UDiv
:
1046 case Instruction::SDiv
:
1048 return C1
; // X / 1 == X
1050 return UndefValue::get(CI2
->getType()); // X / 0 == undef
1052 case Instruction::URem
:
1053 case Instruction::SRem
:
1055 return Constant::getNullValue(CI2
->getType()); // X % 1 == 0
1057 return UndefValue::get(CI2
->getType()); // X % 0 == undef
1059 case Instruction::And
:
1060 if (CI2
->isZero()) return C2
; // X & 0 == 0
1061 if (CI2
->isMinusOne())
1062 return C1
; // X & -1 == X
1064 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1065 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1066 if (CE1
->getOpcode() == Instruction::ZExt
) {
1067 unsigned DstWidth
= CI2
->getType()->getBitWidth();
1069 CE1
->getOperand(0)->getType()->getPrimitiveSizeInBits();
1070 APInt
PossiblySetBits(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
1071 if ((PossiblySetBits
& CI2
->getValue()) == PossiblySetBits
)
1075 // If and'ing the address of a global with a constant, fold it.
1076 if (CE1
->getOpcode() == Instruction::PtrToInt
&&
1077 isa
<GlobalValue
>(CE1
->getOperand(0))) {
1078 GlobalValue
*GV
= cast
<GlobalValue
>(CE1
->getOperand(0));
1080 // Functions are at least 4-byte aligned.
1081 unsigned GVAlign
= GV
->getAlignment();
1082 if (isa
<Function
>(GV
))
1083 GVAlign
= std::max(GVAlign
, 4U);
1086 unsigned DstWidth
= CI2
->getType()->getBitWidth();
1087 unsigned SrcWidth
= std::min(DstWidth
, Log2_32(GVAlign
));
1088 APInt
BitsNotSet(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
1090 // If checking bits we know are clear, return zero.
1091 if ((CI2
->getValue() & BitsNotSet
) == CI2
->getValue())
1092 return Constant::getNullValue(CI2
->getType());
1097 case Instruction::Or
:
1098 if (CI2
->isZero()) return C1
; // X | 0 == X
1099 if (CI2
->isMinusOne())
1100 return C2
; // X | -1 == -1
1102 case Instruction::Xor
:
1103 if (CI2
->isZero()) return C1
; // X ^ 0 == X
1105 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1106 switch (CE1
->getOpcode()) {
1108 case Instruction::ICmp
:
1109 case Instruction::FCmp
:
1110 // cmp pred ^ true -> cmp !pred
1111 assert(CI2
->isOne());
1112 CmpInst::Predicate pred
= (CmpInst::Predicate
)CE1
->getPredicate();
1113 pred
= CmpInst::getInversePredicate(pred
);
1114 return ConstantExpr::getCompare(pred
, CE1
->getOperand(0),
1115 CE1
->getOperand(1));
1119 case Instruction::AShr
:
1120 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1121 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
))
1122 if (CE1
->getOpcode() == Instruction::ZExt
) // Top bits known zero.
1123 return ConstantExpr::getLShr(C1
, C2
);
1126 } else if (isa
<ConstantInt
>(C1
)) {
1127 // If C1 is a ConstantInt and C2 is not, swap the operands.
1128 if (Instruction::isCommutative(Opcode
))
1129 return ConstantExpr::get(Opcode
, C2
, C1
);
1132 if (ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(C1
)) {
1133 if (ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
1134 const APInt
&C1V
= CI1
->getValue();
1135 const APInt
&C2V
= CI2
->getValue();
1139 case Instruction::Add
:
1140 return ConstantInt::get(CI1
->getContext(), C1V
+ C2V
);
1141 case Instruction::Sub
:
1142 return ConstantInt::get(CI1
->getContext(), C1V
- C2V
);
1143 case Instruction::Mul
:
1144 return ConstantInt::get(CI1
->getContext(), C1V
* C2V
);
1145 case Instruction::UDiv
:
1146 assert(!CI2
->isZero() && "Div by zero handled above");
1147 return ConstantInt::get(CI1
->getContext(), C1V
.udiv(C2V
));
1148 case Instruction::SDiv
:
1149 assert(!CI2
->isZero() && "Div by zero handled above");
1150 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
1151 return UndefValue::get(CI1
->getType()); // MIN_INT / -1 -> undef
1152 return ConstantInt::get(CI1
->getContext(), C1V
.sdiv(C2V
));
1153 case Instruction::URem
:
1154 assert(!CI2
->isZero() && "Div by zero handled above");
1155 return ConstantInt::get(CI1
->getContext(), C1V
.urem(C2V
));
1156 case Instruction::SRem
:
1157 assert(!CI2
->isZero() && "Div by zero handled above");
1158 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
1159 return UndefValue::get(CI1
->getType()); // MIN_INT % -1 -> undef
1160 return ConstantInt::get(CI1
->getContext(), C1V
.srem(C2V
));
1161 case Instruction::And
:
1162 return ConstantInt::get(CI1
->getContext(), C1V
& C2V
);
1163 case Instruction::Or
:
1164 return ConstantInt::get(CI1
->getContext(), C1V
| C2V
);
1165 case Instruction::Xor
:
1166 return ConstantInt::get(CI1
->getContext(), C1V
^ C2V
);
1167 case Instruction::Shl
:
1168 if (C2V
.ult(C1V
.getBitWidth()))
1169 return ConstantInt::get(CI1
->getContext(), C1V
.shl(C2V
));
1170 return UndefValue::get(C1
->getType()); // too big shift is undef
1171 case Instruction::LShr
:
1172 if (C2V
.ult(C1V
.getBitWidth()))
1173 return ConstantInt::get(CI1
->getContext(), C1V
.lshr(C2V
));
1174 return UndefValue::get(C1
->getType()); // too big shift is undef
1175 case Instruction::AShr
:
1176 if (C2V
.ult(C1V
.getBitWidth()))
1177 return ConstantInt::get(CI1
->getContext(), C1V
.ashr(C2V
));
1178 return UndefValue::get(C1
->getType()); // too big shift is undef
1183 case Instruction::SDiv
:
1184 case Instruction::UDiv
:
1185 case Instruction::URem
:
1186 case Instruction::SRem
:
1187 case Instruction::LShr
:
1188 case Instruction::AShr
:
1189 case Instruction::Shl
:
1190 if (CI1
->isZero()) return C1
;
1195 } else if (ConstantFP
*CFP1
= dyn_cast
<ConstantFP
>(C1
)) {
1196 if (ConstantFP
*CFP2
= dyn_cast
<ConstantFP
>(C2
)) {
1197 const APFloat
&C1V
= CFP1
->getValueAPF();
1198 const APFloat
&C2V
= CFP2
->getValueAPF();
1199 APFloat C3V
= C1V
; // copy for modification
1203 case Instruction::FAdd
:
1204 (void)C3V
.add(C2V
, APFloat::rmNearestTiesToEven
);
1205 return ConstantFP::get(C1
->getContext(), C3V
);
1206 case Instruction::FSub
:
1207 (void)C3V
.subtract(C2V
, APFloat::rmNearestTiesToEven
);
1208 return ConstantFP::get(C1
->getContext(), C3V
);
1209 case Instruction::FMul
:
1210 (void)C3V
.multiply(C2V
, APFloat::rmNearestTiesToEven
);
1211 return ConstantFP::get(C1
->getContext(), C3V
);
1212 case Instruction::FDiv
:
1213 (void)C3V
.divide(C2V
, APFloat::rmNearestTiesToEven
);
1214 return ConstantFP::get(C1
->getContext(), C3V
);
1215 case Instruction::FRem
:
1217 return ConstantFP::get(C1
->getContext(), C3V
);
1220 } else if (VectorType
*VTy
= dyn_cast
<VectorType
>(C1
->getType())) {
1221 // Fold each element and create a vector constant from those constants.
1222 SmallVector
<Constant
*, 16> Result
;
1223 Type
*Ty
= IntegerType::get(VTy
->getContext(), 32);
1224 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
1225 Constant
*ExtractIdx
= ConstantInt::get(Ty
, i
);
1226 Constant
*LHS
= ConstantExpr::getExtractElement(C1
, ExtractIdx
);
1227 Constant
*RHS
= ConstantExpr::getExtractElement(C2
, ExtractIdx
);
1229 // If any element of a divisor vector is zero, the whole op is undef.
1230 if (Instruction::isIntDivRem(Opcode
) && RHS
->isNullValue())
1231 return UndefValue::get(VTy
);
1233 Result
.push_back(ConstantExpr::get(Opcode
, LHS
, RHS
));
1236 return ConstantVector::get(Result
);
1239 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1240 // There are many possible foldings we could do here. We should probably
1241 // at least fold add of a pointer with an integer into the appropriate
1242 // getelementptr. This will improve alias analysis a bit.
1244 // Given ((a + b) + c), if (b + c) folds to something interesting, return
1246 if (Instruction::isAssociative(Opcode
) && CE1
->getOpcode() == Opcode
) {
1247 Constant
*T
= ConstantExpr::get(Opcode
, CE1
->getOperand(1), C2
);
1248 if (!isa
<ConstantExpr
>(T
) || cast
<ConstantExpr
>(T
)->getOpcode() != Opcode
)
1249 return ConstantExpr::get(Opcode
, CE1
->getOperand(0), T
);
1251 } else if (isa
<ConstantExpr
>(C2
)) {
1252 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1253 // other way if possible.
1254 if (Instruction::isCommutative(Opcode
))
1255 return ConstantFoldBinaryInstruction(Opcode
, C2
, C1
);
1258 // i1 can be simplified in many cases.
1259 if (C1
->getType()->isIntegerTy(1)) {
1261 case Instruction::Add
:
1262 case Instruction::Sub
:
1263 return ConstantExpr::getXor(C1
, C2
);
1264 case Instruction::Mul
:
1265 return ConstantExpr::getAnd(C1
, C2
);
1266 case Instruction::Shl
:
1267 case Instruction::LShr
:
1268 case Instruction::AShr
:
1269 // We can assume that C2 == 0. If it were one the result would be
1270 // undefined because the shift value is as large as the bitwidth.
1272 case Instruction::SDiv
:
1273 case Instruction::UDiv
:
1274 // We can assume that C2 == 1. If it were zero the result would be
1275 // undefined through division by zero.
1277 case Instruction::URem
:
1278 case Instruction::SRem
:
1279 // We can assume that C2 == 1. If it were zero the result would be
1280 // undefined through division by zero.
1281 return ConstantInt::getFalse(C1
->getContext());
1287 // We don't know how to fold this.
1291 /// This type is zero-sized if it's an array or structure of zero-sized types.
1292 /// The only leaf zero-sized type is an empty structure.
1293 static bool isMaybeZeroSizedType(Type
*Ty
) {
1294 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
1295 if (STy
->isOpaque()) return true; // Can't say.
1297 // If all of elements have zero size, this does too.
1298 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
1299 if (!isMaybeZeroSizedType(STy
->getElementType(i
))) return false;
1302 } else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
1303 return isMaybeZeroSizedType(ATy
->getElementType());
1308 /// Compare the two constants as though they were getelementptr indices.
1309 /// This allows coercion of the types to be the same thing.
1311 /// If the two constants are the "same" (after coercion), return 0. If the
1312 /// first is less than the second, return -1, if the second is less than the
1313 /// first, return 1. If the constants are not integral, return -2.
1315 static int IdxCompare(Constant
*C1
, Constant
*C2
, Type
*ElTy
) {
1316 if (C1
== C2
) return 0;
1318 // Ok, we found a different index. If they are not ConstantInt, we can't do
1319 // anything with them.
1320 if (!isa
<ConstantInt
>(C1
) || !isa
<ConstantInt
>(C2
))
1321 return -2; // don't know!
1323 // We cannot compare the indices if they don't fit in an int64_t.
1324 if (cast
<ConstantInt
>(C1
)->getValue().getActiveBits() > 64 ||
1325 cast
<ConstantInt
>(C2
)->getValue().getActiveBits() > 64)
1326 return -2; // don't know!
1328 // Ok, we have two differing integer indices. Sign extend them to be the same
1330 int64_t C1Val
= cast
<ConstantInt
>(C1
)->getSExtValue();
1331 int64_t C2Val
= cast
<ConstantInt
>(C2
)->getSExtValue();
1333 if (C1Val
== C2Val
) return 0; // They are equal
1335 // If the type being indexed over is really just a zero sized type, there is
1336 // no pointer difference being made here.
1337 if (isMaybeZeroSizedType(ElTy
))
1338 return -2; // dunno.
1340 // If they are really different, now that they are the same type, then we
1341 // found a difference!
1348 /// This function determines if there is anything we can decide about the two
1349 /// constants provided. This doesn't need to handle simple things like
1350 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1351 /// If we can determine that the two constants have a particular relation to
1352 /// each other, we should return the corresponding FCmpInst predicate,
1353 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1354 /// ConstantFoldCompareInstruction.
1356 /// To simplify this code we canonicalize the relation so that the first
1357 /// operand is always the most "complex" of the two. We consider ConstantFP
1358 /// to be the simplest, and ConstantExprs to be the most complex.
1359 static FCmpInst::Predicate
evaluateFCmpRelation(Constant
*V1
, Constant
*V2
) {
1360 assert(V1
->getType() == V2
->getType() &&
1361 "Cannot compare values of different types!");
1363 // Handle degenerate case quickly
1364 if (V1
== V2
) return FCmpInst::FCMP_OEQ
;
1366 if (!isa
<ConstantExpr
>(V1
)) {
1367 if (!isa
<ConstantExpr
>(V2
)) {
1368 // Simple case, use the standard constant folder.
1369 ConstantInt
*R
= nullptr;
1370 R
= dyn_cast
<ConstantInt
>(
1371 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ
, V1
, V2
));
1372 if (R
&& !R
->isZero())
1373 return FCmpInst::FCMP_OEQ
;
1374 R
= dyn_cast
<ConstantInt
>(
1375 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT
, V1
, V2
));
1376 if (R
&& !R
->isZero())
1377 return FCmpInst::FCMP_OLT
;
1378 R
= dyn_cast
<ConstantInt
>(
1379 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT
, V1
, V2
));
1380 if (R
&& !R
->isZero())
1381 return FCmpInst::FCMP_OGT
;
1383 // Nothing more we can do
1384 return FCmpInst::BAD_FCMP_PREDICATE
;
1387 // If the first operand is simple and second is ConstantExpr, swap operands.
1388 FCmpInst::Predicate SwappedRelation
= evaluateFCmpRelation(V2
, V1
);
1389 if (SwappedRelation
!= FCmpInst::BAD_FCMP_PREDICATE
)
1390 return FCmpInst::getSwappedPredicate(SwappedRelation
);
1392 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1393 // constantexpr or a simple constant.
1394 ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
1395 switch (CE1
->getOpcode()) {
1396 case Instruction::FPTrunc
:
1397 case Instruction::FPExt
:
1398 case Instruction::UIToFP
:
1399 case Instruction::SIToFP
:
1400 // We might be able to do something with these but we don't right now.
1406 // There are MANY other foldings that we could perform here. They will
1407 // probably be added on demand, as they seem needed.
1408 return FCmpInst::BAD_FCMP_PREDICATE
;
1411 static ICmpInst::Predicate
areGlobalsPotentiallyEqual(const GlobalValue
*GV1
,
1412 const GlobalValue
*GV2
) {
1413 auto isGlobalUnsafeForEquality
= [](const GlobalValue
*GV
) {
1414 if (GV
->hasExternalWeakLinkage() || GV
->hasWeakAnyLinkage())
1416 if (const auto *GVar
= dyn_cast
<GlobalVariable
>(GV
)) {
1417 Type
*Ty
= GVar
->getValueType();
1418 // A global with opaque type might end up being zero sized.
1421 // A global with an empty type might lie at the address of any other
1423 if (Ty
->isEmptyTy())
1428 // Don't try to decide equality of aliases.
1429 if (!isa
<GlobalAlias
>(GV1
) && !isa
<GlobalAlias
>(GV2
))
1430 if (!isGlobalUnsafeForEquality(GV1
) && !isGlobalUnsafeForEquality(GV2
))
1431 return ICmpInst::ICMP_NE
;
1432 return ICmpInst::BAD_ICMP_PREDICATE
;
1435 /// This function determines if there is anything we can decide about the two
1436 /// constants provided. This doesn't need to handle simple things like integer
1437 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1438 /// If we can determine that the two constants have a particular relation to
1439 /// each other, we should return the corresponding ICmp predicate, otherwise
1440 /// return ICmpInst::BAD_ICMP_PREDICATE.
1442 /// To simplify this code we canonicalize the relation so that the first
1443 /// operand is always the most "complex" of the two. We consider simple
1444 /// constants (like ConstantInt) to be the simplest, followed by
1445 /// GlobalValues, followed by ConstantExpr's (the most complex).
1447 static ICmpInst::Predicate
evaluateICmpRelation(Constant
*V1
, Constant
*V2
,
1449 assert(V1
->getType() == V2
->getType() &&
1450 "Cannot compare different types of values!");
1451 if (V1
== V2
) return ICmpInst::ICMP_EQ
;
1453 if (!isa
<ConstantExpr
>(V1
) && !isa
<GlobalValue
>(V1
) &&
1454 !isa
<BlockAddress
>(V1
)) {
1455 if (!isa
<GlobalValue
>(V2
) && !isa
<ConstantExpr
>(V2
) &&
1456 !isa
<BlockAddress
>(V2
)) {
1457 // We distilled this down to a simple case, use the standard constant
1459 ConstantInt
*R
= nullptr;
1460 ICmpInst::Predicate pred
= ICmpInst::ICMP_EQ
;
1461 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, V1
, V2
));
1462 if (R
&& !R
->isZero())
1464 pred
= isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1465 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, V1
, V2
));
1466 if (R
&& !R
->isZero())
1468 pred
= isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1469 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, V1
, V2
));
1470 if (R
&& !R
->isZero())
1473 // If we couldn't figure it out, bail.
1474 return ICmpInst::BAD_ICMP_PREDICATE
;
1477 // If the first operand is simple, swap operands.
1478 ICmpInst::Predicate SwappedRelation
=
1479 evaluateICmpRelation(V2
, V1
, isSigned
);
1480 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1481 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1483 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V1
)) {
1484 if (isa
<ConstantExpr
>(V2
)) { // Swap as necessary.
1485 ICmpInst::Predicate SwappedRelation
=
1486 evaluateICmpRelation(V2
, V1
, isSigned
);
1487 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1488 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1489 return ICmpInst::BAD_ICMP_PREDICATE
;
1492 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1493 // constant (which, since the types must match, means that it's a
1494 // ConstantPointerNull).
1495 if (const GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(V2
)) {
1496 return areGlobalsPotentiallyEqual(GV
, GV2
);
1497 } else if (isa
<BlockAddress
>(V2
)) {
1498 return ICmpInst::ICMP_NE
; // Globals never equal labels.
1500 assert(isa
<ConstantPointerNull
>(V2
) && "Canonicalization guarantee!");
1501 // GlobalVals can never be null unless they have external weak linkage.
1502 // We don't try to evaluate aliases here.
1503 // NOTE: We should not be doing this constant folding if null pointer
1504 // is considered valid for the function. But currently there is no way to
1505 // query it from the Constant type.
1506 if (!GV
->hasExternalWeakLinkage() && !isa
<GlobalAlias
>(GV
) &&
1507 !NullPointerIsDefined(nullptr /* F */,
1508 GV
->getType()->getAddressSpace()))
1509 return ICmpInst::ICMP_NE
;
1511 } else if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(V1
)) {
1512 if (isa
<ConstantExpr
>(V2
)) { // Swap as necessary.
1513 ICmpInst::Predicate SwappedRelation
=
1514 evaluateICmpRelation(V2
, V1
, isSigned
);
1515 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1516 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1517 return ICmpInst::BAD_ICMP_PREDICATE
;
1520 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1521 // constant (which, since the types must match, means that it is a
1522 // ConstantPointerNull).
1523 if (const BlockAddress
*BA2
= dyn_cast
<BlockAddress
>(V2
)) {
1524 // Block address in another function can't equal this one, but block
1525 // addresses in the current function might be the same if blocks are
1527 if (BA2
->getFunction() != BA
->getFunction())
1528 return ICmpInst::ICMP_NE
;
1530 // Block addresses aren't null, don't equal the address of globals.
1531 assert((isa
<ConstantPointerNull
>(V2
) || isa
<GlobalValue
>(V2
)) &&
1532 "Canonicalization guarantee!");
1533 return ICmpInst::ICMP_NE
;
1536 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1537 // constantexpr, a global, block address, or a simple constant.
1538 ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
1539 Constant
*CE1Op0
= CE1
->getOperand(0);
1541 switch (CE1
->getOpcode()) {
1542 case Instruction::Trunc
:
1543 case Instruction::FPTrunc
:
1544 case Instruction::FPExt
:
1545 case Instruction::FPToUI
:
1546 case Instruction::FPToSI
:
1547 break; // We can't evaluate floating point casts or truncations.
1549 case Instruction::UIToFP
:
1550 case Instruction::SIToFP
:
1551 case Instruction::BitCast
:
1552 case Instruction::ZExt
:
1553 case Instruction::SExt
:
1554 // We can't evaluate floating point casts or truncations.
1555 if (CE1Op0
->getType()->isFloatingPointTy())
1558 // If the cast is not actually changing bits, and the second operand is a
1559 // null pointer, do the comparison with the pre-casted value.
1560 if (V2
->isNullValue() && CE1
->getType()->isIntOrPtrTy()) {
1561 if (CE1
->getOpcode() == Instruction::ZExt
) isSigned
= false;
1562 if (CE1
->getOpcode() == Instruction::SExt
) isSigned
= true;
1563 return evaluateICmpRelation(CE1Op0
,
1564 Constant::getNullValue(CE1Op0
->getType()),
1569 case Instruction::GetElementPtr
: {
1570 GEPOperator
*CE1GEP
= cast
<GEPOperator
>(CE1
);
1571 // Ok, since this is a getelementptr, we know that the constant has a
1572 // pointer type. Check the various cases.
1573 if (isa
<ConstantPointerNull
>(V2
)) {
1574 // If we are comparing a GEP to a null pointer, check to see if the base
1575 // of the GEP equals the null pointer.
1576 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1577 if (GV
->hasExternalWeakLinkage())
1578 // Weak linkage GVals could be zero or not. We're comparing that
1579 // to null pointer so its greater-or-equal
1580 return isSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
1582 // If its not weak linkage, the GVal must have a non-zero address
1583 // so the result is greater-than
1584 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1585 } else if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1586 // If we are indexing from a null pointer, check to see if we have any
1587 // non-zero indices.
1588 for (unsigned i
= 1, e
= CE1
->getNumOperands(); i
!= e
; ++i
)
1589 if (!CE1
->getOperand(i
)->isNullValue())
1590 // Offsetting from null, must not be equal.
1591 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1592 // Only zero indexes from null, must still be zero.
1593 return ICmpInst::ICMP_EQ
;
1595 // Otherwise, we can't really say if the first operand is null or not.
1596 } else if (const GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(V2
)) {
1597 if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1598 if (GV2
->hasExternalWeakLinkage())
1599 // Weak linkage GVals could be zero or not. We're comparing it to
1600 // a null pointer, so its less-or-equal
1601 return isSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
1603 // If its not weak linkage, the GVal must have a non-zero address
1604 // so the result is less-than
1605 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1606 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1608 // If this is a getelementptr of the same global, then it must be
1609 // different. Because the types must match, the getelementptr could
1610 // only have at most one index, and because we fold getelementptr's
1611 // with a single zero index, it must be nonzero.
1612 assert(CE1
->getNumOperands() == 2 &&
1613 !CE1
->getOperand(1)->isNullValue() &&
1614 "Surprising getelementptr!");
1615 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1617 if (CE1GEP
->hasAllZeroIndices())
1618 return areGlobalsPotentiallyEqual(GV
, GV2
);
1619 return ICmpInst::BAD_ICMP_PREDICATE
;
1623 ConstantExpr
*CE2
= cast
<ConstantExpr
>(V2
);
1624 Constant
*CE2Op0
= CE2
->getOperand(0);
1626 // There are MANY other foldings that we could perform here. They will
1627 // probably be added on demand, as they seem needed.
1628 switch (CE2
->getOpcode()) {
1630 case Instruction::GetElementPtr
:
1631 // By far the most common case to handle is when the base pointers are
1632 // obviously to the same global.
1633 if (isa
<GlobalValue
>(CE1Op0
) && isa
<GlobalValue
>(CE2Op0
)) {
1634 // Don't know relative ordering, but check for inequality.
1635 if (CE1Op0
!= CE2Op0
) {
1636 GEPOperator
*CE2GEP
= cast
<GEPOperator
>(CE2
);
1637 if (CE1GEP
->hasAllZeroIndices() && CE2GEP
->hasAllZeroIndices())
1638 return areGlobalsPotentiallyEqual(cast
<GlobalValue
>(CE1Op0
),
1639 cast
<GlobalValue
>(CE2Op0
));
1640 return ICmpInst::BAD_ICMP_PREDICATE
;
1642 // Ok, we know that both getelementptr instructions are based on the
1643 // same global. From this, we can precisely determine the relative
1644 // ordering of the resultant pointers.
1647 // The logic below assumes that the result of the comparison
1648 // can be determined by finding the first index that differs.
1649 // This doesn't work if there is over-indexing in any
1650 // subsequent indices, so check for that case first.
1651 if (!CE1
->isGEPWithNoNotionalOverIndexing() ||
1652 !CE2
->isGEPWithNoNotionalOverIndexing())
1653 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1655 // Compare all of the operands the GEP's have in common.
1656 gep_type_iterator GTI
= gep_type_begin(CE1
);
1657 for (;i
!= CE1
->getNumOperands() && i
!= CE2
->getNumOperands();
1659 switch (IdxCompare(CE1
->getOperand(i
),
1660 CE2
->getOperand(i
), GTI
.getIndexedType())) {
1661 case -1: return isSigned
? ICmpInst::ICMP_SLT
:ICmpInst::ICMP_ULT
;
1662 case 1: return isSigned
? ICmpInst::ICMP_SGT
:ICmpInst::ICMP_UGT
;
1663 case -2: return ICmpInst::BAD_ICMP_PREDICATE
;
1666 // Ok, we ran out of things they have in common. If any leftovers
1667 // are non-zero then we have a difference, otherwise we are equal.
1668 for (; i
< CE1
->getNumOperands(); ++i
)
1669 if (!CE1
->getOperand(i
)->isNullValue()) {
1670 if (isa
<ConstantInt
>(CE1
->getOperand(i
)))
1671 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1673 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1676 for (; i
< CE2
->getNumOperands(); ++i
)
1677 if (!CE2
->getOperand(i
)->isNullValue()) {
1678 if (isa
<ConstantInt
>(CE2
->getOperand(i
)))
1679 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1681 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1683 return ICmpInst::ICMP_EQ
;
1694 return ICmpInst::BAD_ICMP_PREDICATE
;
1697 Constant
*llvm::ConstantFoldCompareInstruction(unsigned short pred
,
1698 Constant
*C1
, Constant
*C2
) {
1700 if (VectorType
*VT
= dyn_cast
<VectorType
>(C1
->getType()))
1701 ResultTy
= VectorType::get(Type::getInt1Ty(C1
->getContext()),
1702 VT
->getNumElements());
1704 ResultTy
= Type::getInt1Ty(C1
->getContext());
1706 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1707 if (pred
== FCmpInst::FCMP_FALSE
)
1708 return Constant::getNullValue(ResultTy
);
1710 if (pred
== FCmpInst::FCMP_TRUE
)
1711 return Constant::getAllOnesValue(ResultTy
);
1713 // Handle some degenerate cases first
1714 if (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
)) {
1715 CmpInst::Predicate Predicate
= CmpInst::Predicate(pred
);
1716 bool isIntegerPredicate
= ICmpInst::isIntPredicate(Predicate
);
1717 // For EQ and NE, we can always pick a value for the undef to make the
1718 // predicate pass or fail, so we can return undef.
1719 // Also, if both operands are undef, we can return undef for int comparison.
1720 if (ICmpInst::isEquality(Predicate
) || (isIntegerPredicate
&& C1
== C2
))
1721 return UndefValue::get(ResultTy
);
1723 // Otherwise, for integer compare, pick the same value as the non-undef
1724 // operand, and fold it to true or false.
1725 if (isIntegerPredicate
)
1726 return ConstantInt::get(ResultTy
, CmpInst::isTrueWhenEqual(Predicate
));
1728 // Choosing NaN for the undef will always make unordered comparison succeed
1729 // and ordered comparison fails.
1730 return ConstantInt::get(ResultTy
, CmpInst::isUnordered(Predicate
));
1733 // icmp eq/ne(null,GV) -> false/true
1734 if (C1
->isNullValue()) {
1735 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C2
))
1736 // Don't try to evaluate aliases. External weak GV can be null.
1737 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage() &&
1738 !NullPointerIsDefined(nullptr /* F */,
1739 GV
->getType()->getAddressSpace())) {
1740 if (pred
== ICmpInst::ICMP_EQ
)
1741 return ConstantInt::getFalse(C1
->getContext());
1742 else if (pred
== ICmpInst::ICMP_NE
)
1743 return ConstantInt::getTrue(C1
->getContext());
1745 // icmp eq/ne(GV,null) -> false/true
1746 } else if (C2
->isNullValue()) {
1747 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C1
))
1748 // Don't try to evaluate aliases. External weak GV can be null.
1749 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage() &&
1750 !NullPointerIsDefined(nullptr /* F */,
1751 GV
->getType()->getAddressSpace())) {
1752 if (pred
== ICmpInst::ICMP_EQ
)
1753 return ConstantInt::getFalse(C1
->getContext());
1754 else if (pred
== ICmpInst::ICMP_NE
)
1755 return ConstantInt::getTrue(C1
->getContext());
1759 // If the comparison is a comparison between two i1's, simplify it.
1760 if (C1
->getType()->isIntegerTy(1)) {
1762 case ICmpInst::ICMP_EQ
:
1763 if (isa
<ConstantInt
>(C2
))
1764 return ConstantExpr::getXor(C1
, ConstantExpr::getNot(C2
));
1765 return ConstantExpr::getXor(ConstantExpr::getNot(C1
), C2
);
1766 case ICmpInst::ICMP_NE
:
1767 return ConstantExpr::getXor(C1
, C2
);
1773 if (isa
<ConstantInt
>(C1
) && isa
<ConstantInt
>(C2
)) {
1774 const APInt
&V1
= cast
<ConstantInt
>(C1
)->getValue();
1775 const APInt
&V2
= cast
<ConstantInt
>(C2
)->getValue();
1777 default: llvm_unreachable("Invalid ICmp Predicate");
1778 case ICmpInst::ICMP_EQ
: return ConstantInt::get(ResultTy
, V1
== V2
);
1779 case ICmpInst::ICMP_NE
: return ConstantInt::get(ResultTy
, V1
!= V2
);
1780 case ICmpInst::ICMP_SLT
: return ConstantInt::get(ResultTy
, V1
.slt(V2
));
1781 case ICmpInst::ICMP_SGT
: return ConstantInt::get(ResultTy
, V1
.sgt(V2
));
1782 case ICmpInst::ICMP_SLE
: return ConstantInt::get(ResultTy
, V1
.sle(V2
));
1783 case ICmpInst::ICMP_SGE
: return ConstantInt::get(ResultTy
, V1
.sge(V2
));
1784 case ICmpInst::ICMP_ULT
: return ConstantInt::get(ResultTy
, V1
.ult(V2
));
1785 case ICmpInst::ICMP_UGT
: return ConstantInt::get(ResultTy
, V1
.ugt(V2
));
1786 case ICmpInst::ICMP_ULE
: return ConstantInt::get(ResultTy
, V1
.ule(V2
));
1787 case ICmpInst::ICMP_UGE
: return ConstantInt::get(ResultTy
, V1
.uge(V2
));
1789 } else if (isa
<ConstantFP
>(C1
) && isa
<ConstantFP
>(C2
)) {
1790 const APFloat
&C1V
= cast
<ConstantFP
>(C1
)->getValueAPF();
1791 const APFloat
&C2V
= cast
<ConstantFP
>(C2
)->getValueAPF();
1792 APFloat::cmpResult R
= C1V
.compare(C2V
);
1794 default: llvm_unreachable("Invalid FCmp Predicate");
1795 case FCmpInst::FCMP_FALSE
: return Constant::getNullValue(ResultTy
);
1796 case FCmpInst::FCMP_TRUE
: return Constant::getAllOnesValue(ResultTy
);
1797 case FCmpInst::FCMP_UNO
:
1798 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
);
1799 case FCmpInst::FCMP_ORD
:
1800 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpUnordered
);
1801 case FCmpInst::FCMP_UEQ
:
1802 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
||
1803 R
==APFloat::cmpEqual
);
1804 case FCmpInst::FCMP_OEQ
:
1805 return ConstantInt::get(ResultTy
, R
==APFloat::cmpEqual
);
1806 case FCmpInst::FCMP_UNE
:
1807 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpEqual
);
1808 case FCmpInst::FCMP_ONE
:
1809 return ConstantInt::get(ResultTy
, R
==APFloat::cmpLessThan
||
1810 R
==APFloat::cmpGreaterThan
);
1811 case FCmpInst::FCMP_ULT
:
1812 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
||
1813 R
==APFloat::cmpLessThan
);
1814 case FCmpInst::FCMP_OLT
:
1815 return ConstantInt::get(ResultTy
, R
==APFloat::cmpLessThan
);
1816 case FCmpInst::FCMP_UGT
:
1817 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
||
1818 R
==APFloat::cmpGreaterThan
);
1819 case FCmpInst::FCMP_OGT
:
1820 return ConstantInt::get(ResultTy
, R
==APFloat::cmpGreaterThan
);
1821 case FCmpInst::FCMP_ULE
:
1822 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpGreaterThan
);
1823 case FCmpInst::FCMP_OLE
:
1824 return ConstantInt::get(ResultTy
, R
==APFloat::cmpLessThan
||
1825 R
==APFloat::cmpEqual
);
1826 case FCmpInst::FCMP_UGE
:
1827 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpLessThan
);
1828 case FCmpInst::FCMP_OGE
:
1829 return ConstantInt::get(ResultTy
, R
==APFloat::cmpGreaterThan
||
1830 R
==APFloat::cmpEqual
);
1832 } else if (C1
->getType()->isVectorTy()) {
1833 // If we can constant fold the comparison of each element, constant fold
1834 // the whole vector comparison.
1835 SmallVector
<Constant
*, 4> ResElts
;
1836 Type
*Ty
= IntegerType::get(C1
->getContext(), 32);
1837 // Compare the elements, producing an i1 result or constant expr.
1838 for (unsigned i
= 0, e
= C1
->getType()->getVectorNumElements(); i
!= e
;++i
){
1840 ConstantExpr::getExtractElement(C1
, ConstantInt::get(Ty
, i
));
1842 ConstantExpr::getExtractElement(C2
, ConstantInt::get(Ty
, i
));
1844 ResElts
.push_back(ConstantExpr::getCompare(pred
, C1E
, C2E
));
1847 return ConstantVector::get(ResElts
);
1850 if (C1
->getType()->isFloatingPointTy() &&
1851 // Only call evaluateFCmpRelation if we have a constant expr to avoid
1852 // infinite recursive loop
1853 (isa
<ConstantExpr
>(C1
) || isa
<ConstantExpr
>(C2
))) {
1854 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1855 switch (evaluateFCmpRelation(C1
, C2
)) {
1856 default: llvm_unreachable("Unknown relation!");
1857 case FCmpInst::FCMP_UNO
:
1858 case FCmpInst::FCMP_ORD
:
1859 case FCmpInst::FCMP_UEQ
:
1860 case FCmpInst::FCMP_UNE
:
1861 case FCmpInst::FCMP_ULT
:
1862 case FCmpInst::FCMP_UGT
:
1863 case FCmpInst::FCMP_ULE
:
1864 case FCmpInst::FCMP_UGE
:
1865 case FCmpInst::FCMP_TRUE
:
1866 case FCmpInst::FCMP_FALSE
:
1867 case FCmpInst::BAD_FCMP_PREDICATE
:
1868 break; // Couldn't determine anything about these constants.
1869 case FCmpInst::FCMP_OEQ
: // We know that C1 == C2
1870 Result
= (pred
== FCmpInst::FCMP_UEQ
|| pred
== FCmpInst::FCMP_OEQ
||
1871 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
||
1872 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1874 case FCmpInst::FCMP_OLT
: // We know that C1 < C2
1875 Result
= (pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1876 pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
||
1877 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
);
1879 case FCmpInst::FCMP_OGT
: // We know that C1 > C2
1880 Result
= (pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1881 pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
||
1882 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1884 case FCmpInst::FCMP_OLE
: // We know that C1 <= C2
1885 // We can only partially decide this relation.
1886 if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1888 else if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1891 case FCmpInst::FCMP_OGE
: // We known that C1 >= C2
1892 // We can only partially decide this relation.
1893 if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1895 else if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1898 case FCmpInst::FCMP_ONE
: // We know that C1 != C2
1899 // We can only partially decide this relation.
1900 if (pred
== FCmpInst::FCMP_OEQ
|| pred
== FCmpInst::FCMP_UEQ
)
1902 else if (pred
== FCmpInst::FCMP_ONE
|| pred
== FCmpInst::FCMP_UNE
)
1907 // If we evaluated the result, return it now.
1909 return ConstantInt::get(ResultTy
, Result
);
1912 // Evaluate the relation between the two constants, per the predicate.
1913 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1914 switch (evaluateICmpRelation(C1
, C2
,
1915 CmpInst::isSigned((CmpInst::Predicate
)pred
))) {
1916 default: llvm_unreachable("Unknown relational!");
1917 case ICmpInst::BAD_ICMP_PREDICATE
:
1918 break; // Couldn't determine anything about these constants.
1919 case ICmpInst::ICMP_EQ
: // We know the constants are equal!
1920 // If we know the constants are equal, we can decide the result of this
1921 // computation precisely.
1922 Result
= ICmpInst::isTrueWhenEqual((ICmpInst::Predicate
)pred
);
1924 case ICmpInst::ICMP_ULT
:
1926 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_ULE
:
1928 case ICmpInst::ICMP_UGT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_UGE
:
1932 case ICmpInst::ICMP_SLT
:
1934 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_SLE
:
1936 case ICmpInst::ICMP_SGT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_SGE
:
1940 case ICmpInst::ICMP_UGT
:
1942 case ICmpInst::ICMP_UGT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_UGE
:
1944 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_ULE
:
1948 case ICmpInst::ICMP_SGT
:
1950 case ICmpInst::ICMP_SGT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_SGE
:
1952 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_SLE
:
1956 case ICmpInst::ICMP_ULE
:
1957 if (pred
== ICmpInst::ICMP_UGT
) Result
= 0;
1958 if (pred
== ICmpInst::ICMP_ULT
|| pred
== ICmpInst::ICMP_ULE
) Result
= 1;
1960 case ICmpInst::ICMP_SLE
:
1961 if (pred
== ICmpInst::ICMP_SGT
) Result
= 0;
1962 if (pred
== ICmpInst::ICMP_SLT
|| pred
== ICmpInst::ICMP_SLE
) Result
= 1;
1964 case ICmpInst::ICMP_UGE
:
1965 if (pred
== ICmpInst::ICMP_ULT
) Result
= 0;
1966 if (pred
== ICmpInst::ICMP_UGT
|| pred
== ICmpInst::ICMP_UGE
) Result
= 1;
1968 case ICmpInst::ICMP_SGE
:
1969 if (pred
== ICmpInst::ICMP_SLT
) Result
= 0;
1970 if (pred
== ICmpInst::ICMP_SGT
|| pred
== ICmpInst::ICMP_SGE
) Result
= 1;
1972 case ICmpInst::ICMP_NE
:
1973 if (pred
== ICmpInst::ICMP_EQ
) Result
= 0;
1974 if (pred
== ICmpInst::ICMP_NE
) Result
= 1;
1978 // If we evaluated the result, return it now.
1980 return ConstantInt::get(ResultTy
, Result
);
1982 // If the right hand side is a bitcast, try using its inverse to simplify
1983 // it by moving it to the left hand side. We can't do this if it would turn
1984 // a vector compare into a scalar compare or visa versa.
1985 if (ConstantExpr
*CE2
= dyn_cast
<ConstantExpr
>(C2
)) {
1986 Constant
*CE2Op0
= CE2
->getOperand(0);
1987 if (CE2
->getOpcode() == Instruction::BitCast
&&
1988 CE2
->getType()->isVectorTy() == CE2Op0
->getType()->isVectorTy()) {
1989 Constant
*Inverse
= ConstantExpr::getBitCast(C1
, CE2Op0
->getType());
1990 return ConstantExpr::getICmp(pred
, Inverse
, CE2Op0
);
1994 // If the left hand side is an extension, try eliminating it.
1995 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1996 if ((CE1
->getOpcode() == Instruction::SExt
&&
1997 ICmpInst::isSigned((ICmpInst::Predicate
)pred
)) ||
1998 (CE1
->getOpcode() == Instruction::ZExt
&&
1999 !ICmpInst::isSigned((ICmpInst::Predicate
)pred
))){
2000 Constant
*CE1Op0
= CE1
->getOperand(0);
2001 Constant
*CE1Inverse
= ConstantExpr::getTrunc(CE1
, CE1Op0
->getType());
2002 if (CE1Inverse
== CE1Op0
) {
2003 // Check whether we can safely truncate the right hand side.
2004 Constant
*C2Inverse
= ConstantExpr::getTrunc(C2
, CE1Op0
->getType());
2005 if (ConstantExpr::getCast(CE1
->getOpcode(), C2Inverse
,
2006 C2
->getType()) == C2
)
2007 return ConstantExpr::getICmp(pred
, CE1Inverse
, C2Inverse
);
2012 if ((!isa
<ConstantExpr
>(C1
) && isa
<ConstantExpr
>(C2
)) ||
2013 (C1
->isNullValue() && !C2
->isNullValue())) {
2014 // If C2 is a constant expr and C1 isn't, flip them around and fold the
2015 // other way if possible.
2016 // Also, if C1 is null and C2 isn't, flip them around.
2017 pred
= ICmpInst::getSwappedPredicate((ICmpInst::Predicate
)pred
);
2018 return ConstantExpr::getICmp(pred
, C2
, C1
);
2024 /// Test whether the given sequence of *normalized* indices is "inbounds".
2025 template<typename IndexTy
>
2026 static bool isInBoundsIndices(ArrayRef
<IndexTy
> Idxs
) {
2027 // No indices means nothing that could be out of bounds.
2028 if (Idxs
.empty()) return true;
2030 // If the first index is zero, it's in bounds.
2031 if (cast
<Constant
>(Idxs
[0])->isNullValue()) return true;
2033 // If the first index is one and all the rest are zero, it's in bounds,
2034 // by the one-past-the-end rule.
2035 if (auto *CI
= dyn_cast
<ConstantInt
>(Idxs
[0])) {
2039 auto *CV
= cast
<ConstantDataVector
>(Idxs
[0]);
2040 CI
= dyn_cast_or_null
<ConstantInt
>(CV
->getSplatValue());
2041 if (!CI
|| !CI
->isOne())
2045 for (unsigned i
= 1, e
= Idxs
.size(); i
!= e
; ++i
)
2046 if (!cast
<Constant
>(Idxs
[i
])->isNullValue())
2051 /// Test whether a given ConstantInt is in-range for a SequentialType.
2052 static bool isIndexInRangeOfArrayType(uint64_t NumElements
,
2053 const ConstantInt
*CI
) {
2054 // We cannot bounds check the index if it doesn't fit in an int64_t.
2055 if (CI
->getValue().getActiveBits() > 64)
2058 // A negative index or an index past the end of our sequential type is
2059 // considered out-of-range.
2060 int64_t IndexVal
= CI
->getSExtValue();
2061 if (IndexVal
< 0 || (NumElements
> 0 && (uint64_t)IndexVal
>= NumElements
))
2064 // Otherwise, it is in-range.
2068 Constant
*llvm::ConstantFoldGetElementPtr(Type
*PointeeTy
, Constant
*C
,
2070 Optional
<unsigned> InRangeIndex
,
2071 ArrayRef
<Value
*> Idxs
) {
2072 if (Idxs
.empty()) return C
;
2074 Type
*GEPTy
= GetElementPtrInst::getGEPReturnType(
2075 C
, makeArrayRef((Value
*const *)Idxs
.data(), Idxs
.size()));
2077 if (isa
<UndefValue
>(C
))
2078 return UndefValue::get(GEPTy
);
2080 Constant
*Idx0
= cast
<Constant
>(Idxs
[0]);
2081 if (Idxs
.size() == 1 && (Idx0
->isNullValue() || isa
<UndefValue
>(Idx0
)))
2082 return GEPTy
->isVectorTy() && !C
->getType()->isVectorTy()
2083 ? ConstantVector::getSplat(
2084 cast
<VectorType
>(GEPTy
)->getNumElements(), C
)
2087 if (C
->isNullValue()) {
2089 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
)
2090 if (!isa
<UndefValue
>(Idxs
[i
]) &&
2091 !cast
<Constant
>(Idxs
[i
])->isNullValue()) {
2096 PointerType
*PtrTy
= cast
<PointerType
>(C
->getType()->getScalarType());
2097 Type
*Ty
= GetElementPtrInst::getIndexedType(PointeeTy
, Idxs
);
2099 assert(Ty
&& "Invalid indices for GEP!");
2100 Type
*OrigGEPTy
= PointerType::get(Ty
, PtrTy
->getAddressSpace());
2101 Type
*GEPTy
= PointerType::get(Ty
, PtrTy
->getAddressSpace());
2102 if (VectorType
*VT
= dyn_cast
<VectorType
>(C
->getType()))
2103 GEPTy
= VectorType::get(OrigGEPTy
, VT
->getNumElements());
2105 // The GEP returns a vector of pointers when one of more of
2106 // its arguments is a vector.
2107 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
) {
2108 if (auto *VT
= dyn_cast
<VectorType
>(Idxs
[i
]->getType())) {
2109 GEPTy
= VectorType::get(OrigGEPTy
, VT
->getNumElements());
2114 return Constant::getNullValue(GEPTy
);
2118 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
2119 // Combine Indices - If the source pointer to this getelementptr instruction
2120 // is a getelementptr instruction, combine the indices of the two
2121 // getelementptr instructions into a single instruction.
2123 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
2124 gep_type_iterator LastI
= gep_type_end(CE
);
2125 for (gep_type_iterator I
= gep_type_begin(CE
), E
= gep_type_end(CE
);
2129 // We cannot combine indices if doing so would take us outside of an
2130 // array or vector. Doing otherwise could trick us if we evaluated such a
2131 // GEP as part of a load.
2133 // e.g. Consider if the original GEP was:
2134 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2135 // i32 0, i32 0, i64 0)
2137 // If we then tried to offset it by '8' to get to the third element,
2138 // an i8, we should *not* get:
2139 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2140 // i32 0, i32 0, i64 8)
2142 // This GEP tries to index array element '8 which runs out-of-bounds.
2143 // Subsequent evaluation would get confused and produce erroneous results.
2145 // The following prohibits such a GEP from being formed by checking to see
2146 // if the index is in-range with respect to an array.
2147 // TODO: This code may be extended to handle vectors as well.
2148 bool PerformFold
= false;
2149 if (Idx0
->isNullValue())
2151 else if (LastI
.isSequential())
2152 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx0
))
2153 PerformFold
= (!LastI
.isBoundedSequential() ||
2154 isIndexInRangeOfArrayType(
2155 LastI
.getSequentialNumElements(), CI
)) &&
2156 !CE
->getOperand(CE
->getNumOperands() - 1)
2161 SmallVector
<Value
*, 16> NewIndices
;
2162 NewIndices
.reserve(Idxs
.size() + CE
->getNumOperands());
2163 NewIndices
.append(CE
->op_begin() + 1, CE
->op_end() - 1);
2165 // Add the last index of the source with the first index of the new GEP.
2166 // Make sure to handle the case when they are actually different types.
2167 Constant
*Combined
= CE
->getOperand(CE
->getNumOperands()-1);
2168 // Otherwise it must be an array.
2169 if (!Idx0
->isNullValue()) {
2170 Type
*IdxTy
= Combined
->getType();
2171 if (IdxTy
!= Idx0
->getType()) {
2172 unsigned CommonExtendedWidth
=
2173 std::max(IdxTy
->getIntegerBitWidth(),
2174 Idx0
->getType()->getIntegerBitWidth());
2175 CommonExtendedWidth
= std::max(CommonExtendedWidth
, 64U);
2178 Type::getIntNTy(IdxTy
->getContext(), CommonExtendedWidth
);
2179 Constant
*C1
= ConstantExpr::getSExtOrBitCast(Idx0
, CommonTy
);
2180 Constant
*C2
= ConstantExpr::getSExtOrBitCast(Combined
, CommonTy
);
2181 Combined
= ConstantExpr::get(Instruction::Add
, C1
, C2
);
2184 ConstantExpr::get(Instruction::Add
, Idx0
, Combined
);
2188 NewIndices
.push_back(Combined
);
2189 NewIndices
.append(Idxs
.begin() + 1, Idxs
.end());
2191 // The combined GEP normally inherits its index inrange attribute from
2192 // the inner GEP, but if the inner GEP's last index was adjusted by the
2193 // outer GEP, any inbounds attribute on that index is invalidated.
2194 Optional
<unsigned> IRIndex
= cast
<GEPOperator
>(CE
)->getInRangeIndex();
2195 if (IRIndex
&& *IRIndex
== CE
->getNumOperands() - 2 && !Idx0
->isNullValue())
2198 return ConstantExpr::getGetElementPtr(
2199 cast
<GEPOperator
>(CE
)->getSourceElementType(), CE
->getOperand(0),
2200 NewIndices
, InBounds
&& cast
<GEPOperator
>(CE
)->isInBounds(),
2205 // Attempt to fold casts to the same type away. For example, folding:
2207 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2211 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2213 // Don't fold if the cast is changing address spaces.
2214 if (CE
->isCast() && Idxs
.size() > 1 && Idx0
->isNullValue()) {
2215 PointerType
*SrcPtrTy
=
2216 dyn_cast
<PointerType
>(CE
->getOperand(0)->getType());
2217 PointerType
*DstPtrTy
= dyn_cast
<PointerType
>(CE
->getType());
2218 if (SrcPtrTy
&& DstPtrTy
) {
2219 ArrayType
*SrcArrayTy
=
2220 dyn_cast
<ArrayType
>(SrcPtrTy
->getElementType());
2221 ArrayType
*DstArrayTy
=
2222 dyn_cast
<ArrayType
>(DstPtrTy
->getElementType());
2223 if (SrcArrayTy
&& DstArrayTy
2224 && SrcArrayTy
->getElementType() == DstArrayTy
->getElementType()
2225 && SrcPtrTy
->getAddressSpace() == DstPtrTy
->getAddressSpace())
2226 return ConstantExpr::getGetElementPtr(SrcArrayTy
,
2227 (Constant
*)CE
->getOperand(0),
2228 Idxs
, InBounds
, InRangeIndex
);
2233 // Check to see if any array indices are not within the corresponding
2234 // notional array or vector bounds. If so, try to determine if they can be
2235 // factored out into preceding dimensions.
2236 SmallVector
<Constant
*, 8> NewIdxs
;
2237 Type
*Ty
= PointeeTy
;
2238 Type
*Prev
= C
->getType();
2240 !isa
<ConstantInt
>(Idxs
[0]) && !isa
<ConstantDataVector
>(Idxs
[0]);
2241 for (unsigned i
= 1, e
= Idxs
.size(); i
!= e
;
2242 Prev
= Ty
, Ty
= cast
<CompositeType
>(Ty
)->getTypeAtIndex(Idxs
[i
]), ++i
) {
2243 if (!isa
<ConstantInt
>(Idxs
[i
]) && !isa
<ConstantDataVector
>(Idxs
[i
])) {
2244 // We don't know if it's in range or not.
2248 if (!isa
<ConstantInt
>(Idxs
[i
- 1]) && !isa
<ConstantDataVector
>(Idxs
[i
- 1]))
2249 // Skip if the type of the previous index is not supported.
2251 if (InRangeIndex
&& i
== *InRangeIndex
+ 1) {
2252 // If an index is marked inrange, we cannot apply this canonicalization to
2253 // the following index, as that will cause the inrange index to point to
2254 // the wrong element.
2257 if (isa
<StructType
>(Ty
)) {
2258 // The verify makes sure that GEPs into a struct are in range.
2261 auto *STy
= cast
<SequentialType
>(Ty
);
2262 if (isa
<VectorType
>(STy
)) {
2263 // There can be awkward padding in after a non-power of two vector.
2267 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idxs
[i
])) {
2268 if (isIndexInRangeOfArrayType(STy
->getNumElements(), CI
))
2269 // It's in range, skip to the next index.
2271 if (CI
->getSExtValue() < 0) {
2272 // It's out of range and negative, don't try to factor it.
2277 auto *CV
= cast
<ConstantDataVector
>(Idxs
[i
]);
2278 bool InRange
= true;
2279 for (unsigned I
= 0, E
= CV
->getNumElements(); I
!= E
; ++I
) {
2280 auto *CI
= cast
<ConstantInt
>(CV
->getElementAsConstant(I
));
2281 InRange
&= isIndexInRangeOfArrayType(STy
->getNumElements(), CI
);
2282 if (CI
->getSExtValue() < 0) {
2287 if (InRange
|| Unknown
)
2288 // It's in range, skip to the next index.
2289 // It's out of range and negative, don't try to factor it.
2292 if (isa
<StructType
>(Prev
)) {
2293 // It's out of range, but the prior dimension is a struct
2294 // so we can't do anything about it.
2298 // It's out of range, but we can factor it into the prior
2300 NewIdxs
.resize(Idxs
.size());
2301 // Determine the number of elements in our sequential type.
2302 uint64_t NumElements
= STy
->getArrayNumElements();
2304 // Expand the current index or the previous index to a vector from a scalar
2306 Constant
*CurrIdx
= cast
<Constant
>(Idxs
[i
]);
2308 NewIdxs
[i
- 1] ? NewIdxs
[i
- 1] : cast
<Constant
>(Idxs
[i
- 1]);
2309 bool IsCurrIdxVector
= CurrIdx
->getType()->isVectorTy();
2310 bool IsPrevIdxVector
= PrevIdx
->getType()->isVectorTy();
2311 bool UseVector
= IsCurrIdxVector
|| IsPrevIdxVector
;
2313 if (!IsCurrIdxVector
&& IsPrevIdxVector
)
2314 CurrIdx
= ConstantDataVector::getSplat(
2315 PrevIdx
->getType()->getVectorNumElements(), CurrIdx
);
2317 if (!IsPrevIdxVector
&& IsCurrIdxVector
)
2318 PrevIdx
= ConstantDataVector::getSplat(
2319 CurrIdx
->getType()->getVectorNumElements(), PrevIdx
);
2322 ConstantInt::get(CurrIdx
->getType()->getScalarType(), NumElements
);
2324 Factor
= ConstantDataVector::getSplat(
2325 IsPrevIdxVector
? PrevIdx
->getType()->getVectorNumElements()
2326 : CurrIdx
->getType()->getVectorNumElements(),
2329 NewIdxs
[i
] = ConstantExpr::getSRem(CurrIdx
, Factor
);
2331 Constant
*Div
= ConstantExpr::getSDiv(CurrIdx
, Factor
);
2333 unsigned CommonExtendedWidth
=
2334 std::max(PrevIdx
->getType()->getScalarSizeInBits(),
2335 Div
->getType()->getScalarSizeInBits());
2336 CommonExtendedWidth
= std::max(CommonExtendedWidth
, 64U);
2338 // Before adding, extend both operands to i64 to avoid
2339 // overflow trouble.
2340 Type
*ExtendedTy
= Type::getIntNTy(Div
->getContext(), CommonExtendedWidth
);
2342 ExtendedTy
= VectorType::get(
2343 ExtendedTy
, IsPrevIdxVector
2344 ? PrevIdx
->getType()->getVectorNumElements()
2345 : CurrIdx
->getType()->getVectorNumElements());
2347 if (!PrevIdx
->getType()->isIntOrIntVectorTy(CommonExtendedWidth
))
2348 PrevIdx
= ConstantExpr::getSExt(PrevIdx
, ExtendedTy
);
2350 if (!Div
->getType()->isIntOrIntVectorTy(CommonExtendedWidth
))
2351 Div
= ConstantExpr::getSExt(Div
, ExtendedTy
);
2353 NewIdxs
[i
- 1] = ConstantExpr::getAdd(PrevIdx
, Div
);
2356 // If we did any factoring, start over with the adjusted indices.
2357 if (!NewIdxs
.empty()) {
2358 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
)
2359 if (!NewIdxs
[i
]) NewIdxs
[i
] = cast
<Constant
>(Idxs
[i
]);
2360 return ConstantExpr::getGetElementPtr(PointeeTy
, C
, NewIdxs
, InBounds
,
2364 // If all indices are known integers and normalized, we can do a simple
2365 // check for the "inbounds" property.
2366 if (!Unknown
&& !InBounds
)
2367 if (auto *GV
= dyn_cast
<GlobalVariable
>(C
))
2368 if (!GV
->hasExternalWeakLinkage() && isInBoundsIndices(Idxs
))
2369 return ConstantExpr::getGetElementPtr(PointeeTy
, C
, Idxs
,
2370 /*InBounds=*/true, InRangeIndex
);