[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / IR / ConstantFold.cpp
blob107975df1e774ff999a1bd6a8d0a9bdf7c60e9f1
1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements folding of constants for LLVM. This implements the
11 // (internal) ConstantFold.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
14 // The current constant folding implementation is implemented in two pieces: the
15 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
16 // a dependence in IR on Target.
18 //===----------------------------------------------------------------------===//
20 #include "ConstantFold.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GetElementPtrTypeIterator.h"
27 #include "llvm/IR/GlobalAlias.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 using namespace llvm;
36 using namespace llvm::PatternMatch;
38 //===----------------------------------------------------------------------===//
39 // ConstantFold*Instruction Implementations
40 //===----------------------------------------------------------------------===//
42 /// Convert the specified vector Constant node to the specified vector type.
43 /// At this point, we know that the elements of the input vector constant are
44 /// all simple integer or FP values.
45 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
47 if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
48 if (CV->isNullValue()) return Constant::getNullValue(DstTy);
50 // If this cast changes element count then we can't handle it here:
51 // doing so requires endianness information. This should be handled by
52 // Analysis/ConstantFolding.cpp
53 unsigned NumElts = DstTy->getNumElements();
54 if (NumElts != CV->getType()->getVectorNumElements())
55 return nullptr;
57 Type *DstEltTy = DstTy->getElementType();
59 SmallVector<Constant*, 16> Result;
60 Type *Ty = IntegerType::get(CV->getContext(), 32);
61 for (unsigned i = 0; i != NumElts; ++i) {
62 Constant *C =
63 ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
64 C = ConstantExpr::getBitCast(C, DstEltTy);
65 Result.push_back(C);
68 return ConstantVector::get(Result);
71 /// This function determines which opcode to use to fold two constant cast
72 /// expressions together. It uses CastInst::isEliminableCastPair to determine
73 /// the opcode. Consequently its just a wrapper around that function.
74 /// Determine if it is valid to fold a cast of a cast
75 static unsigned
76 foldConstantCastPair(
77 unsigned opc, ///< opcode of the second cast constant expression
78 ConstantExpr *Op, ///< the first cast constant expression
79 Type *DstTy ///< destination type of the first cast
80 ) {
81 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
82 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
83 assert(CastInst::isCast(opc) && "Invalid cast opcode");
85 // The types and opcodes for the two Cast constant expressions
86 Type *SrcTy = Op->getOperand(0)->getType();
87 Type *MidTy = Op->getType();
88 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
89 Instruction::CastOps secondOp = Instruction::CastOps(opc);
91 // Assume that pointers are never more than 64 bits wide, and only use this
92 // for the middle type. Otherwise we could end up folding away illegal
93 // bitcasts between address spaces with different sizes.
94 IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
96 // Let CastInst::isEliminableCastPair do the heavy lifting.
97 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
98 nullptr, FakeIntPtrTy, nullptr);
101 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
102 Type *SrcTy = V->getType();
103 if (SrcTy == DestTy)
104 return V; // no-op cast
106 // Check to see if we are casting a pointer to an aggregate to a pointer to
107 // the first element. If so, return the appropriate GEP instruction.
108 if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
109 if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
110 if (PTy->getAddressSpace() == DPTy->getAddressSpace()
111 && PTy->getElementType()->isSized()) {
112 SmallVector<Value*, 8> IdxList;
113 Value *Zero =
114 Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
115 IdxList.push_back(Zero);
116 Type *ElTy = PTy->getElementType();
117 while (ElTy != DPTy->getElementType()) {
118 if (StructType *STy = dyn_cast<StructType>(ElTy)) {
119 if (STy->getNumElements() == 0) break;
120 ElTy = STy->getElementType(0);
121 IdxList.push_back(Zero);
122 } else if (SequentialType *STy =
123 dyn_cast<SequentialType>(ElTy)) {
124 ElTy = STy->getElementType();
125 IdxList.push_back(Zero);
126 } else {
127 break;
131 if (ElTy == DPTy->getElementType())
132 // This GEP is inbounds because all indices are zero.
133 return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(),
134 V, IdxList);
137 // Handle casts from one vector constant to another. We know that the src
138 // and dest type have the same size (otherwise its an illegal cast).
139 if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
140 if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
141 assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
142 "Not cast between same sized vectors!");
143 SrcTy = nullptr;
144 // First, check for null. Undef is already handled.
145 if (isa<ConstantAggregateZero>(V))
146 return Constant::getNullValue(DestTy);
148 // Handle ConstantVector and ConstantAggregateVector.
149 return BitCastConstantVector(V, DestPTy);
152 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
153 // This allows for other simplifications (although some of them
154 // can only be handled by Analysis/ConstantFolding.cpp).
155 if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
156 return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
159 // Finally, implement bitcast folding now. The code below doesn't handle
160 // bitcast right.
161 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
162 return ConstantPointerNull::get(cast<PointerType>(DestTy));
164 // Handle integral constant input.
165 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
166 if (DestTy->isIntegerTy())
167 // Integral -> Integral. This is a no-op because the bit widths must
168 // be the same. Consequently, we just fold to V.
169 return V;
171 // See note below regarding the PPC_FP128 restriction.
172 if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
173 return ConstantFP::get(DestTy->getContext(),
174 APFloat(DestTy->getFltSemantics(),
175 CI->getValue()));
177 // Otherwise, can't fold this (vector?)
178 return nullptr;
181 // Handle ConstantFP input: FP -> Integral.
182 if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
183 // PPC_FP128 is really the sum of two consecutive doubles, where the first
184 // double is always stored first in memory, regardless of the target
185 // endianness. The memory layout of i128, however, depends on the target
186 // endianness, and so we can't fold this without target endianness
187 // information. This should instead be handled by
188 // Analysis/ConstantFolding.cpp
189 if (FP->getType()->isPPC_FP128Ty())
190 return nullptr;
192 // Make sure dest type is compatible with the folded integer constant.
193 if (!DestTy->isIntegerTy())
194 return nullptr;
196 return ConstantInt::get(FP->getContext(),
197 FP->getValueAPF().bitcastToAPInt());
200 return nullptr;
204 /// V is an integer constant which only has a subset of its bytes used.
205 /// The bytes used are indicated by ByteStart (which is the first byte used,
206 /// counting from the least significant byte) and ByteSize, which is the number
207 /// of bytes used.
209 /// This function analyzes the specified constant to see if the specified byte
210 /// range can be returned as a simplified constant. If so, the constant is
211 /// returned, otherwise null is returned.
212 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
213 unsigned ByteSize) {
214 assert(C->getType()->isIntegerTy() &&
215 (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
216 "Non-byte sized integer input");
217 unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
218 assert(ByteSize && "Must be accessing some piece");
219 assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
220 assert(ByteSize != CSize && "Should not extract everything");
222 // Constant Integers are simple.
223 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
224 APInt V = CI->getValue();
225 if (ByteStart)
226 V.lshrInPlace(ByteStart*8);
227 V = V.trunc(ByteSize*8);
228 return ConstantInt::get(CI->getContext(), V);
231 // In the input is a constant expr, we might be able to recursively simplify.
232 // If not, we definitely can't do anything.
233 ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
234 if (!CE) return nullptr;
236 switch (CE->getOpcode()) {
237 default: return nullptr;
238 case Instruction::Or: {
239 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
240 if (!RHS)
241 return nullptr;
243 // X | -1 -> -1.
244 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
245 if (RHSC->isMinusOne())
246 return RHSC;
248 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
249 if (!LHS)
250 return nullptr;
251 return ConstantExpr::getOr(LHS, RHS);
253 case Instruction::And: {
254 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
255 if (!RHS)
256 return nullptr;
258 // X & 0 -> 0.
259 if (RHS->isNullValue())
260 return RHS;
262 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
263 if (!LHS)
264 return nullptr;
265 return ConstantExpr::getAnd(LHS, RHS);
267 case Instruction::LShr: {
268 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
269 if (!Amt)
270 return nullptr;
271 unsigned ShAmt = Amt->getZExtValue();
272 // Cannot analyze non-byte shifts.
273 if ((ShAmt & 7) != 0)
274 return nullptr;
275 ShAmt >>= 3;
277 // If the extract is known to be all zeros, return zero.
278 if (ByteStart >= CSize-ShAmt)
279 return Constant::getNullValue(IntegerType::get(CE->getContext(),
280 ByteSize*8));
281 // If the extract is known to be fully in the input, extract it.
282 if (ByteStart+ByteSize+ShAmt <= CSize)
283 return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
285 // TODO: Handle the 'partially zero' case.
286 return nullptr;
289 case Instruction::Shl: {
290 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
291 if (!Amt)
292 return nullptr;
293 unsigned ShAmt = Amt->getZExtValue();
294 // Cannot analyze non-byte shifts.
295 if ((ShAmt & 7) != 0)
296 return nullptr;
297 ShAmt >>= 3;
299 // If the extract is known to be all zeros, return zero.
300 if (ByteStart+ByteSize <= ShAmt)
301 return Constant::getNullValue(IntegerType::get(CE->getContext(),
302 ByteSize*8));
303 // If the extract is known to be fully in the input, extract it.
304 if (ByteStart >= ShAmt)
305 return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
307 // TODO: Handle the 'partially zero' case.
308 return nullptr;
311 case Instruction::ZExt: {
312 unsigned SrcBitSize =
313 cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
315 // If extracting something that is completely zero, return 0.
316 if (ByteStart*8 >= SrcBitSize)
317 return Constant::getNullValue(IntegerType::get(CE->getContext(),
318 ByteSize*8));
320 // If exactly extracting the input, return it.
321 if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
322 return CE->getOperand(0);
324 // If extracting something completely in the input, if the input is a
325 // multiple of 8 bits, recurse.
326 if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
327 return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
329 // Otherwise, if extracting a subset of the input, which is not multiple of
330 // 8 bits, do a shift and trunc to get the bits.
331 if ((ByteStart+ByteSize)*8 < SrcBitSize) {
332 assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
333 Constant *Res = CE->getOperand(0);
334 if (ByteStart)
335 Res = ConstantExpr::getLShr(Res,
336 ConstantInt::get(Res->getType(), ByteStart*8));
337 return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
338 ByteSize*8));
341 // TODO: Handle the 'partially zero' case.
342 return nullptr;
347 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known
348 /// factors factored out. If Folded is false, return null if no factoring was
349 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
350 /// top-level folder.
351 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy, bool Folded) {
352 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
353 Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
354 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
355 return ConstantExpr::getNUWMul(E, N);
358 if (StructType *STy = dyn_cast<StructType>(Ty))
359 if (!STy->isPacked()) {
360 unsigned NumElems = STy->getNumElements();
361 // An empty struct has size zero.
362 if (NumElems == 0)
363 return ConstantExpr::getNullValue(DestTy);
364 // Check for a struct with all members having the same size.
365 Constant *MemberSize =
366 getFoldedSizeOf(STy->getElementType(0), DestTy, true);
367 bool AllSame = true;
368 for (unsigned i = 1; i != NumElems; ++i)
369 if (MemberSize !=
370 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
371 AllSame = false;
372 break;
374 if (AllSame) {
375 Constant *N = ConstantInt::get(DestTy, NumElems);
376 return ConstantExpr::getNUWMul(MemberSize, N);
380 // Pointer size doesn't depend on the pointee type, so canonicalize them
381 // to an arbitrary pointee.
382 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
383 if (!PTy->getElementType()->isIntegerTy(1))
384 return
385 getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
386 PTy->getAddressSpace()),
387 DestTy, true);
389 // If there's no interesting folding happening, bail so that we don't create
390 // a constant that looks like it needs folding but really doesn't.
391 if (!Folded)
392 return nullptr;
394 // Base case: Get a regular sizeof expression.
395 Constant *C = ConstantExpr::getSizeOf(Ty);
396 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
397 DestTy, false),
398 C, DestTy);
399 return C;
402 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known
403 /// factors factored out. If Folded is false, return null if no factoring was
404 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
405 /// top-level folder.
406 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy, bool Folded) {
407 // The alignment of an array is equal to the alignment of the
408 // array element. Note that this is not always true for vectors.
409 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
410 Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
411 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
412 DestTy,
413 false),
414 C, DestTy);
415 return C;
418 if (StructType *STy = dyn_cast<StructType>(Ty)) {
419 // Packed structs always have an alignment of 1.
420 if (STy->isPacked())
421 return ConstantInt::get(DestTy, 1);
423 // Otherwise, struct alignment is the maximum alignment of any member.
424 // Without target data, we can't compare much, but we can check to see
425 // if all the members have the same alignment.
426 unsigned NumElems = STy->getNumElements();
427 // An empty struct has minimal alignment.
428 if (NumElems == 0)
429 return ConstantInt::get(DestTy, 1);
430 // Check for a struct with all members having the same alignment.
431 Constant *MemberAlign =
432 getFoldedAlignOf(STy->getElementType(0), DestTy, true);
433 bool AllSame = true;
434 for (unsigned i = 1; i != NumElems; ++i)
435 if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
436 AllSame = false;
437 break;
439 if (AllSame)
440 return MemberAlign;
443 // Pointer alignment doesn't depend on the pointee type, so canonicalize them
444 // to an arbitrary pointee.
445 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
446 if (!PTy->getElementType()->isIntegerTy(1))
447 return
448 getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
450 PTy->getAddressSpace()),
451 DestTy, true);
453 // If there's no interesting folding happening, bail so that we don't create
454 // a constant that looks like it needs folding but really doesn't.
455 if (!Folded)
456 return nullptr;
458 // Base case: Get a regular alignof expression.
459 Constant *C = ConstantExpr::getAlignOf(Ty);
460 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
461 DestTy, false),
462 C, DestTy);
463 return C;
466 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with
467 /// any known factors factored out. If Folded is false, return null if no
468 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression
469 /// back into the top-level folder.
470 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo, Type *DestTy,
471 bool Folded) {
472 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
473 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
474 DestTy, false),
475 FieldNo, DestTy);
476 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
477 return ConstantExpr::getNUWMul(E, N);
480 if (StructType *STy = dyn_cast<StructType>(Ty))
481 if (!STy->isPacked()) {
482 unsigned NumElems = STy->getNumElements();
483 // An empty struct has no members.
484 if (NumElems == 0)
485 return nullptr;
486 // Check for a struct with all members having the same size.
487 Constant *MemberSize =
488 getFoldedSizeOf(STy->getElementType(0), DestTy, true);
489 bool AllSame = true;
490 for (unsigned i = 1; i != NumElems; ++i)
491 if (MemberSize !=
492 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
493 AllSame = false;
494 break;
496 if (AllSame) {
497 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
498 false,
499 DestTy,
500 false),
501 FieldNo, DestTy);
502 return ConstantExpr::getNUWMul(MemberSize, N);
506 // If there's no interesting folding happening, bail so that we don't create
507 // a constant that looks like it needs folding but really doesn't.
508 if (!Folded)
509 return nullptr;
511 // Base case: Get a regular offsetof expression.
512 Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
513 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
514 DestTy, false),
515 C, DestTy);
516 return C;
519 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
520 Type *DestTy) {
521 if (isa<UndefValue>(V)) {
522 // zext(undef) = 0, because the top bits will be zero.
523 // sext(undef) = 0, because the top bits will all be the same.
524 // [us]itofp(undef) = 0, because the result value is bounded.
525 if (opc == Instruction::ZExt || opc == Instruction::SExt ||
526 opc == Instruction::UIToFP || opc == Instruction::SIToFP)
527 return Constant::getNullValue(DestTy);
528 return UndefValue::get(DestTy);
531 if (V->isNullValue() && !DestTy->isX86_MMXTy() &&
532 opc != Instruction::AddrSpaceCast)
533 return Constant::getNullValue(DestTy);
535 // If the cast operand is a constant expression, there's a few things we can
536 // do to try to simplify it.
537 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
538 if (CE->isCast()) {
539 // Try hard to fold cast of cast because they are often eliminable.
540 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
541 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
542 } else if (CE->getOpcode() == Instruction::GetElementPtr &&
543 // Do not fold addrspacecast (gep 0, .., 0). It might make the
544 // addrspacecast uncanonicalized.
545 opc != Instruction::AddrSpaceCast &&
546 // Do not fold bitcast (gep) with inrange index, as this loses
547 // information.
548 !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() &&
549 // Do not fold if the gep type is a vector, as bitcasting
550 // operand 0 of a vector gep will result in a bitcast between
551 // different sizes.
552 !CE->getType()->isVectorTy()) {
553 // If all of the indexes in the GEP are null values, there is no pointer
554 // adjustment going on. We might as well cast the source pointer.
555 bool isAllNull = true;
556 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
557 if (!CE->getOperand(i)->isNullValue()) {
558 isAllNull = false;
559 break;
561 if (isAllNull)
562 // This is casting one pointer type to another, always BitCast
563 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
567 // If the cast operand is a constant vector, perform the cast by
568 // operating on each element. In the cast of bitcasts, the element
569 // count may be mismatched; don't attempt to handle that here.
570 if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
571 DestTy->isVectorTy() &&
572 DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
573 SmallVector<Constant*, 16> res;
574 VectorType *DestVecTy = cast<VectorType>(DestTy);
575 Type *DstEltTy = DestVecTy->getElementType();
576 Type *Ty = IntegerType::get(V->getContext(), 32);
577 for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
578 Constant *C =
579 ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
580 res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
582 return ConstantVector::get(res);
585 // We actually have to do a cast now. Perform the cast according to the
586 // opcode specified.
587 switch (opc) {
588 default:
589 llvm_unreachable("Failed to cast constant expression");
590 case Instruction::FPTrunc:
591 case Instruction::FPExt:
592 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
593 bool ignored;
594 APFloat Val = FPC->getValueAPF();
595 Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() :
596 DestTy->isFloatTy() ? APFloat::IEEEsingle() :
597 DestTy->isDoubleTy() ? APFloat::IEEEdouble() :
598 DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() :
599 DestTy->isFP128Ty() ? APFloat::IEEEquad() :
600 DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() :
601 APFloat::Bogus(),
602 APFloat::rmNearestTiesToEven, &ignored);
603 return ConstantFP::get(V->getContext(), Val);
605 return nullptr; // Can't fold.
606 case Instruction::FPToUI:
607 case Instruction::FPToSI:
608 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
609 const APFloat &V = FPC->getValueAPF();
610 bool ignored;
611 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
612 APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI);
613 if (APFloat::opInvalidOp ==
614 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) {
615 // Undefined behavior invoked - the destination type can't represent
616 // the input constant.
617 return UndefValue::get(DestTy);
619 return ConstantInt::get(FPC->getContext(), IntVal);
621 return nullptr; // Can't fold.
622 case Instruction::IntToPtr: //always treated as unsigned
623 if (V->isNullValue()) // Is it an integral null value?
624 return ConstantPointerNull::get(cast<PointerType>(DestTy));
625 return nullptr; // Other pointer types cannot be casted
626 case Instruction::PtrToInt: // always treated as unsigned
627 // Is it a null pointer value?
628 if (V->isNullValue())
629 return ConstantInt::get(DestTy, 0);
630 // If this is a sizeof-like expression, pull out multiplications by
631 // known factors to expose them to subsequent folding. If it's an
632 // alignof-like expression, factor out known factors.
633 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
634 if (CE->getOpcode() == Instruction::GetElementPtr &&
635 CE->getOperand(0)->isNullValue()) {
636 // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and
637 // getFoldedAlignOf() don't handle the case when DestTy is a vector of
638 // pointers yet. We end up in asserts in CastInst::getCastOpcode (see
639 // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this
640 // happen in one "real" C-code test case, so it does not seem to be an
641 // important optimization to handle vectors here. For now, simply bail
642 // out.
643 if (DestTy->isVectorTy())
644 return nullptr;
645 GEPOperator *GEPO = cast<GEPOperator>(CE);
646 Type *Ty = GEPO->getSourceElementType();
647 if (CE->getNumOperands() == 2) {
648 // Handle a sizeof-like expression.
649 Constant *Idx = CE->getOperand(1);
650 bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
651 if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
652 Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
653 DestTy, false),
654 Idx, DestTy);
655 return ConstantExpr::getMul(C, Idx);
657 } else if (CE->getNumOperands() == 3 &&
658 CE->getOperand(1)->isNullValue()) {
659 // Handle an alignof-like expression.
660 if (StructType *STy = dyn_cast<StructType>(Ty))
661 if (!STy->isPacked()) {
662 ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
663 if (CI->isOne() &&
664 STy->getNumElements() == 2 &&
665 STy->getElementType(0)->isIntegerTy(1)) {
666 return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
669 // Handle an offsetof-like expression.
670 if (Ty->isStructTy() || Ty->isArrayTy()) {
671 if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
672 DestTy, false))
673 return C;
677 // Other pointer types cannot be casted
678 return nullptr;
679 case Instruction::UIToFP:
680 case Instruction::SIToFP:
681 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
682 const APInt &api = CI->getValue();
683 APFloat apf(DestTy->getFltSemantics(),
684 APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
685 apf.convertFromAPInt(api, opc==Instruction::SIToFP,
686 APFloat::rmNearestTiesToEven);
687 return ConstantFP::get(V->getContext(), apf);
689 return nullptr;
690 case Instruction::ZExt:
691 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
692 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
693 return ConstantInt::get(V->getContext(),
694 CI->getValue().zext(BitWidth));
696 return nullptr;
697 case Instruction::SExt:
698 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
699 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
700 return ConstantInt::get(V->getContext(),
701 CI->getValue().sext(BitWidth));
703 return nullptr;
704 case Instruction::Trunc: {
705 if (V->getType()->isVectorTy())
706 return nullptr;
708 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
709 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
710 return ConstantInt::get(V->getContext(),
711 CI->getValue().trunc(DestBitWidth));
714 // The input must be a constantexpr. See if we can simplify this based on
715 // the bytes we are demanding. Only do this if the source and dest are an
716 // even multiple of a byte.
717 if ((DestBitWidth & 7) == 0 &&
718 (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
719 if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
720 return Res;
722 return nullptr;
724 case Instruction::BitCast:
725 return FoldBitCast(V, DestTy);
726 case Instruction::AddrSpaceCast:
727 return nullptr;
731 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
732 Constant *V1, Constant *V2) {
733 // Check for i1 and vector true/false conditions.
734 if (Cond->isNullValue()) return V2;
735 if (Cond->isAllOnesValue()) return V1;
737 // If the condition is a vector constant, fold the result elementwise.
738 if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
739 SmallVector<Constant*, 16> Result;
740 Type *Ty = IntegerType::get(CondV->getContext(), 32);
741 for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
742 Constant *V;
743 Constant *V1Element = ConstantExpr::getExtractElement(V1,
744 ConstantInt::get(Ty, i));
745 Constant *V2Element = ConstantExpr::getExtractElement(V2,
746 ConstantInt::get(Ty, i));
747 Constant *Cond = dyn_cast<Constant>(CondV->getOperand(i));
748 if (V1Element == V2Element) {
749 V = V1Element;
750 } else if (isa<UndefValue>(Cond)) {
751 V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
752 } else {
753 if (!isa<ConstantInt>(Cond)) break;
754 V = Cond->isNullValue() ? V2Element : V1Element;
756 Result.push_back(V);
759 // If we were able to build the vector, return it.
760 if (Result.size() == V1->getType()->getVectorNumElements())
761 return ConstantVector::get(Result);
764 if (isa<UndefValue>(Cond)) {
765 if (isa<UndefValue>(V1)) return V1;
766 return V2;
768 if (isa<UndefValue>(V1)) return V2;
769 if (isa<UndefValue>(V2)) return V1;
770 if (V1 == V2) return V1;
772 if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
773 if (TrueVal->getOpcode() == Instruction::Select)
774 if (TrueVal->getOperand(0) == Cond)
775 return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
777 if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
778 if (FalseVal->getOpcode() == Instruction::Select)
779 if (FalseVal->getOperand(0) == Cond)
780 return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
783 return nullptr;
786 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
787 Constant *Idx) {
788 if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
789 return UndefValue::get(Val->getType()->getVectorElementType());
790 if (Val->isNullValue()) // ee(zero, x) -> zero
791 return Constant::getNullValue(Val->getType()->getVectorElementType());
792 // ee({w,x,y,z}, undef) -> undef
793 if (isa<UndefValue>(Idx))
794 return UndefValue::get(Val->getType()->getVectorElementType());
796 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
797 // ee({w,x,y,z}, wrong_value) -> undef
798 if (CIdx->uge(Val->getType()->getVectorNumElements()))
799 return UndefValue::get(Val->getType()->getVectorElementType());
800 return Val->getAggregateElement(CIdx->getZExtValue());
802 return nullptr;
805 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
806 Constant *Elt,
807 Constant *Idx) {
808 if (isa<UndefValue>(Idx))
809 return UndefValue::get(Val->getType());
811 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
812 if (!CIdx) return nullptr;
814 unsigned NumElts = Val->getType()->getVectorNumElements();
815 if (CIdx->uge(NumElts))
816 return UndefValue::get(Val->getType());
818 SmallVector<Constant*, 16> Result;
819 Result.reserve(NumElts);
820 auto *Ty = Type::getInt32Ty(Val->getContext());
821 uint64_t IdxVal = CIdx->getZExtValue();
822 for (unsigned i = 0; i != NumElts; ++i) {
823 if (i == IdxVal) {
824 Result.push_back(Elt);
825 continue;
828 Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
829 Result.push_back(C);
832 return ConstantVector::get(Result);
835 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
836 Constant *V2,
837 Constant *Mask) {
838 unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
839 Type *EltTy = V1->getType()->getVectorElementType();
841 // Undefined shuffle mask -> undefined value.
842 if (isa<UndefValue>(Mask))
843 return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
845 // Don't break the bitcode reader hack.
846 if (isa<ConstantExpr>(Mask)) return nullptr;
848 unsigned SrcNumElts = V1->getType()->getVectorNumElements();
850 // Loop over the shuffle mask, evaluating each element.
851 SmallVector<Constant*, 32> Result;
852 for (unsigned i = 0; i != MaskNumElts; ++i) {
853 int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
854 if (Elt == -1) {
855 Result.push_back(UndefValue::get(EltTy));
856 continue;
858 Constant *InElt;
859 if (unsigned(Elt) >= SrcNumElts*2)
860 InElt = UndefValue::get(EltTy);
861 else if (unsigned(Elt) >= SrcNumElts) {
862 Type *Ty = IntegerType::get(V2->getContext(), 32);
863 InElt =
864 ConstantExpr::getExtractElement(V2,
865 ConstantInt::get(Ty, Elt - SrcNumElts));
866 } else {
867 Type *Ty = IntegerType::get(V1->getContext(), 32);
868 InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
870 Result.push_back(InElt);
873 return ConstantVector::get(Result);
876 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
877 ArrayRef<unsigned> Idxs) {
878 // Base case: no indices, so return the entire value.
879 if (Idxs.empty())
880 return Agg;
882 if (Constant *C = Agg->getAggregateElement(Idxs[0]))
883 return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
885 return nullptr;
888 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
889 Constant *Val,
890 ArrayRef<unsigned> Idxs) {
891 // Base case: no indices, so replace the entire value.
892 if (Idxs.empty())
893 return Val;
895 unsigned NumElts;
896 if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
897 NumElts = ST->getNumElements();
898 else
899 NumElts = cast<SequentialType>(Agg->getType())->getNumElements();
901 SmallVector<Constant*, 32> Result;
902 for (unsigned i = 0; i != NumElts; ++i) {
903 Constant *C = Agg->getAggregateElement(i);
904 if (!C) return nullptr;
906 if (Idxs[0] == i)
907 C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
909 Result.push_back(C);
912 if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
913 return ConstantStruct::get(ST, Result);
914 if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
915 return ConstantArray::get(AT, Result);
916 return ConstantVector::get(Result);
919 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1,
920 Constant *C2) {
921 assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
923 // Handle scalar UndefValue. Vectors are always evaluated per element.
924 bool HasScalarUndef = !C1->getType()->isVectorTy() &&
925 (isa<UndefValue>(C1) || isa<UndefValue>(C2));
926 if (HasScalarUndef) {
927 switch (static_cast<Instruction::BinaryOps>(Opcode)) {
928 case Instruction::Xor:
929 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
930 // Handle undef ^ undef -> 0 special case. This is a common
931 // idiom (misuse).
932 return Constant::getNullValue(C1->getType());
933 LLVM_FALLTHROUGH;
934 case Instruction::Add:
935 case Instruction::Sub:
936 return UndefValue::get(C1->getType());
937 case Instruction::And:
938 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
939 return C1;
940 return Constant::getNullValue(C1->getType()); // undef & X -> 0
941 case Instruction::Mul: {
942 // undef * undef -> undef
943 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
944 return C1;
945 const APInt *CV;
946 // X * undef -> undef if X is odd
947 if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
948 if ((*CV)[0])
949 return UndefValue::get(C1->getType());
951 // X * undef -> 0 otherwise
952 return Constant::getNullValue(C1->getType());
954 case Instruction::SDiv:
955 case Instruction::UDiv:
956 // X / undef -> undef
957 if (isa<UndefValue>(C2))
958 return C2;
959 // undef / 0 -> undef
960 // undef / 1 -> undef
961 if (match(C2, m_Zero()) || match(C2, m_One()))
962 return C1;
963 // undef / X -> 0 otherwise
964 return Constant::getNullValue(C1->getType());
965 case Instruction::URem:
966 case Instruction::SRem:
967 // X % undef -> undef
968 if (match(C2, m_Undef()))
969 return C2;
970 // undef % 0 -> undef
971 if (match(C2, m_Zero()))
972 return C1;
973 // undef % X -> 0 otherwise
974 return Constant::getNullValue(C1->getType());
975 case Instruction::Or: // X | undef -> -1
976 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
977 return C1;
978 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
979 case Instruction::LShr:
980 // X >>l undef -> undef
981 if (isa<UndefValue>(C2))
982 return C2;
983 // undef >>l 0 -> undef
984 if (match(C2, m_Zero()))
985 return C1;
986 // undef >>l X -> 0
987 return Constant::getNullValue(C1->getType());
988 case Instruction::AShr:
989 // X >>a undef -> undef
990 if (isa<UndefValue>(C2))
991 return C2;
992 // undef >>a 0 -> undef
993 if (match(C2, m_Zero()))
994 return C1;
995 // TODO: undef >>a X -> undef if the shift is exact
996 // undef >>a X -> 0
997 return Constant::getNullValue(C1->getType());
998 case Instruction::Shl:
999 // X << undef -> undef
1000 if (isa<UndefValue>(C2))
1001 return C2;
1002 // undef << 0 -> undef
1003 if (match(C2, m_Zero()))
1004 return C1;
1005 // undef << X -> 0
1006 return Constant::getNullValue(C1->getType());
1007 case Instruction::FAdd:
1008 case Instruction::FSub:
1009 case Instruction::FMul:
1010 case Instruction::FDiv:
1011 case Instruction::FRem:
1012 // [any flop] undef, undef -> undef
1013 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1014 return C1;
1015 // [any flop] C, undef -> NaN
1016 // [any flop] undef, C -> NaN
1017 // We could potentially specialize NaN/Inf constants vs. 'normal'
1018 // constants (possibly differently depending on opcode and operand). This
1019 // would allow returning undef sometimes. But it is always safe to fold to
1020 // NaN because we can choose the undef operand as NaN, and any FP opcode
1021 // with a NaN operand will propagate NaN.
1022 return ConstantFP::getNaN(C1->getType());
1023 case Instruction::BinaryOpsEnd:
1024 llvm_unreachable("Invalid BinaryOp");
1028 // Neither constant should be UndefValue, unless these are vector constants.
1029 assert(!HasScalarUndef && "Unexpected UndefValue");
1031 // Handle simplifications when the RHS is a constant int.
1032 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1033 switch (Opcode) {
1034 case Instruction::Add:
1035 if (CI2->isZero()) return C1; // X + 0 == X
1036 break;
1037 case Instruction::Sub:
1038 if (CI2->isZero()) return C1; // X - 0 == X
1039 break;
1040 case Instruction::Mul:
1041 if (CI2->isZero()) return C2; // X * 0 == 0
1042 if (CI2->isOne())
1043 return C1; // X * 1 == X
1044 break;
1045 case Instruction::UDiv:
1046 case Instruction::SDiv:
1047 if (CI2->isOne())
1048 return C1; // X / 1 == X
1049 if (CI2->isZero())
1050 return UndefValue::get(CI2->getType()); // X / 0 == undef
1051 break;
1052 case Instruction::URem:
1053 case Instruction::SRem:
1054 if (CI2->isOne())
1055 return Constant::getNullValue(CI2->getType()); // X % 1 == 0
1056 if (CI2->isZero())
1057 return UndefValue::get(CI2->getType()); // X % 0 == undef
1058 break;
1059 case Instruction::And:
1060 if (CI2->isZero()) return C2; // X & 0 == 0
1061 if (CI2->isMinusOne())
1062 return C1; // X & -1 == X
1064 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1065 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1066 if (CE1->getOpcode() == Instruction::ZExt) {
1067 unsigned DstWidth = CI2->getType()->getBitWidth();
1068 unsigned SrcWidth =
1069 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1070 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1071 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1072 return C1;
1075 // If and'ing the address of a global with a constant, fold it.
1076 if (CE1->getOpcode() == Instruction::PtrToInt &&
1077 isa<GlobalValue>(CE1->getOperand(0))) {
1078 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1080 // Functions are at least 4-byte aligned.
1081 unsigned GVAlign = GV->getAlignment();
1082 if (isa<Function>(GV))
1083 GVAlign = std::max(GVAlign, 4U);
1085 if (GVAlign > 1) {
1086 unsigned DstWidth = CI2->getType()->getBitWidth();
1087 unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
1088 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1090 // If checking bits we know are clear, return zero.
1091 if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1092 return Constant::getNullValue(CI2->getType());
1096 break;
1097 case Instruction::Or:
1098 if (CI2->isZero()) return C1; // X | 0 == X
1099 if (CI2->isMinusOne())
1100 return C2; // X | -1 == -1
1101 break;
1102 case Instruction::Xor:
1103 if (CI2->isZero()) return C1; // X ^ 0 == X
1105 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1106 switch (CE1->getOpcode()) {
1107 default: break;
1108 case Instruction::ICmp:
1109 case Instruction::FCmp:
1110 // cmp pred ^ true -> cmp !pred
1111 assert(CI2->isOne());
1112 CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1113 pred = CmpInst::getInversePredicate(pred);
1114 return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1115 CE1->getOperand(1));
1118 break;
1119 case Instruction::AShr:
1120 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1121 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1122 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero.
1123 return ConstantExpr::getLShr(C1, C2);
1124 break;
1126 } else if (isa<ConstantInt>(C1)) {
1127 // If C1 is a ConstantInt and C2 is not, swap the operands.
1128 if (Instruction::isCommutative(Opcode))
1129 return ConstantExpr::get(Opcode, C2, C1);
1132 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1133 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1134 const APInt &C1V = CI1->getValue();
1135 const APInt &C2V = CI2->getValue();
1136 switch (Opcode) {
1137 default:
1138 break;
1139 case Instruction::Add:
1140 return ConstantInt::get(CI1->getContext(), C1V + C2V);
1141 case Instruction::Sub:
1142 return ConstantInt::get(CI1->getContext(), C1V - C2V);
1143 case Instruction::Mul:
1144 return ConstantInt::get(CI1->getContext(), C1V * C2V);
1145 case Instruction::UDiv:
1146 assert(!CI2->isZero() && "Div by zero handled above");
1147 return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1148 case Instruction::SDiv:
1149 assert(!CI2->isZero() && "Div by zero handled above");
1150 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1151 return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef
1152 return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1153 case Instruction::URem:
1154 assert(!CI2->isZero() && "Div by zero handled above");
1155 return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1156 case Instruction::SRem:
1157 assert(!CI2->isZero() && "Div by zero handled above");
1158 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1159 return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef
1160 return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1161 case Instruction::And:
1162 return ConstantInt::get(CI1->getContext(), C1V & C2V);
1163 case Instruction::Or:
1164 return ConstantInt::get(CI1->getContext(), C1V | C2V);
1165 case Instruction::Xor:
1166 return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1167 case Instruction::Shl:
1168 if (C2V.ult(C1V.getBitWidth()))
1169 return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
1170 return UndefValue::get(C1->getType()); // too big shift is undef
1171 case Instruction::LShr:
1172 if (C2V.ult(C1V.getBitWidth()))
1173 return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
1174 return UndefValue::get(C1->getType()); // too big shift is undef
1175 case Instruction::AShr:
1176 if (C2V.ult(C1V.getBitWidth()))
1177 return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
1178 return UndefValue::get(C1->getType()); // too big shift is undef
1182 switch (Opcode) {
1183 case Instruction::SDiv:
1184 case Instruction::UDiv:
1185 case Instruction::URem:
1186 case Instruction::SRem:
1187 case Instruction::LShr:
1188 case Instruction::AShr:
1189 case Instruction::Shl:
1190 if (CI1->isZero()) return C1;
1191 break;
1192 default:
1193 break;
1195 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1196 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1197 const APFloat &C1V = CFP1->getValueAPF();
1198 const APFloat &C2V = CFP2->getValueAPF();
1199 APFloat C3V = C1V; // copy for modification
1200 switch (Opcode) {
1201 default:
1202 break;
1203 case Instruction::FAdd:
1204 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1205 return ConstantFP::get(C1->getContext(), C3V);
1206 case Instruction::FSub:
1207 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1208 return ConstantFP::get(C1->getContext(), C3V);
1209 case Instruction::FMul:
1210 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1211 return ConstantFP::get(C1->getContext(), C3V);
1212 case Instruction::FDiv:
1213 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1214 return ConstantFP::get(C1->getContext(), C3V);
1215 case Instruction::FRem:
1216 (void)C3V.mod(C2V);
1217 return ConstantFP::get(C1->getContext(), C3V);
1220 } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1221 // Fold each element and create a vector constant from those constants.
1222 SmallVector<Constant*, 16> Result;
1223 Type *Ty = IntegerType::get(VTy->getContext(), 32);
1224 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1225 Constant *ExtractIdx = ConstantInt::get(Ty, i);
1226 Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx);
1227 Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx);
1229 // If any element of a divisor vector is zero, the whole op is undef.
1230 if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue())
1231 return UndefValue::get(VTy);
1233 Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1236 return ConstantVector::get(Result);
1239 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1240 // There are many possible foldings we could do here. We should probably
1241 // at least fold add of a pointer with an integer into the appropriate
1242 // getelementptr. This will improve alias analysis a bit.
1244 // Given ((a + b) + c), if (b + c) folds to something interesting, return
1245 // (a + (b + c)).
1246 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1247 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1248 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1249 return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1251 } else if (isa<ConstantExpr>(C2)) {
1252 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1253 // other way if possible.
1254 if (Instruction::isCommutative(Opcode))
1255 return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1258 // i1 can be simplified in many cases.
1259 if (C1->getType()->isIntegerTy(1)) {
1260 switch (Opcode) {
1261 case Instruction::Add:
1262 case Instruction::Sub:
1263 return ConstantExpr::getXor(C1, C2);
1264 case Instruction::Mul:
1265 return ConstantExpr::getAnd(C1, C2);
1266 case Instruction::Shl:
1267 case Instruction::LShr:
1268 case Instruction::AShr:
1269 // We can assume that C2 == 0. If it were one the result would be
1270 // undefined because the shift value is as large as the bitwidth.
1271 return C1;
1272 case Instruction::SDiv:
1273 case Instruction::UDiv:
1274 // We can assume that C2 == 1. If it were zero the result would be
1275 // undefined through division by zero.
1276 return C1;
1277 case Instruction::URem:
1278 case Instruction::SRem:
1279 // We can assume that C2 == 1. If it were zero the result would be
1280 // undefined through division by zero.
1281 return ConstantInt::getFalse(C1->getContext());
1282 default:
1283 break;
1287 // We don't know how to fold this.
1288 return nullptr;
1291 /// This type is zero-sized if it's an array or structure of zero-sized types.
1292 /// The only leaf zero-sized type is an empty structure.
1293 static bool isMaybeZeroSizedType(Type *Ty) {
1294 if (StructType *STy = dyn_cast<StructType>(Ty)) {
1295 if (STy->isOpaque()) return true; // Can't say.
1297 // If all of elements have zero size, this does too.
1298 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1299 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1300 return true;
1302 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1303 return isMaybeZeroSizedType(ATy->getElementType());
1305 return false;
1308 /// Compare the two constants as though they were getelementptr indices.
1309 /// This allows coercion of the types to be the same thing.
1311 /// If the two constants are the "same" (after coercion), return 0. If the
1312 /// first is less than the second, return -1, if the second is less than the
1313 /// first, return 1. If the constants are not integral, return -2.
1315 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1316 if (C1 == C2) return 0;
1318 // Ok, we found a different index. If they are not ConstantInt, we can't do
1319 // anything with them.
1320 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1321 return -2; // don't know!
1323 // We cannot compare the indices if they don't fit in an int64_t.
1324 if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 ||
1325 cast<ConstantInt>(C2)->getValue().getActiveBits() > 64)
1326 return -2; // don't know!
1328 // Ok, we have two differing integer indices. Sign extend them to be the same
1329 // type.
1330 int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue();
1331 int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue();
1333 if (C1Val == C2Val) return 0; // They are equal
1335 // If the type being indexed over is really just a zero sized type, there is
1336 // no pointer difference being made here.
1337 if (isMaybeZeroSizedType(ElTy))
1338 return -2; // dunno.
1340 // If they are really different, now that they are the same type, then we
1341 // found a difference!
1342 if (C1Val < C2Val)
1343 return -1;
1344 else
1345 return 1;
1348 /// This function determines if there is anything we can decide about the two
1349 /// constants provided. This doesn't need to handle simple things like
1350 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1351 /// If we can determine that the two constants have a particular relation to
1352 /// each other, we should return the corresponding FCmpInst predicate,
1353 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1354 /// ConstantFoldCompareInstruction.
1356 /// To simplify this code we canonicalize the relation so that the first
1357 /// operand is always the most "complex" of the two. We consider ConstantFP
1358 /// to be the simplest, and ConstantExprs to be the most complex.
1359 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1360 assert(V1->getType() == V2->getType() &&
1361 "Cannot compare values of different types!");
1363 // Handle degenerate case quickly
1364 if (V1 == V2) return FCmpInst::FCMP_OEQ;
1366 if (!isa<ConstantExpr>(V1)) {
1367 if (!isa<ConstantExpr>(V2)) {
1368 // Simple case, use the standard constant folder.
1369 ConstantInt *R = nullptr;
1370 R = dyn_cast<ConstantInt>(
1371 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1372 if (R && !R->isZero())
1373 return FCmpInst::FCMP_OEQ;
1374 R = dyn_cast<ConstantInt>(
1375 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1376 if (R && !R->isZero())
1377 return FCmpInst::FCMP_OLT;
1378 R = dyn_cast<ConstantInt>(
1379 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1380 if (R && !R->isZero())
1381 return FCmpInst::FCMP_OGT;
1383 // Nothing more we can do
1384 return FCmpInst::BAD_FCMP_PREDICATE;
1387 // If the first operand is simple and second is ConstantExpr, swap operands.
1388 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1389 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1390 return FCmpInst::getSwappedPredicate(SwappedRelation);
1391 } else {
1392 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1393 // constantexpr or a simple constant.
1394 ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1395 switch (CE1->getOpcode()) {
1396 case Instruction::FPTrunc:
1397 case Instruction::FPExt:
1398 case Instruction::UIToFP:
1399 case Instruction::SIToFP:
1400 // We might be able to do something with these but we don't right now.
1401 break;
1402 default:
1403 break;
1406 // There are MANY other foldings that we could perform here. They will
1407 // probably be added on demand, as they seem needed.
1408 return FCmpInst::BAD_FCMP_PREDICATE;
1411 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
1412 const GlobalValue *GV2) {
1413 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
1414 if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage())
1415 return true;
1416 if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
1417 Type *Ty = GVar->getValueType();
1418 // A global with opaque type might end up being zero sized.
1419 if (!Ty->isSized())
1420 return true;
1421 // A global with an empty type might lie at the address of any other
1422 // global.
1423 if (Ty->isEmptyTy())
1424 return true;
1426 return false;
1428 // Don't try to decide equality of aliases.
1429 if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
1430 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
1431 return ICmpInst::ICMP_NE;
1432 return ICmpInst::BAD_ICMP_PREDICATE;
1435 /// This function determines if there is anything we can decide about the two
1436 /// constants provided. This doesn't need to handle simple things like integer
1437 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1438 /// If we can determine that the two constants have a particular relation to
1439 /// each other, we should return the corresponding ICmp predicate, otherwise
1440 /// return ICmpInst::BAD_ICMP_PREDICATE.
1442 /// To simplify this code we canonicalize the relation so that the first
1443 /// operand is always the most "complex" of the two. We consider simple
1444 /// constants (like ConstantInt) to be the simplest, followed by
1445 /// GlobalValues, followed by ConstantExpr's (the most complex).
1447 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1448 bool isSigned) {
1449 assert(V1->getType() == V2->getType() &&
1450 "Cannot compare different types of values!");
1451 if (V1 == V2) return ICmpInst::ICMP_EQ;
1453 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1454 !isa<BlockAddress>(V1)) {
1455 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1456 !isa<BlockAddress>(V2)) {
1457 // We distilled this down to a simple case, use the standard constant
1458 // folder.
1459 ConstantInt *R = nullptr;
1460 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1461 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1462 if (R && !R->isZero())
1463 return pred;
1464 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1465 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1466 if (R && !R->isZero())
1467 return pred;
1468 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1469 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1470 if (R && !R->isZero())
1471 return pred;
1473 // If we couldn't figure it out, bail.
1474 return ICmpInst::BAD_ICMP_PREDICATE;
1477 // If the first operand is simple, swap operands.
1478 ICmpInst::Predicate SwappedRelation =
1479 evaluateICmpRelation(V2, V1, isSigned);
1480 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1481 return ICmpInst::getSwappedPredicate(SwappedRelation);
1483 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1484 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1485 ICmpInst::Predicate SwappedRelation =
1486 evaluateICmpRelation(V2, V1, isSigned);
1487 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1488 return ICmpInst::getSwappedPredicate(SwappedRelation);
1489 return ICmpInst::BAD_ICMP_PREDICATE;
1492 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1493 // constant (which, since the types must match, means that it's a
1494 // ConstantPointerNull).
1495 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1496 return areGlobalsPotentiallyEqual(GV, GV2);
1497 } else if (isa<BlockAddress>(V2)) {
1498 return ICmpInst::ICMP_NE; // Globals never equal labels.
1499 } else {
1500 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1501 // GlobalVals can never be null unless they have external weak linkage.
1502 // We don't try to evaluate aliases here.
1503 // NOTE: We should not be doing this constant folding if null pointer
1504 // is considered valid for the function. But currently there is no way to
1505 // query it from the Constant type.
1506 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) &&
1507 !NullPointerIsDefined(nullptr /* F */,
1508 GV->getType()->getAddressSpace()))
1509 return ICmpInst::ICMP_NE;
1511 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1512 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1513 ICmpInst::Predicate SwappedRelation =
1514 evaluateICmpRelation(V2, V1, isSigned);
1515 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1516 return ICmpInst::getSwappedPredicate(SwappedRelation);
1517 return ICmpInst::BAD_ICMP_PREDICATE;
1520 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1521 // constant (which, since the types must match, means that it is a
1522 // ConstantPointerNull).
1523 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1524 // Block address in another function can't equal this one, but block
1525 // addresses in the current function might be the same if blocks are
1526 // empty.
1527 if (BA2->getFunction() != BA->getFunction())
1528 return ICmpInst::ICMP_NE;
1529 } else {
1530 // Block addresses aren't null, don't equal the address of globals.
1531 assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1532 "Canonicalization guarantee!");
1533 return ICmpInst::ICMP_NE;
1535 } else {
1536 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1537 // constantexpr, a global, block address, or a simple constant.
1538 ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1539 Constant *CE1Op0 = CE1->getOperand(0);
1541 switch (CE1->getOpcode()) {
1542 case Instruction::Trunc:
1543 case Instruction::FPTrunc:
1544 case Instruction::FPExt:
1545 case Instruction::FPToUI:
1546 case Instruction::FPToSI:
1547 break; // We can't evaluate floating point casts or truncations.
1549 case Instruction::UIToFP:
1550 case Instruction::SIToFP:
1551 case Instruction::BitCast:
1552 case Instruction::ZExt:
1553 case Instruction::SExt:
1554 // We can't evaluate floating point casts or truncations.
1555 if (CE1Op0->getType()->isFloatingPointTy())
1556 break;
1558 // If the cast is not actually changing bits, and the second operand is a
1559 // null pointer, do the comparison with the pre-casted value.
1560 if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) {
1561 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1562 if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1563 return evaluateICmpRelation(CE1Op0,
1564 Constant::getNullValue(CE1Op0->getType()),
1565 isSigned);
1567 break;
1569 case Instruction::GetElementPtr: {
1570 GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1571 // Ok, since this is a getelementptr, we know that the constant has a
1572 // pointer type. Check the various cases.
1573 if (isa<ConstantPointerNull>(V2)) {
1574 // If we are comparing a GEP to a null pointer, check to see if the base
1575 // of the GEP equals the null pointer.
1576 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1577 if (GV->hasExternalWeakLinkage())
1578 // Weak linkage GVals could be zero or not. We're comparing that
1579 // to null pointer so its greater-or-equal
1580 return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1581 else
1582 // If its not weak linkage, the GVal must have a non-zero address
1583 // so the result is greater-than
1584 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1585 } else if (isa<ConstantPointerNull>(CE1Op0)) {
1586 // If we are indexing from a null pointer, check to see if we have any
1587 // non-zero indices.
1588 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1589 if (!CE1->getOperand(i)->isNullValue())
1590 // Offsetting from null, must not be equal.
1591 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1592 // Only zero indexes from null, must still be zero.
1593 return ICmpInst::ICMP_EQ;
1595 // Otherwise, we can't really say if the first operand is null or not.
1596 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1597 if (isa<ConstantPointerNull>(CE1Op0)) {
1598 if (GV2->hasExternalWeakLinkage())
1599 // Weak linkage GVals could be zero or not. We're comparing it to
1600 // a null pointer, so its less-or-equal
1601 return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1602 else
1603 // If its not weak linkage, the GVal must have a non-zero address
1604 // so the result is less-than
1605 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1606 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1607 if (GV == GV2) {
1608 // If this is a getelementptr of the same global, then it must be
1609 // different. Because the types must match, the getelementptr could
1610 // only have at most one index, and because we fold getelementptr's
1611 // with a single zero index, it must be nonzero.
1612 assert(CE1->getNumOperands() == 2 &&
1613 !CE1->getOperand(1)->isNullValue() &&
1614 "Surprising getelementptr!");
1615 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1616 } else {
1617 if (CE1GEP->hasAllZeroIndices())
1618 return areGlobalsPotentiallyEqual(GV, GV2);
1619 return ICmpInst::BAD_ICMP_PREDICATE;
1622 } else {
1623 ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1624 Constant *CE2Op0 = CE2->getOperand(0);
1626 // There are MANY other foldings that we could perform here. They will
1627 // probably be added on demand, as they seem needed.
1628 switch (CE2->getOpcode()) {
1629 default: break;
1630 case Instruction::GetElementPtr:
1631 // By far the most common case to handle is when the base pointers are
1632 // obviously to the same global.
1633 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1634 // Don't know relative ordering, but check for inequality.
1635 if (CE1Op0 != CE2Op0) {
1636 GEPOperator *CE2GEP = cast<GEPOperator>(CE2);
1637 if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
1638 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1639 cast<GlobalValue>(CE2Op0));
1640 return ICmpInst::BAD_ICMP_PREDICATE;
1642 // Ok, we know that both getelementptr instructions are based on the
1643 // same global. From this, we can precisely determine the relative
1644 // ordering of the resultant pointers.
1645 unsigned i = 1;
1647 // The logic below assumes that the result of the comparison
1648 // can be determined by finding the first index that differs.
1649 // This doesn't work if there is over-indexing in any
1650 // subsequent indices, so check for that case first.
1651 if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1652 !CE2->isGEPWithNoNotionalOverIndexing())
1653 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1655 // Compare all of the operands the GEP's have in common.
1656 gep_type_iterator GTI = gep_type_begin(CE1);
1657 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1658 ++i, ++GTI)
1659 switch (IdxCompare(CE1->getOperand(i),
1660 CE2->getOperand(i), GTI.getIndexedType())) {
1661 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1662 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1663 case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1666 // Ok, we ran out of things they have in common. If any leftovers
1667 // are non-zero then we have a difference, otherwise we are equal.
1668 for (; i < CE1->getNumOperands(); ++i)
1669 if (!CE1->getOperand(i)->isNullValue()) {
1670 if (isa<ConstantInt>(CE1->getOperand(i)))
1671 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1672 else
1673 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1676 for (; i < CE2->getNumOperands(); ++i)
1677 if (!CE2->getOperand(i)->isNullValue()) {
1678 if (isa<ConstantInt>(CE2->getOperand(i)))
1679 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1680 else
1681 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1683 return ICmpInst::ICMP_EQ;
1687 break;
1689 default:
1690 break;
1694 return ICmpInst::BAD_ICMP_PREDICATE;
1697 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1698 Constant *C1, Constant *C2) {
1699 Type *ResultTy;
1700 if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1701 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1702 VT->getNumElements());
1703 else
1704 ResultTy = Type::getInt1Ty(C1->getContext());
1706 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1707 if (pred == FCmpInst::FCMP_FALSE)
1708 return Constant::getNullValue(ResultTy);
1710 if (pred == FCmpInst::FCMP_TRUE)
1711 return Constant::getAllOnesValue(ResultTy);
1713 // Handle some degenerate cases first
1714 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1715 CmpInst::Predicate Predicate = CmpInst::Predicate(pred);
1716 bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1717 // For EQ and NE, we can always pick a value for the undef to make the
1718 // predicate pass or fail, so we can return undef.
1719 // Also, if both operands are undef, we can return undef for int comparison.
1720 if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
1721 return UndefValue::get(ResultTy);
1723 // Otherwise, for integer compare, pick the same value as the non-undef
1724 // operand, and fold it to true or false.
1725 if (isIntegerPredicate)
1726 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1728 // Choosing NaN for the undef will always make unordered comparison succeed
1729 // and ordered comparison fails.
1730 return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1733 // icmp eq/ne(null,GV) -> false/true
1734 if (C1->isNullValue()) {
1735 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1736 // Don't try to evaluate aliases. External weak GV can be null.
1737 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1738 !NullPointerIsDefined(nullptr /* F */,
1739 GV->getType()->getAddressSpace())) {
1740 if (pred == ICmpInst::ICMP_EQ)
1741 return ConstantInt::getFalse(C1->getContext());
1742 else if (pred == ICmpInst::ICMP_NE)
1743 return ConstantInt::getTrue(C1->getContext());
1745 // icmp eq/ne(GV,null) -> false/true
1746 } else if (C2->isNullValue()) {
1747 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1748 // Don't try to evaluate aliases. External weak GV can be null.
1749 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1750 !NullPointerIsDefined(nullptr /* F */,
1751 GV->getType()->getAddressSpace())) {
1752 if (pred == ICmpInst::ICMP_EQ)
1753 return ConstantInt::getFalse(C1->getContext());
1754 else if (pred == ICmpInst::ICMP_NE)
1755 return ConstantInt::getTrue(C1->getContext());
1759 // If the comparison is a comparison between two i1's, simplify it.
1760 if (C1->getType()->isIntegerTy(1)) {
1761 switch(pred) {
1762 case ICmpInst::ICMP_EQ:
1763 if (isa<ConstantInt>(C2))
1764 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1765 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1766 case ICmpInst::ICMP_NE:
1767 return ConstantExpr::getXor(C1, C2);
1768 default:
1769 break;
1773 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1774 const APInt &V1 = cast<ConstantInt>(C1)->getValue();
1775 const APInt &V2 = cast<ConstantInt>(C2)->getValue();
1776 switch (pred) {
1777 default: llvm_unreachable("Invalid ICmp Predicate");
1778 case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2);
1779 case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2);
1780 case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1781 case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1782 case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1783 case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1784 case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1785 case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1786 case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1787 case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1789 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1790 const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
1791 const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
1792 APFloat::cmpResult R = C1V.compare(C2V);
1793 switch (pred) {
1794 default: llvm_unreachable("Invalid FCmp Predicate");
1795 case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1796 case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy);
1797 case FCmpInst::FCMP_UNO:
1798 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1799 case FCmpInst::FCMP_ORD:
1800 return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1801 case FCmpInst::FCMP_UEQ:
1802 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1803 R==APFloat::cmpEqual);
1804 case FCmpInst::FCMP_OEQ:
1805 return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1806 case FCmpInst::FCMP_UNE:
1807 return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1808 case FCmpInst::FCMP_ONE:
1809 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1810 R==APFloat::cmpGreaterThan);
1811 case FCmpInst::FCMP_ULT:
1812 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1813 R==APFloat::cmpLessThan);
1814 case FCmpInst::FCMP_OLT:
1815 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1816 case FCmpInst::FCMP_UGT:
1817 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1818 R==APFloat::cmpGreaterThan);
1819 case FCmpInst::FCMP_OGT:
1820 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1821 case FCmpInst::FCMP_ULE:
1822 return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1823 case FCmpInst::FCMP_OLE:
1824 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1825 R==APFloat::cmpEqual);
1826 case FCmpInst::FCMP_UGE:
1827 return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1828 case FCmpInst::FCMP_OGE:
1829 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1830 R==APFloat::cmpEqual);
1832 } else if (C1->getType()->isVectorTy()) {
1833 // If we can constant fold the comparison of each element, constant fold
1834 // the whole vector comparison.
1835 SmallVector<Constant*, 4> ResElts;
1836 Type *Ty = IntegerType::get(C1->getContext(), 32);
1837 // Compare the elements, producing an i1 result or constant expr.
1838 for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
1839 Constant *C1E =
1840 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1841 Constant *C2E =
1842 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1844 ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
1847 return ConstantVector::get(ResElts);
1850 if (C1->getType()->isFloatingPointTy() &&
1851 // Only call evaluateFCmpRelation if we have a constant expr to avoid
1852 // infinite recursive loop
1853 (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
1854 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1855 switch (evaluateFCmpRelation(C1, C2)) {
1856 default: llvm_unreachable("Unknown relation!");
1857 case FCmpInst::FCMP_UNO:
1858 case FCmpInst::FCMP_ORD:
1859 case FCmpInst::FCMP_UEQ:
1860 case FCmpInst::FCMP_UNE:
1861 case FCmpInst::FCMP_ULT:
1862 case FCmpInst::FCMP_UGT:
1863 case FCmpInst::FCMP_ULE:
1864 case FCmpInst::FCMP_UGE:
1865 case FCmpInst::FCMP_TRUE:
1866 case FCmpInst::FCMP_FALSE:
1867 case FCmpInst::BAD_FCMP_PREDICATE:
1868 break; // Couldn't determine anything about these constants.
1869 case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1870 Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1871 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1872 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1873 break;
1874 case FCmpInst::FCMP_OLT: // We know that C1 < C2
1875 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1876 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1877 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1878 break;
1879 case FCmpInst::FCMP_OGT: // We know that C1 > C2
1880 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1881 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1882 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1883 break;
1884 case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1885 // We can only partially decide this relation.
1886 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1887 Result = 0;
1888 else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1889 Result = 1;
1890 break;
1891 case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1892 // We can only partially decide this relation.
1893 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1894 Result = 0;
1895 else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1896 Result = 1;
1897 break;
1898 case FCmpInst::FCMP_ONE: // We know that C1 != C2
1899 // We can only partially decide this relation.
1900 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1901 Result = 0;
1902 else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1903 Result = 1;
1904 break;
1907 // If we evaluated the result, return it now.
1908 if (Result != -1)
1909 return ConstantInt::get(ResultTy, Result);
1911 } else {
1912 // Evaluate the relation between the two constants, per the predicate.
1913 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1914 switch (evaluateICmpRelation(C1, C2,
1915 CmpInst::isSigned((CmpInst::Predicate)pred))) {
1916 default: llvm_unreachable("Unknown relational!");
1917 case ICmpInst::BAD_ICMP_PREDICATE:
1918 break; // Couldn't determine anything about these constants.
1919 case ICmpInst::ICMP_EQ: // We know the constants are equal!
1920 // If we know the constants are equal, we can decide the result of this
1921 // computation precisely.
1922 Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
1923 break;
1924 case ICmpInst::ICMP_ULT:
1925 switch (pred) {
1926 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1927 Result = 1; break;
1928 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1929 Result = 0; break;
1931 break;
1932 case ICmpInst::ICMP_SLT:
1933 switch (pred) {
1934 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1935 Result = 1; break;
1936 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1937 Result = 0; break;
1939 break;
1940 case ICmpInst::ICMP_UGT:
1941 switch (pred) {
1942 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1943 Result = 1; break;
1944 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1945 Result = 0; break;
1947 break;
1948 case ICmpInst::ICMP_SGT:
1949 switch (pred) {
1950 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
1951 Result = 1; break;
1952 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
1953 Result = 0; break;
1955 break;
1956 case ICmpInst::ICMP_ULE:
1957 if (pred == ICmpInst::ICMP_UGT) Result = 0;
1958 if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
1959 break;
1960 case ICmpInst::ICMP_SLE:
1961 if (pred == ICmpInst::ICMP_SGT) Result = 0;
1962 if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
1963 break;
1964 case ICmpInst::ICMP_UGE:
1965 if (pred == ICmpInst::ICMP_ULT) Result = 0;
1966 if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
1967 break;
1968 case ICmpInst::ICMP_SGE:
1969 if (pred == ICmpInst::ICMP_SLT) Result = 0;
1970 if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
1971 break;
1972 case ICmpInst::ICMP_NE:
1973 if (pred == ICmpInst::ICMP_EQ) Result = 0;
1974 if (pred == ICmpInst::ICMP_NE) Result = 1;
1975 break;
1978 // If we evaluated the result, return it now.
1979 if (Result != -1)
1980 return ConstantInt::get(ResultTy, Result);
1982 // If the right hand side is a bitcast, try using its inverse to simplify
1983 // it by moving it to the left hand side. We can't do this if it would turn
1984 // a vector compare into a scalar compare or visa versa.
1985 if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
1986 Constant *CE2Op0 = CE2->getOperand(0);
1987 if (CE2->getOpcode() == Instruction::BitCast &&
1988 CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
1989 Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
1990 return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
1994 // If the left hand side is an extension, try eliminating it.
1995 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1996 if ((CE1->getOpcode() == Instruction::SExt &&
1997 ICmpInst::isSigned((ICmpInst::Predicate)pred)) ||
1998 (CE1->getOpcode() == Instruction::ZExt &&
1999 !ICmpInst::isSigned((ICmpInst::Predicate)pred))){
2000 Constant *CE1Op0 = CE1->getOperand(0);
2001 Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2002 if (CE1Inverse == CE1Op0) {
2003 // Check whether we can safely truncate the right hand side.
2004 Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2005 if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
2006 C2->getType()) == C2)
2007 return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2012 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2013 (C1->isNullValue() && !C2->isNullValue())) {
2014 // If C2 is a constant expr and C1 isn't, flip them around and fold the
2015 // other way if possible.
2016 // Also, if C1 is null and C2 isn't, flip them around.
2017 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2018 return ConstantExpr::getICmp(pred, C2, C1);
2021 return nullptr;
2024 /// Test whether the given sequence of *normalized* indices is "inbounds".
2025 template<typename IndexTy>
2026 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
2027 // No indices means nothing that could be out of bounds.
2028 if (Idxs.empty()) return true;
2030 // If the first index is zero, it's in bounds.
2031 if (cast<Constant>(Idxs[0])->isNullValue()) return true;
2033 // If the first index is one and all the rest are zero, it's in bounds,
2034 // by the one-past-the-end rule.
2035 if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) {
2036 if (!CI->isOne())
2037 return false;
2038 } else {
2039 auto *CV = cast<ConstantDataVector>(Idxs[0]);
2040 CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
2041 if (!CI || !CI->isOne())
2042 return false;
2045 for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
2046 if (!cast<Constant>(Idxs[i])->isNullValue())
2047 return false;
2048 return true;
2051 /// Test whether a given ConstantInt is in-range for a SequentialType.
2052 static bool isIndexInRangeOfArrayType(uint64_t NumElements,
2053 const ConstantInt *CI) {
2054 // We cannot bounds check the index if it doesn't fit in an int64_t.
2055 if (CI->getValue().getActiveBits() > 64)
2056 return false;
2058 // A negative index or an index past the end of our sequential type is
2059 // considered out-of-range.
2060 int64_t IndexVal = CI->getSExtValue();
2061 if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
2062 return false;
2064 // Otherwise, it is in-range.
2065 return true;
2068 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
2069 bool InBounds,
2070 Optional<unsigned> InRangeIndex,
2071 ArrayRef<Value *> Idxs) {
2072 if (Idxs.empty()) return C;
2074 Type *GEPTy = GetElementPtrInst::getGEPReturnType(
2075 C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size()));
2077 if (isa<UndefValue>(C))
2078 return UndefValue::get(GEPTy);
2080 Constant *Idx0 = cast<Constant>(Idxs[0]);
2081 if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0)))
2082 return GEPTy->isVectorTy() && !C->getType()->isVectorTy()
2083 ? ConstantVector::getSplat(
2084 cast<VectorType>(GEPTy)->getNumElements(), C)
2085 : C;
2087 if (C->isNullValue()) {
2088 bool isNull = true;
2089 for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2090 if (!isa<UndefValue>(Idxs[i]) &&
2091 !cast<Constant>(Idxs[i])->isNullValue()) {
2092 isNull = false;
2093 break;
2095 if (isNull) {
2096 PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
2097 Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
2099 assert(Ty && "Invalid indices for GEP!");
2100 Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2101 Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2102 if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
2103 GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements());
2105 // The GEP returns a vector of pointers when one of more of
2106 // its arguments is a vector.
2107 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2108 if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) {
2109 GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements());
2110 break;
2114 return Constant::getNullValue(GEPTy);
2118 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2119 // Combine Indices - If the source pointer to this getelementptr instruction
2120 // is a getelementptr instruction, combine the indices of the two
2121 // getelementptr instructions into a single instruction.
2123 if (CE->getOpcode() == Instruction::GetElementPtr) {
2124 gep_type_iterator LastI = gep_type_end(CE);
2125 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2126 I != E; ++I)
2127 LastI = I;
2129 // We cannot combine indices if doing so would take us outside of an
2130 // array or vector. Doing otherwise could trick us if we evaluated such a
2131 // GEP as part of a load.
2133 // e.g. Consider if the original GEP was:
2134 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2135 // i32 0, i32 0, i64 0)
2137 // If we then tried to offset it by '8' to get to the third element,
2138 // an i8, we should *not* get:
2139 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2140 // i32 0, i32 0, i64 8)
2142 // This GEP tries to index array element '8 which runs out-of-bounds.
2143 // Subsequent evaluation would get confused and produce erroneous results.
2145 // The following prohibits such a GEP from being formed by checking to see
2146 // if the index is in-range with respect to an array.
2147 // TODO: This code may be extended to handle vectors as well.
2148 bool PerformFold = false;
2149 if (Idx0->isNullValue())
2150 PerformFold = true;
2151 else if (LastI.isSequential())
2152 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
2153 PerformFold = (!LastI.isBoundedSequential() ||
2154 isIndexInRangeOfArrayType(
2155 LastI.getSequentialNumElements(), CI)) &&
2156 !CE->getOperand(CE->getNumOperands() - 1)
2157 ->getType()
2158 ->isVectorTy();
2160 if (PerformFold) {
2161 SmallVector<Value*, 16> NewIndices;
2162 NewIndices.reserve(Idxs.size() + CE->getNumOperands());
2163 NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1);
2165 // Add the last index of the source with the first index of the new GEP.
2166 // Make sure to handle the case when they are actually different types.
2167 Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2168 // Otherwise it must be an array.
2169 if (!Idx0->isNullValue()) {
2170 Type *IdxTy = Combined->getType();
2171 if (IdxTy != Idx0->getType()) {
2172 unsigned CommonExtendedWidth =
2173 std::max(IdxTy->getIntegerBitWidth(),
2174 Idx0->getType()->getIntegerBitWidth());
2175 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2177 Type *CommonTy =
2178 Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth);
2179 Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy);
2180 Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy);
2181 Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2182 } else {
2183 Combined =
2184 ConstantExpr::get(Instruction::Add, Idx0, Combined);
2188 NewIndices.push_back(Combined);
2189 NewIndices.append(Idxs.begin() + 1, Idxs.end());
2191 // The combined GEP normally inherits its index inrange attribute from
2192 // the inner GEP, but if the inner GEP's last index was adjusted by the
2193 // outer GEP, any inbounds attribute on that index is invalidated.
2194 Optional<unsigned> IRIndex = cast<GEPOperator>(CE)->getInRangeIndex();
2195 if (IRIndex && *IRIndex == CE->getNumOperands() - 2 && !Idx0->isNullValue())
2196 IRIndex = None;
2198 return ConstantExpr::getGetElementPtr(
2199 cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0),
2200 NewIndices, InBounds && cast<GEPOperator>(CE)->isInBounds(),
2201 IRIndex);
2205 // Attempt to fold casts to the same type away. For example, folding:
2207 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2208 // i64 0, i64 0)
2209 // into:
2211 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2213 // Don't fold if the cast is changing address spaces.
2214 if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2215 PointerType *SrcPtrTy =
2216 dyn_cast<PointerType>(CE->getOperand(0)->getType());
2217 PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
2218 if (SrcPtrTy && DstPtrTy) {
2219 ArrayType *SrcArrayTy =
2220 dyn_cast<ArrayType>(SrcPtrTy->getElementType());
2221 ArrayType *DstArrayTy =
2222 dyn_cast<ArrayType>(DstPtrTy->getElementType());
2223 if (SrcArrayTy && DstArrayTy
2224 && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
2225 && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2226 return ConstantExpr::getGetElementPtr(SrcArrayTy,
2227 (Constant *)CE->getOperand(0),
2228 Idxs, InBounds, InRangeIndex);
2233 // Check to see if any array indices are not within the corresponding
2234 // notional array or vector bounds. If so, try to determine if they can be
2235 // factored out into preceding dimensions.
2236 SmallVector<Constant *, 8> NewIdxs;
2237 Type *Ty = PointeeTy;
2238 Type *Prev = C->getType();
2239 bool Unknown =
2240 !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]);
2241 for (unsigned i = 1, e = Idxs.size(); i != e;
2242 Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2243 if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) {
2244 // We don't know if it's in range or not.
2245 Unknown = true;
2246 continue;
2248 if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1]))
2249 // Skip if the type of the previous index is not supported.
2250 continue;
2251 if (InRangeIndex && i == *InRangeIndex + 1) {
2252 // If an index is marked inrange, we cannot apply this canonicalization to
2253 // the following index, as that will cause the inrange index to point to
2254 // the wrong element.
2255 continue;
2257 if (isa<StructType>(Ty)) {
2258 // The verify makes sure that GEPs into a struct are in range.
2259 continue;
2261 auto *STy = cast<SequentialType>(Ty);
2262 if (isa<VectorType>(STy)) {
2263 // There can be awkward padding in after a non-power of two vector.
2264 Unknown = true;
2265 continue;
2267 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2268 if (isIndexInRangeOfArrayType(STy->getNumElements(), CI))
2269 // It's in range, skip to the next index.
2270 continue;
2271 if (CI->getSExtValue() < 0) {
2272 // It's out of range and negative, don't try to factor it.
2273 Unknown = true;
2274 continue;
2276 } else {
2277 auto *CV = cast<ConstantDataVector>(Idxs[i]);
2278 bool InRange = true;
2279 for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
2280 auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I));
2281 InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI);
2282 if (CI->getSExtValue() < 0) {
2283 Unknown = true;
2284 break;
2287 if (InRange || Unknown)
2288 // It's in range, skip to the next index.
2289 // It's out of range and negative, don't try to factor it.
2290 continue;
2292 if (isa<StructType>(Prev)) {
2293 // It's out of range, but the prior dimension is a struct
2294 // so we can't do anything about it.
2295 Unknown = true;
2296 continue;
2298 // It's out of range, but we can factor it into the prior
2299 // dimension.
2300 NewIdxs.resize(Idxs.size());
2301 // Determine the number of elements in our sequential type.
2302 uint64_t NumElements = STy->getArrayNumElements();
2304 // Expand the current index or the previous index to a vector from a scalar
2305 // if necessary.
2306 Constant *CurrIdx = cast<Constant>(Idxs[i]);
2307 auto *PrevIdx =
2308 NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]);
2309 bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy();
2310 bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy();
2311 bool UseVector = IsCurrIdxVector || IsPrevIdxVector;
2313 if (!IsCurrIdxVector && IsPrevIdxVector)
2314 CurrIdx = ConstantDataVector::getSplat(
2315 PrevIdx->getType()->getVectorNumElements(), CurrIdx);
2317 if (!IsPrevIdxVector && IsCurrIdxVector)
2318 PrevIdx = ConstantDataVector::getSplat(
2319 CurrIdx->getType()->getVectorNumElements(), PrevIdx);
2321 Constant *Factor =
2322 ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements);
2323 if (UseVector)
2324 Factor = ConstantDataVector::getSplat(
2325 IsPrevIdxVector ? PrevIdx->getType()->getVectorNumElements()
2326 : CurrIdx->getType()->getVectorNumElements(),
2327 Factor);
2329 NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor);
2331 Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor);
2333 unsigned CommonExtendedWidth =
2334 std::max(PrevIdx->getType()->getScalarSizeInBits(),
2335 Div->getType()->getScalarSizeInBits());
2336 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2338 // Before adding, extend both operands to i64 to avoid
2339 // overflow trouble.
2340 Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth);
2341 if (UseVector)
2342 ExtendedTy = VectorType::get(
2343 ExtendedTy, IsPrevIdxVector
2344 ? PrevIdx->getType()->getVectorNumElements()
2345 : CurrIdx->getType()->getVectorNumElements());
2347 if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2348 PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy);
2350 if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2351 Div = ConstantExpr::getSExt(Div, ExtendedTy);
2353 NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div);
2356 // If we did any factoring, start over with the adjusted indices.
2357 if (!NewIdxs.empty()) {
2358 for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2359 if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2360 return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds,
2361 InRangeIndex);
2364 // If all indices are known integers and normalized, we can do a simple
2365 // check for the "inbounds" property.
2366 if (!Unknown && !InBounds)
2367 if (auto *GV = dyn_cast<GlobalVariable>(C))
2368 if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
2369 return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs,
2370 /*InBounds=*/true, InRangeIndex);
2372 return nullptr;