1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Represent a range of possible values that may occur when the program is run
11 // for an integral value. This keeps track of a lower and upper bound for the
12 // constant, which MAY wrap around the end of the numeric range. To do this, it
13 // keeps track of a [lower, upper) bound, which specifies an interval just like
14 // STL iterators. When used with boolean values, the following are important
15 // ranges (other integral ranges use min/max values for special range values):
17 // [F, F) = {} = Empty set
20 // [T, T) = {F, T} = Full set
22 //===----------------------------------------------------------------------===//
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
42 ConstantRange::ConstantRange(uint32_t BitWidth
, bool Full
)
43 : Lower(Full
? APInt::getMaxValue(BitWidth
) : APInt::getMinValue(BitWidth
)),
46 ConstantRange::ConstantRange(APInt V
)
47 : Lower(std::move(V
)), Upper(Lower
+ 1) {}
49 ConstantRange::ConstantRange(APInt L
, APInt U
)
50 : Lower(std::move(L
)), Upper(std::move(U
)) {
51 assert(Lower
.getBitWidth() == Upper
.getBitWidth() &&
52 "ConstantRange with unequal bit widths");
53 assert((Lower
!= Upper
|| (Lower
.isMaxValue() || Lower
.isMinValue())) &&
54 "Lower == Upper, but they aren't min or max value!");
57 ConstantRange
ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred
,
58 const ConstantRange
&CR
) {
62 uint32_t W
= CR
.getBitWidth();
65 llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
66 case CmpInst::ICMP_EQ
:
68 case CmpInst::ICMP_NE
:
69 if (CR
.isSingleElement())
70 return ConstantRange(CR
.getUpper(), CR
.getLower());
71 return ConstantRange(W
);
72 case CmpInst::ICMP_ULT
: {
73 APInt
UMax(CR
.getUnsignedMax());
74 if (UMax
.isMinValue())
75 return ConstantRange(W
, /* empty */ false);
76 return ConstantRange(APInt::getMinValue(W
), std::move(UMax
));
78 case CmpInst::ICMP_SLT
: {
79 APInt
SMax(CR
.getSignedMax());
80 if (SMax
.isMinSignedValue())
81 return ConstantRange(W
, /* empty */ false);
82 return ConstantRange(APInt::getSignedMinValue(W
), std::move(SMax
));
84 case CmpInst::ICMP_ULE
: {
85 APInt
UMax(CR
.getUnsignedMax());
86 if (UMax
.isMaxValue())
87 return ConstantRange(W
);
88 return ConstantRange(APInt::getMinValue(W
), std::move(UMax
) + 1);
90 case CmpInst::ICMP_SLE
: {
91 APInt
SMax(CR
.getSignedMax());
92 if (SMax
.isMaxSignedValue())
93 return ConstantRange(W
);
94 return ConstantRange(APInt::getSignedMinValue(W
), std::move(SMax
) + 1);
96 case CmpInst::ICMP_UGT
: {
97 APInt
UMin(CR
.getUnsignedMin());
98 if (UMin
.isMaxValue())
99 return ConstantRange(W
, /* empty */ false);
100 return ConstantRange(std::move(UMin
) + 1, APInt::getNullValue(W
));
102 case CmpInst::ICMP_SGT
: {
103 APInt
SMin(CR
.getSignedMin());
104 if (SMin
.isMaxSignedValue())
105 return ConstantRange(W
, /* empty */ false);
106 return ConstantRange(std::move(SMin
) + 1, APInt::getSignedMinValue(W
));
108 case CmpInst::ICMP_UGE
: {
109 APInt
UMin(CR
.getUnsignedMin());
110 if (UMin
.isMinValue())
111 return ConstantRange(W
);
112 return ConstantRange(std::move(UMin
), APInt::getNullValue(W
));
114 case CmpInst::ICMP_SGE
: {
115 APInt
SMin(CR
.getSignedMin());
116 if (SMin
.isMinSignedValue())
117 return ConstantRange(W
);
118 return ConstantRange(std::move(SMin
), APInt::getSignedMinValue(W
));
123 ConstantRange
ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred
,
124 const ConstantRange
&CR
) {
125 // Follows from De-Morgan's laws:
127 // ~(~A union ~B) == A intersect B.
129 return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred
), CR
)
133 ConstantRange
ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred
,
135 // Computes the exact range that is equal to both the constant ranges returned
136 // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
137 // when RHS is a singleton such as an APInt and so the assert is valid.
138 // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
139 // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
141 assert(makeAllowedICmpRegion(Pred
, C
) == makeSatisfyingICmpRegion(Pred
, C
));
142 return makeAllowedICmpRegion(Pred
, C
);
145 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate
&Pred
,
147 bool Success
= false;
149 if (isFullSet() || isEmptySet()) {
150 Pred
= isEmptySet() ? CmpInst::ICMP_ULT
: CmpInst::ICMP_UGE
;
151 RHS
= APInt(getBitWidth(), 0);
153 } else if (auto *OnlyElt
= getSingleElement()) {
154 Pred
= CmpInst::ICMP_EQ
;
157 } else if (auto *OnlyMissingElt
= getSingleMissingElement()) {
158 Pred
= CmpInst::ICMP_NE
;
159 RHS
= *OnlyMissingElt
;
161 } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
163 getLower().isMinSignedValue() ? CmpInst::ICMP_SLT
: CmpInst::ICMP_ULT
;
166 } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
168 getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE
: CmpInst::ICMP_UGE
;
173 assert((!Success
|| ConstantRange::makeExactICmpRegion(Pred
, RHS
) == *this) &&
180 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp
,
181 const ConstantRange
&Other
,
182 unsigned NoWrapKind
) {
183 using OBO
= OverflowingBinaryOperator
;
185 // Computes the intersection of CR0 and CR1. It is different from
186 // intersectWith in that the ConstantRange returned will only contain elements
187 // in both CR0 and CR1 (i.e. SubsetIntersect(X, Y) is a *subset*, proper or
188 // not, of both X and Y).
189 auto SubsetIntersect
=
190 [](const ConstantRange
&CR0
, const ConstantRange
&CR1
) {
191 return CR0
.inverse().unionWith(CR1
.inverse()).inverse();
194 assert(Instruction::isBinaryOp(BinOp
) && "Binary operators only!");
196 assert((NoWrapKind
== OBO::NoSignedWrap
||
197 NoWrapKind
== OBO::NoUnsignedWrap
||
198 NoWrapKind
== (OBO::NoUnsignedWrap
| OBO::NoSignedWrap
)) &&
199 "NoWrapKind invalid!");
201 unsigned BitWidth
= Other
.getBitWidth();
202 ConstantRange
Result(BitWidth
);
206 // Conservative answer: empty set
207 return ConstantRange(BitWidth
, false);
209 case Instruction::Add
:
210 if (auto *C
= Other
.getSingleElement())
211 if (C
->isNullValue())
212 // Full set: nothing signed / unsigned wraps when added to 0.
213 return ConstantRange(BitWidth
);
214 if (NoWrapKind
& OBO::NoUnsignedWrap
)
216 SubsetIntersect(Result
, ConstantRange(APInt::getNullValue(BitWidth
),
217 -Other
.getUnsignedMax()));
218 if (NoWrapKind
& OBO::NoSignedWrap
) {
219 const APInt
&SignedMin
= Other
.getSignedMin();
220 const APInt
&SignedMax
= Other
.getSignedMax();
221 if (SignedMax
.isStrictlyPositive())
222 Result
= SubsetIntersect(
224 ConstantRange(APInt::getSignedMinValue(BitWidth
),
225 APInt::getSignedMinValue(BitWidth
) - SignedMax
));
226 if (SignedMin
.isNegative())
227 Result
= SubsetIntersect(
229 ConstantRange(APInt::getSignedMinValue(BitWidth
) - SignedMin
,
230 APInt::getSignedMinValue(BitWidth
)));
234 case Instruction::Sub
:
235 if (auto *C
= Other
.getSingleElement())
236 if (C
->isNullValue())
237 // Full set: nothing signed / unsigned wraps when subtracting 0.
238 return ConstantRange(BitWidth
);
239 if (NoWrapKind
& OBO::NoUnsignedWrap
)
241 SubsetIntersect(Result
, ConstantRange(Other
.getUnsignedMax(),
242 APInt::getMinValue(BitWidth
)));
243 if (NoWrapKind
& OBO::NoSignedWrap
) {
244 const APInt
&SignedMin
= Other
.getSignedMin();
245 const APInt
&SignedMax
= Other
.getSignedMax();
246 if (SignedMax
.isStrictlyPositive())
247 Result
= SubsetIntersect(
249 ConstantRange(APInt::getSignedMinValue(BitWidth
) + SignedMax
,
250 APInt::getSignedMinValue(BitWidth
)));
251 if (SignedMin
.isNegative())
252 Result
= SubsetIntersect(
254 ConstantRange(APInt::getSignedMinValue(BitWidth
),
255 APInt::getSignedMinValue(BitWidth
) + SignedMin
));
258 case Instruction::Mul
: {
259 if (NoWrapKind
== (OBO::NoSignedWrap
| OBO::NoUnsignedWrap
)) {
260 return SubsetIntersect(
261 makeGuaranteedNoWrapRegion(BinOp
, Other
, OBO::NoSignedWrap
),
262 makeGuaranteedNoWrapRegion(BinOp
, Other
, OBO::NoUnsignedWrap
));
265 // Equivalent to calling makeGuaranteedNoWrapRegion() on [V, V+1).
266 const bool Unsigned
= NoWrapKind
== OBO::NoUnsignedWrap
;
267 const auto makeSingleValueRegion
= [Unsigned
,
268 BitWidth
](APInt V
) -> ConstantRange
{
269 // Handle special case for 0, -1 and 1. See the last for reason why we
270 // specialize -1 and 1.
271 if (V
== 0 || V
.isOneValue())
272 return ConstantRange(BitWidth
, true);
274 APInt MinValue
, MaxValue
;
276 MinValue
= APInt::getMinValue(BitWidth
);
277 MaxValue
= APInt::getMaxValue(BitWidth
);
279 MinValue
= APInt::getSignedMinValue(BitWidth
);
280 MaxValue
= APInt::getSignedMaxValue(BitWidth
);
282 // e.g. Returning [-127, 127], represented as [-127, -128).
283 if (!Unsigned
&& V
.isAllOnesValue())
284 return ConstantRange(-MaxValue
, MinValue
);
287 if (!Unsigned
&& V
.isNegative()) {
288 Lower
= APIntOps::RoundingSDiv(MaxValue
, V
, APInt::Rounding::UP
);
289 Upper
= APIntOps::RoundingSDiv(MinValue
, V
, APInt::Rounding::DOWN
);
290 } else if (Unsigned
) {
291 Lower
= APIntOps::RoundingUDiv(MinValue
, V
, APInt::Rounding::UP
);
292 Upper
= APIntOps::RoundingUDiv(MaxValue
, V
, APInt::Rounding::DOWN
);
294 Lower
= APIntOps::RoundingSDiv(MinValue
, V
, APInt::Rounding::UP
);
295 Upper
= APIntOps::RoundingSDiv(MaxValue
, V
, APInt::Rounding::DOWN
);
298 Lower
= Lower
.zextOrSelf(BitWidth
);
299 Upper
= Upper
.zextOrSelf(BitWidth
);
301 Lower
= Lower
.sextOrSelf(BitWidth
);
302 Upper
= Upper
.sextOrSelf(BitWidth
);
304 // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
305 // Upper + 1 is guanranteed not to overflow, because |divisor| > 1. 0, -1,
306 // and 1 are already handled as special cases.
307 return ConstantRange(Lower
, Upper
+ 1);
311 return makeSingleValueRegion(Other
.getUnsignedMax());
313 return SubsetIntersect(makeSingleValueRegion(Other
.getSignedMin()),
314 makeSingleValueRegion(Other
.getSignedMax()));
319 bool ConstantRange::isFullSet() const {
320 return Lower
== Upper
&& Lower
.isMaxValue();
323 bool ConstantRange::isEmptySet() const {
324 return Lower
== Upper
&& Lower
.isMinValue();
327 bool ConstantRange::isWrappedSet() const {
328 return Lower
.ugt(Upper
);
331 bool ConstantRange::isSignWrappedSet() const {
332 return contains(APInt::getSignedMaxValue(getBitWidth())) &&
333 contains(APInt::getSignedMinValue(getBitWidth()));
336 APInt
ConstantRange::getSetSize() const {
338 return APInt::getOneBitSet(getBitWidth()+1, getBitWidth());
340 // This is also correct for wrapped sets.
341 return (Upper
- Lower
).zext(getBitWidth()+1);
345 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange
&Other
) const {
346 assert(getBitWidth() == Other
.getBitWidth());
349 if (Other
.isFullSet())
351 return (Upper
- Lower
).ult(Other
.Upper
- Other
.Lower
);
355 ConstantRange::isSizeLargerThan(uint64_t MaxSize
) const {
356 assert(MaxSize
&& "MaxSize can't be 0.");
357 // If this a full set, we need special handling to avoid needing an extra bit
358 // to represent the size.
360 return APInt::getMaxValue(getBitWidth()).ugt(MaxSize
- 1);
362 return (Upper
- Lower
).ugt(MaxSize
);
365 APInt
ConstantRange::getUnsignedMax() const {
366 if (isFullSet() || isWrappedSet())
367 return APInt::getMaxValue(getBitWidth());
368 return getUpper() - 1;
371 APInt
ConstantRange::getUnsignedMin() const {
372 if (isFullSet() || (isWrappedSet() && !getUpper().isNullValue()))
373 return APInt::getMinValue(getBitWidth());
377 APInt
ConstantRange::getSignedMax() const {
378 if (isFullSet() || Lower
.sgt(Upper
))
379 return APInt::getSignedMaxValue(getBitWidth());
380 return getUpper() - 1;
383 APInt
ConstantRange::getSignedMin() const {
384 if (isFullSet() || (Lower
.sgt(Upper
) && !getUpper().isMinSignedValue()))
385 return APInt::getSignedMinValue(getBitWidth());
389 bool ConstantRange::contains(const APInt
&V
) const {
394 return Lower
.ule(V
) && V
.ult(Upper
);
395 return Lower
.ule(V
) || V
.ult(Upper
);
398 bool ConstantRange::contains(const ConstantRange
&Other
) const {
399 if (isFullSet() || Other
.isEmptySet()) return true;
400 if (isEmptySet() || Other
.isFullSet()) return false;
402 if (!isWrappedSet()) {
403 if (Other
.isWrappedSet())
406 return Lower
.ule(Other
.getLower()) && Other
.getUpper().ule(Upper
);
409 if (!Other
.isWrappedSet())
410 return Other
.getUpper().ule(Upper
) ||
411 Lower
.ule(Other
.getLower());
413 return Other
.getUpper().ule(Upper
) && Lower
.ule(Other
.getLower());
416 ConstantRange
ConstantRange::subtract(const APInt
&Val
) const {
417 assert(Val
.getBitWidth() == getBitWidth() && "Wrong bit width");
418 // If the set is empty or full, don't modify the endpoints.
421 return ConstantRange(Lower
- Val
, Upper
- Val
);
424 ConstantRange
ConstantRange::difference(const ConstantRange
&CR
) const {
425 return intersectWith(CR
.inverse());
428 ConstantRange
ConstantRange::intersectWith(const ConstantRange
&CR
) const {
429 assert(getBitWidth() == CR
.getBitWidth() &&
430 "ConstantRange types don't agree!");
432 // Handle common cases.
433 if ( isEmptySet() || CR
.isFullSet()) return *this;
434 if (CR
.isEmptySet() || isFullSet()) return CR
;
436 if (!isWrappedSet() && CR
.isWrappedSet())
437 return CR
.intersectWith(*this);
439 if (!isWrappedSet() && !CR
.isWrappedSet()) {
440 if (Lower
.ult(CR
.Lower
)) {
441 if (Upper
.ule(CR
.Lower
))
442 return ConstantRange(getBitWidth(), false);
444 if (Upper
.ult(CR
.Upper
))
445 return ConstantRange(CR
.Lower
, Upper
);
449 if (Upper
.ult(CR
.Upper
))
452 if (Lower
.ult(CR
.Upper
))
453 return ConstantRange(Lower
, CR
.Upper
);
455 return ConstantRange(getBitWidth(), false);
458 if (isWrappedSet() && !CR
.isWrappedSet()) {
459 if (CR
.Lower
.ult(Upper
)) {
460 if (CR
.Upper
.ult(Upper
))
463 if (CR
.Upper
.ule(Lower
))
464 return ConstantRange(CR
.Lower
, Upper
);
466 if (isSizeStrictlySmallerThan(CR
))
470 if (CR
.Lower
.ult(Lower
)) {
471 if (CR
.Upper
.ule(Lower
))
472 return ConstantRange(getBitWidth(), false);
474 return ConstantRange(Lower
, CR
.Upper
);
479 if (CR
.Upper
.ult(Upper
)) {
480 if (CR
.Lower
.ult(Upper
)) {
481 if (isSizeStrictlySmallerThan(CR
))
486 if (CR
.Lower
.ult(Lower
))
487 return ConstantRange(Lower
, CR
.Upper
);
491 if (CR
.Upper
.ule(Lower
)) {
492 if (CR
.Lower
.ult(Lower
))
495 return ConstantRange(CR
.Lower
, Upper
);
497 if (isSizeStrictlySmallerThan(CR
))
502 ConstantRange
ConstantRange::unionWith(const ConstantRange
&CR
) const {
503 assert(getBitWidth() == CR
.getBitWidth() &&
504 "ConstantRange types don't agree!");
506 if ( isFullSet() || CR
.isEmptySet()) return *this;
507 if (CR
.isFullSet() || isEmptySet()) return CR
;
509 if (!isWrappedSet() && CR
.isWrappedSet()) return CR
.unionWith(*this);
511 if (!isWrappedSet() && !CR
.isWrappedSet()) {
512 if (CR
.Upper
.ult(Lower
) || Upper
.ult(CR
.Lower
)) {
513 // If the two ranges are disjoint, find the smaller gap and bridge it.
514 APInt d1
= CR
.Lower
- Upper
, d2
= Lower
- CR
.Upper
;
516 return ConstantRange(Lower
, CR
.Upper
);
517 return ConstantRange(CR
.Lower
, Upper
);
520 APInt L
= CR
.Lower
.ult(Lower
) ? CR
.Lower
: Lower
;
521 APInt U
= (CR
.Upper
- 1).ugt(Upper
- 1) ? CR
.Upper
: Upper
;
523 if (L
.isNullValue() && U
.isNullValue())
524 return ConstantRange(getBitWidth());
526 return ConstantRange(std::move(L
), std::move(U
));
529 if (!CR
.isWrappedSet()) {
530 // ------U L----- and ------U L----- : this
532 if (CR
.Upper
.ule(Upper
) || CR
.Lower
.uge(Lower
))
535 // ------U L----- : this
537 if (CR
.Lower
.ule(Upper
) && Lower
.ule(CR
.Upper
))
538 return ConstantRange(getBitWidth());
540 // ----U L---- : this
543 if (Upper
.ule(CR
.Lower
) && CR
.Upper
.ule(Lower
)) {
544 APInt d1
= CR
.Lower
- Upper
, d2
= Lower
- CR
.Upper
;
546 return ConstantRange(Lower
, CR
.Upper
);
547 return ConstantRange(CR
.Lower
, Upper
);
550 // ----U L----- : this
552 if (Upper
.ult(CR
.Lower
) && Lower
.ult(CR
.Upper
))
553 return ConstantRange(CR
.Lower
, Upper
);
555 // ------U L---- : this
557 assert(CR
.Lower
.ult(Upper
) && CR
.Upper
.ult(Lower
) &&
558 "ConstantRange::unionWith missed a case with one range wrapped");
559 return ConstantRange(Lower
, CR
.Upper
);
562 // ------U L---- and ------U L---- : this
563 // -U L----------- and ------------U L : CR
564 if (CR
.Lower
.ule(Upper
) || Lower
.ule(CR
.Upper
))
565 return ConstantRange(getBitWidth());
567 APInt L
= CR
.Lower
.ult(Lower
) ? CR
.Lower
: Lower
;
568 APInt U
= CR
.Upper
.ugt(Upper
) ? CR
.Upper
: Upper
;
570 return ConstantRange(std::move(L
), std::move(U
));
573 ConstantRange
ConstantRange::castOp(Instruction::CastOps CastOp
,
574 uint32_t ResultBitWidth
) const {
577 llvm_unreachable("unsupported cast type");
578 case Instruction::Trunc
:
579 return truncate(ResultBitWidth
);
580 case Instruction::SExt
:
581 return signExtend(ResultBitWidth
);
582 case Instruction::ZExt
:
583 return zeroExtend(ResultBitWidth
);
584 case Instruction::BitCast
:
586 case Instruction::FPToUI
:
587 case Instruction::FPToSI
:
588 if (getBitWidth() == ResultBitWidth
)
591 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
592 case Instruction::UIToFP
: {
593 // TODO: use input range if available
594 auto BW
= getBitWidth();
595 APInt Min
= APInt::getMinValue(BW
).zextOrSelf(ResultBitWidth
);
596 APInt Max
= APInt::getMaxValue(BW
).zextOrSelf(ResultBitWidth
);
597 return ConstantRange(std::move(Min
), std::move(Max
));
599 case Instruction::SIToFP
: {
600 // TODO: use input range if available
601 auto BW
= getBitWidth();
602 APInt SMin
= APInt::getSignedMinValue(BW
).sextOrSelf(ResultBitWidth
);
603 APInt SMax
= APInt::getSignedMaxValue(BW
).sextOrSelf(ResultBitWidth
);
604 return ConstantRange(std::move(SMin
), std::move(SMax
));
606 case Instruction::FPTrunc
:
607 case Instruction::FPExt
:
608 case Instruction::IntToPtr
:
609 case Instruction::PtrToInt
:
610 case Instruction::AddrSpaceCast
:
611 // Conservatively return full set.
612 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
616 ConstantRange
ConstantRange::zeroExtend(uint32_t DstTySize
) const {
617 if (isEmptySet()) return ConstantRange(DstTySize
, /*isFullSet=*/false);
619 unsigned SrcTySize
= getBitWidth();
620 assert(SrcTySize
< DstTySize
&& "Not a value extension");
621 if (isFullSet() || isWrappedSet()) {
622 // Change into [0, 1 << src bit width)
623 APInt
LowerExt(DstTySize
, 0);
624 if (!Upper
) // special case: [X, 0) -- not really wrapping around
625 LowerExt
= Lower
.zext(DstTySize
);
626 return ConstantRange(std::move(LowerExt
),
627 APInt::getOneBitSet(DstTySize
, SrcTySize
));
630 return ConstantRange(Lower
.zext(DstTySize
), Upper
.zext(DstTySize
));
633 ConstantRange
ConstantRange::signExtend(uint32_t DstTySize
) const {
634 if (isEmptySet()) return ConstantRange(DstTySize
, /*isFullSet=*/false);
636 unsigned SrcTySize
= getBitWidth();
637 assert(SrcTySize
< DstTySize
&& "Not a value extension");
639 // special case: [X, INT_MIN) -- not really wrapping around
640 if (Upper
.isMinSignedValue())
641 return ConstantRange(Lower
.sext(DstTySize
), Upper
.zext(DstTySize
));
643 if (isFullSet() || isSignWrappedSet()) {
644 return ConstantRange(APInt::getHighBitsSet(DstTySize
,DstTySize
-SrcTySize
+1),
645 APInt::getLowBitsSet(DstTySize
, SrcTySize
-1) + 1);
648 return ConstantRange(Lower
.sext(DstTySize
), Upper
.sext(DstTySize
));
651 ConstantRange
ConstantRange::truncate(uint32_t DstTySize
) const {
652 assert(getBitWidth() > DstTySize
&& "Not a value truncation");
654 return ConstantRange(DstTySize
, /*isFullSet=*/false);
656 return ConstantRange(DstTySize
, /*isFullSet=*/true);
658 APInt
LowerDiv(Lower
), UpperDiv(Upper
);
659 ConstantRange
Union(DstTySize
, /*isFullSet=*/false);
661 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
662 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
663 // then we do the union with [MaxValue, Upper)
664 if (isWrappedSet()) {
665 // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
667 if (Upper
.getActiveBits() > DstTySize
||
668 Upper
.countTrailingOnes() == DstTySize
)
669 return ConstantRange(DstTySize
, /*isFullSet=*/true);
671 Union
= ConstantRange(APInt::getMaxValue(DstTySize
),Upper
.trunc(DstTySize
));
672 UpperDiv
.setAllBits();
674 // Union covers the MaxValue case, so return if the remaining range is just
676 if (LowerDiv
== UpperDiv
)
680 // Chop off the most significant bits that are past the destination bitwidth.
681 if (LowerDiv
.getActiveBits() > DstTySize
) {
682 // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
683 APInt Adjust
= LowerDiv
& APInt::getBitsSetFrom(getBitWidth(), DstTySize
);
688 unsigned UpperDivWidth
= UpperDiv
.getActiveBits();
689 if (UpperDivWidth
<= DstTySize
)
690 return ConstantRange(LowerDiv
.trunc(DstTySize
),
691 UpperDiv
.trunc(DstTySize
)).unionWith(Union
);
693 // The truncated value wraps around. Check if we can do better than fullset.
694 if (UpperDivWidth
== DstTySize
+ 1) {
695 // Clear the MSB so that UpperDiv wraps around.
696 UpperDiv
.clearBit(DstTySize
);
697 if (UpperDiv
.ult(LowerDiv
))
698 return ConstantRange(LowerDiv
.trunc(DstTySize
),
699 UpperDiv
.trunc(DstTySize
)).unionWith(Union
);
702 return ConstantRange(DstTySize
, /*isFullSet=*/true);
705 ConstantRange
ConstantRange::zextOrTrunc(uint32_t DstTySize
) const {
706 unsigned SrcTySize
= getBitWidth();
707 if (SrcTySize
> DstTySize
)
708 return truncate(DstTySize
);
709 if (SrcTySize
< DstTySize
)
710 return zeroExtend(DstTySize
);
714 ConstantRange
ConstantRange::sextOrTrunc(uint32_t DstTySize
) const {
715 unsigned SrcTySize
= getBitWidth();
716 if (SrcTySize
> DstTySize
)
717 return truncate(DstTySize
);
718 if (SrcTySize
< DstTySize
)
719 return signExtend(DstTySize
);
723 ConstantRange
ConstantRange::binaryOp(Instruction::BinaryOps BinOp
,
724 const ConstantRange
&Other
) const {
725 assert(Instruction::isBinaryOp(BinOp
) && "Binary operators only!");
728 case Instruction::Add
:
730 case Instruction::Sub
:
732 case Instruction::Mul
:
733 return multiply(Other
);
734 case Instruction::UDiv
:
736 case Instruction::Shl
:
738 case Instruction::LShr
:
740 case Instruction::AShr
:
742 case Instruction::And
:
743 return binaryAnd(Other
);
744 case Instruction::Or
:
745 return binaryOr(Other
);
746 // Note: floating point operations applied to abstract ranges are just
747 // ideal integer operations with a lossy representation
748 case Instruction::FAdd
:
750 case Instruction::FSub
:
752 case Instruction::FMul
:
753 return multiply(Other
);
755 // Conservatively return full set.
756 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
761 ConstantRange::add(const ConstantRange
&Other
) const {
762 if (isEmptySet() || Other
.isEmptySet())
763 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
764 if (isFullSet() || Other
.isFullSet())
765 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
767 APInt NewLower
= getLower() + Other
.getLower();
768 APInt NewUpper
= getUpper() + Other
.getUpper() - 1;
769 if (NewLower
== NewUpper
)
770 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
772 ConstantRange X
= ConstantRange(std::move(NewLower
), std::move(NewUpper
));
773 if (X
.isSizeStrictlySmallerThan(*this) ||
774 X
.isSizeStrictlySmallerThan(Other
))
775 // We've wrapped, therefore, full set.
776 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
780 ConstantRange
ConstantRange::addWithNoSignedWrap(const APInt
&Other
) const {
781 // Calculate the subset of this range such that "X + Other" is
782 // guaranteed not to wrap (overflow) for all X in this subset.
783 // makeGuaranteedNoWrapRegion will produce an exact NSW range since we are
784 // passing a single element range.
785 auto NSWRange
= ConstantRange::makeGuaranteedNoWrapRegion(BinaryOperator::Add
,
786 ConstantRange(Other
),
787 OverflowingBinaryOperator::NoSignedWrap
);
788 auto NSWConstrainedRange
= intersectWith(NSWRange
);
790 return NSWConstrainedRange
.add(ConstantRange(Other
));
794 ConstantRange::sub(const ConstantRange
&Other
) const {
795 if (isEmptySet() || Other
.isEmptySet())
796 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
797 if (isFullSet() || Other
.isFullSet())
798 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
800 APInt NewLower
= getLower() - Other
.getUpper() + 1;
801 APInt NewUpper
= getUpper() - Other
.getLower();
802 if (NewLower
== NewUpper
)
803 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
805 ConstantRange X
= ConstantRange(std::move(NewLower
), std::move(NewUpper
));
806 if (X
.isSizeStrictlySmallerThan(*this) ||
807 X
.isSizeStrictlySmallerThan(Other
))
808 // We've wrapped, therefore, full set.
809 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
814 ConstantRange::multiply(const ConstantRange
&Other
) const {
815 // TODO: If either operand is a single element and the multiply is known to
816 // be non-wrapping, round the result min and max value to the appropriate
817 // multiple of that element. If wrapping is possible, at least adjust the
818 // range according to the greatest power-of-two factor of the single element.
820 if (isEmptySet() || Other
.isEmptySet())
821 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
823 // Multiplication is signedness-independent. However different ranges can be
824 // obtained depending on how the input ranges are treated. These different
825 // ranges are all conservatively correct, but one might be better than the
826 // other. We calculate two ranges; one treating the inputs as unsigned
827 // and the other signed, then return the smallest of these ranges.
829 // Unsigned range first.
830 APInt this_min
= getUnsignedMin().zext(getBitWidth() * 2);
831 APInt this_max
= getUnsignedMax().zext(getBitWidth() * 2);
832 APInt Other_min
= Other
.getUnsignedMin().zext(getBitWidth() * 2);
833 APInt Other_max
= Other
.getUnsignedMax().zext(getBitWidth() * 2);
835 ConstantRange Result_zext
= ConstantRange(this_min
* Other_min
,
836 this_max
* Other_max
+ 1);
837 ConstantRange UR
= Result_zext
.truncate(getBitWidth());
839 // If the unsigned range doesn't wrap, and isn't negative then it's a range
840 // from one positive number to another which is as good as we can generate.
841 // In this case, skip the extra work of generating signed ranges which aren't
842 // going to be better than this range.
843 if (!UR
.isWrappedSet() &&
844 (UR
.getUpper().isNonNegative() || UR
.getUpper().isMinSignedValue()))
847 // Now the signed range. Because we could be dealing with negative numbers
848 // here, the lower bound is the smallest of the cartesian product of the
849 // lower and upper ranges; for example:
850 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
851 // Similarly for the upper bound, swapping min for max.
853 this_min
= getSignedMin().sext(getBitWidth() * 2);
854 this_max
= getSignedMax().sext(getBitWidth() * 2);
855 Other_min
= Other
.getSignedMin().sext(getBitWidth() * 2);
856 Other_max
= Other
.getSignedMax().sext(getBitWidth() * 2);
858 auto L
= {this_min
* Other_min
, this_min
* Other_max
,
859 this_max
* Other_min
, this_max
* Other_max
};
860 auto Compare
= [](const APInt
&A
, const APInt
&B
) { return A
.slt(B
); };
861 ConstantRange
Result_sext(std::min(L
, Compare
), std::max(L
, Compare
) + 1);
862 ConstantRange SR
= Result_sext
.truncate(getBitWidth());
864 return UR
.isSizeStrictlySmallerThan(SR
) ? UR
: SR
;
868 ConstantRange::smax(const ConstantRange
&Other
) const {
869 // X smax Y is: range(smax(X_smin, Y_smin),
870 // smax(X_smax, Y_smax))
871 if (isEmptySet() || Other
.isEmptySet())
872 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
873 APInt NewL
= APIntOps::smax(getSignedMin(), Other
.getSignedMin());
874 APInt NewU
= APIntOps::smax(getSignedMax(), Other
.getSignedMax()) + 1;
876 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
877 return ConstantRange(std::move(NewL
), std::move(NewU
));
881 ConstantRange::umax(const ConstantRange
&Other
) const {
882 // X umax Y is: range(umax(X_umin, Y_umin),
883 // umax(X_umax, Y_umax))
884 if (isEmptySet() || Other
.isEmptySet())
885 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
886 APInt NewL
= APIntOps::umax(getUnsignedMin(), Other
.getUnsignedMin());
887 APInt NewU
= APIntOps::umax(getUnsignedMax(), Other
.getUnsignedMax()) + 1;
889 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
890 return ConstantRange(std::move(NewL
), std::move(NewU
));
894 ConstantRange::smin(const ConstantRange
&Other
) const {
895 // X smin Y is: range(smin(X_smin, Y_smin),
896 // smin(X_smax, Y_smax))
897 if (isEmptySet() || Other
.isEmptySet())
898 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
899 APInt NewL
= APIntOps::smin(getSignedMin(), Other
.getSignedMin());
900 APInt NewU
= APIntOps::smin(getSignedMax(), Other
.getSignedMax()) + 1;
902 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
903 return ConstantRange(std::move(NewL
), std::move(NewU
));
907 ConstantRange::umin(const ConstantRange
&Other
) const {
908 // X umin Y is: range(umin(X_umin, Y_umin),
909 // umin(X_umax, Y_umax))
910 if (isEmptySet() || Other
.isEmptySet())
911 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
912 APInt NewL
= APIntOps::umin(getUnsignedMin(), Other
.getUnsignedMin());
913 APInt NewU
= APIntOps::umin(getUnsignedMax(), Other
.getUnsignedMax()) + 1;
915 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
916 return ConstantRange(std::move(NewL
), std::move(NewU
));
920 ConstantRange::udiv(const ConstantRange
&RHS
) const {
921 if (isEmptySet() || RHS
.isEmptySet() || RHS
.getUnsignedMax().isNullValue())
922 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
924 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
926 APInt Lower
= getUnsignedMin().udiv(RHS
.getUnsignedMax());
928 APInt RHS_umin
= RHS
.getUnsignedMin();
929 if (RHS_umin
.isNullValue()) {
930 // We want the lowest value in RHS excluding zero. Usually that would be 1
931 // except for a range in the form of [X, 1) in which case it would be X.
932 if (RHS
.getUpper() == 1)
933 RHS_umin
= RHS
.getLower();
938 APInt Upper
= getUnsignedMax().udiv(RHS_umin
) + 1;
940 // If the LHS is Full and the RHS is a wrapped interval containing 1 then
943 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
945 return ConstantRange(std::move(Lower
), std::move(Upper
));
949 ConstantRange::binaryAnd(const ConstantRange
&Other
) const {
950 if (isEmptySet() || Other
.isEmptySet())
951 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
953 // TODO: replace this with something less conservative
955 APInt umin
= APIntOps::umin(Other
.getUnsignedMax(), getUnsignedMax());
956 if (umin
.isAllOnesValue())
957 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
958 return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(umin
) + 1);
962 ConstantRange::binaryOr(const ConstantRange
&Other
) const {
963 if (isEmptySet() || Other
.isEmptySet())
964 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
966 // TODO: replace this with something less conservative
968 APInt umax
= APIntOps::umax(getUnsignedMin(), Other
.getUnsignedMin());
969 if (umax
.isNullValue())
970 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
971 return ConstantRange(std::move(umax
), APInt::getNullValue(getBitWidth()));
975 ConstantRange::shl(const ConstantRange
&Other
) const {
976 if (isEmptySet() || Other
.isEmptySet())
977 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
979 APInt max
= getUnsignedMax();
980 APInt Other_umax
= Other
.getUnsignedMax();
983 if (Other_umax
.uge(max
.countLeadingZeros()))
984 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
986 // FIXME: implement the other tricky cases
988 APInt min
= getUnsignedMin();
989 min
<<= Other
.getUnsignedMin();
992 return ConstantRange(std::move(min
), std::move(max
) + 1);
996 ConstantRange::lshr(const ConstantRange
&Other
) const {
997 if (isEmptySet() || Other
.isEmptySet())
998 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
1000 APInt max
= getUnsignedMax().lshr(Other
.getUnsignedMin()) + 1;
1001 APInt min
= getUnsignedMin().lshr(Other
.getUnsignedMax());
1003 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
1005 return ConstantRange(std::move(min
), std::move(max
));
1009 ConstantRange::ashr(const ConstantRange
&Other
) const {
1010 if (isEmptySet() || Other
.isEmptySet())
1011 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
1013 // May straddle zero, so handle both positive and negative cases.
1014 // 'PosMax' is the upper bound of the result of the ashr
1015 // operation, when Upper of the LHS of ashr is a non-negative.
1016 // number. Since ashr of a non-negative number will result in a
1017 // smaller number, the Upper value of LHS is shifted right with
1018 // the minimum value of 'Other' instead of the maximum value.
1019 APInt PosMax
= getSignedMax().ashr(Other
.getUnsignedMin()) + 1;
1021 // 'PosMin' is the lower bound of the result of the ashr
1022 // operation, when Lower of the LHS is a non-negative number.
1023 // Since ashr of a non-negative number will result in a smaller
1024 // number, the Lower value of LHS is shifted right with the
1025 // maximum value of 'Other'.
1026 APInt PosMin
= getSignedMin().ashr(Other
.getUnsignedMax());
1028 // 'NegMax' is the upper bound of the result of the ashr
1029 // operation, when Upper of the LHS of ashr is a negative number.
1030 // Since 'ashr' of a negative number will result in a bigger
1031 // number, the Upper value of LHS is shifted right with the
1032 // maximum value of 'Other'.
1033 APInt NegMax
= getSignedMax().ashr(Other
.getUnsignedMax()) + 1;
1035 // 'NegMin' is the lower bound of the result of the ashr
1036 // operation, when Lower of the LHS of ashr is a negative number.
1037 // Since 'ashr' of a negative number will result in a bigger
1038 // number, the Lower value of LHS is shifted right with the
1039 // minimum value of 'Other'.
1040 APInt NegMin
= getSignedMin().ashr(Other
.getUnsignedMin());
1043 if (getSignedMin().isNonNegative()) {
1044 // Upper and Lower of LHS are non-negative.
1047 } else if (getSignedMax().isNegative()) {
1048 // Upper and Lower of LHS are negative.
1052 // Upper is non-negative and Lower is negative.
1057 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
1059 return ConstantRange(std::move(min
), std::move(max
));
1062 ConstantRange
ConstantRange::inverse() const {
1064 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
1066 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
1067 return ConstantRange(Upper
, Lower
);
1070 void ConstantRange::print(raw_ostream
&OS
) const {
1073 else if (isEmptySet())
1076 OS
<< "[" << Lower
<< "," << Upper
<< ")";
1079 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1080 LLVM_DUMP_METHOD
void ConstantRange::dump() const {
1085 ConstantRange
llvm::getConstantRangeFromMetadata(const MDNode
&Ranges
) {
1086 const unsigned NumRanges
= Ranges
.getNumOperands() / 2;
1087 assert(NumRanges
>= 1 && "Must have at least one range!");
1088 assert(Ranges
.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1090 auto *FirstLow
= mdconst::extract
<ConstantInt
>(Ranges
.getOperand(0));
1091 auto *FirstHigh
= mdconst::extract
<ConstantInt
>(Ranges
.getOperand(1));
1093 ConstantRange
CR(FirstLow
->getValue(), FirstHigh
->getValue());
1095 for (unsigned i
= 1; i
< NumRanges
; ++i
) {
1096 auto *Low
= mdconst::extract
<ConstantInt
>(Ranges
.getOperand(2 * i
+ 0));
1097 auto *High
= mdconst::extract
<ConstantInt
>(Ranges
.getOperand(2 * i
+ 1));
1099 // Note: unionWith will potentially create a range that contains values not
1100 // contained in any of the original N ranges.
1101 CR
= CR
.unionWith(ConstantRange(Low
->getValue(), High
->getValue()));