1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Constant* classes.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/GetElementPtrTypeIterator.h"
22 #include "llvm/IR/GlobalValue.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
35 //===----------------------------------------------------------------------===//
37 //===----------------------------------------------------------------------===//
39 bool Constant::isNegativeZeroValue() const {
40 // Floating point values have an explicit -0.0 value.
41 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
42 return CFP
->isZero() && CFP
->isNegative();
44 // Equivalent for a vector of -0.0's.
45 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this))
46 if (CV
->getElementType()->isFloatingPointTy() && CV
->isSplat())
47 if (CV
->getElementAsAPFloat(0).isNegZero())
50 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
51 if (ConstantFP
*SplatCFP
= dyn_cast_or_null
<ConstantFP
>(CV
->getSplatValue()))
52 if (SplatCFP
&& SplatCFP
->isZero() && SplatCFP
->isNegative())
55 // We've already handled true FP case; any other FP vectors can't represent -0.0.
56 if (getType()->isFPOrFPVectorTy())
59 // Otherwise, just use +0.0.
63 // Return true iff this constant is positive zero (floating point), negative
64 // zero (floating point), or a null value.
65 bool Constant::isZeroValue() const {
66 // Floating point values have an explicit -0.0 value.
67 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
70 // Equivalent for a vector of -0.0's.
71 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this))
72 if (CV
->getElementType()->isFloatingPointTy() && CV
->isSplat())
73 if (CV
->getElementAsAPFloat(0).isZero())
76 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
77 if (ConstantFP
*SplatCFP
= dyn_cast_or_null
<ConstantFP
>(CV
->getSplatValue()))
78 if (SplatCFP
&& SplatCFP
->isZero())
81 // Otherwise, just use +0.0.
85 bool Constant::isNullValue() const {
87 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(this))
91 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
92 return CFP
->isZero() && !CFP
->isNegative();
94 // constant zero is zero for aggregates, cpnull is null for pointers, none for
96 return isa
<ConstantAggregateZero
>(this) || isa
<ConstantPointerNull
>(this) ||
97 isa
<ConstantTokenNone
>(this);
100 bool Constant::isAllOnesValue() const {
101 // Check for -1 integers
102 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(this))
103 return CI
->isMinusOne();
105 // Check for FP which are bitcasted from -1 integers
106 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
107 return CFP
->getValueAPF().bitcastToAPInt().isAllOnesValue();
109 // Check for constant vectors which are splats of -1 values.
110 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
111 if (Constant
*Splat
= CV
->getSplatValue())
112 return Splat
->isAllOnesValue();
114 // Check for constant vectors which are splats of -1 values.
115 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this)) {
117 if (CV
->getElementType()->isFloatingPointTy())
118 return CV
->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue();
119 return CV
->getElementAsAPInt(0).isAllOnesValue();
126 bool Constant::isOneValue() const {
127 // Check for 1 integers
128 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(this))
131 // Check for FP which are bitcasted from 1 integers
132 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
133 return CFP
->getValueAPF().bitcastToAPInt().isOneValue();
135 // Check for constant vectors which are splats of 1 values.
136 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
137 if (Constant
*Splat
= CV
->getSplatValue())
138 return Splat
->isOneValue();
140 // Check for constant vectors which are splats of 1 values.
141 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this)) {
143 if (CV
->getElementType()->isFloatingPointTy())
144 return CV
->getElementAsAPFloat(0).bitcastToAPInt().isOneValue();
145 return CV
->getElementAsAPInt(0).isOneValue();
152 bool Constant::isMinSignedValue() const {
153 // Check for INT_MIN integers
154 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(this))
155 return CI
->isMinValue(/*isSigned=*/true);
157 // Check for FP which are bitcasted from INT_MIN integers
158 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
159 return CFP
->getValueAPF().bitcastToAPInt().isMinSignedValue();
161 // Check for constant vectors which are splats of INT_MIN values.
162 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
163 if (Constant
*Splat
= CV
->getSplatValue())
164 return Splat
->isMinSignedValue();
166 // Check for constant vectors which are splats of INT_MIN values.
167 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this)) {
169 if (CV
->getElementType()->isFloatingPointTy())
170 return CV
->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue();
171 return CV
->getElementAsAPInt(0).isMinSignedValue();
178 bool Constant::isNotMinSignedValue() const {
179 // Check for INT_MIN integers
180 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(this))
181 return !CI
->isMinValue(/*isSigned=*/true);
183 // Check for FP which are bitcasted from INT_MIN integers
184 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
185 return !CFP
->getValueAPF().bitcastToAPInt().isMinSignedValue();
187 // Check for constant vectors which are splats of INT_MIN values.
188 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
189 if (Constant
*Splat
= CV
->getSplatValue())
190 return Splat
->isNotMinSignedValue();
192 // Check for constant vectors which are splats of INT_MIN values.
193 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this)) {
195 if (CV
->getElementType()->isFloatingPointTy())
196 return !CV
->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue();
197 return !CV
->getElementAsAPInt(0).isMinSignedValue();
201 // It *may* contain INT_MIN, we can't tell.
205 bool Constant::isFiniteNonZeroFP() const {
206 if (auto *CFP
= dyn_cast
<ConstantFP
>(this))
207 return CFP
->getValueAPF().isFiniteNonZero();
208 if (!getType()->isVectorTy())
210 for (unsigned i
= 0, e
= getType()->getVectorNumElements(); i
!= e
; ++i
) {
211 auto *CFP
= dyn_cast_or_null
<ConstantFP
>(this->getAggregateElement(i
));
212 if (!CFP
|| !CFP
->getValueAPF().isFiniteNonZero())
218 bool Constant::isNormalFP() const {
219 if (auto *CFP
= dyn_cast
<ConstantFP
>(this))
220 return CFP
->getValueAPF().isNormal();
221 if (!getType()->isVectorTy())
223 for (unsigned i
= 0, e
= getType()->getVectorNumElements(); i
!= e
; ++i
) {
224 auto *CFP
= dyn_cast_or_null
<ConstantFP
>(this->getAggregateElement(i
));
225 if (!CFP
|| !CFP
->getValueAPF().isNormal())
231 bool Constant::hasExactInverseFP() const {
232 if (auto *CFP
= dyn_cast
<ConstantFP
>(this))
233 return CFP
->getValueAPF().getExactInverse(nullptr);
234 if (!getType()->isVectorTy())
236 for (unsigned i
= 0, e
= getType()->getVectorNumElements(); i
!= e
; ++i
) {
237 auto *CFP
= dyn_cast_or_null
<ConstantFP
>(this->getAggregateElement(i
));
238 if (!CFP
|| !CFP
->getValueAPF().getExactInverse(nullptr))
244 bool Constant::isNaN() const {
245 if (auto *CFP
= dyn_cast
<ConstantFP
>(this))
247 if (!getType()->isVectorTy())
249 for (unsigned i
= 0, e
= getType()->getVectorNumElements(); i
!= e
; ++i
) {
250 auto *CFP
= dyn_cast_or_null
<ConstantFP
>(this->getAggregateElement(i
));
251 if (!CFP
|| !CFP
->isNaN())
257 bool Constant::containsUndefElement() const {
258 if (!getType()->isVectorTy())
260 for (unsigned i
= 0, e
= getType()->getVectorNumElements(); i
!= e
; ++i
)
261 if (isa
<UndefValue
>(getAggregateElement(i
)))
267 /// Constructor to create a '0' constant of arbitrary type.
268 Constant
*Constant::getNullValue(Type
*Ty
) {
269 switch (Ty
->getTypeID()) {
270 case Type::IntegerTyID
:
271 return ConstantInt::get(Ty
, 0);
273 return ConstantFP::get(Ty
->getContext(),
274 APFloat::getZero(APFloat::IEEEhalf()));
275 case Type::FloatTyID
:
276 return ConstantFP::get(Ty
->getContext(),
277 APFloat::getZero(APFloat::IEEEsingle()));
278 case Type::DoubleTyID
:
279 return ConstantFP::get(Ty
->getContext(),
280 APFloat::getZero(APFloat::IEEEdouble()));
281 case Type::X86_FP80TyID
:
282 return ConstantFP::get(Ty
->getContext(),
283 APFloat::getZero(APFloat::x87DoubleExtended()));
284 case Type::FP128TyID
:
285 return ConstantFP::get(Ty
->getContext(),
286 APFloat::getZero(APFloat::IEEEquad()));
287 case Type::PPC_FP128TyID
:
288 return ConstantFP::get(Ty
->getContext(),
289 APFloat(APFloat::PPCDoubleDouble(),
290 APInt::getNullValue(128)));
291 case Type::PointerTyID
:
292 return ConstantPointerNull::get(cast
<PointerType
>(Ty
));
293 case Type::StructTyID
:
294 case Type::ArrayTyID
:
295 case Type::VectorTyID
:
296 return ConstantAggregateZero::get(Ty
);
297 case Type::TokenTyID
:
298 return ConstantTokenNone::get(Ty
->getContext());
300 // Function, Label, or Opaque type?
301 llvm_unreachable("Cannot create a null constant of that type!");
305 Constant
*Constant::getIntegerValue(Type
*Ty
, const APInt
&V
) {
306 Type
*ScalarTy
= Ty
->getScalarType();
308 // Create the base integer constant.
309 Constant
*C
= ConstantInt::get(Ty
->getContext(), V
);
311 // Convert an integer to a pointer, if necessary.
312 if (PointerType
*PTy
= dyn_cast
<PointerType
>(ScalarTy
))
313 C
= ConstantExpr::getIntToPtr(C
, PTy
);
315 // Broadcast a scalar to a vector, if necessary.
316 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
317 C
= ConstantVector::getSplat(VTy
->getNumElements(), C
);
322 Constant
*Constant::getAllOnesValue(Type
*Ty
) {
323 if (IntegerType
*ITy
= dyn_cast
<IntegerType
>(Ty
))
324 return ConstantInt::get(Ty
->getContext(),
325 APInt::getAllOnesValue(ITy
->getBitWidth()));
327 if (Ty
->isFloatingPointTy()) {
328 APFloat FL
= APFloat::getAllOnesValue(Ty
->getPrimitiveSizeInBits(),
329 !Ty
->isPPC_FP128Ty());
330 return ConstantFP::get(Ty
->getContext(), FL
);
333 VectorType
*VTy
= cast
<VectorType
>(Ty
);
334 return ConstantVector::getSplat(VTy
->getNumElements(),
335 getAllOnesValue(VTy
->getElementType()));
338 Constant
*Constant::getAggregateElement(unsigned Elt
) const {
339 if (const ConstantAggregate
*CC
= dyn_cast
<ConstantAggregate
>(this))
340 return Elt
< CC
->getNumOperands() ? CC
->getOperand(Elt
) : nullptr;
342 if (const ConstantAggregateZero
*CAZ
= dyn_cast
<ConstantAggregateZero
>(this))
343 return Elt
< CAZ
->getNumElements() ? CAZ
->getElementValue(Elt
) : nullptr;
345 if (const UndefValue
*UV
= dyn_cast
<UndefValue
>(this))
346 return Elt
< UV
->getNumElements() ? UV
->getElementValue(Elt
) : nullptr;
348 if (const ConstantDataSequential
*CDS
=dyn_cast
<ConstantDataSequential
>(this))
349 return Elt
< CDS
->getNumElements() ? CDS
->getElementAsConstant(Elt
)
354 Constant
*Constant::getAggregateElement(Constant
*Elt
) const {
355 assert(isa
<IntegerType
>(Elt
->getType()) && "Index must be an integer");
356 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Elt
))
357 return getAggregateElement(CI
->getZExtValue());
361 void Constant::destroyConstant() {
362 /// First call destroyConstantImpl on the subclass. This gives the subclass
363 /// a chance to remove the constant from any maps/pools it's contained in.
364 switch (getValueID()) {
366 llvm_unreachable("Not a constant!");
367 #define HANDLE_CONSTANT(Name) \
368 case Value::Name##Val: \
369 cast<Name>(this)->destroyConstantImpl(); \
371 #include "llvm/IR/Value.def"
374 // When a Constant is destroyed, there may be lingering
375 // references to the constant by other constants in the constant pool. These
376 // constants are implicitly dependent on the module that is being deleted,
377 // but they don't know that. Because we only find out when the CPV is
378 // deleted, we must now notify all of our users (that should only be
379 // Constants) that they are, in fact, invalid now and should be deleted.
381 while (!use_empty()) {
382 Value
*V
= user_back();
383 #ifndef NDEBUG // Only in -g mode...
384 if (!isa
<Constant
>(V
)) {
385 dbgs() << "While deleting: " << *this
386 << "\n\nUse still stuck around after Def is destroyed: " << *V
390 assert(isa
<Constant
>(V
) && "References remain to Constant being destroyed");
391 cast
<Constant
>(V
)->destroyConstant();
393 // The constant should remove itself from our use list...
394 assert((use_empty() || user_back() != V
) && "Constant not removed!");
397 // Value has no outstanding references it is safe to delete it now...
401 static bool canTrapImpl(const Constant
*C
,
402 SmallPtrSetImpl
<const ConstantExpr
*> &NonTrappingOps
) {
403 assert(C
->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
404 // The only thing that could possibly trap are constant exprs.
405 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
);
409 // ConstantExpr traps if any operands can trap.
410 for (unsigned i
= 0, e
= C
->getNumOperands(); i
!= e
; ++i
) {
411 if (ConstantExpr
*Op
= dyn_cast
<ConstantExpr
>(CE
->getOperand(i
))) {
412 if (NonTrappingOps
.insert(Op
).second
&& canTrapImpl(Op
, NonTrappingOps
))
417 // Otherwise, only specific operations can trap.
418 switch (CE
->getOpcode()) {
421 case Instruction::UDiv
:
422 case Instruction::SDiv
:
423 case Instruction::URem
:
424 case Instruction::SRem
:
425 // Div and rem can trap if the RHS is not known to be non-zero.
426 if (!isa
<ConstantInt
>(CE
->getOperand(1)) ||CE
->getOperand(1)->isNullValue())
432 bool Constant::canTrap() const {
433 SmallPtrSet
<const ConstantExpr
*, 4> NonTrappingOps
;
434 return canTrapImpl(this, NonTrappingOps
);
437 /// Check if C contains a GlobalValue for which Predicate is true.
439 ConstHasGlobalValuePredicate(const Constant
*C
,
440 bool (*Predicate
)(const GlobalValue
*)) {
441 SmallPtrSet
<const Constant
*, 8> Visited
;
442 SmallVector
<const Constant
*, 8> WorkList
;
443 WorkList
.push_back(C
);
446 while (!WorkList
.empty()) {
447 const Constant
*WorkItem
= WorkList
.pop_back_val();
448 if (const auto *GV
= dyn_cast
<GlobalValue
>(WorkItem
))
451 for (const Value
*Op
: WorkItem
->operands()) {
452 const Constant
*ConstOp
= dyn_cast
<Constant
>(Op
);
455 if (Visited
.insert(ConstOp
).second
)
456 WorkList
.push_back(ConstOp
);
462 bool Constant::isThreadDependent() const {
463 auto DLLImportPredicate
= [](const GlobalValue
*GV
) {
464 return GV
->isThreadLocal();
466 return ConstHasGlobalValuePredicate(this, DLLImportPredicate
);
469 bool Constant::isDLLImportDependent() const {
470 auto DLLImportPredicate
= [](const GlobalValue
*GV
) {
471 return GV
->hasDLLImportStorageClass();
473 return ConstHasGlobalValuePredicate(this, DLLImportPredicate
);
476 bool Constant::isConstantUsed() const {
477 for (const User
*U
: users()) {
478 const Constant
*UC
= dyn_cast
<Constant
>(U
);
479 if (!UC
|| isa
<GlobalValue
>(UC
))
482 if (UC
->isConstantUsed())
488 bool Constant::needsRelocation() const {
489 if (isa
<GlobalValue
>(this))
490 return true; // Global reference.
492 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(this))
493 return BA
->getFunction()->needsRelocation();
495 // While raw uses of blockaddress need to be relocated, differences between
496 // two of them don't when they are for labels in the same function. This is a
497 // common idiom when creating a table for the indirect goto extension, so we
498 // handle it efficiently here.
499 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(this))
500 if (CE
->getOpcode() == Instruction::Sub
) {
501 ConstantExpr
*LHS
= dyn_cast
<ConstantExpr
>(CE
->getOperand(0));
502 ConstantExpr
*RHS
= dyn_cast
<ConstantExpr
>(CE
->getOperand(1));
503 if (LHS
&& RHS
&& LHS
->getOpcode() == Instruction::PtrToInt
&&
504 RHS
->getOpcode() == Instruction::PtrToInt
&&
505 isa
<BlockAddress
>(LHS
->getOperand(0)) &&
506 isa
<BlockAddress
>(RHS
->getOperand(0)) &&
507 cast
<BlockAddress
>(LHS
->getOperand(0))->getFunction() ==
508 cast
<BlockAddress
>(RHS
->getOperand(0))->getFunction())
513 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
514 Result
|= cast
<Constant
>(getOperand(i
))->needsRelocation();
519 /// If the specified constantexpr is dead, remove it. This involves recursively
520 /// eliminating any dead users of the constantexpr.
521 static bool removeDeadUsersOfConstant(const Constant
*C
) {
522 if (isa
<GlobalValue
>(C
)) return false; // Cannot remove this
524 while (!C
->use_empty()) {
525 const Constant
*User
= dyn_cast
<Constant
>(C
->user_back());
526 if (!User
) return false; // Non-constant usage;
527 if (!removeDeadUsersOfConstant(User
))
528 return false; // Constant wasn't dead
531 const_cast<Constant
*>(C
)->destroyConstant();
536 void Constant::removeDeadConstantUsers() const {
537 Value::const_user_iterator I
= user_begin(), E
= user_end();
538 Value::const_user_iterator LastNonDeadUser
= E
;
540 const Constant
*User
= dyn_cast
<Constant
>(*I
);
547 if (!removeDeadUsersOfConstant(User
)) {
548 // If the constant wasn't dead, remember that this was the last live use
549 // and move on to the next constant.
555 // If the constant was dead, then the iterator is invalidated.
556 if (LastNonDeadUser
== E
) {
568 //===----------------------------------------------------------------------===//
570 //===----------------------------------------------------------------------===//
572 ConstantInt::ConstantInt(IntegerType
*Ty
, const APInt
&V
)
573 : ConstantData(Ty
, ConstantIntVal
), Val(V
) {
574 assert(V
.getBitWidth() == Ty
->getBitWidth() && "Invalid constant for type");
577 ConstantInt
*ConstantInt::getTrue(LLVMContext
&Context
) {
578 LLVMContextImpl
*pImpl
= Context
.pImpl
;
579 if (!pImpl
->TheTrueVal
)
580 pImpl
->TheTrueVal
= ConstantInt::get(Type::getInt1Ty(Context
), 1);
581 return pImpl
->TheTrueVal
;
584 ConstantInt
*ConstantInt::getFalse(LLVMContext
&Context
) {
585 LLVMContextImpl
*pImpl
= Context
.pImpl
;
586 if (!pImpl
->TheFalseVal
)
587 pImpl
->TheFalseVal
= ConstantInt::get(Type::getInt1Ty(Context
), 0);
588 return pImpl
->TheFalseVal
;
591 Constant
*ConstantInt::getTrue(Type
*Ty
) {
592 assert(Ty
->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
593 ConstantInt
*TrueC
= ConstantInt::getTrue(Ty
->getContext());
594 if (auto *VTy
= dyn_cast
<VectorType
>(Ty
))
595 return ConstantVector::getSplat(VTy
->getNumElements(), TrueC
);
599 Constant
*ConstantInt::getFalse(Type
*Ty
) {
600 assert(Ty
->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
601 ConstantInt
*FalseC
= ConstantInt::getFalse(Ty
->getContext());
602 if (auto *VTy
= dyn_cast
<VectorType
>(Ty
))
603 return ConstantVector::getSplat(VTy
->getNumElements(), FalseC
);
607 // Get a ConstantInt from an APInt.
608 ConstantInt
*ConstantInt::get(LLVMContext
&Context
, const APInt
&V
) {
609 // get an existing value or the insertion position
610 LLVMContextImpl
*pImpl
= Context
.pImpl
;
611 std::unique_ptr
<ConstantInt
> &Slot
= pImpl
->IntConstants
[V
];
613 // Get the corresponding integer type for the bit width of the value.
614 IntegerType
*ITy
= IntegerType::get(Context
, V
.getBitWidth());
615 Slot
.reset(new ConstantInt(ITy
, V
));
617 assert(Slot
->getType() == IntegerType::get(Context
, V
.getBitWidth()));
621 Constant
*ConstantInt::get(Type
*Ty
, uint64_t V
, bool isSigned
) {
622 Constant
*C
= get(cast
<IntegerType
>(Ty
->getScalarType()), V
, isSigned
);
624 // For vectors, broadcast the value.
625 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
626 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
631 ConstantInt
*ConstantInt::get(IntegerType
*Ty
, uint64_t V
, bool isSigned
) {
632 return get(Ty
->getContext(), APInt(Ty
->getBitWidth(), V
, isSigned
));
635 ConstantInt
*ConstantInt::getSigned(IntegerType
*Ty
, int64_t V
) {
636 return get(Ty
, V
, true);
639 Constant
*ConstantInt::getSigned(Type
*Ty
, int64_t V
) {
640 return get(Ty
, V
, true);
643 Constant
*ConstantInt::get(Type
*Ty
, const APInt
& V
) {
644 ConstantInt
*C
= get(Ty
->getContext(), V
);
645 assert(C
->getType() == Ty
->getScalarType() &&
646 "ConstantInt type doesn't match the type implied by its value!");
648 // For vectors, broadcast the value.
649 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
650 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
655 ConstantInt
*ConstantInt::get(IntegerType
* Ty
, StringRef Str
, uint8_t radix
) {
656 return get(Ty
->getContext(), APInt(Ty
->getBitWidth(), Str
, radix
));
659 /// Remove the constant from the constant table.
660 void ConstantInt::destroyConstantImpl() {
661 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
664 //===----------------------------------------------------------------------===//
666 //===----------------------------------------------------------------------===//
668 static const fltSemantics
*TypeToFloatSemantics(Type
*Ty
) {
670 return &APFloat::IEEEhalf();
672 return &APFloat::IEEEsingle();
673 if (Ty
->isDoubleTy())
674 return &APFloat::IEEEdouble();
675 if (Ty
->isX86_FP80Ty())
676 return &APFloat::x87DoubleExtended();
677 else if (Ty
->isFP128Ty())
678 return &APFloat::IEEEquad();
680 assert(Ty
->isPPC_FP128Ty() && "Unknown FP format");
681 return &APFloat::PPCDoubleDouble();
684 Constant
*ConstantFP::get(Type
*Ty
, double V
) {
685 LLVMContext
&Context
= Ty
->getContext();
689 FV
.convert(*TypeToFloatSemantics(Ty
->getScalarType()),
690 APFloat::rmNearestTiesToEven
, &ignored
);
691 Constant
*C
= get(Context
, FV
);
693 // For vectors, broadcast the value.
694 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
695 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
700 Constant
*ConstantFP::get(Type
*Ty
, const APFloat
&V
) {
701 ConstantFP
*C
= get(Ty
->getContext(), V
);
702 assert(C
->getType() == Ty
->getScalarType() &&
703 "ConstantFP type doesn't match the type implied by its value!");
705 // For vectors, broadcast the value.
706 if (auto *VTy
= dyn_cast
<VectorType
>(Ty
))
707 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
712 Constant
*ConstantFP::get(Type
*Ty
, StringRef Str
) {
713 LLVMContext
&Context
= Ty
->getContext();
715 APFloat
FV(*TypeToFloatSemantics(Ty
->getScalarType()), Str
);
716 Constant
*C
= get(Context
, FV
);
718 // For vectors, broadcast the value.
719 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
720 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
725 Constant
*ConstantFP::getNaN(Type
*Ty
, bool Negative
, unsigned Type
) {
726 const fltSemantics
&Semantics
= *TypeToFloatSemantics(Ty
->getScalarType());
727 APFloat NaN
= APFloat::getNaN(Semantics
, Negative
, Type
);
728 Constant
*C
= get(Ty
->getContext(), NaN
);
730 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
731 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
736 Constant
*ConstantFP::getNegativeZero(Type
*Ty
) {
737 const fltSemantics
&Semantics
= *TypeToFloatSemantics(Ty
->getScalarType());
738 APFloat NegZero
= APFloat::getZero(Semantics
, /*Negative=*/true);
739 Constant
*C
= get(Ty
->getContext(), NegZero
);
741 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
742 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
748 Constant
*ConstantFP::getZeroValueForNegation(Type
*Ty
) {
749 if (Ty
->isFPOrFPVectorTy())
750 return getNegativeZero(Ty
);
752 return Constant::getNullValue(Ty
);
756 // ConstantFP accessors.
757 ConstantFP
* ConstantFP::get(LLVMContext
&Context
, const APFloat
& V
) {
758 LLVMContextImpl
* pImpl
= Context
.pImpl
;
760 std::unique_ptr
<ConstantFP
> &Slot
= pImpl
->FPConstants
[V
];
764 if (&V
.getSemantics() == &APFloat::IEEEhalf())
765 Ty
= Type::getHalfTy(Context
);
766 else if (&V
.getSemantics() == &APFloat::IEEEsingle())
767 Ty
= Type::getFloatTy(Context
);
768 else if (&V
.getSemantics() == &APFloat::IEEEdouble())
769 Ty
= Type::getDoubleTy(Context
);
770 else if (&V
.getSemantics() == &APFloat::x87DoubleExtended())
771 Ty
= Type::getX86_FP80Ty(Context
);
772 else if (&V
.getSemantics() == &APFloat::IEEEquad())
773 Ty
= Type::getFP128Ty(Context
);
775 assert(&V
.getSemantics() == &APFloat::PPCDoubleDouble() &&
776 "Unknown FP format");
777 Ty
= Type::getPPC_FP128Ty(Context
);
779 Slot
.reset(new ConstantFP(Ty
, V
));
785 Constant
*ConstantFP::getInfinity(Type
*Ty
, bool Negative
) {
786 const fltSemantics
&Semantics
= *TypeToFloatSemantics(Ty
->getScalarType());
787 Constant
*C
= get(Ty
->getContext(), APFloat::getInf(Semantics
, Negative
));
789 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
790 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
795 ConstantFP::ConstantFP(Type
*Ty
, const APFloat
&V
)
796 : ConstantData(Ty
, ConstantFPVal
), Val(V
) {
797 assert(&V
.getSemantics() == TypeToFloatSemantics(Ty
) &&
801 bool ConstantFP::isExactlyValue(const APFloat
&V
) const {
802 return Val
.bitwiseIsEqual(V
);
805 /// Remove the constant from the constant table.
806 void ConstantFP::destroyConstantImpl() {
807 llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
810 //===----------------------------------------------------------------------===//
811 // ConstantAggregateZero Implementation
812 //===----------------------------------------------------------------------===//
814 Constant
*ConstantAggregateZero::getSequentialElement() const {
815 return Constant::getNullValue(getType()->getSequentialElementType());
818 Constant
*ConstantAggregateZero::getStructElement(unsigned Elt
) const {
819 return Constant::getNullValue(getType()->getStructElementType(Elt
));
822 Constant
*ConstantAggregateZero::getElementValue(Constant
*C
) const {
823 if (isa
<SequentialType
>(getType()))
824 return getSequentialElement();
825 return getStructElement(cast
<ConstantInt
>(C
)->getZExtValue());
828 Constant
*ConstantAggregateZero::getElementValue(unsigned Idx
) const {
829 if (isa
<SequentialType
>(getType()))
830 return getSequentialElement();
831 return getStructElement(Idx
);
834 unsigned ConstantAggregateZero::getNumElements() const {
835 Type
*Ty
= getType();
836 if (auto *AT
= dyn_cast
<ArrayType
>(Ty
))
837 return AT
->getNumElements();
838 if (auto *VT
= dyn_cast
<VectorType
>(Ty
))
839 return VT
->getNumElements();
840 return Ty
->getStructNumElements();
843 //===----------------------------------------------------------------------===//
844 // UndefValue Implementation
845 //===----------------------------------------------------------------------===//
847 UndefValue
*UndefValue::getSequentialElement() const {
848 return UndefValue::get(getType()->getSequentialElementType());
851 UndefValue
*UndefValue::getStructElement(unsigned Elt
) const {
852 return UndefValue::get(getType()->getStructElementType(Elt
));
855 UndefValue
*UndefValue::getElementValue(Constant
*C
) const {
856 if (isa
<SequentialType
>(getType()))
857 return getSequentialElement();
858 return getStructElement(cast
<ConstantInt
>(C
)->getZExtValue());
861 UndefValue
*UndefValue::getElementValue(unsigned Idx
) const {
862 if (isa
<SequentialType
>(getType()))
863 return getSequentialElement();
864 return getStructElement(Idx
);
867 unsigned UndefValue::getNumElements() const {
868 Type
*Ty
= getType();
869 if (auto *ST
= dyn_cast
<SequentialType
>(Ty
))
870 return ST
->getNumElements();
871 return Ty
->getStructNumElements();
874 //===----------------------------------------------------------------------===//
875 // ConstantXXX Classes
876 //===----------------------------------------------------------------------===//
878 template <typename ItTy
, typename EltTy
>
879 static bool rangeOnlyContains(ItTy Start
, ItTy End
, EltTy Elt
) {
880 for (; Start
!= End
; ++Start
)
886 template <typename SequentialTy
, typename ElementTy
>
887 static Constant
*getIntSequenceIfElementsMatch(ArrayRef
<Constant
*> V
) {
888 assert(!V
.empty() && "Cannot get empty int sequence.");
890 SmallVector
<ElementTy
, 16> Elts
;
891 for (Constant
*C
: V
)
892 if (auto *CI
= dyn_cast
<ConstantInt
>(C
))
893 Elts
.push_back(CI
->getZExtValue());
896 return SequentialTy::get(V
[0]->getContext(), Elts
);
899 template <typename SequentialTy
, typename ElementTy
>
900 static Constant
*getFPSequenceIfElementsMatch(ArrayRef
<Constant
*> V
) {
901 assert(!V
.empty() && "Cannot get empty FP sequence.");
903 SmallVector
<ElementTy
, 16> Elts
;
904 for (Constant
*C
: V
)
905 if (auto *CFP
= dyn_cast
<ConstantFP
>(C
))
906 Elts
.push_back(CFP
->getValueAPF().bitcastToAPInt().getLimitedValue());
909 return SequentialTy::getFP(V
[0]->getContext(), Elts
);
912 template <typename SequenceTy
>
913 static Constant
*getSequenceIfElementsMatch(Constant
*C
,
914 ArrayRef
<Constant
*> V
) {
915 // We speculatively build the elements here even if it turns out that there is
916 // a constantexpr or something else weird, since it is so uncommon for that to
918 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
)) {
919 if (CI
->getType()->isIntegerTy(8))
920 return getIntSequenceIfElementsMatch
<SequenceTy
, uint8_t>(V
);
921 else if (CI
->getType()->isIntegerTy(16))
922 return getIntSequenceIfElementsMatch
<SequenceTy
, uint16_t>(V
);
923 else if (CI
->getType()->isIntegerTy(32))
924 return getIntSequenceIfElementsMatch
<SequenceTy
, uint32_t>(V
);
925 else if (CI
->getType()->isIntegerTy(64))
926 return getIntSequenceIfElementsMatch
<SequenceTy
, uint64_t>(V
);
927 } else if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
928 if (CFP
->getType()->isHalfTy())
929 return getFPSequenceIfElementsMatch
<SequenceTy
, uint16_t>(V
);
930 else if (CFP
->getType()->isFloatTy())
931 return getFPSequenceIfElementsMatch
<SequenceTy
, uint32_t>(V
);
932 else if (CFP
->getType()->isDoubleTy())
933 return getFPSequenceIfElementsMatch
<SequenceTy
, uint64_t>(V
);
939 ConstantAggregate::ConstantAggregate(CompositeType
*T
, ValueTy VT
,
940 ArrayRef
<Constant
*> V
)
941 : Constant(T
, VT
, OperandTraits
<ConstantAggregate
>::op_end(this) - V
.size(),
943 std::copy(V
.begin(), V
.end(), op_begin());
945 // Check that types match, unless this is an opaque struct.
946 if (auto *ST
= dyn_cast
<StructType
>(T
))
949 for (unsigned I
= 0, E
= V
.size(); I
!= E
; ++I
)
950 assert(V
[I
]->getType() == T
->getTypeAtIndex(I
) &&
951 "Initializer for composite element doesn't match!");
954 ConstantArray::ConstantArray(ArrayType
*T
, ArrayRef
<Constant
*> V
)
955 : ConstantAggregate(T
, ConstantArrayVal
, V
) {
956 assert(V
.size() == T
->getNumElements() &&
957 "Invalid initializer for constant array");
960 Constant
*ConstantArray::get(ArrayType
*Ty
, ArrayRef
<Constant
*> V
) {
961 if (Constant
*C
= getImpl(Ty
, V
))
963 return Ty
->getContext().pImpl
->ArrayConstants
.getOrCreate(Ty
, V
);
966 Constant
*ConstantArray::getImpl(ArrayType
*Ty
, ArrayRef
<Constant
*> V
) {
967 // Empty arrays are canonicalized to ConstantAggregateZero.
969 return ConstantAggregateZero::get(Ty
);
971 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
) {
972 assert(V
[i
]->getType() == Ty
->getElementType() &&
973 "Wrong type in array element initializer");
976 // If this is an all-zero array, return a ConstantAggregateZero object. If
977 // all undef, return an UndefValue, if "all simple", then return a
978 // ConstantDataArray.
980 if (isa
<UndefValue
>(C
) && rangeOnlyContains(V
.begin(), V
.end(), C
))
981 return UndefValue::get(Ty
);
983 if (C
->isNullValue() && rangeOnlyContains(V
.begin(), V
.end(), C
))
984 return ConstantAggregateZero::get(Ty
);
986 // Check to see if all of the elements are ConstantFP or ConstantInt and if
987 // the element type is compatible with ConstantDataVector. If so, use it.
988 if (ConstantDataSequential::isElementTypeCompatible(C
->getType()))
989 return getSequenceIfElementsMatch
<ConstantDataArray
>(C
, V
);
991 // Otherwise, we really do want to create a ConstantArray.
995 StructType
*ConstantStruct::getTypeForElements(LLVMContext
&Context
,
996 ArrayRef
<Constant
*> V
,
998 unsigned VecSize
= V
.size();
999 SmallVector
<Type
*, 16> EltTypes(VecSize
);
1000 for (unsigned i
= 0; i
!= VecSize
; ++i
)
1001 EltTypes
[i
] = V
[i
]->getType();
1003 return StructType::get(Context
, EltTypes
, Packed
);
1007 StructType
*ConstantStruct::getTypeForElements(ArrayRef
<Constant
*> V
,
1009 assert(!V
.empty() &&
1010 "ConstantStruct::getTypeForElements cannot be called on empty list");
1011 return getTypeForElements(V
[0]->getContext(), V
, Packed
);
1014 ConstantStruct::ConstantStruct(StructType
*T
, ArrayRef
<Constant
*> V
)
1015 : ConstantAggregate(T
, ConstantStructVal
, V
) {
1016 assert((T
->isOpaque() || V
.size() == T
->getNumElements()) &&
1017 "Invalid initializer for constant struct");
1020 // ConstantStruct accessors.
1021 Constant
*ConstantStruct::get(StructType
*ST
, ArrayRef
<Constant
*> V
) {
1022 assert((ST
->isOpaque() || ST
->getNumElements() == V
.size()) &&
1023 "Incorrect # elements specified to ConstantStruct::get");
1025 // Create a ConstantAggregateZero value if all elements are zeros.
1027 bool isUndef
= false;
1030 isUndef
= isa
<UndefValue
>(V
[0]);
1031 isZero
= V
[0]->isNullValue();
1032 if (isUndef
|| isZero
) {
1033 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
) {
1034 if (!V
[i
]->isNullValue())
1036 if (!isa
<UndefValue
>(V
[i
]))
1042 return ConstantAggregateZero::get(ST
);
1044 return UndefValue::get(ST
);
1046 return ST
->getContext().pImpl
->StructConstants
.getOrCreate(ST
, V
);
1049 ConstantVector::ConstantVector(VectorType
*T
, ArrayRef
<Constant
*> V
)
1050 : ConstantAggregate(T
, ConstantVectorVal
, V
) {
1051 assert(V
.size() == T
->getNumElements() &&
1052 "Invalid initializer for constant vector");
1055 // ConstantVector accessors.
1056 Constant
*ConstantVector::get(ArrayRef
<Constant
*> V
) {
1057 if (Constant
*C
= getImpl(V
))
1059 VectorType
*Ty
= VectorType::get(V
.front()->getType(), V
.size());
1060 return Ty
->getContext().pImpl
->VectorConstants
.getOrCreate(Ty
, V
);
1063 Constant
*ConstantVector::getImpl(ArrayRef
<Constant
*> V
) {
1064 assert(!V
.empty() && "Vectors can't be empty");
1065 VectorType
*T
= VectorType::get(V
.front()->getType(), V
.size());
1067 // If this is an all-undef or all-zero vector, return a
1068 // ConstantAggregateZero or UndefValue.
1070 bool isZero
= C
->isNullValue();
1071 bool isUndef
= isa
<UndefValue
>(C
);
1073 if (isZero
|| isUndef
) {
1074 for (unsigned i
= 1, e
= V
.size(); i
!= e
; ++i
)
1076 isZero
= isUndef
= false;
1082 return ConstantAggregateZero::get(T
);
1084 return UndefValue::get(T
);
1086 // Check to see if all of the elements are ConstantFP or ConstantInt and if
1087 // the element type is compatible with ConstantDataVector. If so, use it.
1088 if (ConstantDataSequential::isElementTypeCompatible(C
->getType()))
1089 return getSequenceIfElementsMatch
<ConstantDataVector
>(C
, V
);
1091 // Otherwise, the element type isn't compatible with ConstantDataVector, or
1092 // the operand list contains a ConstantExpr or something else strange.
1096 Constant
*ConstantVector::getSplat(unsigned NumElts
, Constant
*V
) {
1097 // If this splat is compatible with ConstantDataVector, use it instead of
1099 if ((isa
<ConstantFP
>(V
) || isa
<ConstantInt
>(V
)) &&
1100 ConstantDataSequential::isElementTypeCompatible(V
->getType()))
1101 return ConstantDataVector::getSplat(NumElts
, V
);
1103 SmallVector
<Constant
*, 32> Elts(NumElts
, V
);
1107 ConstantTokenNone
*ConstantTokenNone::get(LLVMContext
&Context
) {
1108 LLVMContextImpl
*pImpl
= Context
.pImpl
;
1109 if (!pImpl
->TheNoneToken
)
1110 pImpl
->TheNoneToken
.reset(new ConstantTokenNone(Context
));
1111 return pImpl
->TheNoneToken
.get();
1114 /// Remove the constant from the constant table.
1115 void ConstantTokenNone::destroyConstantImpl() {
1116 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1119 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1120 // can't be inline because we don't want to #include Instruction.h into
1122 bool ConstantExpr::isCast() const {
1123 return Instruction::isCast(getOpcode());
1126 bool ConstantExpr::isCompare() const {
1127 return getOpcode() == Instruction::ICmp
|| getOpcode() == Instruction::FCmp
;
1130 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1131 if (getOpcode() != Instruction::GetElementPtr
) return false;
1133 gep_type_iterator GEPI
= gep_type_begin(this), E
= gep_type_end(this);
1134 User::const_op_iterator OI
= std::next(this->op_begin());
1136 // The remaining indices may be compile-time known integers within the bounds
1137 // of the corresponding notional static array types.
1138 for (; GEPI
!= E
; ++GEPI
, ++OI
) {
1139 if (isa
<UndefValue
>(*OI
))
1141 auto *CI
= dyn_cast
<ConstantInt
>(*OI
);
1142 if (!CI
|| (GEPI
.isBoundedSequential() &&
1143 (CI
->getValue().getActiveBits() > 64 ||
1144 CI
->getZExtValue() >= GEPI
.getSequentialNumElements())))
1148 // All the indices checked out.
1152 bool ConstantExpr::hasIndices() const {
1153 return getOpcode() == Instruction::ExtractValue
||
1154 getOpcode() == Instruction::InsertValue
;
1157 ArrayRef
<unsigned> ConstantExpr::getIndices() const {
1158 if (const ExtractValueConstantExpr
*EVCE
=
1159 dyn_cast
<ExtractValueConstantExpr
>(this))
1160 return EVCE
->Indices
;
1162 return cast
<InsertValueConstantExpr
>(this)->Indices
;
1165 unsigned ConstantExpr::getPredicate() const {
1166 return cast
<CompareConstantExpr
>(this)->predicate
;
1170 ConstantExpr::getWithOperandReplaced(unsigned OpNo
, Constant
*Op
) const {
1171 assert(Op
->getType() == getOperand(OpNo
)->getType() &&
1172 "Replacing operand with value of different type!");
1173 if (getOperand(OpNo
) == Op
)
1174 return const_cast<ConstantExpr
*>(this);
1176 SmallVector
<Constant
*, 8> NewOps
;
1177 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
1178 NewOps
.push_back(i
== OpNo
? Op
: getOperand(i
));
1180 return getWithOperands(NewOps
);
1183 Constant
*ConstantExpr::getWithOperands(ArrayRef
<Constant
*> Ops
, Type
*Ty
,
1184 bool OnlyIfReduced
, Type
*SrcTy
) const {
1185 assert(Ops
.size() == getNumOperands() && "Operand count mismatch!");
1187 // If no operands changed return self.
1188 if (Ty
== getType() && std::equal(Ops
.begin(), Ops
.end(), op_begin()))
1189 return const_cast<ConstantExpr
*>(this);
1191 Type
*OnlyIfReducedTy
= OnlyIfReduced
? Ty
: nullptr;
1192 switch (getOpcode()) {
1193 case Instruction::Trunc
:
1194 case Instruction::ZExt
:
1195 case Instruction::SExt
:
1196 case Instruction::FPTrunc
:
1197 case Instruction::FPExt
:
1198 case Instruction::UIToFP
:
1199 case Instruction::SIToFP
:
1200 case Instruction::FPToUI
:
1201 case Instruction::FPToSI
:
1202 case Instruction::PtrToInt
:
1203 case Instruction::IntToPtr
:
1204 case Instruction::BitCast
:
1205 case Instruction::AddrSpaceCast
:
1206 return ConstantExpr::getCast(getOpcode(), Ops
[0], Ty
, OnlyIfReduced
);
1207 case Instruction::Select
:
1208 return ConstantExpr::getSelect(Ops
[0], Ops
[1], Ops
[2], OnlyIfReducedTy
);
1209 case Instruction::InsertElement
:
1210 return ConstantExpr::getInsertElement(Ops
[0], Ops
[1], Ops
[2],
1212 case Instruction::ExtractElement
:
1213 return ConstantExpr::getExtractElement(Ops
[0], Ops
[1], OnlyIfReducedTy
);
1214 case Instruction::InsertValue
:
1215 return ConstantExpr::getInsertValue(Ops
[0], Ops
[1], getIndices(),
1217 case Instruction::ExtractValue
:
1218 return ConstantExpr::getExtractValue(Ops
[0], getIndices(), OnlyIfReducedTy
);
1219 case Instruction::ShuffleVector
:
1220 return ConstantExpr::getShuffleVector(Ops
[0], Ops
[1], Ops
[2],
1222 case Instruction::GetElementPtr
: {
1223 auto *GEPO
= cast
<GEPOperator
>(this);
1224 assert(SrcTy
|| (Ops
[0]->getType() == getOperand(0)->getType()));
1225 return ConstantExpr::getGetElementPtr(
1226 SrcTy
? SrcTy
: GEPO
->getSourceElementType(), Ops
[0], Ops
.slice(1),
1227 GEPO
->isInBounds(), GEPO
->getInRangeIndex(), OnlyIfReducedTy
);
1229 case Instruction::ICmp
:
1230 case Instruction::FCmp
:
1231 return ConstantExpr::getCompare(getPredicate(), Ops
[0], Ops
[1],
1234 assert(getNumOperands() == 2 && "Must be binary operator?");
1235 return ConstantExpr::get(getOpcode(), Ops
[0], Ops
[1], SubclassOptionalData
,
1241 //===----------------------------------------------------------------------===//
1242 // isValueValidForType implementations
1244 bool ConstantInt::isValueValidForType(Type
*Ty
, uint64_t Val
) {
1245 unsigned NumBits
= Ty
->getIntegerBitWidth(); // assert okay
1246 if (Ty
->isIntegerTy(1))
1247 return Val
== 0 || Val
== 1;
1248 return isUIntN(NumBits
, Val
);
1251 bool ConstantInt::isValueValidForType(Type
*Ty
, int64_t Val
) {
1252 unsigned NumBits
= Ty
->getIntegerBitWidth();
1253 if (Ty
->isIntegerTy(1))
1254 return Val
== 0 || Val
== 1 || Val
== -1;
1255 return isIntN(NumBits
, Val
);
1258 bool ConstantFP::isValueValidForType(Type
*Ty
, const APFloat
& Val
) {
1259 // convert modifies in place, so make a copy.
1260 APFloat Val2
= APFloat(Val
);
1262 switch (Ty
->getTypeID()) {
1264 return false; // These can't be represented as floating point!
1266 // FIXME rounding mode needs to be more flexible
1267 case Type::HalfTyID
: {
1268 if (&Val2
.getSemantics() == &APFloat::IEEEhalf())
1270 Val2
.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven
, &losesInfo
);
1273 case Type::FloatTyID
: {
1274 if (&Val2
.getSemantics() == &APFloat::IEEEsingle())
1276 Val2
.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven
, &losesInfo
);
1279 case Type::DoubleTyID
: {
1280 if (&Val2
.getSemantics() == &APFloat::IEEEhalf() ||
1281 &Val2
.getSemantics() == &APFloat::IEEEsingle() ||
1282 &Val2
.getSemantics() == &APFloat::IEEEdouble())
1284 Val2
.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven
, &losesInfo
);
1287 case Type::X86_FP80TyID
:
1288 return &Val2
.getSemantics() == &APFloat::IEEEhalf() ||
1289 &Val2
.getSemantics() == &APFloat::IEEEsingle() ||
1290 &Val2
.getSemantics() == &APFloat::IEEEdouble() ||
1291 &Val2
.getSemantics() == &APFloat::x87DoubleExtended();
1292 case Type::FP128TyID
:
1293 return &Val2
.getSemantics() == &APFloat::IEEEhalf() ||
1294 &Val2
.getSemantics() == &APFloat::IEEEsingle() ||
1295 &Val2
.getSemantics() == &APFloat::IEEEdouble() ||
1296 &Val2
.getSemantics() == &APFloat::IEEEquad();
1297 case Type::PPC_FP128TyID
:
1298 return &Val2
.getSemantics() == &APFloat::IEEEhalf() ||
1299 &Val2
.getSemantics() == &APFloat::IEEEsingle() ||
1300 &Val2
.getSemantics() == &APFloat::IEEEdouble() ||
1301 &Val2
.getSemantics() == &APFloat::PPCDoubleDouble();
1306 //===----------------------------------------------------------------------===//
1307 // Factory Function Implementation
1309 ConstantAggregateZero
*ConstantAggregateZero::get(Type
*Ty
) {
1310 assert((Ty
->isStructTy() || Ty
->isArrayTy() || Ty
->isVectorTy()) &&
1311 "Cannot create an aggregate zero of non-aggregate type!");
1313 std::unique_ptr
<ConstantAggregateZero
> &Entry
=
1314 Ty
->getContext().pImpl
->CAZConstants
[Ty
];
1316 Entry
.reset(new ConstantAggregateZero(Ty
));
1321 /// Remove the constant from the constant table.
1322 void ConstantAggregateZero::destroyConstantImpl() {
1323 getContext().pImpl
->CAZConstants
.erase(getType());
1326 /// Remove the constant from the constant table.
1327 void ConstantArray::destroyConstantImpl() {
1328 getType()->getContext().pImpl
->ArrayConstants
.remove(this);
1332 //---- ConstantStruct::get() implementation...
1335 /// Remove the constant from the constant table.
1336 void ConstantStruct::destroyConstantImpl() {
1337 getType()->getContext().pImpl
->StructConstants
.remove(this);
1340 /// Remove the constant from the constant table.
1341 void ConstantVector::destroyConstantImpl() {
1342 getType()->getContext().pImpl
->VectorConstants
.remove(this);
1345 Constant
*Constant::getSplatValue() const {
1346 assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1347 if (isa
<ConstantAggregateZero
>(this))
1348 return getNullValue(this->getType()->getVectorElementType());
1349 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this))
1350 return CV
->getSplatValue();
1351 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
1352 return CV
->getSplatValue();
1356 Constant
*ConstantVector::getSplatValue() const {
1357 // Check out first element.
1358 Constant
*Elt
= getOperand(0);
1359 // Then make sure all remaining elements point to the same value.
1360 for (unsigned I
= 1, E
= getNumOperands(); I
< E
; ++I
)
1361 if (getOperand(I
) != Elt
)
1366 const APInt
&Constant::getUniqueInteger() const {
1367 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(this))
1368 return CI
->getValue();
1369 assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1370 const Constant
*C
= this->getAggregateElement(0U);
1371 assert(C
&& isa
<ConstantInt
>(C
) && "Not a vector of numbers!");
1372 return cast
<ConstantInt
>(C
)->getValue();
1375 //---- ConstantPointerNull::get() implementation.
1378 ConstantPointerNull
*ConstantPointerNull::get(PointerType
*Ty
) {
1379 std::unique_ptr
<ConstantPointerNull
> &Entry
=
1380 Ty
->getContext().pImpl
->CPNConstants
[Ty
];
1382 Entry
.reset(new ConstantPointerNull(Ty
));
1387 /// Remove the constant from the constant table.
1388 void ConstantPointerNull::destroyConstantImpl() {
1389 getContext().pImpl
->CPNConstants
.erase(getType());
1392 UndefValue
*UndefValue::get(Type
*Ty
) {
1393 std::unique_ptr
<UndefValue
> &Entry
= Ty
->getContext().pImpl
->UVConstants
[Ty
];
1395 Entry
.reset(new UndefValue(Ty
));
1400 /// Remove the constant from the constant table.
1401 void UndefValue::destroyConstantImpl() {
1402 // Free the constant and any dangling references to it.
1403 getContext().pImpl
->UVConstants
.erase(getType());
1406 BlockAddress
*BlockAddress::get(BasicBlock
*BB
) {
1407 assert(BB
->getParent() && "Block must have a parent");
1408 return get(BB
->getParent(), BB
);
1411 BlockAddress
*BlockAddress::get(Function
*F
, BasicBlock
*BB
) {
1413 F
->getContext().pImpl
->BlockAddresses
[std::make_pair(F
, BB
)];
1415 BA
= new BlockAddress(F
, BB
);
1417 assert(BA
->getFunction() == F
&& "Basic block moved between functions");
1421 BlockAddress::BlockAddress(Function
*F
, BasicBlock
*BB
)
1422 : Constant(Type::getInt8PtrTy(F
->getContext()), Value::BlockAddressVal
,
1426 BB
->AdjustBlockAddressRefCount(1);
1429 BlockAddress
*BlockAddress::lookup(const BasicBlock
*BB
) {
1430 if (!BB
->hasAddressTaken())
1433 const Function
*F
= BB
->getParent();
1434 assert(F
&& "Block must have a parent");
1436 F
->getContext().pImpl
->BlockAddresses
.lookup(std::make_pair(F
, BB
));
1437 assert(BA
&& "Refcount and block address map disagree!");
1441 /// Remove the constant from the constant table.
1442 void BlockAddress::destroyConstantImpl() {
1443 getFunction()->getType()->getContext().pImpl
1444 ->BlockAddresses
.erase(std::make_pair(getFunction(), getBasicBlock()));
1445 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1448 Value
*BlockAddress::handleOperandChangeImpl(Value
*From
, Value
*To
) {
1449 // This could be replacing either the Basic Block or the Function. In either
1450 // case, we have to remove the map entry.
1451 Function
*NewF
= getFunction();
1452 BasicBlock
*NewBB
= getBasicBlock();
1455 NewF
= cast
<Function
>(To
->stripPointerCasts());
1457 assert(From
== NewBB
&& "From does not match any operand");
1458 NewBB
= cast
<BasicBlock
>(To
);
1461 // See if the 'new' entry already exists, if not, just update this in place
1462 // and return early.
1463 BlockAddress
*&NewBA
=
1464 getContext().pImpl
->BlockAddresses
[std::make_pair(NewF
, NewBB
)];
1468 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1470 // Remove the old entry, this can't cause the map to rehash (just a
1471 // tombstone will get added).
1472 getContext().pImpl
->BlockAddresses
.erase(std::make_pair(getFunction(),
1475 setOperand(0, NewF
);
1476 setOperand(1, NewBB
);
1477 getBasicBlock()->AdjustBlockAddressRefCount(1);
1479 // If we just want to keep the existing value, then return null.
1480 // Callers know that this means we shouldn't delete this value.
1484 //---- ConstantExpr::get() implementations.
1487 /// This is a utility function to handle folding of casts and lookup of the
1488 /// cast in the ExprConstants map. It is used by the various get* methods below.
1489 static Constant
*getFoldedCast(Instruction::CastOps opc
, Constant
*C
, Type
*Ty
,
1490 bool OnlyIfReduced
= false) {
1491 assert(Ty
->isFirstClassType() && "Cannot cast to an aggregate type!");
1492 // Fold a few common cases
1493 if (Constant
*FC
= ConstantFoldCastInstruction(opc
, C
, Ty
))
1499 LLVMContextImpl
*pImpl
= Ty
->getContext().pImpl
;
1501 // Look up the constant in the table first to ensure uniqueness.
1502 ConstantExprKeyType
Key(opc
, C
);
1504 return pImpl
->ExprConstants
.getOrCreate(Ty
, Key
);
1507 Constant
*ConstantExpr::getCast(unsigned oc
, Constant
*C
, Type
*Ty
,
1508 bool OnlyIfReduced
) {
1509 Instruction::CastOps opc
= Instruction::CastOps(oc
);
1510 assert(Instruction::isCast(opc
) && "opcode out of range");
1511 assert(C
&& Ty
&& "Null arguments to getCast");
1512 assert(CastInst::castIsValid(opc
, C
, Ty
) && "Invalid constantexpr cast!");
1516 llvm_unreachable("Invalid cast opcode");
1517 case Instruction::Trunc
:
1518 return getTrunc(C
, Ty
, OnlyIfReduced
);
1519 case Instruction::ZExt
:
1520 return getZExt(C
, Ty
, OnlyIfReduced
);
1521 case Instruction::SExt
:
1522 return getSExt(C
, Ty
, OnlyIfReduced
);
1523 case Instruction::FPTrunc
:
1524 return getFPTrunc(C
, Ty
, OnlyIfReduced
);
1525 case Instruction::FPExt
:
1526 return getFPExtend(C
, Ty
, OnlyIfReduced
);
1527 case Instruction::UIToFP
:
1528 return getUIToFP(C
, Ty
, OnlyIfReduced
);
1529 case Instruction::SIToFP
:
1530 return getSIToFP(C
, Ty
, OnlyIfReduced
);
1531 case Instruction::FPToUI
:
1532 return getFPToUI(C
, Ty
, OnlyIfReduced
);
1533 case Instruction::FPToSI
:
1534 return getFPToSI(C
, Ty
, OnlyIfReduced
);
1535 case Instruction::PtrToInt
:
1536 return getPtrToInt(C
, Ty
, OnlyIfReduced
);
1537 case Instruction::IntToPtr
:
1538 return getIntToPtr(C
, Ty
, OnlyIfReduced
);
1539 case Instruction::BitCast
:
1540 return getBitCast(C
, Ty
, OnlyIfReduced
);
1541 case Instruction::AddrSpaceCast
:
1542 return getAddrSpaceCast(C
, Ty
, OnlyIfReduced
);
1546 Constant
*ConstantExpr::getZExtOrBitCast(Constant
*C
, Type
*Ty
) {
1547 if (C
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
1548 return getBitCast(C
, Ty
);
1549 return getZExt(C
, Ty
);
1552 Constant
*ConstantExpr::getSExtOrBitCast(Constant
*C
, Type
*Ty
) {
1553 if (C
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
1554 return getBitCast(C
, Ty
);
1555 return getSExt(C
, Ty
);
1558 Constant
*ConstantExpr::getTruncOrBitCast(Constant
*C
, Type
*Ty
) {
1559 if (C
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
1560 return getBitCast(C
, Ty
);
1561 return getTrunc(C
, Ty
);
1564 Constant
*ConstantExpr::getPointerCast(Constant
*S
, Type
*Ty
) {
1565 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1566 assert((Ty
->isIntOrIntVectorTy() || Ty
->isPtrOrPtrVectorTy()) &&
1569 if (Ty
->isIntOrIntVectorTy())
1570 return getPtrToInt(S
, Ty
);
1572 unsigned SrcAS
= S
->getType()->getPointerAddressSpace();
1573 if (Ty
->isPtrOrPtrVectorTy() && SrcAS
!= Ty
->getPointerAddressSpace())
1574 return getAddrSpaceCast(S
, Ty
);
1576 return getBitCast(S
, Ty
);
1579 Constant
*ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant
*S
,
1581 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1582 assert(Ty
->isPtrOrPtrVectorTy() && "Invalid cast");
1584 if (S
->getType()->getPointerAddressSpace() != Ty
->getPointerAddressSpace())
1585 return getAddrSpaceCast(S
, Ty
);
1587 return getBitCast(S
, Ty
);
1590 Constant
*ConstantExpr::getIntegerCast(Constant
*C
, Type
*Ty
, bool isSigned
) {
1591 assert(C
->getType()->isIntOrIntVectorTy() &&
1592 Ty
->isIntOrIntVectorTy() && "Invalid cast");
1593 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
1594 unsigned DstBits
= Ty
->getScalarSizeInBits();
1595 Instruction::CastOps opcode
=
1596 (SrcBits
== DstBits
? Instruction::BitCast
:
1597 (SrcBits
> DstBits
? Instruction::Trunc
:
1598 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
1599 return getCast(opcode
, C
, Ty
);
1602 Constant
*ConstantExpr::getFPCast(Constant
*C
, Type
*Ty
) {
1603 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isFPOrFPVectorTy() &&
1605 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
1606 unsigned DstBits
= Ty
->getScalarSizeInBits();
1607 if (SrcBits
== DstBits
)
1608 return C
; // Avoid a useless cast
1609 Instruction::CastOps opcode
=
1610 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
);
1611 return getCast(opcode
, C
, Ty
);
1614 Constant
*ConstantExpr::getTrunc(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1616 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1617 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1619 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1620 assert(C
->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1621 assert(Ty
->isIntOrIntVectorTy() && "Trunc produces only integral");
1622 assert(C
->getType()->getScalarSizeInBits() > Ty
->getScalarSizeInBits()&&
1623 "SrcTy must be larger than DestTy for Trunc!");
1625 return getFoldedCast(Instruction::Trunc
, C
, Ty
, OnlyIfReduced
);
1628 Constant
*ConstantExpr::getSExt(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1630 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1631 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1633 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1634 assert(C
->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1635 assert(Ty
->isIntOrIntVectorTy() && "SExt produces only integer");
1636 assert(C
->getType()->getScalarSizeInBits() < Ty
->getScalarSizeInBits()&&
1637 "SrcTy must be smaller than DestTy for SExt!");
1639 return getFoldedCast(Instruction::SExt
, C
, Ty
, OnlyIfReduced
);
1642 Constant
*ConstantExpr::getZExt(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1644 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1645 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1647 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1648 assert(C
->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1649 assert(Ty
->isIntOrIntVectorTy() && "ZExt produces only integer");
1650 assert(C
->getType()->getScalarSizeInBits() < Ty
->getScalarSizeInBits()&&
1651 "SrcTy must be smaller than DestTy for ZExt!");
1653 return getFoldedCast(Instruction::ZExt
, C
, Ty
, OnlyIfReduced
);
1656 Constant
*ConstantExpr::getFPTrunc(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1658 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1659 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1661 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1662 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isFPOrFPVectorTy() &&
1663 C
->getType()->getScalarSizeInBits() > Ty
->getScalarSizeInBits()&&
1664 "This is an illegal floating point truncation!");
1665 return getFoldedCast(Instruction::FPTrunc
, C
, Ty
, OnlyIfReduced
);
1668 Constant
*ConstantExpr::getFPExtend(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1670 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1671 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1673 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1674 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isFPOrFPVectorTy() &&
1675 C
->getType()->getScalarSizeInBits() < Ty
->getScalarSizeInBits()&&
1676 "This is an illegal floating point extension!");
1677 return getFoldedCast(Instruction::FPExt
, C
, Ty
, OnlyIfReduced
);
1680 Constant
*ConstantExpr::getUIToFP(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1682 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1683 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1685 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1686 assert(C
->getType()->isIntOrIntVectorTy() && Ty
->isFPOrFPVectorTy() &&
1687 "This is an illegal uint to floating point cast!");
1688 return getFoldedCast(Instruction::UIToFP
, C
, Ty
, OnlyIfReduced
);
1691 Constant
*ConstantExpr::getSIToFP(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1693 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1694 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1696 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1697 assert(C
->getType()->isIntOrIntVectorTy() && Ty
->isFPOrFPVectorTy() &&
1698 "This is an illegal sint to floating point cast!");
1699 return getFoldedCast(Instruction::SIToFP
, C
, Ty
, OnlyIfReduced
);
1702 Constant
*ConstantExpr::getFPToUI(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1704 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1705 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1707 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1708 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isIntOrIntVectorTy() &&
1709 "This is an illegal floating point to uint cast!");
1710 return getFoldedCast(Instruction::FPToUI
, C
, Ty
, OnlyIfReduced
);
1713 Constant
*ConstantExpr::getFPToSI(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1715 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1716 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1718 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1719 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isIntOrIntVectorTy() &&
1720 "This is an illegal floating point to sint cast!");
1721 return getFoldedCast(Instruction::FPToSI
, C
, Ty
, OnlyIfReduced
);
1724 Constant
*ConstantExpr::getPtrToInt(Constant
*C
, Type
*DstTy
,
1725 bool OnlyIfReduced
) {
1726 assert(C
->getType()->isPtrOrPtrVectorTy() &&
1727 "PtrToInt source must be pointer or pointer vector");
1728 assert(DstTy
->isIntOrIntVectorTy() &&
1729 "PtrToInt destination must be integer or integer vector");
1730 assert(isa
<VectorType
>(C
->getType()) == isa
<VectorType
>(DstTy
));
1731 if (isa
<VectorType
>(C
->getType()))
1732 assert(C
->getType()->getVectorNumElements()==DstTy
->getVectorNumElements()&&
1733 "Invalid cast between a different number of vector elements");
1734 return getFoldedCast(Instruction::PtrToInt
, C
, DstTy
, OnlyIfReduced
);
1737 Constant
*ConstantExpr::getIntToPtr(Constant
*C
, Type
*DstTy
,
1738 bool OnlyIfReduced
) {
1739 assert(C
->getType()->isIntOrIntVectorTy() &&
1740 "IntToPtr source must be integer or integer vector");
1741 assert(DstTy
->isPtrOrPtrVectorTy() &&
1742 "IntToPtr destination must be a pointer or pointer vector");
1743 assert(isa
<VectorType
>(C
->getType()) == isa
<VectorType
>(DstTy
));
1744 if (isa
<VectorType
>(C
->getType()))
1745 assert(C
->getType()->getVectorNumElements()==DstTy
->getVectorNumElements()&&
1746 "Invalid cast between a different number of vector elements");
1747 return getFoldedCast(Instruction::IntToPtr
, C
, DstTy
, OnlyIfReduced
);
1750 Constant
*ConstantExpr::getBitCast(Constant
*C
, Type
*DstTy
,
1751 bool OnlyIfReduced
) {
1752 assert(CastInst::castIsValid(Instruction::BitCast
, C
, DstTy
) &&
1753 "Invalid constantexpr bitcast!");
1755 // It is common to ask for a bitcast of a value to its own type, handle this
1757 if (C
->getType() == DstTy
) return C
;
1759 return getFoldedCast(Instruction::BitCast
, C
, DstTy
, OnlyIfReduced
);
1762 Constant
*ConstantExpr::getAddrSpaceCast(Constant
*C
, Type
*DstTy
,
1763 bool OnlyIfReduced
) {
1764 assert(CastInst::castIsValid(Instruction::AddrSpaceCast
, C
, DstTy
) &&
1765 "Invalid constantexpr addrspacecast!");
1767 // Canonicalize addrspacecasts between different pointer types by first
1768 // bitcasting the pointer type and then converting the address space.
1769 PointerType
*SrcScalarTy
= cast
<PointerType
>(C
->getType()->getScalarType());
1770 PointerType
*DstScalarTy
= cast
<PointerType
>(DstTy
->getScalarType());
1771 Type
*DstElemTy
= DstScalarTy
->getElementType();
1772 if (SrcScalarTy
->getElementType() != DstElemTy
) {
1773 Type
*MidTy
= PointerType::get(DstElemTy
, SrcScalarTy
->getAddressSpace());
1774 if (VectorType
*VT
= dyn_cast
<VectorType
>(DstTy
)) {
1775 // Handle vectors of pointers.
1776 MidTy
= VectorType::get(MidTy
, VT
->getNumElements());
1778 C
= getBitCast(C
, MidTy
);
1780 return getFoldedCast(Instruction::AddrSpaceCast
, C
, DstTy
, OnlyIfReduced
);
1783 Constant
*ConstantExpr::get(unsigned Opcode
, Constant
*C1
, Constant
*C2
,
1784 unsigned Flags
, Type
*OnlyIfReducedTy
) {
1785 // Check the operands for consistency first.
1786 assert(Instruction::isBinaryOp(Opcode
) &&
1787 "Invalid opcode in binary constant expression");
1788 assert(C1
->getType() == C2
->getType() &&
1789 "Operand types in binary constant expression should match");
1793 case Instruction::Add
:
1794 case Instruction::Sub
:
1795 case Instruction::Mul
:
1796 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1797 assert(C1
->getType()->isIntOrIntVectorTy() &&
1798 "Tried to create an integer operation on a non-integer type!");
1800 case Instruction::FAdd
:
1801 case Instruction::FSub
:
1802 case Instruction::FMul
:
1803 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1804 assert(C1
->getType()->isFPOrFPVectorTy() &&
1805 "Tried to create a floating-point operation on a "
1806 "non-floating-point type!");
1808 case Instruction::UDiv
:
1809 case Instruction::SDiv
:
1810 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1811 assert(C1
->getType()->isIntOrIntVectorTy() &&
1812 "Tried to create an arithmetic operation on a non-arithmetic type!");
1814 case Instruction::FDiv
:
1815 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1816 assert(C1
->getType()->isFPOrFPVectorTy() &&
1817 "Tried to create an arithmetic operation on a non-arithmetic type!");
1819 case Instruction::URem
:
1820 case Instruction::SRem
:
1821 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1822 assert(C1
->getType()->isIntOrIntVectorTy() &&
1823 "Tried to create an arithmetic operation on a non-arithmetic type!");
1825 case Instruction::FRem
:
1826 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1827 assert(C1
->getType()->isFPOrFPVectorTy() &&
1828 "Tried to create an arithmetic operation on a non-arithmetic type!");
1830 case Instruction::And
:
1831 case Instruction::Or
:
1832 case Instruction::Xor
:
1833 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1834 assert(C1
->getType()->isIntOrIntVectorTy() &&
1835 "Tried to create a logical operation on a non-integral type!");
1837 case Instruction::Shl
:
1838 case Instruction::LShr
:
1839 case Instruction::AShr
:
1840 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1841 assert(C1
->getType()->isIntOrIntVectorTy() &&
1842 "Tried to create a shift operation on a non-integer type!");
1849 if (Constant
*FC
= ConstantFoldBinaryInstruction(Opcode
, C1
, C2
))
1850 return FC
; // Fold a few common cases.
1852 if (OnlyIfReducedTy
== C1
->getType())
1855 Constant
*ArgVec
[] = { C1
, C2
};
1856 ConstantExprKeyType
Key(Opcode
, ArgVec
, 0, Flags
);
1858 LLVMContextImpl
*pImpl
= C1
->getContext().pImpl
;
1859 return pImpl
->ExprConstants
.getOrCreate(C1
->getType(), Key
);
1862 Constant
*ConstantExpr::getSizeOf(Type
* Ty
) {
1863 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1864 // Note that a non-inbounds gep is used, as null isn't within any object.
1865 Constant
*GEPIdx
= ConstantInt::get(Type::getInt32Ty(Ty
->getContext()), 1);
1866 Constant
*GEP
= getGetElementPtr(
1867 Ty
, Constant::getNullValue(PointerType::getUnqual(Ty
)), GEPIdx
);
1868 return getPtrToInt(GEP
,
1869 Type::getInt64Ty(Ty
->getContext()));
1872 Constant
*ConstantExpr::getAlignOf(Type
* Ty
) {
1873 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1874 // Note that a non-inbounds gep is used, as null isn't within any object.
1875 Type
*AligningTy
= StructType::get(Type::getInt1Ty(Ty
->getContext()), Ty
);
1876 Constant
*NullPtr
= Constant::getNullValue(AligningTy
->getPointerTo(0));
1877 Constant
*Zero
= ConstantInt::get(Type::getInt64Ty(Ty
->getContext()), 0);
1878 Constant
*One
= ConstantInt::get(Type::getInt32Ty(Ty
->getContext()), 1);
1879 Constant
*Indices
[2] = { Zero
, One
};
1880 Constant
*GEP
= getGetElementPtr(AligningTy
, NullPtr
, Indices
);
1881 return getPtrToInt(GEP
,
1882 Type::getInt64Ty(Ty
->getContext()));
1885 Constant
*ConstantExpr::getOffsetOf(StructType
* STy
, unsigned FieldNo
) {
1886 return getOffsetOf(STy
, ConstantInt::get(Type::getInt32Ty(STy
->getContext()),
1890 Constant
*ConstantExpr::getOffsetOf(Type
* Ty
, Constant
*FieldNo
) {
1891 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1892 // Note that a non-inbounds gep is used, as null isn't within any object.
1893 Constant
*GEPIdx
[] = {
1894 ConstantInt::get(Type::getInt64Ty(Ty
->getContext()), 0),
1897 Constant
*GEP
= getGetElementPtr(
1898 Ty
, Constant::getNullValue(PointerType::getUnqual(Ty
)), GEPIdx
);
1899 return getPtrToInt(GEP
,
1900 Type::getInt64Ty(Ty
->getContext()));
1903 Constant
*ConstantExpr::getCompare(unsigned short Predicate
, Constant
*C1
,
1904 Constant
*C2
, bool OnlyIfReduced
) {
1905 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1907 switch (Predicate
) {
1908 default: llvm_unreachable("Invalid CmpInst predicate");
1909 case CmpInst::FCMP_FALSE
: case CmpInst::FCMP_OEQ
: case CmpInst::FCMP_OGT
:
1910 case CmpInst::FCMP_OGE
: case CmpInst::FCMP_OLT
: case CmpInst::FCMP_OLE
:
1911 case CmpInst::FCMP_ONE
: case CmpInst::FCMP_ORD
: case CmpInst::FCMP_UNO
:
1912 case CmpInst::FCMP_UEQ
: case CmpInst::FCMP_UGT
: case CmpInst::FCMP_UGE
:
1913 case CmpInst::FCMP_ULT
: case CmpInst::FCMP_ULE
: case CmpInst::FCMP_UNE
:
1914 case CmpInst::FCMP_TRUE
:
1915 return getFCmp(Predicate
, C1
, C2
, OnlyIfReduced
);
1917 case CmpInst::ICMP_EQ
: case CmpInst::ICMP_NE
: case CmpInst::ICMP_UGT
:
1918 case CmpInst::ICMP_UGE
: case CmpInst::ICMP_ULT
: case CmpInst::ICMP_ULE
:
1919 case CmpInst::ICMP_SGT
: case CmpInst::ICMP_SGE
: case CmpInst::ICMP_SLT
:
1920 case CmpInst::ICMP_SLE
:
1921 return getICmp(Predicate
, C1
, C2
, OnlyIfReduced
);
1925 Constant
*ConstantExpr::getSelect(Constant
*C
, Constant
*V1
, Constant
*V2
,
1926 Type
*OnlyIfReducedTy
) {
1927 assert(!SelectInst::areInvalidOperands(C
, V1
, V2
)&&"Invalid select operands");
1929 if (Constant
*SC
= ConstantFoldSelectInstruction(C
, V1
, V2
))
1930 return SC
; // Fold common cases
1932 if (OnlyIfReducedTy
== V1
->getType())
1935 Constant
*ArgVec
[] = { C
, V1
, V2
};
1936 ConstantExprKeyType
Key(Instruction::Select
, ArgVec
);
1938 LLVMContextImpl
*pImpl
= C
->getContext().pImpl
;
1939 return pImpl
->ExprConstants
.getOrCreate(V1
->getType(), Key
);
1942 Constant
*ConstantExpr::getGetElementPtr(Type
*Ty
, Constant
*C
,
1943 ArrayRef
<Value
*> Idxs
, bool InBounds
,
1944 Optional
<unsigned> InRangeIndex
,
1945 Type
*OnlyIfReducedTy
) {
1947 Ty
= cast
<PointerType
>(C
->getType()->getScalarType())->getElementType();
1951 cast
<PointerType
>(C
->getType()->getScalarType())->getContainedType(0u));
1954 ConstantFoldGetElementPtr(Ty
, C
, InBounds
, InRangeIndex
, Idxs
))
1955 return FC
; // Fold a few common cases.
1957 // Get the result type of the getelementptr!
1958 Type
*DestTy
= GetElementPtrInst::getIndexedType(Ty
, Idxs
);
1959 assert(DestTy
&& "GEP indices invalid!");
1960 unsigned AS
= C
->getType()->getPointerAddressSpace();
1961 Type
*ReqTy
= DestTy
->getPointerTo(AS
);
1963 unsigned NumVecElts
= 0;
1964 if (C
->getType()->isVectorTy())
1965 NumVecElts
= C
->getType()->getVectorNumElements();
1966 else for (auto Idx
: Idxs
)
1967 if (Idx
->getType()->isVectorTy())
1968 NumVecElts
= Idx
->getType()->getVectorNumElements();
1971 ReqTy
= VectorType::get(ReqTy
, NumVecElts
);
1973 if (OnlyIfReducedTy
== ReqTy
)
1976 // Look up the constant in the table first to ensure uniqueness
1977 std::vector
<Constant
*> ArgVec
;
1978 ArgVec
.reserve(1 + Idxs
.size());
1979 ArgVec
.push_back(C
);
1980 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
) {
1981 assert((!Idxs
[i
]->getType()->isVectorTy() ||
1982 Idxs
[i
]->getType()->getVectorNumElements() == NumVecElts
) &&
1983 "getelementptr index type missmatch");
1985 Constant
*Idx
= cast
<Constant
>(Idxs
[i
]);
1986 if (NumVecElts
&& !Idxs
[i
]->getType()->isVectorTy())
1987 Idx
= ConstantVector::getSplat(NumVecElts
, Idx
);
1988 ArgVec
.push_back(Idx
);
1991 unsigned SubClassOptionalData
= InBounds
? GEPOperator::IsInBounds
: 0;
1992 if (InRangeIndex
&& *InRangeIndex
< 63)
1993 SubClassOptionalData
|= (*InRangeIndex
+ 1) << 1;
1994 const ConstantExprKeyType
Key(Instruction::GetElementPtr
, ArgVec
, 0,
1995 SubClassOptionalData
, None
, Ty
);
1997 LLVMContextImpl
*pImpl
= C
->getContext().pImpl
;
1998 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
2001 Constant
*ConstantExpr::getICmp(unsigned short pred
, Constant
*LHS
,
2002 Constant
*RHS
, bool OnlyIfReduced
) {
2003 assert(LHS
->getType() == RHS
->getType());
2004 assert(CmpInst::isIntPredicate((CmpInst::Predicate
)pred
) &&
2005 "Invalid ICmp Predicate");
2007 if (Constant
*FC
= ConstantFoldCompareInstruction(pred
, LHS
, RHS
))
2008 return FC
; // Fold a few common cases...
2013 // Look up the constant in the table first to ensure uniqueness
2014 Constant
*ArgVec
[] = { LHS
, RHS
};
2015 // Get the key type with both the opcode and predicate
2016 const ConstantExprKeyType
Key(Instruction::ICmp
, ArgVec
, pred
);
2018 Type
*ResultTy
= Type::getInt1Ty(LHS
->getContext());
2019 if (VectorType
*VT
= dyn_cast
<VectorType
>(LHS
->getType()))
2020 ResultTy
= VectorType::get(ResultTy
, VT
->getNumElements());
2022 LLVMContextImpl
*pImpl
= LHS
->getType()->getContext().pImpl
;
2023 return pImpl
->ExprConstants
.getOrCreate(ResultTy
, Key
);
2026 Constant
*ConstantExpr::getFCmp(unsigned short pred
, Constant
*LHS
,
2027 Constant
*RHS
, bool OnlyIfReduced
) {
2028 assert(LHS
->getType() == RHS
->getType());
2029 assert(CmpInst::isFPPredicate((CmpInst::Predicate
)pred
) &&
2030 "Invalid FCmp Predicate");
2032 if (Constant
*FC
= ConstantFoldCompareInstruction(pred
, LHS
, RHS
))
2033 return FC
; // Fold a few common cases...
2038 // Look up the constant in the table first to ensure uniqueness
2039 Constant
*ArgVec
[] = { LHS
, RHS
};
2040 // Get the key type with both the opcode and predicate
2041 const ConstantExprKeyType
Key(Instruction::FCmp
, ArgVec
, pred
);
2043 Type
*ResultTy
= Type::getInt1Ty(LHS
->getContext());
2044 if (VectorType
*VT
= dyn_cast
<VectorType
>(LHS
->getType()))
2045 ResultTy
= VectorType::get(ResultTy
, VT
->getNumElements());
2047 LLVMContextImpl
*pImpl
= LHS
->getType()->getContext().pImpl
;
2048 return pImpl
->ExprConstants
.getOrCreate(ResultTy
, Key
);
2051 Constant
*ConstantExpr::getExtractElement(Constant
*Val
, Constant
*Idx
,
2052 Type
*OnlyIfReducedTy
) {
2053 assert(Val
->getType()->isVectorTy() &&
2054 "Tried to create extractelement operation on non-vector type!");
2055 assert(Idx
->getType()->isIntegerTy() &&
2056 "Extractelement index must be an integer type!");
2058 if (Constant
*FC
= ConstantFoldExtractElementInstruction(Val
, Idx
))
2059 return FC
; // Fold a few common cases.
2061 Type
*ReqTy
= Val
->getType()->getVectorElementType();
2062 if (OnlyIfReducedTy
== ReqTy
)
2065 // Look up the constant in the table first to ensure uniqueness
2066 Constant
*ArgVec
[] = { Val
, Idx
};
2067 const ConstantExprKeyType
Key(Instruction::ExtractElement
, ArgVec
);
2069 LLVMContextImpl
*pImpl
= Val
->getContext().pImpl
;
2070 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
2073 Constant
*ConstantExpr::getInsertElement(Constant
*Val
, Constant
*Elt
,
2074 Constant
*Idx
, Type
*OnlyIfReducedTy
) {
2075 assert(Val
->getType()->isVectorTy() &&
2076 "Tried to create insertelement operation on non-vector type!");
2077 assert(Elt
->getType() == Val
->getType()->getVectorElementType() &&
2078 "Insertelement types must match!");
2079 assert(Idx
->getType()->isIntegerTy() &&
2080 "Insertelement index must be i32 type!");
2082 if (Constant
*FC
= ConstantFoldInsertElementInstruction(Val
, Elt
, Idx
))
2083 return FC
; // Fold a few common cases.
2085 if (OnlyIfReducedTy
== Val
->getType())
2088 // Look up the constant in the table first to ensure uniqueness
2089 Constant
*ArgVec
[] = { Val
, Elt
, Idx
};
2090 const ConstantExprKeyType
Key(Instruction::InsertElement
, ArgVec
);
2092 LLVMContextImpl
*pImpl
= Val
->getContext().pImpl
;
2093 return pImpl
->ExprConstants
.getOrCreate(Val
->getType(), Key
);
2096 Constant
*ConstantExpr::getShuffleVector(Constant
*V1
, Constant
*V2
,
2097 Constant
*Mask
, Type
*OnlyIfReducedTy
) {
2098 assert(ShuffleVectorInst::isValidOperands(V1
, V2
, Mask
) &&
2099 "Invalid shuffle vector constant expr operands!");
2101 if (Constant
*FC
= ConstantFoldShuffleVectorInstruction(V1
, V2
, Mask
))
2102 return FC
; // Fold a few common cases.
2104 unsigned NElts
= Mask
->getType()->getVectorNumElements();
2105 Type
*EltTy
= V1
->getType()->getVectorElementType();
2106 Type
*ShufTy
= VectorType::get(EltTy
, NElts
);
2108 if (OnlyIfReducedTy
== ShufTy
)
2111 // Look up the constant in the table first to ensure uniqueness
2112 Constant
*ArgVec
[] = { V1
, V2
, Mask
};
2113 const ConstantExprKeyType
Key(Instruction::ShuffleVector
, ArgVec
);
2115 LLVMContextImpl
*pImpl
= ShufTy
->getContext().pImpl
;
2116 return pImpl
->ExprConstants
.getOrCreate(ShufTy
, Key
);
2119 Constant
*ConstantExpr::getInsertValue(Constant
*Agg
, Constant
*Val
,
2120 ArrayRef
<unsigned> Idxs
,
2121 Type
*OnlyIfReducedTy
) {
2122 assert(Agg
->getType()->isFirstClassType() &&
2123 "Non-first-class type for constant insertvalue expression");
2125 assert(ExtractValueInst::getIndexedType(Agg
->getType(),
2126 Idxs
) == Val
->getType() &&
2127 "insertvalue indices invalid!");
2128 Type
*ReqTy
= Val
->getType();
2130 if (Constant
*FC
= ConstantFoldInsertValueInstruction(Agg
, Val
, Idxs
))
2133 if (OnlyIfReducedTy
== ReqTy
)
2136 Constant
*ArgVec
[] = { Agg
, Val
};
2137 const ConstantExprKeyType
Key(Instruction::InsertValue
, ArgVec
, 0, 0, Idxs
);
2139 LLVMContextImpl
*pImpl
= Agg
->getContext().pImpl
;
2140 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
2143 Constant
*ConstantExpr::getExtractValue(Constant
*Agg
, ArrayRef
<unsigned> Idxs
,
2144 Type
*OnlyIfReducedTy
) {
2145 assert(Agg
->getType()->isFirstClassType() &&
2146 "Tried to create extractelement operation on non-first-class type!");
2148 Type
*ReqTy
= ExtractValueInst::getIndexedType(Agg
->getType(), Idxs
);
2150 assert(ReqTy
&& "extractvalue indices invalid!");
2152 assert(Agg
->getType()->isFirstClassType() &&
2153 "Non-first-class type for constant extractvalue expression");
2154 if (Constant
*FC
= ConstantFoldExtractValueInstruction(Agg
, Idxs
))
2157 if (OnlyIfReducedTy
== ReqTy
)
2160 Constant
*ArgVec
[] = { Agg
};
2161 const ConstantExprKeyType
Key(Instruction::ExtractValue
, ArgVec
, 0, 0, Idxs
);
2163 LLVMContextImpl
*pImpl
= Agg
->getContext().pImpl
;
2164 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
2167 Constant
*ConstantExpr::getNeg(Constant
*C
, bool HasNUW
, bool HasNSW
) {
2168 assert(C
->getType()->isIntOrIntVectorTy() &&
2169 "Cannot NEG a nonintegral value!");
2170 return getSub(ConstantFP::getZeroValueForNegation(C
->getType()),
2174 Constant
*ConstantExpr::getFNeg(Constant
*C
) {
2175 assert(C
->getType()->isFPOrFPVectorTy() &&
2176 "Cannot FNEG a non-floating-point value!");
2177 return getFSub(ConstantFP::getZeroValueForNegation(C
->getType()), C
);
2180 Constant
*ConstantExpr::getNot(Constant
*C
) {
2181 assert(C
->getType()->isIntOrIntVectorTy() &&
2182 "Cannot NOT a nonintegral value!");
2183 return get(Instruction::Xor
, C
, Constant::getAllOnesValue(C
->getType()));
2186 Constant
*ConstantExpr::getAdd(Constant
*C1
, Constant
*C2
,
2187 bool HasNUW
, bool HasNSW
) {
2188 unsigned Flags
= (HasNUW
? OverflowingBinaryOperator::NoUnsignedWrap
: 0) |
2189 (HasNSW
? OverflowingBinaryOperator::NoSignedWrap
: 0);
2190 return get(Instruction::Add
, C1
, C2
, Flags
);
2193 Constant
*ConstantExpr::getFAdd(Constant
*C1
, Constant
*C2
) {
2194 return get(Instruction::FAdd
, C1
, C2
);
2197 Constant
*ConstantExpr::getSub(Constant
*C1
, Constant
*C2
,
2198 bool HasNUW
, bool HasNSW
) {
2199 unsigned Flags
= (HasNUW
? OverflowingBinaryOperator::NoUnsignedWrap
: 0) |
2200 (HasNSW
? OverflowingBinaryOperator::NoSignedWrap
: 0);
2201 return get(Instruction::Sub
, C1
, C2
, Flags
);
2204 Constant
*ConstantExpr::getFSub(Constant
*C1
, Constant
*C2
) {
2205 return get(Instruction::FSub
, C1
, C2
);
2208 Constant
*ConstantExpr::getMul(Constant
*C1
, Constant
*C2
,
2209 bool HasNUW
, bool HasNSW
) {
2210 unsigned Flags
= (HasNUW
? OverflowingBinaryOperator::NoUnsignedWrap
: 0) |
2211 (HasNSW
? OverflowingBinaryOperator::NoSignedWrap
: 0);
2212 return get(Instruction::Mul
, C1
, C2
, Flags
);
2215 Constant
*ConstantExpr::getFMul(Constant
*C1
, Constant
*C2
) {
2216 return get(Instruction::FMul
, C1
, C2
);
2219 Constant
*ConstantExpr::getUDiv(Constant
*C1
, Constant
*C2
, bool isExact
) {
2220 return get(Instruction::UDiv
, C1
, C2
,
2221 isExact
? PossiblyExactOperator::IsExact
: 0);
2224 Constant
*ConstantExpr::getSDiv(Constant
*C1
, Constant
*C2
, bool isExact
) {
2225 return get(Instruction::SDiv
, C1
, C2
,
2226 isExact
? PossiblyExactOperator::IsExact
: 0);
2229 Constant
*ConstantExpr::getFDiv(Constant
*C1
, Constant
*C2
) {
2230 return get(Instruction::FDiv
, C1
, C2
);
2233 Constant
*ConstantExpr::getURem(Constant
*C1
, Constant
*C2
) {
2234 return get(Instruction::URem
, C1
, C2
);
2237 Constant
*ConstantExpr::getSRem(Constant
*C1
, Constant
*C2
) {
2238 return get(Instruction::SRem
, C1
, C2
);
2241 Constant
*ConstantExpr::getFRem(Constant
*C1
, Constant
*C2
) {
2242 return get(Instruction::FRem
, C1
, C2
);
2245 Constant
*ConstantExpr::getAnd(Constant
*C1
, Constant
*C2
) {
2246 return get(Instruction::And
, C1
, C2
);
2249 Constant
*ConstantExpr::getOr(Constant
*C1
, Constant
*C2
) {
2250 return get(Instruction::Or
, C1
, C2
);
2253 Constant
*ConstantExpr::getXor(Constant
*C1
, Constant
*C2
) {
2254 return get(Instruction::Xor
, C1
, C2
);
2257 Constant
*ConstantExpr::getShl(Constant
*C1
, Constant
*C2
,
2258 bool HasNUW
, bool HasNSW
) {
2259 unsigned Flags
= (HasNUW
? OverflowingBinaryOperator::NoUnsignedWrap
: 0) |
2260 (HasNSW
? OverflowingBinaryOperator::NoSignedWrap
: 0);
2261 return get(Instruction::Shl
, C1
, C2
, Flags
);
2264 Constant
*ConstantExpr::getLShr(Constant
*C1
, Constant
*C2
, bool isExact
) {
2265 return get(Instruction::LShr
, C1
, C2
,
2266 isExact
? PossiblyExactOperator::IsExact
: 0);
2269 Constant
*ConstantExpr::getAShr(Constant
*C1
, Constant
*C2
, bool isExact
) {
2270 return get(Instruction::AShr
, C1
, C2
,
2271 isExact
? PossiblyExactOperator::IsExact
: 0);
2274 Constant
*ConstantExpr::getBinOpIdentity(unsigned Opcode
, Type
*Ty
,
2275 bool AllowRHSConstant
) {
2276 assert(Instruction::isBinaryOp(Opcode
) && "Only binops allowed");
2278 // Commutative opcodes: it does not matter if AllowRHSConstant is set.
2279 if (Instruction::isCommutative(Opcode
)) {
2281 case Instruction::Add
: // X + 0 = X
2282 case Instruction::Or
: // X | 0 = X
2283 case Instruction::Xor
: // X ^ 0 = X
2284 return Constant::getNullValue(Ty
);
2285 case Instruction::Mul
: // X * 1 = X
2286 return ConstantInt::get(Ty
, 1);
2287 case Instruction::And
: // X & -1 = X
2288 return Constant::getAllOnesValue(Ty
);
2289 case Instruction::FAdd
: // X + -0.0 = X
2290 // TODO: If the fadd has 'nsz', should we return +0.0?
2291 return ConstantFP::getNegativeZero(Ty
);
2292 case Instruction::FMul
: // X * 1.0 = X
2293 return ConstantFP::get(Ty
, 1.0);
2295 llvm_unreachable("Every commutative binop has an identity constant");
2299 // Non-commutative opcodes: AllowRHSConstant must be set.
2300 if (!AllowRHSConstant
)
2304 case Instruction::Sub
: // X - 0 = X
2305 case Instruction::Shl
: // X << 0 = X
2306 case Instruction::LShr
: // X >>u 0 = X
2307 case Instruction::AShr
: // X >> 0 = X
2308 case Instruction::FSub
: // X - 0.0 = X
2309 return Constant::getNullValue(Ty
);
2310 case Instruction::SDiv
: // X / 1 = X
2311 case Instruction::UDiv
: // X /u 1 = X
2312 return ConstantInt::get(Ty
, 1);
2313 case Instruction::FDiv
: // X / 1.0 = X
2314 return ConstantFP::get(Ty
, 1.0);
2320 Constant
*ConstantExpr::getBinOpAbsorber(unsigned Opcode
, Type
*Ty
) {
2323 // Doesn't have an absorber.
2326 case Instruction::Or
:
2327 return Constant::getAllOnesValue(Ty
);
2329 case Instruction::And
:
2330 case Instruction::Mul
:
2331 return Constant::getNullValue(Ty
);
2335 /// Remove the constant from the constant table.
2336 void ConstantExpr::destroyConstantImpl() {
2337 getType()->getContext().pImpl
->ExprConstants
.remove(this);
2340 const char *ConstantExpr::getOpcodeName() const {
2341 return Instruction::getOpcodeName(getOpcode());
2344 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2345 Type
*SrcElementTy
, Constant
*C
, ArrayRef
<Constant
*> IdxList
, Type
*DestTy
)
2346 : ConstantExpr(DestTy
, Instruction::GetElementPtr
,
2347 OperandTraits
<GetElementPtrConstantExpr
>::op_end(this) -
2348 (IdxList
.size() + 1),
2349 IdxList
.size() + 1),
2350 SrcElementTy(SrcElementTy
),
2351 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy
, IdxList
)) {
2353 Use
*OperandList
= getOperandList();
2354 for (unsigned i
= 0, E
= IdxList
.size(); i
!= E
; ++i
)
2355 OperandList
[i
+1] = IdxList
[i
];
2358 Type
*GetElementPtrConstantExpr::getSourceElementType() const {
2359 return SrcElementTy
;
2362 Type
*GetElementPtrConstantExpr::getResultElementType() const {
2363 return ResElementTy
;
2366 //===----------------------------------------------------------------------===//
2367 // ConstantData* implementations
2369 Type
*ConstantDataSequential::getElementType() const {
2370 return getType()->getElementType();
2373 StringRef
ConstantDataSequential::getRawDataValues() const {
2374 return StringRef(DataElements
, getNumElements()*getElementByteSize());
2377 bool ConstantDataSequential::isElementTypeCompatible(Type
*Ty
) {
2378 if (Ty
->isHalfTy() || Ty
->isFloatTy() || Ty
->isDoubleTy()) return true;
2379 if (auto *IT
= dyn_cast
<IntegerType
>(Ty
)) {
2380 switch (IT
->getBitWidth()) {
2392 unsigned ConstantDataSequential::getNumElements() const {
2393 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(getType()))
2394 return AT
->getNumElements();
2395 return getType()->getVectorNumElements();
2399 uint64_t ConstantDataSequential::getElementByteSize() const {
2400 return getElementType()->getPrimitiveSizeInBits()/8;
2403 /// Return the start of the specified element.
2404 const char *ConstantDataSequential::getElementPointer(unsigned Elt
) const {
2405 assert(Elt
< getNumElements() && "Invalid Elt");
2406 return DataElements
+Elt
*getElementByteSize();
2410 /// Return true if the array is empty or all zeros.
2411 static bool isAllZeros(StringRef Arr
) {
2418 /// This is the underlying implementation of all of the
2419 /// ConstantDataSequential::get methods. They all thunk down to here, providing
2420 /// the correct element type. We take the bytes in as a StringRef because
2421 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2422 Constant
*ConstantDataSequential::getImpl(StringRef Elements
, Type
*Ty
) {
2423 assert(isElementTypeCompatible(Ty
->getSequentialElementType()));
2424 // If the elements are all zero or there are no elements, return a CAZ, which
2425 // is more dense and canonical.
2426 if (isAllZeros(Elements
))
2427 return ConstantAggregateZero::get(Ty
);
2429 // Do a lookup to see if we have already formed one of these.
2432 .pImpl
->CDSConstants
.insert(std::make_pair(Elements
, nullptr))
2435 // The bucket can point to a linked list of different CDS's that have the same
2436 // body but different types. For example, 0,0,0,1 could be a 4 element array
2437 // of i8, or a 1-element array of i32. They'll both end up in the same
2438 /// StringMap bucket, linked up by their Next pointers. Walk the list.
2439 ConstantDataSequential
**Entry
= &Slot
.second
;
2440 for (ConstantDataSequential
*Node
= *Entry
; Node
;
2441 Entry
= &Node
->Next
, Node
= *Entry
)
2442 if (Node
->getType() == Ty
)
2445 // Okay, we didn't get a hit. Create a node of the right class, link it in,
2447 if (isa
<ArrayType
>(Ty
))
2448 return *Entry
= new ConstantDataArray(Ty
, Slot
.first().data());
2450 assert(isa
<VectorType
>(Ty
));
2451 return *Entry
= new ConstantDataVector(Ty
, Slot
.first().data());
2454 void ConstantDataSequential::destroyConstantImpl() {
2455 // Remove the constant from the StringMap.
2456 StringMap
<ConstantDataSequential
*> &CDSConstants
=
2457 getType()->getContext().pImpl
->CDSConstants
;
2459 StringMap
<ConstantDataSequential
*>::iterator Slot
=
2460 CDSConstants
.find(getRawDataValues());
2462 assert(Slot
!= CDSConstants
.end() && "CDS not found in uniquing table");
2464 ConstantDataSequential
**Entry
= &Slot
->getValue();
2466 // Remove the entry from the hash table.
2467 if (!(*Entry
)->Next
) {
2468 // If there is only one value in the bucket (common case) it must be this
2469 // entry, and removing the entry should remove the bucket completely.
2470 assert((*Entry
) == this && "Hash mismatch in ConstantDataSequential");
2471 getContext().pImpl
->CDSConstants
.erase(Slot
);
2473 // Otherwise, there are multiple entries linked off the bucket, unlink the
2474 // node we care about but keep the bucket around.
2475 for (ConstantDataSequential
*Node
= *Entry
; ;
2476 Entry
= &Node
->Next
, Node
= *Entry
) {
2477 assert(Node
&& "Didn't find entry in its uniquing hash table!");
2478 // If we found our entry, unlink it from the list and we're done.
2480 *Entry
= Node
->Next
;
2486 // If we were part of a list, make sure that we don't delete the list that is
2487 // still owned by the uniquing map.
2491 /// getFP() constructors - Return a constant with array type with an element
2492 /// count and element type of float with precision matching the number of
2493 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2494 /// double for 64bits) Note that this can return a ConstantAggregateZero
2496 Constant
*ConstantDataArray::getFP(LLVMContext
&Context
,
2497 ArrayRef
<uint16_t> Elts
) {
2498 Type
*Ty
= ArrayType::get(Type::getHalfTy(Context
), Elts
.size());
2499 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2500 return getImpl(StringRef(Data
, Elts
.size() * 2), Ty
);
2502 Constant
*ConstantDataArray::getFP(LLVMContext
&Context
,
2503 ArrayRef
<uint32_t> Elts
) {
2504 Type
*Ty
= ArrayType::get(Type::getFloatTy(Context
), Elts
.size());
2505 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2506 return getImpl(StringRef(Data
, Elts
.size() * 4), Ty
);
2508 Constant
*ConstantDataArray::getFP(LLVMContext
&Context
,
2509 ArrayRef
<uint64_t> Elts
) {
2510 Type
*Ty
= ArrayType::get(Type::getDoubleTy(Context
), Elts
.size());
2511 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2512 return getImpl(StringRef(Data
, Elts
.size() * 8), Ty
);
2515 Constant
*ConstantDataArray::getString(LLVMContext
&Context
,
2516 StringRef Str
, bool AddNull
) {
2518 const uint8_t *Data
= reinterpret_cast<const uint8_t *>(Str
.data());
2519 return get(Context
, makeArrayRef(Data
, Str
.size()));
2522 SmallVector
<uint8_t, 64> ElementVals
;
2523 ElementVals
.append(Str
.begin(), Str
.end());
2524 ElementVals
.push_back(0);
2525 return get(Context
, ElementVals
);
2528 /// get() constructors - Return a constant with vector type with an element
2529 /// count and element type matching the ArrayRef passed in. Note that this
2530 /// can return a ConstantAggregateZero object.
2531 Constant
*ConstantDataVector::get(LLVMContext
&Context
, ArrayRef
<uint8_t> Elts
){
2532 Type
*Ty
= VectorType::get(Type::getInt8Ty(Context
), Elts
.size());
2533 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2534 return getImpl(StringRef(Data
, Elts
.size() * 1), Ty
);
2536 Constant
*ConstantDataVector::get(LLVMContext
&Context
, ArrayRef
<uint16_t> Elts
){
2537 Type
*Ty
= VectorType::get(Type::getInt16Ty(Context
), Elts
.size());
2538 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2539 return getImpl(StringRef(Data
, Elts
.size() * 2), Ty
);
2541 Constant
*ConstantDataVector::get(LLVMContext
&Context
, ArrayRef
<uint32_t> Elts
){
2542 Type
*Ty
= VectorType::get(Type::getInt32Ty(Context
), Elts
.size());
2543 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2544 return getImpl(StringRef(Data
, Elts
.size() * 4), Ty
);
2546 Constant
*ConstantDataVector::get(LLVMContext
&Context
, ArrayRef
<uint64_t> Elts
){
2547 Type
*Ty
= VectorType::get(Type::getInt64Ty(Context
), Elts
.size());
2548 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2549 return getImpl(StringRef(Data
, Elts
.size() * 8), Ty
);
2551 Constant
*ConstantDataVector::get(LLVMContext
&Context
, ArrayRef
<float> Elts
) {
2552 Type
*Ty
= VectorType::get(Type::getFloatTy(Context
), Elts
.size());
2553 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2554 return getImpl(StringRef(Data
, Elts
.size() * 4), Ty
);
2556 Constant
*ConstantDataVector::get(LLVMContext
&Context
, ArrayRef
<double> Elts
) {
2557 Type
*Ty
= VectorType::get(Type::getDoubleTy(Context
), Elts
.size());
2558 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2559 return getImpl(StringRef(Data
, Elts
.size() * 8), Ty
);
2562 /// getFP() constructors - Return a constant with vector type with an element
2563 /// count and element type of float with the precision matching the number of
2564 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2565 /// double for 64bits) Note that this can return a ConstantAggregateZero
2567 Constant
*ConstantDataVector::getFP(LLVMContext
&Context
,
2568 ArrayRef
<uint16_t> Elts
) {
2569 Type
*Ty
= VectorType::get(Type::getHalfTy(Context
), Elts
.size());
2570 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2571 return getImpl(StringRef(Data
, Elts
.size() * 2), Ty
);
2573 Constant
*ConstantDataVector::getFP(LLVMContext
&Context
,
2574 ArrayRef
<uint32_t> Elts
) {
2575 Type
*Ty
= VectorType::get(Type::getFloatTy(Context
), Elts
.size());
2576 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2577 return getImpl(StringRef(Data
, Elts
.size() * 4), Ty
);
2579 Constant
*ConstantDataVector::getFP(LLVMContext
&Context
,
2580 ArrayRef
<uint64_t> Elts
) {
2581 Type
*Ty
= VectorType::get(Type::getDoubleTy(Context
), Elts
.size());
2582 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2583 return getImpl(StringRef(Data
, Elts
.size() * 8), Ty
);
2586 Constant
*ConstantDataVector::getSplat(unsigned NumElts
, Constant
*V
) {
2587 assert(isElementTypeCompatible(V
->getType()) &&
2588 "Element type not compatible with ConstantData");
2589 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
2590 if (CI
->getType()->isIntegerTy(8)) {
2591 SmallVector
<uint8_t, 16> Elts(NumElts
, CI
->getZExtValue());
2592 return get(V
->getContext(), Elts
);
2594 if (CI
->getType()->isIntegerTy(16)) {
2595 SmallVector
<uint16_t, 16> Elts(NumElts
, CI
->getZExtValue());
2596 return get(V
->getContext(), Elts
);
2598 if (CI
->getType()->isIntegerTy(32)) {
2599 SmallVector
<uint32_t, 16> Elts(NumElts
, CI
->getZExtValue());
2600 return get(V
->getContext(), Elts
);
2602 assert(CI
->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2603 SmallVector
<uint64_t, 16> Elts(NumElts
, CI
->getZExtValue());
2604 return get(V
->getContext(), Elts
);
2607 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(V
)) {
2608 if (CFP
->getType()->isHalfTy()) {
2609 SmallVector
<uint16_t, 16> Elts(
2610 NumElts
, CFP
->getValueAPF().bitcastToAPInt().getLimitedValue());
2611 return getFP(V
->getContext(), Elts
);
2613 if (CFP
->getType()->isFloatTy()) {
2614 SmallVector
<uint32_t, 16> Elts(
2615 NumElts
, CFP
->getValueAPF().bitcastToAPInt().getLimitedValue());
2616 return getFP(V
->getContext(), Elts
);
2618 if (CFP
->getType()->isDoubleTy()) {
2619 SmallVector
<uint64_t, 16> Elts(
2620 NumElts
, CFP
->getValueAPF().bitcastToAPInt().getLimitedValue());
2621 return getFP(V
->getContext(), Elts
);
2624 return ConstantVector::getSplat(NumElts
, V
);
2628 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt
) const {
2629 assert(isa
<IntegerType
>(getElementType()) &&
2630 "Accessor can only be used when element is an integer");
2631 const char *EltPtr
= getElementPointer(Elt
);
2633 // The data is stored in host byte order, make sure to cast back to the right
2634 // type to load with the right endianness.
2635 switch (getElementType()->getIntegerBitWidth()) {
2636 default: llvm_unreachable("Invalid bitwidth for CDS");
2638 return *reinterpret_cast<const uint8_t *>(EltPtr
);
2640 return *reinterpret_cast<const uint16_t *>(EltPtr
);
2642 return *reinterpret_cast<const uint32_t *>(EltPtr
);
2644 return *reinterpret_cast<const uint64_t *>(EltPtr
);
2648 APInt
ConstantDataSequential::getElementAsAPInt(unsigned Elt
) const {
2649 assert(isa
<IntegerType
>(getElementType()) &&
2650 "Accessor can only be used when element is an integer");
2651 const char *EltPtr
= getElementPointer(Elt
);
2653 // The data is stored in host byte order, make sure to cast back to the right
2654 // type to load with the right endianness.
2655 switch (getElementType()->getIntegerBitWidth()) {
2656 default: llvm_unreachable("Invalid bitwidth for CDS");
2658 auto EltVal
= *reinterpret_cast<const uint8_t *>(EltPtr
);
2659 return APInt(8, EltVal
);
2662 auto EltVal
= *reinterpret_cast<const uint16_t *>(EltPtr
);
2663 return APInt(16, EltVal
);
2666 auto EltVal
= *reinterpret_cast<const uint32_t *>(EltPtr
);
2667 return APInt(32, EltVal
);
2670 auto EltVal
= *reinterpret_cast<const uint64_t *>(EltPtr
);
2671 return APInt(64, EltVal
);
2676 APFloat
ConstantDataSequential::getElementAsAPFloat(unsigned Elt
) const {
2677 const char *EltPtr
= getElementPointer(Elt
);
2679 switch (getElementType()->getTypeID()) {
2681 llvm_unreachable("Accessor can only be used when element is float/double!");
2682 case Type::HalfTyID
: {
2683 auto EltVal
= *reinterpret_cast<const uint16_t *>(EltPtr
);
2684 return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal
));
2686 case Type::FloatTyID
: {
2687 auto EltVal
= *reinterpret_cast<const uint32_t *>(EltPtr
);
2688 return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal
));
2690 case Type::DoubleTyID
: {
2691 auto EltVal
= *reinterpret_cast<const uint64_t *>(EltPtr
);
2692 return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal
));
2697 float ConstantDataSequential::getElementAsFloat(unsigned Elt
) const {
2698 assert(getElementType()->isFloatTy() &&
2699 "Accessor can only be used when element is a 'float'");
2700 return *reinterpret_cast<const float *>(getElementPointer(Elt
));
2703 double ConstantDataSequential::getElementAsDouble(unsigned Elt
) const {
2704 assert(getElementType()->isDoubleTy() &&
2705 "Accessor can only be used when element is a 'float'");
2706 return *reinterpret_cast<const double *>(getElementPointer(Elt
));
2709 Constant
*ConstantDataSequential::getElementAsConstant(unsigned Elt
) const {
2710 if (getElementType()->isHalfTy() || getElementType()->isFloatTy() ||
2711 getElementType()->isDoubleTy())
2712 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt
));
2714 return ConstantInt::get(getElementType(), getElementAsInteger(Elt
));
2717 bool ConstantDataSequential::isString(unsigned CharSize
) const {
2718 return isa
<ArrayType
>(getType()) && getElementType()->isIntegerTy(CharSize
);
2721 bool ConstantDataSequential::isCString() const {
2725 StringRef Str
= getAsString();
2727 // The last value must be nul.
2728 if (Str
.back() != 0) return false;
2730 // Other elements must be non-nul.
2731 return Str
.drop_back().find(0) == StringRef::npos
;
2734 bool ConstantDataVector::isSplat() const {
2735 const char *Base
= getRawDataValues().data();
2737 // Compare elements 1+ to the 0'th element.
2738 unsigned EltSize
= getElementByteSize();
2739 for (unsigned i
= 1, e
= getNumElements(); i
!= e
; ++i
)
2740 if (memcmp(Base
, Base
+i
*EltSize
, EltSize
))
2746 Constant
*ConstantDataVector::getSplatValue() const {
2747 // If they're all the same, return the 0th one as a representative.
2748 return isSplat() ? getElementAsConstant(0) : nullptr;
2751 //===----------------------------------------------------------------------===//
2752 // handleOperandChange implementations
2754 /// Update this constant array to change uses of
2755 /// 'From' to be uses of 'To'. This must update the uniquing data structures
2758 /// Note that we intentionally replace all uses of From with To here. Consider
2759 /// a large array that uses 'From' 1000 times. By handling this case all here,
2760 /// ConstantArray::handleOperandChange is only invoked once, and that
2761 /// single invocation handles all 1000 uses. Handling them one at a time would
2762 /// work, but would be really slow because it would have to unique each updated
2765 void Constant::handleOperandChange(Value
*From
, Value
*To
) {
2766 Value
*Replacement
= nullptr;
2767 switch (getValueID()) {
2769 llvm_unreachable("Not a constant!");
2770 #define HANDLE_CONSTANT(Name) \
2771 case Value::Name##Val: \
2772 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \
2774 #include "llvm/IR/Value.def"
2777 // If handleOperandChangeImpl returned nullptr, then it handled
2778 // replacing itself and we don't want to delete or replace anything else here.
2782 // I do need to replace this with an existing value.
2783 assert(Replacement
!= this && "I didn't contain From!");
2785 // Everyone using this now uses the replacement.
2786 replaceAllUsesWith(Replacement
);
2788 // Delete the old constant!
2792 Value
*ConstantArray::handleOperandChangeImpl(Value
*From
, Value
*To
) {
2793 assert(isa
<Constant
>(To
) && "Cannot make Constant refer to non-constant!");
2794 Constant
*ToC
= cast
<Constant
>(To
);
2796 SmallVector
<Constant
*, 8> Values
;
2797 Values
.reserve(getNumOperands()); // Build replacement array.
2799 // Fill values with the modified operands of the constant array. Also,
2800 // compute whether this turns into an all-zeros array.
2801 unsigned NumUpdated
= 0;
2803 // Keep track of whether all the values in the array are "ToC".
2804 bool AllSame
= true;
2805 Use
*OperandList
= getOperandList();
2806 unsigned OperandNo
= 0;
2807 for (Use
*O
= OperandList
, *E
= OperandList
+getNumOperands(); O
!= E
; ++O
) {
2808 Constant
*Val
= cast
<Constant
>(O
->get());
2810 OperandNo
= (O
- OperandList
);
2814 Values
.push_back(Val
);
2815 AllSame
&= Val
== ToC
;
2818 if (AllSame
&& ToC
->isNullValue())
2819 return ConstantAggregateZero::get(getType());
2821 if (AllSame
&& isa
<UndefValue
>(ToC
))
2822 return UndefValue::get(getType());
2824 // Check for any other type of constant-folding.
2825 if (Constant
*C
= getImpl(getType(), Values
))
2828 // Update to the new value.
2829 return getContext().pImpl
->ArrayConstants
.replaceOperandsInPlace(
2830 Values
, this, From
, ToC
, NumUpdated
, OperandNo
);
2833 Value
*ConstantStruct::handleOperandChangeImpl(Value
*From
, Value
*To
) {
2834 assert(isa
<Constant
>(To
) && "Cannot make Constant refer to non-constant!");
2835 Constant
*ToC
= cast
<Constant
>(To
);
2837 Use
*OperandList
= getOperandList();
2839 SmallVector
<Constant
*, 8> Values
;
2840 Values
.reserve(getNumOperands()); // Build replacement struct.
2842 // Fill values with the modified operands of the constant struct. Also,
2843 // compute whether this turns into an all-zeros struct.
2844 unsigned NumUpdated
= 0;
2845 bool AllSame
= true;
2846 unsigned OperandNo
= 0;
2847 for (Use
*O
= OperandList
, *E
= OperandList
+ getNumOperands(); O
!= E
; ++O
) {
2848 Constant
*Val
= cast
<Constant
>(O
->get());
2850 OperandNo
= (O
- OperandList
);
2854 Values
.push_back(Val
);
2855 AllSame
&= Val
== ToC
;
2858 if (AllSame
&& ToC
->isNullValue())
2859 return ConstantAggregateZero::get(getType());
2861 if (AllSame
&& isa
<UndefValue
>(ToC
))
2862 return UndefValue::get(getType());
2864 // Update to the new value.
2865 return getContext().pImpl
->StructConstants
.replaceOperandsInPlace(
2866 Values
, this, From
, ToC
, NumUpdated
, OperandNo
);
2869 Value
*ConstantVector::handleOperandChangeImpl(Value
*From
, Value
*To
) {
2870 assert(isa
<Constant
>(To
) && "Cannot make Constant refer to non-constant!");
2871 Constant
*ToC
= cast
<Constant
>(To
);
2873 SmallVector
<Constant
*, 8> Values
;
2874 Values
.reserve(getNumOperands()); // Build replacement array...
2875 unsigned NumUpdated
= 0;
2876 unsigned OperandNo
= 0;
2877 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
2878 Constant
*Val
= getOperand(i
);
2884 Values
.push_back(Val
);
2887 if (Constant
*C
= getImpl(Values
))
2890 // Update to the new value.
2891 return getContext().pImpl
->VectorConstants
.replaceOperandsInPlace(
2892 Values
, this, From
, ToC
, NumUpdated
, OperandNo
);
2895 Value
*ConstantExpr::handleOperandChangeImpl(Value
*From
, Value
*ToV
) {
2896 assert(isa
<Constant
>(ToV
) && "Cannot make Constant refer to non-constant!");
2897 Constant
*To
= cast
<Constant
>(ToV
);
2899 SmallVector
<Constant
*, 8> NewOps
;
2900 unsigned NumUpdated
= 0;
2901 unsigned OperandNo
= 0;
2902 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
2903 Constant
*Op
= getOperand(i
);
2909 NewOps
.push_back(Op
);
2911 assert(NumUpdated
&& "I didn't contain From!");
2913 if (Constant
*C
= getWithOperands(NewOps
, getType(), true))
2916 // Update to the new value.
2917 return getContext().pImpl
->ExprConstants
.replaceOperandsInPlace(
2918 NewOps
, this, From
, To
, NumUpdated
, OperandNo
);
2921 Instruction
*ConstantExpr::getAsInstruction() {
2922 SmallVector
<Value
*, 4> ValueOperands(op_begin(), op_end());
2923 ArrayRef
<Value
*> Ops(ValueOperands
);
2925 switch (getOpcode()) {
2926 case Instruction::Trunc
:
2927 case Instruction::ZExt
:
2928 case Instruction::SExt
:
2929 case Instruction::FPTrunc
:
2930 case Instruction::FPExt
:
2931 case Instruction::UIToFP
:
2932 case Instruction::SIToFP
:
2933 case Instruction::FPToUI
:
2934 case Instruction::FPToSI
:
2935 case Instruction::PtrToInt
:
2936 case Instruction::IntToPtr
:
2937 case Instruction::BitCast
:
2938 case Instruction::AddrSpaceCast
:
2939 return CastInst::Create((Instruction::CastOps
)getOpcode(),
2941 case Instruction::Select
:
2942 return SelectInst::Create(Ops
[0], Ops
[1], Ops
[2]);
2943 case Instruction::InsertElement
:
2944 return InsertElementInst::Create(Ops
[0], Ops
[1], Ops
[2]);
2945 case Instruction::ExtractElement
:
2946 return ExtractElementInst::Create(Ops
[0], Ops
[1]);
2947 case Instruction::InsertValue
:
2948 return InsertValueInst::Create(Ops
[0], Ops
[1], getIndices());
2949 case Instruction::ExtractValue
:
2950 return ExtractValueInst::Create(Ops
[0], getIndices());
2951 case Instruction::ShuffleVector
:
2952 return new ShuffleVectorInst(Ops
[0], Ops
[1], Ops
[2]);
2954 case Instruction::GetElementPtr
: {
2955 const auto *GO
= cast
<GEPOperator
>(this);
2956 if (GO
->isInBounds())
2957 return GetElementPtrInst::CreateInBounds(GO
->getSourceElementType(),
2958 Ops
[0], Ops
.slice(1));
2959 return GetElementPtrInst::Create(GO
->getSourceElementType(), Ops
[0],
2962 case Instruction::ICmp
:
2963 case Instruction::FCmp
:
2964 return CmpInst::Create((Instruction::OtherOps
)getOpcode(),
2965 (CmpInst::Predicate
)getPredicate(), Ops
[0], Ops
[1]);
2968 assert(getNumOperands() == 2 && "Must be binary operator?");
2969 BinaryOperator
*BO
=
2970 BinaryOperator::Create((Instruction::BinaryOps
)getOpcode(),
2972 if (isa
<OverflowingBinaryOperator
>(BO
)) {
2973 BO
->setHasNoUnsignedWrap(SubclassOptionalData
&
2974 OverflowingBinaryOperator::NoUnsignedWrap
);
2975 BO
->setHasNoSignedWrap(SubclassOptionalData
&
2976 OverflowingBinaryOperator::NoSignedWrap
);
2978 if (isa
<PossiblyExactOperator
>(BO
))
2979 BO
->setIsExact(SubclassOptionalData
& PossiblyExactOperator::IsExact
);