[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / IR / Constants.cpp
blob2351e7e4a38930f06bd2ef9148a8389560a5761f
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/GetElementPtrTypeIterator.h"
22 #include "llvm/IR/GlobalValue.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
33 using namespace llvm;
35 //===----------------------------------------------------------------------===//
36 // Constant Class
37 //===----------------------------------------------------------------------===//
39 bool Constant::isNegativeZeroValue() const {
40 // Floating point values have an explicit -0.0 value.
41 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
42 return CFP->isZero() && CFP->isNegative();
44 // Equivalent for a vector of -0.0's.
45 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
46 if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
47 if (CV->getElementAsAPFloat(0).isNegZero())
48 return true;
50 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
51 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
52 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
53 return true;
55 // We've already handled true FP case; any other FP vectors can't represent -0.0.
56 if (getType()->isFPOrFPVectorTy())
57 return false;
59 // Otherwise, just use +0.0.
60 return isNullValue();
63 // Return true iff this constant is positive zero (floating point), negative
64 // zero (floating point), or a null value.
65 bool Constant::isZeroValue() const {
66 // Floating point values have an explicit -0.0 value.
67 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
68 return CFP->isZero();
70 // Equivalent for a vector of -0.0's.
71 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
72 if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
73 if (CV->getElementAsAPFloat(0).isZero())
74 return true;
76 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
77 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
78 if (SplatCFP && SplatCFP->isZero())
79 return true;
81 // Otherwise, just use +0.0.
82 return isNullValue();
85 bool Constant::isNullValue() const {
86 // 0 is null.
87 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
88 return CI->isZero();
90 // +0.0 is null.
91 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
92 return CFP->isZero() && !CFP->isNegative();
94 // constant zero is zero for aggregates, cpnull is null for pointers, none for
95 // tokens.
96 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
97 isa<ConstantTokenNone>(this);
100 bool Constant::isAllOnesValue() const {
101 // Check for -1 integers
102 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
103 return CI->isMinusOne();
105 // Check for FP which are bitcasted from -1 integers
106 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
107 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
109 // Check for constant vectors which are splats of -1 values.
110 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
111 if (Constant *Splat = CV->getSplatValue())
112 return Splat->isAllOnesValue();
114 // Check for constant vectors which are splats of -1 values.
115 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
116 if (CV->isSplat()) {
117 if (CV->getElementType()->isFloatingPointTy())
118 return CV->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue();
119 return CV->getElementAsAPInt(0).isAllOnesValue();
123 return false;
126 bool Constant::isOneValue() const {
127 // Check for 1 integers
128 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
129 return CI->isOne();
131 // Check for FP which are bitcasted from 1 integers
132 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
133 return CFP->getValueAPF().bitcastToAPInt().isOneValue();
135 // Check for constant vectors which are splats of 1 values.
136 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
137 if (Constant *Splat = CV->getSplatValue())
138 return Splat->isOneValue();
140 // Check for constant vectors which are splats of 1 values.
141 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
142 if (CV->isSplat()) {
143 if (CV->getElementType()->isFloatingPointTy())
144 return CV->getElementAsAPFloat(0).bitcastToAPInt().isOneValue();
145 return CV->getElementAsAPInt(0).isOneValue();
149 return false;
152 bool Constant::isMinSignedValue() const {
153 // Check for INT_MIN integers
154 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
155 return CI->isMinValue(/*isSigned=*/true);
157 // Check for FP which are bitcasted from INT_MIN integers
158 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
159 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
161 // Check for constant vectors which are splats of INT_MIN values.
162 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
163 if (Constant *Splat = CV->getSplatValue())
164 return Splat->isMinSignedValue();
166 // Check for constant vectors which are splats of INT_MIN values.
167 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
168 if (CV->isSplat()) {
169 if (CV->getElementType()->isFloatingPointTy())
170 return CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue();
171 return CV->getElementAsAPInt(0).isMinSignedValue();
175 return false;
178 bool Constant::isNotMinSignedValue() const {
179 // Check for INT_MIN integers
180 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
181 return !CI->isMinValue(/*isSigned=*/true);
183 // Check for FP which are bitcasted from INT_MIN integers
184 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
185 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
187 // Check for constant vectors which are splats of INT_MIN values.
188 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
189 if (Constant *Splat = CV->getSplatValue())
190 return Splat->isNotMinSignedValue();
192 // Check for constant vectors which are splats of INT_MIN values.
193 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
194 if (CV->isSplat()) {
195 if (CV->getElementType()->isFloatingPointTy())
196 return !CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue();
197 return !CV->getElementAsAPInt(0).isMinSignedValue();
201 // It *may* contain INT_MIN, we can't tell.
202 return false;
205 bool Constant::isFiniteNonZeroFP() const {
206 if (auto *CFP = dyn_cast<ConstantFP>(this))
207 return CFP->getValueAPF().isFiniteNonZero();
208 if (!getType()->isVectorTy())
209 return false;
210 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
211 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
212 if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
213 return false;
215 return true;
218 bool Constant::isNormalFP() const {
219 if (auto *CFP = dyn_cast<ConstantFP>(this))
220 return CFP->getValueAPF().isNormal();
221 if (!getType()->isVectorTy())
222 return false;
223 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
224 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
225 if (!CFP || !CFP->getValueAPF().isNormal())
226 return false;
228 return true;
231 bool Constant::hasExactInverseFP() const {
232 if (auto *CFP = dyn_cast<ConstantFP>(this))
233 return CFP->getValueAPF().getExactInverse(nullptr);
234 if (!getType()->isVectorTy())
235 return false;
236 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
237 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
238 if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
239 return false;
241 return true;
244 bool Constant::isNaN() const {
245 if (auto *CFP = dyn_cast<ConstantFP>(this))
246 return CFP->isNaN();
247 if (!getType()->isVectorTy())
248 return false;
249 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
250 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
251 if (!CFP || !CFP->isNaN())
252 return false;
254 return true;
257 bool Constant::containsUndefElement() const {
258 if (!getType()->isVectorTy())
259 return false;
260 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i)
261 if (isa<UndefValue>(getAggregateElement(i)))
262 return true;
264 return false;
267 /// Constructor to create a '0' constant of arbitrary type.
268 Constant *Constant::getNullValue(Type *Ty) {
269 switch (Ty->getTypeID()) {
270 case Type::IntegerTyID:
271 return ConstantInt::get(Ty, 0);
272 case Type::HalfTyID:
273 return ConstantFP::get(Ty->getContext(),
274 APFloat::getZero(APFloat::IEEEhalf()));
275 case Type::FloatTyID:
276 return ConstantFP::get(Ty->getContext(),
277 APFloat::getZero(APFloat::IEEEsingle()));
278 case Type::DoubleTyID:
279 return ConstantFP::get(Ty->getContext(),
280 APFloat::getZero(APFloat::IEEEdouble()));
281 case Type::X86_FP80TyID:
282 return ConstantFP::get(Ty->getContext(),
283 APFloat::getZero(APFloat::x87DoubleExtended()));
284 case Type::FP128TyID:
285 return ConstantFP::get(Ty->getContext(),
286 APFloat::getZero(APFloat::IEEEquad()));
287 case Type::PPC_FP128TyID:
288 return ConstantFP::get(Ty->getContext(),
289 APFloat(APFloat::PPCDoubleDouble(),
290 APInt::getNullValue(128)));
291 case Type::PointerTyID:
292 return ConstantPointerNull::get(cast<PointerType>(Ty));
293 case Type::StructTyID:
294 case Type::ArrayTyID:
295 case Type::VectorTyID:
296 return ConstantAggregateZero::get(Ty);
297 case Type::TokenTyID:
298 return ConstantTokenNone::get(Ty->getContext());
299 default:
300 // Function, Label, or Opaque type?
301 llvm_unreachable("Cannot create a null constant of that type!");
305 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
306 Type *ScalarTy = Ty->getScalarType();
308 // Create the base integer constant.
309 Constant *C = ConstantInt::get(Ty->getContext(), V);
311 // Convert an integer to a pointer, if necessary.
312 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
313 C = ConstantExpr::getIntToPtr(C, PTy);
315 // Broadcast a scalar to a vector, if necessary.
316 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
317 C = ConstantVector::getSplat(VTy->getNumElements(), C);
319 return C;
322 Constant *Constant::getAllOnesValue(Type *Ty) {
323 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
324 return ConstantInt::get(Ty->getContext(),
325 APInt::getAllOnesValue(ITy->getBitWidth()));
327 if (Ty->isFloatingPointTy()) {
328 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
329 !Ty->isPPC_FP128Ty());
330 return ConstantFP::get(Ty->getContext(), FL);
333 VectorType *VTy = cast<VectorType>(Ty);
334 return ConstantVector::getSplat(VTy->getNumElements(),
335 getAllOnesValue(VTy->getElementType()));
338 Constant *Constant::getAggregateElement(unsigned Elt) const {
339 if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this))
340 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
342 if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
343 return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
345 if (const UndefValue *UV = dyn_cast<UndefValue>(this))
346 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
348 if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
349 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
350 : nullptr;
351 return nullptr;
354 Constant *Constant::getAggregateElement(Constant *Elt) const {
355 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
356 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
357 return getAggregateElement(CI->getZExtValue());
358 return nullptr;
361 void Constant::destroyConstant() {
362 /// First call destroyConstantImpl on the subclass. This gives the subclass
363 /// a chance to remove the constant from any maps/pools it's contained in.
364 switch (getValueID()) {
365 default:
366 llvm_unreachable("Not a constant!");
367 #define HANDLE_CONSTANT(Name) \
368 case Value::Name##Val: \
369 cast<Name>(this)->destroyConstantImpl(); \
370 break;
371 #include "llvm/IR/Value.def"
374 // When a Constant is destroyed, there may be lingering
375 // references to the constant by other constants in the constant pool. These
376 // constants are implicitly dependent on the module that is being deleted,
377 // but they don't know that. Because we only find out when the CPV is
378 // deleted, we must now notify all of our users (that should only be
379 // Constants) that they are, in fact, invalid now and should be deleted.
381 while (!use_empty()) {
382 Value *V = user_back();
383 #ifndef NDEBUG // Only in -g mode...
384 if (!isa<Constant>(V)) {
385 dbgs() << "While deleting: " << *this
386 << "\n\nUse still stuck around after Def is destroyed: " << *V
387 << "\n\n";
389 #endif
390 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
391 cast<Constant>(V)->destroyConstant();
393 // The constant should remove itself from our use list...
394 assert((use_empty() || user_back() != V) && "Constant not removed!");
397 // Value has no outstanding references it is safe to delete it now...
398 delete this;
401 static bool canTrapImpl(const Constant *C,
402 SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
403 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
404 // The only thing that could possibly trap are constant exprs.
405 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
406 if (!CE)
407 return false;
409 // ConstantExpr traps if any operands can trap.
410 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
411 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
412 if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
413 return true;
417 // Otherwise, only specific operations can trap.
418 switch (CE->getOpcode()) {
419 default:
420 return false;
421 case Instruction::UDiv:
422 case Instruction::SDiv:
423 case Instruction::URem:
424 case Instruction::SRem:
425 // Div and rem can trap if the RHS is not known to be non-zero.
426 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
427 return true;
428 return false;
432 bool Constant::canTrap() const {
433 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
434 return canTrapImpl(this, NonTrappingOps);
437 /// Check if C contains a GlobalValue for which Predicate is true.
438 static bool
439 ConstHasGlobalValuePredicate(const Constant *C,
440 bool (*Predicate)(const GlobalValue *)) {
441 SmallPtrSet<const Constant *, 8> Visited;
442 SmallVector<const Constant *, 8> WorkList;
443 WorkList.push_back(C);
444 Visited.insert(C);
446 while (!WorkList.empty()) {
447 const Constant *WorkItem = WorkList.pop_back_val();
448 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
449 if (Predicate(GV))
450 return true;
451 for (const Value *Op : WorkItem->operands()) {
452 const Constant *ConstOp = dyn_cast<Constant>(Op);
453 if (!ConstOp)
454 continue;
455 if (Visited.insert(ConstOp).second)
456 WorkList.push_back(ConstOp);
459 return false;
462 bool Constant::isThreadDependent() const {
463 auto DLLImportPredicate = [](const GlobalValue *GV) {
464 return GV->isThreadLocal();
466 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
469 bool Constant::isDLLImportDependent() const {
470 auto DLLImportPredicate = [](const GlobalValue *GV) {
471 return GV->hasDLLImportStorageClass();
473 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
476 bool Constant::isConstantUsed() const {
477 for (const User *U : users()) {
478 const Constant *UC = dyn_cast<Constant>(U);
479 if (!UC || isa<GlobalValue>(UC))
480 return true;
482 if (UC->isConstantUsed())
483 return true;
485 return false;
488 bool Constant::needsRelocation() const {
489 if (isa<GlobalValue>(this))
490 return true; // Global reference.
492 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
493 return BA->getFunction()->needsRelocation();
495 // While raw uses of blockaddress need to be relocated, differences between
496 // two of them don't when they are for labels in the same function. This is a
497 // common idiom when creating a table for the indirect goto extension, so we
498 // handle it efficiently here.
499 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
500 if (CE->getOpcode() == Instruction::Sub) {
501 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
502 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
503 if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
504 RHS->getOpcode() == Instruction::PtrToInt &&
505 isa<BlockAddress>(LHS->getOperand(0)) &&
506 isa<BlockAddress>(RHS->getOperand(0)) &&
507 cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
508 cast<BlockAddress>(RHS->getOperand(0))->getFunction())
509 return false;
512 bool Result = false;
513 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
514 Result |= cast<Constant>(getOperand(i))->needsRelocation();
516 return Result;
519 /// If the specified constantexpr is dead, remove it. This involves recursively
520 /// eliminating any dead users of the constantexpr.
521 static bool removeDeadUsersOfConstant(const Constant *C) {
522 if (isa<GlobalValue>(C)) return false; // Cannot remove this
524 while (!C->use_empty()) {
525 const Constant *User = dyn_cast<Constant>(C->user_back());
526 if (!User) return false; // Non-constant usage;
527 if (!removeDeadUsersOfConstant(User))
528 return false; // Constant wasn't dead
531 const_cast<Constant*>(C)->destroyConstant();
532 return true;
536 void Constant::removeDeadConstantUsers() const {
537 Value::const_user_iterator I = user_begin(), E = user_end();
538 Value::const_user_iterator LastNonDeadUser = E;
539 while (I != E) {
540 const Constant *User = dyn_cast<Constant>(*I);
541 if (!User) {
542 LastNonDeadUser = I;
543 ++I;
544 continue;
547 if (!removeDeadUsersOfConstant(User)) {
548 // If the constant wasn't dead, remember that this was the last live use
549 // and move on to the next constant.
550 LastNonDeadUser = I;
551 ++I;
552 continue;
555 // If the constant was dead, then the iterator is invalidated.
556 if (LastNonDeadUser == E) {
557 I = user_begin();
558 if (I == E) break;
559 } else {
560 I = LastNonDeadUser;
561 ++I;
568 //===----------------------------------------------------------------------===//
569 // ConstantInt
570 //===----------------------------------------------------------------------===//
572 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
573 : ConstantData(Ty, ConstantIntVal), Val(V) {
574 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
577 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
578 LLVMContextImpl *pImpl = Context.pImpl;
579 if (!pImpl->TheTrueVal)
580 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
581 return pImpl->TheTrueVal;
584 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
585 LLVMContextImpl *pImpl = Context.pImpl;
586 if (!pImpl->TheFalseVal)
587 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
588 return pImpl->TheFalseVal;
591 Constant *ConstantInt::getTrue(Type *Ty) {
592 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
593 ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext());
594 if (auto *VTy = dyn_cast<VectorType>(Ty))
595 return ConstantVector::getSplat(VTy->getNumElements(), TrueC);
596 return TrueC;
599 Constant *ConstantInt::getFalse(Type *Ty) {
600 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
601 ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext());
602 if (auto *VTy = dyn_cast<VectorType>(Ty))
603 return ConstantVector::getSplat(VTy->getNumElements(), FalseC);
604 return FalseC;
607 // Get a ConstantInt from an APInt.
608 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
609 // get an existing value or the insertion position
610 LLVMContextImpl *pImpl = Context.pImpl;
611 std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V];
612 if (!Slot) {
613 // Get the corresponding integer type for the bit width of the value.
614 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
615 Slot.reset(new ConstantInt(ITy, V));
617 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
618 return Slot.get();
621 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
622 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
624 // For vectors, broadcast the value.
625 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
626 return ConstantVector::getSplat(VTy->getNumElements(), C);
628 return C;
631 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
632 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
635 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
636 return get(Ty, V, true);
639 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
640 return get(Ty, V, true);
643 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
644 ConstantInt *C = get(Ty->getContext(), V);
645 assert(C->getType() == Ty->getScalarType() &&
646 "ConstantInt type doesn't match the type implied by its value!");
648 // For vectors, broadcast the value.
649 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
650 return ConstantVector::getSplat(VTy->getNumElements(), C);
652 return C;
655 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
656 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
659 /// Remove the constant from the constant table.
660 void ConstantInt::destroyConstantImpl() {
661 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
664 //===----------------------------------------------------------------------===//
665 // ConstantFP
666 //===----------------------------------------------------------------------===//
668 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
669 if (Ty->isHalfTy())
670 return &APFloat::IEEEhalf();
671 if (Ty->isFloatTy())
672 return &APFloat::IEEEsingle();
673 if (Ty->isDoubleTy())
674 return &APFloat::IEEEdouble();
675 if (Ty->isX86_FP80Ty())
676 return &APFloat::x87DoubleExtended();
677 else if (Ty->isFP128Ty())
678 return &APFloat::IEEEquad();
680 assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
681 return &APFloat::PPCDoubleDouble();
684 Constant *ConstantFP::get(Type *Ty, double V) {
685 LLVMContext &Context = Ty->getContext();
687 APFloat FV(V);
688 bool ignored;
689 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
690 APFloat::rmNearestTiesToEven, &ignored);
691 Constant *C = get(Context, FV);
693 // For vectors, broadcast the value.
694 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
695 return ConstantVector::getSplat(VTy->getNumElements(), C);
697 return C;
700 Constant *ConstantFP::get(Type *Ty, const APFloat &V) {
701 ConstantFP *C = get(Ty->getContext(), V);
702 assert(C->getType() == Ty->getScalarType() &&
703 "ConstantFP type doesn't match the type implied by its value!");
705 // For vectors, broadcast the value.
706 if (auto *VTy = dyn_cast<VectorType>(Ty))
707 return ConstantVector::getSplat(VTy->getNumElements(), C);
709 return C;
712 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
713 LLVMContext &Context = Ty->getContext();
715 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
716 Constant *C = get(Context, FV);
718 // For vectors, broadcast the value.
719 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
720 return ConstantVector::getSplat(VTy->getNumElements(), C);
722 return C;
725 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, unsigned Type) {
726 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
727 APFloat NaN = APFloat::getNaN(Semantics, Negative, Type);
728 Constant *C = get(Ty->getContext(), NaN);
730 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
731 return ConstantVector::getSplat(VTy->getNumElements(), C);
733 return C;
736 Constant *ConstantFP::getNegativeZero(Type *Ty) {
737 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
738 APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
739 Constant *C = get(Ty->getContext(), NegZero);
741 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
742 return ConstantVector::getSplat(VTy->getNumElements(), C);
744 return C;
748 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
749 if (Ty->isFPOrFPVectorTy())
750 return getNegativeZero(Ty);
752 return Constant::getNullValue(Ty);
756 // ConstantFP accessors.
757 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
758 LLVMContextImpl* pImpl = Context.pImpl;
760 std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
762 if (!Slot) {
763 Type *Ty;
764 if (&V.getSemantics() == &APFloat::IEEEhalf())
765 Ty = Type::getHalfTy(Context);
766 else if (&V.getSemantics() == &APFloat::IEEEsingle())
767 Ty = Type::getFloatTy(Context);
768 else if (&V.getSemantics() == &APFloat::IEEEdouble())
769 Ty = Type::getDoubleTy(Context);
770 else if (&V.getSemantics() == &APFloat::x87DoubleExtended())
771 Ty = Type::getX86_FP80Ty(Context);
772 else if (&V.getSemantics() == &APFloat::IEEEquad())
773 Ty = Type::getFP128Ty(Context);
774 else {
775 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble() &&
776 "Unknown FP format");
777 Ty = Type::getPPC_FP128Ty(Context);
779 Slot.reset(new ConstantFP(Ty, V));
782 return Slot.get();
785 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
786 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
787 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
789 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
790 return ConstantVector::getSplat(VTy->getNumElements(), C);
792 return C;
795 ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
796 : ConstantData(Ty, ConstantFPVal), Val(V) {
797 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
798 "FP type Mismatch");
801 bool ConstantFP::isExactlyValue(const APFloat &V) const {
802 return Val.bitwiseIsEqual(V);
805 /// Remove the constant from the constant table.
806 void ConstantFP::destroyConstantImpl() {
807 llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
810 //===----------------------------------------------------------------------===//
811 // ConstantAggregateZero Implementation
812 //===----------------------------------------------------------------------===//
814 Constant *ConstantAggregateZero::getSequentialElement() const {
815 return Constant::getNullValue(getType()->getSequentialElementType());
818 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
819 return Constant::getNullValue(getType()->getStructElementType(Elt));
822 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
823 if (isa<SequentialType>(getType()))
824 return getSequentialElement();
825 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
828 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
829 if (isa<SequentialType>(getType()))
830 return getSequentialElement();
831 return getStructElement(Idx);
834 unsigned ConstantAggregateZero::getNumElements() const {
835 Type *Ty = getType();
836 if (auto *AT = dyn_cast<ArrayType>(Ty))
837 return AT->getNumElements();
838 if (auto *VT = dyn_cast<VectorType>(Ty))
839 return VT->getNumElements();
840 return Ty->getStructNumElements();
843 //===----------------------------------------------------------------------===//
844 // UndefValue Implementation
845 //===----------------------------------------------------------------------===//
847 UndefValue *UndefValue::getSequentialElement() const {
848 return UndefValue::get(getType()->getSequentialElementType());
851 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
852 return UndefValue::get(getType()->getStructElementType(Elt));
855 UndefValue *UndefValue::getElementValue(Constant *C) const {
856 if (isa<SequentialType>(getType()))
857 return getSequentialElement();
858 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
861 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
862 if (isa<SequentialType>(getType()))
863 return getSequentialElement();
864 return getStructElement(Idx);
867 unsigned UndefValue::getNumElements() const {
868 Type *Ty = getType();
869 if (auto *ST = dyn_cast<SequentialType>(Ty))
870 return ST->getNumElements();
871 return Ty->getStructNumElements();
874 //===----------------------------------------------------------------------===//
875 // ConstantXXX Classes
876 //===----------------------------------------------------------------------===//
878 template <typename ItTy, typename EltTy>
879 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
880 for (; Start != End; ++Start)
881 if (*Start != Elt)
882 return false;
883 return true;
886 template <typename SequentialTy, typename ElementTy>
887 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
888 assert(!V.empty() && "Cannot get empty int sequence.");
890 SmallVector<ElementTy, 16> Elts;
891 for (Constant *C : V)
892 if (auto *CI = dyn_cast<ConstantInt>(C))
893 Elts.push_back(CI->getZExtValue());
894 else
895 return nullptr;
896 return SequentialTy::get(V[0]->getContext(), Elts);
899 template <typename SequentialTy, typename ElementTy>
900 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
901 assert(!V.empty() && "Cannot get empty FP sequence.");
903 SmallVector<ElementTy, 16> Elts;
904 for (Constant *C : V)
905 if (auto *CFP = dyn_cast<ConstantFP>(C))
906 Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
907 else
908 return nullptr;
909 return SequentialTy::getFP(V[0]->getContext(), Elts);
912 template <typename SequenceTy>
913 static Constant *getSequenceIfElementsMatch(Constant *C,
914 ArrayRef<Constant *> V) {
915 // We speculatively build the elements here even if it turns out that there is
916 // a constantexpr or something else weird, since it is so uncommon for that to
917 // happen.
918 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
919 if (CI->getType()->isIntegerTy(8))
920 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
921 else if (CI->getType()->isIntegerTy(16))
922 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
923 else if (CI->getType()->isIntegerTy(32))
924 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
925 else if (CI->getType()->isIntegerTy(64))
926 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
927 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
928 if (CFP->getType()->isHalfTy())
929 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
930 else if (CFP->getType()->isFloatTy())
931 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
932 else if (CFP->getType()->isDoubleTy())
933 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
936 return nullptr;
939 ConstantAggregate::ConstantAggregate(CompositeType *T, ValueTy VT,
940 ArrayRef<Constant *> V)
941 : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
942 V.size()) {
943 std::copy(V.begin(), V.end(), op_begin());
945 // Check that types match, unless this is an opaque struct.
946 if (auto *ST = dyn_cast<StructType>(T))
947 if (ST->isOpaque())
948 return;
949 for (unsigned I = 0, E = V.size(); I != E; ++I)
950 assert(V[I]->getType() == T->getTypeAtIndex(I) &&
951 "Initializer for composite element doesn't match!");
954 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
955 : ConstantAggregate(T, ConstantArrayVal, V) {
956 assert(V.size() == T->getNumElements() &&
957 "Invalid initializer for constant array");
960 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
961 if (Constant *C = getImpl(Ty, V))
962 return C;
963 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
966 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
967 // Empty arrays are canonicalized to ConstantAggregateZero.
968 if (V.empty())
969 return ConstantAggregateZero::get(Ty);
971 for (unsigned i = 0, e = V.size(); i != e; ++i) {
972 assert(V[i]->getType() == Ty->getElementType() &&
973 "Wrong type in array element initializer");
976 // If this is an all-zero array, return a ConstantAggregateZero object. If
977 // all undef, return an UndefValue, if "all simple", then return a
978 // ConstantDataArray.
979 Constant *C = V[0];
980 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
981 return UndefValue::get(Ty);
983 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
984 return ConstantAggregateZero::get(Ty);
986 // Check to see if all of the elements are ConstantFP or ConstantInt and if
987 // the element type is compatible with ConstantDataVector. If so, use it.
988 if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
989 return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
991 // Otherwise, we really do want to create a ConstantArray.
992 return nullptr;
995 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
996 ArrayRef<Constant*> V,
997 bool Packed) {
998 unsigned VecSize = V.size();
999 SmallVector<Type*, 16> EltTypes(VecSize);
1000 for (unsigned i = 0; i != VecSize; ++i)
1001 EltTypes[i] = V[i]->getType();
1003 return StructType::get(Context, EltTypes, Packed);
1007 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
1008 bool Packed) {
1009 assert(!V.empty() &&
1010 "ConstantStruct::getTypeForElements cannot be called on empty list");
1011 return getTypeForElements(V[0]->getContext(), V, Packed);
1014 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
1015 : ConstantAggregate(T, ConstantStructVal, V) {
1016 assert((T->isOpaque() || V.size() == T->getNumElements()) &&
1017 "Invalid initializer for constant struct");
1020 // ConstantStruct accessors.
1021 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
1022 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1023 "Incorrect # elements specified to ConstantStruct::get");
1025 // Create a ConstantAggregateZero value if all elements are zeros.
1026 bool isZero = true;
1027 bool isUndef = false;
1029 if (!V.empty()) {
1030 isUndef = isa<UndefValue>(V[0]);
1031 isZero = V[0]->isNullValue();
1032 if (isUndef || isZero) {
1033 for (unsigned i = 0, e = V.size(); i != e; ++i) {
1034 if (!V[i]->isNullValue())
1035 isZero = false;
1036 if (!isa<UndefValue>(V[i]))
1037 isUndef = false;
1041 if (isZero)
1042 return ConstantAggregateZero::get(ST);
1043 if (isUndef)
1044 return UndefValue::get(ST);
1046 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1049 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1050 : ConstantAggregate(T, ConstantVectorVal, V) {
1051 assert(V.size() == T->getNumElements() &&
1052 "Invalid initializer for constant vector");
1055 // ConstantVector accessors.
1056 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1057 if (Constant *C = getImpl(V))
1058 return C;
1059 VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
1060 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1063 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1064 assert(!V.empty() && "Vectors can't be empty");
1065 VectorType *T = VectorType::get(V.front()->getType(), V.size());
1067 // If this is an all-undef or all-zero vector, return a
1068 // ConstantAggregateZero or UndefValue.
1069 Constant *C = V[0];
1070 bool isZero = C->isNullValue();
1071 bool isUndef = isa<UndefValue>(C);
1073 if (isZero || isUndef) {
1074 for (unsigned i = 1, e = V.size(); i != e; ++i)
1075 if (V[i] != C) {
1076 isZero = isUndef = false;
1077 break;
1081 if (isZero)
1082 return ConstantAggregateZero::get(T);
1083 if (isUndef)
1084 return UndefValue::get(T);
1086 // Check to see if all of the elements are ConstantFP or ConstantInt and if
1087 // the element type is compatible with ConstantDataVector. If so, use it.
1088 if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1089 return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1091 // Otherwise, the element type isn't compatible with ConstantDataVector, or
1092 // the operand list contains a ConstantExpr or something else strange.
1093 return nullptr;
1096 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1097 // If this splat is compatible with ConstantDataVector, use it instead of
1098 // ConstantVector.
1099 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1100 ConstantDataSequential::isElementTypeCompatible(V->getType()))
1101 return ConstantDataVector::getSplat(NumElts, V);
1103 SmallVector<Constant*, 32> Elts(NumElts, V);
1104 return get(Elts);
1107 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1108 LLVMContextImpl *pImpl = Context.pImpl;
1109 if (!pImpl->TheNoneToken)
1110 pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1111 return pImpl->TheNoneToken.get();
1114 /// Remove the constant from the constant table.
1115 void ConstantTokenNone::destroyConstantImpl() {
1116 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1119 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1120 // can't be inline because we don't want to #include Instruction.h into
1121 // Constant.h
1122 bool ConstantExpr::isCast() const {
1123 return Instruction::isCast(getOpcode());
1126 bool ConstantExpr::isCompare() const {
1127 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1130 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1131 if (getOpcode() != Instruction::GetElementPtr) return false;
1133 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1134 User::const_op_iterator OI = std::next(this->op_begin());
1136 // The remaining indices may be compile-time known integers within the bounds
1137 // of the corresponding notional static array types.
1138 for (; GEPI != E; ++GEPI, ++OI) {
1139 if (isa<UndefValue>(*OI))
1140 continue;
1141 auto *CI = dyn_cast<ConstantInt>(*OI);
1142 if (!CI || (GEPI.isBoundedSequential() &&
1143 (CI->getValue().getActiveBits() > 64 ||
1144 CI->getZExtValue() >= GEPI.getSequentialNumElements())))
1145 return false;
1148 // All the indices checked out.
1149 return true;
1152 bool ConstantExpr::hasIndices() const {
1153 return getOpcode() == Instruction::ExtractValue ||
1154 getOpcode() == Instruction::InsertValue;
1157 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1158 if (const ExtractValueConstantExpr *EVCE =
1159 dyn_cast<ExtractValueConstantExpr>(this))
1160 return EVCE->Indices;
1162 return cast<InsertValueConstantExpr>(this)->Indices;
1165 unsigned ConstantExpr::getPredicate() const {
1166 return cast<CompareConstantExpr>(this)->predicate;
1169 Constant *
1170 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1171 assert(Op->getType() == getOperand(OpNo)->getType() &&
1172 "Replacing operand with value of different type!");
1173 if (getOperand(OpNo) == Op)
1174 return const_cast<ConstantExpr*>(this);
1176 SmallVector<Constant*, 8> NewOps;
1177 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1178 NewOps.push_back(i == OpNo ? Op : getOperand(i));
1180 return getWithOperands(NewOps);
1183 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1184 bool OnlyIfReduced, Type *SrcTy) const {
1185 assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1187 // If no operands changed return self.
1188 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1189 return const_cast<ConstantExpr*>(this);
1191 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1192 switch (getOpcode()) {
1193 case Instruction::Trunc:
1194 case Instruction::ZExt:
1195 case Instruction::SExt:
1196 case Instruction::FPTrunc:
1197 case Instruction::FPExt:
1198 case Instruction::UIToFP:
1199 case Instruction::SIToFP:
1200 case Instruction::FPToUI:
1201 case Instruction::FPToSI:
1202 case Instruction::PtrToInt:
1203 case Instruction::IntToPtr:
1204 case Instruction::BitCast:
1205 case Instruction::AddrSpaceCast:
1206 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1207 case Instruction::Select:
1208 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1209 case Instruction::InsertElement:
1210 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1211 OnlyIfReducedTy);
1212 case Instruction::ExtractElement:
1213 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1214 case Instruction::InsertValue:
1215 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1216 OnlyIfReducedTy);
1217 case Instruction::ExtractValue:
1218 return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1219 case Instruction::ShuffleVector:
1220 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
1221 OnlyIfReducedTy);
1222 case Instruction::GetElementPtr: {
1223 auto *GEPO = cast<GEPOperator>(this);
1224 assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1225 return ConstantExpr::getGetElementPtr(
1226 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1227 GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
1229 case Instruction::ICmp:
1230 case Instruction::FCmp:
1231 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1232 OnlyIfReducedTy);
1233 default:
1234 assert(getNumOperands() == 2 && "Must be binary operator?");
1235 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1236 OnlyIfReducedTy);
1241 //===----------------------------------------------------------------------===//
1242 // isValueValidForType implementations
1244 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1245 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1246 if (Ty->isIntegerTy(1))
1247 return Val == 0 || Val == 1;
1248 return isUIntN(NumBits, Val);
1251 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1252 unsigned NumBits = Ty->getIntegerBitWidth();
1253 if (Ty->isIntegerTy(1))
1254 return Val == 0 || Val == 1 || Val == -1;
1255 return isIntN(NumBits, Val);
1258 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1259 // convert modifies in place, so make a copy.
1260 APFloat Val2 = APFloat(Val);
1261 bool losesInfo;
1262 switch (Ty->getTypeID()) {
1263 default:
1264 return false; // These can't be represented as floating point!
1266 // FIXME rounding mode needs to be more flexible
1267 case Type::HalfTyID: {
1268 if (&Val2.getSemantics() == &APFloat::IEEEhalf())
1269 return true;
1270 Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
1271 return !losesInfo;
1273 case Type::FloatTyID: {
1274 if (&Val2.getSemantics() == &APFloat::IEEEsingle())
1275 return true;
1276 Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
1277 return !losesInfo;
1279 case Type::DoubleTyID: {
1280 if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
1281 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1282 &Val2.getSemantics() == &APFloat::IEEEdouble())
1283 return true;
1284 Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
1285 return !losesInfo;
1287 case Type::X86_FP80TyID:
1288 return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1289 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1290 &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1291 &Val2.getSemantics() == &APFloat::x87DoubleExtended();
1292 case Type::FP128TyID:
1293 return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1294 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1295 &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1296 &Val2.getSemantics() == &APFloat::IEEEquad();
1297 case Type::PPC_FP128TyID:
1298 return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1299 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1300 &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1301 &Val2.getSemantics() == &APFloat::PPCDoubleDouble();
1306 //===----------------------------------------------------------------------===//
1307 // Factory Function Implementation
1309 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1310 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1311 "Cannot create an aggregate zero of non-aggregate type!");
1313 std::unique_ptr<ConstantAggregateZero> &Entry =
1314 Ty->getContext().pImpl->CAZConstants[Ty];
1315 if (!Entry)
1316 Entry.reset(new ConstantAggregateZero(Ty));
1318 return Entry.get();
1321 /// Remove the constant from the constant table.
1322 void ConstantAggregateZero::destroyConstantImpl() {
1323 getContext().pImpl->CAZConstants.erase(getType());
1326 /// Remove the constant from the constant table.
1327 void ConstantArray::destroyConstantImpl() {
1328 getType()->getContext().pImpl->ArrayConstants.remove(this);
1332 //---- ConstantStruct::get() implementation...
1335 /// Remove the constant from the constant table.
1336 void ConstantStruct::destroyConstantImpl() {
1337 getType()->getContext().pImpl->StructConstants.remove(this);
1340 /// Remove the constant from the constant table.
1341 void ConstantVector::destroyConstantImpl() {
1342 getType()->getContext().pImpl->VectorConstants.remove(this);
1345 Constant *Constant::getSplatValue() const {
1346 assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1347 if (isa<ConstantAggregateZero>(this))
1348 return getNullValue(this->getType()->getVectorElementType());
1349 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1350 return CV->getSplatValue();
1351 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1352 return CV->getSplatValue();
1353 return nullptr;
1356 Constant *ConstantVector::getSplatValue() const {
1357 // Check out first element.
1358 Constant *Elt = getOperand(0);
1359 // Then make sure all remaining elements point to the same value.
1360 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1361 if (getOperand(I) != Elt)
1362 return nullptr;
1363 return Elt;
1366 const APInt &Constant::getUniqueInteger() const {
1367 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1368 return CI->getValue();
1369 assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1370 const Constant *C = this->getAggregateElement(0U);
1371 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1372 return cast<ConstantInt>(C)->getValue();
1375 //---- ConstantPointerNull::get() implementation.
1378 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1379 std::unique_ptr<ConstantPointerNull> &Entry =
1380 Ty->getContext().pImpl->CPNConstants[Ty];
1381 if (!Entry)
1382 Entry.reset(new ConstantPointerNull(Ty));
1384 return Entry.get();
1387 /// Remove the constant from the constant table.
1388 void ConstantPointerNull::destroyConstantImpl() {
1389 getContext().pImpl->CPNConstants.erase(getType());
1392 UndefValue *UndefValue::get(Type *Ty) {
1393 std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
1394 if (!Entry)
1395 Entry.reset(new UndefValue(Ty));
1397 return Entry.get();
1400 /// Remove the constant from the constant table.
1401 void UndefValue::destroyConstantImpl() {
1402 // Free the constant and any dangling references to it.
1403 getContext().pImpl->UVConstants.erase(getType());
1406 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1407 assert(BB->getParent() && "Block must have a parent");
1408 return get(BB->getParent(), BB);
1411 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1412 BlockAddress *&BA =
1413 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1414 if (!BA)
1415 BA = new BlockAddress(F, BB);
1417 assert(BA->getFunction() == F && "Basic block moved between functions");
1418 return BA;
1421 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1422 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1423 &Op<0>(), 2) {
1424 setOperand(0, F);
1425 setOperand(1, BB);
1426 BB->AdjustBlockAddressRefCount(1);
1429 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1430 if (!BB->hasAddressTaken())
1431 return nullptr;
1433 const Function *F = BB->getParent();
1434 assert(F && "Block must have a parent");
1435 BlockAddress *BA =
1436 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1437 assert(BA && "Refcount and block address map disagree!");
1438 return BA;
1441 /// Remove the constant from the constant table.
1442 void BlockAddress::destroyConstantImpl() {
1443 getFunction()->getType()->getContext().pImpl
1444 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1445 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1448 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
1449 // This could be replacing either the Basic Block or the Function. In either
1450 // case, we have to remove the map entry.
1451 Function *NewF = getFunction();
1452 BasicBlock *NewBB = getBasicBlock();
1454 if (From == NewF)
1455 NewF = cast<Function>(To->stripPointerCasts());
1456 else {
1457 assert(From == NewBB && "From does not match any operand");
1458 NewBB = cast<BasicBlock>(To);
1461 // See if the 'new' entry already exists, if not, just update this in place
1462 // and return early.
1463 BlockAddress *&NewBA =
1464 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1465 if (NewBA)
1466 return NewBA;
1468 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1470 // Remove the old entry, this can't cause the map to rehash (just a
1471 // tombstone will get added).
1472 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1473 getBasicBlock()));
1474 NewBA = this;
1475 setOperand(0, NewF);
1476 setOperand(1, NewBB);
1477 getBasicBlock()->AdjustBlockAddressRefCount(1);
1479 // If we just want to keep the existing value, then return null.
1480 // Callers know that this means we shouldn't delete this value.
1481 return nullptr;
1484 //---- ConstantExpr::get() implementations.
1487 /// This is a utility function to handle folding of casts and lookup of the
1488 /// cast in the ExprConstants map. It is used by the various get* methods below.
1489 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1490 bool OnlyIfReduced = false) {
1491 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1492 // Fold a few common cases
1493 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1494 return FC;
1496 if (OnlyIfReduced)
1497 return nullptr;
1499 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1501 // Look up the constant in the table first to ensure uniqueness.
1502 ConstantExprKeyType Key(opc, C);
1504 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1507 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1508 bool OnlyIfReduced) {
1509 Instruction::CastOps opc = Instruction::CastOps(oc);
1510 assert(Instruction::isCast(opc) && "opcode out of range");
1511 assert(C && Ty && "Null arguments to getCast");
1512 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1514 switch (opc) {
1515 default:
1516 llvm_unreachable("Invalid cast opcode");
1517 case Instruction::Trunc:
1518 return getTrunc(C, Ty, OnlyIfReduced);
1519 case Instruction::ZExt:
1520 return getZExt(C, Ty, OnlyIfReduced);
1521 case Instruction::SExt:
1522 return getSExt(C, Ty, OnlyIfReduced);
1523 case Instruction::FPTrunc:
1524 return getFPTrunc(C, Ty, OnlyIfReduced);
1525 case Instruction::FPExt:
1526 return getFPExtend(C, Ty, OnlyIfReduced);
1527 case Instruction::UIToFP:
1528 return getUIToFP(C, Ty, OnlyIfReduced);
1529 case Instruction::SIToFP:
1530 return getSIToFP(C, Ty, OnlyIfReduced);
1531 case Instruction::FPToUI:
1532 return getFPToUI(C, Ty, OnlyIfReduced);
1533 case Instruction::FPToSI:
1534 return getFPToSI(C, Ty, OnlyIfReduced);
1535 case Instruction::PtrToInt:
1536 return getPtrToInt(C, Ty, OnlyIfReduced);
1537 case Instruction::IntToPtr:
1538 return getIntToPtr(C, Ty, OnlyIfReduced);
1539 case Instruction::BitCast:
1540 return getBitCast(C, Ty, OnlyIfReduced);
1541 case Instruction::AddrSpaceCast:
1542 return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1546 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1547 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1548 return getBitCast(C, Ty);
1549 return getZExt(C, Ty);
1552 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1553 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1554 return getBitCast(C, Ty);
1555 return getSExt(C, Ty);
1558 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1559 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1560 return getBitCast(C, Ty);
1561 return getTrunc(C, Ty);
1564 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1565 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1566 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1567 "Invalid cast");
1569 if (Ty->isIntOrIntVectorTy())
1570 return getPtrToInt(S, Ty);
1572 unsigned SrcAS = S->getType()->getPointerAddressSpace();
1573 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1574 return getAddrSpaceCast(S, Ty);
1576 return getBitCast(S, Ty);
1579 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1580 Type *Ty) {
1581 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1582 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1584 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1585 return getAddrSpaceCast(S, Ty);
1587 return getBitCast(S, Ty);
1590 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
1591 assert(C->getType()->isIntOrIntVectorTy() &&
1592 Ty->isIntOrIntVectorTy() && "Invalid cast");
1593 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1594 unsigned DstBits = Ty->getScalarSizeInBits();
1595 Instruction::CastOps opcode =
1596 (SrcBits == DstBits ? Instruction::BitCast :
1597 (SrcBits > DstBits ? Instruction::Trunc :
1598 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1599 return getCast(opcode, C, Ty);
1602 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1603 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1604 "Invalid cast");
1605 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1606 unsigned DstBits = Ty->getScalarSizeInBits();
1607 if (SrcBits == DstBits)
1608 return C; // Avoid a useless cast
1609 Instruction::CastOps opcode =
1610 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1611 return getCast(opcode, C, Ty);
1614 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1615 #ifndef NDEBUG
1616 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1617 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1618 #endif
1619 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1620 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1621 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1622 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1623 "SrcTy must be larger than DestTy for Trunc!");
1625 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
1628 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1629 #ifndef NDEBUG
1630 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1631 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1632 #endif
1633 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1634 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1635 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1636 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1637 "SrcTy must be smaller than DestTy for SExt!");
1639 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
1642 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1643 #ifndef NDEBUG
1644 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1645 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1646 #endif
1647 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1648 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1649 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1650 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1651 "SrcTy must be smaller than DestTy for ZExt!");
1653 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
1656 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1657 #ifndef NDEBUG
1658 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1659 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1660 #endif
1661 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1662 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1663 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1664 "This is an illegal floating point truncation!");
1665 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
1668 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
1669 #ifndef NDEBUG
1670 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1671 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1672 #endif
1673 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1674 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1675 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1676 "This is an illegal floating point extension!");
1677 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
1680 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1681 #ifndef NDEBUG
1682 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1683 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1684 #endif
1685 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1686 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1687 "This is an illegal uint to floating point cast!");
1688 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
1691 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1692 #ifndef NDEBUG
1693 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1694 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1695 #endif
1696 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1697 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1698 "This is an illegal sint to floating point cast!");
1699 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
1702 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1703 #ifndef NDEBUG
1704 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1705 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1706 #endif
1707 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1708 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1709 "This is an illegal floating point to uint cast!");
1710 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
1713 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1714 #ifndef NDEBUG
1715 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1716 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1717 #endif
1718 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1719 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1720 "This is an illegal floating point to sint cast!");
1721 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
1724 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
1725 bool OnlyIfReduced) {
1726 assert(C->getType()->isPtrOrPtrVectorTy() &&
1727 "PtrToInt source must be pointer or pointer vector");
1728 assert(DstTy->isIntOrIntVectorTy() &&
1729 "PtrToInt destination must be integer or integer vector");
1730 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1731 if (isa<VectorType>(C->getType()))
1732 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1733 "Invalid cast between a different number of vector elements");
1734 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
1737 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
1738 bool OnlyIfReduced) {
1739 assert(C->getType()->isIntOrIntVectorTy() &&
1740 "IntToPtr source must be integer or integer vector");
1741 assert(DstTy->isPtrOrPtrVectorTy() &&
1742 "IntToPtr destination must be a pointer or pointer vector");
1743 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1744 if (isa<VectorType>(C->getType()))
1745 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1746 "Invalid cast between a different number of vector elements");
1747 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
1750 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
1751 bool OnlyIfReduced) {
1752 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1753 "Invalid constantexpr bitcast!");
1755 // It is common to ask for a bitcast of a value to its own type, handle this
1756 // speedily.
1757 if (C->getType() == DstTy) return C;
1759 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
1762 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
1763 bool OnlyIfReduced) {
1764 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1765 "Invalid constantexpr addrspacecast!");
1767 // Canonicalize addrspacecasts between different pointer types by first
1768 // bitcasting the pointer type and then converting the address space.
1769 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1770 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1771 Type *DstElemTy = DstScalarTy->getElementType();
1772 if (SrcScalarTy->getElementType() != DstElemTy) {
1773 Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1774 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1775 // Handle vectors of pointers.
1776 MidTy = VectorType::get(MidTy, VT->getNumElements());
1778 C = getBitCast(C, MidTy);
1780 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
1783 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1784 unsigned Flags, Type *OnlyIfReducedTy) {
1785 // Check the operands for consistency first.
1786 assert(Instruction::isBinaryOp(Opcode) &&
1787 "Invalid opcode in binary constant expression");
1788 assert(C1->getType() == C2->getType() &&
1789 "Operand types in binary constant expression should match");
1791 #ifndef NDEBUG
1792 switch (Opcode) {
1793 case Instruction::Add:
1794 case Instruction::Sub:
1795 case Instruction::Mul:
1796 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1797 assert(C1->getType()->isIntOrIntVectorTy() &&
1798 "Tried to create an integer operation on a non-integer type!");
1799 break;
1800 case Instruction::FAdd:
1801 case Instruction::FSub:
1802 case Instruction::FMul:
1803 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1804 assert(C1->getType()->isFPOrFPVectorTy() &&
1805 "Tried to create a floating-point operation on a "
1806 "non-floating-point type!");
1807 break;
1808 case Instruction::UDiv:
1809 case Instruction::SDiv:
1810 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1811 assert(C1->getType()->isIntOrIntVectorTy() &&
1812 "Tried to create an arithmetic operation on a non-arithmetic type!");
1813 break;
1814 case Instruction::FDiv:
1815 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1816 assert(C1->getType()->isFPOrFPVectorTy() &&
1817 "Tried to create an arithmetic operation on a non-arithmetic type!");
1818 break;
1819 case Instruction::URem:
1820 case Instruction::SRem:
1821 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1822 assert(C1->getType()->isIntOrIntVectorTy() &&
1823 "Tried to create an arithmetic operation on a non-arithmetic type!");
1824 break;
1825 case Instruction::FRem:
1826 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1827 assert(C1->getType()->isFPOrFPVectorTy() &&
1828 "Tried to create an arithmetic operation on a non-arithmetic type!");
1829 break;
1830 case Instruction::And:
1831 case Instruction::Or:
1832 case Instruction::Xor:
1833 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1834 assert(C1->getType()->isIntOrIntVectorTy() &&
1835 "Tried to create a logical operation on a non-integral type!");
1836 break;
1837 case Instruction::Shl:
1838 case Instruction::LShr:
1839 case Instruction::AShr:
1840 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1841 assert(C1->getType()->isIntOrIntVectorTy() &&
1842 "Tried to create a shift operation on a non-integer type!");
1843 break;
1844 default:
1845 break;
1847 #endif
1849 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1850 return FC; // Fold a few common cases.
1852 if (OnlyIfReducedTy == C1->getType())
1853 return nullptr;
1855 Constant *ArgVec[] = { C1, C2 };
1856 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1858 LLVMContextImpl *pImpl = C1->getContext().pImpl;
1859 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1862 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1863 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1864 // Note that a non-inbounds gep is used, as null isn't within any object.
1865 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1866 Constant *GEP = getGetElementPtr(
1867 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1868 return getPtrToInt(GEP,
1869 Type::getInt64Ty(Ty->getContext()));
1872 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1873 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1874 // Note that a non-inbounds gep is used, as null isn't within any object.
1875 Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty);
1876 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
1877 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1878 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1879 Constant *Indices[2] = { Zero, One };
1880 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
1881 return getPtrToInt(GEP,
1882 Type::getInt64Ty(Ty->getContext()));
1885 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1886 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1887 FieldNo));
1890 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1891 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1892 // Note that a non-inbounds gep is used, as null isn't within any object.
1893 Constant *GEPIdx[] = {
1894 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1895 FieldNo
1897 Constant *GEP = getGetElementPtr(
1898 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1899 return getPtrToInt(GEP,
1900 Type::getInt64Ty(Ty->getContext()));
1903 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
1904 Constant *C2, bool OnlyIfReduced) {
1905 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1907 switch (Predicate) {
1908 default: llvm_unreachable("Invalid CmpInst predicate");
1909 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1910 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1911 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1912 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1913 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1914 case CmpInst::FCMP_TRUE:
1915 return getFCmp(Predicate, C1, C2, OnlyIfReduced);
1917 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1918 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1919 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1920 case CmpInst::ICMP_SLE:
1921 return getICmp(Predicate, C1, C2, OnlyIfReduced);
1925 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
1926 Type *OnlyIfReducedTy) {
1927 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1929 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1930 return SC; // Fold common cases
1932 if (OnlyIfReducedTy == V1->getType())
1933 return nullptr;
1935 Constant *ArgVec[] = { C, V1, V2 };
1936 ConstantExprKeyType Key(Instruction::Select, ArgVec);
1938 LLVMContextImpl *pImpl = C->getContext().pImpl;
1939 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1942 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
1943 ArrayRef<Value *> Idxs, bool InBounds,
1944 Optional<unsigned> InRangeIndex,
1945 Type *OnlyIfReducedTy) {
1946 if (!Ty)
1947 Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
1948 else
1949 assert(
1950 Ty ==
1951 cast<PointerType>(C->getType()->getScalarType())->getContainedType(0u));
1953 if (Constant *FC =
1954 ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
1955 return FC; // Fold a few common cases.
1957 // Get the result type of the getelementptr!
1958 Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
1959 assert(DestTy && "GEP indices invalid!");
1960 unsigned AS = C->getType()->getPointerAddressSpace();
1961 Type *ReqTy = DestTy->getPointerTo(AS);
1963 unsigned NumVecElts = 0;
1964 if (C->getType()->isVectorTy())
1965 NumVecElts = C->getType()->getVectorNumElements();
1966 else for (auto Idx : Idxs)
1967 if (Idx->getType()->isVectorTy())
1968 NumVecElts = Idx->getType()->getVectorNumElements();
1970 if (NumVecElts)
1971 ReqTy = VectorType::get(ReqTy, NumVecElts);
1973 if (OnlyIfReducedTy == ReqTy)
1974 return nullptr;
1976 // Look up the constant in the table first to ensure uniqueness
1977 std::vector<Constant*> ArgVec;
1978 ArgVec.reserve(1 + Idxs.size());
1979 ArgVec.push_back(C);
1980 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1981 assert((!Idxs[i]->getType()->isVectorTy() ||
1982 Idxs[i]->getType()->getVectorNumElements() == NumVecElts) &&
1983 "getelementptr index type missmatch");
1985 Constant *Idx = cast<Constant>(Idxs[i]);
1986 if (NumVecElts && !Idxs[i]->getType()->isVectorTy())
1987 Idx = ConstantVector::getSplat(NumVecElts, Idx);
1988 ArgVec.push_back(Idx);
1991 unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
1992 if (InRangeIndex && *InRangeIndex < 63)
1993 SubClassOptionalData |= (*InRangeIndex + 1) << 1;
1994 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1995 SubClassOptionalData, None, Ty);
1997 LLVMContextImpl *pImpl = C->getContext().pImpl;
1998 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2001 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2002 Constant *RHS, bool OnlyIfReduced) {
2003 assert(LHS->getType() == RHS->getType());
2004 assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) &&
2005 "Invalid ICmp Predicate");
2007 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2008 return FC; // Fold a few common cases...
2010 if (OnlyIfReduced)
2011 return nullptr;
2013 // Look up the constant in the table first to ensure uniqueness
2014 Constant *ArgVec[] = { LHS, RHS };
2015 // Get the key type with both the opcode and predicate
2016 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2018 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2019 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2020 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2022 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2023 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2026 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2027 Constant *RHS, bool OnlyIfReduced) {
2028 assert(LHS->getType() == RHS->getType());
2029 assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) &&
2030 "Invalid FCmp Predicate");
2032 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2033 return FC; // Fold a few common cases...
2035 if (OnlyIfReduced)
2036 return nullptr;
2038 // Look up the constant in the table first to ensure uniqueness
2039 Constant *ArgVec[] = { LHS, RHS };
2040 // Get the key type with both the opcode and predicate
2041 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2043 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2044 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2045 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2047 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2048 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2051 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2052 Type *OnlyIfReducedTy) {
2053 assert(Val->getType()->isVectorTy() &&
2054 "Tried to create extractelement operation on non-vector type!");
2055 assert(Idx->getType()->isIntegerTy() &&
2056 "Extractelement index must be an integer type!");
2058 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2059 return FC; // Fold a few common cases.
2061 Type *ReqTy = Val->getType()->getVectorElementType();
2062 if (OnlyIfReducedTy == ReqTy)
2063 return nullptr;
2065 // Look up the constant in the table first to ensure uniqueness
2066 Constant *ArgVec[] = { Val, Idx };
2067 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2069 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2070 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2073 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2074 Constant *Idx, Type *OnlyIfReducedTy) {
2075 assert(Val->getType()->isVectorTy() &&
2076 "Tried to create insertelement operation on non-vector type!");
2077 assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2078 "Insertelement types must match!");
2079 assert(Idx->getType()->isIntegerTy() &&
2080 "Insertelement index must be i32 type!");
2082 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2083 return FC; // Fold a few common cases.
2085 if (OnlyIfReducedTy == Val->getType())
2086 return nullptr;
2088 // Look up the constant in the table first to ensure uniqueness
2089 Constant *ArgVec[] = { Val, Elt, Idx };
2090 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2092 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2093 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2096 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2097 Constant *Mask, Type *OnlyIfReducedTy) {
2098 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2099 "Invalid shuffle vector constant expr operands!");
2101 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2102 return FC; // Fold a few common cases.
2104 unsigned NElts = Mask->getType()->getVectorNumElements();
2105 Type *EltTy = V1->getType()->getVectorElementType();
2106 Type *ShufTy = VectorType::get(EltTy, NElts);
2108 if (OnlyIfReducedTy == ShufTy)
2109 return nullptr;
2111 // Look up the constant in the table first to ensure uniqueness
2112 Constant *ArgVec[] = { V1, V2, Mask };
2113 const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
2115 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2116 return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2119 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2120 ArrayRef<unsigned> Idxs,
2121 Type *OnlyIfReducedTy) {
2122 assert(Agg->getType()->isFirstClassType() &&
2123 "Non-first-class type for constant insertvalue expression");
2125 assert(ExtractValueInst::getIndexedType(Agg->getType(),
2126 Idxs) == Val->getType() &&
2127 "insertvalue indices invalid!");
2128 Type *ReqTy = Val->getType();
2130 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2131 return FC;
2133 if (OnlyIfReducedTy == ReqTy)
2134 return nullptr;
2136 Constant *ArgVec[] = { Agg, Val };
2137 const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2139 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2140 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2143 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2144 Type *OnlyIfReducedTy) {
2145 assert(Agg->getType()->isFirstClassType() &&
2146 "Tried to create extractelement operation on non-first-class type!");
2148 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2149 (void)ReqTy;
2150 assert(ReqTy && "extractvalue indices invalid!");
2152 assert(Agg->getType()->isFirstClassType() &&
2153 "Non-first-class type for constant extractvalue expression");
2154 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2155 return FC;
2157 if (OnlyIfReducedTy == ReqTy)
2158 return nullptr;
2160 Constant *ArgVec[] = { Agg };
2161 const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2163 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2164 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2167 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2168 assert(C->getType()->isIntOrIntVectorTy() &&
2169 "Cannot NEG a nonintegral value!");
2170 return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2171 C, HasNUW, HasNSW);
2174 Constant *ConstantExpr::getFNeg(Constant *C) {
2175 assert(C->getType()->isFPOrFPVectorTy() &&
2176 "Cannot FNEG a non-floating-point value!");
2177 return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2180 Constant *ConstantExpr::getNot(Constant *C) {
2181 assert(C->getType()->isIntOrIntVectorTy() &&
2182 "Cannot NOT a nonintegral value!");
2183 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2186 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2187 bool HasNUW, bool HasNSW) {
2188 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2189 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2190 return get(Instruction::Add, C1, C2, Flags);
2193 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2194 return get(Instruction::FAdd, C1, C2);
2197 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2198 bool HasNUW, bool HasNSW) {
2199 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2200 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2201 return get(Instruction::Sub, C1, C2, Flags);
2204 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2205 return get(Instruction::FSub, C1, C2);
2208 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2209 bool HasNUW, bool HasNSW) {
2210 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2211 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2212 return get(Instruction::Mul, C1, C2, Flags);
2215 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2216 return get(Instruction::FMul, C1, C2);
2219 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2220 return get(Instruction::UDiv, C1, C2,
2221 isExact ? PossiblyExactOperator::IsExact : 0);
2224 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2225 return get(Instruction::SDiv, C1, C2,
2226 isExact ? PossiblyExactOperator::IsExact : 0);
2229 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2230 return get(Instruction::FDiv, C1, C2);
2233 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2234 return get(Instruction::URem, C1, C2);
2237 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2238 return get(Instruction::SRem, C1, C2);
2241 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2242 return get(Instruction::FRem, C1, C2);
2245 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2246 return get(Instruction::And, C1, C2);
2249 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2250 return get(Instruction::Or, C1, C2);
2253 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2254 return get(Instruction::Xor, C1, C2);
2257 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2258 bool HasNUW, bool HasNSW) {
2259 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2260 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2261 return get(Instruction::Shl, C1, C2, Flags);
2264 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2265 return get(Instruction::LShr, C1, C2,
2266 isExact ? PossiblyExactOperator::IsExact : 0);
2269 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2270 return get(Instruction::AShr, C1, C2,
2271 isExact ? PossiblyExactOperator::IsExact : 0);
2274 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty,
2275 bool AllowRHSConstant) {
2276 assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed");
2278 // Commutative opcodes: it does not matter if AllowRHSConstant is set.
2279 if (Instruction::isCommutative(Opcode)) {
2280 switch (Opcode) {
2281 case Instruction::Add: // X + 0 = X
2282 case Instruction::Or: // X | 0 = X
2283 case Instruction::Xor: // X ^ 0 = X
2284 return Constant::getNullValue(Ty);
2285 case Instruction::Mul: // X * 1 = X
2286 return ConstantInt::get(Ty, 1);
2287 case Instruction::And: // X & -1 = X
2288 return Constant::getAllOnesValue(Ty);
2289 case Instruction::FAdd: // X + -0.0 = X
2290 // TODO: If the fadd has 'nsz', should we return +0.0?
2291 return ConstantFP::getNegativeZero(Ty);
2292 case Instruction::FMul: // X * 1.0 = X
2293 return ConstantFP::get(Ty, 1.0);
2294 default:
2295 llvm_unreachable("Every commutative binop has an identity constant");
2299 // Non-commutative opcodes: AllowRHSConstant must be set.
2300 if (!AllowRHSConstant)
2301 return nullptr;
2303 switch (Opcode) {
2304 case Instruction::Sub: // X - 0 = X
2305 case Instruction::Shl: // X << 0 = X
2306 case Instruction::LShr: // X >>u 0 = X
2307 case Instruction::AShr: // X >> 0 = X
2308 case Instruction::FSub: // X - 0.0 = X
2309 return Constant::getNullValue(Ty);
2310 case Instruction::SDiv: // X / 1 = X
2311 case Instruction::UDiv: // X /u 1 = X
2312 return ConstantInt::get(Ty, 1);
2313 case Instruction::FDiv: // X / 1.0 = X
2314 return ConstantFP::get(Ty, 1.0);
2315 default:
2316 return nullptr;
2320 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2321 switch (Opcode) {
2322 default:
2323 // Doesn't have an absorber.
2324 return nullptr;
2326 case Instruction::Or:
2327 return Constant::getAllOnesValue(Ty);
2329 case Instruction::And:
2330 case Instruction::Mul:
2331 return Constant::getNullValue(Ty);
2335 /// Remove the constant from the constant table.
2336 void ConstantExpr::destroyConstantImpl() {
2337 getType()->getContext().pImpl->ExprConstants.remove(this);
2340 const char *ConstantExpr::getOpcodeName() const {
2341 return Instruction::getOpcodeName(getOpcode());
2344 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2345 Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2346 : ConstantExpr(DestTy, Instruction::GetElementPtr,
2347 OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2348 (IdxList.size() + 1),
2349 IdxList.size() + 1),
2350 SrcElementTy(SrcElementTy),
2351 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
2352 Op<0>() = C;
2353 Use *OperandList = getOperandList();
2354 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2355 OperandList[i+1] = IdxList[i];
2358 Type *GetElementPtrConstantExpr::getSourceElementType() const {
2359 return SrcElementTy;
2362 Type *GetElementPtrConstantExpr::getResultElementType() const {
2363 return ResElementTy;
2366 //===----------------------------------------------------------------------===//
2367 // ConstantData* implementations
2369 Type *ConstantDataSequential::getElementType() const {
2370 return getType()->getElementType();
2373 StringRef ConstantDataSequential::getRawDataValues() const {
2374 return StringRef(DataElements, getNumElements()*getElementByteSize());
2377 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2378 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2379 if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2380 switch (IT->getBitWidth()) {
2381 case 8:
2382 case 16:
2383 case 32:
2384 case 64:
2385 return true;
2386 default: break;
2389 return false;
2392 unsigned ConstantDataSequential::getNumElements() const {
2393 if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2394 return AT->getNumElements();
2395 return getType()->getVectorNumElements();
2399 uint64_t ConstantDataSequential::getElementByteSize() const {
2400 return getElementType()->getPrimitiveSizeInBits()/8;
2403 /// Return the start of the specified element.
2404 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2405 assert(Elt < getNumElements() && "Invalid Elt");
2406 return DataElements+Elt*getElementByteSize();
2410 /// Return true if the array is empty or all zeros.
2411 static bool isAllZeros(StringRef Arr) {
2412 for (char I : Arr)
2413 if (I != 0)
2414 return false;
2415 return true;
2418 /// This is the underlying implementation of all of the
2419 /// ConstantDataSequential::get methods. They all thunk down to here, providing
2420 /// the correct element type. We take the bytes in as a StringRef because
2421 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2422 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2423 assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2424 // If the elements are all zero or there are no elements, return a CAZ, which
2425 // is more dense and canonical.
2426 if (isAllZeros(Elements))
2427 return ConstantAggregateZero::get(Ty);
2429 // Do a lookup to see if we have already formed one of these.
2430 auto &Slot =
2431 *Ty->getContext()
2432 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2433 .first;
2435 // The bucket can point to a linked list of different CDS's that have the same
2436 // body but different types. For example, 0,0,0,1 could be a 4 element array
2437 // of i8, or a 1-element array of i32. They'll both end up in the same
2438 /// StringMap bucket, linked up by their Next pointers. Walk the list.
2439 ConstantDataSequential **Entry = &Slot.second;
2440 for (ConstantDataSequential *Node = *Entry; Node;
2441 Entry = &Node->Next, Node = *Entry)
2442 if (Node->getType() == Ty)
2443 return Node;
2445 // Okay, we didn't get a hit. Create a node of the right class, link it in,
2446 // and return it.
2447 if (isa<ArrayType>(Ty))
2448 return *Entry = new ConstantDataArray(Ty, Slot.first().data());
2450 assert(isa<VectorType>(Ty));
2451 return *Entry = new ConstantDataVector(Ty, Slot.first().data());
2454 void ConstantDataSequential::destroyConstantImpl() {
2455 // Remove the constant from the StringMap.
2456 StringMap<ConstantDataSequential*> &CDSConstants =
2457 getType()->getContext().pImpl->CDSConstants;
2459 StringMap<ConstantDataSequential*>::iterator Slot =
2460 CDSConstants.find(getRawDataValues());
2462 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2464 ConstantDataSequential **Entry = &Slot->getValue();
2466 // Remove the entry from the hash table.
2467 if (!(*Entry)->Next) {
2468 // If there is only one value in the bucket (common case) it must be this
2469 // entry, and removing the entry should remove the bucket completely.
2470 assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2471 getContext().pImpl->CDSConstants.erase(Slot);
2472 } else {
2473 // Otherwise, there are multiple entries linked off the bucket, unlink the
2474 // node we care about but keep the bucket around.
2475 for (ConstantDataSequential *Node = *Entry; ;
2476 Entry = &Node->Next, Node = *Entry) {
2477 assert(Node && "Didn't find entry in its uniquing hash table!");
2478 // If we found our entry, unlink it from the list and we're done.
2479 if (Node == this) {
2480 *Entry = Node->Next;
2481 break;
2486 // If we were part of a list, make sure that we don't delete the list that is
2487 // still owned by the uniquing map.
2488 Next = nullptr;
2491 /// getFP() constructors - Return a constant with array type with an element
2492 /// count and element type of float with precision matching the number of
2493 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2494 /// double for 64bits) Note that this can return a ConstantAggregateZero
2495 /// object.
2496 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2497 ArrayRef<uint16_t> Elts) {
2498 Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size());
2499 const char *Data = reinterpret_cast<const char *>(Elts.data());
2500 return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2502 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2503 ArrayRef<uint32_t> Elts) {
2504 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2505 const char *Data = reinterpret_cast<const char *>(Elts.data());
2506 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2508 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2509 ArrayRef<uint64_t> Elts) {
2510 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2511 const char *Data = reinterpret_cast<const char *>(Elts.data());
2512 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2515 Constant *ConstantDataArray::getString(LLVMContext &Context,
2516 StringRef Str, bool AddNull) {
2517 if (!AddNull) {
2518 const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2519 return get(Context, makeArrayRef(Data, Str.size()));
2522 SmallVector<uint8_t, 64> ElementVals;
2523 ElementVals.append(Str.begin(), Str.end());
2524 ElementVals.push_back(0);
2525 return get(Context, ElementVals);
2528 /// get() constructors - Return a constant with vector type with an element
2529 /// count and element type matching the ArrayRef passed in. Note that this
2530 /// can return a ConstantAggregateZero object.
2531 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2532 Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2533 const char *Data = reinterpret_cast<const char *>(Elts.data());
2534 return getImpl(StringRef(Data, Elts.size() * 1), Ty);
2536 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2537 Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2538 const char *Data = reinterpret_cast<const char *>(Elts.data());
2539 return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2541 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2542 Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2543 const char *Data = reinterpret_cast<const char *>(Elts.data());
2544 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2546 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2547 Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2548 const char *Data = reinterpret_cast<const char *>(Elts.data());
2549 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2551 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2552 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2553 const char *Data = reinterpret_cast<const char *>(Elts.data());
2554 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2556 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2557 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2558 const char *Data = reinterpret_cast<const char *>(Elts.data());
2559 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2562 /// getFP() constructors - Return a constant with vector type with an element
2563 /// count and element type of float with the precision matching the number of
2564 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2565 /// double for 64bits) Note that this can return a ConstantAggregateZero
2566 /// object.
2567 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2568 ArrayRef<uint16_t> Elts) {
2569 Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2570 const char *Data = reinterpret_cast<const char *>(Elts.data());
2571 return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2573 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2574 ArrayRef<uint32_t> Elts) {
2575 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2576 const char *Data = reinterpret_cast<const char *>(Elts.data());
2577 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2579 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2580 ArrayRef<uint64_t> Elts) {
2581 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2582 const char *Data = reinterpret_cast<const char *>(Elts.data());
2583 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2586 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2587 assert(isElementTypeCompatible(V->getType()) &&
2588 "Element type not compatible with ConstantData");
2589 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2590 if (CI->getType()->isIntegerTy(8)) {
2591 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2592 return get(V->getContext(), Elts);
2594 if (CI->getType()->isIntegerTy(16)) {
2595 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2596 return get(V->getContext(), Elts);
2598 if (CI->getType()->isIntegerTy(32)) {
2599 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2600 return get(V->getContext(), Elts);
2602 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2603 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2604 return get(V->getContext(), Elts);
2607 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2608 if (CFP->getType()->isHalfTy()) {
2609 SmallVector<uint16_t, 16> Elts(
2610 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2611 return getFP(V->getContext(), Elts);
2613 if (CFP->getType()->isFloatTy()) {
2614 SmallVector<uint32_t, 16> Elts(
2615 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2616 return getFP(V->getContext(), Elts);
2618 if (CFP->getType()->isDoubleTy()) {
2619 SmallVector<uint64_t, 16> Elts(
2620 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2621 return getFP(V->getContext(), Elts);
2624 return ConstantVector::getSplat(NumElts, V);
2628 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2629 assert(isa<IntegerType>(getElementType()) &&
2630 "Accessor can only be used when element is an integer");
2631 const char *EltPtr = getElementPointer(Elt);
2633 // The data is stored in host byte order, make sure to cast back to the right
2634 // type to load with the right endianness.
2635 switch (getElementType()->getIntegerBitWidth()) {
2636 default: llvm_unreachable("Invalid bitwidth for CDS");
2637 case 8:
2638 return *reinterpret_cast<const uint8_t *>(EltPtr);
2639 case 16:
2640 return *reinterpret_cast<const uint16_t *>(EltPtr);
2641 case 32:
2642 return *reinterpret_cast<const uint32_t *>(EltPtr);
2643 case 64:
2644 return *reinterpret_cast<const uint64_t *>(EltPtr);
2648 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const {
2649 assert(isa<IntegerType>(getElementType()) &&
2650 "Accessor can only be used when element is an integer");
2651 const char *EltPtr = getElementPointer(Elt);
2653 // The data is stored in host byte order, make sure to cast back to the right
2654 // type to load with the right endianness.
2655 switch (getElementType()->getIntegerBitWidth()) {
2656 default: llvm_unreachable("Invalid bitwidth for CDS");
2657 case 8: {
2658 auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr);
2659 return APInt(8, EltVal);
2661 case 16: {
2662 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2663 return APInt(16, EltVal);
2665 case 32: {
2666 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2667 return APInt(32, EltVal);
2669 case 64: {
2670 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2671 return APInt(64, EltVal);
2676 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2677 const char *EltPtr = getElementPointer(Elt);
2679 switch (getElementType()->getTypeID()) {
2680 default:
2681 llvm_unreachable("Accessor can only be used when element is float/double!");
2682 case Type::HalfTyID: {
2683 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2684 return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
2686 case Type::FloatTyID: {
2687 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2688 return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
2690 case Type::DoubleTyID: {
2691 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2692 return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
2697 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2698 assert(getElementType()->isFloatTy() &&
2699 "Accessor can only be used when element is a 'float'");
2700 return *reinterpret_cast<const float *>(getElementPointer(Elt));
2703 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2704 assert(getElementType()->isDoubleTy() &&
2705 "Accessor can only be used when element is a 'float'");
2706 return *reinterpret_cast<const double *>(getElementPointer(Elt));
2709 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2710 if (getElementType()->isHalfTy() || getElementType()->isFloatTy() ||
2711 getElementType()->isDoubleTy())
2712 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2714 return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2717 bool ConstantDataSequential::isString(unsigned CharSize) const {
2718 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
2721 bool ConstantDataSequential::isCString() const {
2722 if (!isString())
2723 return false;
2725 StringRef Str = getAsString();
2727 // The last value must be nul.
2728 if (Str.back() != 0) return false;
2730 // Other elements must be non-nul.
2731 return Str.drop_back().find(0) == StringRef::npos;
2734 bool ConstantDataVector::isSplat() const {
2735 const char *Base = getRawDataValues().data();
2737 // Compare elements 1+ to the 0'th element.
2738 unsigned EltSize = getElementByteSize();
2739 for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2740 if (memcmp(Base, Base+i*EltSize, EltSize))
2741 return false;
2743 return true;
2746 Constant *ConstantDataVector::getSplatValue() const {
2747 // If they're all the same, return the 0th one as a representative.
2748 return isSplat() ? getElementAsConstant(0) : nullptr;
2751 //===----------------------------------------------------------------------===//
2752 // handleOperandChange implementations
2754 /// Update this constant array to change uses of
2755 /// 'From' to be uses of 'To'. This must update the uniquing data structures
2756 /// etc.
2758 /// Note that we intentionally replace all uses of From with To here. Consider
2759 /// a large array that uses 'From' 1000 times. By handling this case all here,
2760 /// ConstantArray::handleOperandChange is only invoked once, and that
2761 /// single invocation handles all 1000 uses. Handling them one at a time would
2762 /// work, but would be really slow because it would have to unique each updated
2763 /// array instance.
2765 void Constant::handleOperandChange(Value *From, Value *To) {
2766 Value *Replacement = nullptr;
2767 switch (getValueID()) {
2768 default:
2769 llvm_unreachable("Not a constant!");
2770 #define HANDLE_CONSTANT(Name) \
2771 case Value::Name##Val: \
2772 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \
2773 break;
2774 #include "llvm/IR/Value.def"
2777 // If handleOperandChangeImpl returned nullptr, then it handled
2778 // replacing itself and we don't want to delete or replace anything else here.
2779 if (!Replacement)
2780 return;
2782 // I do need to replace this with an existing value.
2783 assert(Replacement != this && "I didn't contain From!");
2785 // Everyone using this now uses the replacement.
2786 replaceAllUsesWith(Replacement);
2788 // Delete the old constant!
2789 destroyConstant();
2792 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
2793 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2794 Constant *ToC = cast<Constant>(To);
2796 SmallVector<Constant*, 8> Values;
2797 Values.reserve(getNumOperands()); // Build replacement array.
2799 // Fill values with the modified operands of the constant array. Also,
2800 // compute whether this turns into an all-zeros array.
2801 unsigned NumUpdated = 0;
2803 // Keep track of whether all the values in the array are "ToC".
2804 bool AllSame = true;
2805 Use *OperandList = getOperandList();
2806 unsigned OperandNo = 0;
2807 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2808 Constant *Val = cast<Constant>(O->get());
2809 if (Val == From) {
2810 OperandNo = (O - OperandList);
2811 Val = ToC;
2812 ++NumUpdated;
2814 Values.push_back(Val);
2815 AllSame &= Val == ToC;
2818 if (AllSame && ToC->isNullValue())
2819 return ConstantAggregateZero::get(getType());
2821 if (AllSame && isa<UndefValue>(ToC))
2822 return UndefValue::get(getType());
2824 // Check for any other type of constant-folding.
2825 if (Constant *C = getImpl(getType(), Values))
2826 return C;
2828 // Update to the new value.
2829 return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
2830 Values, this, From, ToC, NumUpdated, OperandNo);
2833 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
2834 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2835 Constant *ToC = cast<Constant>(To);
2837 Use *OperandList = getOperandList();
2839 SmallVector<Constant*, 8> Values;
2840 Values.reserve(getNumOperands()); // Build replacement struct.
2842 // Fill values with the modified operands of the constant struct. Also,
2843 // compute whether this turns into an all-zeros struct.
2844 unsigned NumUpdated = 0;
2845 bool AllSame = true;
2846 unsigned OperandNo = 0;
2847 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
2848 Constant *Val = cast<Constant>(O->get());
2849 if (Val == From) {
2850 OperandNo = (O - OperandList);
2851 Val = ToC;
2852 ++NumUpdated;
2854 Values.push_back(Val);
2855 AllSame &= Val == ToC;
2858 if (AllSame && ToC->isNullValue())
2859 return ConstantAggregateZero::get(getType());
2861 if (AllSame && isa<UndefValue>(ToC))
2862 return UndefValue::get(getType());
2864 // Update to the new value.
2865 return getContext().pImpl->StructConstants.replaceOperandsInPlace(
2866 Values, this, From, ToC, NumUpdated, OperandNo);
2869 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
2870 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2871 Constant *ToC = cast<Constant>(To);
2873 SmallVector<Constant*, 8> Values;
2874 Values.reserve(getNumOperands()); // Build replacement array...
2875 unsigned NumUpdated = 0;
2876 unsigned OperandNo = 0;
2877 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2878 Constant *Val = getOperand(i);
2879 if (Val == From) {
2880 OperandNo = i;
2881 ++NumUpdated;
2882 Val = ToC;
2884 Values.push_back(Val);
2887 if (Constant *C = getImpl(Values))
2888 return C;
2890 // Update to the new value.
2891 return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
2892 Values, this, From, ToC, NumUpdated, OperandNo);
2895 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
2896 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2897 Constant *To = cast<Constant>(ToV);
2899 SmallVector<Constant*, 8> NewOps;
2900 unsigned NumUpdated = 0;
2901 unsigned OperandNo = 0;
2902 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2903 Constant *Op = getOperand(i);
2904 if (Op == From) {
2905 OperandNo = i;
2906 ++NumUpdated;
2907 Op = To;
2909 NewOps.push_back(Op);
2911 assert(NumUpdated && "I didn't contain From!");
2913 if (Constant *C = getWithOperands(NewOps, getType(), true))
2914 return C;
2916 // Update to the new value.
2917 return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
2918 NewOps, this, From, To, NumUpdated, OperandNo);
2921 Instruction *ConstantExpr::getAsInstruction() {
2922 SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
2923 ArrayRef<Value*> Ops(ValueOperands);
2925 switch (getOpcode()) {
2926 case Instruction::Trunc:
2927 case Instruction::ZExt:
2928 case Instruction::SExt:
2929 case Instruction::FPTrunc:
2930 case Instruction::FPExt:
2931 case Instruction::UIToFP:
2932 case Instruction::SIToFP:
2933 case Instruction::FPToUI:
2934 case Instruction::FPToSI:
2935 case Instruction::PtrToInt:
2936 case Instruction::IntToPtr:
2937 case Instruction::BitCast:
2938 case Instruction::AddrSpaceCast:
2939 return CastInst::Create((Instruction::CastOps)getOpcode(),
2940 Ops[0], getType());
2941 case Instruction::Select:
2942 return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2943 case Instruction::InsertElement:
2944 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2945 case Instruction::ExtractElement:
2946 return ExtractElementInst::Create(Ops[0], Ops[1]);
2947 case Instruction::InsertValue:
2948 return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2949 case Instruction::ExtractValue:
2950 return ExtractValueInst::Create(Ops[0], getIndices());
2951 case Instruction::ShuffleVector:
2952 return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2954 case Instruction::GetElementPtr: {
2955 const auto *GO = cast<GEPOperator>(this);
2956 if (GO->isInBounds())
2957 return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
2958 Ops[0], Ops.slice(1));
2959 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
2960 Ops.slice(1));
2962 case Instruction::ICmp:
2963 case Instruction::FCmp:
2964 return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2965 (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
2967 default:
2968 assert(getNumOperands() == 2 && "Must be binary operator?");
2969 BinaryOperator *BO =
2970 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2971 Ops[0], Ops[1]);
2972 if (isa<OverflowingBinaryOperator>(BO)) {
2973 BO->setHasNoUnsignedWrap(SubclassOptionalData &
2974 OverflowingBinaryOperator::NoUnsignedWrap);
2975 BO->setHasNoSignedWrap(SubclassOptionalData &
2976 OverflowingBinaryOperator::NoSignedWrap);
2978 if (isa<PossiblyExactOperator>(BO))
2979 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
2980 return BO;