[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / IR / Dominators.cpp
blobc78f220439af1e8a57673d338f45ae5fbe1d5df7
1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements simple dominator construction algorithms for finding
11 // forward dominators. Postdominators are available in libanalysis, but are not
12 // included in libvmcore, because it's not needed. Forward dominators are
13 // needed to support the Verifier pass.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/IR/Dominators.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Config/llvm-config.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/GenericDomTreeConstruction.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>
30 using namespace llvm;
32 bool llvm::VerifyDomInfo = false;
33 static cl::opt<bool, true>
34 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden,
35 cl::desc("Verify dominator info (time consuming)"));
37 #ifdef EXPENSIVE_CHECKS
38 static constexpr bool ExpensiveChecksEnabled = true;
39 #else
40 static constexpr bool ExpensiveChecksEnabled = false;
41 #endif
43 bool BasicBlockEdge::isSingleEdge() const {
44 const TerminatorInst *TI = Start->getTerminator();
45 unsigned NumEdgesToEnd = 0;
46 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
47 if (TI->getSuccessor(i) == End)
48 ++NumEdgesToEnd;
49 if (NumEdgesToEnd >= 2)
50 return false;
52 assert(NumEdgesToEnd == 1);
53 return true;
56 //===----------------------------------------------------------------------===//
57 // DominatorTree Implementation
58 //===----------------------------------------------------------------------===//
60 // Provide public access to DominatorTree information. Implementation details
61 // can be found in Dominators.h, GenericDomTree.h, and
62 // GenericDomTreeConstruction.h.
64 //===----------------------------------------------------------------------===//
66 template class llvm::DomTreeNodeBase<BasicBlock>;
67 template class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase
68 template class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase
70 template class llvm::cfg::Update<BasicBlock *>;
72 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>(
73 DomTreeBuilder::BBDomTree &DT);
74 template void
75 llvm::DomTreeBuilder::CalculateWithUpdates<DomTreeBuilder::BBDomTree>(
76 DomTreeBuilder::BBDomTree &DT, BBUpdates U);
78 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>(
79 DomTreeBuilder::BBPostDomTree &DT);
80 // No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises.
82 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>(
83 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To);
84 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>(
85 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To);
87 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>(
88 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To);
89 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>(
90 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To);
92 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>(
93 DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBUpdates);
94 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>(
95 DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBUpdates);
97 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>(
98 const DomTreeBuilder::BBDomTree &DT,
99 DomTreeBuilder::BBDomTree::VerificationLevel VL);
100 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>(
101 const DomTreeBuilder::BBPostDomTree &DT,
102 DomTreeBuilder::BBPostDomTree::VerificationLevel VL);
104 bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA,
105 FunctionAnalysisManager::Invalidator &) {
106 // Check whether the analysis, all analyses on functions, or the function's
107 // CFG have been preserved.
108 auto PAC = PA.getChecker<DominatorTreeAnalysis>();
109 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
110 PAC.preservedSet<CFGAnalyses>());
113 // dominates - Return true if Def dominates a use in User. This performs
114 // the special checks necessary if Def and User are in the same basic block.
115 // Note that Def doesn't dominate a use in Def itself!
116 bool DominatorTree::dominates(const Instruction *Def,
117 const Instruction *User) const {
118 const BasicBlock *UseBB = User->getParent();
119 const BasicBlock *DefBB = Def->getParent();
121 // Any unreachable use is dominated, even if Def == User.
122 if (!isReachableFromEntry(UseBB))
123 return true;
125 // Unreachable definitions don't dominate anything.
126 if (!isReachableFromEntry(DefBB))
127 return false;
129 // An instruction doesn't dominate a use in itself.
130 if (Def == User)
131 return false;
133 // The value defined by an invoke dominates an instruction only if it
134 // dominates every instruction in UseBB.
135 // A PHI is dominated only if the instruction dominates every possible use in
136 // the UseBB.
137 if (isa<InvokeInst>(Def) || isa<PHINode>(User))
138 return dominates(Def, UseBB);
140 if (DefBB != UseBB)
141 return dominates(DefBB, UseBB);
143 // Loop through the basic block until we find Def or User.
144 BasicBlock::const_iterator I = DefBB->begin();
145 for (; &*I != Def && &*I != User; ++I)
146 /*empty*/;
148 return &*I == Def;
151 // true if Def would dominate a use in any instruction in UseBB.
152 // note that dominates(Def, Def->getParent()) is false.
153 bool DominatorTree::dominates(const Instruction *Def,
154 const BasicBlock *UseBB) const {
155 const BasicBlock *DefBB = Def->getParent();
157 // Any unreachable use is dominated, even if DefBB == UseBB.
158 if (!isReachableFromEntry(UseBB))
159 return true;
161 // Unreachable definitions don't dominate anything.
162 if (!isReachableFromEntry(DefBB))
163 return false;
165 if (DefBB == UseBB)
166 return false;
168 // Invoke results are only usable in the normal destination, not in the
169 // exceptional destination.
170 if (const auto *II = dyn_cast<InvokeInst>(Def)) {
171 BasicBlock *NormalDest = II->getNormalDest();
172 BasicBlockEdge E(DefBB, NormalDest);
173 return dominates(E, UseBB);
176 return dominates(DefBB, UseBB);
179 bool DominatorTree::dominates(const BasicBlockEdge &BBE,
180 const BasicBlock *UseBB) const {
181 // If the BB the edge ends in doesn't dominate the use BB, then the
182 // edge also doesn't.
183 const BasicBlock *Start = BBE.getStart();
184 const BasicBlock *End = BBE.getEnd();
185 if (!dominates(End, UseBB))
186 return false;
188 // Simple case: if the end BB has a single predecessor, the fact that it
189 // dominates the use block implies that the edge also does.
190 if (End->getSinglePredecessor())
191 return true;
193 // The normal edge from the invoke is critical. Conceptually, what we would
194 // like to do is split it and check if the new block dominates the use.
195 // With X being the new block, the graph would look like:
197 // DefBB
198 // /\ . .
199 // / \ . .
200 // / \ . .
201 // / \ | |
202 // A X B C
203 // | \ | /
204 // . \|/
205 // . NormalDest
206 // .
208 // Given the definition of dominance, NormalDest is dominated by X iff X
209 // dominates all of NormalDest's predecessors (X, B, C in the example). X
210 // trivially dominates itself, so we only have to find if it dominates the
211 // other predecessors. Since the only way out of X is via NormalDest, X can
212 // only properly dominate a node if NormalDest dominates that node too.
213 int IsDuplicateEdge = 0;
214 for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
215 PI != E; ++PI) {
216 const BasicBlock *BB = *PI;
217 if (BB == Start) {
218 // If there are multiple edges between Start and End, by definition they
219 // can't dominate anything.
220 if (IsDuplicateEdge++)
221 return false;
222 continue;
225 if (!dominates(End, BB))
226 return false;
228 return true;
231 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
232 Instruction *UserInst = cast<Instruction>(U.getUser());
233 // A PHI in the end of the edge is dominated by it.
234 PHINode *PN = dyn_cast<PHINode>(UserInst);
235 if (PN && PN->getParent() == BBE.getEnd() &&
236 PN->getIncomingBlock(U) == BBE.getStart())
237 return true;
239 // Otherwise use the edge-dominates-block query, which
240 // handles the crazy critical edge cases properly.
241 const BasicBlock *UseBB;
242 if (PN)
243 UseBB = PN->getIncomingBlock(U);
244 else
245 UseBB = UserInst->getParent();
246 return dominates(BBE, UseBB);
249 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
250 Instruction *UserInst = cast<Instruction>(U.getUser());
251 const BasicBlock *DefBB = Def->getParent();
253 // Determine the block in which the use happens. PHI nodes use
254 // their operands on edges; simulate this by thinking of the use
255 // happening at the end of the predecessor block.
256 const BasicBlock *UseBB;
257 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
258 UseBB = PN->getIncomingBlock(U);
259 else
260 UseBB = UserInst->getParent();
262 // Any unreachable use is dominated, even if Def == User.
263 if (!isReachableFromEntry(UseBB))
264 return true;
266 // Unreachable definitions don't dominate anything.
267 if (!isReachableFromEntry(DefBB))
268 return false;
270 // Invoke instructions define their return values on the edges to their normal
271 // successors, so we have to handle them specially.
272 // Among other things, this means they don't dominate anything in
273 // their own block, except possibly a phi, so we don't need to
274 // walk the block in any case.
275 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
276 BasicBlock *NormalDest = II->getNormalDest();
277 BasicBlockEdge E(DefBB, NormalDest);
278 return dominates(E, U);
281 // If the def and use are in different blocks, do a simple CFG dominator
282 // tree query.
283 if (DefBB != UseBB)
284 return dominates(DefBB, UseBB);
286 // Ok, def and use are in the same block. If the def is an invoke, it
287 // doesn't dominate anything in the block. If it's a PHI, it dominates
288 // everything in the block.
289 if (isa<PHINode>(UserInst))
290 return true;
292 // Otherwise, just loop through the basic block until we find Def or User.
293 BasicBlock::const_iterator I = DefBB->begin();
294 for (; &*I != Def && &*I != UserInst; ++I)
295 /*empty*/;
297 return &*I != UserInst;
300 bool DominatorTree::isReachableFromEntry(const Use &U) const {
301 Instruction *I = dyn_cast<Instruction>(U.getUser());
303 // ConstantExprs aren't really reachable from the entry block, but they
304 // don't need to be treated like unreachable code either.
305 if (!I) return true;
307 // PHI nodes use their operands on their incoming edges.
308 if (PHINode *PN = dyn_cast<PHINode>(I))
309 return isReachableFromEntry(PN->getIncomingBlock(U));
311 // Everything else uses their operands in their own block.
312 return isReachableFromEntry(I->getParent());
315 //===----------------------------------------------------------------------===//
316 // DominatorTreeAnalysis and related pass implementations
317 //===----------------------------------------------------------------------===//
319 // This implements the DominatorTreeAnalysis which is used with the new pass
320 // manager. It also implements some methods from utility passes.
322 //===----------------------------------------------------------------------===//
324 DominatorTree DominatorTreeAnalysis::run(Function &F,
325 FunctionAnalysisManager &) {
326 DominatorTree DT;
327 DT.recalculate(F);
328 return DT;
331 AnalysisKey DominatorTreeAnalysis::Key;
333 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
335 PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
336 FunctionAnalysisManager &AM) {
337 OS << "DominatorTree for function: " << F.getName() << "\n";
338 AM.getResult<DominatorTreeAnalysis>(F).print(OS);
340 return PreservedAnalyses::all();
343 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
344 FunctionAnalysisManager &AM) {
345 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
346 assert(DT.verify());
347 (void)DT;
348 return PreservedAnalyses::all();
351 //===----------------------------------------------------------------------===//
352 // DominatorTreeWrapperPass Implementation
353 //===----------------------------------------------------------------------===//
355 // The implementation details of the wrapper pass that holds a DominatorTree
356 // suitable for use with the legacy pass manager.
358 //===----------------------------------------------------------------------===//
360 char DominatorTreeWrapperPass::ID = 0;
361 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
362 "Dominator Tree Construction", true, true)
364 bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
365 DT.recalculate(F);
366 return false;
369 void DominatorTreeWrapperPass::verifyAnalysis() const {
370 if (VerifyDomInfo)
371 assert(DT.verify(DominatorTree::VerificationLevel::Full));
372 else if (ExpensiveChecksEnabled)
373 assert(DT.verify(DominatorTree::VerificationLevel::Basic));
376 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
377 DT.print(OS);