1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements simple dominator construction algorithms for finding
11 // forward dominators. Postdominators are available in libanalysis, but are not
12 // included in libvmcore, because it's not needed. Forward dominators are
13 // needed to support the Verifier pass.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/IR/Dominators.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Config/llvm-config.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/GenericDomTreeConstruction.h"
28 #include "llvm/Support/raw_ostream.h"
32 bool llvm::VerifyDomInfo
= false;
33 static cl::opt
<bool, true>
34 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo
), cl::Hidden
,
35 cl::desc("Verify dominator info (time consuming)"));
37 #ifdef EXPENSIVE_CHECKS
38 static constexpr bool ExpensiveChecksEnabled
= true;
40 static constexpr bool ExpensiveChecksEnabled
= false;
43 bool BasicBlockEdge::isSingleEdge() const {
44 const TerminatorInst
*TI
= Start
->getTerminator();
45 unsigned NumEdgesToEnd
= 0;
46 for (unsigned int i
= 0, n
= TI
->getNumSuccessors(); i
< n
; ++i
) {
47 if (TI
->getSuccessor(i
) == End
)
49 if (NumEdgesToEnd
>= 2)
52 assert(NumEdgesToEnd
== 1);
56 //===----------------------------------------------------------------------===//
57 // DominatorTree Implementation
58 //===----------------------------------------------------------------------===//
60 // Provide public access to DominatorTree information. Implementation details
61 // can be found in Dominators.h, GenericDomTree.h, and
62 // GenericDomTreeConstruction.h.
64 //===----------------------------------------------------------------------===//
66 template class llvm::DomTreeNodeBase
<BasicBlock
>;
67 template class llvm::DominatorTreeBase
<BasicBlock
, false>; // DomTreeBase
68 template class llvm::DominatorTreeBase
<BasicBlock
, true>; // PostDomTreeBase
70 template class llvm::cfg::Update
<BasicBlock
*>;
72 template void llvm::DomTreeBuilder::Calculate
<DomTreeBuilder::BBDomTree
>(
73 DomTreeBuilder::BBDomTree
&DT
);
75 llvm::DomTreeBuilder::CalculateWithUpdates
<DomTreeBuilder::BBDomTree
>(
76 DomTreeBuilder::BBDomTree
&DT
, BBUpdates U
);
78 template void llvm::DomTreeBuilder::Calculate
<DomTreeBuilder::BBPostDomTree
>(
79 DomTreeBuilder::BBPostDomTree
&DT
);
80 // No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises.
82 template void llvm::DomTreeBuilder::InsertEdge
<DomTreeBuilder::BBDomTree
>(
83 DomTreeBuilder::BBDomTree
&DT
, BasicBlock
*From
, BasicBlock
*To
);
84 template void llvm::DomTreeBuilder::InsertEdge
<DomTreeBuilder::BBPostDomTree
>(
85 DomTreeBuilder::BBPostDomTree
&DT
, BasicBlock
*From
, BasicBlock
*To
);
87 template void llvm::DomTreeBuilder::DeleteEdge
<DomTreeBuilder::BBDomTree
>(
88 DomTreeBuilder::BBDomTree
&DT
, BasicBlock
*From
, BasicBlock
*To
);
89 template void llvm::DomTreeBuilder::DeleteEdge
<DomTreeBuilder::BBPostDomTree
>(
90 DomTreeBuilder::BBPostDomTree
&DT
, BasicBlock
*From
, BasicBlock
*To
);
92 template void llvm::DomTreeBuilder::ApplyUpdates
<DomTreeBuilder::BBDomTree
>(
93 DomTreeBuilder::BBDomTree
&DT
, DomTreeBuilder::BBUpdates
);
94 template void llvm::DomTreeBuilder::ApplyUpdates
<DomTreeBuilder::BBPostDomTree
>(
95 DomTreeBuilder::BBPostDomTree
&DT
, DomTreeBuilder::BBUpdates
);
97 template bool llvm::DomTreeBuilder::Verify
<DomTreeBuilder::BBDomTree
>(
98 const DomTreeBuilder::BBDomTree
&DT
,
99 DomTreeBuilder::BBDomTree::VerificationLevel VL
);
100 template bool llvm::DomTreeBuilder::Verify
<DomTreeBuilder::BBPostDomTree
>(
101 const DomTreeBuilder::BBPostDomTree
&DT
,
102 DomTreeBuilder::BBPostDomTree::VerificationLevel VL
);
104 bool DominatorTree::invalidate(Function
&F
, const PreservedAnalyses
&PA
,
105 FunctionAnalysisManager::Invalidator
&) {
106 // Check whether the analysis, all analyses on functions, or the function's
107 // CFG have been preserved.
108 auto PAC
= PA
.getChecker
<DominatorTreeAnalysis
>();
109 return !(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>() ||
110 PAC
.preservedSet
<CFGAnalyses
>());
113 // dominates - Return true if Def dominates a use in User. This performs
114 // the special checks necessary if Def and User are in the same basic block.
115 // Note that Def doesn't dominate a use in Def itself!
116 bool DominatorTree::dominates(const Instruction
*Def
,
117 const Instruction
*User
) const {
118 const BasicBlock
*UseBB
= User
->getParent();
119 const BasicBlock
*DefBB
= Def
->getParent();
121 // Any unreachable use is dominated, even if Def == User.
122 if (!isReachableFromEntry(UseBB
))
125 // Unreachable definitions don't dominate anything.
126 if (!isReachableFromEntry(DefBB
))
129 // An instruction doesn't dominate a use in itself.
133 // The value defined by an invoke dominates an instruction only if it
134 // dominates every instruction in UseBB.
135 // A PHI is dominated only if the instruction dominates every possible use in
137 if (isa
<InvokeInst
>(Def
) || isa
<PHINode
>(User
))
138 return dominates(Def
, UseBB
);
141 return dominates(DefBB
, UseBB
);
143 // Loop through the basic block until we find Def or User.
144 BasicBlock::const_iterator I
= DefBB
->begin();
145 for (; &*I
!= Def
&& &*I
!= User
; ++I
)
151 // true if Def would dominate a use in any instruction in UseBB.
152 // note that dominates(Def, Def->getParent()) is false.
153 bool DominatorTree::dominates(const Instruction
*Def
,
154 const BasicBlock
*UseBB
) const {
155 const BasicBlock
*DefBB
= Def
->getParent();
157 // Any unreachable use is dominated, even if DefBB == UseBB.
158 if (!isReachableFromEntry(UseBB
))
161 // Unreachable definitions don't dominate anything.
162 if (!isReachableFromEntry(DefBB
))
168 // Invoke results are only usable in the normal destination, not in the
169 // exceptional destination.
170 if (const auto *II
= dyn_cast
<InvokeInst
>(Def
)) {
171 BasicBlock
*NormalDest
= II
->getNormalDest();
172 BasicBlockEdge
E(DefBB
, NormalDest
);
173 return dominates(E
, UseBB
);
176 return dominates(DefBB
, UseBB
);
179 bool DominatorTree::dominates(const BasicBlockEdge
&BBE
,
180 const BasicBlock
*UseBB
) const {
181 // If the BB the edge ends in doesn't dominate the use BB, then the
182 // edge also doesn't.
183 const BasicBlock
*Start
= BBE
.getStart();
184 const BasicBlock
*End
= BBE
.getEnd();
185 if (!dominates(End
, UseBB
))
188 // Simple case: if the end BB has a single predecessor, the fact that it
189 // dominates the use block implies that the edge also does.
190 if (End
->getSinglePredecessor())
193 // The normal edge from the invoke is critical. Conceptually, what we would
194 // like to do is split it and check if the new block dominates the use.
195 // With X being the new block, the graph would look like:
208 // Given the definition of dominance, NormalDest is dominated by X iff X
209 // dominates all of NormalDest's predecessors (X, B, C in the example). X
210 // trivially dominates itself, so we only have to find if it dominates the
211 // other predecessors. Since the only way out of X is via NormalDest, X can
212 // only properly dominate a node if NormalDest dominates that node too.
213 int IsDuplicateEdge
= 0;
214 for (const_pred_iterator PI
= pred_begin(End
), E
= pred_end(End
);
216 const BasicBlock
*BB
= *PI
;
218 // If there are multiple edges between Start and End, by definition they
219 // can't dominate anything.
220 if (IsDuplicateEdge
++)
225 if (!dominates(End
, BB
))
231 bool DominatorTree::dominates(const BasicBlockEdge
&BBE
, const Use
&U
) const {
232 Instruction
*UserInst
= cast
<Instruction
>(U
.getUser());
233 // A PHI in the end of the edge is dominated by it.
234 PHINode
*PN
= dyn_cast
<PHINode
>(UserInst
);
235 if (PN
&& PN
->getParent() == BBE
.getEnd() &&
236 PN
->getIncomingBlock(U
) == BBE
.getStart())
239 // Otherwise use the edge-dominates-block query, which
240 // handles the crazy critical edge cases properly.
241 const BasicBlock
*UseBB
;
243 UseBB
= PN
->getIncomingBlock(U
);
245 UseBB
= UserInst
->getParent();
246 return dominates(BBE
, UseBB
);
249 bool DominatorTree::dominates(const Instruction
*Def
, const Use
&U
) const {
250 Instruction
*UserInst
= cast
<Instruction
>(U
.getUser());
251 const BasicBlock
*DefBB
= Def
->getParent();
253 // Determine the block in which the use happens. PHI nodes use
254 // their operands on edges; simulate this by thinking of the use
255 // happening at the end of the predecessor block.
256 const BasicBlock
*UseBB
;
257 if (PHINode
*PN
= dyn_cast
<PHINode
>(UserInst
))
258 UseBB
= PN
->getIncomingBlock(U
);
260 UseBB
= UserInst
->getParent();
262 // Any unreachable use is dominated, even if Def == User.
263 if (!isReachableFromEntry(UseBB
))
266 // Unreachable definitions don't dominate anything.
267 if (!isReachableFromEntry(DefBB
))
270 // Invoke instructions define their return values on the edges to their normal
271 // successors, so we have to handle them specially.
272 // Among other things, this means they don't dominate anything in
273 // their own block, except possibly a phi, so we don't need to
274 // walk the block in any case.
275 if (const InvokeInst
*II
= dyn_cast
<InvokeInst
>(Def
)) {
276 BasicBlock
*NormalDest
= II
->getNormalDest();
277 BasicBlockEdge
E(DefBB
, NormalDest
);
278 return dominates(E
, U
);
281 // If the def and use are in different blocks, do a simple CFG dominator
284 return dominates(DefBB
, UseBB
);
286 // Ok, def and use are in the same block. If the def is an invoke, it
287 // doesn't dominate anything in the block. If it's a PHI, it dominates
288 // everything in the block.
289 if (isa
<PHINode
>(UserInst
))
292 // Otherwise, just loop through the basic block until we find Def or User.
293 BasicBlock::const_iterator I
= DefBB
->begin();
294 for (; &*I
!= Def
&& &*I
!= UserInst
; ++I
)
297 return &*I
!= UserInst
;
300 bool DominatorTree::isReachableFromEntry(const Use
&U
) const {
301 Instruction
*I
= dyn_cast
<Instruction
>(U
.getUser());
303 // ConstantExprs aren't really reachable from the entry block, but they
304 // don't need to be treated like unreachable code either.
307 // PHI nodes use their operands on their incoming edges.
308 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
309 return isReachableFromEntry(PN
->getIncomingBlock(U
));
311 // Everything else uses their operands in their own block.
312 return isReachableFromEntry(I
->getParent());
315 //===----------------------------------------------------------------------===//
316 // DominatorTreeAnalysis and related pass implementations
317 //===----------------------------------------------------------------------===//
319 // This implements the DominatorTreeAnalysis which is used with the new pass
320 // manager. It also implements some methods from utility passes.
322 //===----------------------------------------------------------------------===//
324 DominatorTree
DominatorTreeAnalysis::run(Function
&F
,
325 FunctionAnalysisManager
&) {
331 AnalysisKey
DominatorTreeAnalysis::Key
;
333 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream
&OS
) : OS(OS
) {}
335 PreservedAnalyses
DominatorTreePrinterPass::run(Function
&F
,
336 FunctionAnalysisManager
&AM
) {
337 OS
<< "DominatorTree for function: " << F
.getName() << "\n";
338 AM
.getResult
<DominatorTreeAnalysis
>(F
).print(OS
);
340 return PreservedAnalyses::all();
343 PreservedAnalyses
DominatorTreeVerifierPass::run(Function
&F
,
344 FunctionAnalysisManager
&AM
) {
345 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
348 return PreservedAnalyses::all();
351 //===----------------------------------------------------------------------===//
352 // DominatorTreeWrapperPass Implementation
353 //===----------------------------------------------------------------------===//
355 // The implementation details of the wrapper pass that holds a DominatorTree
356 // suitable for use with the legacy pass manager.
358 //===----------------------------------------------------------------------===//
360 char DominatorTreeWrapperPass::ID
= 0;
361 INITIALIZE_PASS(DominatorTreeWrapperPass
, "domtree",
362 "Dominator Tree Construction", true, true)
364 bool DominatorTreeWrapperPass::runOnFunction(Function
&F
) {
369 void DominatorTreeWrapperPass::verifyAnalysis() const {
371 assert(DT
.verify(DominatorTree::VerificationLevel::Full
));
372 else if (ExpensiveChecksEnabled
)
373 assert(DT
.verify(DominatorTree::VerificationLevel::Basic
));
376 void DominatorTreeWrapperPass::print(raw_ostream
&OS
, const Module
*) const {