[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / IR / Function.cpp
blob36ba8d0721f38dc4020b9831eee8273f7632afcb
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Function.h"
15 #include "SymbolTableListTraitsImpl.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/CallSite.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Metadata.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/SymbolTableListTraits.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/IR/ValueSymbolTable.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstddef>
53 #include <cstdint>
54 #include <cstring>
55 #include <string>
57 using namespace llvm;
58 using ProfileCount = Function::ProfileCount;
60 // Explicit instantiations of SymbolTableListTraits since some of the methods
61 // are not in the public header file...
62 template class llvm::SymbolTableListTraits<BasicBlock>;
64 //===----------------------------------------------------------------------===//
65 // Argument Implementation
66 //===----------------------------------------------------------------------===//
68 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
69 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
70 setName(Name);
73 void Argument::setParent(Function *parent) {
74 Parent = parent;
77 bool Argument::hasNonNullAttr() const {
78 if (!getType()->isPointerTy()) return false;
79 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
80 return true;
81 else if (getDereferenceableBytes() > 0 &&
82 !NullPointerIsDefined(getParent(),
83 getType()->getPointerAddressSpace()))
84 return true;
85 return false;
88 bool Argument::hasByValAttr() const {
89 if (!getType()->isPointerTy()) return false;
90 return hasAttribute(Attribute::ByVal);
93 bool Argument::hasSwiftSelfAttr() const {
94 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
97 bool Argument::hasSwiftErrorAttr() const {
98 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
101 bool Argument::hasInAllocaAttr() const {
102 if (!getType()->isPointerTy()) return false;
103 return hasAttribute(Attribute::InAlloca);
106 bool Argument::hasByValOrInAllocaAttr() const {
107 if (!getType()->isPointerTy()) return false;
108 AttributeList Attrs = getParent()->getAttributes();
109 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
110 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
113 unsigned Argument::getParamAlignment() const {
114 assert(getType()->isPointerTy() && "Only pointers have alignments");
115 return getParent()->getParamAlignment(getArgNo());
118 uint64_t Argument::getDereferenceableBytes() const {
119 assert(getType()->isPointerTy() &&
120 "Only pointers have dereferenceable bytes");
121 return getParent()->getParamDereferenceableBytes(getArgNo());
124 uint64_t Argument::getDereferenceableOrNullBytes() const {
125 assert(getType()->isPointerTy() &&
126 "Only pointers have dereferenceable bytes");
127 return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
130 bool Argument::hasNestAttr() const {
131 if (!getType()->isPointerTy()) return false;
132 return hasAttribute(Attribute::Nest);
135 bool Argument::hasNoAliasAttr() const {
136 if (!getType()->isPointerTy()) return false;
137 return hasAttribute(Attribute::NoAlias);
140 bool Argument::hasNoCaptureAttr() const {
141 if (!getType()->isPointerTy()) return false;
142 return hasAttribute(Attribute::NoCapture);
145 bool Argument::hasStructRetAttr() const {
146 if (!getType()->isPointerTy()) return false;
147 return hasAttribute(Attribute::StructRet);
150 bool Argument::hasReturnedAttr() const {
151 return hasAttribute(Attribute::Returned);
154 bool Argument::hasZExtAttr() const {
155 return hasAttribute(Attribute::ZExt);
158 bool Argument::hasSExtAttr() const {
159 return hasAttribute(Attribute::SExt);
162 bool Argument::onlyReadsMemory() const {
163 AttributeList Attrs = getParent()->getAttributes();
164 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
165 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
168 void Argument::addAttrs(AttrBuilder &B) {
169 AttributeList AL = getParent()->getAttributes();
170 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
171 getParent()->setAttributes(AL);
174 void Argument::addAttr(Attribute::AttrKind Kind) {
175 getParent()->addParamAttr(getArgNo(), Kind);
178 void Argument::addAttr(Attribute Attr) {
179 getParent()->addParamAttr(getArgNo(), Attr);
182 void Argument::removeAttr(Attribute::AttrKind Kind) {
183 getParent()->removeParamAttr(getArgNo(), Kind);
186 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
187 return getParent()->hasParamAttribute(getArgNo(), Kind);
190 //===----------------------------------------------------------------------===//
191 // Helper Methods in Function
192 //===----------------------------------------------------------------------===//
194 LLVMContext &Function::getContext() const {
195 return getType()->getContext();
198 unsigned Function::getInstructionCount() {
199 unsigned NumInstrs = 0;
200 for (BasicBlock &BB : BasicBlocks)
201 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
202 BB.instructionsWithoutDebug().end());
203 return NumInstrs;
206 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
207 const Twine &N, Module &M) {
208 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
211 void Function::removeFromParent() {
212 getParent()->getFunctionList().remove(getIterator());
215 void Function::eraseFromParent() {
216 getParent()->getFunctionList().erase(getIterator());
219 //===----------------------------------------------------------------------===//
220 // Function Implementation
221 //===----------------------------------------------------------------------===//
223 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
224 // If AS == -1 and we are passed a valid module pointer we place the function
225 // in the program address space. Otherwise we default to AS0.
226 if (AddrSpace == static_cast<unsigned>(-1))
227 return M ? M->getDataLayout().getProgramAddressSpace() : 0;
228 return AddrSpace;
231 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
232 const Twine &name, Module *ParentModule)
233 : GlobalObject(Ty, Value::FunctionVal,
234 OperandTraits<Function>::op_begin(this), 0, Linkage, name,
235 computeAddrSpace(AddrSpace, ParentModule)),
236 NumArgs(Ty->getNumParams()) {
237 assert(FunctionType::isValidReturnType(getReturnType()) &&
238 "invalid return type");
239 setGlobalObjectSubClassData(0);
241 // We only need a symbol table for a function if the context keeps value names
242 if (!getContext().shouldDiscardValueNames())
243 SymTab = make_unique<ValueSymbolTable>();
245 // If the function has arguments, mark them as lazily built.
246 if (Ty->getNumParams())
247 setValueSubclassData(1); // Set the "has lazy arguments" bit.
249 if (ParentModule)
250 ParentModule->getFunctionList().push_back(this);
252 HasLLVMReservedName = getName().startswith("llvm.");
253 // Ensure intrinsics have the right parameter attributes.
254 // Note, the IntID field will have been set in Value::setName if this function
255 // name is a valid intrinsic ID.
256 if (IntID)
257 setAttributes(Intrinsic::getAttributes(getContext(), IntID));
260 Function::~Function() {
261 dropAllReferences(); // After this it is safe to delete instructions.
263 // Delete all of the method arguments and unlink from symbol table...
264 if (Arguments)
265 clearArguments();
267 // Remove the function from the on-the-side GC table.
268 clearGC();
271 void Function::BuildLazyArguments() const {
272 // Create the arguments vector, all arguments start out unnamed.
273 auto *FT = getFunctionType();
274 if (NumArgs > 0) {
275 Arguments = std::allocator<Argument>().allocate(NumArgs);
276 for (unsigned i = 0, e = NumArgs; i != e; ++i) {
277 Type *ArgTy = FT->getParamType(i);
278 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
279 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
283 // Clear the lazy arguments bit.
284 unsigned SDC = getSubclassDataFromValue();
285 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
286 assert(!hasLazyArguments());
289 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
290 return MutableArrayRef<Argument>(Args, Count);
293 void Function::clearArguments() {
294 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
295 A.setName("");
296 A.~Argument();
298 std::allocator<Argument>().deallocate(Arguments, NumArgs);
299 Arguments = nullptr;
302 void Function::stealArgumentListFrom(Function &Src) {
303 assert(isDeclaration() && "Expected no references to current arguments");
305 // Drop the current arguments, if any, and set the lazy argument bit.
306 if (!hasLazyArguments()) {
307 assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
308 [](const Argument &A) { return A.use_empty(); }) &&
309 "Expected arguments to be unused in declaration");
310 clearArguments();
311 setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
314 // Nothing to steal if Src has lazy arguments.
315 if (Src.hasLazyArguments())
316 return;
318 // Steal arguments from Src, and fix the lazy argument bits.
319 assert(arg_size() == Src.arg_size());
320 Arguments = Src.Arguments;
321 Src.Arguments = nullptr;
322 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
323 // FIXME: This does the work of transferNodesFromList inefficiently.
324 SmallString<128> Name;
325 if (A.hasName())
326 Name = A.getName();
327 if (!Name.empty())
328 A.setName("");
329 A.setParent(this);
330 if (!Name.empty())
331 A.setName(Name);
334 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
335 assert(!hasLazyArguments());
336 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
339 // dropAllReferences() - This function causes all the subinstructions to "let
340 // go" of all references that they are maintaining. This allows one to
341 // 'delete' a whole class at a time, even though there may be circular
342 // references... first all references are dropped, and all use counts go to
343 // zero. Then everything is deleted for real. Note that no operations are
344 // valid on an object that has "dropped all references", except operator
345 // delete.
347 void Function::dropAllReferences() {
348 setIsMaterializable(false);
350 for (BasicBlock &BB : *this)
351 BB.dropAllReferences();
353 // Delete all basic blocks. They are now unused, except possibly by
354 // blockaddresses, but BasicBlock's destructor takes care of those.
355 while (!BasicBlocks.empty())
356 BasicBlocks.begin()->eraseFromParent();
358 // Drop uses of any optional data (real or placeholder).
359 if (getNumOperands()) {
360 User::dropAllReferences();
361 setNumHungOffUseOperands(0);
362 setValueSubclassData(getSubclassDataFromValue() & ~0xe);
365 // Metadata is stored in a side-table.
366 clearMetadata();
369 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
370 AttributeList PAL = getAttributes();
371 PAL = PAL.addAttribute(getContext(), i, Kind);
372 setAttributes(PAL);
375 void Function::addAttribute(unsigned i, Attribute Attr) {
376 AttributeList PAL = getAttributes();
377 PAL = PAL.addAttribute(getContext(), i, Attr);
378 setAttributes(PAL);
381 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
382 AttributeList PAL = getAttributes();
383 PAL = PAL.addAttributes(getContext(), i, Attrs);
384 setAttributes(PAL);
387 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
388 AttributeList PAL = getAttributes();
389 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
390 setAttributes(PAL);
393 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
394 AttributeList PAL = getAttributes();
395 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
396 setAttributes(PAL);
399 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
400 AttributeList PAL = getAttributes();
401 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
402 setAttributes(PAL);
405 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
406 AttributeList PAL = getAttributes();
407 PAL = PAL.removeAttribute(getContext(), i, Kind);
408 setAttributes(PAL);
411 void Function::removeAttribute(unsigned i, StringRef Kind) {
412 AttributeList PAL = getAttributes();
413 PAL = PAL.removeAttribute(getContext(), i, Kind);
414 setAttributes(PAL);
417 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
418 AttributeList PAL = getAttributes();
419 PAL = PAL.removeAttributes(getContext(), i, Attrs);
420 setAttributes(PAL);
423 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
424 AttributeList PAL = getAttributes();
425 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
426 setAttributes(PAL);
429 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
430 AttributeList PAL = getAttributes();
431 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
432 setAttributes(PAL);
435 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
436 AttributeList PAL = getAttributes();
437 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
438 setAttributes(PAL);
441 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
442 AttributeList PAL = getAttributes();
443 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
444 setAttributes(PAL);
447 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
448 AttributeList PAL = getAttributes();
449 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
450 setAttributes(PAL);
453 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
454 AttributeList PAL = getAttributes();
455 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
456 setAttributes(PAL);
459 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
460 uint64_t Bytes) {
461 AttributeList PAL = getAttributes();
462 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
463 setAttributes(PAL);
466 const std::string &Function::getGC() const {
467 assert(hasGC() && "Function has no collector");
468 return getContext().getGC(*this);
471 void Function::setGC(std::string Str) {
472 setValueSubclassDataBit(14, !Str.empty());
473 getContext().setGC(*this, std::move(Str));
476 void Function::clearGC() {
477 if (!hasGC())
478 return;
479 getContext().deleteGC(*this);
480 setValueSubclassDataBit(14, false);
483 /// Copy all additional attributes (those not needed to create a Function) from
484 /// the Function Src to this one.
485 void Function::copyAttributesFrom(const Function *Src) {
486 GlobalObject::copyAttributesFrom(Src);
487 setCallingConv(Src->getCallingConv());
488 setAttributes(Src->getAttributes());
489 if (Src->hasGC())
490 setGC(Src->getGC());
491 else
492 clearGC();
493 if (Src->hasPersonalityFn())
494 setPersonalityFn(Src->getPersonalityFn());
495 if (Src->hasPrefixData())
496 setPrefixData(Src->getPrefixData());
497 if (Src->hasPrologueData())
498 setPrologueData(Src->getPrologueData());
501 /// Table of string intrinsic names indexed by enum value.
502 static const char * const IntrinsicNameTable[] = {
503 "not_intrinsic",
504 #define GET_INTRINSIC_NAME_TABLE
505 #include "llvm/IR/IntrinsicImpl.inc"
506 #undef GET_INTRINSIC_NAME_TABLE
509 /// Table of per-target intrinsic name tables.
510 #define GET_INTRINSIC_TARGET_DATA
511 #include "llvm/IR/IntrinsicImpl.inc"
512 #undef GET_INTRINSIC_TARGET_DATA
514 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
515 /// target as \c Name, or the generic table if \c Name is not target specific.
517 /// Returns the relevant slice of \c IntrinsicNameTable
518 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
519 assert(Name.startswith("llvm."));
521 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
522 // Drop "llvm." and take the first dotted component. That will be the target
523 // if this is target specific.
524 StringRef Target = Name.drop_front(5).split('.').first;
525 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
526 [](const IntrinsicTargetInfo &TI,
527 StringRef Target) { return TI.Name < Target; });
528 // We've either found the target or just fall back to the generic set, which
529 // is always first.
530 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
531 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
534 /// This does the actual lookup of an intrinsic ID which
535 /// matches the given function name.
536 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
537 ArrayRef<const char *> NameTable = findTargetSubtable(Name);
538 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
539 if (Idx == -1)
540 return Intrinsic::not_intrinsic;
542 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
543 // an index into a sub-table.
544 int Adjust = NameTable.data() - IntrinsicNameTable;
545 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
547 // If the intrinsic is not overloaded, require an exact match. If it is
548 // overloaded, require either exact or prefix match.
549 const auto MatchSize = strlen(NameTable[Idx]);
550 assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
551 bool IsExactMatch = Name.size() == MatchSize;
552 return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
555 void Function::recalculateIntrinsicID() {
556 StringRef Name = getName();
557 if (!Name.startswith("llvm.")) {
558 HasLLVMReservedName = false;
559 IntID = Intrinsic::not_intrinsic;
560 return;
562 HasLLVMReservedName = true;
563 IntID = lookupIntrinsicID(Name);
566 /// Returns a stable mangling for the type specified for use in the name
567 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling
568 /// of named types is simply their name. Manglings for unnamed types consist
569 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
570 /// combined with the mangling of their component types. A vararg function
571 /// type will have a suffix of 'vararg'. Since function types can contain
572 /// other function types, we close a function type mangling with suffix 'f'
573 /// which can't be confused with it's prefix. This ensures we don't have
574 /// collisions between two unrelated function types. Otherwise, you might
575 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
577 static std::string getMangledTypeStr(Type* Ty) {
578 std::string Result;
579 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
580 Result += "p" + utostr(PTyp->getAddressSpace()) +
581 getMangledTypeStr(PTyp->getElementType());
582 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
583 Result += "a" + utostr(ATyp->getNumElements()) +
584 getMangledTypeStr(ATyp->getElementType());
585 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
586 if (!STyp->isLiteral()) {
587 Result += "s_";
588 Result += STyp->getName();
589 } else {
590 Result += "sl_";
591 for (auto Elem : STyp->elements())
592 Result += getMangledTypeStr(Elem);
594 // Ensure nested structs are distinguishable.
595 Result += "s";
596 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
597 Result += "f_" + getMangledTypeStr(FT->getReturnType());
598 for (size_t i = 0; i < FT->getNumParams(); i++)
599 Result += getMangledTypeStr(FT->getParamType(i));
600 if (FT->isVarArg())
601 Result += "vararg";
602 // Ensure nested function types are distinguishable.
603 Result += "f";
604 } else if (isa<VectorType>(Ty)) {
605 Result += "v" + utostr(Ty->getVectorNumElements()) +
606 getMangledTypeStr(Ty->getVectorElementType());
607 } else if (Ty) {
608 switch (Ty->getTypeID()) {
609 default: llvm_unreachable("Unhandled type");
610 case Type::VoidTyID: Result += "isVoid"; break;
611 case Type::MetadataTyID: Result += "Metadata"; break;
612 case Type::HalfTyID: Result += "f16"; break;
613 case Type::FloatTyID: Result += "f32"; break;
614 case Type::DoubleTyID: Result += "f64"; break;
615 case Type::X86_FP80TyID: Result += "f80"; break;
616 case Type::FP128TyID: Result += "f128"; break;
617 case Type::PPC_FP128TyID: Result += "ppcf128"; break;
618 case Type::X86_MMXTyID: Result += "x86mmx"; break;
619 case Type::IntegerTyID:
620 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
621 break;
624 return Result;
627 StringRef Intrinsic::getName(ID id) {
628 assert(id < num_intrinsics && "Invalid intrinsic ID!");
629 assert(!isOverloaded(id) &&
630 "This version of getName does not support overloading");
631 return IntrinsicNameTable[id];
634 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
635 assert(id < num_intrinsics && "Invalid intrinsic ID!");
636 std::string Result(IntrinsicNameTable[id]);
637 for (Type *Ty : Tys) {
638 Result += "." + getMangledTypeStr(Ty);
640 return Result;
643 /// IIT_Info - These are enumerators that describe the entries returned by the
644 /// getIntrinsicInfoTableEntries function.
646 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
647 enum IIT_Info {
648 // Common values should be encoded with 0-15.
649 IIT_Done = 0,
650 IIT_I1 = 1,
651 IIT_I8 = 2,
652 IIT_I16 = 3,
653 IIT_I32 = 4,
654 IIT_I64 = 5,
655 IIT_F16 = 6,
656 IIT_F32 = 7,
657 IIT_F64 = 8,
658 IIT_V2 = 9,
659 IIT_V4 = 10,
660 IIT_V8 = 11,
661 IIT_V16 = 12,
662 IIT_V32 = 13,
663 IIT_PTR = 14,
664 IIT_ARG = 15,
666 // Values from 16+ are only encodable with the inefficient encoding.
667 IIT_V64 = 16,
668 IIT_MMX = 17,
669 IIT_TOKEN = 18,
670 IIT_METADATA = 19,
671 IIT_EMPTYSTRUCT = 20,
672 IIT_STRUCT2 = 21,
673 IIT_STRUCT3 = 22,
674 IIT_STRUCT4 = 23,
675 IIT_STRUCT5 = 24,
676 IIT_EXTEND_ARG = 25,
677 IIT_TRUNC_ARG = 26,
678 IIT_ANYPTR = 27,
679 IIT_V1 = 28,
680 IIT_VARARG = 29,
681 IIT_HALF_VEC_ARG = 30,
682 IIT_SAME_VEC_WIDTH_ARG = 31,
683 IIT_PTR_TO_ARG = 32,
684 IIT_PTR_TO_ELT = 33,
685 IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
686 IIT_I128 = 35,
687 IIT_V512 = 36,
688 IIT_V1024 = 37,
689 IIT_STRUCT6 = 38,
690 IIT_STRUCT7 = 39,
691 IIT_STRUCT8 = 40,
692 IIT_F128 = 41
695 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
696 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
697 using namespace Intrinsic;
699 IIT_Info Info = IIT_Info(Infos[NextElt++]);
700 unsigned StructElts = 2;
702 switch (Info) {
703 case IIT_Done:
704 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
705 return;
706 case IIT_VARARG:
707 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
708 return;
709 case IIT_MMX:
710 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
711 return;
712 case IIT_TOKEN:
713 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
714 return;
715 case IIT_METADATA:
716 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
717 return;
718 case IIT_F16:
719 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
720 return;
721 case IIT_F32:
722 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
723 return;
724 case IIT_F64:
725 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
726 return;
727 case IIT_F128:
728 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
729 return;
730 case IIT_I1:
731 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
732 return;
733 case IIT_I8:
734 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
735 return;
736 case IIT_I16:
737 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
738 return;
739 case IIT_I32:
740 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
741 return;
742 case IIT_I64:
743 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
744 return;
745 case IIT_I128:
746 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
747 return;
748 case IIT_V1:
749 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
750 DecodeIITType(NextElt, Infos, OutputTable);
751 return;
752 case IIT_V2:
753 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
754 DecodeIITType(NextElt, Infos, OutputTable);
755 return;
756 case IIT_V4:
757 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
758 DecodeIITType(NextElt, Infos, OutputTable);
759 return;
760 case IIT_V8:
761 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
762 DecodeIITType(NextElt, Infos, OutputTable);
763 return;
764 case IIT_V16:
765 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
766 DecodeIITType(NextElt, Infos, OutputTable);
767 return;
768 case IIT_V32:
769 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
770 DecodeIITType(NextElt, Infos, OutputTable);
771 return;
772 case IIT_V64:
773 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
774 DecodeIITType(NextElt, Infos, OutputTable);
775 return;
776 case IIT_V512:
777 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
778 DecodeIITType(NextElt, Infos, OutputTable);
779 return;
780 case IIT_V1024:
781 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
782 DecodeIITType(NextElt, Infos, OutputTable);
783 return;
784 case IIT_PTR:
785 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
786 DecodeIITType(NextElt, Infos, OutputTable);
787 return;
788 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
789 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
790 Infos[NextElt++]));
791 DecodeIITType(NextElt, Infos, OutputTable);
792 return;
794 case IIT_ARG: {
795 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
796 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
797 return;
799 case IIT_EXTEND_ARG: {
800 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
801 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
802 ArgInfo));
803 return;
805 case IIT_TRUNC_ARG: {
806 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
807 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
808 ArgInfo));
809 return;
811 case IIT_HALF_VEC_ARG: {
812 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
813 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
814 ArgInfo));
815 return;
817 case IIT_SAME_VEC_WIDTH_ARG: {
818 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
819 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
820 ArgInfo));
821 return;
823 case IIT_PTR_TO_ARG: {
824 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
825 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
826 ArgInfo));
827 return;
829 case IIT_PTR_TO_ELT: {
830 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
831 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
832 return;
834 case IIT_VEC_OF_ANYPTRS_TO_ELT: {
835 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
836 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
837 OutputTable.push_back(
838 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
839 return;
841 case IIT_EMPTYSTRUCT:
842 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
843 return;
844 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
845 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
846 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
847 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
848 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
849 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
850 case IIT_STRUCT2: {
851 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
853 for (unsigned i = 0; i != StructElts; ++i)
854 DecodeIITType(NextElt, Infos, OutputTable);
855 return;
858 llvm_unreachable("unhandled");
861 #define GET_INTRINSIC_GENERATOR_GLOBAL
862 #include "llvm/IR/IntrinsicImpl.inc"
863 #undef GET_INTRINSIC_GENERATOR_GLOBAL
865 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
866 SmallVectorImpl<IITDescriptor> &T){
867 // Check to see if the intrinsic's type was expressible by the table.
868 unsigned TableVal = IIT_Table[id-1];
870 // Decode the TableVal into an array of IITValues.
871 SmallVector<unsigned char, 8> IITValues;
872 ArrayRef<unsigned char> IITEntries;
873 unsigned NextElt = 0;
874 if ((TableVal >> 31) != 0) {
875 // This is an offset into the IIT_LongEncodingTable.
876 IITEntries = IIT_LongEncodingTable;
878 // Strip sentinel bit.
879 NextElt = (TableVal << 1) >> 1;
880 } else {
881 // Decode the TableVal into an array of IITValues. If the entry was encoded
882 // into a single word in the table itself, decode it now.
883 do {
884 IITValues.push_back(TableVal & 0xF);
885 TableVal >>= 4;
886 } while (TableVal);
888 IITEntries = IITValues;
889 NextElt = 0;
892 // Okay, decode the table into the output vector of IITDescriptors.
893 DecodeIITType(NextElt, IITEntries, T);
894 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
895 DecodeIITType(NextElt, IITEntries, T);
898 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
899 ArrayRef<Type*> Tys, LLVMContext &Context) {
900 using namespace Intrinsic;
902 IITDescriptor D = Infos.front();
903 Infos = Infos.slice(1);
905 switch (D.Kind) {
906 case IITDescriptor::Void: return Type::getVoidTy(Context);
907 case IITDescriptor::VarArg: return Type::getVoidTy(Context);
908 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
909 case IITDescriptor::Token: return Type::getTokenTy(Context);
910 case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
911 case IITDescriptor::Half: return Type::getHalfTy(Context);
912 case IITDescriptor::Float: return Type::getFloatTy(Context);
913 case IITDescriptor::Double: return Type::getDoubleTy(Context);
914 case IITDescriptor::Quad: return Type::getFP128Ty(Context);
916 case IITDescriptor::Integer:
917 return IntegerType::get(Context, D.Integer_Width);
918 case IITDescriptor::Vector:
919 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
920 case IITDescriptor::Pointer:
921 return PointerType::get(DecodeFixedType(Infos, Tys, Context),
922 D.Pointer_AddressSpace);
923 case IITDescriptor::Struct: {
924 SmallVector<Type *, 8> Elts;
925 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
926 Elts.push_back(DecodeFixedType(Infos, Tys, Context));
927 return StructType::get(Context, Elts);
929 case IITDescriptor::Argument:
930 return Tys[D.getArgumentNumber()];
931 case IITDescriptor::ExtendArgument: {
932 Type *Ty = Tys[D.getArgumentNumber()];
933 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
934 return VectorType::getExtendedElementVectorType(VTy);
936 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
938 case IITDescriptor::TruncArgument: {
939 Type *Ty = Tys[D.getArgumentNumber()];
940 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
941 return VectorType::getTruncatedElementVectorType(VTy);
943 IntegerType *ITy = cast<IntegerType>(Ty);
944 assert(ITy->getBitWidth() % 2 == 0);
945 return IntegerType::get(Context, ITy->getBitWidth() / 2);
947 case IITDescriptor::HalfVecArgument:
948 return VectorType::getHalfElementsVectorType(cast<VectorType>(
949 Tys[D.getArgumentNumber()]));
950 case IITDescriptor::SameVecWidthArgument: {
951 Type *EltTy = DecodeFixedType(Infos, Tys, Context);
952 Type *Ty = Tys[D.getArgumentNumber()];
953 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
954 return VectorType::get(EltTy, VTy->getNumElements());
956 llvm_unreachable("unhandled");
958 case IITDescriptor::PtrToArgument: {
959 Type *Ty = Tys[D.getArgumentNumber()];
960 return PointerType::getUnqual(Ty);
962 case IITDescriptor::PtrToElt: {
963 Type *Ty = Tys[D.getArgumentNumber()];
964 VectorType *VTy = dyn_cast<VectorType>(Ty);
965 if (!VTy)
966 llvm_unreachable("Expected an argument of Vector Type");
967 Type *EltTy = VTy->getVectorElementType();
968 return PointerType::getUnqual(EltTy);
970 case IITDescriptor::VecOfAnyPtrsToElt:
971 // Return the overloaded type (which determines the pointers address space)
972 return Tys[D.getOverloadArgNumber()];
974 llvm_unreachable("unhandled");
977 FunctionType *Intrinsic::getType(LLVMContext &Context,
978 ID id, ArrayRef<Type*> Tys) {
979 SmallVector<IITDescriptor, 8> Table;
980 getIntrinsicInfoTableEntries(id, Table);
982 ArrayRef<IITDescriptor> TableRef = Table;
983 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
985 SmallVector<Type*, 8> ArgTys;
986 while (!TableRef.empty())
987 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
989 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
990 // If we see void type as the type of the last argument, it is vararg intrinsic
991 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
992 ArgTys.pop_back();
993 return FunctionType::get(ResultTy, ArgTys, true);
995 return FunctionType::get(ResultTy, ArgTys, false);
998 bool Intrinsic::isOverloaded(ID id) {
999 #define GET_INTRINSIC_OVERLOAD_TABLE
1000 #include "llvm/IR/IntrinsicImpl.inc"
1001 #undef GET_INTRINSIC_OVERLOAD_TABLE
1004 bool Intrinsic::isLeaf(ID id) {
1005 switch (id) {
1006 default:
1007 return true;
1009 case Intrinsic::experimental_gc_statepoint:
1010 case Intrinsic::experimental_patchpoint_void:
1011 case Intrinsic::experimental_patchpoint_i64:
1012 return false;
1016 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1017 #define GET_INTRINSIC_ATTRIBUTES
1018 #include "llvm/IR/IntrinsicImpl.inc"
1019 #undef GET_INTRINSIC_ATTRIBUTES
1021 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1022 // There can never be multiple globals with the same name of different types,
1023 // because intrinsics must be a specific type.
1024 return
1025 cast<Function>(M->getOrInsertFunction(getName(id, Tys),
1026 getType(M->getContext(), id, Tys)));
1029 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1030 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1031 #include "llvm/IR/IntrinsicImpl.inc"
1032 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1034 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1035 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1036 #include "llvm/IR/IntrinsicImpl.inc"
1037 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1039 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1040 SmallVectorImpl<Type*> &ArgTys) {
1041 using namespace Intrinsic;
1043 // If we ran out of descriptors, there are too many arguments.
1044 if (Infos.empty()) return true;
1045 IITDescriptor D = Infos.front();
1046 Infos = Infos.slice(1);
1048 switch (D.Kind) {
1049 case IITDescriptor::Void: return !Ty->isVoidTy();
1050 case IITDescriptor::VarArg: return true;
1051 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
1052 case IITDescriptor::Token: return !Ty->isTokenTy();
1053 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1054 case IITDescriptor::Half: return !Ty->isHalfTy();
1055 case IITDescriptor::Float: return !Ty->isFloatTy();
1056 case IITDescriptor::Double: return !Ty->isDoubleTy();
1057 case IITDescriptor::Quad: return !Ty->isFP128Ty();
1058 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1059 case IITDescriptor::Vector: {
1060 VectorType *VT = dyn_cast<VectorType>(Ty);
1061 return !VT || VT->getNumElements() != D.Vector_Width ||
1062 matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
1064 case IITDescriptor::Pointer: {
1065 PointerType *PT = dyn_cast<PointerType>(Ty);
1066 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1067 matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
1070 case IITDescriptor::Struct: {
1071 StructType *ST = dyn_cast<StructType>(Ty);
1072 if (!ST || ST->getNumElements() != D.Struct_NumElements)
1073 return true;
1075 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1076 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
1077 return true;
1078 return false;
1081 case IITDescriptor::Argument:
1082 // Two cases here - If this is the second occurrence of an argument, verify
1083 // that the later instance matches the previous instance.
1084 if (D.getArgumentNumber() < ArgTys.size())
1085 return Ty != ArgTys[D.getArgumentNumber()];
1087 // Otherwise, if this is the first instance of an argument, record it and
1088 // verify the "Any" kind.
1089 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
1090 ArgTys.push_back(Ty);
1092 switch (D.getArgumentKind()) {
1093 case IITDescriptor::AK_Any: return false; // Success
1094 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1095 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
1096 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
1097 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1099 llvm_unreachable("all argument kinds not covered");
1101 case IITDescriptor::ExtendArgument: {
1102 // This may only be used when referring to a previous vector argument.
1103 if (D.getArgumentNumber() >= ArgTys.size())
1104 return true;
1106 Type *NewTy = ArgTys[D.getArgumentNumber()];
1107 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1108 NewTy = VectorType::getExtendedElementVectorType(VTy);
1109 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1110 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1111 else
1112 return true;
1114 return Ty != NewTy;
1116 case IITDescriptor::TruncArgument: {
1117 // This may only be used when referring to a previous vector argument.
1118 if (D.getArgumentNumber() >= ArgTys.size())
1119 return true;
1121 Type *NewTy = ArgTys[D.getArgumentNumber()];
1122 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1123 NewTy = VectorType::getTruncatedElementVectorType(VTy);
1124 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1125 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1126 else
1127 return true;
1129 return Ty != NewTy;
1131 case IITDescriptor::HalfVecArgument:
1132 // This may only be used when referring to a previous vector argument.
1133 return D.getArgumentNumber() >= ArgTys.size() ||
1134 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1135 VectorType::getHalfElementsVectorType(
1136 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1137 case IITDescriptor::SameVecWidthArgument: {
1138 if (D.getArgumentNumber() >= ArgTys.size())
1139 return true;
1140 VectorType * ReferenceType =
1141 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1142 VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
1143 if (!ThisArgType || !ReferenceType ||
1144 (ReferenceType->getVectorNumElements() !=
1145 ThisArgType->getVectorNumElements()))
1146 return true;
1147 return matchIntrinsicType(ThisArgType->getVectorElementType(),
1148 Infos, ArgTys);
1150 case IITDescriptor::PtrToArgument: {
1151 if (D.getArgumentNumber() >= ArgTys.size())
1152 return true;
1153 Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1154 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1155 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1157 case IITDescriptor::PtrToElt: {
1158 if (D.getArgumentNumber() >= ArgTys.size())
1159 return true;
1160 VectorType * ReferenceType =
1161 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1162 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1164 return (!ThisArgType || !ReferenceType ||
1165 ThisArgType->getElementType() != ReferenceType->getElementType());
1167 case IITDescriptor::VecOfAnyPtrsToElt: {
1168 unsigned RefArgNumber = D.getRefArgNumber();
1170 // This may only be used when referring to a previous argument.
1171 if (RefArgNumber >= ArgTys.size())
1172 return true;
1174 // Record the overloaded type
1175 assert(D.getOverloadArgNumber() == ArgTys.size() &&
1176 "Table consistency error");
1177 ArgTys.push_back(Ty);
1179 // Verify the overloaded type "matches" the Ref type.
1180 // i.e. Ty is a vector with the same width as Ref.
1181 // Composed of pointers to the same element type as Ref.
1182 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1183 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1184 if (!ThisArgVecTy || !ReferenceType ||
1185 (ReferenceType->getVectorNumElements() !=
1186 ThisArgVecTy->getVectorNumElements()))
1187 return true;
1188 PointerType *ThisArgEltTy =
1189 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1190 if (!ThisArgEltTy)
1191 return true;
1192 return ThisArgEltTy->getElementType() !=
1193 ReferenceType->getVectorElementType();
1196 llvm_unreachable("unhandled");
1199 bool
1200 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1201 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1202 // If there are no descriptors left, then it can't be a vararg.
1203 if (Infos.empty())
1204 return isVarArg;
1206 // There should be only one descriptor remaining at this point.
1207 if (Infos.size() != 1)
1208 return true;
1210 // Check and verify the descriptor.
1211 IITDescriptor D = Infos.front();
1212 Infos = Infos.slice(1);
1213 if (D.Kind == IITDescriptor::VarArg)
1214 return !isVarArg;
1216 return true;
1219 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1220 Intrinsic::ID ID = F->getIntrinsicID();
1221 if (!ID)
1222 return None;
1224 FunctionType *FTy = F->getFunctionType();
1225 // Accumulate an array of overloaded types for the given intrinsic
1226 SmallVector<Type *, 4> ArgTys;
1228 SmallVector<Intrinsic::IITDescriptor, 8> Table;
1229 getIntrinsicInfoTableEntries(ID, Table);
1230 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1232 // If we encounter any problems matching the signature with the descriptor
1233 // just give up remangling. It's up to verifier to report the discrepancy.
1234 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
1235 return None;
1236 for (auto Ty : FTy->params())
1237 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
1238 return None;
1239 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1240 return None;
1243 StringRef Name = F->getName();
1244 if (Name == Intrinsic::getName(ID, ArgTys))
1245 return None;
1247 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1248 NewDecl->setCallingConv(F->getCallingConv());
1249 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1250 return NewDecl;
1253 /// hasAddressTaken - returns true if there are any uses of this function
1254 /// other than direct calls or invokes to it.
1255 bool Function::hasAddressTaken(const User* *PutOffender) const {
1256 for (const Use &U : uses()) {
1257 const User *FU = U.getUser();
1258 if (isa<BlockAddress>(FU))
1259 continue;
1260 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) {
1261 if (PutOffender)
1262 *PutOffender = FU;
1263 return true;
1265 ImmutableCallSite CS(cast<Instruction>(FU));
1266 if (!CS.isCallee(&U)) {
1267 if (PutOffender)
1268 *PutOffender = FU;
1269 return true;
1272 return false;
1275 bool Function::isDefTriviallyDead() const {
1276 // Check the linkage
1277 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1278 !hasAvailableExternallyLinkage())
1279 return false;
1281 // Check if the function is used by anything other than a blockaddress.
1282 for (const User *U : users())
1283 if (!isa<BlockAddress>(U))
1284 return false;
1286 return true;
1289 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1290 /// setjmp or other function that gcc recognizes as "returning twice".
1291 bool Function::callsFunctionThatReturnsTwice() const {
1292 for (const_inst_iterator
1293 I = inst_begin(this), E = inst_end(this); I != E; ++I) {
1294 ImmutableCallSite CS(&*I);
1295 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
1296 return true;
1299 return false;
1302 Constant *Function::getPersonalityFn() const {
1303 assert(hasPersonalityFn() && getNumOperands());
1304 return cast<Constant>(Op<0>());
1307 void Function::setPersonalityFn(Constant *Fn) {
1308 setHungoffOperand<0>(Fn);
1309 setValueSubclassDataBit(3, Fn != nullptr);
1312 Constant *Function::getPrefixData() const {
1313 assert(hasPrefixData() && getNumOperands());
1314 return cast<Constant>(Op<1>());
1317 void Function::setPrefixData(Constant *PrefixData) {
1318 setHungoffOperand<1>(PrefixData);
1319 setValueSubclassDataBit(1, PrefixData != nullptr);
1322 Constant *Function::getPrologueData() const {
1323 assert(hasPrologueData() && getNumOperands());
1324 return cast<Constant>(Op<2>());
1327 void Function::setPrologueData(Constant *PrologueData) {
1328 setHungoffOperand<2>(PrologueData);
1329 setValueSubclassDataBit(2, PrologueData != nullptr);
1332 void Function::allocHungoffUselist() {
1333 // If we've already allocated a uselist, stop here.
1334 if (getNumOperands())
1335 return;
1337 allocHungoffUses(3, /*IsPhi=*/ false);
1338 setNumHungOffUseOperands(3);
1340 // Initialize the uselist with placeholder operands to allow traversal.
1341 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1342 Op<0>().set(CPN);
1343 Op<1>().set(CPN);
1344 Op<2>().set(CPN);
1347 template <int Idx>
1348 void Function::setHungoffOperand(Constant *C) {
1349 if (C) {
1350 allocHungoffUselist();
1351 Op<Idx>().set(C);
1352 } else if (getNumOperands()) {
1353 Op<Idx>().set(
1354 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1358 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1359 assert(Bit < 16 && "SubclassData contains only 16 bits");
1360 if (On)
1361 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1362 else
1363 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1366 void Function::setEntryCount(ProfileCount Count,
1367 const DenseSet<GlobalValue::GUID> *S) {
1368 assert(Count.hasValue());
1369 #if !defined(NDEBUG)
1370 auto PrevCount = getEntryCount();
1371 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1372 #endif
1373 MDBuilder MDB(getContext());
1374 setMetadata(
1375 LLVMContext::MD_prof,
1376 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1379 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1380 const DenseSet<GlobalValue::GUID> *Imports) {
1381 setEntryCount(ProfileCount(Count, Type), Imports);
1384 ProfileCount Function::getEntryCount() const {
1385 MDNode *MD = getMetadata(LLVMContext::MD_prof);
1386 if (MD && MD->getOperand(0))
1387 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1388 if (MDS->getString().equals("function_entry_count")) {
1389 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1390 uint64_t Count = CI->getValue().getZExtValue();
1391 // A value of -1 is used for SamplePGO when there were no samples.
1392 // Treat this the same as unknown.
1393 if (Count == (uint64_t)-1)
1394 return ProfileCount::getInvalid();
1395 return ProfileCount(Count, PCT_Real);
1396 } else if (MDS->getString().equals("synthetic_function_entry_count")) {
1397 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1398 uint64_t Count = CI->getValue().getZExtValue();
1399 return ProfileCount(Count, PCT_Synthetic);
1402 return ProfileCount::getInvalid();
1405 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1406 DenseSet<GlobalValue::GUID> R;
1407 if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1408 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1409 if (MDS->getString().equals("function_entry_count"))
1410 for (unsigned i = 2; i < MD->getNumOperands(); i++)
1411 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1412 ->getValue()
1413 .getZExtValue());
1414 return R;
1417 void Function::setSectionPrefix(StringRef Prefix) {
1418 MDBuilder MDB(getContext());
1419 setMetadata(LLVMContext::MD_section_prefix,
1420 MDB.createFunctionSectionPrefix(Prefix));
1423 Optional<StringRef> Function::getSectionPrefix() const {
1424 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1425 assert(cast<MDString>(MD->getOperand(0))
1426 ->getString()
1427 .equals("function_section_prefix") &&
1428 "Metadata not match");
1429 return cast<MDString>(MD->getOperand(1))->getString();
1431 return None;
1434 bool Function::nullPointerIsDefined() const {
1435 return getFnAttribute("null-pointer-is-valid")
1436 .getValueAsString()
1437 .equals("true");
1440 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1441 if (F && F->nullPointerIsDefined())
1442 return true;
1444 if (AS != 0)
1445 return true;
1447 return false;