1 //===- Function.cpp - Implement the Global object classes -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Function class for the IR library.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Function.h"
15 #include "SymbolTableListTraitsImpl.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/CallSite.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Metadata.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/SymbolTableListTraits.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/IR/ValueSymbolTable.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/ErrorHandling.h"
58 using ProfileCount
= Function::ProfileCount
;
60 // Explicit instantiations of SymbolTableListTraits since some of the methods
61 // are not in the public header file...
62 template class llvm::SymbolTableListTraits
<BasicBlock
>;
64 //===----------------------------------------------------------------------===//
65 // Argument Implementation
66 //===----------------------------------------------------------------------===//
68 Argument::Argument(Type
*Ty
, const Twine
&Name
, Function
*Par
, unsigned ArgNo
)
69 : Value(Ty
, Value::ArgumentVal
), Parent(Par
), ArgNo(ArgNo
) {
73 void Argument::setParent(Function
*parent
) {
77 bool Argument::hasNonNullAttr() const {
78 if (!getType()->isPointerTy()) return false;
79 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull
))
81 else if (getDereferenceableBytes() > 0 &&
82 !NullPointerIsDefined(getParent(),
83 getType()->getPointerAddressSpace()))
88 bool Argument::hasByValAttr() const {
89 if (!getType()->isPointerTy()) return false;
90 return hasAttribute(Attribute::ByVal
);
93 bool Argument::hasSwiftSelfAttr() const {
94 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf
);
97 bool Argument::hasSwiftErrorAttr() const {
98 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError
);
101 bool Argument::hasInAllocaAttr() const {
102 if (!getType()->isPointerTy()) return false;
103 return hasAttribute(Attribute::InAlloca
);
106 bool Argument::hasByValOrInAllocaAttr() const {
107 if (!getType()->isPointerTy()) return false;
108 AttributeList Attrs
= getParent()->getAttributes();
109 return Attrs
.hasParamAttribute(getArgNo(), Attribute::ByVal
) ||
110 Attrs
.hasParamAttribute(getArgNo(), Attribute::InAlloca
);
113 unsigned Argument::getParamAlignment() const {
114 assert(getType()->isPointerTy() && "Only pointers have alignments");
115 return getParent()->getParamAlignment(getArgNo());
118 uint64_t Argument::getDereferenceableBytes() const {
119 assert(getType()->isPointerTy() &&
120 "Only pointers have dereferenceable bytes");
121 return getParent()->getParamDereferenceableBytes(getArgNo());
124 uint64_t Argument::getDereferenceableOrNullBytes() const {
125 assert(getType()->isPointerTy() &&
126 "Only pointers have dereferenceable bytes");
127 return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
130 bool Argument::hasNestAttr() const {
131 if (!getType()->isPointerTy()) return false;
132 return hasAttribute(Attribute::Nest
);
135 bool Argument::hasNoAliasAttr() const {
136 if (!getType()->isPointerTy()) return false;
137 return hasAttribute(Attribute::NoAlias
);
140 bool Argument::hasNoCaptureAttr() const {
141 if (!getType()->isPointerTy()) return false;
142 return hasAttribute(Attribute::NoCapture
);
145 bool Argument::hasStructRetAttr() const {
146 if (!getType()->isPointerTy()) return false;
147 return hasAttribute(Attribute::StructRet
);
150 bool Argument::hasReturnedAttr() const {
151 return hasAttribute(Attribute::Returned
);
154 bool Argument::hasZExtAttr() const {
155 return hasAttribute(Attribute::ZExt
);
158 bool Argument::hasSExtAttr() const {
159 return hasAttribute(Attribute::SExt
);
162 bool Argument::onlyReadsMemory() const {
163 AttributeList Attrs
= getParent()->getAttributes();
164 return Attrs
.hasParamAttribute(getArgNo(), Attribute::ReadOnly
) ||
165 Attrs
.hasParamAttribute(getArgNo(), Attribute::ReadNone
);
168 void Argument::addAttrs(AttrBuilder
&B
) {
169 AttributeList AL
= getParent()->getAttributes();
170 AL
= AL
.addParamAttributes(Parent
->getContext(), getArgNo(), B
);
171 getParent()->setAttributes(AL
);
174 void Argument::addAttr(Attribute::AttrKind Kind
) {
175 getParent()->addParamAttr(getArgNo(), Kind
);
178 void Argument::addAttr(Attribute Attr
) {
179 getParent()->addParamAttr(getArgNo(), Attr
);
182 void Argument::removeAttr(Attribute::AttrKind Kind
) {
183 getParent()->removeParamAttr(getArgNo(), Kind
);
186 bool Argument::hasAttribute(Attribute::AttrKind Kind
) const {
187 return getParent()->hasParamAttribute(getArgNo(), Kind
);
190 //===----------------------------------------------------------------------===//
191 // Helper Methods in Function
192 //===----------------------------------------------------------------------===//
194 LLVMContext
&Function::getContext() const {
195 return getType()->getContext();
198 unsigned Function::getInstructionCount() {
199 unsigned NumInstrs
= 0;
200 for (BasicBlock
&BB
: BasicBlocks
)
201 NumInstrs
+= std::distance(BB
.instructionsWithoutDebug().begin(),
202 BB
.instructionsWithoutDebug().end());
206 Function
*Function::Create(FunctionType
*Ty
, LinkageTypes Linkage
,
207 const Twine
&N
, Module
&M
) {
208 return Create(Ty
, Linkage
, M
.getDataLayout().getProgramAddressSpace(), N
, &M
);
211 void Function::removeFromParent() {
212 getParent()->getFunctionList().remove(getIterator());
215 void Function::eraseFromParent() {
216 getParent()->getFunctionList().erase(getIterator());
219 //===----------------------------------------------------------------------===//
220 // Function Implementation
221 //===----------------------------------------------------------------------===//
223 static unsigned computeAddrSpace(unsigned AddrSpace
, Module
*M
) {
224 // If AS == -1 and we are passed a valid module pointer we place the function
225 // in the program address space. Otherwise we default to AS0.
226 if (AddrSpace
== static_cast<unsigned>(-1))
227 return M
? M
->getDataLayout().getProgramAddressSpace() : 0;
231 Function::Function(FunctionType
*Ty
, LinkageTypes Linkage
, unsigned AddrSpace
,
232 const Twine
&name
, Module
*ParentModule
)
233 : GlobalObject(Ty
, Value::FunctionVal
,
234 OperandTraits
<Function
>::op_begin(this), 0, Linkage
, name
,
235 computeAddrSpace(AddrSpace
, ParentModule
)),
236 NumArgs(Ty
->getNumParams()) {
237 assert(FunctionType::isValidReturnType(getReturnType()) &&
238 "invalid return type");
239 setGlobalObjectSubClassData(0);
241 // We only need a symbol table for a function if the context keeps value names
242 if (!getContext().shouldDiscardValueNames())
243 SymTab
= make_unique
<ValueSymbolTable
>();
245 // If the function has arguments, mark them as lazily built.
246 if (Ty
->getNumParams())
247 setValueSubclassData(1); // Set the "has lazy arguments" bit.
250 ParentModule
->getFunctionList().push_back(this);
252 HasLLVMReservedName
= getName().startswith("llvm.");
253 // Ensure intrinsics have the right parameter attributes.
254 // Note, the IntID field will have been set in Value::setName if this function
255 // name is a valid intrinsic ID.
257 setAttributes(Intrinsic::getAttributes(getContext(), IntID
));
260 Function::~Function() {
261 dropAllReferences(); // After this it is safe to delete instructions.
263 // Delete all of the method arguments and unlink from symbol table...
267 // Remove the function from the on-the-side GC table.
271 void Function::BuildLazyArguments() const {
272 // Create the arguments vector, all arguments start out unnamed.
273 auto *FT
= getFunctionType();
275 Arguments
= std::allocator
<Argument
>().allocate(NumArgs
);
276 for (unsigned i
= 0, e
= NumArgs
; i
!= e
; ++i
) {
277 Type
*ArgTy
= FT
->getParamType(i
);
278 assert(!ArgTy
->isVoidTy() && "Cannot have void typed arguments!");
279 new (Arguments
+ i
) Argument(ArgTy
, "", const_cast<Function
*>(this), i
);
283 // Clear the lazy arguments bit.
284 unsigned SDC
= getSubclassDataFromValue();
285 const_cast<Function
*>(this)->setValueSubclassData(SDC
&= ~(1<<0));
286 assert(!hasLazyArguments());
289 static MutableArrayRef
<Argument
> makeArgArray(Argument
*Args
, size_t Count
) {
290 return MutableArrayRef
<Argument
>(Args
, Count
);
293 void Function::clearArguments() {
294 for (Argument
&A
: makeArgArray(Arguments
, NumArgs
)) {
298 std::allocator
<Argument
>().deallocate(Arguments
, NumArgs
);
302 void Function::stealArgumentListFrom(Function
&Src
) {
303 assert(isDeclaration() && "Expected no references to current arguments");
305 // Drop the current arguments, if any, and set the lazy argument bit.
306 if (!hasLazyArguments()) {
307 assert(llvm::all_of(makeArgArray(Arguments
, NumArgs
),
308 [](const Argument
&A
) { return A
.use_empty(); }) &&
309 "Expected arguments to be unused in declaration");
311 setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
314 // Nothing to steal if Src has lazy arguments.
315 if (Src
.hasLazyArguments())
318 // Steal arguments from Src, and fix the lazy argument bits.
319 assert(arg_size() == Src
.arg_size());
320 Arguments
= Src
.Arguments
;
321 Src
.Arguments
= nullptr;
322 for (Argument
&A
: makeArgArray(Arguments
, NumArgs
)) {
323 // FIXME: This does the work of transferNodesFromList inefficiently.
324 SmallString
<128> Name
;
334 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
335 assert(!hasLazyArguments());
336 Src
.setValueSubclassData(Src
.getSubclassDataFromValue() | (1 << 0));
339 // dropAllReferences() - This function causes all the subinstructions to "let
340 // go" of all references that they are maintaining. This allows one to
341 // 'delete' a whole class at a time, even though there may be circular
342 // references... first all references are dropped, and all use counts go to
343 // zero. Then everything is deleted for real. Note that no operations are
344 // valid on an object that has "dropped all references", except operator
347 void Function::dropAllReferences() {
348 setIsMaterializable(false);
350 for (BasicBlock
&BB
: *this)
351 BB
.dropAllReferences();
353 // Delete all basic blocks. They are now unused, except possibly by
354 // blockaddresses, but BasicBlock's destructor takes care of those.
355 while (!BasicBlocks
.empty())
356 BasicBlocks
.begin()->eraseFromParent();
358 // Drop uses of any optional data (real or placeholder).
359 if (getNumOperands()) {
360 User::dropAllReferences();
361 setNumHungOffUseOperands(0);
362 setValueSubclassData(getSubclassDataFromValue() & ~0xe);
365 // Metadata is stored in a side-table.
369 void Function::addAttribute(unsigned i
, Attribute::AttrKind Kind
) {
370 AttributeList PAL
= getAttributes();
371 PAL
= PAL
.addAttribute(getContext(), i
, Kind
);
375 void Function::addAttribute(unsigned i
, Attribute Attr
) {
376 AttributeList PAL
= getAttributes();
377 PAL
= PAL
.addAttribute(getContext(), i
, Attr
);
381 void Function::addAttributes(unsigned i
, const AttrBuilder
&Attrs
) {
382 AttributeList PAL
= getAttributes();
383 PAL
= PAL
.addAttributes(getContext(), i
, Attrs
);
387 void Function::addParamAttr(unsigned ArgNo
, Attribute::AttrKind Kind
) {
388 AttributeList PAL
= getAttributes();
389 PAL
= PAL
.addParamAttribute(getContext(), ArgNo
, Kind
);
393 void Function::addParamAttr(unsigned ArgNo
, Attribute Attr
) {
394 AttributeList PAL
= getAttributes();
395 PAL
= PAL
.addParamAttribute(getContext(), ArgNo
, Attr
);
399 void Function::addParamAttrs(unsigned ArgNo
, const AttrBuilder
&Attrs
) {
400 AttributeList PAL
= getAttributes();
401 PAL
= PAL
.addParamAttributes(getContext(), ArgNo
, Attrs
);
405 void Function::removeAttribute(unsigned i
, Attribute::AttrKind Kind
) {
406 AttributeList PAL
= getAttributes();
407 PAL
= PAL
.removeAttribute(getContext(), i
, Kind
);
411 void Function::removeAttribute(unsigned i
, StringRef Kind
) {
412 AttributeList PAL
= getAttributes();
413 PAL
= PAL
.removeAttribute(getContext(), i
, Kind
);
417 void Function::removeAttributes(unsigned i
, const AttrBuilder
&Attrs
) {
418 AttributeList PAL
= getAttributes();
419 PAL
= PAL
.removeAttributes(getContext(), i
, Attrs
);
423 void Function::removeParamAttr(unsigned ArgNo
, Attribute::AttrKind Kind
) {
424 AttributeList PAL
= getAttributes();
425 PAL
= PAL
.removeParamAttribute(getContext(), ArgNo
, Kind
);
429 void Function::removeParamAttr(unsigned ArgNo
, StringRef Kind
) {
430 AttributeList PAL
= getAttributes();
431 PAL
= PAL
.removeParamAttribute(getContext(), ArgNo
, Kind
);
435 void Function::removeParamAttrs(unsigned ArgNo
, const AttrBuilder
&Attrs
) {
436 AttributeList PAL
= getAttributes();
437 PAL
= PAL
.removeParamAttributes(getContext(), ArgNo
, Attrs
);
441 void Function::addDereferenceableAttr(unsigned i
, uint64_t Bytes
) {
442 AttributeList PAL
= getAttributes();
443 PAL
= PAL
.addDereferenceableAttr(getContext(), i
, Bytes
);
447 void Function::addDereferenceableParamAttr(unsigned ArgNo
, uint64_t Bytes
) {
448 AttributeList PAL
= getAttributes();
449 PAL
= PAL
.addDereferenceableParamAttr(getContext(), ArgNo
, Bytes
);
453 void Function::addDereferenceableOrNullAttr(unsigned i
, uint64_t Bytes
) {
454 AttributeList PAL
= getAttributes();
455 PAL
= PAL
.addDereferenceableOrNullAttr(getContext(), i
, Bytes
);
459 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo
,
461 AttributeList PAL
= getAttributes();
462 PAL
= PAL
.addDereferenceableOrNullParamAttr(getContext(), ArgNo
, Bytes
);
466 const std::string
&Function::getGC() const {
467 assert(hasGC() && "Function has no collector");
468 return getContext().getGC(*this);
471 void Function::setGC(std::string Str
) {
472 setValueSubclassDataBit(14, !Str
.empty());
473 getContext().setGC(*this, std::move(Str
));
476 void Function::clearGC() {
479 getContext().deleteGC(*this);
480 setValueSubclassDataBit(14, false);
483 /// Copy all additional attributes (those not needed to create a Function) from
484 /// the Function Src to this one.
485 void Function::copyAttributesFrom(const Function
*Src
) {
486 GlobalObject::copyAttributesFrom(Src
);
487 setCallingConv(Src
->getCallingConv());
488 setAttributes(Src
->getAttributes());
493 if (Src
->hasPersonalityFn())
494 setPersonalityFn(Src
->getPersonalityFn());
495 if (Src
->hasPrefixData())
496 setPrefixData(Src
->getPrefixData());
497 if (Src
->hasPrologueData())
498 setPrologueData(Src
->getPrologueData());
501 /// Table of string intrinsic names indexed by enum value.
502 static const char * const IntrinsicNameTable
[] = {
504 #define GET_INTRINSIC_NAME_TABLE
505 #include "llvm/IR/IntrinsicImpl.inc"
506 #undef GET_INTRINSIC_NAME_TABLE
509 /// Table of per-target intrinsic name tables.
510 #define GET_INTRINSIC_TARGET_DATA
511 #include "llvm/IR/IntrinsicImpl.inc"
512 #undef GET_INTRINSIC_TARGET_DATA
514 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
515 /// target as \c Name, or the generic table if \c Name is not target specific.
517 /// Returns the relevant slice of \c IntrinsicNameTable
518 static ArrayRef
<const char *> findTargetSubtable(StringRef Name
) {
519 assert(Name
.startswith("llvm."));
521 ArrayRef
<IntrinsicTargetInfo
> Targets(TargetInfos
);
522 // Drop "llvm." and take the first dotted component. That will be the target
523 // if this is target specific.
524 StringRef Target
= Name
.drop_front(5).split('.').first
;
525 auto It
= std::lower_bound(Targets
.begin(), Targets
.end(), Target
,
526 [](const IntrinsicTargetInfo
&TI
,
527 StringRef Target
) { return TI
.Name
< Target
; });
528 // We've either found the target or just fall back to the generic set, which
530 const auto &TI
= It
!= Targets
.end() && It
->Name
== Target
? *It
: Targets
[0];
531 return makeArrayRef(&IntrinsicNameTable
[1] + TI
.Offset
, TI
.Count
);
534 /// This does the actual lookup of an intrinsic ID which
535 /// matches the given function name.
536 Intrinsic::ID
Function::lookupIntrinsicID(StringRef Name
) {
537 ArrayRef
<const char *> NameTable
= findTargetSubtable(Name
);
538 int Idx
= Intrinsic::lookupLLVMIntrinsicByName(NameTable
, Name
);
540 return Intrinsic::not_intrinsic
;
542 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
543 // an index into a sub-table.
544 int Adjust
= NameTable
.data() - IntrinsicNameTable
;
545 Intrinsic::ID ID
= static_cast<Intrinsic::ID
>(Idx
+ Adjust
);
547 // If the intrinsic is not overloaded, require an exact match. If it is
548 // overloaded, require either exact or prefix match.
549 const auto MatchSize
= strlen(NameTable
[Idx
]);
550 assert(Name
.size() >= MatchSize
&& "Expected either exact or prefix match");
551 bool IsExactMatch
= Name
.size() == MatchSize
;
552 return IsExactMatch
|| isOverloaded(ID
) ? ID
: Intrinsic::not_intrinsic
;
555 void Function::recalculateIntrinsicID() {
556 StringRef Name
= getName();
557 if (!Name
.startswith("llvm.")) {
558 HasLLVMReservedName
= false;
559 IntID
= Intrinsic::not_intrinsic
;
562 HasLLVMReservedName
= true;
563 IntID
= lookupIntrinsicID(Name
);
566 /// Returns a stable mangling for the type specified for use in the name
567 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling
568 /// of named types is simply their name. Manglings for unnamed types consist
569 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
570 /// combined with the mangling of their component types. A vararg function
571 /// type will have a suffix of 'vararg'. Since function types can contain
572 /// other function types, we close a function type mangling with suffix 'f'
573 /// which can't be confused with it's prefix. This ensures we don't have
574 /// collisions between two unrelated function types. Otherwise, you might
575 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
577 static std::string
getMangledTypeStr(Type
* Ty
) {
579 if (PointerType
* PTyp
= dyn_cast
<PointerType
>(Ty
)) {
580 Result
+= "p" + utostr(PTyp
->getAddressSpace()) +
581 getMangledTypeStr(PTyp
->getElementType());
582 } else if (ArrayType
* ATyp
= dyn_cast
<ArrayType
>(Ty
)) {
583 Result
+= "a" + utostr(ATyp
->getNumElements()) +
584 getMangledTypeStr(ATyp
->getElementType());
585 } else if (StructType
*STyp
= dyn_cast
<StructType
>(Ty
)) {
586 if (!STyp
->isLiteral()) {
588 Result
+= STyp
->getName();
591 for (auto Elem
: STyp
->elements())
592 Result
+= getMangledTypeStr(Elem
);
594 // Ensure nested structs are distinguishable.
596 } else if (FunctionType
*FT
= dyn_cast
<FunctionType
>(Ty
)) {
597 Result
+= "f_" + getMangledTypeStr(FT
->getReturnType());
598 for (size_t i
= 0; i
< FT
->getNumParams(); i
++)
599 Result
+= getMangledTypeStr(FT
->getParamType(i
));
602 // Ensure nested function types are distinguishable.
604 } else if (isa
<VectorType
>(Ty
)) {
605 Result
+= "v" + utostr(Ty
->getVectorNumElements()) +
606 getMangledTypeStr(Ty
->getVectorElementType());
608 switch (Ty
->getTypeID()) {
609 default: llvm_unreachable("Unhandled type");
610 case Type::VoidTyID
: Result
+= "isVoid"; break;
611 case Type::MetadataTyID
: Result
+= "Metadata"; break;
612 case Type::HalfTyID
: Result
+= "f16"; break;
613 case Type::FloatTyID
: Result
+= "f32"; break;
614 case Type::DoubleTyID
: Result
+= "f64"; break;
615 case Type::X86_FP80TyID
: Result
+= "f80"; break;
616 case Type::FP128TyID
: Result
+= "f128"; break;
617 case Type::PPC_FP128TyID
: Result
+= "ppcf128"; break;
618 case Type::X86_MMXTyID
: Result
+= "x86mmx"; break;
619 case Type::IntegerTyID
:
620 Result
+= "i" + utostr(cast
<IntegerType
>(Ty
)->getBitWidth());
627 StringRef
Intrinsic::getName(ID id
) {
628 assert(id
< num_intrinsics
&& "Invalid intrinsic ID!");
629 assert(!isOverloaded(id
) &&
630 "This version of getName does not support overloading");
631 return IntrinsicNameTable
[id
];
634 std::string
Intrinsic::getName(ID id
, ArrayRef
<Type
*> Tys
) {
635 assert(id
< num_intrinsics
&& "Invalid intrinsic ID!");
636 std::string
Result(IntrinsicNameTable
[id
]);
637 for (Type
*Ty
: Tys
) {
638 Result
+= "." + getMangledTypeStr(Ty
);
643 /// IIT_Info - These are enumerators that describe the entries returned by the
644 /// getIntrinsicInfoTableEntries function.
646 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
648 // Common values should be encoded with 0-15.
666 // Values from 16+ are only encodable with the inefficient encoding.
671 IIT_EMPTYSTRUCT
= 20,
681 IIT_HALF_VEC_ARG
= 30,
682 IIT_SAME_VEC_WIDTH_ARG
= 31,
685 IIT_VEC_OF_ANYPTRS_TO_ELT
= 34,
695 static void DecodeIITType(unsigned &NextElt
, ArrayRef
<unsigned char> Infos
,
696 SmallVectorImpl
<Intrinsic::IITDescriptor
> &OutputTable
) {
697 using namespace Intrinsic
;
699 IIT_Info Info
= IIT_Info(Infos
[NextElt
++]);
700 unsigned StructElts
= 2;
704 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Void
, 0));
707 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::VarArg
, 0));
710 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::MMX
, 0));
713 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Token
, 0));
716 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Metadata
, 0));
719 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Half
, 0));
722 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Float
, 0));
725 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Double
, 0));
728 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Quad
, 0));
731 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 1));
734 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 8));
737 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
,16));
740 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 32));
743 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 64));
746 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 128));
749 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 1));
750 DecodeIITType(NextElt
, Infos
, OutputTable
);
753 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 2));
754 DecodeIITType(NextElt
, Infos
, OutputTable
);
757 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 4));
758 DecodeIITType(NextElt
, Infos
, OutputTable
);
761 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 8));
762 DecodeIITType(NextElt
, Infos
, OutputTable
);
765 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 16));
766 DecodeIITType(NextElt
, Infos
, OutputTable
);
769 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 32));
770 DecodeIITType(NextElt
, Infos
, OutputTable
);
773 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 64));
774 DecodeIITType(NextElt
, Infos
, OutputTable
);
777 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 512));
778 DecodeIITType(NextElt
, Infos
, OutputTable
);
781 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Vector
, 1024));
782 DecodeIITType(NextElt
, Infos
, OutputTable
);
785 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Pointer
, 0));
786 DecodeIITType(NextElt
, Infos
, OutputTable
);
788 case IIT_ANYPTR
: { // [ANYPTR addrspace, subtype]
789 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Pointer
,
791 DecodeIITType(NextElt
, Infos
, OutputTable
);
795 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
796 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Argument
, ArgInfo
));
799 case IIT_EXTEND_ARG
: {
800 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
801 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument
,
805 case IIT_TRUNC_ARG
: {
806 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
807 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::TruncArgument
,
811 case IIT_HALF_VEC_ARG
: {
812 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
813 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument
,
817 case IIT_SAME_VEC_WIDTH_ARG
: {
818 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
819 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument
,
823 case IIT_PTR_TO_ARG
: {
824 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
825 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument
,
829 case IIT_PTR_TO_ELT
: {
830 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
831 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::PtrToElt
, ArgInfo
));
834 case IIT_VEC_OF_ANYPTRS_TO_ELT
: {
835 unsigned short ArgNo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
836 unsigned short RefNo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
837 OutputTable
.push_back(
838 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt
, ArgNo
, RefNo
));
841 case IIT_EMPTYSTRUCT
:
842 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Struct
, 0));
844 case IIT_STRUCT8
: ++StructElts
; LLVM_FALLTHROUGH
;
845 case IIT_STRUCT7
: ++StructElts
; LLVM_FALLTHROUGH
;
846 case IIT_STRUCT6
: ++StructElts
; LLVM_FALLTHROUGH
;
847 case IIT_STRUCT5
: ++StructElts
; LLVM_FALLTHROUGH
;
848 case IIT_STRUCT4
: ++StructElts
; LLVM_FALLTHROUGH
;
849 case IIT_STRUCT3
: ++StructElts
; LLVM_FALLTHROUGH
;
851 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Struct
,StructElts
));
853 for (unsigned i
= 0; i
!= StructElts
; ++i
)
854 DecodeIITType(NextElt
, Infos
, OutputTable
);
858 llvm_unreachable("unhandled");
861 #define GET_INTRINSIC_GENERATOR_GLOBAL
862 #include "llvm/IR/IntrinsicImpl.inc"
863 #undef GET_INTRINSIC_GENERATOR_GLOBAL
865 void Intrinsic::getIntrinsicInfoTableEntries(ID id
,
866 SmallVectorImpl
<IITDescriptor
> &T
){
867 // Check to see if the intrinsic's type was expressible by the table.
868 unsigned TableVal
= IIT_Table
[id
-1];
870 // Decode the TableVal into an array of IITValues.
871 SmallVector
<unsigned char, 8> IITValues
;
872 ArrayRef
<unsigned char> IITEntries
;
873 unsigned NextElt
= 0;
874 if ((TableVal
>> 31) != 0) {
875 // This is an offset into the IIT_LongEncodingTable.
876 IITEntries
= IIT_LongEncodingTable
;
878 // Strip sentinel bit.
879 NextElt
= (TableVal
<< 1) >> 1;
881 // Decode the TableVal into an array of IITValues. If the entry was encoded
882 // into a single word in the table itself, decode it now.
884 IITValues
.push_back(TableVal
& 0xF);
888 IITEntries
= IITValues
;
892 // Okay, decode the table into the output vector of IITDescriptors.
893 DecodeIITType(NextElt
, IITEntries
, T
);
894 while (NextElt
!= IITEntries
.size() && IITEntries
[NextElt
] != 0)
895 DecodeIITType(NextElt
, IITEntries
, T
);
898 static Type
*DecodeFixedType(ArrayRef
<Intrinsic::IITDescriptor
> &Infos
,
899 ArrayRef
<Type
*> Tys
, LLVMContext
&Context
) {
900 using namespace Intrinsic
;
902 IITDescriptor D
= Infos
.front();
903 Infos
= Infos
.slice(1);
906 case IITDescriptor::Void
: return Type::getVoidTy(Context
);
907 case IITDescriptor::VarArg
: return Type::getVoidTy(Context
);
908 case IITDescriptor::MMX
: return Type::getX86_MMXTy(Context
);
909 case IITDescriptor::Token
: return Type::getTokenTy(Context
);
910 case IITDescriptor::Metadata
: return Type::getMetadataTy(Context
);
911 case IITDescriptor::Half
: return Type::getHalfTy(Context
);
912 case IITDescriptor::Float
: return Type::getFloatTy(Context
);
913 case IITDescriptor::Double
: return Type::getDoubleTy(Context
);
914 case IITDescriptor::Quad
: return Type::getFP128Ty(Context
);
916 case IITDescriptor::Integer
:
917 return IntegerType::get(Context
, D
.Integer_Width
);
918 case IITDescriptor::Vector
:
919 return VectorType::get(DecodeFixedType(Infos
, Tys
, Context
),D
.Vector_Width
);
920 case IITDescriptor::Pointer
:
921 return PointerType::get(DecodeFixedType(Infos
, Tys
, Context
),
922 D
.Pointer_AddressSpace
);
923 case IITDescriptor::Struct
: {
924 SmallVector
<Type
*, 8> Elts
;
925 for (unsigned i
= 0, e
= D
.Struct_NumElements
; i
!= e
; ++i
)
926 Elts
.push_back(DecodeFixedType(Infos
, Tys
, Context
));
927 return StructType::get(Context
, Elts
);
929 case IITDescriptor::Argument
:
930 return Tys
[D
.getArgumentNumber()];
931 case IITDescriptor::ExtendArgument
: {
932 Type
*Ty
= Tys
[D
.getArgumentNumber()];
933 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
934 return VectorType::getExtendedElementVectorType(VTy
);
936 return IntegerType::get(Context
, 2 * cast
<IntegerType
>(Ty
)->getBitWidth());
938 case IITDescriptor::TruncArgument
: {
939 Type
*Ty
= Tys
[D
.getArgumentNumber()];
940 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
941 return VectorType::getTruncatedElementVectorType(VTy
);
943 IntegerType
*ITy
= cast
<IntegerType
>(Ty
);
944 assert(ITy
->getBitWidth() % 2 == 0);
945 return IntegerType::get(Context
, ITy
->getBitWidth() / 2);
947 case IITDescriptor::HalfVecArgument
:
948 return VectorType::getHalfElementsVectorType(cast
<VectorType
>(
949 Tys
[D
.getArgumentNumber()]));
950 case IITDescriptor::SameVecWidthArgument
: {
951 Type
*EltTy
= DecodeFixedType(Infos
, Tys
, Context
);
952 Type
*Ty
= Tys
[D
.getArgumentNumber()];
953 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
)) {
954 return VectorType::get(EltTy
, VTy
->getNumElements());
956 llvm_unreachable("unhandled");
958 case IITDescriptor::PtrToArgument
: {
959 Type
*Ty
= Tys
[D
.getArgumentNumber()];
960 return PointerType::getUnqual(Ty
);
962 case IITDescriptor::PtrToElt
: {
963 Type
*Ty
= Tys
[D
.getArgumentNumber()];
964 VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
);
966 llvm_unreachable("Expected an argument of Vector Type");
967 Type
*EltTy
= VTy
->getVectorElementType();
968 return PointerType::getUnqual(EltTy
);
970 case IITDescriptor::VecOfAnyPtrsToElt
:
971 // Return the overloaded type (which determines the pointers address space)
972 return Tys
[D
.getOverloadArgNumber()];
974 llvm_unreachable("unhandled");
977 FunctionType
*Intrinsic::getType(LLVMContext
&Context
,
978 ID id
, ArrayRef
<Type
*> Tys
) {
979 SmallVector
<IITDescriptor
, 8> Table
;
980 getIntrinsicInfoTableEntries(id
, Table
);
982 ArrayRef
<IITDescriptor
> TableRef
= Table
;
983 Type
*ResultTy
= DecodeFixedType(TableRef
, Tys
, Context
);
985 SmallVector
<Type
*, 8> ArgTys
;
986 while (!TableRef
.empty())
987 ArgTys
.push_back(DecodeFixedType(TableRef
, Tys
, Context
));
989 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
990 // If we see void type as the type of the last argument, it is vararg intrinsic
991 if (!ArgTys
.empty() && ArgTys
.back()->isVoidTy()) {
993 return FunctionType::get(ResultTy
, ArgTys
, true);
995 return FunctionType::get(ResultTy
, ArgTys
, false);
998 bool Intrinsic::isOverloaded(ID id
) {
999 #define GET_INTRINSIC_OVERLOAD_TABLE
1000 #include "llvm/IR/IntrinsicImpl.inc"
1001 #undef GET_INTRINSIC_OVERLOAD_TABLE
1004 bool Intrinsic::isLeaf(ID id
) {
1009 case Intrinsic::experimental_gc_statepoint
:
1010 case Intrinsic::experimental_patchpoint_void
:
1011 case Intrinsic::experimental_patchpoint_i64
:
1016 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1017 #define GET_INTRINSIC_ATTRIBUTES
1018 #include "llvm/IR/IntrinsicImpl.inc"
1019 #undef GET_INTRINSIC_ATTRIBUTES
1021 Function
*Intrinsic::getDeclaration(Module
*M
, ID id
, ArrayRef
<Type
*> Tys
) {
1022 // There can never be multiple globals with the same name of different types,
1023 // because intrinsics must be a specific type.
1025 cast
<Function
>(M
->getOrInsertFunction(getName(id
, Tys
),
1026 getType(M
->getContext(), id
, Tys
)));
1029 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1030 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1031 #include "llvm/IR/IntrinsicImpl.inc"
1032 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1034 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1035 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1036 #include "llvm/IR/IntrinsicImpl.inc"
1037 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1039 bool Intrinsic::matchIntrinsicType(Type
*Ty
, ArrayRef
<Intrinsic::IITDescriptor
> &Infos
,
1040 SmallVectorImpl
<Type
*> &ArgTys
) {
1041 using namespace Intrinsic
;
1043 // If we ran out of descriptors, there are too many arguments.
1044 if (Infos
.empty()) return true;
1045 IITDescriptor D
= Infos
.front();
1046 Infos
= Infos
.slice(1);
1049 case IITDescriptor::Void
: return !Ty
->isVoidTy();
1050 case IITDescriptor::VarArg
: return true;
1051 case IITDescriptor::MMX
: return !Ty
->isX86_MMXTy();
1052 case IITDescriptor::Token
: return !Ty
->isTokenTy();
1053 case IITDescriptor::Metadata
: return !Ty
->isMetadataTy();
1054 case IITDescriptor::Half
: return !Ty
->isHalfTy();
1055 case IITDescriptor::Float
: return !Ty
->isFloatTy();
1056 case IITDescriptor::Double
: return !Ty
->isDoubleTy();
1057 case IITDescriptor::Quad
: return !Ty
->isFP128Ty();
1058 case IITDescriptor::Integer
: return !Ty
->isIntegerTy(D
.Integer_Width
);
1059 case IITDescriptor::Vector
: {
1060 VectorType
*VT
= dyn_cast
<VectorType
>(Ty
);
1061 return !VT
|| VT
->getNumElements() != D
.Vector_Width
||
1062 matchIntrinsicType(VT
->getElementType(), Infos
, ArgTys
);
1064 case IITDescriptor::Pointer
: {
1065 PointerType
*PT
= dyn_cast
<PointerType
>(Ty
);
1066 return !PT
|| PT
->getAddressSpace() != D
.Pointer_AddressSpace
||
1067 matchIntrinsicType(PT
->getElementType(), Infos
, ArgTys
);
1070 case IITDescriptor::Struct
: {
1071 StructType
*ST
= dyn_cast
<StructType
>(Ty
);
1072 if (!ST
|| ST
->getNumElements() != D
.Struct_NumElements
)
1075 for (unsigned i
= 0, e
= D
.Struct_NumElements
; i
!= e
; ++i
)
1076 if (matchIntrinsicType(ST
->getElementType(i
), Infos
, ArgTys
))
1081 case IITDescriptor::Argument
:
1082 // Two cases here - If this is the second occurrence of an argument, verify
1083 // that the later instance matches the previous instance.
1084 if (D
.getArgumentNumber() < ArgTys
.size())
1085 return Ty
!= ArgTys
[D
.getArgumentNumber()];
1087 // Otherwise, if this is the first instance of an argument, record it and
1088 // verify the "Any" kind.
1089 assert(D
.getArgumentNumber() == ArgTys
.size() && "Table consistency error");
1090 ArgTys
.push_back(Ty
);
1092 switch (D
.getArgumentKind()) {
1093 case IITDescriptor::AK_Any
: return false; // Success
1094 case IITDescriptor::AK_AnyInteger
: return !Ty
->isIntOrIntVectorTy();
1095 case IITDescriptor::AK_AnyFloat
: return !Ty
->isFPOrFPVectorTy();
1096 case IITDescriptor::AK_AnyVector
: return !isa
<VectorType
>(Ty
);
1097 case IITDescriptor::AK_AnyPointer
: return !isa
<PointerType
>(Ty
);
1099 llvm_unreachable("all argument kinds not covered");
1101 case IITDescriptor::ExtendArgument
: {
1102 // This may only be used when referring to a previous vector argument.
1103 if (D
.getArgumentNumber() >= ArgTys
.size())
1106 Type
*NewTy
= ArgTys
[D
.getArgumentNumber()];
1107 if (VectorType
*VTy
= dyn_cast
<VectorType
>(NewTy
))
1108 NewTy
= VectorType::getExtendedElementVectorType(VTy
);
1109 else if (IntegerType
*ITy
= dyn_cast
<IntegerType
>(NewTy
))
1110 NewTy
= IntegerType::get(ITy
->getContext(), 2 * ITy
->getBitWidth());
1116 case IITDescriptor::TruncArgument
: {
1117 // This may only be used when referring to a previous vector argument.
1118 if (D
.getArgumentNumber() >= ArgTys
.size())
1121 Type
*NewTy
= ArgTys
[D
.getArgumentNumber()];
1122 if (VectorType
*VTy
= dyn_cast
<VectorType
>(NewTy
))
1123 NewTy
= VectorType::getTruncatedElementVectorType(VTy
);
1124 else if (IntegerType
*ITy
= dyn_cast
<IntegerType
>(NewTy
))
1125 NewTy
= IntegerType::get(ITy
->getContext(), ITy
->getBitWidth() / 2);
1131 case IITDescriptor::HalfVecArgument
:
1132 // This may only be used when referring to a previous vector argument.
1133 return D
.getArgumentNumber() >= ArgTys
.size() ||
1134 !isa
<VectorType
>(ArgTys
[D
.getArgumentNumber()]) ||
1135 VectorType::getHalfElementsVectorType(
1136 cast
<VectorType
>(ArgTys
[D
.getArgumentNumber()])) != Ty
;
1137 case IITDescriptor::SameVecWidthArgument
: {
1138 if (D
.getArgumentNumber() >= ArgTys
.size())
1140 VectorType
* ReferenceType
=
1141 dyn_cast
<VectorType
>(ArgTys
[D
.getArgumentNumber()]);
1142 VectorType
*ThisArgType
= dyn_cast
<VectorType
>(Ty
);
1143 if (!ThisArgType
|| !ReferenceType
||
1144 (ReferenceType
->getVectorNumElements() !=
1145 ThisArgType
->getVectorNumElements()))
1147 return matchIntrinsicType(ThisArgType
->getVectorElementType(),
1150 case IITDescriptor::PtrToArgument
: {
1151 if (D
.getArgumentNumber() >= ArgTys
.size())
1153 Type
* ReferenceType
= ArgTys
[D
.getArgumentNumber()];
1154 PointerType
*ThisArgType
= dyn_cast
<PointerType
>(Ty
);
1155 return (!ThisArgType
|| ThisArgType
->getElementType() != ReferenceType
);
1157 case IITDescriptor::PtrToElt
: {
1158 if (D
.getArgumentNumber() >= ArgTys
.size())
1160 VectorType
* ReferenceType
=
1161 dyn_cast
<VectorType
> (ArgTys
[D
.getArgumentNumber()]);
1162 PointerType
*ThisArgType
= dyn_cast
<PointerType
>(Ty
);
1164 return (!ThisArgType
|| !ReferenceType
||
1165 ThisArgType
->getElementType() != ReferenceType
->getElementType());
1167 case IITDescriptor::VecOfAnyPtrsToElt
: {
1168 unsigned RefArgNumber
= D
.getRefArgNumber();
1170 // This may only be used when referring to a previous argument.
1171 if (RefArgNumber
>= ArgTys
.size())
1174 // Record the overloaded type
1175 assert(D
.getOverloadArgNumber() == ArgTys
.size() &&
1176 "Table consistency error");
1177 ArgTys
.push_back(Ty
);
1179 // Verify the overloaded type "matches" the Ref type.
1180 // i.e. Ty is a vector with the same width as Ref.
1181 // Composed of pointers to the same element type as Ref.
1182 VectorType
*ReferenceType
= dyn_cast
<VectorType
>(ArgTys
[RefArgNumber
]);
1183 VectorType
*ThisArgVecTy
= dyn_cast
<VectorType
>(Ty
);
1184 if (!ThisArgVecTy
|| !ReferenceType
||
1185 (ReferenceType
->getVectorNumElements() !=
1186 ThisArgVecTy
->getVectorNumElements()))
1188 PointerType
*ThisArgEltTy
=
1189 dyn_cast
<PointerType
>(ThisArgVecTy
->getVectorElementType());
1192 return ThisArgEltTy
->getElementType() !=
1193 ReferenceType
->getVectorElementType();
1196 llvm_unreachable("unhandled");
1200 Intrinsic::matchIntrinsicVarArg(bool isVarArg
,
1201 ArrayRef
<Intrinsic::IITDescriptor
> &Infos
) {
1202 // If there are no descriptors left, then it can't be a vararg.
1206 // There should be only one descriptor remaining at this point.
1207 if (Infos
.size() != 1)
1210 // Check and verify the descriptor.
1211 IITDescriptor D
= Infos
.front();
1212 Infos
= Infos
.slice(1);
1213 if (D
.Kind
== IITDescriptor::VarArg
)
1219 Optional
<Function
*> Intrinsic::remangleIntrinsicFunction(Function
*F
) {
1220 Intrinsic::ID ID
= F
->getIntrinsicID();
1224 FunctionType
*FTy
= F
->getFunctionType();
1225 // Accumulate an array of overloaded types for the given intrinsic
1226 SmallVector
<Type
*, 4> ArgTys
;
1228 SmallVector
<Intrinsic::IITDescriptor
, 8> Table
;
1229 getIntrinsicInfoTableEntries(ID
, Table
);
1230 ArrayRef
<Intrinsic::IITDescriptor
> TableRef
= Table
;
1232 // If we encounter any problems matching the signature with the descriptor
1233 // just give up remangling. It's up to verifier to report the discrepancy.
1234 if (Intrinsic::matchIntrinsicType(FTy
->getReturnType(), TableRef
, ArgTys
))
1236 for (auto Ty
: FTy
->params())
1237 if (Intrinsic::matchIntrinsicType(Ty
, TableRef
, ArgTys
))
1239 if (Intrinsic::matchIntrinsicVarArg(FTy
->isVarArg(), TableRef
))
1243 StringRef Name
= F
->getName();
1244 if (Name
== Intrinsic::getName(ID
, ArgTys
))
1247 auto NewDecl
= Intrinsic::getDeclaration(F
->getParent(), ID
, ArgTys
);
1248 NewDecl
->setCallingConv(F
->getCallingConv());
1249 assert(NewDecl
->getFunctionType() == FTy
&& "Shouldn't change the signature");
1253 /// hasAddressTaken - returns true if there are any uses of this function
1254 /// other than direct calls or invokes to it.
1255 bool Function::hasAddressTaken(const User
* *PutOffender
) const {
1256 for (const Use
&U
: uses()) {
1257 const User
*FU
= U
.getUser();
1258 if (isa
<BlockAddress
>(FU
))
1260 if (!isa
<CallInst
>(FU
) && !isa
<InvokeInst
>(FU
)) {
1265 ImmutableCallSite
CS(cast
<Instruction
>(FU
));
1266 if (!CS
.isCallee(&U
)) {
1275 bool Function::isDefTriviallyDead() const {
1276 // Check the linkage
1277 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1278 !hasAvailableExternallyLinkage())
1281 // Check if the function is used by anything other than a blockaddress.
1282 for (const User
*U
: users())
1283 if (!isa
<BlockAddress
>(U
))
1289 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1290 /// setjmp or other function that gcc recognizes as "returning twice".
1291 bool Function::callsFunctionThatReturnsTwice() const {
1292 for (const_inst_iterator
1293 I
= inst_begin(this), E
= inst_end(this); I
!= E
; ++I
) {
1294 ImmutableCallSite
CS(&*I
);
1295 if (CS
&& CS
.hasFnAttr(Attribute::ReturnsTwice
))
1302 Constant
*Function::getPersonalityFn() const {
1303 assert(hasPersonalityFn() && getNumOperands());
1304 return cast
<Constant
>(Op
<0>());
1307 void Function::setPersonalityFn(Constant
*Fn
) {
1308 setHungoffOperand
<0>(Fn
);
1309 setValueSubclassDataBit(3, Fn
!= nullptr);
1312 Constant
*Function::getPrefixData() const {
1313 assert(hasPrefixData() && getNumOperands());
1314 return cast
<Constant
>(Op
<1>());
1317 void Function::setPrefixData(Constant
*PrefixData
) {
1318 setHungoffOperand
<1>(PrefixData
);
1319 setValueSubclassDataBit(1, PrefixData
!= nullptr);
1322 Constant
*Function::getPrologueData() const {
1323 assert(hasPrologueData() && getNumOperands());
1324 return cast
<Constant
>(Op
<2>());
1327 void Function::setPrologueData(Constant
*PrologueData
) {
1328 setHungoffOperand
<2>(PrologueData
);
1329 setValueSubclassDataBit(2, PrologueData
!= nullptr);
1332 void Function::allocHungoffUselist() {
1333 // If we've already allocated a uselist, stop here.
1334 if (getNumOperands())
1337 allocHungoffUses(3, /*IsPhi=*/ false);
1338 setNumHungOffUseOperands(3);
1340 // Initialize the uselist with placeholder operands to allow traversal.
1341 auto *CPN
= ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1348 void Function::setHungoffOperand(Constant
*C
) {
1350 allocHungoffUselist();
1352 } else if (getNumOperands()) {
1354 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1358 void Function::setValueSubclassDataBit(unsigned Bit
, bool On
) {
1359 assert(Bit
< 16 && "SubclassData contains only 16 bits");
1361 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit
));
1363 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit
));
1366 void Function::setEntryCount(ProfileCount Count
,
1367 const DenseSet
<GlobalValue::GUID
> *S
) {
1368 assert(Count
.hasValue());
1369 #if !defined(NDEBUG)
1370 auto PrevCount
= getEntryCount();
1371 assert(!PrevCount
.hasValue() || PrevCount
.getType() == Count
.getType());
1373 MDBuilder
MDB(getContext());
1375 LLVMContext::MD_prof
,
1376 MDB
.createFunctionEntryCount(Count
.getCount(), Count
.isSynthetic(), S
));
1379 void Function::setEntryCount(uint64_t Count
, Function::ProfileCountType Type
,
1380 const DenseSet
<GlobalValue::GUID
> *Imports
) {
1381 setEntryCount(ProfileCount(Count
, Type
), Imports
);
1384 ProfileCount
Function::getEntryCount() const {
1385 MDNode
*MD
= getMetadata(LLVMContext::MD_prof
);
1386 if (MD
&& MD
->getOperand(0))
1387 if (MDString
*MDS
= dyn_cast
<MDString
>(MD
->getOperand(0))) {
1388 if (MDS
->getString().equals("function_entry_count")) {
1389 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(1));
1390 uint64_t Count
= CI
->getValue().getZExtValue();
1391 // A value of -1 is used for SamplePGO when there were no samples.
1392 // Treat this the same as unknown.
1393 if (Count
== (uint64_t)-1)
1394 return ProfileCount::getInvalid();
1395 return ProfileCount(Count
, PCT_Real
);
1396 } else if (MDS
->getString().equals("synthetic_function_entry_count")) {
1397 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(1));
1398 uint64_t Count
= CI
->getValue().getZExtValue();
1399 return ProfileCount(Count
, PCT_Synthetic
);
1402 return ProfileCount::getInvalid();
1405 DenseSet
<GlobalValue::GUID
> Function::getImportGUIDs() const {
1406 DenseSet
<GlobalValue::GUID
> R
;
1407 if (MDNode
*MD
= getMetadata(LLVMContext::MD_prof
))
1408 if (MDString
*MDS
= dyn_cast
<MDString
>(MD
->getOperand(0)))
1409 if (MDS
->getString().equals("function_entry_count"))
1410 for (unsigned i
= 2; i
< MD
->getNumOperands(); i
++)
1411 R
.insert(mdconst::extract
<ConstantInt
>(MD
->getOperand(i
))
1417 void Function::setSectionPrefix(StringRef Prefix
) {
1418 MDBuilder
MDB(getContext());
1419 setMetadata(LLVMContext::MD_section_prefix
,
1420 MDB
.createFunctionSectionPrefix(Prefix
));
1423 Optional
<StringRef
> Function::getSectionPrefix() const {
1424 if (MDNode
*MD
= getMetadata(LLVMContext::MD_section_prefix
)) {
1425 assert(cast
<MDString
>(MD
->getOperand(0))
1427 .equals("function_section_prefix") &&
1428 "Metadata not match");
1429 return cast
<MDString
>(MD
->getOperand(1))->getString();
1434 bool Function::nullPointerIsDefined() const {
1435 return getFnAttribute("null-pointer-is-valid")
1440 bool llvm::NullPointerIsDefined(const Function
*F
, unsigned AS
) {
1441 if (F
&& F
->nullPointerIsDefined())