1 //===-- Instruction.cpp - Implement the Instruction class -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Instruction class for the IR library.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/IntrinsicInst.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/Instructions.h"
19 #include "llvm/IR/MDBuilder.h"
20 #include "llvm/IR/Operator.h"
21 #include "llvm/IR/Type.h"
24 Instruction::Instruction(Type
*ty
, unsigned it
, Use
*Ops
, unsigned NumOps
,
25 Instruction
*InsertBefore
)
26 : User(ty
, Value::InstructionVal
+ it
, Ops
, NumOps
), Parent(nullptr) {
28 // If requested, insert this instruction into a basic block...
30 BasicBlock
*BB
= InsertBefore
->getParent();
31 assert(BB
&& "Instruction to insert before is not in a basic block!");
32 BB
->getInstList().insert(InsertBefore
->getIterator(), this);
36 Instruction::Instruction(Type
*ty
, unsigned it
, Use
*Ops
, unsigned NumOps
,
37 BasicBlock
*InsertAtEnd
)
38 : User(ty
, Value::InstructionVal
+ it
, Ops
, NumOps
), Parent(nullptr) {
40 // append this instruction into the basic block
41 assert(InsertAtEnd
&& "Basic block to append to may not be NULL!");
42 InsertAtEnd
->getInstList().push_back(this);
45 Instruction::~Instruction() {
46 assert(!Parent
&& "Instruction still linked in the program!");
47 if (hasMetadataHashEntry())
48 clearMetadataHashEntries();
52 void Instruction::setParent(BasicBlock
*P
) {
56 const Module
*Instruction::getModule() const {
57 return getParent()->getModule();
60 const Function
*Instruction::getFunction() const {
61 return getParent()->getParent();
64 void Instruction::removeFromParent() {
65 getParent()->getInstList().remove(getIterator());
68 iplist
<Instruction
>::iterator
Instruction::eraseFromParent() {
69 return getParent()->getInstList().erase(getIterator());
72 /// Insert an unlinked instruction into a basic block immediately before the
73 /// specified instruction.
74 void Instruction::insertBefore(Instruction
*InsertPos
) {
75 InsertPos
->getParent()->getInstList().insert(InsertPos
->getIterator(), this);
78 /// Insert an unlinked instruction into a basic block immediately after the
79 /// specified instruction.
80 void Instruction::insertAfter(Instruction
*InsertPos
) {
81 InsertPos
->getParent()->getInstList().insertAfter(InsertPos
->getIterator(),
85 /// Unlink this instruction from its current basic block and insert it into the
86 /// basic block that MovePos lives in, right before MovePos.
87 void Instruction::moveBefore(Instruction
*MovePos
) {
88 moveBefore(*MovePos
->getParent(), MovePos
->getIterator());
91 void Instruction::moveAfter(Instruction
*MovePos
) {
92 moveBefore(*MovePos
->getParent(), ++MovePos
->getIterator());
95 void Instruction::moveBefore(BasicBlock
&BB
,
96 SymbolTableList
<Instruction
>::iterator I
) {
97 assert(I
== BB
.end() || I
->getParent() == &BB
);
98 BB
.getInstList().splice(I
, getParent()->getInstList(), getIterator());
101 void Instruction::setHasNoUnsignedWrap(bool b
) {
102 cast
<OverflowingBinaryOperator
>(this)->setHasNoUnsignedWrap(b
);
105 void Instruction::setHasNoSignedWrap(bool b
) {
106 cast
<OverflowingBinaryOperator
>(this)->setHasNoSignedWrap(b
);
109 void Instruction::setIsExact(bool b
) {
110 cast
<PossiblyExactOperator
>(this)->setIsExact(b
);
113 bool Instruction::hasNoUnsignedWrap() const {
114 return cast
<OverflowingBinaryOperator
>(this)->hasNoUnsignedWrap();
117 bool Instruction::hasNoSignedWrap() const {
118 return cast
<OverflowingBinaryOperator
>(this)->hasNoSignedWrap();
121 void Instruction::dropPoisonGeneratingFlags() {
122 switch (getOpcode()) {
123 case Instruction::Add
:
124 case Instruction::Sub
:
125 case Instruction::Mul
:
126 case Instruction::Shl
:
127 cast
<OverflowingBinaryOperator
>(this)->setHasNoUnsignedWrap(false);
128 cast
<OverflowingBinaryOperator
>(this)->setHasNoSignedWrap(false);
131 case Instruction::UDiv
:
132 case Instruction::SDiv
:
133 case Instruction::AShr
:
134 case Instruction::LShr
:
135 cast
<PossiblyExactOperator
>(this)->setIsExact(false);
138 case Instruction::GetElementPtr
:
139 cast
<GetElementPtrInst
>(this)->setIsInBounds(false);
144 bool Instruction::isExact() const {
145 return cast
<PossiblyExactOperator
>(this)->isExact();
148 void Instruction::setFast(bool B
) {
149 assert(isa
<FPMathOperator
>(this) && "setting fast-math flag on invalid op");
150 cast
<FPMathOperator
>(this)->setFast(B
);
153 void Instruction::setHasAllowReassoc(bool B
) {
154 assert(isa
<FPMathOperator
>(this) && "setting fast-math flag on invalid op");
155 cast
<FPMathOperator
>(this)->setHasAllowReassoc(B
);
158 void Instruction::setHasNoNaNs(bool B
) {
159 assert(isa
<FPMathOperator
>(this) && "setting fast-math flag on invalid op");
160 cast
<FPMathOperator
>(this)->setHasNoNaNs(B
);
163 void Instruction::setHasNoInfs(bool B
) {
164 assert(isa
<FPMathOperator
>(this) && "setting fast-math flag on invalid op");
165 cast
<FPMathOperator
>(this)->setHasNoInfs(B
);
168 void Instruction::setHasNoSignedZeros(bool B
) {
169 assert(isa
<FPMathOperator
>(this) && "setting fast-math flag on invalid op");
170 cast
<FPMathOperator
>(this)->setHasNoSignedZeros(B
);
173 void Instruction::setHasAllowReciprocal(bool B
) {
174 assert(isa
<FPMathOperator
>(this) && "setting fast-math flag on invalid op");
175 cast
<FPMathOperator
>(this)->setHasAllowReciprocal(B
);
178 void Instruction::setHasApproxFunc(bool B
) {
179 assert(isa
<FPMathOperator
>(this) && "setting fast-math flag on invalid op");
180 cast
<FPMathOperator
>(this)->setHasApproxFunc(B
);
183 void Instruction::setFastMathFlags(FastMathFlags FMF
) {
184 assert(isa
<FPMathOperator
>(this) && "setting fast-math flag on invalid op");
185 cast
<FPMathOperator
>(this)->setFastMathFlags(FMF
);
188 void Instruction::copyFastMathFlags(FastMathFlags FMF
) {
189 assert(isa
<FPMathOperator
>(this) && "copying fast-math flag on invalid op");
190 cast
<FPMathOperator
>(this)->copyFastMathFlags(FMF
);
193 bool Instruction::isFast() const {
194 assert(isa
<FPMathOperator
>(this) && "getting fast-math flag on invalid op");
195 return cast
<FPMathOperator
>(this)->isFast();
198 bool Instruction::hasAllowReassoc() const {
199 assert(isa
<FPMathOperator
>(this) && "getting fast-math flag on invalid op");
200 return cast
<FPMathOperator
>(this)->hasAllowReassoc();
203 bool Instruction::hasNoNaNs() const {
204 assert(isa
<FPMathOperator
>(this) && "getting fast-math flag on invalid op");
205 return cast
<FPMathOperator
>(this)->hasNoNaNs();
208 bool Instruction::hasNoInfs() const {
209 assert(isa
<FPMathOperator
>(this) && "getting fast-math flag on invalid op");
210 return cast
<FPMathOperator
>(this)->hasNoInfs();
213 bool Instruction::hasNoSignedZeros() const {
214 assert(isa
<FPMathOperator
>(this) && "getting fast-math flag on invalid op");
215 return cast
<FPMathOperator
>(this)->hasNoSignedZeros();
218 bool Instruction::hasAllowReciprocal() const {
219 assert(isa
<FPMathOperator
>(this) && "getting fast-math flag on invalid op");
220 return cast
<FPMathOperator
>(this)->hasAllowReciprocal();
223 bool Instruction::hasAllowContract() const {
224 assert(isa
<FPMathOperator
>(this) && "getting fast-math flag on invalid op");
225 return cast
<FPMathOperator
>(this)->hasAllowContract();
228 bool Instruction::hasApproxFunc() const {
229 assert(isa
<FPMathOperator
>(this) && "getting fast-math flag on invalid op");
230 return cast
<FPMathOperator
>(this)->hasApproxFunc();
233 FastMathFlags
Instruction::getFastMathFlags() const {
234 assert(isa
<FPMathOperator
>(this) && "getting fast-math flag on invalid op");
235 return cast
<FPMathOperator
>(this)->getFastMathFlags();
238 void Instruction::copyFastMathFlags(const Instruction
*I
) {
239 copyFastMathFlags(I
->getFastMathFlags());
242 void Instruction::copyIRFlags(const Value
*V
, bool IncludeWrapFlags
) {
243 // Copy the wrapping flags.
244 if (IncludeWrapFlags
&& isa
<OverflowingBinaryOperator
>(this)) {
245 if (auto *OB
= dyn_cast
<OverflowingBinaryOperator
>(V
)) {
246 setHasNoSignedWrap(OB
->hasNoSignedWrap());
247 setHasNoUnsignedWrap(OB
->hasNoUnsignedWrap());
251 // Copy the exact flag.
252 if (auto *PE
= dyn_cast
<PossiblyExactOperator
>(V
))
253 if (isa
<PossiblyExactOperator
>(this))
254 setIsExact(PE
->isExact());
256 // Copy the fast-math flags.
257 if (auto *FP
= dyn_cast
<FPMathOperator
>(V
))
258 if (isa
<FPMathOperator
>(this))
259 copyFastMathFlags(FP
->getFastMathFlags());
261 if (auto *SrcGEP
= dyn_cast
<GetElementPtrInst
>(V
))
262 if (auto *DestGEP
= dyn_cast
<GetElementPtrInst
>(this))
263 DestGEP
->setIsInBounds(SrcGEP
->isInBounds() | DestGEP
->isInBounds());
266 void Instruction::andIRFlags(const Value
*V
) {
267 if (auto *OB
= dyn_cast
<OverflowingBinaryOperator
>(V
)) {
268 if (isa
<OverflowingBinaryOperator
>(this)) {
269 setHasNoSignedWrap(hasNoSignedWrap() & OB
->hasNoSignedWrap());
270 setHasNoUnsignedWrap(hasNoUnsignedWrap() & OB
->hasNoUnsignedWrap());
274 if (auto *PE
= dyn_cast
<PossiblyExactOperator
>(V
))
275 if (isa
<PossiblyExactOperator
>(this))
276 setIsExact(isExact() & PE
->isExact());
278 if (auto *FP
= dyn_cast
<FPMathOperator
>(V
)) {
279 if (isa
<FPMathOperator
>(this)) {
280 FastMathFlags FM
= getFastMathFlags();
281 FM
&= FP
->getFastMathFlags();
282 copyFastMathFlags(FM
);
286 if (auto *SrcGEP
= dyn_cast
<GetElementPtrInst
>(V
))
287 if (auto *DestGEP
= dyn_cast
<GetElementPtrInst
>(this))
288 DestGEP
->setIsInBounds(SrcGEP
->isInBounds() & DestGEP
->isInBounds());
291 const char *Instruction::getOpcodeName(unsigned OpCode
) {
294 case Ret
: return "ret";
295 case Br
: return "br";
296 case Switch
: return "switch";
297 case IndirectBr
: return "indirectbr";
298 case Invoke
: return "invoke";
299 case Resume
: return "resume";
300 case Unreachable
: return "unreachable";
301 case CleanupRet
: return "cleanupret";
302 case CatchRet
: return "catchret";
303 case CatchPad
: return "catchpad";
304 case CatchSwitch
: return "catchswitch";
306 // Standard binary operators...
307 case Add
: return "add";
308 case FAdd
: return "fadd";
309 case Sub
: return "sub";
310 case FSub
: return "fsub";
311 case Mul
: return "mul";
312 case FMul
: return "fmul";
313 case UDiv
: return "udiv";
314 case SDiv
: return "sdiv";
315 case FDiv
: return "fdiv";
316 case URem
: return "urem";
317 case SRem
: return "srem";
318 case FRem
: return "frem";
320 // Logical operators...
321 case And
: return "and";
322 case Or
: return "or";
323 case Xor
: return "xor";
325 // Memory instructions...
326 case Alloca
: return "alloca";
327 case Load
: return "load";
328 case Store
: return "store";
329 case AtomicCmpXchg
: return "cmpxchg";
330 case AtomicRMW
: return "atomicrmw";
331 case Fence
: return "fence";
332 case GetElementPtr
: return "getelementptr";
334 // Convert instructions...
335 case Trunc
: return "trunc";
336 case ZExt
: return "zext";
337 case SExt
: return "sext";
338 case FPTrunc
: return "fptrunc";
339 case FPExt
: return "fpext";
340 case FPToUI
: return "fptoui";
341 case FPToSI
: return "fptosi";
342 case UIToFP
: return "uitofp";
343 case SIToFP
: return "sitofp";
344 case IntToPtr
: return "inttoptr";
345 case PtrToInt
: return "ptrtoint";
346 case BitCast
: return "bitcast";
347 case AddrSpaceCast
: return "addrspacecast";
349 // Other instructions...
350 case ICmp
: return "icmp";
351 case FCmp
: return "fcmp";
352 case PHI
: return "phi";
353 case Select
: return "select";
354 case Call
: return "call";
355 case Shl
: return "shl";
356 case LShr
: return "lshr";
357 case AShr
: return "ashr";
358 case VAArg
: return "va_arg";
359 case ExtractElement
: return "extractelement";
360 case InsertElement
: return "insertelement";
361 case ShuffleVector
: return "shufflevector";
362 case ExtractValue
: return "extractvalue";
363 case InsertValue
: return "insertvalue";
364 case LandingPad
: return "landingpad";
365 case CleanupPad
: return "cleanuppad";
367 default: return "<Invalid operator> ";
371 /// Return true if both instructions have the same special state. This must be
372 /// kept in sync with FunctionComparator::cmpOperations in
373 /// lib/Transforms/IPO/MergeFunctions.cpp.
374 static bool haveSameSpecialState(const Instruction
*I1
, const Instruction
*I2
,
375 bool IgnoreAlignment
= false) {
376 assert(I1
->getOpcode() == I2
->getOpcode() &&
377 "Can not compare special state of different instructions");
379 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I1
))
380 return AI
->getAllocatedType() == cast
<AllocaInst
>(I2
)->getAllocatedType() &&
381 (AI
->getAlignment() == cast
<AllocaInst
>(I2
)->getAlignment() ||
383 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(I1
))
384 return LI
->isVolatile() == cast
<LoadInst
>(I2
)->isVolatile() &&
385 (LI
->getAlignment() == cast
<LoadInst
>(I2
)->getAlignment() ||
387 LI
->getOrdering() == cast
<LoadInst
>(I2
)->getOrdering() &&
388 LI
->getSyncScopeID() == cast
<LoadInst
>(I2
)->getSyncScopeID();
389 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(I1
))
390 return SI
->isVolatile() == cast
<StoreInst
>(I2
)->isVolatile() &&
391 (SI
->getAlignment() == cast
<StoreInst
>(I2
)->getAlignment() ||
393 SI
->getOrdering() == cast
<StoreInst
>(I2
)->getOrdering() &&
394 SI
->getSyncScopeID() == cast
<StoreInst
>(I2
)->getSyncScopeID();
395 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(I1
))
396 return CI
->getPredicate() == cast
<CmpInst
>(I2
)->getPredicate();
397 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I1
))
398 return CI
->isTailCall() == cast
<CallInst
>(I2
)->isTailCall() &&
399 CI
->getCallingConv() == cast
<CallInst
>(I2
)->getCallingConv() &&
400 CI
->getAttributes() == cast
<CallInst
>(I2
)->getAttributes() &&
401 CI
->hasIdenticalOperandBundleSchema(*cast
<CallInst
>(I2
));
402 if (const InvokeInst
*CI
= dyn_cast
<InvokeInst
>(I1
))
403 return CI
->getCallingConv() == cast
<InvokeInst
>(I2
)->getCallingConv() &&
404 CI
->getAttributes() == cast
<InvokeInst
>(I2
)->getAttributes() &&
405 CI
->hasIdenticalOperandBundleSchema(*cast
<InvokeInst
>(I2
));
406 if (const InsertValueInst
*IVI
= dyn_cast
<InsertValueInst
>(I1
))
407 return IVI
->getIndices() == cast
<InsertValueInst
>(I2
)->getIndices();
408 if (const ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(I1
))
409 return EVI
->getIndices() == cast
<ExtractValueInst
>(I2
)->getIndices();
410 if (const FenceInst
*FI
= dyn_cast
<FenceInst
>(I1
))
411 return FI
->getOrdering() == cast
<FenceInst
>(I2
)->getOrdering() &&
412 FI
->getSyncScopeID() == cast
<FenceInst
>(I2
)->getSyncScopeID();
413 if (const AtomicCmpXchgInst
*CXI
= dyn_cast
<AtomicCmpXchgInst
>(I1
))
414 return CXI
->isVolatile() == cast
<AtomicCmpXchgInst
>(I2
)->isVolatile() &&
415 CXI
->isWeak() == cast
<AtomicCmpXchgInst
>(I2
)->isWeak() &&
416 CXI
->getSuccessOrdering() ==
417 cast
<AtomicCmpXchgInst
>(I2
)->getSuccessOrdering() &&
418 CXI
->getFailureOrdering() ==
419 cast
<AtomicCmpXchgInst
>(I2
)->getFailureOrdering() &&
420 CXI
->getSyncScopeID() ==
421 cast
<AtomicCmpXchgInst
>(I2
)->getSyncScopeID();
422 if (const AtomicRMWInst
*RMWI
= dyn_cast
<AtomicRMWInst
>(I1
))
423 return RMWI
->getOperation() == cast
<AtomicRMWInst
>(I2
)->getOperation() &&
424 RMWI
->isVolatile() == cast
<AtomicRMWInst
>(I2
)->isVolatile() &&
425 RMWI
->getOrdering() == cast
<AtomicRMWInst
>(I2
)->getOrdering() &&
426 RMWI
->getSyncScopeID() == cast
<AtomicRMWInst
>(I2
)->getSyncScopeID();
431 bool Instruction::isIdenticalTo(const Instruction
*I
) const {
432 return isIdenticalToWhenDefined(I
) &&
433 SubclassOptionalData
== I
->SubclassOptionalData
;
436 bool Instruction::isIdenticalToWhenDefined(const Instruction
*I
) const {
437 if (getOpcode() != I
->getOpcode() ||
438 getNumOperands() != I
->getNumOperands() ||
439 getType() != I
->getType())
442 // If both instructions have no operands, they are identical.
443 if (getNumOperands() == 0 && I
->getNumOperands() == 0)
444 return haveSameSpecialState(this, I
);
446 // We have two instructions of identical opcode and #operands. Check to see
447 // if all operands are the same.
448 if (!std::equal(op_begin(), op_end(), I
->op_begin()))
451 if (const PHINode
*thisPHI
= dyn_cast
<PHINode
>(this)) {
452 const PHINode
*otherPHI
= cast
<PHINode
>(I
);
453 return std::equal(thisPHI
->block_begin(), thisPHI
->block_end(),
454 otherPHI
->block_begin());
457 return haveSameSpecialState(this, I
);
460 // Keep this in sync with FunctionComparator::cmpOperations in
461 // lib/Transforms/IPO/MergeFunctions.cpp.
462 bool Instruction::isSameOperationAs(const Instruction
*I
,
463 unsigned flags
) const {
464 bool IgnoreAlignment
= flags
& CompareIgnoringAlignment
;
465 bool UseScalarTypes
= flags
& CompareUsingScalarTypes
;
467 if (getOpcode() != I
->getOpcode() ||
468 getNumOperands() != I
->getNumOperands() ||
470 getType()->getScalarType() != I
->getType()->getScalarType() :
471 getType() != I
->getType()))
474 // We have two instructions of identical opcode and #operands. Check to see
475 // if all operands are the same type
476 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
478 getOperand(i
)->getType()->getScalarType() !=
479 I
->getOperand(i
)->getType()->getScalarType() :
480 getOperand(i
)->getType() != I
->getOperand(i
)->getType())
483 return haveSameSpecialState(this, I
, IgnoreAlignment
);
486 bool Instruction::isUsedOutsideOfBlock(const BasicBlock
*BB
) const {
487 for (const Use
&U
: uses()) {
488 // PHI nodes uses values in the corresponding predecessor block. For other
489 // instructions, just check to see whether the parent of the use matches up.
490 const Instruction
*I
= cast
<Instruction
>(U
.getUser());
491 const PHINode
*PN
= dyn_cast
<PHINode
>(I
);
493 if (I
->getParent() != BB
)
498 if (PN
->getIncomingBlock(U
) != BB
)
504 bool Instruction::mayReadFromMemory() const {
505 switch (getOpcode()) {
506 default: return false;
507 case Instruction::VAArg
:
508 case Instruction::Load
:
509 case Instruction::Fence
: // FIXME: refine definition of mayReadFromMemory
510 case Instruction::AtomicCmpXchg
:
511 case Instruction::AtomicRMW
:
512 case Instruction::CatchPad
:
513 case Instruction::CatchRet
:
515 case Instruction::Call
:
516 return !cast
<CallInst
>(this)->doesNotAccessMemory();
517 case Instruction::Invoke
:
518 return !cast
<InvokeInst
>(this)->doesNotAccessMemory();
519 case Instruction::Store
:
520 return !cast
<StoreInst
>(this)->isUnordered();
524 bool Instruction::mayWriteToMemory() const {
525 switch (getOpcode()) {
526 default: return false;
527 case Instruction::Fence
: // FIXME: refine definition of mayWriteToMemory
528 case Instruction::Store
:
529 case Instruction::VAArg
:
530 case Instruction::AtomicCmpXchg
:
531 case Instruction::AtomicRMW
:
532 case Instruction::CatchPad
:
533 case Instruction::CatchRet
:
535 case Instruction::Call
:
536 return !cast
<CallInst
>(this)->onlyReadsMemory();
537 case Instruction::Invoke
:
538 return !cast
<InvokeInst
>(this)->onlyReadsMemory();
539 case Instruction::Load
:
540 return !cast
<LoadInst
>(this)->isUnordered();
544 bool Instruction::isAtomic() const {
545 switch (getOpcode()) {
548 case Instruction::AtomicCmpXchg
:
549 case Instruction::AtomicRMW
:
550 case Instruction::Fence
:
552 case Instruction::Load
:
553 return cast
<LoadInst
>(this)->getOrdering() != AtomicOrdering::NotAtomic
;
554 case Instruction::Store
:
555 return cast
<StoreInst
>(this)->getOrdering() != AtomicOrdering::NotAtomic
;
559 bool Instruction::hasAtomicLoad() const {
561 switch (getOpcode()) {
564 case Instruction::AtomicCmpXchg
:
565 case Instruction::AtomicRMW
:
566 case Instruction::Load
:
571 bool Instruction::hasAtomicStore() const {
573 switch (getOpcode()) {
576 case Instruction::AtomicCmpXchg
:
577 case Instruction::AtomicRMW
:
578 case Instruction::Store
:
583 bool Instruction::mayThrow() const {
584 if (const CallInst
*CI
= dyn_cast
<CallInst
>(this))
585 return !CI
->doesNotThrow();
586 if (const auto *CRI
= dyn_cast
<CleanupReturnInst
>(this))
587 return CRI
->unwindsToCaller();
588 if (const auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(this))
589 return CatchSwitch
->unwindsToCaller();
590 return isa
<ResumeInst
>(this);
593 bool Instruction::isSafeToRemove() const {
594 return (!isa
<CallInst
>(this) || !this->mayHaveSideEffects()) &&
595 !this->isTerminator();
598 const Instruction
*Instruction::getNextNonDebugInstruction() const {
599 for (const Instruction
*I
= getNextNode(); I
; I
= I
->getNextNode())
600 if (!isa
<DbgInfoIntrinsic
>(I
))
605 bool Instruction::isAssociative() const {
606 unsigned Opcode
= getOpcode();
607 if (isAssociative(Opcode
))
613 return cast
<FPMathOperator
>(this)->hasAllowReassoc() &&
614 cast
<FPMathOperator
>(this)->hasNoSignedZeros();
620 unsigned Instruction::getNumSuccessors() const {
621 switch (getOpcode()) {
622 #define HANDLE_TERM_INST(N, OPC, CLASS) \
623 case Instruction::OPC: \
624 return static_cast<const CLASS *>(this)->getNumSuccessors();
625 #include "llvm/IR/Instruction.def"
629 llvm_unreachable("not a terminator");
632 BasicBlock
*Instruction::getSuccessor(unsigned idx
) const {
633 switch (getOpcode()) {
634 #define HANDLE_TERM_INST(N, OPC, CLASS) \
635 case Instruction::OPC: \
636 return static_cast<const CLASS *>(this)->getSuccessor(idx);
637 #include "llvm/IR/Instruction.def"
641 llvm_unreachable("not a terminator");
644 void Instruction::setSuccessor(unsigned idx
, BasicBlock
*B
) {
645 switch (getOpcode()) {
646 #define HANDLE_TERM_INST(N, OPC, CLASS) \
647 case Instruction::OPC: \
648 return static_cast<CLASS *>(this)->setSuccessor(idx, B);
649 #include "llvm/IR/Instruction.def"
653 llvm_unreachable("not a terminator");
656 Instruction
*Instruction::cloneImpl() const {
657 llvm_unreachable("Subclass of Instruction failed to implement cloneImpl");
660 void Instruction::swapProfMetadata() {
661 MDNode
*ProfileData
= getMetadata(LLVMContext::MD_prof
);
662 if (!ProfileData
|| ProfileData
->getNumOperands() != 3 ||
663 !isa
<MDString
>(ProfileData
->getOperand(0)))
666 MDString
*MDName
= cast
<MDString
>(ProfileData
->getOperand(0));
667 if (MDName
->getString() != "branch_weights")
670 // The first operand is the name. Fetch them backwards and build a new one.
671 Metadata
*Ops
[] = {ProfileData
->getOperand(0), ProfileData
->getOperand(2),
672 ProfileData
->getOperand(1)};
673 setMetadata(LLVMContext::MD_prof
,
674 MDNode::get(ProfileData
->getContext(), Ops
));
677 void Instruction::copyMetadata(const Instruction
&SrcInst
,
678 ArrayRef
<unsigned> WL
) {
679 if (!SrcInst
.hasMetadata())
682 DenseSet
<unsigned> WLS
;
683 for (unsigned M
: WL
)
686 // Otherwise, enumerate and copy over metadata from the old instruction to the
688 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> TheMDs
;
689 SrcInst
.getAllMetadataOtherThanDebugLoc(TheMDs
);
690 for (const auto &MD
: TheMDs
) {
691 if (WL
.empty() || WLS
.count(MD
.first
))
692 setMetadata(MD
.first
, MD
.second
);
694 if (WL
.empty() || WLS
.count(LLVMContext::MD_dbg
))
695 setDebugLoc(SrcInst
.getDebugLoc());
698 Instruction
*Instruction::clone() const {
699 Instruction
*New
= nullptr;
700 switch (getOpcode()) {
702 llvm_unreachable("Unhandled Opcode.");
703 #define HANDLE_INST(num, opc, clas) \
704 case Instruction::opc: \
705 New = cast<clas>(this)->cloneImpl(); \
707 #include "llvm/IR/Instruction.def"
711 New
->SubclassOptionalData
= SubclassOptionalData
;
712 New
->copyMetadata(*this);
716 void Instruction::updateProfWeight(uint64_t S
, uint64_t T
) {
717 auto *ProfileData
= getMetadata(LLVMContext::MD_prof
);
718 if (ProfileData
== nullptr)
721 auto *ProfDataName
= dyn_cast
<MDString
>(ProfileData
->getOperand(0));
722 if (!ProfDataName
|| (!ProfDataName
->getString().equals("branch_weights") &&
723 !ProfDataName
->getString().equals("VP")))
726 MDBuilder
MDB(getContext());
727 SmallVector
<Metadata
*, 3> Vals
;
728 Vals
.push_back(ProfileData
->getOperand(0));
729 APInt
APS(128, S
), APT(128, T
);
730 if (ProfDataName
->getString().equals("branch_weights"))
731 for (unsigned i
= 1; i
< ProfileData
->getNumOperands(); i
++) {
732 // Using APInt::div may be expensive, but most cases should fit 64 bits.
734 mdconst::dyn_extract
<ConstantInt
>(ProfileData
->getOperand(i
))
738 Vals
.push_back(MDB
.createConstant(
739 ConstantInt::get(Type::getInt64Ty(getContext()),
740 Val
.udiv(APT
).getLimitedValue())));
742 else if (ProfDataName
->getString().equals("VP"))
743 for (unsigned i
= 1; i
< ProfileData
->getNumOperands(); i
+= 2) {
744 // The first value is the key of the value profile, which will not change.
745 Vals
.push_back(ProfileData
->getOperand(i
));
746 // Using APInt::div may be expensive, but most cases should fit 64 bits.
748 mdconst::dyn_extract
<ConstantInt
>(ProfileData
->getOperand(i
+ 1))
752 Vals
.push_back(MDB
.createConstant(
753 ConstantInt::get(Type::getInt64Ty(getContext()),
754 Val
.udiv(APT
).getLimitedValue())));
756 setMetadata(LLVMContext::MD_prof
, MDNode::get(getContext(), Vals
));
759 void Instruction::setProfWeight(uint64_t W
) {
760 assert((isa
<CallInst
>(this) || isa
<InvokeInst
>(this)) &&
761 "Can only set weights for call and invoke instrucitons");
762 SmallVector
<uint32_t, 1> Weights
;
763 Weights
.push_back(W
);
764 MDBuilder
MDB(getContext());
765 setMetadata(LLVMContext::MD_prof
, MDB
.createBranchWeights(Weights
));