[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / IR / Instructions.cpp
blob126a96635ee8c106c9ada7313d5ed21b7898f9a3
1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/IR/Instructions.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/IR/Attributes.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstdint>
43 #include <vector>
45 using namespace llvm;
47 //===----------------------------------------------------------------------===//
48 // AllocaInst Class
49 //===----------------------------------------------------------------------===//
51 Optional<uint64_t>
52 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
53 uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType());
54 if (isArrayAllocation()) {
55 auto C = dyn_cast<ConstantInt>(getArraySize());
56 if (!C)
57 return None;
58 Size *= C->getZExtValue();
60 return Size;
63 //===----------------------------------------------------------------------===//
64 // CallSite Class
65 //===----------------------------------------------------------------------===//
67 User::op_iterator CallSite::getCallee() const {
68 Instruction *II(getInstruction());
69 return isCall()
70 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
71 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
74 //===----------------------------------------------------------------------===//
75 // SelectInst Class
76 //===----------------------------------------------------------------------===//
78 /// areInvalidOperands - Return a string if the specified operands are invalid
79 /// for a select operation, otherwise return null.
80 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
81 if (Op1->getType() != Op2->getType())
82 return "both values to select must have same type";
84 if (Op1->getType()->isTokenTy())
85 return "select values cannot have token type";
87 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
88 // Vector select.
89 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
90 return "vector select condition element type must be i1";
91 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
92 if (!ET)
93 return "selected values for vector select must be vectors";
94 if (ET->getNumElements() != VT->getNumElements())
95 return "vector select requires selected vectors to have "
96 "the same vector length as select condition";
97 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
98 return "select condition must be i1 or <n x i1>";
100 return nullptr;
103 //===----------------------------------------------------------------------===//
104 // PHINode Class
105 //===----------------------------------------------------------------------===//
107 PHINode::PHINode(const PHINode &PN)
108 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
109 ReservedSpace(PN.getNumOperands()) {
110 allocHungoffUses(PN.getNumOperands());
111 std::copy(PN.op_begin(), PN.op_end(), op_begin());
112 std::copy(PN.block_begin(), PN.block_end(), block_begin());
113 SubclassOptionalData = PN.SubclassOptionalData;
116 // removeIncomingValue - Remove an incoming value. This is useful if a
117 // predecessor basic block is deleted.
118 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
119 Value *Removed = getIncomingValue(Idx);
121 // Move everything after this operand down.
123 // FIXME: we could just swap with the end of the list, then erase. However,
124 // clients might not expect this to happen. The code as it is thrashes the
125 // use/def lists, which is kinda lame.
126 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
127 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
129 // Nuke the last value.
130 Op<-1>().set(nullptr);
131 setNumHungOffUseOperands(getNumOperands() - 1);
133 // If the PHI node is dead, because it has zero entries, nuke it now.
134 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
135 // If anyone is using this PHI, make them use a dummy value instead...
136 replaceAllUsesWith(UndefValue::get(getType()));
137 eraseFromParent();
139 return Removed;
142 /// growOperands - grow operands - This grows the operand list in response
143 /// to a push_back style of operation. This grows the number of ops by 1.5
144 /// times.
146 void PHINode::growOperands() {
147 unsigned e = getNumOperands();
148 unsigned NumOps = e + e / 2;
149 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
151 ReservedSpace = NumOps;
152 growHungoffUses(ReservedSpace, /* IsPhi */ true);
155 /// hasConstantValue - If the specified PHI node always merges together the same
156 /// value, return the value, otherwise return null.
157 Value *PHINode::hasConstantValue() const {
158 // Exploit the fact that phi nodes always have at least one entry.
159 Value *ConstantValue = getIncomingValue(0);
160 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
161 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
162 if (ConstantValue != this)
163 return nullptr; // Incoming values not all the same.
164 // The case where the first value is this PHI.
165 ConstantValue = getIncomingValue(i);
167 if (ConstantValue == this)
168 return UndefValue::get(getType());
169 return ConstantValue;
172 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
173 /// together the same value, assuming that undefs result in the same value as
174 /// non-undefs.
175 /// Unlike \ref hasConstantValue, this does not return a value because the
176 /// unique non-undef incoming value need not dominate the PHI node.
177 bool PHINode::hasConstantOrUndefValue() const {
178 Value *ConstantValue = nullptr;
179 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
180 Value *Incoming = getIncomingValue(i);
181 if (Incoming != this && !isa<UndefValue>(Incoming)) {
182 if (ConstantValue && ConstantValue != Incoming)
183 return false;
184 ConstantValue = Incoming;
187 return true;
190 //===----------------------------------------------------------------------===//
191 // LandingPadInst Implementation
192 //===----------------------------------------------------------------------===//
194 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
195 const Twine &NameStr, Instruction *InsertBefore)
196 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
197 init(NumReservedValues, NameStr);
200 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
201 const Twine &NameStr, BasicBlock *InsertAtEnd)
202 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
203 init(NumReservedValues, NameStr);
206 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
207 : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
208 LP.getNumOperands()),
209 ReservedSpace(LP.getNumOperands()) {
210 allocHungoffUses(LP.getNumOperands());
211 Use *OL = getOperandList();
212 const Use *InOL = LP.getOperandList();
213 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
214 OL[I] = InOL[I];
216 setCleanup(LP.isCleanup());
219 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
220 const Twine &NameStr,
221 Instruction *InsertBefore) {
222 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
225 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
226 const Twine &NameStr,
227 BasicBlock *InsertAtEnd) {
228 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
231 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
232 ReservedSpace = NumReservedValues;
233 setNumHungOffUseOperands(0);
234 allocHungoffUses(ReservedSpace);
235 setName(NameStr);
236 setCleanup(false);
239 /// growOperands - grow operands - This grows the operand list in response to a
240 /// push_back style of operation. This grows the number of ops by 2 times.
241 void LandingPadInst::growOperands(unsigned Size) {
242 unsigned e = getNumOperands();
243 if (ReservedSpace >= e + Size) return;
244 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
245 growHungoffUses(ReservedSpace);
248 void LandingPadInst::addClause(Constant *Val) {
249 unsigned OpNo = getNumOperands();
250 growOperands(1);
251 assert(OpNo < ReservedSpace && "Growing didn't work!");
252 setNumHungOffUseOperands(getNumOperands() + 1);
253 getOperandList()[OpNo] = Val;
256 //===----------------------------------------------------------------------===//
257 // CallInst Implementation
258 //===----------------------------------------------------------------------===//
260 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
261 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
262 this->FTy = FTy;
263 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
264 "NumOperands not set up?");
265 Op<-1>() = Func;
267 #ifndef NDEBUG
268 assert((Args.size() == FTy->getNumParams() ||
269 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
270 "Calling a function with bad signature!");
272 for (unsigned i = 0; i != Args.size(); ++i)
273 assert((i >= FTy->getNumParams() ||
274 FTy->getParamType(i) == Args[i]->getType()) &&
275 "Calling a function with a bad signature!");
276 #endif
278 std::copy(Args.begin(), Args.end(), op_begin());
280 auto It = populateBundleOperandInfos(Bundles, Args.size());
281 (void)It;
282 assert(It + 1 == op_end() && "Should add up!");
284 setName(NameStr);
287 void CallInst::init(Value *Func, const Twine &NameStr) {
288 FTy =
289 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
290 assert(getNumOperands() == 1 && "NumOperands not set up?");
291 Op<-1>() = Func;
293 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
295 setName(NameStr);
298 CallInst::CallInst(Value *Func, const Twine &Name, Instruction *InsertBefore)
299 : CallBase<CallInst>(
300 cast<FunctionType>(
301 cast<PointerType>(Func->getType())->getElementType())
302 ->getReturnType(),
303 Instruction::Call,
304 OperandTraits<CallBase<CallInst>>::op_end(this) - 1, 1,
305 InsertBefore) {
306 init(Func, Name);
309 CallInst::CallInst(Value *Func, const Twine &Name, BasicBlock *InsertAtEnd)
310 : CallBase<CallInst>(
311 cast<FunctionType>(
312 cast<PointerType>(Func->getType())->getElementType())
313 ->getReturnType(),
314 Instruction::Call,
315 OperandTraits<CallBase<CallInst>>::op_end(this) - 1, 1, InsertAtEnd) {
316 init(Func, Name);
319 CallInst::CallInst(const CallInst &CI)
320 : CallBase<CallInst>(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
321 OperandTraits<CallBase<CallInst>>::op_end(this) -
322 CI.getNumOperands(),
323 CI.getNumOperands()) {
324 setTailCallKind(CI.getTailCallKind());
325 setCallingConv(CI.getCallingConv());
327 std::copy(CI.op_begin(), CI.op_end(), op_begin());
328 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
329 bundle_op_info_begin());
330 SubclassOptionalData = CI.SubclassOptionalData;
333 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
334 Instruction *InsertPt) {
335 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
337 auto *NewCI = CallInst::Create(CI->getCalledValue(), Args, OpB, CI->getName(),
338 InsertPt);
339 NewCI->setTailCallKind(CI->getTailCallKind());
340 NewCI->setCallingConv(CI->getCallingConv());
341 NewCI->SubclassOptionalData = CI->SubclassOptionalData;
342 NewCI->setAttributes(CI->getAttributes());
343 NewCI->setDebugLoc(CI->getDebugLoc());
344 return NewCI;
356 /// IsConstantOne - Return true only if val is constant int 1
357 static bool IsConstantOne(Value *val) {
358 assert(val && "IsConstantOne does not work with nullptr val");
359 const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
360 return CVal && CVal->isOne();
363 static Instruction *createMalloc(Instruction *InsertBefore,
364 BasicBlock *InsertAtEnd, Type *IntPtrTy,
365 Type *AllocTy, Value *AllocSize,
366 Value *ArraySize,
367 ArrayRef<OperandBundleDef> OpB,
368 Function *MallocF, const Twine &Name) {
369 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
370 "createMalloc needs either InsertBefore or InsertAtEnd");
372 // malloc(type) becomes:
373 // bitcast (i8* malloc(typeSize)) to type*
374 // malloc(type, arraySize) becomes:
375 // bitcast (i8* malloc(typeSize*arraySize)) to type*
376 if (!ArraySize)
377 ArraySize = ConstantInt::get(IntPtrTy, 1);
378 else if (ArraySize->getType() != IntPtrTy) {
379 if (InsertBefore)
380 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
381 "", InsertBefore);
382 else
383 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
384 "", InsertAtEnd);
387 if (!IsConstantOne(ArraySize)) {
388 if (IsConstantOne(AllocSize)) {
389 AllocSize = ArraySize; // Operand * 1 = Operand
390 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
391 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
392 false /*ZExt*/);
393 // Malloc arg is constant product of type size and array size
394 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
395 } else {
396 // Multiply type size by the array size...
397 if (InsertBefore)
398 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
399 "mallocsize", InsertBefore);
400 else
401 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
402 "mallocsize", InsertAtEnd);
406 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
407 // Create the call to Malloc.
408 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
409 Module *M = BB->getParent()->getParent();
410 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
411 Value *MallocFunc = MallocF;
412 if (!MallocFunc)
413 // prototype malloc as "void *malloc(size_t)"
414 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
415 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
416 CallInst *MCall = nullptr;
417 Instruction *Result = nullptr;
418 if (InsertBefore) {
419 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
420 InsertBefore);
421 Result = MCall;
422 if (Result->getType() != AllocPtrType)
423 // Create a cast instruction to convert to the right type...
424 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
425 } else {
426 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
427 Result = MCall;
428 if (Result->getType() != AllocPtrType) {
429 InsertAtEnd->getInstList().push_back(MCall);
430 // Create a cast instruction to convert to the right type...
431 Result = new BitCastInst(MCall, AllocPtrType, Name);
434 MCall->setTailCall();
435 if (Function *F = dyn_cast<Function>(MallocFunc)) {
436 MCall->setCallingConv(F->getCallingConv());
437 if (!F->returnDoesNotAlias())
438 F->setReturnDoesNotAlias();
440 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
442 return Result;
445 /// CreateMalloc - Generate the IR for a call to malloc:
446 /// 1. Compute the malloc call's argument as the specified type's size,
447 /// possibly multiplied by the array size if the array size is not
448 /// constant 1.
449 /// 2. Call malloc with that argument.
450 /// 3. Bitcast the result of the malloc call to the specified type.
451 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
452 Type *IntPtrTy, Type *AllocTy,
453 Value *AllocSize, Value *ArraySize,
454 Function *MallocF,
455 const Twine &Name) {
456 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
457 ArraySize, None, MallocF, Name);
459 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
460 Type *IntPtrTy, Type *AllocTy,
461 Value *AllocSize, Value *ArraySize,
462 ArrayRef<OperandBundleDef> OpB,
463 Function *MallocF,
464 const Twine &Name) {
465 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
466 ArraySize, OpB, MallocF, Name);
469 /// CreateMalloc - Generate the IR for a call to malloc:
470 /// 1. Compute the malloc call's argument as the specified type's size,
471 /// possibly multiplied by the array size if the array size is not
472 /// constant 1.
473 /// 2. Call malloc with that argument.
474 /// 3. Bitcast the result of the malloc call to the specified type.
475 /// Note: This function does not add the bitcast to the basic block, that is the
476 /// responsibility of the caller.
477 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
478 Type *IntPtrTy, Type *AllocTy,
479 Value *AllocSize, Value *ArraySize,
480 Function *MallocF, const Twine &Name) {
481 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
482 ArraySize, None, MallocF, Name);
484 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
485 Type *IntPtrTy, Type *AllocTy,
486 Value *AllocSize, Value *ArraySize,
487 ArrayRef<OperandBundleDef> OpB,
488 Function *MallocF, const Twine &Name) {
489 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
490 ArraySize, OpB, MallocF, Name);
493 static Instruction *createFree(Value *Source,
494 ArrayRef<OperandBundleDef> Bundles,
495 Instruction *InsertBefore,
496 BasicBlock *InsertAtEnd) {
497 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
498 "createFree needs either InsertBefore or InsertAtEnd");
499 assert(Source->getType()->isPointerTy() &&
500 "Can not free something of nonpointer type!");
502 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
503 Module *M = BB->getParent()->getParent();
505 Type *VoidTy = Type::getVoidTy(M->getContext());
506 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
507 // prototype free as "void free(void*)"
508 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
509 CallInst *Result = nullptr;
510 Value *PtrCast = Source;
511 if (InsertBefore) {
512 if (Source->getType() != IntPtrTy)
513 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
514 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
515 } else {
516 if (Source->getType() != IntPtrTy)
517 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
518 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
520 Result->setTailCall();
521 if (Function *F = dyn_cast<Function>(FreeFunc))
522 Result->setCallingConv(F->getCallingConv());
524 return Result;
527 /// CreateFree - Generate the IR for a call to the builtin free function.
528 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
529 return createFree(Source, None, InsertBefore, nullptr);
531 Instruction *CallInst::CreateFree(Value *Source,
532 ArrayRef<OperandBundleDef> Bundles,
533 Instruction *InsertBefore) {
534 return createFree(Source, Bundles, InsertBefore, nullptr);
537 /// CreateFree - Generate the IR for a call to the builtin free function.
538 /// Note: This function does not add the call to the basic block, that is the
539 /// responsibility of the caller.
540 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
541 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
542 assert(FreeCall && "CreateFree did not create a CallInst");
543 return FreeCall;
545 Instruction *CallInst::CreateFree(Value *Source,
546 ArrayRef<OperandBundleDef> Bundles,
547 BasicBlock *InsertAtEnd) {
548 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
549 assert(FreeCall && "CreateFree did not create a CallInst");
550 return FreeCall;
553 //===----------------------------------------------------------------------===//
554 // InvokeInst Implementation
555 //===----------------------------------------------------------------------===//
557 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
558 BasicBlock *IfException, ArrayRef<Value *> Args,
559 ArrayRef<OperandBundleDef> Bundles,
560 const Twine &NameStr) {
561 this->FTy = FTy;
563 assert(getNumOperands() == 3 + Args.size() + CountBundleInputs(Bundles) &&
564 "NumOperands not set up?");
565 Op<-3>() = Fn;
566 Op<-2>() = IfNormal;
567 Op<-1>() = IfException;
569 #ifndef NDEBUG
570 assert(((Args.size() == FTy->getNumParams()) ||
571 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
572 "Invoking a function with bad signature");
574 for (unsigned i = 0, e = Args.size(); i != e; i++)
575 assert((i >= FTy->getNumParams() ||
576 FTy->getParamType(i) == Args[i]->getType()) &&
577 "Invoking a function with a bad signature!");
578 #endif
580 std::copy(Args.begin(), Args.end(), op_begin());
582 auto It = populateBundleOperandInfos(Bundles, Args.size());
583 (void)It;
584 assert(It + 3 == op_end() && "Should add up!");
586 setName(NameStr);
589 InvokeInst::InvokeInst(const InvokeInst &II)
590 : CallBase<InvokeInst>(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
591 OperandTraits<CallBase<InvokeInst>>::op_end(this) -
592 II.getNumOperands(),
593 II.getNumOperands()) {
594 setCallingConv(II.getCallingConv());
595 std::copy(II.op_begin(), II.op_end(), op_begin());
596 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
597 bundle_op_info_begin());
598 SubclassOptionalData = II.SubclassOptionalData;
601 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
602 Instruction *InsertPt) {
603 std::vector<Value *> Args(II->arg_begin(), II->arg_end());
605 auto *NewII = InvokeInst::Create(II->getCalledValue(), II->getNormalDest(),
606 II->getUnwindDest(), Args, OpB,
607 II->getName(), InsertPt);
608 NewII->setCallingConv(II->getCallingConv());
609 NewII->SubclassOptionalData = II->SubclassOptionalData;
610 NewII->setAttributes(II->getAttributes());
611 NewII->setDebugLoc(II->getDebugLoc());
612 return NewII;
616 LandingPadInst *InvokeInst::getLandingPadInst() const {
617 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
620 //===----------------------------------------------------------------------===//
621 // ReturnInst Implementation
622 //===----------------------------------------------------------------------===//
624 ReturnInst::ReturnInst(const ReturnInst &RI)
625 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
626 OperandTraits<ReturnInst>::op_end(this) -
627 RI.getNumOperands(),
628 RI.getNumOperands()) {
629 if (RI.getNumOperands())
630 Op<0>() = RI.Op<0>();
631 SubclassOptionalData = RI.SubclassOptionalData;
634 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
635 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
636 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
637 InsertBefore) {
638 if (retVal)
639 Op<0>() = retVal;
642 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
643 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
644 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
645 InsertAtEnd) {
646 if (retVal)
647 Op<0>() = retVal;
650 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
651 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
652 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
655 //===----------------------------------------------------------------------===//
656 // ResumeInst Implementation
657 //===----------------------------------------------------------------------===//
659 ResumeInst::ResumeInst(const ResumeInst &RI)
660 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
661 OperandTraits<ResumeInst>::op_begin(this), 1) {
662 Op<0>() = RI.Op<0>();
665 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
666 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
667 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
668 Op<0>() = Exn;
671 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
672 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
673 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
674 Op<0>() = Exn;
677 //===----------------------------------------------------------------------===//
678 // CleanupReturnInst Implementation
679 //===----------------------------------------------------------------------===//
681 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
682 : TerminatorInst(CRI.getType(), Instruction::CleanupRet,
683 OperandTraits<CleanupReturnInst>::op_end(this) -
684 CRI.getNumOperands(),
685 CRI.getNumOperands()) {
686 setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
687 Op<0>() = CRI.Op<0>();
688 if (CRI.hasUnwindDest())
689 Op<1>() = CRI.Op<1>();
692 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
693 if (UnwindBB)
694 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
696 Op<0>() = CleanupPad;
697 if (UnwindBB)
698 Op<1>() = UnwindBB;
701 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
702 unsigned Values, Instruction *InsertBefore)
703 : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()),
704 Instruction::CleanupRet,
705 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
706 Values, InsertBefore) {
707 init(CleanupPad, UnwindBB);
710 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
711 unsigned Values, BasicBlock *InsertAtEnd)
712 : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()),
713 Instruction::CleanupRet,
714 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
715 Values, InsertAtEnd) {
716 init(CleanupPad, UnwindBB);
719 //===----------------------------------------------------------------------===//
720 // CatchReturnInst Implementation
721 //===----------------------------------------------------------------------===//
722 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
723 Op<0>() = CatchPad;
724 Op<1>() = BB;
727 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
728 : TerminatorInst(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
729 OperandTraits<CatchReturnInst>::op_begin(this), 2) {
730 Op<0>() = CRI.Op<0>();
731 Op<1>() = CRI.Op<1>();
734 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
735 Instruction *InsertBefore)
736 : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
737 OperandTraits<CatchReturnInst>::op_begin(this), 2,
738 InsertBefore) {
739 init(CatchPad, BB);
742 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
743 BasicBlock *InsertAtEnd)
744 : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
745 OperandTraits<CatchReturnInst>::op_begin(this), 2,
746 InsertAtEnd) {
747 init(CatchPad, BB);
750 //===----------------------------------------------------------------------===//
751 // CatchSwitchInst Implementation
752 //===----------------------------------------------------------------------===//
754 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
755 unsigned NumReservedValues,
756 const Twine &NameStr,
757 Instruction *InsertBefore)
758 : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
759 InsertBefore) {
760 if (UnwindDest)
761 ++NumReservedValues;
762 init(ParentPad, UnwindDest, NumReservedValues + 1);
763 setName(NameStr);
766 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
767 unsigned NumReservedValues,
768 const Twine &NameStr, BasicBlock *InsertAtEnd)
769 : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
770 InsertAtEnd) {
771 if (UnwindDest)
772 ++NumReservedValues;
773 init(ParentPad, UnwindDest, NumReservedValues + 1);
774 setName(NameStr);
777 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
778 : TerminatorInst(CSI.getType(), Instruction::CatchSwitch, nullptr,
779 CSI.getNumOperands()) {
780 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
781 setNumHungOffUseOperands(ReservedSpace);
782 Use *OL = getOperandList();
783 const Use *InOL = CSI.getOperandList();
784 for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
785 OL[I] = InOL[I];
788 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
789 unsigned NumReservedValues) {
790 assert(ParentPad && NumReservedValues);
792 ReservedSpace = NumReservedValues;
793 setNumHungOffUseOperands(UnwindDest ? 2 : 1);
794 allocHungoffUses(ReservedSpace);
796 Op<0>() = ParentPad;
797 if (UnwindDest) {
798 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
799 setUnwindDest(UnwindDest);
803 /// growOperands - grow operands - This grows the operand list in response to a
804 /// push_back style of operation. This grows the number of ops by 2 times.
805 void CatchSwitchInst::growOperands(unsigned Size) {
806 unsigned NumOperands = getNumOperands();
807 assert(NumOperands >= 1);
808 if (ReservedSpace >= NumOperands + Size)
809 return;
810 ReservedSpace = (NumOperands + Size / 2) * 2;
811 growHungoffUses(ReservedSpace);
814 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
815 unsigned OpNo = getNumOperands();
816 growOperands(1);
817 assert(OpNo < ReservedSpace && "Growing didn't work!");
818 setNumHungOffUseOperands(getNumOperands() + 1);
819 getOperandList()[OpNo] = Handler;
822 void CatchSwitchInst::removeHandler(handler_iterator HI) {
823 // Move all subsequent handlers up one.
824 Use *EndDst = op_end() - 1;
825 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
826 *CurDst = *(CurDst + 1);
827 // Null out the last handler use.
828 *EndDst = nullptr;
830 setNumHungOffUseOperands(getNumOperands() - 1);
833 //===----------------------------------------------------------------------===//
834 // FuncletPadInst Implementation
835 //===----------------------------------------------------------------------===//
836 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
837 const Twine &NameStr) {
838 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
839 std::copy(Args.begin(), Args.end(), op_begin());
840 setParentPad(ParentPad);
841 setName(NameStr);
844 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
845 : Instruction(FPI.getType(), FPI.getOpcode(),
846 OperandTraits<FuncletPadInst>::op_end(this) -
847 FPI.getNumOperands(),
848 FPI.getNumOperands()) {
849 std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
850 setParentPad(FPI.getParentPad());
853 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
854 ArrayRef<Value *> Args, unsigned Values,
855 const Twine &NameStr, Instruction *InsertBefore)
856 : Instruction(ParentPad->getType(), Op,
857 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
858 InsertBefore) {
859 init(ParentPad, Args, NameStr);
862 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
863 ArrayRef<Value *> Args, unsigned Values,
864 const Twine &NameStr, BasicBlock *InsertAtEnd)
865 : Instruction(ParentPad->getType(), Op,
866 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
867 InsertAtEnd) {
868 init(ParentPad, Args, NameStr);
871 //===----------------------------------------------------------------------===//
872 // UnreachableInst Implementation
873 //===----------------------------------------------------------------------===//
875 UnreachableInst::UnreachableInst(LLVMContext &Context,
876 Instruction *InsertBefore)
877 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
878 nullptr, 0, InsertBefore) {
880 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
881 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
882 nullptr, 0, InsertAtEnd) {
885 //===----------------------------------------------------------------------===//
886 // BranchInst Implementation
887 //===----------------------------------------------------------------------===//
889 void BranchInst::AssertOK() {
890 if (isConditional())
891 assert(getCondition()->getType()->isIntegerTy(1) &&
892 "May only branch on boolean predicates!");
895 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
896 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
897 OperandTraits<BranchInst>::op_end(this) - 1,
898 1, InsertBefore) {
899 assert(IfTrue && "Branch destination may not be null!");
900 Op<-1>() = IfTrue;
903 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
904 Instruction *InsertBefore)
905 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
906 OperandTraits<BranchInst>::op_end(this) - 3,
907 3, InsertBefore) {
908 Op<-1>() = IfTrue;
909 Op<-2>() = IfFalse;
910 Op<-3>() = Cond;
911 #ifndef NDEBUG
912 AssertOK();
913 #endif
916 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
917 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
918 OperandTraits<BranchInst>::op_end(this) - 1,
919 1, InsertAtEnd) {
920 assert(IfTrue && "Branch destination may not be null!");
921 Op<-1>() = IfTrue;
924 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
925 BasicBlock *InsertAtEnd)
926 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
927 OperandTraits<BranchInst>::op_end(this) - 3,
928 3, InsertAtEnd) {
929 Op<-1>() = IfTrue;
930 Op<-2>() = IfFalse;
931 Op<-3>() = Cond;
932 #ifndef NDEBUG
933 AssertOK();
934 #endif
937 BranchInst::BranchInst(const BranchInst &BI) :
938 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
939 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
940 BI.getNumOperands()) {
941 Op<-1>() = BI.Op<-1>();
942 if (BI.getNumOperands() != 1) {
943 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
944 Op<-3>() = BI.Op<-3>();
945 Op<-2>() = BI.Op<-2>();
947 SubclassOptionalData = BI.SubclassOptionalData;
950 void BranchInst::swapSuccessors() {
951 assert(isConditional() &&
952 "Cannot swap successors of an unconditional branch");
953 Op<-1>().swap(Op<-2>());
955 // Update profile metadata if present and it matches our structural
956 // expectations.
957 swapProfMetadata();
960 //===----------------------------------------------------------------------===//
961 // AllocaInst Implementation
962 //===----------------------------------------------------------------------===//
964 static Value *getAISize(LLVMContext &Context, Value *Amt) {
965 if (!Amt)
966 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
967 else {
968 assert(!isa<BasicBlock>(Amt) &&
969 "Passed basic block into allocation size parameter! Use other ctor");
970 assert(Amt->getType()->isIntegerTy() &&
971 "Allocation array size is not an integer!");
973 return Amt;
976 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
977 Instruction *InsertBefore)
978 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
980 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
981 BasicBlock *InsertAtEnd)
982 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
984 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
985 const Twine &Name, Instruction *InsertBefore)
986 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {}
988 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
989 const Twine &Name, BasicBlock *InsertAtEnd)
990 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
992 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
993 unsigned Align, const Twine &Name,
994 Instruction *InsertBefore)
995 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
996 getAISize(Ty->getContext(), ArraySize), InsertBefore),
997 AllocatedType(Ty) {
998 setAlignment(Align);
999 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1000 setName(Name);
1003 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1004 unsigned Align, const Twine &Name,
1005 BasicBlock *InsertAtEnd)
1006 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1007 getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1008 AllocatedType(Ty) {
1009 setAlignment(Align);
1010 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1011 setName(Name);
1014 void AllocaInst::setAlignment(unsigned Align) {
1015 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1016 assert(Align <= MaximumAlignment &&
1017 "Alignment is greater than MaximumAlignment!");
1018 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1019 (Log2_32(Align) + 1));
1020 assert(getAlignment() == Align && "Alignment representation error!");
1023 bool AllocaInst::isArrayAllocation() const {
1024 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1025 return !CI->isOne();
1026 return true;
1029 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1030 /// function and is a constant size. If so, the code generator will fold it
1031 /// into the prolog/epilog code, so it is basically free.
1032 bool AllocaInst::isStaticAlloca() const {
1033 // Must be constant size.
1034 if (!isa<ConstantInt>(getArraySize())) return false;
1036 // Must be in the entry block.
1037 const BasicBlock *Parent = getParent();
1038 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1041 //===----------------------------------------------------------------------===//
1042 // LoadInst Implementation
1043 //===----------------------------------------------------------------------===//
1045 void LoadInst::AssertOK() {
1046 assert(getOperand(0)->getType()->isPointerTy() &&
1047 "Ptr must have pointer type.");
1048 assert(!(isAtomic() && getAlignment() == 0) &&
1049 "Alignment required for atomic load");
1052 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
1053 : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1055 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
1056 : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1058 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1059 Instruction *InsertBef)
1060 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1062 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1063 BasicBlock *InsertAE)
1064 : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1066 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1067 unsigned Align, Instruction *InsertBef)
1068 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1069 SyncScope::System, InsertBef) {}
1071 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1072 unsigned Align, BasicBlock *InsertAE)
1073 : LoadInst(Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1074 SyncScope::System, InsertAE) {}
1076 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1077 unsigned Align, AtomicOrdering Order,
1078 SyncScope::ID SSID, Instruction *InsertBef)
1079 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1080 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1081 setVolatile(isVolatile);
1082 setAlignment(Align);
1083 setAtomic(Order, SSID);
1084 AssertOK();
1085 setName(Name);
1088 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1089 unsigned Align, AtomicOrdering Order,
1090 SyncScope::ID SSID,
1091 BasicBlock *InsertAE)
1092 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1093 Load, Ptr, InsertAE) {
1094 setVolatile(isVolatile);
1095 setAlignment(Align);
1096 setAtomic(Order, SSID);
1097 AssertOK();
1098 setName(Name);
1101 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1102 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1103 Load, Ptr, InsertBef) {
1104 setVolatile(false);
1105 setAlignment(0);
1106 setAtomic(AtomicOrdering::NotAtomic);
1107 AssertOK();
1108 if (Name && Name[0]) setName(Name);
1111 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1112 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1113 Load, Ptr, InsertAE) {
1114 setVolatile(false);
1115 setAlignment(0);
1116 setAtomic(AtomicOrdering::NotAtomic);
1117 AssertOK();
1118 if (Name && Name[0]) setName(Name);
1121 LoadInst::LoadInst(Type *Ty, Value *Ptr, const char *Name, bool isVolatile,
1122 Instruction *InsertBef)
1123 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1124 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1125 setVolatile(isVolatile);
1126 setAlignment(0);
1127 setAtomic(AtomicOrdering::NotAtomic);
1128 AssertOK();
1129 if (Name && Name[0]) setName(Name);
1132 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1133 BasicBlock *InsertAE)
1134 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1135 Load, Ptr, InsertAE) {
1136 setVolatile(isVolatile);
1137 setAlignment(0);
1138 setAtomic(AtomicOrdering::NotAtomic);
1139 AssertOK();
1140 if (Name && Name[0]) setName(Name);
1143 void LoadInst::setAlignment(unsigned Align) {
1144 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1145 assert(Align <= MaximumAlignment &&
1146 "Alignment is greater than MaximumAlignment!");
1147 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1148 ((Log2_32(Align)+1)<<1));
1149 assert(getAlignment() == Align && "Alignment representation error!");
1152 //===----------------------------------------------------------------------===//
1153 // StoreInst Implementation
1154 //===----------------------------------------------------------------------===//
1156 void StoreInst::AssertOK() {
1157 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1158 assert(getOperand(1)->getType()->isPointerTy() &&
1159 "Ptr must have pointer type!");
1160 assert(getOperand(0)->getType() ==
1161 cast<PointerType>(getOperand(1)->getType())->getElementType()
1162 && "Ptr must be a pointer to Val type!");
1163 assert(!(isAtomic() && getAlignment() == 0) &&
1164 "Alignment required for atomic store");
1167 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1168 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1170 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1171 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1173 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1174 Instruction *InsertBefore)
1175 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1177 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1178 BasicBlock *InsertAtEnd)
1179 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1181 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1182 Instruction *InsertBefore)
1183 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1184 SyncScope::System, InsertBefore) {}
1186 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1187 BasicBlock *InsertAtEnd)
1188 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1189 SyncScope::System, InsertAtEnd) {}
1191 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1192 unsigned Align, AtomicOrdering Order,
1193 SyncScope::ID SSID,
1194 Instruction *InsertBefore)
1195 : Instruction(Type::getVoidTy(val->getContext()), Store,
1196 OperandTraits<StoreInst>::op_begin(this),
1197 OperandTraits<StoreInst>::operands(this),
1198 InsertBefore) {
1199 Op<0>() = val;
1200 Op<1>() = addr;
1201 setVolatile(isVolatile);
1202 setAlignment(Align);
1203 setAtomic(Order, SSID);
1204 AssertOK();
1207 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1208 unsigned Align, AtomicOrdering Order,
1209 SyncScope::ID SSID,
1210 BasicBlock *InsertAtEnd)
1211 : Instruction(Type::getVoidTy(val->getContext()), Store,
1212 OperandTraits<StoreInst>::op_begin(this),
1213 OperandTraits<StoreInst>::operands(this),
1214 InsertAtEnd) {
1215 Op<0>() = val;
1216 Op<1>() = addr;
1217 setVolatile(isVolatile);
1218 setAlignment(Align);
1219 setAtomic(Order, SSID);
1220 AssertOK();
1223 void StoreInst::setAlignment(unsigned Align) {
1224 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1225 assert(Align <= MaximumAlignment &&
1226 "Alignment is greater than MaximumAlignment!");
1227 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1228 ((Log2_32(Align)+1) << 1));
1229 assert(getAlignment() == Align && "Alignment representation error!");
1232 //===----------------------------------------------------------------------===//
1233 // AtomicCmpXchgInst Implementation
1234 //===----------------------------------------------------------------------===//
1236 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1237 AtomicOrdering SuccessOrdering,
1238 AtomicOrdering FailureOrdering,
1239 SyncScope::ID SSID) {
1240 Op<0>() = Ptr;
1241 Op<1>() = Cmp;
1242 Op<2>() = NewVal;
1243 setSuccessOrdering(SuccessOrdering);
1244 setFailureOrdering(FailureOrdering);
1245 setSyncScopeID(SSID);
1247 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1248 "All operands must be non-null!");
1249 assert(getOperand(0)->getType()->isPointerTy() &&
1250 "Ptr must have pointer type!");
1251 assert(getOperand(1)->getType() ==
1252 cast<PointerType>(getOperand(0)->getType())->getElementType()
1253 && "Ptr must be a pointer to Cmp type!");
1254 assert(getOperand(2)->getType() ==
1255 cast<PointerType>(getOperand(0)->getType())->getElementType()
1256 && "Ptr must be a pointer to NewVal type!");
1257 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1258 "AtomicCmpXchg instructions must be atomic!");
1259 assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1260 "AtomicCmpXchg instructions must be atomic!");
1261 assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1262 "AtomicCmpXchg failure argument shall be no stronger than the success "
1263 "argument");
1264 assert(FailureOrdering != AtomicOrdering::Release &&
1265 FailureOrdering != AtomicOrdering::AcquireRelease &&
1266 "AtomicCmpXchg failure ordering cannot include release semantics");
1269 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1270 AtomicOrdering SuccessOrdering,
1271 AtomicOrdering FailureOrdering,
1272 SyncScope::ID SSID,
1273 Instruction *InsertBefore)
1274 : Instruction(
1275 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1276 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1277 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1278 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1281 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1282 AtomicOrdering SuccessOrdering,
1283 AtomicOrdering FailureOrdering,
1284 SyncScope::ID SSID,
1285 BasicBlock *InsertAtEnd)
1286 : Instruction(
1287 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1288 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1289 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1290 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1293 //===----------------------------------------------------------------------===//
1294 // AtomicRMWInst Implementation
1295 //===----------------------------------------------------------------------===//
1297 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1298 AtomicOrdering Ordering,
1299 SyncScope::ID SSID) {
1300 Op<0>() = Ptr;
1301 Op<1>() = Val;
1302 setOperation(Operation);
1303 setOrdering(Ordering);
1304 setSyncScopeID(SSID);
1306 assert(getOperand(0) && getOperand(1) &&
1307 "All operands must be non-null!");
1308 assert(getOperand(0)->getType()->isPointerTy() &&
1309 "Ptr must have pointer type!");
1310 assert(getOperand(1)->getType() ==
1311 cast<PointerType>(getOperand(0)->getType())->getElementType()
1312 && "Ptr must be a pointer to Val type!");
1313 assert(Ordering != AtomicOrdering::NotAtomic &&
1314 "AtomicRMW instructions must be atomic!");
1317 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1318 AtomicOrdering Ordering,
1319 SyncScope::ID SSID,
1320 Instruction *InsertBefore)
1321 : Instruction(Val->getType(), AtomicRMW,
1322 OperandTraits<AtomicRMWInst>::op_begin(this),
1323 OperandTraits<AtomicRMWInst>::operands(this),
1324 InsertBefore) {
1325 Init(Operation, Ptr, Val, Ordering, SSID);
1328 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1329 AtomicOrdering Ordering,
1330 SyncScope::ID SSID,
1331 BasicBlock *InsertAtEnd)
1332 : Instruction(Val->getType(), AtomicRMW,
1333 OperandTraits<AtomicRMWInst>::op_begin(this),
1334 OperandTraits<AtomicRMWInst>::operands(this),
1335 InsertAtEnd) {
1336 Init(Operation, Ptr, Val, Ordering, SSID);
1339 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1340 switch (Op) {
1341 case AtomicRMWInst::Xchg:
1342 return "xchg";
1343 case AtomicRMWInst::Add:
1344 return "add";
1345 case AtomicRMWInst::Sub:
1346 return "sub";
1347 case AtomicRMWInst::And:
1348 return "and";
1349 case AtomicRMWInst::Nand:
1350 return "nand";
1351 case AtomicRMWInst::Or:
1352 return "or";
1353 case AtomicRMWInst::Xor:
1354 return "xor";
1355 case AtomicRMWInst::Max:
1356 return "max";
1357 case AtomicRMWInst::Min:
1358 return "min";
1359 case AtomicRMWInst::UMax:
1360 return "umax";
1361 case AtomicRMWInst::UMin:
1362 return "umin";
1363 case AtomicRMWInst::BAD_BINOP:
1364 return "<invalid operation>";
1367 llvm_unreachable("invalid atomicrmw operation");
1370 //===----------------------------------------------------------------------===//
1371 // FenceInst Implementation
1372 //===----------------------------------------------------------------------===//
1374 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1375 SyncScope::ID SSID,
1376 Instruction *InsertBefore)
1377 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1378 setOrdering(Ordering);
1379 setSyncScopeID(SSID);
1382 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1383 SyncScope::ID SSID,
1384 BasicBlock *InsertAtEnd)
1385 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1386 setOrdering(Ordering);
1387 setSyncScopeID(SSID);
1390 //===----------------------------------------------------------------------===//
1391 // GetElementPtrInst Implementation
1392 //===----------------------------------------------------------------------===//
1394 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1395 const Twine &Name) {
1396 assert(getNumOperands() == 1 + IdxList.size() &&
1397 "NumOperands not initialized?");
1398 Op<0>() = Ptr;
1399 std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1400 setName(Name);
1403 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1404 : Instruction(GEPI.getType(), GetElementPtr,
1405 OperandTraits<GetElementPtrInst>::op_end(this) -
1406 GEPI.getNumOperands(),
1407 GEPI.getNumOperands()),
1408 SourceElementType(GEPI.SourceElementType),
1409 ResultElementType(GEPI.ResultElementType) {
1410 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1411 SubclassOptionalData = GEPI.SubclassOptionalData;
1414 /// getIndexedType - Returns the type of the element that would be accessed with
1415 /// a gep instruction with the specified parameters.
1417 /// The Idxs pointer should point to a continuous piece of memory containing the
1418 /// indices, either as Value* or uint64_t.
1420 /// A null type is returned if the indices are invalid for the specified
1421 /// pointer type.
1423 template <typename IndexTy>
1424 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1425 // Handle the special case of the empty set index set, which is always valid.
1426 if (IdxList.empty())
1427 return Agg;
1429 // If there is at least one index, the top level type must be sized, otherwise
1430 // it cannot be 'stepped over'.
1431 if (!Agg->isSized())
1432 return nullptr;
1434 unsigned CurIdx = 1;
1435 for (; CurIdx != IdxList.size(); ++CurIdx) {
1436 CompositeType *CT = dyn_cast<CompositeType>(Agg);
1437 if (!CT || CT->isPointerTy()) return nullptr;
1438 IndexTy Index = IdxList[CurIdx];
1439 if (!CT->indexValid(Index)) return nullptr;
1440 Agg = CT->getTypeAtIndex(Index);
1442 return CurIdx == IdxList.size() ? Agg : nullptr;
1445 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1446 return getIndexedTypeInternal(Ty, IdxList);
1449 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1450 ArrayRef<Constant *> IdxList) {
1451 return getIndexedTypeInternal(Ty, IdxList);
1454 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1455 return getIndexedTypeInternal(Ty, IdxList);
1458 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1459 /// zeros. If so, the result pointer and the first operand have the same
1460 /// value, just potentially different types.
1461 bool GetElementPtrInst::hasAllZeroIndices() const {
1462 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1463 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1464 if (!CI->isZero()) return false;
1465 } else {
1466 return false;
1469 return true;
1472 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1473 /// constant integers. If so, the result pointer and the first operand have
1474 /// a constant offset between them.
1475 bool GetElementPtrInst::hasAllConstantIndices() const {
1476 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1477 if (!isa<ConstantInt>(getOperand(i)))
1478 return false;
1480 return true;
1483 void GetElementPtrInst::setIsInBounds(bool B) {
1484 cast<GEPOperator>(this)->setIsInBounds(B);
1487 bool GetElementPtrInst::isInBounds() const {
1488 return cast<GEPOperator>(this)->isInBounds();
1491 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1492 APInt &Offset) const {
1493 // Delegate to the generic GEPOperator implementation.
1494 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1497 //===----------------------------------------------------------------------===//
1498 // ExtractElementInst Implementation
1499 //===----------------------------------------------------------------------===//
1501 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1502 const Twine &Name,
1503 Instruction *InsertBef)
1504 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1505 ExtractElement,
1506 OperandTraits<ExtractElementInst>::op_begin(this),
1507 2, InsertBef) {
1508 assert(isValidOperands(Val, Index) &&
1509 "Invalid extractelement instruction operands!");
1510 Op<0>() = Val;
1511 Op<1>() = Index;
1512 setName(Name);
1515 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1516 const Twine &Name,
1517 BasicBlock *InsertAE)
1518 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1519 ExtractElement,
1520 OperandTraits<ExtractElementInst>::op_begin(this),
1521 2, InsertAE) {
1522 assert(isValidOperands(Val, Index) &&
1523 "Invalid extractelement instruction operands!");
1525 Op<0>() = Val;
1526 Op<1>() = Index;
1527 setName(Name);
1530 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1531 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1532 return false;
1533 return true;
1536 //===----------------------------------------------------------------------===//
1537 // InsertElementInst Implementation
1538 //===----------------------------------------------------------------------===//
1540 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1541 const Twine &Name,
1542 Instruction *InsertBef)
1543 : Instruction(Vec->getType(), InsertElement,
1544 OperandTraits<InsertElementInst>::op_begin(this),
1545 3, InsertBef) {
1546 assert(isValidOperands(Vec, Elt, Index) &&
1547 "Invalid insertelement instruction operands!");
1548 Op<0>() = Vec;
1549 Op<1>() = Elt;
1550 Op<2>() = Index;
1551 setName(Name);
1554 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1555 const Twine &Name,
1556 BasicBlock *InsertAE)
1557 : Instruction(Vec->getType(), InsertElement,
1558 OperandTraits<InsertElementInst>::op_begin(this),
1559 3, InsertAE) {
1560 assert(isValidOperands(Vec, Elt, Index) &&
1561 "Invalid insertelement instruction operands!");
1563 Op<0>() = Vec;
1564 Op<1>() = Elt;
1565 Op<2>() = Index;
1566 setName(Name);
1569 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1570 const Value *Index) {
1571 if (!Vec->getType()->isVectorTy())
1572 return false; // First operand of insertelement must be vector type.
1574 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1575 return false;// Second operand of insertelement must be vector element type.
1577 if (!Index->getType()->isIntegerTy())
1578 return false; // Third operand of insertelement must be i32.
1579 return true;
1582 //===----------------------------------------------------------------------===//
1583 // ShuffleVectorInst Implementation
1584 //===----------------------------------------------------------------------===//
1586 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1587 const Twine &Name,
1588 Instruction *InsertBefore)
1589 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1590 cast<VectorType>(Mask->getType())->getNumElements()),
1591 ShuffleVector,
1592 OperandTraits<ShuffleVectorInst>::op_begin(this),
1593 OperandTraits<ShuffleVectorInst>::operands(this),
1594 InsertBefore) {
1595 assert(isValidOperands(V1, V2, Mask) &&
1596 "Invalid shuffle vector instruction operands!");
1597 Op<0>() = V1;
1598 Op<1>() = V2;
1599 Op<2>() = Mask;
1600 setName(Name);
1603 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1604 const Twine &Name,
1605 BasicBlock *InsertAtEnd)
1606 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1607 cast<VectorType>(Mask->getType())->getNumElements()),
1608 ShuffleVector,
1609 OperandTraits<ShuffleVectorInst>::op_begin(this),
1610 OperandTraits<ShuffleVectorInst>::operands(this),
1611 InsertAtEnd) {
1612 assert(isValidOperands(V1, V2, Mask) &&
1613 "Invalid shuffle vector instruction operands!");
1615 Op<0>() = V1;
1616 Op<1>() = V2;
1617 Op<2>() = Mask;
1618 setName(Name);
1621 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1622 const Value *Mask) {
1623 // V1 and V2 must be vectors of the same type.
1624 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1625 return false;
1627 // Mask must be vector of i32.
1628 auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1629 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1630 return false;
1632 // Check to see if Mask is valid.
1633 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1634 return true;
1636 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1637 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1638 for (Value *Op : MV->operands()) {
1639 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1640 if (CI->uge(V1Size*2))
1641 return false;
1642 } else if (!isa<UndefValue>(Op)) {
1643 return false;
1646 return true;
1649 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1650 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1651 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1652 if (CDS->getElementAsInteger(i) >= V1Size*2)
1653 return false;
1654 return true;
1657 // The bitcode reader can create a place holder for a forward reference
1658 // used as the shuffle mask. When this occurs, the shuffle mask will
1659 // fall into this case and fail. To avoid this error, do this bit of
1660 // ugliness to allow such a mask pass.
1661 if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
1662 if (CE->getOpcode() == Instruction::UserOp1)
1663 return true;
1665 return false;
1668 int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) {
1669 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1670 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
1671 return CDS->getElementAsInteger(i);
1672 Constant *C = Mask->getAggregateElement(i);
1673 if (isa<UndefValue>(C))
1674 return -1;
1675 return cast<ConstantInt>(C)->getZExtValue();
1678 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1679 SmallVectorImpl<int> &Result) {
1680 unsigned NumElts = Mask->getType()->getVectorNumElements();
1682 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1683 for (unsigned i = 0; i != NumElts; ++i)
1684 Result.push_back(CDS->getElementAsInteger(i));
1685 return;
1687 for (unsigned i = 0; i != NumElts; ++i) {
1688 Constant *C = Mask->getAggregateElement(i);
1689 Result.push_back(isa<UndefValue>(C) ? -1 :
1690 cast<ConstantInt>(C)->getZExtValue());
1694 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1695 assert(!Mask.empty() && "Shuffle mask must contain elements");
1696 bool UsesLHS = false;
1697 bool UsesRHS = false;
1698 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1699 if (Mask[i] == -1)
1700 continue;
1701 assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
1702 "Out-of-bounds shuffle mask element");
1703 UsesLHS |= (Mask[i] < NumOpElts);
1704 UsesRHS |= (Mask[i] >= NumOpElts);
1705 if (UsesLHS && UsesRHS)
1706 return false;
1708 assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source");
1709 return true;
1712 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
1713 // We don't have vector operand size information, so assume operands are the
1714 // same size as the mask.
1715 return isSingleSourceMaskImpl(Mask, Mask.size());
1718 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1719 if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1720 return false;
1721 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1722 if (Mask[i] == -1)
1723 continue;
1724 if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1725 return false;
1727 return true;
1730 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
1731 // We don't have vector operand size information, so assume operands are the
1732 // same size as the mask.
1733 return isIdentityMaskImpl(Mask, Mask.size());
1736 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
1737 if (!isSingleSourceMask(Mask))
1738 return false;
1739 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1740 if (Mask[i] == -1)
1741 continue;
1742 if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
1743 return false;
1745 return true;
1748 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
1749 if (!isSingleSourceMask(Mask))
1750 return false;
1751 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1752 if (Mask[i] == -1)
1753 continue;
1754 if (Mask[i] != 0 && Mask[i] != NumElts)
1755 return false;
1757 return true;
1760 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
1761 // Select is differentiated from identity. It requires using both sources.
1762 if (isSingleSourceMask(Mask))
1763 return false;
1764 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1765 if (Mask[i] == -1)
1766 continue;
1767 if (Mask[i] != i && Mask[i] != (NumElts + i))
1768 return false;
1770 return true;
1773 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
1774 // Example masks that will return true:
1775 // v1 = <a, b, c, d>
1776 // v2 = <e, f, g, h>
1777 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1778 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
1780 // 1. The number of elements in the mask must be a power-of-2 and at least 2.
1781 int NumElts = Mask.size();
1782 if (NumElts < 2 || !isPowerOf2_32(NumElts))
1783 return false;
1785 // 2. The first element of the mask must be either a 0 or a 1.
1786 if (Mask[0] != 0 && Mask[0] != 1)
1787 return false;
1789 // 3. The difference between the first 2 elements must be equal to the
1790 // number of elements in the mask.
1791 if ((Mask[1] - Mask[0]) != NumElts)
1792 return false;
1794 // 4. The difference between consecutive even-numbered and odd-numbered
1795 // elements must be equal to 2.
1796 for (int i = 2; i < NumElts; ++i) {
1797 int MaskEltVal = Mask[i];
1798 if (MaskEltVal == -1)
1799 return false;
1800 int MaskEltPrevVal = Mask[i - 2];
1801 if (MaskEltVal - MaskEltPrevVal != 2)
1802 return false;
1804 return true;
1807 bool ShuffleVectorInst::isIdentityWithPadding() const {
1808 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1809 int NumMaskElts = getType()->getVectorNumElements();
1810 if (NumMaskElts <= NumOpElts)
1811 return false;
1813 // The first part of the mask must choose elements from exactly 1 source op.
1814 SmallVector<int, 16> Mask = getShuffleMask();
1815 if (!isIdentityMaskImpl(Mask, NumOpElts))
1816 return false;
1818 // All extending must be with undef elements.
1819 for (int i = NumOpElts; i < NumMaskElts; ++i)
1820 if (Mask[i] != -1)
1821 return false;
1823 return true;
1826 bool ShuffleVectorInst::isIdentityWithExtract() const {
1827 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1828 int NumMaskElts = getType()->getVectorNumElements();
1829 if (NumMaskElts >= NumOpElts)
1830 return false;
1832 return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
1835 bool ShuffleVectorInst::isConcat() const {
1836 // Vector concatenation is differentiated from identity with padding.
1837 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
1838 return false;
1840 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1841 int NumMaskElts = getType()->getVectorNumElements();
1842 if (NumMaskElts != NumOpElts * 2)
1843 return false;
1845 // Use the mask length rather than the operands' vector lengths here. We
1846 // already know that the shuffle returns a vector twice as long as the inputs,
1847 // and neither of the inputs are undef vectors. If the mask picks consecutive
1848 // elements from both inputs, then this is a concatenation of the inputs.
1849 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
1852 //===----------------------------------------------------------------------===//
1853 // InsertValueInst Class
1854 //===----------------------------------------------------------------------===//
1856 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1857 const Twine &Name) {
1858 assert(getNumOperands() == 2 && "NumOperands not initialized?");
1860 // There's no fundamental reason why we require at least one index
1861 // (other than weirdness with &*IdxBegin being invalid; see
1862 // getelementptr's init routine for example). But there's no
1863 // present need to support it.
1864 assert(!Idxs.empty() && "InsertValueInst must have at least one index");
1866 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1867 Val->getType() && "Inserted value must match indexed type!");
1868 Op<0>() = Agg;
1869 Op<1>() = Val;
1871 Indices.append(Idxs.begin(), Idxs.end());
1872 setName(Name);
1875 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1876 : Instruction(IVI.getType(), InsertValue,
1877 OperandTraits<InsertValueInst>::op_begin(this), 2),
1878 Indices(IVI.Indices) {
1879 Op<0>() = IVI.getOperand(0);
1880 Op<1>() = IVI.getOperand(1);
1881 SubclassOptionalData = IVI.SubclassOptionalData;
1884 //===----------------------------------------------------------------------===//
1885 // ExtractValueInst Class
1886 //===----------------------------------------------------------------------===//
1888 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1889 assert(getNumOperands() == 1 && "NumOperands not initialized?");
1891 // There's no fundamental reason why we require at least one index.
1892 // But there's no present need to support it.
1893 assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
1895 Indices.append(Idxs.begin(), Idxs.end());
1896 setName(Name);
1899 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1900 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1901 Indices(EVI.Indices) {
1902 SubclassOptionalData = EVI.SubclassOptionalData;
1905 // getIndexedType - Returns the type of the element that would be extracted
1906 // with an extractvalue instruction with the specified parameters.
1908 // A null type is returned if the indices are invalid for the specified
1909 // pointer type.
1911 Type *ExtractValueInst::getIndexedType(Type *Agg,
1912 ArrayRef<unsigned> Idxs) {
1913 for (unsigned Index : Idxs) {
1914 // We can't use CompositeType::indexValid(Index) here.
1915 // indexValid() always returns true for arrays because getelementptr allows
1916 // out-of-bounds indices. Since we don't allow those for extractvalue and
1917 // insertvalue we need to check array indexing manually.
1918 // Since the only other types we can index into are struct types it's just
1919 // as easy to check those manually as well.
1920 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1921 if (Index >= AT->getNumElements())
1922 return nullptr;
1923 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1924 if (Index >= ST->getNumElements())
1925 return nullptr;
1926 } else {
1927 // Not a valid type to index into.
1928 return nullptr;
1931 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1933 return const_cast<Type*>(Agg);
1936 //===----------------------------------------------------------------------===//
1937 // BinaryOperator Class
1938 //===----------------------------------------------------------------------===//
1940 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1941 Type *Ty, const Twine &Name,
1942 Instruction *InsertBefore)
1943 : Instruction(Ty, iType,
1944 OperandTraits<BinaryOperator>::op_begin(this),
1945 OperandTraits<BinaryOperator>::operands(this),
1946 InsertBefore) {
1947 Op<0>() = S1;
1948 Op<1>() = S2;
1949 setName(Name);
1950 AssertOK();
1953 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1954 Type *Ty, const Twine &Name,
1955 BasicBlock *InsertAtEnd)
1956 : Instruction(Ty, iType,
1957 OperandTraits<BinaryOperator>::op_begin(this),
1958 OperandTraits<BinaryOperator>::operands(this),
1959 InsertAtEnd) {
1960 Op<0>() = S1;
1961 Op<1>() = S2;
1962 setName(Name);
1963 AssertOK();
1966 void BinaryOperator::AssertOK() {
1967 Value *LHS = getOperand(0), *RHS = getOperand(1);
1968 (void)LHS; (void)RHS; // Silence warnings.
1969 assert(LHS->getType() == RHS->getType() &&
1970 "Binary operator operand types must match!");
1971 #ifndef NDEBUG
1972 switch (getOpcode()) {
1973 case Add: case Sub:
1974 case Mul:
1975 assert(getType() == LHS->getType() &&
1976 "Arithmetic operation should return same type as operands!");
1977 assert(getType()->isIntOrIntVectorTy() &&
1978 "Tried to create an integer operation on a non-integer type!");
1979 break;
1980 case FAdd: case FSub:
1981 case FMul:
1982 assert(getType() == LHS->getType() &&
1983 "Arithmetic operation should return same type as operands!");
1984 assert(getType()->isFPOrFPVectorTy() &&
1985 "Tried to create a floating-point operation on a "
1986 "non-floating-point type!");
1987 break;
1988 case UDiv:
1989 case SDiv:
1990 assert(getType() == LHS->getType() &&
1991 "Arithmetic operation should return same type as operands!");
1992 assert(getType()->isIntOrIntVectorTy() &&
1993 "Incorrect operand type (not integer) for S/UDIV");
1994 break;
1995 case FDiv:
1996 assert(getType() == LHS->getType() &&
1997 "Arithmetic operation should return same type as operands!");
1998 assert(getType()->isFPOrFPVectorTy() &&
1999 "Incorrect operand type (not floating point) for FDIV");
2000 break;
2001 case URem:
2002 case SRem:
2003 assert(getType() == LHS->getType() &&
2004 "Arithmetic operation should return same type as operands!");
2005 assert(getType()->isIntOrIntVectorTy() &&
2006 "Incorrect operand type (not integer) for S/UREM");
2007 break;
2008 case FRem:
2009 assert(getType() == LHS->getType() &&
2010 "Arithmetic operation should return same type as operands!");
2011 assert(getType()->isFPOrFPVectorTy() &&
2012 "Incorrect operand type (not floating point) for FREM");
2013 break;
2014 case Shl:
2015 case LShr:
2016 case AShr:
2017 assert(getType() == LHS->getType() &&
2018 "Shift operation should return same type as operands!");
2019 assert(getType()->isIntOrIntVectorTy() &&
2020 "Tried to create a shift operation on a non-integral type!");
2021 break;
2022 case And: case Or:
2023 case Xor:
2024 assert(getType() == LHS->getType() &&
2025 "Logical operation should return same type as operands!");
2026 assert(getType()->isIntOrIntVectorTy() &&
2027 "Tried to create a logical operation on a non-integral type!");
2028 break;
2029 default: llvm_unreachable("Invalid opcode provided");
2031 #endif
2034 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2035 const Twine &Name,
2036 Instruction *InsertBefore) {
2037 assert(S1->getType() == S2->getType() &&
2038 "Cannot create binary operator with two operands of differing type!");
2039 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2042 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2043 const Twine &Name,
2044 BasicBlock *InsertAtEnd) {
2045 BinaryOperator *Res = Create(Op, S1, S2, Name);
2046 InsertAtEnd->getInstList().push_back(Res);
2047 return Res;
2050 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2051 Instruction *InsertBefore) {
2052 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2053 return new BinaryOperator(Instruction::Sub,
2054 zero, Op,
2055 Op->getType(), Name, InsertBefore);
2058 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2059 BasicBlock *InsertAtEnd) {
2060 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2061 return new BinaryOperator(Instruction::Sub,
2062 zero, Op,
2063 Op->getType(), Name, InsertAtEnd);
2066 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2067 Instruction *InsertBefore) {
2068 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2069 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2072 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2073 BasicBlock *InsertAtEnd) {
2074 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2075 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2078 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2079 Instruction *InsertBefore) {
2080 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2081 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2084 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2085 BasicBlock *InsertAtEnd) {
2086 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2087 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2090 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2091 Instruction *InsertBefore) {
2092 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2093 return new BinaryOperator(Instruction::FSub, zero, Op,
2094 Op->getType(), Name, InsertBefore);
2097 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2098 BasicBlock *InsertAtEnd) {
2099 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2100 return new BinaryOperator(Instruction::FSub, zero, Op,
2101 Op->getType(), Name, InsertAtEnd);
2104 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2105 Instruction *InsertBefore) {
2106 Constant *C = Constant::getAllOnesValue(Op->getType());
2107 return new BinaryOperator(Instruction::Xor, Op, C,
2108 Op->getType(), Name, InsertBefore);
2111 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2112 BasicBlock *InsertAtEnd) {
2113 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2114 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2115 Op->getType(), Name, InsertAtEnd);
2118 // isConstantAllOnes - Helper function for several functions below
2119 static inline bool isConstantAllOnes(const Value *V) {
2120 if (const Constant *C = dyn_cast<Constant>(V))
2121 return C->isAllOnesValue();
2122 return false;
2125 bool BinaryOperator::isNeg(const Value *V) {
2126 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2127 if (Bop->getOpcode() == Instruction::Sub)
2128 if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0)))
2129 return C->isNegativeZeroValue();
2130 return false;
2133 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
2134 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2135 if (Bop->getOpcode() == Instruction::FSub)
2136 if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0))) {
2137 if (!IgnoreZeroSign)
2138 IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
2139 return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
2141 return false;
2144 bool BinaryOperator::isNot(const Value *V) {
2145 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2146 return (Bop->getOpcode() == Instruction::Xor &&
2147 (isConstantAllOnes(Bop->getOperand(1)) ||
2148 isConstantAllOnes(Bop->getOperand(0))));
2149 return false;
2152 Value *BinaryOperator::getNegArgument(Value *BinOp) {
2153 return cast<BinaryOperator>(BinOp)->getOperand(1);
2156 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
2157 return getNegArgument(const_cast<Value*>(BinOp));
2160 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
2161 return cast<BinaryOperator>(BinOp)->getOperand(1);
2164 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
2165 return getFNegArgument(const_cast<Value*>(BinOp));
2168 Value *BinaryOperator::getNotArgument(Value *BinOp) {
2169 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
2170 BinaryOperator *BO = cast<BinaryOperator>(BinOp);
2171 Value *Op0 = BO->getOperand(0);
2172 Value *Op1 = BO->getOperand(1);
2173 if (isConstantAllOnes(Op0)) return Op1;
2175 assert(isConstantAllOnes(Op1));
2176 return Op0;
2179 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
2180 return getNotArgument(const_cast<Value*>(BinOp));
2183 // Exchange the two operands to this instruction. This instruction is safe to
2184 // use on any binary instruction and does not modify the semantics of the
2185 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2186 // is changed.
2187 bool BinaryOperator::swapOperands() {
2188 if (!isCommutative())
2189 return true; // Can't commute operands
2190 Op<0>().swap(Op<1>());
2191 return false;
2194 //===----------------------------------------------------------------------===//
2195 // FPMathOperator Class
2196 //===----------------------------------------------------------------------===//
2198 float FPMathOperator::getFPAccuracy() const {
2199 const MDNode *MD =
2200 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2201 if (!MD)
2202 return 0.0;
2203 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2204 return Accuracy->getValueAPF().convertToFloat();
2207 //===----------------------------------------------------------------------===//
2208 // CastInst Class
2209 //===----------------------------------------------------------------------===//
2211 // Just determine if this cast only deals with integral->integral conversion.
2212 bool CastInst::isIntegerCast() const {
2213 switch (getOpcode()) {
2214 default: return false;
2215 case Instruction::ZExt:
2216 case Instruction::SExt:
2217 case Instruction::Trunc:
2218 return true;
2219 case Instruction::BitCast:
2220 return getOperand(0)->getType()->isIntegerTy() &&
2221 getType()->isIntegerTy();
2225 bool CastInst::isLosslessCast() const {
2226 // Only BitCast can be lossless, exit fast if we're not BitCast
2227 if (getOpcode() != Instruction::BitCast)
2228 return false;
2230 // Identity cast is always lossless
2231 Type *SrcTy = getOperand(0)->getType();
2232 Type *DstTy = getType();
2233 if (SrcTy == DstTy)
2234 return true;
2236 // Pointer to pointer is always lossless.
2237 if (SrcTy->isPointerTy())
2238 return DstTy->isPointerTy();
2239 return false; // Other types have no identity values
2242 /// This function determines if the CastInst does not require any bits to be
2243 /// changed in order to effect the cast. Essentially, it identifies cases where
2244 /// no code gen is necessary for the cast, hence the name no-op cast. For
2245 /// example, the following are all no-op casts:
2246 /// # bitcast i32* %x to i8*
2247 /// # bitcast <2 x i32> %x to <4 x i16>
2248 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2249 /// Determine if the described cast is a no-op.
2250 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2251 Type *SrcTy,
2252 Type *DestTy,
2253 const DataLayout &DL) {
2254 switch (Opcode) {
2255 default: llvm_unreachable("Invalid CastOp");
2256 case Instruction::Trunc:
2257 case Instruction::ZExt:
2258 case Instruction::SExt:
2259 case Instruction::FPTrunc:
2260 case Instruction::FPExt:
2261 case Instruction::UIToFP:
2262 case Instruction::SIToFP:
2263 case Instruction::FPToUI:
2264 case Instruction::FPToSI:
2265 case Instruction::AddrSpaceCast:
2266 // TODO: Target informations may give a more accurate answer here.
2267 return false;
2268 case Instruction::BitCast:
2269 return true; // BitCast never modifies bits.
2270 case Instruction::PtrToInt:
2271 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2272 DestTy->getScalarSizeInBits();
2273 case Instruction::IntToPtr:
2274 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2275 SrcTy->getScalarSizeInBits();
2279 bool CastInst::isNoopCast(const DataLayout &DL) const {
2280 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2283 /// This function determines if a pair of casts can be eliminated and what
2284 /// opcode should be used in the elimination. This assumes that there are two
2285 /// instructions like this:
2286 /// * %F = firstOpcode SrcTy %x to MidTy
2287 /// * %S = secondOpcode MidTy %F to DstTy
2288 /// The function returns a resultOpcode so these two casts can be replaced with:
2289 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2290 /// If no such cast is permitted, the function returns 0.
2291 unsigned CastInst::isEliminableCastPair(
2292 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2293 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2294 Type *DstIntPtrTy) {
2295 // Define the 144 possibilities for these two cast instructions. The values
2296 // in this matrix determine what to do in a given situation and select the
2297 // case in the switch below. The rows correspond to firstOp, the columns
2298 // correspond to secondOp. In looking at the table below, keep in mind
2299 // the following cast properties:
2301 // Size Compare Source Destination
2302 // Operator Src ? Size Type Sign Type Sign
2303 // -------- ------------ ------------------- ---------------------
2304 // TRUNC > Integer Any Integral Any
2305 // ZEXT < Integral Unsigned Integer Any
2306 // SEXT < Integral Signed Integer Any
2307 // FPTOUI n/a FloatPt n/a Integral Unsigned
2308 // FPTOSI n/a FloatPt n/a Integral Signed
2309 // UITOFP n/a Integral Unsigned FloatPt n/a
2310 // SITOFP n/a Integral Signed FloatPt n/a
2311 // FPTRUNC > FloatPt n/a FloatPt n/a
2312 // FPEXT < FloatPt n/a FloatPt n/a
2313 // PTRTOINT n/a Pointer n/a Integral Unsigned
2314 // INTTOPTR n/a Integral Unsigned Pointer n/a
2315 // BITCAST = FirstClass n/a FirstClass n/a
2316 // ADDRSPCST n/a Pointer n/a Pointer n/a
2318 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2319 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2320 // into "fptoui double to i64", but this loses information about the range
2321 // of the produced value (we no longer know the top-part is all zeros).
2322 // Further this conversion is often much more expensive for typical hardware,
2323 // and causes issues when building libgcc. We disallow fptosi+sext for the
2324 // same reason.
2325 const unsigned numCastOps =
2326 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2327 static const uint8_t CastResults[numCastOps][numCastOps] = {
2328 // T F F U S F F P I B A -+
2329 // R Z S P P I I T P 2 N T S |
2330 // U E E 2 2 2 2 R E I T C C +- secondOp
2331 // N X X U S F F N X N 2 V V |
2332 // C T T I I P P C T T P T T -+
2333 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2334 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2335 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2336 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2337 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2338 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2339 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2340 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2341 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
2342 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2343 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2344 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2345 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2348 // TODO: This logic could be encoded into the table above and handled in the
2349 // switch below.
2350 // If either of the casts are a bitcast from scalar to vector, disallow the
2351 // merging. However, any pair of bitcasts are allowed.
2352 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2353 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2354 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2356 // Check if any of the casts convert scalars <-> vectors.
2357 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2358 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2359 if (!AreBothBitcasts)
2360 return 0;
2362 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2363 [secondOp-Instruction::CastOpsBegin];
2364 switch (ElimCase) {
2365 case 0:
2366 // Categorically disallowed.
2367 return 0;
2368 case 1:
2369 // Allowed, use first cast's opcode.
2370 return firstOp;
2371 case 2:
2372 // Allowed, use second cast's opcode.
2373 return secondOp;
2374 case 3:
2375 // No-op cast in second op implies firstOp as long as the DestTy
2376 // is integer and we are not converting between a vector and a
2377 // non-vector type.
2378 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2379 return firstOp;
2380 return 0;
2381 case 4:
2382 // No-op cast in second op implies firstOp as long as the DestTy
2383 // is floating point.
2384 if (DstTy->isFloatingPointTy())
2385 return firstOp;
2386 return 0;
2387 case 5:
2388 // No-op cast in first op implies secondOp as long as the SrcTy
2389 // is an integer.
2390 if (SrcTy->isIntegerTy())
2391 return secondOp;
2392 return 0;
2393 case 6:
2394 // No-op cast in first op implies secondOp as long as the SrcTy
2395 // is a floating point.
2396 if (SrcTy->isFloatingPointTy())
2397 return secondOp;
2398 return 0;
2399 case 7: {
2400 // Cannot simplify if address spaces are different!
2401 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2402 return 0;
2404 unsigned MidSize = MidTy->getScalarSizeInBits();
2405 // We can still fold this without knowing the actual sizes as long we
2406 // know that the intermediate pointer is the largest possible
2407 // pointer size.
2408 // FIXME: Is this always true?
2409 if (MidSize == 64)
2410 return Instruction::BitCast;
2412 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2413 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2414 return 0;
2415 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2416 if (MidSize >= PtrSize)
2417 return Instruction::BitCast;
2418 return 0;
2420 case 8: {
2421 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2422 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2423 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2424 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2425 unsigned DstSize = DstTy->getScalarSizeInBits();
2426 if (SrcSize == DstSize)
2427 return Instruction::BitCast;
2428 else if (SrcSize < DstSize)
2429 return firstOp;
2430 return secondOp;
2432 case 9:
2433 // zext, sext -> zext, because sext can't sign extend after zext
2434 return Instruction::ZExt;
2435 case 11: {
2436 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2437 if (!MidIntPtrTy)
2438 return 0;
2439 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2440 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2441 unsigned DstSize = DstTy->getScalarSizeInBits();
2442 if (SrcSize <= PtrSize && SrcSize == DstSize)
2443 return Instruction::BitCast;
2444 return 0;
2446 case 12:
2447 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2448 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2449 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2450 return Instruction::AddrSpaceCast;
2451 return Instruction::BitCast;
2452 case 13:
2453 // FIXME: this state can be merged with (1), but the following assert
2454 // is useful to check the correcteness of the sequence due to semantic
2455 // change of bitcast.
2456 assert(
2457 SrcTy->isPtrOrPtrVectorTy() &&
2458 MidTy->isPtrOrPtrVectorTy() &&
2459 DstTy->isPtrOrPtrVectorTy() &&
2460 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2461 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2462 "Illegal addrspacecast, bitcast sequence!");
2463 // Allowed, use first cast's opcode
2464 return firstOp;
2465 case 14:
2466 // bitcast, addrspacecast -> addrspacecast if the element type of
2467 // bitcast's source is the same as that of addrspacecast's destination.
2468 if (SrcTy->getScalarType()->getPointerElementType() ==
2469 DstTy->getScalarType()->getPointerElementType())
2470 return Instruction::AddrSpaceCast;
2471 return 0;
2472 case 15:
2473 // FIXME: this state can be merged with (1), but the following assert
2474 // is useful to check the correcteness of the sequence due to semantic
2475 // change of bitcast.
2476 assert(
2477 SrcTy->isIntOrIntVectorTy() &&
2478 MidTy->isPtrOrPtrVectorTy() &&
2479 DstTy->isPtrOrPtrVectorTy() &&
2480 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2481 "Illegal inttoptr, bitcast sequence!");
2482 // Allowed, use first cast's opcode
2483 return firstOp;
2484 case 16:
2485 // FIXME: this state can be merged with (2), but the following assert
2486 // is useful to check the correcteness of the sequence due to semantic
2487 // change of bitcast.
2488 assert(
2489 SrcTy->isPtrOrPtrVectorTy() &&
2490 MidTy->isPtrOrPtrVectorTy() &&
2491 DstTy->isIntOrIntVectorTy() &&
2492 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2493 "Illegal bitcast, ptrtoint sequence!");
2494 // Allowed, use second cast's opcode
2495 return secondOp;
2496 case 17:
2497 // (sitofp (zext x)) -> (uitofp x)
2498 return Instruction::UIToFP;
2499 case 99:
2500 // Cast combination can't happen (error in input). This is for all cases
2501 // where the MidTy is not the same for the two cast instructions.
2502 llvm_unreachable("Invalid Cast Combination");
2503 default:
2504 llvm_unreachable("Error in CastResults table!!!");
2508 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2509 const Twine &Name, Instruction *InsertBefore) {
2510 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2511 // Construct and return the appropriate CastInst subclass
2512 switch (op) {
2513 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2514 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2515 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2516 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2517 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2518 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2519 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2520 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2521 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2522 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2523 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2524 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2525 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2526 default: llvm_unreachable("Invalid opcode provided");
2530 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2531 const Twine &Name, BasicBlock *InsertAtEnd) {
2532 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2533 // Construct and return the appropriate CastInst subclass
2534 switch (op) {
2535 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2536 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2537 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2538 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2539 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2540 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2541 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2542 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2543 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2544 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2545 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2546 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2547 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2548 default: llvm_unreachable("Invalid opcode provided");
2552 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2553 const Twine &Name,
2554 Instruction *InsertBefore) {
2555 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2556 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2557 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2560 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2561 const Twine &Name,
2562 BasicBlock *InsertAtEnd) {
2563 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2564 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2565 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2568 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2569 const Twine &Name,
2570 Instruction *InsertBefore) {
2571 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2572 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2573 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2576 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2577 const Twine &Name,
2578 BasicBlock *InsertAtEnd) {
2579 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2580 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2581 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2584 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2585 const Twine &Name,
2586 Instruction *InsertBefore) {
2587 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2588 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2589 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2592 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2593 const Twine &Name,
2594 BasicBlock *InsertAtEnd) {
2595 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2596 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2597 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2600 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2601 const Twine &Name,
2602 BasicBlock *InsertAtEnd) {
2603 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2604 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2605 "Invalid cast");
2606 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2607 assert((!Ty->isVectorTy() ||
2608 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2609 "Invalid cast");
2611 if (Ty->isIntOrIntVectorTy())
2612 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2614 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2617 /// Create a BitCast or a PtrToInt cast instruction
2618 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2619 const Twine &Name,
2620 Instruction *InsertBefore) {
2621 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2622 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2623 "Invalid cast");
2624 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2625 assert((!Ty->isVectorTy() ||
2626 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2627 "Invalid cast");
2629 if (Ty->isIntOrIntVectorTy())
2630 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2632 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2635 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2636 Value *S, Type *Ty,
2637 const Twine &Name,
2638 BasicBlock *InsertAtEnd) {
2639 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2640 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2642 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2643 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2645 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2648 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2649 Value *S, Type *Ty,
2650 const Twine &Name,
2651 Instruction *InsertBefore) {
2652 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2653 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2655 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2656 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2658 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2661 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2662 const Twine &Name,
2663 Instruction *InsertBefore) {
2664 if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2665 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2666 if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2667 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2669 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2672 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2673 bool isSigned, const Twine &Name,
2674 Instruction *InsertBefore) {
2675 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2676 "Invalid integer cast");
2677 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2678 unsigned DstBits = Ty->getScalarSizeInBits();
2679 Instruction::CastOps opcode =
2680 (SrcBits == DstBits ? Instruction::BitCast :
2681 (SrcBits > DstBits ? Instruction::Trunc :
2682 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2683 return Create(opcode, C, Ty, Name, InsertBefore);
2686 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2687 bool isSigned, const Twine &Name,
2688 BasicBlock *InsertAtEnd) {
2689 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2690 "Invalid cast");
2691 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2692 unsigned DstBits = Ty->getScalarSizeInBits();
2693 Instruction::CastOps opcode =
2694 (SrcBits == DstBits ? Instruction::BitCast :
2695 (SrcBits > DstBits ? Instruction::Trunc :
2696 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2697 return Create(opcode, C, Ty, Name, InsertAtEnd);
2700 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2701 const Twine &Name,
2702 Instruction *InsertBefore) {
2703 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2704 "Invalid cast");
2705 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2706 unsigned DstBits = Ty->getScalarSizeInBits();
2707 Instruction::CastOps opcode =
2708 (SrcBits == DstBits ? Instruction::BitCast :
2709 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2710 return Create(opcode, C, Ty, Name, InsertBefore);
2713 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2714 const Twine &Name,
2715 BasicBlock *InsertAtEnd) {
2716 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2717 "Invalid cast");
2718 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2719 unsigned DstBits = Ty->getScalarSizeInBits();
2720 Instruction::CastOps opcode =
2721 (SrcBits == DstBits ? Instruction::BitCast :
2722 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2723 return Create(opcode, C, Ty, Name, InsertAtEnd);
2726 // Check whether it is valid to call getCastOpcode for these types.
2727 // This routine must be kept in sync with getCastOpcode.
2728 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2729 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2730 return false;
2732 if (SrcTy == DestTy)
2733 return true;
2735 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2736 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2737 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2738 // An element by element cast. Valid if casting the elements is valid.
2739 SrcTy = SrcVecTy->getElementType();
2740 DestTy = DestVecTy->getElementType();
2743 // Get the bit sizes, we'll need these
2744 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2745 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2747 // Run through the possibilities ...
2748 if (DestTy->isIntegerTy()) { // Casting to integral
2749 if (SrcTy->isIntegerTy()) // Casting from integral
2750 return true;
2751 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2752 return true;
2753 if (SrcTy->isVectorTy()) // Casting from vector
2754 return DestBits == SrcBits;
2755 // Casting from something else
2756 return SrcTy->isPointerTy();
2758 if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2759 if (SrcTy->isIntegerTy()) // Casting from integral
2760 return true;
2761 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2762 return true;
2763 if (SrcTy->isVectorTy()) // Casting from vector
2764 return DestBits == SrcBits;
2765 // Casting from something else
2766 return false;
2768 if (DestTy->isVectorTy()) // Casting to vector
2769 return DestBits == SrcBits;
2770 if (DestTy->isPointerTy()) { // Casting to pointer
2771 if (SrcTy->isPointerTy()) // Casting from pointer
2772 return true;
2773 return SrcTy->isIntegerTy(); // Casting from integral
2775 if (DestTy->isX86_MMXTy()) {
2776 if (SrcTy->isVectorTy())
2777 return DestBits == SrcBits; // 64-bit vector to MMX
2778 return false;
2779 } // Casting to something else
2780 return false;
2783 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2784 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2785 return false;
2787 if (SrcTy == DestTy)
2788 return true;
2790 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2791 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2792 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2793 // An element by element cast. Valid if casting the elements is valid.
2794 SrcTy = SrcVecTy->getElementType();
2795 DestTy = DestVecTy->getElementType();
2800 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2801 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2802 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2806 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2807 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2809 // Could still have vectors of pointers if the number of elements doesn't
2810 // match
2811 if (SrcBits == 0 || DestBits == 0)
2812 return false;
2814 if (SrcBits != DestBits)
2815 return false;
2817 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2818 return false;
2820 return true;
2823 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
2824 const DataLayout &DL) {
2825 // ptrtoint and inttoptr are not allowed on non-integral pointers
2826 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
2827 if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
2828 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
2829 !DL.isNonIntegralPointerType(PtrTy));
2830 if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
2831 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
2832 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
2833 !DL.isNonIntegralPointerType(PtrTy));
2835 return isBitCastable(SrcTy, DestTy);
2838 // Provide a way to get a "cast" where the cast opcode is inferred from the
2839 // types and size of the operand. This, basically, is a parallel of the
2840 // logic in the castIsValid function below. This axiom should hold:
2841 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2842 // should not assert in castIsValid. In other words, this produces a "correct"
2843 // casting opcode for the arguments passed to it.
2844 // This routine must be kept in sync with isCastable.
2845 Instruction::CastOps
2846 CastInst::getCastOpcode(
2847 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2848 Type *SrcTy = Src->getType();
2850 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2851 "Only first class types are castable!");
2853 if (SrcTy == DestTy)
2854 return BitCast;
2856 // FIXME: Check address space sizes here
2857 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2858 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2859 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2860 // An element by element cast. Find the appropriate opcode based on the
2861 // element types.
2862 SrcTy = SrcVecTy->getElementType();
2863 DestTy = DestVecTy->getElementType();
2866 // Get the bit sizes, we'll need these
2867 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2868 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2870 // Run through the possibilities ...
2871 if (DestTy->isIntegerTy()) { // Casting to integral
2872 if (SrcTy->isIntegerTy()) { // Casting from integral
2873 if (DestBits < SrcBits)
2874 return Trunc; // int -> smaller int
2875 else if (DestBits > SrcBits) { // its an extension
2876 if (SrcIsSigned)
2877 return SExt; // signed -> SEXT
2878 else
2879 return ZExt; // unsigned -> ZEXT
2880 } else {
2881 return BitCast; // Same size, No-op cast
2883 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2884 if (DestIsSigned)
2885 return FPToSI; // FP -> sint
2886 else
2887 return FPToUI; // FP -> uint
2888 } else if (SrcTy->isVectorTy()) {
2889 assert(DestBits == SrcBits &&
2890 "Casting vector to integer of different width");
2891 return BitCast; // Same size, no-op cast
2892 } else {
2893 assert(SrcTy->isPointerTy() &&
2894 "Casting from a value that is not first-class type");
2895 return PtrToInt; // ptr -> int
2897 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2898 if (SrcTy->isIntegerTy()) { // Casting from integral
2899 if (SrcIsSigned)
2900 return SIToFP; // sint -> FP
2901 else
2902 return UIToFP; // uint -> FP
2903 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2904 if (DestBits < SrcBits) {
2905 return FPTrunc; // FP -> smaller FP
2906 } else if (DestBits > SrcBits) {
2907 return FPExt; // FP -> larger FP
2908 } else {
2909 return BitCast; // same size, no-op cast
2911 } else if (SrcTy->isVectorTy()) {
2912 assert(DestBits == SrcBits &&
2913 "Casting vector to floating point of different width");
2914 return BitCast; // same size, no-op cast
2916 llvm_unreachable("Casting pointer or non-first class to float");
2917 } else if (DestTy->isVectorTy()) {
2918 assert(DestBits == SrcBits &&
2919 "Illegal cast to vector (wrong type or size)");
2920 return BitCast;
2921 } else if (DestTy->isPointerTy()) {
2922 if (SrcTy->isPointerTy()) {
2923 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
2924 return AddrSpaceCast;
2925 return BitCast; // ptr -> ptr
2926 } else if (SrcTy->isIntegerTy()) {
2927 return IntToPtr; // int -> ptr
2929 llvm_unreachable("Casting pointer to other than pointer or int");
2930 } else if (DestTy->isX86_MMXTy()) {
2931 if (SrcTy->isVectorTy()) {
2932 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2933 return BitCast; // 64-bit vector to MMX
2935 llvm_unreachable("Illegal cast to X86_MMX");
2937 llvm_unreachable("Casting to type that is not first-class");
2940 //===----------------------------------------------------------------------===//
2941 // CastInst SubClass Constructors
2942 //===----------------------------------------------------------------------===//
2944 /// Check that the construction parameters for a CastInst are correct. This
2945 /// could be broken out into the separate constructors but it is useful to have
2946 /// it in one place and to eliminate the redundant code for getting the sizes
2947 /// of the types involved.
2948 bool
2949 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
2950 // Check for type sanity on the arguments
2951 Type *SrcTy = S->getType();
2953 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2954 SrcTy->isAggregateType() || DstTy->isAggregateType())
2955 return false;
2957 // Get the size of the types in bits, we'll need this later
2958 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2959 unsigned DstBitSize = DstTy->getScalarSizeInBits();
2961 // If these are vector types, get the lengths of the vectors (using zero for
2962 // scalar types means that checking that vector lengths match also checks that
2963 // scalars are not being converted to vectors or vectors to scalars).
2964 unsigned SrcLength = SrcTy->isVectorTy() ?
2965 cast<VectorType>(SrcTy)->getNumElements() : 0;
2966 unsigned DstLength = DstTy->isVectorTy() ?
2967 cast<VectorType>(DstTy)->getNumElements() : 0;
2969 // Switch on the opcode provided
2970 switch (op) {
2971 default: return false; // This is an input error
2972 case Instruction::Trunc:
2973 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2974 SrcLength == DstLength && SrcBitSize > DstBitSize;
2975 case Instruction::ZExt:
2976 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2977 SrcLength == DstLength && SrcBitSize < DstBitSize;
2978 case Instruction::SExt:
2979 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2980 SrcLength == DstLength && SrcBitSize < DstBitSize;
2981 case Instruction::FPTrunc:
2982 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2983 SrcLength == DstLength && SrcBitSize > DstBitSize;
2984 case Instruction::FPExt:
2985 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2986 SrcLength == DstLength && SrcBitSize < DstBitSize;
2987 case Instruction::UIToFP:
2988 case Instruction::SIToFP:
2989 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
2990 SrcLength == DstLength;
2991 case Instruction::FPToUI:
2992 case Instruction::FPToSI:
2993 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
2994 SrcLength == DstLength;
2995 case Instruction::PtrToInt:
2996 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2997 return false;
2998 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2999 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3000 return false;
3001 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3002 case Instruction::IntToPtr:
3003 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3004 return false;
3005 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3006 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3007 return false;
3008 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3009 case Instruction::BitCast: {
3010 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3011 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3013 // BitCast implies a no-op cast of type only. No bits change.
3014 // However, you can't cast pointers to anything but pointers.
3015 if (!SrcPtrTy != !DstPtrTy)
3016 return false;
3018 // For non-pointer cases, the cast is okay if the source and destination bit
3019 // widths are identical.
3020 if (!SrcPtrTy)
3021 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3023 // If both are pointers then the address spaces must match.
3024 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3025 return false;
3027 // A vector of pointers must have the same number of elements.
3028 VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy);
3029 VectorType *DstVecTy = dyn_cast<VectorType>(DstTy);
3030 if (SrcVecTy && DstVecTy)
3031 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3032 if (SrcVecTy)
3033 return SrcVecTy->getNumElements() == 1;
3034 if (DstVecTy)
3035 return DstVecTy->getNumElements() == 1;
3037 return true;
3039 case Instruction::AddrSpaceCast: {
3040 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3041 if (!SrcPtrTy)
3042 return false;
3044 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3045 if (!DstPtrTy)
3046 return false;
3048 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3049 return false;
3051 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3052 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3053 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3055 return false;
3058 return true;
3063 TruncInst::TruncInst(
3064 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3065 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3066 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3069 TruncInst::TruncInst(
3070 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3071 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3072 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3075 ZExtInst::ZExtInst(
3076 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3077 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3078 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3081 ZExtInst::ZExtInst(
3082 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3083 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3084 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3086 SExtInst::SExtInst(
3087 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3088 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3089 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3092 SExtInst::SExtInst(
3093 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3094 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3095 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3098 FPTruncInst::FPTruncInst(
3099 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3100 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3101 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3104 FPTruncInst::FPTruncInst(
3105 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3106 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3107 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3110 FPExtInst::FPExtInst(
3111 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3112 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3113 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3116 FPExtInst::FPExtInst(
3117 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3118 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3119 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3122 UIToFPInst::UIToFPInst(
3123 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3124 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3125 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3128 UIToFPInst::UIToFPInst(
3129 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3130 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3131 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3134 SIToFPInst::SIToFPInst(
3135 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3136 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3137 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3140 SIToFPInst::SIToFPInst(
3141 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3142 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3143 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3146 FPToUIInst::FPToUIInst(
3147 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3148 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3149 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3152 FPToUIInst::FPToUIInst(
3153 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3154 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3155 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3158 FPToSIInst::FPToSIInst(
3159 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3160 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3161 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3164 FPToSIInst::FPToSIInst(
3165 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3166 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3167 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3170 PtrToIntInst::PtrToIntInst(
3171 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3172 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3173 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3176 PtrToIntInst::PtrToIntInst(
3177 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3178 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3179 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3182 IntToPtrInst::IntToPtrInst(
3183 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3184 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3185 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3188 IntToPtrInst::IntToPtrInst(
3189 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3190 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3191 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3194 BitCastInst::BitCastInst(
3195 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3196 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3197 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3200 BitCastInst::BitCastInst(
3201 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3202 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3203 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3206 AddrSpaceCastInst::AddrSpaceCastInst(
3207 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3208 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3209 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3212 AddrSpaceCastInst::AddrSpaceCastInst(
3213 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3214 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3215 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3218 //===----------------------------------------------------------------------===//
3219 // CmpInst Classes
3220 //===----------------------------------------------------------------------===//
3222 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3223 Value *RHS, const Twine &Name, Instruction *InsertBefore)
3224 : Instruction(ty, op,
3225 OperandTraits<CmpInst>::op_begin(this),
3226 OperandTraits<CmpInst>::operands(this),
3227 InsertBefore) {
3228 Op<0>() = LHS;
3229 Op<1>() = RHS;
3230 setPredicate((Predicate)predicate);
3231 setName(Name);
3234 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3235 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3236 : Instruction(ty, op,
3237 OperandTraits<CmpInst>::op_begin(this),
3238 OperandTraits<CmpInst>::operands(this),
3239 InsertAtEnd) {
3240 Op<0>() = LHS;
3241 Op<1>() = RHS;
3242 setPredicate((Predicate)predicate);
3243 setName(Name);
3246 CmpInst *
3247 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3248 const Twine &Name, Instruction *InsertBefore) {
3249 if (Op == Instruction::ICmp) {
3250 if (InsertBefore)
3251 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3252 S1, S2, Name);
3253 else
3254 return new ICmpInst(CmpInst::Predicate(predicate),
3255 S1, S2, Name);
3258 if (InsertBefore)
3259 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3260 S1, S2, Name);
3261 else
3262 return new FCmpInst(CmpInst::Predicate(predicate),
3263 S1, S2, Name);
3266 CmpInst *
3267 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3268 const Twine &Name, BasicBlock *InsertAtEnd) {
3269 if (Op == Instruction::ICmp) {
3270 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3271 S1, S2, Name);
3273 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3274 S1, S2, Name);
3277 void CmpInst::swapOperands() {
3278 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3279 IC->swapOperands();
3280 else
3281 cast<FCmpInst>(this)->swapOperands();
3284 bool CmpInst::isCommutative() const {
3285 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3286 return IC->isCommutative();
3287 return cast<FCmpInst>(this)->isCommutative();
3290 bool CmpInst::isEquality() const {
3291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3292 return IC->isEquality();
3293 return cast<FCmpInst>(this)->isEquality();
3296 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3297 switch (pred) {
3298 default: llvm_unreachable("Unknown cmp predicate!");
3299 case ICMP_EQ: return ICMP_NE;
3300 case ICMP_NE: return ICMP_EQ;
3301 case ICMP_UGT: return ICMP_ULE;
3302 case ICMP_ULT: return ICMP_UGE;
3303 case ICMP_UGE: return ICMP_ULT;
3304 case ICMP_ULE: return ICMP_UGT;
3305 case ICMP_SGT: return ICMP_SLE;
3306 case ICMP_SLT: return ICMP_SGE;
3307 case ICMP_SGE: return ICMP_SLT;
3308 case ICMP_SLE: return ICMP_SGT;
3310 case FCMP_OEQ: return FCMP_UNE;
3311 case FCMP_ONE: return FCMP_UEQ;
3312 case FCMP_OGT: return FCMP_ULE;
3313 case FCMP_OLT: return FCMP_UGE;
3314 case FCMP_OGE: return FCMP_ULT;
3315 case FCMP_OLE: return FCMP_UGT;
3316 case FCMP_UEQ: return FCMP_ONE;
3317 case FCMP_UNE: return FCMP_OEQ;
3318 case FCMP_UGT: return FCMP_OLE;
3319 case FCMP_ULT: return FCMP_OGE;
3320 case FCMP_UGE: return FCMP_OLT;
3321 case FCMP_ULE: return FCMP_OGT;
3322 case FCMP_ORD: return FCMP_UNO;
3323 case FCMP_UNO: return FCMP_ORD;
3324 case FCMP_TRUE: return FCMP_FALSE;
3325 case FCMP_FALSE: return FCMP_TRUE;
3329 StringRef CmpInst::getPredicateName(Predicate Pred) {
3330 switch (Pred) {
3331 default: return "unknown";
3332 case FCmpInst::FCMP_FALSE: return "false";
3333 case FCmpInst::FCMP_OEQ: return "oeq";
3334 case FCmpInst::FCMP_OGT: return "ogt";
3335 case FCmpInst::FCMP_OGE: return "oge";
3336 case FCmpInst::FCMP_OLT: return "olt";
3337 case FCmpInst::FCMP_OLE: return "ole";
3338 case FCmpInst::FCMP_ONE: return "one";
3339 case FCmpInst::FCMP_ORD: return "ord";
3340 case FCmpInst::FCMP_UNO: return "uno";
3341 case FCmpInst::FCMP_UEQ: return "ueq";
3342 case FCmpInst::FCMP_UGT: return "ugt";
3343 case FCmpInst::FCMP_UGE: return "uge";
3344 case FCmpInst::FCMP_ULT: return "ult";
3345 case FCmpInst::FCMP_ULE: return "ule";
3346 case FCmpInst::FCMP_UNE: return "une";
3347 case FCmpInst::FCMP_TRUE: return "true";
3348 case ICmpInst::ICMP_EQ: return "eq";
3349 case ICmpInst::ICMP_NE: return "ne";
3350 case ICmpInst::ICMP_SGT: return "sgt";
3351 case ICmpInst::ICMP_SGE: return "sge";
3352 case ICmpInst::ICMP_SLT: return "slt";
3353 case ICmpInst::ICMP_SLE: return "sle";
3354 case ICmpInst::ICMP_UGT: return "ugt";
3355 case ICmpInst::ICMP_UGE: return "uge";
3356 case ICmpInst::ICMP_ULT: return "ult";
3357 case ICmpInst::ICMP_ULE: return "ule";
3361 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3362 switch (pred) {
3363 default: llvm_unreachable("Unknown icmp predicate!");
3364 case ICMP_EQ: case ICMP_NE:
3365 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3366 return pred;
3367 case ICMP_UGT: return ICMP_SGT;
3368 case ICMP_ULT: return ICMP_SLT;
3369 case ICMP_UGE: return ICMP_SGE;
3370 case ICMP_ULE: return ICMP_SLE;
3374 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3375 switch (pred) {
3376 default: llvm_unreachable("Unknown icmp predicate!");
3377 case ICMP_EQ: case ICMP_NE:
3378 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3379 return pred;
3380 case ICMP_SGT: return ICMP_UGT;
3381 case ICMP_SLT: return ICMP_ULT;
3382 case ICMP_SGE: return ICMP_UGE;
3383 case ICMP_SLE: return ICMP_ULE;
3387 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3388 switch (pred) {
3389 default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3390 case ICMP_SGT: return ICMP_SGE;
3391 case ICMP_SLT: return ICMP_SLE;
3392 case ICMP_SGE: return ICMP_SGT;
3393 case ICMP_SLE: return ICMP_SLT;
3394 case ICMP_UGT: return ICMP_UGE;
3395 case ICMP_ULT: return ICMP_ULE;
3396 case ICMP_UGE: return ICMP_UGT;
3397 case ICMP_ULE: return ICMP_ULT;
3399 case FCMP_OGT: return FCMP_OGE;
3400 case FCMP_OLT: return FCMP_OLE;
3401 case FCMP_OGE: return FCMP_OGT;
3402 case FCMP_OLE: return FCMP_OLT;
3403 case FCMP_UGT: return FCMP_UGE;
3404 case FCMP_ULT: return FCMP_ULE;
3405 case FCMP_UGE: return FCMP_UGT;
3406 case FCMP_ULE: return FCMP_ULT;
3410 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3411 switch (pred) {
3412 default: llvm_unreachable("Unknown cmp predicate!");
3413 case ICMP_EQ: case ICMP_NE:
3414 return pred;
3415 case ICMP_SGT: return ICMP_SLT;
3416 case ICMP_SLT: return ICMP_SGT;
3417 case ICMP_SGE: return ICMP_SLE;
3418 case ICMP_SLE: return ICMP_SGE;
3419 case ICMP_UGT: return ICMP_ULT;
3420 case ICMP_ULT: return ICMP_UGT;
3421 case ICMP_UGE: return ICMP_ULE;
3422 case ICMP_ULE: return ICMP_UGE;
3424 case FCMP_FALSE: case FCMP_TRUE:
3425 case FCMP_OEQ: case FCMP_ONE:
3426 case FCMP_UEQ: case FCMP_UNE:
3427 case FCMP_ORD: case FCMP_UNO:
3428 return pred;
3429 case FCMP_OGT: return FCMP_OLT;
3430 case FCMP_OLT: return FCMP_OGT;
3431 case FCMP_OGE: return FCMP_OLE;
3432 case FCMP_OLE: return FCMP_OGE;
3433 case FCMP_UGT: return FCMP_ULT;
3434 case FCMP_ULT: return FCMP_UGT;
3435 case FCMP_UGE: return FCMP_ULE;
3436 case FCMP_ULE: return FCMP_UGE;
3440 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3441 switch (pred) {
3442 case ICMP_SGT: return ICMP_SGE;
3443 case ICMP_SLT: return ICMP_SLE;
3444 case ICMP_UGT: return ICMP_UGE;
3445 case ICMP_ULT: return ICMP_ULE;
3446 case FCMP_OGT: return FCMP_OGE;
3447 case FCMP_OLT: return FCMP_OLE;
3448 case FCMP_UGT: return FCMP_UGE;
3449 case FCMP_ULT: return FCMP_ULE;
3450 default: return pred;
3454 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3455 assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3457 switch (pred) {
3458 default:
3459 llvm_unreachable("Unknown predicate!");
3460 case CmpInst::ICMP_ULT:
3461 return CmpInst::ICMP_SLT;
3462 case CmpInst::ICMP_ULE:
3463 return CmpInst::ICMP_SLE;
3464 case CmpInst::ICMP_UGT:
3465 return CmpInst::ICMP_SGT;
3466 case CmpInst::ICMP_UGE:
3467 return CmpInst::ICMP_SGE;
3471 bool CmpInst::isUnsigned(Predicate predicate) {
3472 switch (predicate) {
3473 default: return false;
3474 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3475 case ICmpInst::ICMP_UGE: return true;
3479 bool CmpInst::isSigned(Predicate predicate) {
3480 switch (predicate) {
3481 default: return false;
3482 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3483 case ICmpInst::ICMP_SGE: return true;
3487 bool CmpInst::isOrdered(Predicate predicate) {
3488 switch (predicate) {
3489 default: return false;
3490 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3491 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3492 case FCmpInst::FCMP_ORD: return true;
3496 bool CmpInst::isUnordered(Predicate predicate) {
3497 switch (predicate) {
3498 default: return false;
3499 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3500 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3501 case FCmpInst::FCMP_UNO: return true;
3505 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3506 switch(predicate) {
3507 default: return false;
3508 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3509 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3513 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3514 switch(predicate) {
3515 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3516 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3517 default: return false;
3521 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3522 // If the predicates match, then we know the first condition implies the
3523 // second is true.
3524 if (Pred1 == Pred2)
3525 return true;
3527 switch (Pred1) {
3528 default:
3529 break;
3530 case ICMP_EQ:
3531 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3532 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3533 Pred2 == ICMP_SLE;
3534 case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3535 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3536 case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3537 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3538 case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3539 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3540 case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3541 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3543 return false;
3546 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3547 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3550 //===----------------------------------------------------------------------===//
3551 // SwitchInst Implementation
3552 //===----------------------------------------------------------------------===//
3554 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3555 assert(Value && Default && NumReserved);
3556 ReservedSpace = NumReserved;
3557 setNumHungOffUseOperands(2);
3558 allocHungoffUses(ReservedSpace);
3560 Op<0>() = Value;
3561 Op<1>() = Default;
3564 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3565 /// switch on and a default destination. The number of additional cases can
3566 /// be specified here to make memory allocation more efficient. This
3567 /// constructor can also autoinsert before another instruction.
3568 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3569 Instruction *InsertBefore)
3570 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3571 nullptr, 0, InsertBefore) {
3572 init(Value, Default, 2+NumCases*2);
3575 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3576 /// switch on and a default destination. The number of additional cases can
3577 /// be specified here to make memory allocation more efficient. This
3578 /// constructor also autoinserts at the end of the specified BasicBlock.
3579 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3580 BasicBlock *InsertAtEnd)
3581 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3582 nullptr, 0, InsertAtEnd) {
3583 init(Value, Default, 2+NumCases*2);
3586 SwitchInst::SwitchInst(const SwitchInst &SI)
3587 : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) {
3588 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3589 setNumHungOffUseOperands(SI.getNumOperands());
3590 Use *OL = getOperandList();
3591 const Use *InOL = SI.getOperandList();
3592 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3593 OL[i] = InOL[i];
3594 OL[i+1] = InOL[i+1];
3596 SubclassOptionalData = SI.SubclassOptionalData;
3600 /// addCase - Add an entry to the switch instruction...
3602 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3603 unsigned NewCaseIdx = getNumCases();
3604 unsigned OpNo = getNumOperands();
3605 if (OpNo+2 > ReservedSpace)
3606 growOperands(); // Get more space!
3607 // Initialize some new operands.
3608 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3609 setNumHungOffUseOperands(OpNo+2);
3610 CaseHandle Case(this, NewCaseIdx);
3611 Case.setValue(OnVal);
3612 Case.setSuccessor(Dest);
3615 /// removeCase - This method removes the specified case and its successor
3616 /// from the switch instruction.
3617 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3618 unsigned idx = I->getCaseIndex();
3620 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3622 unsigned NumOps = getNumOperands();
3623 Use *OL = getOperandList();
3625 // Overwrite this case with the end of the list.
3626 if (2 + (idx + 1) * 2 != NumOps) {
3627 OL[2 + idx * 2] = OL[NumOps - 2];
3628 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3631 // Nuke the last value.
3632 OL[NumOps-2].set(nullptr);
3633 OL[NumOps-2+1].set(nullptr);
3634 setNumHungOffUseOperands(NumOps-2);
3636 return CaseIt(this, idx);
3639 /// growOperands - grow operands - This grows the operand list in response
3640 /// to a push_back style of operation. This grows the number of ops by 3 times.
3642 void SwitchInst::growOperands() {
3643 unsigned e = getNumOperands();
3644 unsigned NumOps = e*3;
3646 ReservedSpace = NumOps;
3647 growHungoffUses(ReservedSpace);
3650 //===----------------------------------------------------------------------===//
3651 // IndirectBrInst Implementation
3652 //===----------------------------------------------------------------------===//
3654 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3655 assert(Address && Address->getType()->isPointerTy() &&
3656 "Address of indirectbr must be a pointer");
3657 ReservedSpace = 1+NumDests;
3658 setNumHungOffUseOperands(1);
3659 allocHungoffUses(ReservedSpace);
3661 Op<0>() = Address;
3665 /// growOperands - grow operands - This grows the operand list in response
3666 /// to a push_back style of operation. This grows the number of ops by 2 times.
3668 void IndirectBrInst::growOperands() {
3669 unsigned e = getNumOperands();
3670 unsigned NumOps = e*2;
3672 ReservedSpace = NumOps;
3673 growHungoffUses(ReservedSpace);
3676 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3677 Instruction *InsertBefore)
3678 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3679 nullptr, 0, InsertBefore) {
3680 init(Address, NumCases);
3683 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3684 BasicBlock *InsertAtEnd)
3685 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3686 nullptr, 0, InsertAtEnd) {
3687 init(Address, NumCases);
3690 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3691 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3692 nullptr, IBI.getNumOperands()) {
3693 allocHungoffUses(IBI.getNumOperands());
3694 Use *OL = getOperandList();
3695 const Use *InOL = IBI.getOperandList();
3696 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3697 OL[i] = InOL[i];
3698 SubclassOptionalData = IBI.SubclassOptionalData;
3701 /// addDestination - Add a destination.
3703 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3704 unsigned OpNo = getNumOperands();
3705 if (OpNo+1 > ReservedSpace)
3706 growOperands(); // Get more space!
3707 // Initialize some new operands.
3708 assert(OpNo < ReservedSpace && "Growing didn't work!");
3709 setNumHungOffUseOperands(OpNo+1);
3710 getOperandList()[OpNo] = DestBB;
3713 /// removeDestination - This method removes the specified successor from the
3714 /// indirectbr instruction.
3715 void IndirectBrInst::removeDestination(unsigned idx) {
3716 assert(idx < getNumOperands()-1 && "Successor index out of range!");
3718 unsigned NumOps = getNumOperands();
3719 Use *OL = getOperandList();
3721 // Replace this value with the last one.
3722 OL[idx+1] = OL[NumOps-1];
3724 // Nuke the last value.
3725 OL[NumOps-1].set(nullptr);
3726 setNumHungOffUseOperands(NumOps-1);
3729 //===----------------------------------------------------------------------===//
3730 // cloneImpl() implementations
3731 //===----------------------------------------------------------------------===//
3733 // Define these methods here so vtables don't get emitted into every translation
3734 // unit that uses these classes.
3736 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
3737 return new (getNumOperands()) GetElementPtrInst(*this);
3740 BinaryOperator *BinaryOperator::cloneImpl() const {
3741 return Create(getOpcode(), Op<0>(), Op<1>());
3744 FCmpInst *FCmpInst::cloneImpl() const {
3745 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3748 ICmpInst *ICmpInst::cloneImpl() const {
3749 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3752 ExtractValueInst *ExtractValueInst::cloneImpl() const {
3753 return new ExtractValueInst(*this);
3756 InsertValueInst *InsertValueInst::cloneImpl() const {
3757 return new InsertValueInst(*this);
3760 AllocaInst *AllocaInst::cloneImpl() const {
3761 AllocaInst *Result = new AllocaInst(getAllocatedType(),
3762 getType()->getAddressSpace(),
3763 (Value *)getOperand(0), getAlignment());
3764 Result->setUsedWithInAlloca(isUsedWithInAlloca());
3765 Result->setSwiftError(isSwiftError());
3766 return Result;
3769 LoadInst *LoadInst::cloneImpl() const {
3770 return new LoadInst(getOperand(0), Twine(), isVolatile(),
3771 getAlignment(), getOrdering(), getSyncScopeID());
3774 StoreInst *StoreInst::cloneImpl() const {
3775 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3776 getAlignment(), getOrdering(), getSyncScopeID());
3780 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
3781 AtomicCmpXchgInst *Result =
3782 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3783 getSuccessOrdering(), getFailureOrdering(),
3784 getSyncScopeID());
3785 Result->setVolatile(isVolatile());
3786 Result->setWeak(isWeak());
3787 return Result;
3790 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
3791 AtomicRMWInst *Result =
3792 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
3793 getOrdering(), getSyncScopeID());
3794 Result->setVolatile(isVolatile());
3795 return Result;
3798 FenceInst *FenceInst::cloneImpl() const {
3799 return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
3802 TruncInst *TruncInst::cloneImpl() const {
3803 return new TruncInst(getOperand(0), getType());
3806 ZExtInst *ZExtInst::cloneImpl() const {
3807 return new ZExtInst(getOperand(0), getType());
3810 SExtInst *SExtInst::cloneImpl() const {
3811 return new SExtInst(getOperand(0), getType());
3814 FPTruncInst *FPTruncInst::cloneImpl() const {
3815 return new FPTruncInst(getOperand(0), getType());
3818 FPExtInst *FPExtInst::cloneImpl() const {
3819 return new FPExtInst(getOperand(0), getType());
3822 UIToFPInst *UIToFPInst::cloneImpl() const {
3823 return new UIToFPInst(getOperand(0), getType());
3826 SIToFPInst *SIToFPInst::cloneImpl() const {
3827 return new SIToFPInst(getOperand(0), getType());
3830 FPToUIInst *FPToUIInst::cloneImpl() const {
3831 return new FPToUIInst(getOperand(0), getType());
3834 FPToSIInst *FPToSIInst::cloneImpl() const {
3835 return new FPToSIInst(getOperand(0), getType());
3838 PtrToIntInst *PtrToIntInst::cloneImpl() const {
3839 return new PtrToIntInst(getOperand(0), getType());
3842 IntToPtrInst *IntToPtrInst::cloneImpl() const {
3843 return new IntToPtrInst(getOperand(0), getType());
3846 BitCastInst *BitCastInst::cloneImpl() const {
3847 return new BitCastInst(getOperand(0), getType());
3850 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
3851 return new AddrSpaceCastInst(getOperand(0), getType());
3854 CallInst *CallInst::cloneImpl() const {
3855 if (hasOperandBundles()) {
3856 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
3857 return new(getNumOperands(), DescriptorBytes) CallInst(*this);
3859 return new(getNumOperands()) CallInst(*this);
3862 SelectInst *SelectInst::cloneImpl() const {
3863 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3866 VAArgInst *VAArgInst::cloneImpl() const {
3867 return new VAArgInst(getOperand(0), getType());
3870 ExtractElementInst *ExtractElementInst::cloneImpl() const {
3871 return ExtractElementInst::Create(getOperand(0), getOperand(1));
3874 InsertElementInst *InsertElementInst::cloneImpl() const {
3875 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3878 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
3879 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3882 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
3884 LandingPadInst *LandingPadInst::cloneImpl() const {
3885 return new LandingPadInst(*this);
3888 ReturnInst *ReturnInst::cloneImpl() const {
3889 return new(getNumOperands()) ReturnInst(*this);
3892 BranchInst *BranchInst::cloneImpl() const {
3893 return new(getNumOperands()) BranchInst(*this);
3896 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
3898 IndirectBrInst *IndirectBrInst::cloneImpl() const {
3899 return new IndirectBrInst(*this);
3902 InvokeInst *InvokeInst::cloneImpl() const {
3903 if (hasOperandBundles()) {
3904 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
3905 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
3907 return new(getNumOperands()) InvokeInst(*this);
3910 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
3912 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
3913 return new (getNumOperands()) CleanupReturnInst(*this);
3916 CatchReturnInst *CatchReturnInst::cloneImpl() const {
3917 return new (getNumOperands()) CatchReturnInst(*this);
3920 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
3921 return new CatchSwitchInst(*this);
3924 FuncletPadInst *FuncletPadInst::cloneImpl() const {
3925 return new (getNumOperands()) FuncletPadInst(*this);
3928 UnreachableInst *UnreachableInst::cloneImpl() const {
3929 LLVMContext &Context = getContext();
3930 return new UnreachableInst(Context);