1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements all of the non-inline methods for the LLVM instruction
13 //===----------------------------------------------------------------------===//
15 #include "llvm/IR/Instructions.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/IR/Attributes.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
47 //===----------------------------------------------------------------------===//
49 //===----------------------------------------------------------------------===//
52 AllocaInst::getAllocationSizeInBits(const DataLayout
&DL
) const {
53 uint64_t Size
= DL
.getTypeAllocSizeInBits(getAllocatedType());
54 if (isArrayAllocation()) {
55 auto C
= dyn_cast
<ConstantInt
>(getArraySize());
58 Size
*= C
->getZExtValue();
63 //===----------------------------------------------------------------------===//
65 //===----------------------------------------------------------------------===//
67 User::op_iterator
CallSite::getCallee() const {
68 Instruction
*II(getInstruction());
70 ? cast
<CallInst
>(II
)->op_end() - 1 // Skip Callee
71 : cast
<InvokeInst
>(II
)->op_end() - 3; // Skip BB, BB, Callee
74 //===----------------------------------------------------------------------===//
76 //===----------------------------------------------------------------------===//
78 /// areInvalidOperands - Return a string if the specified operands are invalid
79 /// for a select operation, otherwise return null.
80 const char *SelectInst::areInvalidOperands(Value
*Op0
, Value
*Op1
, Value
*Op2
) {
81 if (Op1
->getType() != Op2
->getType())
82 return "both values to select must have same type";
84 if (Op1
->getType()->isTokenTy())
85 return "select values cannot have token type";
87 if (VectorType
*VT
= dyn_cast
<VectorType
>(Op0
->getType())) {
89 if (VT
->getElementType() != Type::getInt1Ty(Op0
->getContext()))
90 return "vector select condition element type must be i1";
91 VectorType
*ET
= dyn_cast
<VectorType
>(Op1
->getType());
93 return "selected values for vector select must be vectors";
94 if (ET
->getNumElements() != VT
->getNumElements())
95 return "vector select requires selected vectors to have "
96 "the same vector length as select condition";
97 } else if (Op0
->getType() != Type::getInt1Ty(Op0
->getContext())) {
98 return "select condition must be i1 or <n x i1>";
103 //===----------------------------------------------------------------------===//
105 //===----------------------------------------------------------------------===//
107 PHINode::PHINode(const PHINode
&PN
)
108 : Instruction(PN
.getType(), Instruction::PHI
, nullptr, PN
.getNumOperands()),
109 ReservedSpace(PN
.getNumOperands()) {
110 allocHungoffUses(PN
.getNumOperands());
111 std::copy(PN
.op_begin(), PN
.op_end(), op_begin());
112 std::copy(PN
.block_begin(), PN
.block_end(), block_begin());
113 SubclassOptionalData
= PN
.SubclassOptionalData
;
116 // removeIncomingValue - Remove an incoming value. This is useful if a
117 // predecessor basic block is deleted.
118 Value
*PHINode::removeIncomingValue(unsigned Idx
, bool DeletePHIIfEmpty
) {
119 Value
*Removed
= getIncomingValue(Idx
);
121 // Move everything after this operand down.
123 // FIXME: we could just swap with the end of the list, then erase. However,
124 // clients might not expect this to happen. The code as it is thrashes the
125 // use/def lists, which is kinda lame.
126 std::copy(op_begin() + Idx
+ 1, op_end(), op_begin() + Idx
);
127 std::copy(block_begin() + Idx
+ 1, block_end(), block_begin() + Idx
);
129 // Nuke the last value.
130 Op
<-1>().set(nullptr);
131 setNumHungOffUseOperands(getNumOperands() - 1);
133 // If the PHI node is dead, because it has zero entries, nuke it now.
134 if (getNumOperands() == 0 && DeletePHIIfEmpty
) {
135 // If anyone is using this PHI, make them use a dummy value instead...
136 replaceAllUsesWith(UndefValue::get(getType()));
142 /// growOperands - grow operands - This grows the operand list in response
143 /// to a push_back style of operation. This grows the number of ops by 1.5
146 void PHINode::growOperands() {
147 unsigned e
= getNumOperands();
148 unsigned NumOps
= e
+ e
/ 2;
149 if (NumOps
< 2) NumOps
= 2; // 2 op PHI nodes are VERY common.
151 ReservedSpace
= NumOps
;
152 growHungoffUses(ReservedSpace
, /* IsPhi */ true);
155 /// hasConstantValue - If the specified PHI node always merges together the same
156 /// value, return the value, otherwise return null.
157 Value
*PHINode::hasConstantValue() const {
158 // Exploit the fact that phi nodes always have at least one entry.
159 Value
*ConstantValue
= getIncomingValue(0);
160 for (unsigned i
= 1, e
= getNumIncomingValues(); i
!= e
; ++i
)
161 if (getIncomingValue(i
) != ConstantValue
&& getIncomingValue(i
) != this) {
162 if (ConstantValue
!= this)
163 return nullptr; // Incoming values not all the same.
164 // The case where the first value is this PHI.
165 ConstantValue
= getIncomingValue(i
);
167 if (ConstantValue
== this)
168 return UndefValue::get(getType());
169 return ConstantValue
;
172 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
173 /// together the same value, assuming that undefs result in the same value as
175 /// Unlike \ref hasConstantValue, this does not return a value because the
176 /// unique non-undef incoming value need not dominate the PHI node.
177 bool PHINode::hasConstantOrUndefValue() const {
178 Value
*ConstantValue
= nullptr;
179 for (unsigned i
= 0, e
= getNumIncomingValues(); i
!= e
; ++i
) {
180 Value
*Incoming
= getIncomingValue(i
);
181 if (Incoming
!= this && !isa
<UndefValue
>(Incoming
)) {
182 if (ConstantValue
&& ConstantValue
!= Incoming
)
184 ConstantValue
= Incoming
;
190 //===----------------------------------------------------------------------===//
191 // LandingPadInst Implementation
192 //===----------------------------------------------------------------------===//
194 LandingPadInst::LandingPadInst(Type
*RetTy
, unsigned NumReservedValues
,
195 const Twine
&NameStr
, Instruction
*InsertBefore
)
196 : Instruction(RetTy
, Instruction::LandingPad
, nullptr, 0, InsertBefore
) {
197 init(NumReservedValues
, NameStr
);
200 LandingPadInst::LandingPadInst(Type
*RetTy
, unsigned NumReservedValues
,
201 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
202 : Instruction(RetTy
, Instruction::LandingPad
, nullptr, 0, InsertAtEnd
) {
203 init(NumReservedValues
, NameStr
);
206 LandingPadInst::LandingPadInst(const LandingPadInst
&LP
)
207 : Instruction(LP
.getType(), Instruction::LandingPad
, nullptr,
208 LP
.getNumOperands()),
209 ReservedSpace(LP
.getNumOperands()) {
210 allocHungoffUses(LP
.getNumOperands());
211 Use
*OL
= getOperandList();
212 const Use
*InOL
= LP
.getOperandList();
213 for (unsigned I
= 0, E
= ReservedSpace
; I
!= E
; ++I
)
216 setCleanup(LP
.isCleanup());
219 LandingPadInst
*LandingPadInst::Create(Type
*RetTy
, unsigned NumReservedClauses
,
220 const Twine
&NameStr
,
221 Instruction
*InsertBefore
) {
222 return new LandingPadInst(RetTy
, NumReservedClauses
, NameStr
, InsertBefore
);
225 LandingPadInst
*LandingPadInst::Create(Type
*RetTy
, unsigned NumReservedClauses
,
226 const Twine
&NameStr
,
227 BasicBlock
*InsertAtEnd
) {
228 return new LandingPadInst(RetTy
, NumReservedClauses
, NameStr
, InsertAtEnd
);
231 void LandingPadInst::init(unsigned NumReservedValues
, const Twine
&NameStr
) {
232 ReservedSpace
= NumReservedValues
;
233 setNumHungOffUseOperands(0);
234 allocHungoffUses(ReservedSpace
);
239 /// growOperands - grow operands - This grows the operand list in response to a
240 /// push_back style of operation. This grows the number of ops by 2 times.
241 void LandingPadInst::growOperands(unsigned Size
) {
242 unsigned e
= getNumOperands();
243 if (ReservedSpace
>= e
+ Size
) return;
244 ReservedSpace
= (std::max(e
, 1U) + Size
/ 2) * 2;
245 growHungoffUses(ReservedSpace
);
248 void LandingPadInst::addClause(Constant
*Val
) {
249 unsigned OpNo
= getNumOperands();
251 assert(OpNo
< ReservedSpace
&& "Growing didn't work!");
252 setNumHungOffUseOperands(getNumOperands() + 1);
253 getOperandList()[OpNo
] = Val
;
256 //===----------------------------------------------------------------------===//
257 // CallInst Implementation
258 //===----------------------------------------------------------------------===//
260 void CallInst::init(FunctionType
*FTy
, Value
*Func
, ArrayRef
<Value
*> Args
,
261 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
) {
263 assert(getNumOperands() == Args
.size() + CountBundleInputs(Bundles
) + 1 &&
264 "NumOperands not set up?");
268 assert((Args
.size() == FTy
->getNumParams() ||
269 (FTy
->isVarArg() && Args
.size() > FTy
->getNumParams())) &&
270 "Calling a function with bad signature!");
272 for (unsigned i
= 0; i
!= Args
.size(); ++i
)
273 assert((i
>= FTy
->getNumParams() ||
274 FTy
->getParamType(i
) == Args
[i
]->getType()) &&
275 "Calling a function with a bad signature!");
278 std::copy(Args
.begin(), Args
.end(), op_begin());
280 auto It
= populateBundleOperandInfos(Bundles
, Args
.size());
282 assert(It
+ 1 == op_end() && "Should add up!");
287 void CallInst::init(Value
*Func
, const Twine
&NameStr
) {
289 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
290 assert(getNumOperands() == 1 && "NumOperands not set up?");
293 assert(FTy
->getNumParams() == 0 && "Calling a function with bad signature");
298 CallInst::CallInst(Value
*Func
, const Twine
&Name
, Instruction
*InsertBefore
)
299 : CallBase
<CallInst
>(
301 cast
<PointerType
>(Func
->getType())->getElementType())
304 OperandTraits
<CallBase
<CallInst
>>::op_end(this) - 1, 1,
309 CallInst::CallInst(Value
*Func
, const Twine
&Name
, BasicBlock
*InsertAtEnd
)
310 : CallBase
<CallInst
>(
312 cast
<PointerType
>(Func
->getType())->getElementType())
315 OperandTraits
<CallBase
<CallInst
>>::op_end(this) - 1, 1, InsertAtEnd
) {
319 CallInst::CallInst(const CallInst
&CI
)
320 : CallBase
<CallInst
>(CI
.Attrs
, CI
.FTy
, CI
.getType(), Instruction::Call
,
321 OperandTraits
<CallBase
<CallInst
>>::op_end(this) -
323 CI
.getNumOperands()) {
324 setTailCallKind(CI
.getTailCallKind());
325 setCallingConv(CI
.getCallingConv());
327 std::copy(CI
.op_begin(), CI
.op_end(), op_begin());
328 std::copy(CI
.bundle_op_info_begin(), CI
.bundle_op_info_end(),
329 bundle_op_info_begin());
330 SubclassOptionalData
= CI
.SubclassOptionalData
;
333 CallInst
*CallInst::Create(CallInst
*CI
, ArrayRef
<OperandBundleDef
> OpB
,
334 Instruction
*InsertPt
) {
335 std::vector
<Value
*> Args(CI
->arg_begin(), CI
->arg_end());
337 auto *NewCI
= CallInst::Create(CI
->getCalledValue(), Args
, OpB
, CI
->getName(),
339 NewCI
->setTailCallKind(CI
->getTailCallKind());
340 NewCI
->setCallingConv(CI
->getCallingConv());
341 NewCI
->SubclassOptionalData
= CI
->SubclassOptionalData
;
342 NewCI
->setAttributes(CI
->getAttributes());
343 NewCI
->setDebugLoc(CI
->getDebugLoc());
356 /// IsConstantOne - Return true only if val is constant int 1
357 static bool IsConstantOne(Value
*val
) {
358 assert(val
&& "IsConstantOne does not work with nullptr val");
359 const ConstantInt
*CVal
= dyn_cast
<ConstantInt
>(val
);
360 return CVal
&& CVal
->isOne();
363 static Instruction
*createMalloc(Instruction
*InsertBefore
,
364 BasicBlock
*InsertAtEnd
, Type
*IntPtrTy
,
365 Type
*AllocTy
, Value
*AllocSize
,
367 ArrayRef
<OperandBundleDef
> OpB
,
368 Function
*MallocF
, const Twine
&Name
) {
369 assert(((!InsertBefore
&& InsertAtEnd
) || (InsertBefore
&& !InsertAtEnd
)) &&
370 "createMalloc needs either InsertBefore or InsertAtEnd");
372 // malloc(type) becomes:
373 // bitcast (i8* malloc(typeSize)) to type*
374 // malloc(type, arraySize) becomes:
375 // bitcast (i8* malloc(typeSize*arraySize)) to type*
377 ArraySize
= ConstantInt::get(IntPtrTy
, 1);
378 else if (ArraySize
->getType() != IntPtrTy
) {
380 ArraySize
= CastInst::CreateIntegerCast(ArraySize
, IntPtrTy
, false,
383 ArraySize
= CastInst::CreateIntegerCast(ArraySize
, IntPtrTy
, false,
387 if (!IsConstantOne(ArraySize
)) {
388 if (IsConstantOne(AllocSize
)) {
389 AllocSize
= ArraySize
; // Operand * 1 = Operand
390 } else if (Constant
*CO
= dyn_cast
<Constant
>(ArraySize
)) {
391 Constant
*Scale
= ConstantExpr::getIntegerCast(CO
, IntPtrTy
,
393 // Malloc arg is constant product of type size and array size
394 AllocSize
= ConstantExpr::getMul(Scale
, cast
<Constant
>(AllocSize
));
396 // Multiply type size by the array size...
398 AllocSize
= BinaryOperator::CreateMul(ArraySize
, AllocSize
,
399 "mallocsize", InsertBefore
);
401 AllocSize
= BinaryOperator::CreateMul(ArraySize
, AllocSize
,
402 "mallocsize", InsertAtEnd
);
406 assert(AllocSize
->getType() == IntPtrTy
&& "malloc arg is wrong size");
407 // Create the call to Malloc.
408 BasicBlock
*BB
= InsertBefore
? InsertBefore
->getParent() : InsertAtEnd
;
409 Module
*M
= BB
->getParent()->getParent();
410 Type
*BPTy
= Type::getInt8PtrTy(BB
->getContext());
411 Value
*MallocFunc
= MallocF
;
413 // prototype malloc as "void *malloc(size_t)"
414 MallocFunc
= M
->getOrInsertFunction("malloc", BPTy
, IntPtrTy
);
415 PointerType
*AllocPtrType
= PointerType::getUnqual(AllocTy
);
416 CallInst
*MCall
= nullptr;
417 Instruction
*Result
= nullptr;
419 MCall
= CallInst::Create(MallocFunc
, AllocSize
, OpB
, "malloccall",
422 if (Result
->getType() != AllocPtrType
)
423 // Create a cast instruction to convert to the right type...
424 Result
= new BitCastInst(MCall
, AllocPtrType
, Name
, InsertBefore
);
426 MCall
= CallInst::Create(MallocFunc
, AllocSize
, OpB
, "malloccall");
428 if (Result
->getType() != AllocPtrType
) {
429 InsertAtEnd
->getInstList().push_back(MCall
);
430 // Create a cast instruction to convert to the right type...
431 Result
= new BitCastInst(MCall
, AllocPtrType
, Name
);
434 MCall
->setTailCall();
435 if (Function
*F
= dyn_cast
<Function
>(MallocFunc
)) {
436 MCall
->setCallingConv(F
->getCallingConv());
437 if (!F
->returnDoesNotAlias())
438 F
->setReturnDoesNotAlias();
440 assert(!MCall
->getType()->isVoidTy() && "Malloc has void return type");
445 /// CreateMalloc - Generate the IR for a call to malloc:
446 /// 1. Compute the malloc call's argument as the specified type's size,
447 /// possibly multiplied by the array size if the array size is not
449 /// 2. Call malloc with that argument.
450 /// 3. Bitcast the result of the malloc call to the specified type.
451 Instruction
*CallInst::CreateMalloc(Instruction
*InsertBefore
,
452 Type
*IntPtrTy
, Type
*AllocTy
,
453 Value
*AllocSize
, Value
*ArraySize
,
456 return createMalloc(InsertBefore
, nullptr, IntPtrTy
, AllocTy
, AllocSize
,
457 ArraySize
, None
, MallocF
, Name
);
459 Instruction
*CallInst::CreateMalloc(Instruction
*InsertBefore
,
460 Type
*IntPtrTy
, Type
*AllocTy
,
461 Value
*AllocSize
, Value
*ArraySize
,
462 ArrayRef
<OperandBundleDef
> OpB
,
465 return createMalloc(InsertBefore
, nullptr, IntPtrTy
, AllocTy
, AllocSize
,
466 ArraySize
, OpB
, MallocF
, Name
);
469 /// CreateMalloc - Generate the IR for a call to malloc:
470 /// 1. Compute the malloc call's argument as the specified type's size,
471 /// possibly multiplied by the array size if the array size is not
473 /// 2. Call malloc with that argument.
474 /// 3. Bitcast the result of the malloc call to the specified type.
475 /// Note: This function does not add the bitcast to the basic block, that is the
476 /// responsibility of the caller.
477 Instruction
*CallInst::CreateMalloc(BasicBlock
*InsertAtEnd
,
478 Type
*IntPtrTy
, Type
*AllocTy
,
479 Value
*AllocSize
, Value
*ArraySize
,
480 Function
*MallocF
, const Twine
&Name
) {
481 return createMalloc(nullptr, InsertAtEnd
, IntPtrTy
, AllocTy
, AllocSize
,
482 ArraySize
, None
, MallocF
, Name
);
484 Instruction
*CallInst::CreateMalloc(BasicBlock
*InsertAtEnd
,
485 Type
*IntPtrTy
, Type
*AllocTy
,
486 Value
*AllocSize
, Value
*ArraySize
,
487 ArrayRef
<OperandBundleDef
> OpB
,
488 Function
*MallocF
, const Twine
&Name
) {
489 return createMalloc(nullptr, InsertAtEnd
, IntPtrTy
, AllocTy
, AllocSize
,
490 ArraySize
, OpB
, MallocF
, Name
);
493 static Instruction
*createFree(Value
*Source
,
494 ArrayRef
<OperandBundleDef
> Bundles
,
495 Instruction
*InsertBefore
,
496 BasicBlock
*InsertAtEnd
) {
497 assert(((!InsertBefore
&& InsertAtEnd
) || (InsertBefore
&& !InsertAtEnd
)) &&
498 "createFree needs either InsertBefore or InsertAtEnd");
499 assert(Source
->getType()->isPointerTy() &&
500 "Can not free something of nonpointer type!");
502 BasicBlock
*BB
= InsertBefore
? InsertBefore
->getParent() : InsertAtEnd
;
503 Module
*M
= BB
->getParent()->getParent();
505 Type
*VoidTy
= Type::getVoidTy(M
->getContext());
506 Type
*IntPtrTy
= Type::getInt8PtrTy(M
->getContext());
507 // prototype free as "void free(void*)"
508 Value
*FreeFunc
= M
->getOrInsertFunction("free", VoidTy
, IntPtrTy
);
509 CallInst
*Result
= nullptr;
510 Value
*PtrCast
= Source
;
512 if (Source
->getType() != IntPtrTy
)
513 PtrCast
= new BitCastInst(Source
, IntPtrTy
, "", InsertBefore
);
514 Result
= CallInst::Create(FreeFunc
, PtrCast
, Bundles
, "", InsertBefore
);
516 if (Source
->getType() != IntPtrTy
)
517 PtrCast
= new BitCastInst(Source
, IntPtrTy
, "", InsertAtEnd
);
518 Result
= CallInst::Create(FreeFunc
, PtrCast
, Bundles
, "");
520 Result
->setTailCall();
521 if (Function
*F
= dyn_cast
<Function
>(FreeFunc
))
522 Result
->setCallingConv(F
->getCallingConv());
527 /// CreateFree - Generate the IR for a call to the builtin free function.
528 Instruction
*CallInst::CreateFree(Value
*Source
, Instruction
*InsertBefore
) {
529 return createFree(Source
, None
, InsertBefore
, nullptr);
531 Instruction
*CallInst::CreateFree(Value
*Source
,
532 ArrayRef
<OperandBundleDef
> Bundles
,
533 Instruction
*InsertBefore
) {
534 return createFree(Source
, Bundles
, InsertBefore
, nullptr);
537 /// CreateFree - Generate the IR for a call to the builtin free function.
538 /// Note: This function does not add the call to the basic block, that is the
539 /// responsibility of the caller.
540 Instruction
*CallInst::CreateFree(Value
*Source
, BasicBlock
*InsertAtEnd
) {
541 Instruction
*FreeCall
= createFree(Source
, None
, nullptr, InsertAtEnd
);
542 assert(FreeCall
&& "CreateFree did not create a CallInst");
545 Instruction
*CallInst::CreateFree(Value
*Source
,
546 ArrayRef
<OperandBundleDef
> Bundles
,
547 BasicBlock
*InsertAtEnd
) {
548 Instruction
*FreeCall
= createFree(Source
, Bundles
, nullptr, InsertAtEnd
);
549 assert(FreeCall
&& "CreateFree did not create a CallInst");
553 //===----------------------------------------------------------------------===//
554 // InvokeInst Implementation
555 //===----------------------------------------------------------------------===//
557 void InvokeInst::init(FunctionType
*FTy
, Value
*Fn
, BasicBlock
*IfNormal
,
558 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
559 ArrayRef
<OperandBundleDef
> Bundles
,
560 const Twine
&NameStr
) {
563 assert(getNumOperands() == 3 + Args
.size() + CountBundleInputs(Bundles
) &&
564 "NumOperands not set up?");
567 Op
<-1>() = IfException
;
570 assert(((Args
.size() == FTy
->getNumParams()) ||
571 (FTy
->isVarArg() && Args
.size() > FTy
->getNumParams())) &&
572 "Invoking a function with bad signature");
574 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; i
++)
575 assert((i
>= FTy
->getNumParams() ||
576 FTy
->getParamType(i
) == Args
[i
]->getType()) &&
577 "Invoking a function with a bad signature!");
580 std::copy(Args
.begin(), Args
.end(), op_begin());
582 auto It
= populateBundleOperandInfos(Bundles
, Args
.size());
584 assert(It
+ 3 == op_end() && "Should add up!");
589 InvokeInst::InvokeInst(const InvokeInst
&II
)
590 : CallBase
<InvokeInst
>(II
.Attrs
, II
.FTy
, II
.getType(), Instruction::Invoke
,
591 OperandTraits
<CallBase
<InvokeInst
>>::op_end(this) -
593 II
.getNumOperands()) {
594 setCallingConv(II
.getCallingConv());
595 std::copy(II
.op_begin(), II
.op_end(), op_begin());
596 std::copy(II
.bundle_op_info_begin(), II
.bundle_op_info_end(),
597 bundle_op_info_begin());
598 SubclassOptionalData
= II
.SubclassOptionalData
;
601 InvokeInst
*InvokeInst::Create(InvokeInst
*II
, ArrayRef
<OperandBundleDef
> OpB
,
602 Instruction
*InsertPt
) {
603 std::vector
<Value
*> Args(II
->arg_begin(), II
->arg_end());
605 auto *NewII
= InvokeInst::Create(II
->getCalledValue(), II
->getNormalDest(),
606 II
->getUnwindDest(), Args
, OpB
,
607 II
->getName(), InsertPt
);
608 NewII
->setCallingConv(II
->getCallingConv());
609 NewII
->SubclassOptionalData
= II
->SubclassOptionalData
;
610 NewII
->setAttributes(II
->getAttributes());
611 NewII
->setDebugLoc(II
->getDebugLoc());
616 LandingPadInst
*InvokeInst::getLandingPadInst() const {
617 return cast
<LandingPadInst
>(getUnwindDest()->getFirstNonPHI());
620 //===----------------------------------------------------------------------===//
621 // ReturnInst Implementation
622 //===----------------------------------------------------------------------===//
624 ReturnInst::ReturnInst(const ReturnInst
&RI
)
625 : TerminatorInst(Type::getVoidTy(RI
.getContext()), Instruction::Ret
,
626 OperandTraits
<ReturnInst
>::op_end(this) -
628 RI
.getNumOperands()) {
629 if (RI
.getNumOperands())
630 Op
<0>() = RI
.Op
<0>();
631 SubclassOptionalData
= RI
.SubclassOptionalData
;
634 ReturnInst::ReturnInst(LLVMContext
&C
, Value
*retVal
, Instruction
*InsertBefore
)
635 : TerminatorInst(Type::getVoidTy(C
), Instruction::Ret
,
636 OperandTraits
<ReturnInst
>::op_end(this) - !!retVal
, !!retVal
,
642 ReturnInst::ReturnInst(LLVMContext
&C
, Value
*retVal
, BasicBlock
*InsertAtEnd
)
643 : TerminatorInst(Type::getVoidTy(C
), Instruction::Ret
,
644 OperandTraits
<ReturnInst
>::op_end(this) - !!retVal
, !!retVal
,
650 ReturnInst::ReturnInst(LLVMContext
&Context
, BasicBlock
*InsertAtEnd
)
651 : TerminatorInst(Type::getVoidTy(Context
), Instruction::Ret
,
652 OperandTraits
<ReturnInst
>::op_end(this), 0, InsertAtEnd
) {
655 //===----------------------------------------------------------------------===//
656 // ResumeInst Implementation
657 //===----------------------------------------------------------------------===//
659 ResumeInst::ResumeInst(const ResumeInst
&RI
)
660 : TerminatorInst(Type::getVoidTy(RI
.getContext()), Instruction::Resume
,
661 OperandTraits
<ResumeInst
>::op_begin(this), 1) {
662 Op
<0>() = RI
.Op
<0>();
665 ResumeInst::ResumeInst(Value
*Exn
, Instruction
*InsertBefore
)
666 : TerminatorInst(Type::getVoidTy(Exn
->getContext()), Instruction::Resume
,
667 OperandTraits
<ResumeInst
>::op_begin(this), 1, InsertBefore
) {
671 ResumeInst::ResumeInst(Value
*Exn
, BasicBlock
*InsertAtEnd
)
672 : TerminatorInst(Type::getVoidTy(Exn
->getContext()), Instruction::Resume
,
673 OperandTraits
<ResumeInst
>::op_begin(this), 1, InsertAtEnd
) {
677 //===----------------------------------------------------------------------===//
678 // CleanupReturnInst Implementation
679 //===----------------------------------------------------------------------===//
681 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst
&CRI
)
682 : TerminatorInst(CRI
.getType(), Instruction::CleanupRet
,
683 OperandTraits
<CleanupReturnInst
>::op_end(this) -
684 CRI
.getNumOperands(),
685 CRI
.getNumOperands()) {
686 setInstructionSubclassData(CRI
.getSubclassDataFromInstruction());
687 Op
<0>() = CRI
.Op
<0>();
688 if (CRI
.hasUnwindDest())
689 Op
<1>() = CRI
.Op
<1>();
692 void CleanupReturnInst::init(Value
*CleanupPad
, BasicBlock
*UnwindBB
) {
694 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
696 Op
<0>() = CleanupPad
;
701 CleanupReturnInst::CleanupReturnInst(Value
*CleanupPad
, BasicBlock
*UnwindBB
,
702 unsigned Values
, Instruction
*InsertBefore
)
703 : TerminatorInst(Type::getVoidTy(CleanupPad
->getContext()),
704 Instruction::CleanupRet
,
705 OperandTraits
<CleanupReturnInst
>::op_end(this) - Values
,
706 Values
, InsertBefore
) {
707 init(CleanupPad
, UnwindBB
);
710 CleanupReturnInst::CleanupReturnInst(Value
*CleanupPad
, BasicBlock
*UnwindBB
,
711 unsigned Values
, BasicBlock
*InsertAtEnd
)
712 : TerminatorInst(Type::getVoidTy(CleanupPad
->getContext()),
713 Instruction::CleanupRet
,
714 OperandTraits
<CleanupReturnInst
>::op_end(this) - Values
,
715 Values
, InsertAtEnd
) {
716 init(CleanupPad
, UnwindBB
);
719 //===----------------------------------------------------------------------===//
720 // CatchReturnInst Implementation
721 //===----------------------------------------------------------------------===//
722 void CatchReturnInst::init(Value
*CatchPad
, BasicBlock
*BB
) {
727 CatchReturnInst::CatchReturnInst(const CatchReturnInst
&CRI
)
728 : TerminatorInst(Type::getVoidTy(CRI
.getContext()), Instruction::CatchRet
,
729 OperandTraits
<CatchReturnInst
>::op_begin(this), 2) {
730 Op
<0>() = CRI
.Op
<0>();
731 Op
<1>() = CRI
.Op
<1>();
734 CatchReturnInst::CatchReturnInst(Value
*CatchPad
, BasicBlock
*BB
,
735 Instruction
*InsertBefore
)
736 : TerminatorInst(Type::getVoidTy(BB
->getContext()), Instruction::CatchRet
,
737 OperandTraits
<CatchReturnInst
>::op_begin(this), 2,
742 CatchReturnInst::CatchReturnInst(Value
*CatchPad
, BasicBlock
*BB
,
743 BasicBlock
*InsertAtEnd
)
744 : TerminatorInst(Type::getVoidTy(BB
->getContext()), Instruction::CatchRet
,
745 OperandTraits
<CatchReturnInst
>::op_begin(this), 2,
750 //===----------------------------------------------------------------------===//
751 // CatchSwitchInst Implementation
752 //===----------------------------------------------------------------------===//
754 CatchSwitchInst::CatchSwitchInst(Value
*ParentPad
, BasicBlock
*UnwindDest
,
755 unsigned NumReservedValues
,
756 const Twine
&NameStr
,
757 Instruction
*InsertBefore
)
758 : TerminatorInst(ParentPad
->getType(), Instruction::CatchSwitch
, nullptr, 0,
762 init(ParentPad
, UnwindDest
, NumReservedValues
+ 1);
766 CatchSwitchInst::CatchSwitchInst(Value
*ParentPad
, BasicBlock
*UnwindDest
,
767 unsigned NumReservedValues
,
768 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
769 : TerminatorInst(ParentPad
->getType(), Instruction::CatchSwitch
, nullptr, 0,
773 init(ParentPad
, UnwindDest
, NumReservedValues
+ 1);
777 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst
&CSI
)
778 : TerminatorInst(CSI
.getType(), Instruction::CatchSwitch
, nullptr,
779 CSI
.getNumOperands()) {
780 init(CSI
.getParentPad(), CSI
.getUnwindDest(), CSI
.getNumOperands());
781 setNumHungOffUseOperands(ReservedSpace
);
782 Use
*OL
= getOperandList();
783 const Use
*InOL
= CSI
.getOperandList();
784 for (unsigned I
= 1, E
= ReservedSpace
; I
!= E
; ++I
)
788 void CatchSwitchInst::init(Value
*ParentPad
, BasicBlock
*UnwindDest
,
789 unsigned NumReservedValues
) {
790 assert(ParentPad
&& NumReservedValues
);
792 ReservedSpace
= NumReservedValues
;
793 setNumHungOffUseOperands(UnwindDest
? 2 : 1);
794 allocHungoffUses(ReservedSpace
);
798 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
799 setUnwindDest(UnwindDest
);
803 /// growOperands - grow operands - This grows the operand list in response to a
804 /// push_back style of operation. This grows the number of ops by 2 times.
805 void CatchSwitchInst::growOperands(unsigned Size
) {
806 unsigned NumOperands
= getNumOperands();
807 assert(NumOperands
>= 1);
808 if (ReservedSpace
>= NumOperands
+ Size
)
810 ReservedSpace
= (NumOperands
+ Size
/ 2) * 2;
811 growHungoffUses(ReservedSpace
);
814 void CatchSwitchInst::addHandler(BasicBlock
*Handler
) {
815 unsigned OpNo
= getNumOperands();
817 assert(OpNo
< ReservedSpace
&& "Growing didn't work!");
818 setNumHungOffUseOperands(getNumOperands() + 1);
819 getOperandList()[OpNo
] = Handler
;
822 void CatchSwitchInst::removeHandler(handler_iterator HI
) {
823 // Move all subsequent handlers up one.
824 Use
*EndDst
= op_end() - 1;
825 for (Use
*CurDst
= HI
.getCurrent(); CurDst
!= EndDst
; ++CurDst
)
826 *CurDst
= *(CurDst
+ 1);
827 // Null out the last handler use.
830 setNumHungOffUseOperands(getNumOperands() - 1);
833 //===----------------------------------------------------------------------===//
834 // FuncletPadInst Implementation
835 //===----------------------------------------------------------------------===//
836 void FuncletPadInst::init(Value
*ParentPad
, ArrayRef
<Value
*> Args
,
837 const Twine
&NameStr
) {
838 assert(getNumOperands() == 1 + Args
.size() && "NumOperands not set up?");
839 std::copy(Args
.begin(), Args
.end(), op_begin());
840 setParentPad(ParentPad
);
844 FuncletPadInst::FuncletPadInst(const FuncletPadInst
&FPI
)
845 : Instruction(FPI
.getType(), FPI
.getOpcode(),
846 OperandTraits
<FuncletPadInst
>::op_end(this) -
847 FPI
.getNumOperands(),
848 FPI
.getNumOperands()) {
849 std::copy(FPI
.op_begin(), FPI
.op_end(), op_begin());
850 setParentPad(FPI
.getParentPad());
853 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op
, Value
*ParentPad
,
854 ArrayRef
<Value
*> Args
, unsigned Values
,
855 const Twine
&NameStr
, Instruction
*InsertBefore
)
856 : Instruction(ParentPad
->getType(), Op
,
857 OperandTraits
<FuncletPadInst
>::op_end(this) - Values
, Values
,
859 init(ParentPad
, Args
, NameStr
);
862 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op
, Value
*ParentPad
,
863 ArrayRef
<Value
*> Args
, unsigned Values
,
864 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
865 : Instruction(ParentPad
->getType(), Op
,
866 OperandTraits
<FuncletPadInst
>::op_end(this) - Values
, Values
,
868 init(ParentPad
, Args
, NameStr
);
871 //===----------------------------------------------------------------------===//
872 // UnreachableInst Implementation
873 //===----------------------------------------------------------------------===//
875 UnreachableInst::UnreachableInst(LLVMContext
&Context
,
876 Instruction
*InsertBefore
)
877 : TerminatorInst(Type::getVoidTy(Context
), Instruction::Unreachable
,
878 nullptr, 0, InsertBefore
) {
880 UnreachableInst::UnreachableInst(LLVMContext
&Context
, BasicBlock
*InsertAtEnd
)
881 : TerminatorInst(Type::getVoidTy(Context
), Instruction::Unreachable
,
882 nullptr, 0, InsertAtEnd
) {
885 //===----------------------------------------------------------------------===//
886 // BranchInst Implementation
887 //===----------------------------------------------------------------------===//
889 void BranchInst::AssertOK() {
891 assert(getCondition()->getType()->isIntegerTy(1) &&
892 "May only branch on boolean predicates!");
895 BranchInst::BranchInst(BasicBlock
*IfTrue
, Instruction
*InsertBefore
)
896 : TerminatorInst(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
897 OperandTraits
<BranchInst
>::op_end(this) - 1,
899 assert(IfTrue
&& "Branch destination may not be null!");
903 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
904 Instruction
*InsertBefore
)
905 : TerminatorInst(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
906 OperandTraits
<BranchInst
>::op_end(this) - 3,
916 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*InsertAtEnd
)
917 : TerminatorInst(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
918 OperandTraits
<BranchInst
>::op_end(this) - 1,
920 assert(IfTrue
&& "Branch destination may not be null!");
924 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
925 BasicBlock
*InsertAtEnd
)
926 : TerminatorInst(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
927 OperandTraits
<BranchInst
>::op_end(this) - 3,
937 BranchInst::BranchInst(const BranchInst
&BI
) :
938 TerminatorInst(Type::getVoidTy(BI
.getContext()), Instruction::Br
,
939 OperandTraits
<BranchInst
>::op_end(this) - BI
.getNumOperands(),
940 BI
.getNumOperands()) {
941 Op
<-1>() = BI
.Op
<-1>();
942 if (BI
.getNumOperands() != 1) {
943 assert(BI
.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
944 Op
<-3>() = BI
.Op
<-3>();
945 Op
<-2>() = BI
.Op
<-2>();
947 SubclassOptionalData
= BI
.SubclassOptionalData
;
950 void BranchInst::swapSuccessors() {
951 assert(isConditional() &&
952 "Cannot swap successors of an unconditional branch");
953 Op
<-1>().swap(Op
<-2>());
955 // Update profile metadata if present and it matches our structural
960 //===----------------------------------------------------------------------===//
961 // AllocaInst Implementation
962 //===----------------------------------------------------------------------===//
964 static Value
*getAISize(LLVMContext
&Context
, Value
*Amt
) {
966 Amt
= ConstantInt::get(Type::getInt32Ty(Context
), 1);
968 assert(!isa
<BasicBlock
>(Amt
) &&
969 "Passed basic block into allocation size parameter! Use other ctor");
970 assert(Amt
->getType()->isIntegerTy() &&
971 "Allocation array size is not an integer!");
976 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, const Twine
&Name
,
977 Instruction
*InsertBefore
)
978 : AllocaInst(Ty
, AddrSpace
, /*ArraySize=*/nullptr, Name
, InsertBefore
) {}
980 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, const Twine
&Name
,
981 BasicBlock
*InsertAtEnd
)
982 : AllocaInst(Ty
, AddrSpace
, /*ArraySize=*/nullptr, Name
, InsertAtEnd
) {}
984 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
985 const Twine
&Name
, Instruction
*InsertBefore
)
986 : AllocaInst(Ty
, AddrSpace
, ArraySize
, /*Align=*/0, Name
, InsertBefore
) {}
988 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
989 const Twine
&Name
, BasicBlock
*InsertAtEnd
)
990 : AllocaInst(Ty
, AddrSpace
, ArraySize
, /*Align=*/0, Name
, InsertAtEnd
) {}
992 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
993 unsigned Align
, const Twine
&Name
,
994 Instruction
*InsertBefore
)
995 : UnaryInstruction(PointerType::get(Ty
, AddrSpace
), Alloca
,
996 getAISize(Ty
->getContext(), ArraySize
), InsertBefore
),
999 assert(!Ty
->isVoidTy() && "Cannot allocate void!");
1003 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
1004 unsigned Align
, const Twine
&Name
,
1005 BasicBlock
*InsertAtEnd
)
1006 : UnaryInstruction(PointerType::get(Ty
, AddrSpace
), Alloca
,
1007 getAISize(Ty
->getContext(), ArraySize
), InsertAtEnd
),
1009 setAlignment(Align
);
1010 assert(!Ty
->isVoidTy() && "Cannot allocate void!");
1014 void AllocaInst::setAlignment(unsigned Align
) {
1015 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
1016 assert(Align
<= MaximumAlignment
&&
1017 "Alignment is greater than MaximumAlignment!");
1018 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1019 (Log2_32(Align
) + 1));
1020 assert(getAlignment() == Align
&& "Alignment representation error!");
1023 bool AllocaInst::isArrayAllocation() const {
1024 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(getOperand(0)))
1025 return !CI
->isOne();
1029 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1030 /// function and is a constant size. If so, the code generator will fold it
1031 /// into the prolog/epilog code, so it is basically free.
1032 bool AllocaInst::isStaticAlloca() const {
1033 // Must be constant size.
1034 if (!isa
<ConstantInt
>(getArraySize())) return false;
1036 // Must be in the entry block.
1037 const BasicBlock
*Parent
= getParent();
1038 return Parent
== &Parent
->getParent()->front() && !isUsedWithInAlloca();
1041 //===----------------------------------------------------------------------===//
1042 // LoadInst Implementation
1043 //===----------------------------------------------------------------------===//
1045 void LoadInst::AssertOK() {
1046 assert(getOperand(0)->getType()->isPointerTy() &&
1047 "Ptr must have pointer type.");
1048 assert(!(isAtomic() && getAlignment() == 0) &&
1049 "Alignment required for atomic load");
1052 LoadInst::LoadInst(Value
*Ptr
, const Twine
&Name
, Instruction
*InsertBef
)
1053 : LoadInst(Ptr
, Name
, /*isVolatile=*/false, InsertBef
) {}
1055 LoadInst::LoadInst(Value
*Ptr
, const Twine
&Name
, BasicBlock
*InsertAE
)
1056 : LoadInst(Ptr
, Name
, /*isVolatile=*/false, InsertAE
) {}
1058 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1059 Instruction
*InsertBef
)
1060 : LoadInst(Ty
, Ptr
, Name
, isVolatile
, /*Align=*/0, InsertBef
) {}
1062 LoadInst::LoadInst(Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1063 BasicBlock
*InsertAE
)
1064 : LoadInst(Ptr
, Name
, isVolatile
, /*Align=*/0, InsertAE
) {}
1066 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1067 unsigned Align
, Instruction
*InsertBef
)
1068 : LoadInst(Ty
, Ptr
, Name
, isVolatile
, Align
, AtomicOrdering::NotAtomic
,
1069 SyncScope::System
, InsertBef
) {}
1071 LoadInst::LoadInst(Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1072 unsigned Align
, BasicBlock
*InsertAE
)
1073 : LoadInst(Ptr
, Name
, isVolatile
, Align
, AtomicOrdering::NotAtomic
,
1074 SyncScope::System
, InsertAE
) {}
1076 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1077 unsigned Align
, AtomicOrdering Order
,
1078 SyncScope::ID SSID
, Instruction
*InsertBef
)
1079 : UnaryInstruction(Ty
, Load
, Ptr
, InsertBef
) {
1080 assert(Ty
== cast
<PointerType
>(Ptr
->getType())->getElementType());
1081 setVolatile(isVolatile
);
1082 setAlignment(Align
);
1083 setAtomic(Order
, SSID
);
1088 LoadInst::LoadInst(Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1089 unsigned Align
, AtomicOrdering Order
,
1091 BasicBlock
*InsertAE
)
1092 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
1093 Load
, Ptr
, InsertAE
) {
1094 setVolatile(isVolatile
);
1095 setAlignment(Align
);
1096 setAtomic(Order
, SSID
);
1101 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, Instruction
*InsertBef
)
1102 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
1103 Load
, Ptr
, InsertBef
) {
1106 setAtomic(AtomicOrdering::NotAtomic
);
1108 if (Name
&& Name
[0]) setName(Name
);
1111 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, BasicBlock
*InsertAE
)
1112 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
1113 Load
, Ptr
, InsertAE
) {
1116 setAtomic(AtomicOrdering::NotAtomic
);
1118 if (Name
&& Name
[0]) setName(Name
);
1121 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const char *Name
, bool isVolatile
,
1122 Instruction
*InsertBef
)
1123 : UnaryInstruction(Ty
, Load
, Ptr
, InsertBef
) {
1124 assert(Ty
== cast
<PointerType
>(Ptr
->getType())->getElementType());
1125 setVolatile(isVolatile
);
1127 setAtomic(AtomicOrdering::NotAtomic
);
1129 if (Name
&& Name
[0]) setName(Name
);
1132 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, bool isVolatile
,
1133 BasicBlock
*InsertAE
)
1134 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
1135 Load
, Ptr
, InsertAE
) {
1136 setVolatile(isVolatile
);
1138 setAtomic(AtomicOrdering::NotAtomic
);
1140 if (Name
&& Name
[0]) setName(Name
);
1143 void LoadInst::setAlignment(unsigned Align
) {
1144 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
1145 assert(Align
<= MaximumAlignment
&&
1146 "Alignment is greater than MaximumAlignment!");
1147 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1148 ((Log2_32(Align
)+1)<<1));
1149 assert(getAlignment() == Align
&& "Alignment representation error!");
1152 //===----------------------------------------------------------------------===//
1153 // StoreInst Implementation
1154 //===----------------------------------------------------------------------===//
1156 void StoreInst::AssertOK() {
1157 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1158 assert(getOperand(1)->getType()->isPointerTy() &&
1159 "Ptr must have pointer type!");
1160 assert(getOperand(0)->getType() ==
1161 cast
<PointerType
>(getOperand(1)->getType())->getElementType()
1162 && "Ptr must be a pointer to Val type!");
1163 assert(!(isAtomic() && getAlignment() == 0) &&
1164 "Alignment required for atomic store");
1167 StoreInst::StoreInst(Value
*val
, Value
*addr
, Instruction
*InsertBefore
)
1168 : StoreInst(val
, addr
, /*isVolatile=*/false, InsertBefore
) {}
1170 StoreInst::StoreInst(Value
*val
, Value
*addr
, BasicBlock
*InsertAtEnd
)
1171 : StoreInst(val
, addr
, /*isVolatile=*/false, InsertAtEnd
) {}
1173 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
1174 Instruction
*InsertBefore
)
1175 : StoreInst(val
, addr
, isVolatile
, /*Align=*/0, InsertBefore
) {}
1177 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
1178 BasicBlock
*InsertAtEnd
)
1179 : StoreInst(val
, addr
, isVolatile
, /*Align=*/0, InsertAtEnd
) {}
1181 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
, unsigned Align
,
1182 Instruction
*InsertBefore
)
1183 : StoreInst(val
, addr
, isVolatile
, Align
, AtomicOrdering::NotAtomic
,
1184 SyncScope::System
, InsertBefore
) {}
1186 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
, unsigned Align
,
1187 BasicBlock
*InsertAtEnd
)
1188 : StoreInst(val
, addr
, isVolatile
, Align
, AtomicOrdering::NotAtomic
,
1189 SyncScope::System
, InsertAtEnd
) {}
1191 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
1192 unsigned Align
, AtomicOrdering Order
,
1194 Instruction
*InsertBefore
)
1195 : Instruction(Type::getVoidTy(val
->getContext()), Store
,
1196 OperandTraits
<StoreInst
>::op_begin(this),
1197 OperandTraits
<StoreInst
>::operands(this),
1201 setVolatile(isVolatile
);
1202 setAlignment(Align
);
1203 setAtomic(Order
, SSID
);
1207 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
1208 unsigned Align
, AtomicOrdering Order
,
1210 BasicBlock
*InsertAtEnd
)
1211 : Instruction(Type::getVoidTy(val
->getContext()), Store
,
1212 OperandTraits
<StoreInst
>::op_begin(this),
1213 OperandTraits
<StoreInst
>::operands(this),
1217 setVolatile(isVolatile
);
1218 setAlignment(Align
);
1219 setAtomic(Order
, SSID
);
1223 void StoreInst::setAlignment(unsigned Align
) {
1224 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
1225 assert(Align
<= MaximumAlignment
&&
1226 "Alignment is greater than MaximumAlignment!");
1227 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1228 ((Log2_32(Align
)+1) << 1));
1229 assert(getAlignment() == Align
&& "Alignment representation error!");
1232 //===----------------------------------------------------------------------===//
1233 // AtomicCmpXchgInst Implementation
1234 //===----------------------------------------------------------------------===//
1236 void AtomicCmpXchgInst::Init(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
1237 AtomicOrdering SuccessOrdering
,
1238 AtomicOrdering FailureOrdering
,
1239 SyncScope::ID SSID
) {
1243 setSuccessOrdering(SuccessOrdering
);
1244 setFailureOrdering(FailureOrdering
);
1245 setSyncScopeID(SSID
);
1247 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1248 "All operands must be non-null!");
1249 assert(getOperand(0)->getType()->isPointerTy() &&
1250 "Ptr must have pointer type!");
1251 assert(getOperand(1)->getType() ==
1252 cast
<PointerType
>(getOperand(0)->getType())->getElementType()
1253 && "Ptr must be a pointer to Cmp type!");
1254 assert(getOperand(2)->getType() ==
1255 cast
<PointerType
>(getOperand(0)->getType())->getElementType()
1256 && "Ptr must be a pointer to NewVal type!");
1257 assert(SuccessOrdering
!= AtomicOrdering::NotAtomic
&&
1258 "AtomicCmpXchg instructions must be atomic!");
1259 assert(FailureOrdering
!= AtomicOrdering::NotAtomic
&&
1260 "AtomicCmpXchg instructions must be atomic!");
1261 assert(!isStrongerThan(FailureOrdering
, SuccessOrdering
) &&
1262 "AtomicCmpXchg failure argument shall be no stronger than the success "
1264 assert(FailureOrdering
!= AtomicOrdering::Release
&&
1265 FailureOrdering
!= AtomicOrdering::AcquireRelease
&&
1266 "AtomicCmpXchg failure ordering cannot include release semantics");
1269 AtomicCmpXchgInst::AtomicCmpXchgInst(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
1270 AtomicOrdering SuccessOrdering
,
1271 AtomicOrdering FailureOrdering
,
1273 Instruction
*InsertBefore
)
1275 StructType::get(Cmp
->getType(), Type::getInt1Ty(Cmp
->getContext())),
1276 AtomicCmpXchg
, OperandTraits
<AtomicCmpXchgInst
>::op_begin(this),
1277 OperandTraits
<AtomicCmpXchgInst
>::operands(this), InsertBefore
) {
1278 Init(Ptr
, Cmp
, NewVal
, SuccessOrdering
, FailureOrdering
, SSID
);
1281 AtomicCmpXchgInst::AtomicCmpXchgInst(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
1282 AtomicOrdering SuccessOrdering
,
1283 AtomicOrdering FailureOrdering
,
1285 BasicBlock
*InsertAtEnd
)
1287 StructType::get(Cmp
->getType(), Type::getInt1Ty(Cmp
->getContext())),
1288 AtomicCmpXchg
, OperandTraits
<AtomicCmpXchgInst
>::op_begin(this),
1289 OperandTraits
<AtomicCmpXchgInst
>::operands(this), InsertAtEnd
) {
1290 Init(Ptr
, Cmp
, NewVal
, SuccessOrdering
, FailureOrdering
, SSID
);
1293 //===----------------------------------------------------------------------===//
1294 // AtomicRMWInst Implementation
1295 //===----------------------------------------------------------------------===//
1297 void AtomicRMWInst::Init(BinOp Operation
, Value
*Ptr
, Value
*Val
,
1298 AtomicOrdering Ordering
,
1299 SyncScope::ID SSID
) {
1302 setOperation(Operation
);
1303 setOrdering(Ordering
);
1304 setSyncScopeID(SSID
);
1306 assert(getOperand(0) && getOperand(1) &&
1307 "All operands must be non-null!");
1308 assert(getOperand(0)->getType()->isPointerTy() &&
1309 "Ptr must have pointer type!");
1310 assert(getOperand(1)->getType() ==
1311 cast
<PointerType
>(getOperand(0)->getType())->getElementType()
1312 && "Ptr must be a pointer to Val type!");
1313 assert(Ordering
!= AtomicOrdering::NotAtomic
&&
1314 "AtomicRMW instructions must be atomic!");
1317 AtomicRMWInst::AtomicRMWInst(BinOp Operation
, Value
*Ptr
, Value
*Val
,
1318 AtomicOrdering Ordering
,
1320 Instruction
*InsertBefore
)
1321 : Instruction(Val
->getType(), AtomicRMW
,
1322 OperandTraits
<AtomicRMWInst
>::op_begin(this),
1323 OperandTraits
<AtomicRMWInst
>::operands(this),
1325 Init(Operation
, Ptr
, Val
, Ordering
, SSID
);
1328 AtomicRMWInst::AtomicRMWInst(BinOp Operation
, Value
*Ptr
, Value
*Val
,
1329 AtomicOrdering Ordering
,
1331 BasicBlock
*InsertAtEnd
)
1332 : Instruction(Val
->getType(), AtomicRMW
,
1333 OperandTraits
<AtomicRMWInst
>::op_begin(this),
1334 OperandTraits
<AtomicRMWInst
>::operands(this),
1336 Init(Operation
, Ptr
, Val
, Ordering
, SSID
);
1339 StringRef
AtomicRMWInst::getOperationName(BinOp Op
) {
1341 case AtomicRMWInst::Xchg
:
1343 case AtomicRMWInst::Add
:
1345 case AtomicRMWInst::Sub
:
1347 case AtomicRMWInst::And
:
1349 case AtomicRMWInst::Nand
:
1351 case AtomicRMWInst::Or
:
1353 case AtomicRMWInst::Xor
:
1355 case AtomicRMWInst::Max
:
1357 case AtomicRMWInst::Min
:
1359 case AtomicRMWInst::UMax
:
1361 case AtomicRMWInst::UMin
:
1363 case AtomicRMWInst::BAD_BINOP
:
1364 return "<invalid operation>";
1367 llvm_unreachable("invalid atomicrmw operation");
1370 //===----------------------------------------------------------------------===//
1371 // FenceInst Implementation
1372 //===----------------------------------------------------------------------===//
1374 FenceInst::FenceInst(LLVMContext
&C
, AtomicOrdering Ordering
,
1376 Instruction
*InsertBefore
)
1377 : Instruction(Type::getVoidTy(C
), Fence
, nullptr, 0, InsertBefore
) {
1378 setOrdering(Ordering
);
1379 setSyncScopeID(SSID
);
1382 FenceInst::FenceInst(LLVMContext
&C
, AtomicOrdering Ordering
,
1384 BasicBlock
*InsertAtEnd
)
1385 : Instruction(Type::getVoidTy(C
), Fence
, nullptr, 0, InsertAtEnd
) {
1386 setOrdering(Ordering
);
1387 setSyncScopeID(SSID
);
1390 //===----------------------------------------------------------------------===//
1391 // GetElementPtrInst Implementation
1392 //===----------------------------------------------------------------------===//
1394 void GetElementPtrInst::init(Value
*Ptr
, ArrayRef
<Value
*> IdxList
,
1395 const Twine
&Name
) {
1396 assert(getNumOperands() == 1 + IdxList
.size() &&
1397 "NumOperands not initialized?");
1399 std::copy(IdxList
.begin(), IdxList
.end(), op_begin() + 1);
1403 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst
&GEPI
)
1404 : Instruction(GEPI
.getType(), GetElementPtr
,
1405 OperandTraits
<GetElementPtrInst
>::op_end(this) -
1406 GEPI
.getNumOperands(),
1407 GEPI
.getNumOperands()),
1408 SourceElementType(GEPI
.SourceElementType
),
1409 ResultElementType(GEPI
.ResultElementType
) {
1410 std::copy(GEPI
.op_begin(), GEPI
.op_end(), op_begin());
1411 SubclassOptionalData
= GEPI
.SubclassOptionalData
;
1414 /// getIndexedType - Returns the type of the element that would be accessed with
1415 /// a gep instruction with the specified parameters.
1417 /// The Idxs pointer should point to a continuous piece of memory containing the
1418 /// indices, either as Value* or uint64_t.
1420 /// A null type is returned if the indices are invalid for the specified
1423 template <typename IndexTy
>
1424 static Type
*getIndexedTypeInternal(Type
*Agg
, ArrayRef
<IndexTy
> IdxList
) {
1425 // Handle the special case of the empty set index set, which is always valid.
1426 if (IdxList
.empty())
1429 // If there is at least one index, the top level type must be sized, otherwise
1430 // it cannot be 'stepped over'.
1431 if (!Agg
->isSized())
1434 unsigned CurIdx
= 1;
1435 for (; CurIdx
!= IdxList
.size(); ++CurIdx
) {
1436 CompositeType
*CT
= dyn_cast
<CompositeType
>(Agg
);
1437 if (!CT
|| CT
->isPointerTy()) return nullptr;
1438 IndexTy Index
= IdxList
[CurIdx
];
1439 if (!CT
->indexValid(Index
)) return nullptr;
1440 Agg
= CT
->getTypeAtIndex(Index
);
1442 return CurIdx
== IdxList
.size() ? Agg
: nullptr;
1445 Type
*GetElementPtrInst::getIndexedType(Type
*Ty
, ArrayRef
<Value
*> IdxList
) {
1446 return getIndexedTypeInternal(Ty
, IdxList
);
1449 Type
*GetElementPtrInst::getIndexedType(Type
*Ty
,
1450 ArrayRef
<Constant
*> IdxList
) {
1451 return getIndexedTypeInternal(Ty
, IdxList
);
1454 Type
*GetElementPtrInst::getIndexedType(Type
*Ty
, ArrayRef
<uint64_t> IdxList
) {
1455 return getIndexedTypeInternal(Ty
, IdxList
);
1458 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1459 /// zeros. If so, the result pointer and the first operand have the same
1460 /// value, just potentially different types.
1461 bool GetElementPtrInst::hasAllZeroIndices() const {
1462 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
1463 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(getOperand(i
))) {
1464 if (!CI
->isZero()) return false;
1472 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1473 /// constant integers. If so, the result pointer and the first operand have
1474 /// a constant offset between them.
1475 bool GetElementPtrInst::hasAllConstantIndices() const {
1476 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
1477 if (!isa
<ConstantInt
>(getOperand(i
)))
1483 void GetElementPtrInst::setIsInBounds(bool B
) {
1484 cast
<GEPOperator
>(this)->setIsInBounds(B
);
1487 bool GetElementPtrInst::isInBounds() const {
1488 return cast
<GEPOperator
>(this)->isInBounds();
1491 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout
&DL
,
1492 APInt
&Offset
) const {
1493 // Delegate to the generic GEPOperator implementation.
1494 return cast
<GEPOperator
>(this)->accumulateConstantOffset(DL
, Offset
);
1497 //===----------------------------------------------------------------------===//
1498 // ExtractElementInst Implementation
1499 //===----------------------------------------------------------------------===//
1501 ExtractElementInst::ExtractElementInst(Value
*Val
, Value
*Index
,
1503 Instruction
*InsertBef
)
1504 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1506 OperandTraits
<ExtractElementInst
>::op_begin(this),
1508 assert(isValidOperands(Val
, Index
) &&
1509 "Invalid extractelement instruction operands!");
1515 ExtractElementInst::ExtractElementInst(Value
*Val
, Value
*Index
,
1517 BasicBlock
*InsertAE
)
1518 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1520 OperandTraits
<ExtractElementInst
>::op_begin(this),
1522 assert(isValidOperands(Val
, Index
) &&
1523 "Invalid extractelement instruction operands!");
1530 bool ExtractElementInst::isValidOperands(const Value
*Val
, const Value
*Index
) {
1531 if (!Val
->getType()->isVectorTy() || !Index
->getType()->isIntegerTy())
1536 //===----------------------------------------------------------------------===//
1537 // InsertElementInst Implementation
1538 //===----------------------------------------------------------------------===//
1540 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, Value
*Index
,
1542 Instruction
*InsertBef
)
1543 : Instruction(Vec
->getType(), InsertElement
,
1544 OperandTraits
<InsertElementInst
>::op_begin(this),
1546 assert(isValidOperands(Vec
, Elt
, Index
) &&
1547 "Invalid insertelement instruction operands!");
1554 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, Value
*Index
,
1556 BasicBlock
*InsertAE
)
1557 : Instruction(Vec
->getType(), InsertElement
,
1558 OperandTraits
<InsertElementInst
>::op_begin(this),
1560 assert(isValidOperands(Vec
, Elt
, Index
) &&
1561 "Invalid insertelement instruction operands!");
1569 bool InsertElementInst::isValidOperands(const Value
*Vec
, const Value
*Elt
,
1570 const Value
*Index
) {
1571 if (!Vec
->getType()->isVectorTy())
1572 return false; // First operand of insertelement must be vector type.
1574 if (Elt
->getType() != cast
<VectorType
>(Vec
->getType())->getElementType())
1575 return false;// Second operand of insertelement must be vector element type.
1577 if (!Index
->getType()->isIntegerTy())
1578 return false; // Third operand of insertelement must be i32.
1582 //===----------------------------------------------------------------------===//
1583 // ShuffleVectorInst Implementation
1584 //===----------------------------------------------------------------------===//
1586 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1588 Instruction
*InsertBefore
)
1589 : Instruction(VectorType::get(cast
<VectorType
>(V1
->getType())->getElementType(),
1590 cast
<VectorType
>(Mask
->getType())->getNumElements()),
1592 OperandTraits
<ShuffleVectorInst
>::op_begin(this),
1593 OperandTraits
<ShuffleVectorInst
>::operands(this),
1595 assert(isValidOperands(V1
, V2
, Mask
) &&
1596 "Invalid shuffle vector instruction operands!");
1603 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1605 BasicBlock
*InsertAtEnd
)
1606 : Instruction(VectorType::get(cast
<VectorType
>(V1
->getType())->getElementType(),
1607 cast
<VectorType
>(Mask
->getType())->getNumElements()),
1609 OperandTraits
<ShuffleVectorInst
>::op_begin(this),
1610 OperandTraits
<ShuffleVectorInst
>::operands(this),
1612 assert(isValidOperands(V1
, V2
, Mask
) &&
1613 "Invalid shuffle vector instruction operands!");
1621 bool ShuffleVectorInst::isValidOperands(const Value
*V1
, const Value
*V2
,
1622 const Value
*Mask
) {
1623 // V1 and V2 must be vectors of the same type.
1624 if (!V1
->getType()->isVectorTy() || V1
->getType() != V2
->getType())
1627 // Mask must be vector of i32.
1628 auto *MaskTy
= dyn_cast
<VectorType
>(Mask
->getType());
1629 if (!MaskTy
|| !MaskTy
->getElementType()->isIntegerTy(32))
1632 // Check to see if Mask is valid.
1633 if (isa
<UndefValue
>(Mask
) || isa
<ConstantAggregateZero
>(Mask
))
1636 if (const auto *MV
= dyn_cast
<ConstantVector
>(Mask
)) {
1637 unsigned V1Size
= cast
<VectorType
>(V1
->getType())->getNumElements();
1638 for (Value
*Op
: MV
->operands()) {
1639 if (auto *CI
= dyn_cast
<ConstantInt
>(Op
)) {
1640 if (CI
->uge(V1Size
*2))
1642 } else if (!isa
<UndefValue
>(Op
)) {
1649 if (const auto *CDS
= dyn_cast
<ConstantDataSequential
>(Mask
)) {
1650 unsigned V1Size
= cast
<VectorType
>(V1
->getType())->getNumElements();
1651 for (unsigned i
= 0, e
= MaskTy
->getNumElements(); i
!= e
; ++i
)
1652 if (CDS
->getElementAsInteger(i
) >= V1Size
*2)
1657 // The bitcode reader can create a place holder for a forward reference
1658 // used as the shuffle mask. When this occurs, the shuffle mask will
1659 // fall into this case and fail. To avoid this error, do this bit of
1660 // ugliness to allow such a mask pass.
1661 if (const auto *CE
= dyn_cast
<ConstantExpr
>(Mask
))
1662 if (CE
->getOpcode() == Instruction::UserOp1
)
1668 int ShuffleVectorInst::getMaskValue(const Constant
*Mask
, unsigned i
) {
1669 assert(i
< Mask
->getType()->getVectorNumElements() && "Index out of range");
1670 if (auto *CDS
= dyn_cast
<ConstantDataSequential
>(Mask
))
1671 return CDS
->getElementAsInteger(i
);
1672 Constant
*C
= Mask
->getAggregateElement(i
);
1673 if (isa
<UndefValue
>(C
))
1675 return cast
<ConstantInt
>(C
)->getZExtValue();
1678 void ShuffleVectorInst::getShuffleMask(const Constant
*Mask
,
1679 SmallVectorImpl
<int> &Result
) {
1680 unsigned NumElts
= Mask
->getType()->getVectorNumElements();
1682 if (auto *CDS
= dyn_cast
<ConstantDataSequential
>(Mask
)) {
1683 for (unsigned i
= 0; i
!= NumElts
; ++i
)
1684 Result
.push_back(CDS
->getElementAsInteger(i
));
1687 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1688 Constant
*C
= Mask
->getAggregateElement(i
);
1689 Result
.push_back(isa
<UndefValue
>(C
) ? -1 :
1690 cast
<ConstantInt
>(C
)->getZExtValue());
1694 static bool isSingleSourceMaskImpl(ArrayRef
<int> Mask
, int NumOpElts
) {
1695 assert(!Mask
.empty() && "Shuffle mask must contain elements");
1696 bool UsesLHS
= false;
1697 bool UsesRHS
= false;
1698 for (int i
= 0, NumMaskElts
= Mask
.size(); i
< NumMaskElts
; ++i
) {
1701 assert(Mask
[i
] >= 0 && Mask
[i
] < (NumOpElts
* 2) &&
1702 "Out-of-bounds shuffle mask element");
1703 UsesLHS
|= (Mask
[i
] < NumOpElts
);
1704 UsesRHS
|= (Mask
[i
] >= NumOpElts
);
1705 if (UsesLHS
&& UsesRHS
)
1708 assert((UsesLHS
^ UsesRHS
) && "Should have selected from exactly 1 source");
1712 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef
<int> Mask
) {
1713 // We don't have vector operand size information, so assume operands are the
1714 // same size as the mask.
1715 return isSingleSourceMaskImpl(Mask
, Mask
.size());
1718 static bool isIdentityMaskImpl(ArrayRef
<int> Mask
, int NumOpElts
) {
1719 if (!isSingleSourceMaskImpl(Mask
, NumOpElts
))
1721 for (int i
= 0, NumMaskElts
= Mask
.size(); i
< NumMaskElts
; ++i
) {
1724 if (Mask
[i
] != i
&& Mask
[i
] != (NumOpElts
+ i
))
1730 bool ShuffleVectorInst::isIdentityMask(ArrayRef
<int> Mask
) {
1731 // We don't have vector operand size information, so assume operands are the
1732 // same size as the mask.
1733 return isIdentityMaskImpl(Mask
, Mask
.size());
1736 bool ShuffleVectorInst::isReverseMask(ArrayRef
<int> Mask
) {
1737 if (!isSingleSourceMask(Mask
))
1739 for (int i
= 0, NumElts
= Mask
.size(); i
< NumElts
; ++i
) {
1742 if (Mask
[i
] != (NumElts
- 1 - i
) && Mask
[i
] != (NumElts
+ NumElts
- 1 - i
))
1748 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef
<int> Mask
) {
1749 if (!isSingleSourceMask(Mask
))
1751 for (int i
= 0, NumElts
= Mask
.size(); i
< NumElts
; ++i
) {
1754 if (Mask
[i
] != 0 && Mask
[i
] != NumElts
)
1760 bool ShuffleVectorInst::isSelectMask(ArrayRef
<int> Mask
) {
1761 // Select is differentiated from identity. It requires using both sources.
1762 if (isSingleSourceMask(Mask
))
1764 for (int i
= 0, NumElts
= Mask
.size(); i
< NumElts
; ++i
) {
1767 if (Mask
[i
] != i
&& Mask
[i
] != (NumElts
+ i
))
1773 bool ShuffleVectorInst::isTransposeMask(ArrayRef
<int> Mask
) {
1774 // Example masks that will return true:
1775 // v1 = <a, b, c, d>
1776 // v2 = <e, f, g, h>
1777 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1778 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
1780 // 1. The number of elements in the mask must be a power-of-2 and at least 2.
1781 int NumElts
= Mask
.size();
1782 if (NumElts
< 2 || !isPowerOf2_32(NumElts
))
1785 // 2. The first element of the mask must be either a 0 or a 1.
1786 if (Mask
[0] != 0 && Mask
[0] != 1)
1789 // 3. The difference between the first 2 elements must be equal to the
1790 // number of elements in the mask.
1791 if ((Mask
[1] - Mask
[0]) != NumElts
)
1794 // 4. The difference between consecutive even-numbered and odd-numbered
1795 // elements must be equal to 2.
1796 for (int i
= 2; i
< NumElts
; ++i
) {
1797 int MaskEltVal
= Mask
[i
];
1798 if (MaskEltVal
== -1)
1800 int MaskEltPrevVal
= Mask
[i
- 2];
1801 if (MaskEltVal
- MaskEltPrevVal
!= 2)
1807 bool ShuffleVectorInst::isIdentityWithPadding() const {
1808 int NumOpElts
= Op
<0>()->getType()->getVectorNumElements();
1809 int NumMaskElts
= getType()->getVectorNumElements();
1810 if (NumMaskElts
<= NumOpElts
)
1813 // The first part of the mask must choose elements from exactly 1 source op.
1814 SmallVector
<int, 16> Mask
= getShuffleMask();
1815 if (!isIdentityMaskImpl(Mask
, NumOpElts
))
1818 // All extending must be with undef elements.
1819 for (int i
= NumOpElts
; i
< NumMaskElts
; ++i
)
1826 bool ShuffleVectorInst::isIdentityWithExtract() const {
1827 int NumOpElts
= Op
<0>()->getType()->getVectorNumElements();
1828 int NumMaskElts
= getType()->getVectorNumElements();
1829 if (NumMaskElts
>= NumOpElts
)
1832 return isIdentityMaskImpl(getShuffleMask(), NumOpElts
);
1835 bool ShuffleVectorInst::isConcat() const {
1836 // Vector concatenation is differentiated from identity with padding.
1837 if (isa
<UndefValue
>(Op
<0>()) || isa
<UndefValue
>(Op
<1>()))
1840 int NumOpElts
= Op
<0>()->getType()->getVectorNumElements();
1841 int NumMaskElts
= getType()->getVectorNumElements();
1842 if (NumMaskElts
!= NumOpElts
* 2)
1845 // Use the mask length rather than the operands' vector lengths here. We
1846 // already know that the shuffle returns a vector twice as long as the inputs,
1847 // and neither of the inputs are undef vectors. If the mask picks consecutive
1848 // elements from both inputs, then this is a concatenation of the inputs.
1849 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts
);
1852 //===----------------------------------------------------------------------===//
1853 // InsertValueInst Class
1854 //===----------------------------------------------------------------------===//
1856 void InsertValueInst::init(Value
*Agg
, Value
*Val
, ArrayRef
<unsigned> Idxs
,
1857 const Twine
&Name
) {
1858 assert(getNumOperands() == 2 && "NumOperands not initialized?");
1860 // There's no fundamental reason why we require at least one index
1861 // (other than weirdness with &*IdxBegin being invalid; see
1862 // getelementptr's init routine for example). But there's no
1863 // present need to support it.
1864 assert(!Idxs
.empty() && "InsertValueInst must have at least one index");
1866 assert(ExtractValueInst::getIndexedType(Agg
->getType(), Idxs
) ==
1867 Val
->getType() && "Inserted value must match indexed type!");
1871 Indices
.append(Idxs
.begin(), Idxs
.end());
1875 InsertValueInst::InsertValueInst(const InsertValueInst
&IVI
)
1876 : Instruction(IVI
.getType(), InsertValue
,
1877 OperandTraits
<InsertValueInst
>::op_begin(this), 2),
1878 Indices(IVI
.Indices
) {
1879 Op
<0>() = IVI
.getOperand(0);
1880 Op
<1>() = IVI
.getOperand(1);
1881 SubclassOptionalData
= IVI
.SubclassOptionalData
;
1884 //===----------------------------------------------------------------------===//
1885 // ExtractValueInst Class
1886 //===----------------------------------------------------------------------===//
1888 void ExtractValueInst::init(ArrayRef
<unsigned> Idxs
, const Twine
&Name
) {
1889 assert(getNumOperands() == 1 && "NumOperands not initialized?");
1891 // There's no fundamental reason why we require at least one index.
1892 // But there's no present need to support it.
1893 assert(!Idxs
.empty() && "ExtractValueInst must have at least one index");
1895 Indices
.append(Idxs
.begin(), Idxs
.end());
1899 ExtractValueInst::ExtractValueInst(const ExtractValueInst
&EVI
)
1900 : UnaryInstruction(EVI
.getType(), ExtractValue
, EVI
.getOperand(0)),
1901 Indices(EVI
.Indices
) {
1902 SubclassOptionalData
= EVI
.SubclassOptionalData
;
1905 // getIndexedType - Returns the type of the element that would be extracted
1906 // with an extractvalue instruction with the specified parameters.
1908 // A null type is returned if the indices are invalid for the specified
1911 Type
*ExtractValueInst::getIndexedType(Type
*Agg
,
1912 ArrayRef
<unsigned> Idxs
) {
1913 for (unsigned Index
: Idxs
) {
1914 // We can't use CompositeType::indexValid(Index) here.
1915 // indexValid() always returns true for arrays because getelementptr allows
1916 // out-of-bounds indices. Since we don't allow those for extractvalue and
1917 // insertvalue we need to check array indexing manually.
1918 // Since the only other types we can index into are struct types it's just
1919 // as easy to check those manually as well.
1920 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(Agg
)) {
1921 if (Index
>= AT
->getNumElements())
1923 } else if (StructType
*ST
= dyn_cast
<StructType
>(Agg
)) {
1924 if (Index
>= ST
->getNumElements())
1927 // Not a valid type to index into.
1931 Agg
= cast
<CompositeType
>(Agg
)->getTypeAtIndex(Index
);
1933 return const_cast<Type
*>(Agg
);
1936 //===----------------------------------------------------------------------===//
1937 // BinaryOperator Class
1938 //===----------------------------------------------------------------------===//
1940 BinaryOperator::BinaryOperator(BinaryOps iType
, Value
*S1
, Value
*S2
,
1941 Type
*Ty
, const Twine
&Name
,
1942 Instruction
*InsertBefore
)
1943 : Instruction(Ty
, iType
,
1944 OperandTraits
<BinaryOperator
>::op_begin(this),
1945 OperandTraits
<BinaryOperator
>::operands(this),
1953 BinaryOperator::BinaryOperator(BinaryOps iType
, Value
*S1
, Value
*S2
,
1954 Type
*Ty
, const Twine
&Name
,
1955 BasicBlock
*InsertAtEnd
)
1956 : Instruction(Ty
, iType
,
1957 OperandTraits
<BinaryOperator
>::op_begin(this),
1958 OperandTraits
<BinaryOperator
>::operands(this),
1966 void BinaryOperator::AssertOK() {
1967 Value
*LHS
= getOperand(0), *RHS
= getOperand(1);
1968 (void)LHS
; (void)RHS
; // Silence warnings.
1969 assert(LHS
->getType() == RHS
->getType() &&
1970 "Binary operator operand types must match!");
1972 switch (getOpcode()) {
1975 assert(getType() == LHS
->getType() &&
1976 "Arithmetic operation should return same type as operands!");
1977 assert(getType()->isIntOrIntVectorTy() &&
1978 "Tried to create an integer operation on a non-integer type!");
1980 case FAdd
: case FSub
:
1982 assert(getType() == LHS
->getType() &&
1983 "Arithmetic operation should return same type as operands!");
1984 assert(getType()->isFPOrFPVectorTy() &&
1985 "Tried to create a floating-point operation on a "
1986 "non-floating-point type!");
1990 assert(getType() == LHS
->getType() &&
1991 "Arithmetic operation should return same type as operands!");
1992 assert(getType()->isIntOrIntVectorTy() &&
1993 "Incorrect operand type (not integer) for S/UDIV");
1996 assert(getType() == LHS
->getType() &&
1997 "Arithmetic operation should return same type as operands!");
1998 assert(getType()->isFPOrFPVectorTy() &&
1999 "Incorrect operand type (not floating point) for FDIV");
2003 assert(getType() == LHS
->getType() &&
2004 "Arithmetic operation should return same type as operands!");
2005 assert(getType()->isIntOrIntVectorTy() &&
2006 "Incorrect operand type (not integer) for S/UREM");
2009 assert(getType() == LHS
->getType() &&
2010 "Arithmetic operation should return same type as operands!");
2011 assert(getType()->isFPOrFPVectorTy() &&
2012 "Incorrect operand type (not floating point) for FREM");
2017 assert(getType() == LHS
->getType() &&
2018 "Shift operation should return same type as operands!");
2019 assert(getType()->isIntOrIntVectorTy() &&
2020 "Tried to create a shift operation on a non-integral type!");
2024 assert(getType() == LHS
->getType() &&
2025 "Logical operation should return same type as operands!");
2026 assert(getType()->isIntOrIntVectorTy() &&
2027 "Tried to create a logical operation on a non-integral type!");
2029 default: llvm_unreachable("Invalid opcode provided");
2034 BinaryOperator
*BinaryOperator::Create(BinaryOps Op
, Value
*S1
, Value
*S2
,
2036 Instruction
*InsertBefore
) {
2037 assert(S1
->getType() == S2
->getType() &&
2038 "Cannot create binary operator with two operands of differing type!");
2039 return new BinaryOperator(Op
, S1
, S2
, S1
->getType(), Name
, InsertBefore
);
2042 BinaryOperator
*BinaryOperator::Create(BinaryOps Op
, Value
*S1
, Value
*S2
,
2044 BasicBlock
*InsertAtEnd
) {
2045 BinaryOperator
*Res
= Create(Op
, S1
, S2
, Name
);
2046 InsertAtEnd
->getInstList().push_back(Res
);
2050 BinaryOperator
*BinaryOperator::CreateNeg(Value
*Op
, const Twine
&Name
,
2051 Instruction
*InsertBefore
) {
2052 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2053 return new BinaryOperator(Instruction::Sub
,
2055 Op
->getType(), Name
, InsertBefore
);
2058 BinaryOperator
*BinaryOperator::CreateNeg(Value
*Op
, const Twine
&Name
,
2059 BasicBlock
*InsertAtEnd
) {
2060 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2061 return new BinaryOperator(Instruction::Sub
,
2063 Op
->getType(), Name
, InsertAtEnd
);
2066 BinaryOperator
*BinaryOperator::CreateNSWNeg(Value
*Op
, const Twine
&Name
,
2067 Instruction
*InsertBefore
) {
2068 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2069 return BinaryOperator::CreateNSWSub(zero
, Op
, Name
, InsertBefore
);
2072 BinaryOperator
*BinaryOperator::CreateNSWNeg(Value
*Op
, const Twine
&Name
,
2073 BasicBlock
*InsertAtEnd
) {
2074 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2075 return BinaryOperator::CreateNSWSub(zero
, Op
, Name
, InsertAtEnd
);
2078 BinaryOperator
*BinaryOperator::CreateNUWNeg(Value
*Op
, const Twine
&Name
,
2079 Instruction
*InsertBefore
) {
2080 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2081 return BinaryOperator::CreateNUWSub(zero
, Op
, Name
, InsertBefore
);
2084 BinaryOperator
*BinaryOperator::CreateNUWNeg(Value
*Op
, const Twine
&Name
,
2085 BasicBlock
*InsertAtEnd
) {
2086 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2087 return BinaryOperator::CreateNUWSub(zero
, Op
, Name
, InsertAtEnd
);
2090 BinaryOperator
*BinaryOperator::CreateFNeg(Value
*Op
, const Twine
&Name
,
2091 Instruction
*InsertBefore
) {
2092 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2093 return new BinaryOperator(Instruction::FSub
, zero
, Op
,
2094 Op
->getType(), Name
, InsertBefore
);
2097 BinaryOperator
*BinaryOperator::CreateFNeg(Value
*Op
, const Twine
&Name
,
2098 BasicBlock
*InsertAtEnd
) {
2099 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2100 return new BinaryOperator(Instruction::FSub
, zero
, Op
,
2101 Op
->getType(), Name
, InsertAtEnd
);
2104 BinaryOperator
*BinaryOperator::CreateNot(Value
*Op
, const Twine
&Name
,
2105 Instruction
*InsertBefore
) {
2106 Constant
*C
= Constant::getAllOnesValue(Op
->getType());
2107 return new BinaryOperator(Instruction::Xor
, Op
, C
,
2108 Op
->getType(), Name
, InsertBefore
);
2111 BinaryOperator
*BinaryOperator::CreateNot(Value
*Op
, const Twine
&Name
,
2112 BasicBlock
*InsertAtEnd
) {
2113 Constant
*AllOnes
= Constant::getAllOnesValue(Op
->getType());
2114 return new BinaryOperator(Instruction::Xor
, Op
, AllOnes
,
2115 Op
->getType(), Name
, InsertAtEnd
);
2118 // isConstantAllOnes - Helper function for several functions below
2119 static inline bool isConstantAllOnes(const Value
*V
) {
2120 if (const Constant
*C
= dyn_cast
<Constant
>(V
))
2121 return C
->isAllOnesValue();
2125 bool BinaryOperator::isNeg(const Value
*V
) {
2126 if (const BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(V
))
2127 if (Bop
->getOpcode() == Instruction::Sub
)
2128 if (Constant
*C
= dyn_cast
<Constant
>(Bop
->getOperand(0)))
2129 return C
->isNegativeZeroValue();
2133 bool BinaryOperator::isFNeg(const Value
*V
, bool IgnoreZeroSign
) {
2134 if (const BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(V
))
2135 if (Bop
->getOpcode() == Instruction::FSub
)
2136 if (Constant
*C
= dyn_cast
<Constant
>(Bop
->getOperand(0))) {
2137 if (!IgnoreZeroSign
)
2138 IgnoreZeroSign
= cast
<Instruction
>(V
)->hasNoSignedZeros();
2139 return !IgnoreZeroSign
? C
->isNegativeZeroValue() : C
->isZeroValue();
2144 bool BinaryOperator::isNot(const Value
*V
) {
2145 if (const BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(V
))
2146 return (Bop
->getOpcode() == Instruction::Xor
&&
2147 (isConstantAllOnes(Bop
->getOperand(1)) ||
2148 isConstantAllOnes(Bop
->getOperand(0))));
2152 Value
*BinaryOperator::getNegArgument(Value
*BinOp
) {
2153 return cast
<BinaryOperator
>(BinOp
)->getOperand(1);
2156 const Value
*BinaryOperator::getNegArgument(const Value
*BinOp
) {
2157 return getNegArgument(const_cast<Value
*>(BinOp
));
2160 Value
*BinaryOperator::getFNegArgument(Value
*BinOp
) {
2161 return cast
<BinaryOperator
>(BinOp
)->getOperand(1);
2164 const Value
*BinaryOperator::getFNegArgument(const Value
*BinOp
) {
2165 return getFNegArgument(const_cast<Value
*>(BinOp
));
2168 Value
*BinaryOperator::getNotArgument(Value
*BinOp
) {
2169 assert(isNot(BinOp
) && "getNotArgument on non-'not' instruction!");
2170 BinaryOperator
*BO
= cast
<BinaryOperator
>(BinOp
);
2171 Value
*Op0
= BO
->getOperand(0);
2172 Value
*Op1
= BO
->getOperand(1);
2173 if (isConstantAllOnes(Op0
)) return Op1
;
2175 assert(isConstantAllOnes(Op1
));
2179 const Value
*BinaryOperator::getNotArgument(const Value
*BinOp
) {
2180 return getNotArgument(const_cast<Value
*>(BinOp
));
2183 // Exchange the two operands to this instruction. This instruction is safe to
2184 // use on any binary instruction and does not modify the semantics of the
2185 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2187 bool BinaryOperator::swapOperands() {
2188 if (!isCommutative())
2189 return true; // Can't commute operands
2190 Op
<0>().swap(Op
<1>());
2194 //===----------------------------------------------------------------------===//
2195 // FPMathOperator Class
2196 //===----------------------------------------------------------------------===//
2198 float FPMathOperator::getFPAccuracy() const {
2200 cast
<Instruction
>(this)->getMetadata(LLVMContext::MD_fpmath
);
2203 ConstantFP
*Accuracy
= mdconst::extract
<ConstantFP
>(MD
->getOperand(0));
2204 return Accuracy
->getValueAPF().convertToFloat();
2207 //===----------------------------------------------------------------------===//
2209 //===----------------------------------------------------------------------===//
2211 // Just determine if this cast only deals with integral->integral conversion.
2212 bool CastInst::isIntegerCast() const {
2213 switch (getOpcode()) {
2214 default: return false;
2215 case Instruction::ZExt
:
2216 case Instruction::SExt
:
2217 case Instruction::Trunc
:
2219 case Instruction::BitCast
:
2220 return getOperand(0)->getType()->isIntegerTy() &&
2221 getType()->isIntegerTy();
2225 bool CastInst::isLosslessCast() const {
2226 // Only BitCast can be lossless, exit fast if we're not BitCast
2227 if (getOpcode() != Instruction::BitCast
)
2230 // Identity cast is always lossless
2231 Type
*SrcTy
= getOperand(0)->getType();
2232 Type
*DstTy
= getType();
2236 // Pointer to pointer is always lossless.
2237 if (SrcTy
->isPointerTy())
2238 return DstTy
->isPointerTy();
2239 return false; // Other types have no identity values
2242 /// This function determines if the CastInst does not require any bits to be
2243 /// changed in order to effect the cast. Essentially, it identifies cases where
2244 /// no code gen is necessary for the cast, hence the name no-op cast. For
2245 /// example, the following are all no-op casts:
2246 /// # bitcast i32* %x to i8*
2247 /// # bitcast <2 x i32> %x to <4 x i16>
2248 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2249 /// Determine if the described cast is a no-op.
2250 bool CastInst::isNoopCast(Instruction::CastOps Opcode
,
2253 const DataLayout
&DL
) {
2255 default: llvm_unreachable("Invalid CastOp");
2256 case Instruction::Trunc
:
2257 case Instruction::ZExt
:
2258 case Instruction::SExt
:
2259 case Instruction::FPTrunc
:
2260 case Instruction::FPExt
:
2261 case Instruction::UIToFP
:
2262 case Instruction::SIToFP
:
2263 case Instruction::FPToUI
:
2264 case Instruction::FPToSI
:
2265 case Instruction::AddrSpaceCast
:
2266 // TODO: Target informations may give a more accurate answer here.
2268 case Instruction::BitCast
:
2269 return true; // BitCast never modifies bits.
2270 case Instruction::PtrToInt
:
2271 return DL
.getIntPtrType(SrcTy
)->getScalarSizeInBits() ==
2272 DestTy
->getScalarSizeInBits();
2273 case Instruction::IntToPtr
:
2274 return DL
.getIntPtrType(DestTy
)->getScalarSizeInBits() ==
2275 SrcTy
->getScalarSizeInBits();
2279 bool CastInst::isNoopCast(const DataLayout
&DL
) const {
2280 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL
);
2283 /// This function determines if a pair of casts can be eliminated and what
2284 /// opcode should be used in the elimination. This assumes that there are two
2285 /// instructions like this:
2286 /// * %F = firstOpcode SrcTy %x to MidTy
2287 /// * %S = secondOpcode MidTy %F to DstTy
2288 /// The function returns a resultOpcode so these two casts can be replaced with:
2289 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2290 /// If no such cast is permitted, the function returns 0.
2291 unsigned CastInst::isEliminableCastPair(
2292 Instruction::CastOps firstOp
, Instruction::CastOps secondOp
,
2293 Type
*SrcTy
, Type
*MidTy
, Type
*DstTy
, Type
*SrcIntPtrTy
, Type
*MidIntPtrTy
,
2294 Type
*DstIntPtrTy
) {
2295 // Define the 144 possibilities for these two cast instructions. The values
2296 // in this matrix determine what to do in a given situation and select the
2297 // case in the switch below. The rows correspond to firstOp, the columns
2298 // correspond to secondOp. In looking at the table below, keep in mind
2299 // the following cast properties:
2301 // Size Compare Source Destination
2302 // Operator Src ? Size Type Sign Type Sign
2303 // -------- ------------ ------------------- ---------------------
2304 // TRUNC > Integer Any Integral Any
2305 // ZEXT < Integral Unsigned Integer Any
2306 // SEXT < Integral Signed Integer Any
2307 // FPTOUI n/a FloatPt n/a Integral Unsigned
2308 // FPTOSI n/a FloatPt n/a Integral Signed
2309 // UITOFP n/a Integral Unsigned FloatPt n/a
2310 // SITOFP n/a Integral Signed FloatPt n/a
2311 // FPTRUNC > FloatPt n/a FloatPt n/a
2312 // FPEXT < FloatPt n/a FloatPt n/a
2313 // PTRTOINT n/a Pointer n/a Integral Unsigned
2314 // INTTOPTR n/a Integral Unsigned Pointer n/a
2315 // BITCAST = FirstClass n/a FirstClass n/a
2316 // ADDRSPCST n/a Pointer n/a Pointer n/a
2318 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2319 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2320 // into "fptoui double to i64", but this loses information about the range
2321 // of the produced value (we no longer know the top-part is all zeros).
2322 // Further this conversion is often much more expensive for typical hardware,
2323 // and causes issues when building libgcc. We disallow fptosi+sext for the
2325 const unsigned numCastOps
=
2326 Instruction::CastOpsEnd
- Instruction::CastOpsBegin
;
2327 static const uint8_t CastResults
[numCastOps
][numCastOps
] = {
2328 // T F F U S F F P I B A -+
2329 // R Z S P P I I T P 2 N T S |
2330 // U E E 2 2 2 2 R E I T C C +- secondOp
2331 // N X X U S F F N X N 2 V V |
2332 // C T T I I P P C T T P T T -+
2333 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2334 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2335 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2336 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2337 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2338 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2339 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2340 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2341 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
2342 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2343 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2344 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2345 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2348 // TODO: This logic could be encoded into the table above and handled in the
2350 // If either of the casts are a bitcast from scalar to vector, disallow the
2351 // merging. However, any pair of bitcasts are allowed.
2352 bool IsFirstBitcast
= (firstOp
== Instruction::BitCast
);
2353 bool IsSecondBitcast
= (secondOp
== Instruction::BitCast
);
2354 bool AreBothBitcasts
= IsFirstBitcast
&& IsSecondBitcast
;
2356 // Check if any of the casts convert scalars <-> vectors.
2357 if ((IsFirstBitcast
&& isa
<VectorType
>(SrcTy
) != isa
<VectorType
>(MidTy
)) ||
2358 (IsSecondBitcast
&& isa
<VectorType
>(MidTy
) != isa
<VectorType
>(DstTy
)))
2359 if (!AreBothBitcasts
)
2362 int ElimCase
= CastResults
[firstOp
-Instruction::CastOpsBegin
]
2363 [secondOp
-Instruction::CastOpsBegin
];
2366 // Categorically disallowed.
2369 // Allowed, use first cast's opcode.
2372 // Allowed, use second cast's opcode.
2375 // No-op cast in second op implies firstOp as long as the DestTy
2376 // is integer and we are not converting between a vector and a
2378 if (!SrcTy
->isVectorTy() && DstTy
->isIntegerTy())
2382 // No-op cast in second op implies firstOp as long as the DestTy
2383 // is floating point.
2384 if (DstTy
->isFloatingPointTy())
2388 // No-op cast in first op implies secondOp as long as the SrcTy
2390 if (SrcTy
->isIntegerTy())
2394 // No-op cast in first op implies secondOp as long as the SrcTy
2395 // is a floating point.
2396 if (SrcTy
->isFloatingPointTy())
2400 // Cannot simplify if address spaces are different!
2401 if (SrcTy
->getPointerAddressSpace() != DstTy
->getPointerAddressSpace())
2404 unsigned MidSize
= MidTy
->getScalarSizeInBits();
2405 // We can still fold this without knowing the actual sizes as long we
2406 // know that the intermediate pointer is the largest possible
2408 // FIXME: Is this always true?
2410 return Instruction::BitCast
;
2412 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2413 if (!SrcIntPtrTy
|| DstIntPtrTy
!= SrcIntPtrTy
)
2415 unsigned PtrSize
= SrcIntPtrTy
->getScalarSizeInBits();
2416 if (MidSize
>= PtrSize
)
2417 return Instruction::BitCast
;
2421 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2422 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2423 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2424 unsigned SrcSize
= SrcTy
->getScalarSizeInBits();
2425 unsigned DstSize
= DstTy
->getScalarSizeInBits();
2426 if (SrcSize
== DstSize
)
2427 return Instruction::BitCast
;
2428 else if (SrcSize
< DstSize
)
2433 // zext, sext -> zext, because sext can't sign extend after zext
2434 return Instruction::ZExt
;
2436 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2439 unsigned PtrSize
= MidIntPtrTy
->getScalarSizeInBits();
2440 unsigned SrcSize
= SrcTy
->getScalarSizeInBits();
2441 unsigned DstSize
= DstTy
->getScalarSizeInBits();
2442 if (SrcSize
<= PtrSize
&& SrcSize
== DstSize
)
2443 return Instruction::BitCast
;
2447 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2448 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2449 if (SrcTy
->getPointerAddressSpace() != DstTy
->getPointerAddressSpace())
2450 return Instruction::AddrSpaceCast
;
2451 return Instruction::BitCast
;
2453 // FIXME: this state can be merged with (1), but the following assert
2454 // is useful to check the correcteness of the sequence due to semantic
2455 // change of bitcast.
2457 SrcTy
->isPtrOrPtrVectorTy() &&
2458 MidTy
->isPtrOrPtrVectorTy() &&
2459 DstTy
->isPtrOrPtrVectorTy() &&
2460 SrcTy
->getPointerAddressSpace() != MidTy
->getPointerAddressSpace() &&
2461 MidTy
->getPointerAddressSpace() == DstTy
->getPointerAddressSpace() &&
2462 "Illegal addrspacecast, bitcast sequence!");
2463 // Allowed, use first cast's opcode
2466 // bitcast, addrspacecast -> addrspacecast if the element type of
2467 // bitcast's source is the same as that of addrspacecast's destination.
2468 if (SrcTy
->getScalarType()->getPointerElementType() ==
2469 DstTy
->getScalarType()->getPointerElementType())
2470 return Instruction::AddrSpaceCast
;
2473 // FIXME: this state can be merged with (1), but the following assert
2474 // is useful to check the correcteness of the sequence due to semantic
2475 // change of bitcast.
2477 SrcTy
->isIntOrIntVectorTy() &&
2478 MidTy
->isPtrOrPtrVectorTy() &&
2479 DstTy
->isPtrOrPtrVectorTy() &&
2480 MidTy
->getPointerAddressSpace() == DstTy
->getPointerAddressSpace() &&
2481 "Illegal inttoptr, bitcast sequence!");
2482 // Allowed, use first cast's opcode
2485 // FIXME: this state can be merged with (2), but the following assert
2486 // is useful to check the correcteness of the sequence due to semantic
2487 // change of bitcast.
2489 SrcTy
->isPtrOrPtrVectorTy() &&
2490 MidTy
->isPtrOrPtrVectorTy() &&
2491 DstTy
->isIntOrIntVectorTy() &&
2492 SrcTy
->getPointerAddressSpace() == MidTy
->getPointerAddressSpace() &&
2493 "Illegal bitcast, ptrtoint sequence!");
2494 // Allowed, use second cast's opcode
2497 // (sitofp (zext x)) -> (uitofp x)
2498 return Instruction::UIToFP
;
2500 // Cast combination can't happen (error in input). This is for all cases
2501 // where the MidTy is not the same for the two cast instructions.
2502 llvm_unreachable("Invalid Cast Combination");
2504 llvm_unreachable("Error in CastResults table!!!");
2508 CastInst
*CastInst::Create(Instruction::CastOps op
, Value
*S
, Type
*Ty
,
2509 const Twine
&Name
, Instruction
*InsertBefore
) {
2510 assert(castIsValid(op
, S
, Ty
) && "Invalid cast!");
2511 // Construct and return the appropriate CastInst subclass
2513 case Trunc
: return new TruncInst (S
, Ty
, Name
, InsertBefore
);
2514 case ZExt
: return new ZExtInst (S
, Ty
, Name
, InsertBefore
);
2515 case SExt
: return new SExtInst (S
, Ty
, Name
, InsertBefore
);
2516 case FPTrunc
: return new FPTruncInst (S
, Ty
, Name
, InsertBefore
);
2517 case FPExt
: return new FPExtInst (S
, Ty
, Name
, InsertBefore
);
2518 case UIToFP
: return new UIToFPInst (S
, Ty
, Name
, InsertBefore
);
2519 case SIToFP
: return new SIToFPInst (S
, Ty
, Name
, InsertBefore
);
2520 case FPToUI
: return new FPToUIInst (S
, Ty
, Name
, InsertBefore
);
2521 case FPToSI
: return new FPToSIInst (S
, Ty
, Name
, InsertBefore
);
2522 case PtrToInt
: return new PtrToIntInst (S
, Ty
, Name
, InsertBefore
);
2523 case IntToPtr
: return new IntToPtrInst (S
, Ty
, Name
, InsertBefore
);
2524 case BitCast
: return new BitCastInst (S
, Ty
, Name
, InsertBefore
);
2525 case AddrSpaceCast
: return new AddrSpaceCastInst (S
, Ty
, Name
, InsertBefore
);
2526 default: llvm_unreachable("Invalid opcode provided");
2530 CastInst
*CastInst::Create(Instruction::CastOps op
, Value
*S
, Type
*Ty
,
2531 const Twine
&Name
, BasicBlock
*InsertAtEnd
) {
2532 assert(castIsValid(op
, S
, Ty
) && "Invalid cast!");
2533 // Construct and return the appropriate CastInst subclass
2535 case Trunc
: return new TruncInst (S
, Ty
, Name
, InsertAtEnd
);
2536 case ZExt
: return new ZExtInst (S
, Ty
, Name
, InsertAtEnd
);
2537 case SExt
: return new SExtInst (S
, Ty
, Name
, InsertAtEnd
);
2538 case FPTrunc
: return new FPTruncInst (S
, Ty
, Name
, InsertAtEnd
);
2539 case FPExt
: return new FPExtInst (S
, Ty
, Name
, InsertAtEnd
);
2540 case UIToFP
: return new UIToFPInst (S
, Ty
, Name
, InsertAtEnd
);
2541 case SIToFP
: return new SIToFPInst (S
, Ty
, Name
, InsertAtEnd
);
2542 case FPToUI
: return new FPToUIInst (S
, Ty
, Name
, InsertAtEnd
);
2543 case FPToSI
: return new FPToSIInst (S
, Ty
, Name
, InsertAtEnd
);
2544 case PtrToInt
: return new PtrToIntInst (S
, Ty
, Name
, InsertAtEnd
);
2545 case IntToPtr
: return new IntToPtrInst (S
, Ty
, Name
, InsertAtEnd
);
2546 case BitCast
: return new BitCastInst (S
, Ty
, Name
, InsertAtEnd
);
2547 case AddrSpaceCast
: return new AddrSpaceCastInst (S
, Ty
, Name
, InsertAtEnd
);
2548 default: llvm_unreachable("Invalid opcode provided");
2552 CastInst
*CastInst::CreateZExtOrBitCast(Value
*S
, Type
*Ty
,
2554 Instruction
*InsertBefore
) {
2555 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2556 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2557 return Create(Instruction::ZExt
, S
, Ty
, Name
, InsertBefore
);
2560 CastInst
*CastInst::CreateZExtOrBitCast(Value
*S
, Type
*Ty
,
2562 BasicBlock
*InsertAtEnd
) {
2563 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2564 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2565 return Create(Instruction::ZExt
, S
, Ty
, Name
, InsertAtEnd
);
2568 CastInst
*CastInst::CreateSExtOrBitCast(Value
*S
, Type
*Ty
,
2570 Instruction
*InsertBefore
) {
2571 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2572 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2573 return Create(Instruction::SExt
, S
, Ty
, Name
, InsertBefore
);
2576 CastInst
*CastInst::CreateSExtOrBitCast(Value
*S
, Type
*Ty
,
2578 BasicBlock
*InsertAtEnd
) {
2579 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2580 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2581 return Create(Instruction::SExt
, S
, Ty
, Name
, InsertAtEnd
);
2584 CastInst
*CastInst::CreateTruncOrBitCast(Value
*S
, Type
*Ty
,
2586 Instruction
*InsertBefore
) {
2587 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2588 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2589 return Create(Instruction::Trunc
, S
, Ty
, Name
, InsertBefore
);
2592 CastInst
*CastInst::CreateTruncOrBitCast(Value
*S
, Type
*Ty
,
2594 BasicBlock
*InsertAtEnd
) {
2595 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2596 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2597 return Create(Instruction::Trunc
, S
, Ty
, Name
, InsertAtEnd
);
2600 CastInst
*CastInst::CreatePointerCast(Value
*S
, Type
*Ty
,
2602 BasicBlock
*InsertAtEnd
) {
2603 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2604 assert((Ty
->isIntOrIntVectorTy() || Ty
->isPtrOrPtrVectorTy()) &&
2606 assert(Ty
->isVectorTy() == S
->getType()->isVectorTy() && "Invalid cast");
2607 assert((!Ty
->isVectorTy() ||
2608 Ty
->getVectorNumElements() == S
->getType()->getVectorNumElements()) &&
2611 if (Ty
->isIntOrIntVectorTy())
2612 return Create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertAtEnd
);
2614 return CreatePointerBitCastOrAddrSpaceCast(S
, Ty
, Name
, InsertAtEnd
);
2617 /// Create a BitCast or a PtrToInt cast instruction
2618 CastInst
*CastInst::CreatePointerCast(Value
*S
, Type
*Ty
,
2620 Instruction
*InsertBefore
) {
2621 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2622 assert((Ty
->isIntOrIntVectorTy() || Ty
->isPtrOrPtrVectorTy()) &&
2624 assert(Ty
->isVectorTy() == S
->getType()->isVectorTy() && "Invalid cast");
2625 assert((!Ty
->isVectorTy() ||
2626 Ty
->getVectorNumElements() == S
->getType()->getVectorNumElements()) &&
2629 if (Ty
->isIntOrIntVectorTy())
2630 return Create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertBefore
);
2632 return CreatePointerBitCastOrAddrSpaceCast(S
, Ty
, Name
, InsertBefore
);
2635 CastInst
*CastInst::CreatePointerBitCastOrAddrSpaceCast(
2638 BasicBlock
*InsertAtEnd
) {
2639 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2640 assert(Ty
->isPtrOrPtrVectorTy() && "Invalid cast");
2642 if (S
->getType()->getPointerAddressSpace() != Ty
->getPointerAddressSpace())
2643 return Create(Instruction::AddrSpaceCast
, S
, Ty
, Name
, InsertAtEnd
);
2645 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2648 CastInst
*CastInst::CreatePointerBitCastOrAddrSpaceCast(
2651 Instruction
*InsertBefore
) {
2652 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2653 assert(Ty
->isPtrOrPtrVectorTy() && "Invalid cast");
2655 if (S
->getType()->getPointerAddressSpace() != Ty
->getPointerAddressSpace())
2656 return Create(Instruction::AddrSpaceCast
, S
, Ty
, Name
, InsertBefore
);
2658 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2661 CastInst
*CastInst::CreateBitOrPointerCast(Value
*S
, Type
*Ty
,
2663 Instruction
*InsertBefore
) {
2664 if (S
->getType()->isPointerTy() && Ty
->isIntegerTy())
2665 return Create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertBefore
);
2666 if (S
->getType()->isIntegerTy() && Ty
->isPointerTy())
2667 return Create(Instruction::IntToPtr
, S
, Ty
, Name
, InsertBefore
);
2669 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2672 CastInst
*CastInst::CreateIntegerCast(Value
*C
, Type
*Ty
,
2673 bool isSigned
, const Twine
&Name
,
2674 Instruction
*InsertBefore
) {
2675 assert(C
->getType()->isIntOrIntVectorTy() && Ty
->isIntOrIntVectorTy() &&
2676 "Invalid integer cast");
2677 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2678 unsigned DstBits
= Ty
->getScalarSizeInBits();
2679 Instruction::CastOps opcode
=
2680 (SrcBits
== DstBits
? Instruction::BitCast
:
2681 (SrcBits
> DstBits
? Instruction::Trunc
:
2682 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
2683 return Create(opcode
, C
, Ty
, Name
, InsertBefore
);
2686 CastInst
*CastInst::CreateIntegerCast(Value
*C
, Type
*Ty
,
2687 bool isSigned
, const Twine
&Name
,
2688 BasicBlock
*InsertAtEnd
) {
2689 assert(C
->getType()->isIntOrIntVectorTy() && Ty
->isIntOrIntVectorTy() &&
2691 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2692 unsigned DstBits
= Ty
->getScalarSizeInBits();
2693 Instruction::CastOps opcode
=
2694 (SrcBits
== DstBits
? Instruction::BitCast
:
2695 (SrcBits
> DstBits
? Instruction::Trunc
:
2696 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
2697 return Create(opcode
, C
, Ty
, Name
, InsertAtEnd
);
2700 CastInst
*CastInst::CreateFPCast(Value
*C
, Type
*Ty
,
2702 Instruction
*InsertBefore
) {
2703 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isFPOrFPVectorTy() &&
2705 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2706 unsigned DstBits
= Ty
->getScalarSizeInBits();
2707 Instruction::CastOps opcode
=
2708 (SrcBits
== DstBits
? Instruction::BitCast
:
2709 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
));
2710 return Create(opcode
, C
, Ty
, Name
, InsertBefore
);
2713 CastInst
*CastInst::CreateFPCast(Value
*C
, Type
*Ty
,
2715 BasicBlock
*InsertAtEnd
) {
2716 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isFPOrFPVectorTy() &&
2718 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2719 unsigned DstBits
= Ty
->getScalarSizeInBits();
2720 Instruction::CastOps opcode
=
2721 (SrcBits
== DstBits
? Instruction::BitCast
:
2722 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
));
2723 return Create(opcode
, C
, Ty
, Name
, InsertAtEnd
);
2726 // Check whether it is valid to call getCastOpcode for these types.
2727 // This routine must be kept in sync with getCastOpcode.
2728 bool CastInst::isCastable(Type
*SrcTy
, Type
*DestTy
) {
2729 if (!SrcTy
->isFirstClassType() || !DestTy
->isFirstClassType())
2732 if (SrcTy
== DestTy
)
2735 if (VectorType
*SrcVecTy
= dyn_cast
<VectorType
>(SrcTy
))
2736 if (VectorType
*DestVecTy
= dyn_cast
<VectorType
>(DestTy
))
2737 if (SrcVecTy
->getNumElements() == DestVecTy
->getNumElements()) {
2738 // An element by element cast. Valid if casting the elements is valid.
2739 SrcTy
= SrcVecTy
->getElementType();
2740 DestTy
= DestVecTy
->getElementType();
2743 // Get the bit sizes, we'll need these
2744 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits(); // 0 for ptr
2745 unsigned DestBits
= DestTy
->getPrimitiveSizeInBits(); // 0 for ptr
2747 // Run through the possibilities ...
2748 if (DestTy
->isIntegerTy()) { // Casting to integral
2749 if (SrcTy
->isIntegerTy()) // Casting from integral
2751 if (SrcTy
->isFloatingPointTy()) // Casting from floating pt
2753 if (SrcTy
->isVectorTy()) // Casting from vector
2754 return DestBits
== SrcBits
;
2755 // Casting from something else
2756 return SrcTy
->isPointerTy();
2758 if (DestTy
->isFloatingPointTy()) { // Casting to floating pt
2759 if (SrcTy
->isIntegerTy()) // Casting from integral
2761 if (SrcTy
->isFloatingPointTy()) // Casting from floating pt
2763 if (SrcTy
->isVectorTy()) // Casting from vector
2764 return DestBits
== SrcBits
;
2765 // Casting from something else
2768 if (DestTy
->isVectorTy()) // Casting to vector
2769 return DestBits
== SrcBits
;
2770 if (DestTy
->isPointerTy()) { // Casting to pointer
2771 if (SrcTy
->isPointerTy()) // Casting from pointer
2773 return SrcTy
->isIntegerTy(); // Casting from integral
2775 if (DestTy
->isX86_MMXTy()) {
2776 if (SrcTy
->isVectorTy())
2777 return DestBits
== SrcBits
; // 64-bit vector to MMX
2779 } // Casting to something else
2783 bool CastInst::isBitCastable(Type
*SrcTy
, Type
*DestTy
) {
2784 if (!SrcTy
->isFirstClassType() || !DestTy
->isFirstClassType())
2787 if (SrcTy
== DestTy
)
2790 if (VectorType
*SrcVecTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2791 if (VectorType
*DestVecTy
= dyn_cast
<VectorType
>(DestTy
)) {
2792 if (SrcVecTy
->getNumElements() == DestVecTy
->getNumElements()) {
2793 // An element by element cast. Valid if casting the elements is valid.
2794 SrcTy
= SrcVecTy
->getElementType();
2795 DestTy
= DestVecTy
->getElementType();
2800 if (PointerType
*DestPtrTy
= dyn_cast
<PointerType
>(DestTy
)) {
2801 if (PointerType
*SrcPtrTy
= dyn_cast
<PointerType
>(SrcTy
)) {
2802 return SrcPtrTy
->getAddressSpace() == DestPtrTy
->getAddressSpace();
2806 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits(); // 0 for ptr
2807 unsigned DestBits
= DestTy
->getPrimitiveSizeInBits(); // 0 for ptr
2809 // Could still have vectors of pointers if the number of elements doesn't
2811 if (SrcBits
== 0 || DestBits
== 0)
2814 if (SrcBits
!= DestBits
)
2817 if (DestTy
->isX86_MMXTy() || SrcTy
->isX86_MMXTy())
2823 bool CastInst::isBitOrNoopPointerCastable(Type
*SrcTy
, Type
*DestTy
,
2824 const DataLayout
&DL
) {
2825 // ptrtoint and inttoptr are not allowed on non-integral pointers
2826 if (auto *PtrTy
= dyn_cast
<PointerType
>(SrcTy
))
2827 if (auto *IntTy
= dyn_cast
<IntegerType
>(DestTy
))
2828 return (IntTy
->getBitWidth() == DL
.getPointerTypeSizeInBits(PtrTy
) &&
2829 !DL
.isNonIntegralPointerType(PtrTy
));
2830 if (auto *PtrTy
= dyn_cast
<PointerType
>(DestTy
))
2831 if (auto *IntTy
= dyn_cast
<IntegerType
>(SrcTy
))
2832 return (IntTy
->getBitWidth() == DL
.getPointerTypeSizeInBits(PtrTy
) &&
2833 !DL
.isNonIntegralPointerType(PtrTy
));
2835 return isBitCastable(SrcTy
, DestTy
);
2838 // Provide a way to get a "cast" where the cast opcode is inferred from the
2839 // types and size of the operand. This, basically, is a parallel of the
2840 // logic in the castIsValid function below. This axiom should hold:
2841 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2842 // should not assert in castIsValid. In other words, this produces a "correct"
2843 // casting opcode for the arguments passed to it.
2844 // This routine must be kept in sync with isCastable.
2845 Instruction::CastOps
2846 CastInst::getCastOpcode(
2847 const Value
*Src
, bool SrcIsSigned
, Type
*DestTy
, bool DestIsSigned
) {
2848 Type
*SrcTy
= Src
->getType();
2850 assert(SrcTy
->isFirstClassType() && DestTy
->isFirstClassType() &&
2851 "Only first class types are castable!");
2853 if (SrcTy
== DestTy
)
2856 // FIXME: Check address space sizes here
2857 if (VectorType
*SrcVecTy
= dyn_cast
<VectorType
>(SrcTy
))
2858 if (VectorType
*DestVecTy
= dyn_cast
<VectorType
>(DestTy
))
2859 if (SrcVecTy
->getNumElements() == DestVecTy
->getNumElements()) {
2860 // An element by element cast. Find the appropriate opcode based on the
2862 SrcTy
= SrcVecTy
->getElementType();
2863 DestTy
= DestVecTy
->getElementType();
2866 // Get the bit sizes, we'll need these
2867 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits(); // 0 for ptr
2868 unsigned DestBits
= DestTy
->getPrimitiveSizeInBits(); // 0 for ptr
2870 // Run through the possibilities ...
2871 if (DestTy
->isIntegerTy()) { // Casting to integral
2872 if (SrcTy
->isIntegerTy()) { // Casting from integral
2873 if (DestBits
< SrcBits
)
2874 return Trunc
; // int -> smaller int
2875 else if (DestBits
> SrcBits
) { // its an extension
2877 return SExt
; // signed -> SEXT
2879 return ZExt
; // unsigned -> ZEXT
2881 return BitCast
; // Same size, No-op cast
2883 } else if (SrcTy
->isFloatingPointTy()) { // Casting from floating pt
2885 return FPToSI
; // FP -> sint
2887 return FPToUI
; // FP -> uint
2888 } else if (SrcTy
->isVectorTy()) {
2889 assert(DestBits
== SrcBits
&&
2890 "Casting vector to integer of different width");
2891 return BitCast
; // Same size, no-op cast
2893 assert(SrcTy
->isPointerTy() &&
2894 "Casting from a value that is not first-class type");
2895 return PtrToInt
; // ptr -> int
2897 } else if (DestTy
->isFloatingPointTy()) { // Casting to floating pt
2898 if (SrcTy
->isIntegerTy()) { // Casting from integral
2900 return SIToFP
; // sint -> FP
2902 return UIToFP
; // uint -> FP
2903 } else if (SrcTy
->isFloatingPointTy()) { // Casting from floating pt
2904 if (DestBits
< SrcBits
) {
2905 return FPTrunc
; // FP -> smaller FP
2906 } else if (DestBits
> SrcBits
) {
2907 return FPExt
; // FP -> larger FP
2909 return BitCast
; // same size, no-op cast
2911 } else if (SrcTy
->isVectorTy()) {
2912 assert(DestBits
== SrcBits
&&
2913 "Casting vector to floating point of different width");
2914 return BitCast
; // same size, no-op cast
2916 llvm_unreachable("Casting pointer or non-first class to float");
2917 } else if (DestTy
->isVectorTy()) {
2918 assert(DestBits
== SrcBits
&&
2919 "Illegal cast to vector (wrong type or size)");
2921 } else if (DestTy
->isPointerTy()) {
2922 if (SrcTy
->isPointerTy()) {
2923 if (DestTy
->getPointerAddressSpace() != SrcTy
->getPointerAddressSpace())
2924 return AddrSpaceCast
;
2925 return BitCast
; // ptr -> ptr
2926 } else if (SrcTy
->isIntegerTy()) {
2927 return IntToPtr
; // int -> ptr
2929 llvm_unreachable("Casting pointer to other than pointer or int");
2930 } else if (DestTy
->isX86_MMXTy()) {
2931 if (SrcTy
->isVectorTy()) {
2932 assert(DestBits
== SrcBits
&& "Casting vector of wrong width to X86_MMX");
2933 return BitCast
; // 64-bit vector to MMX
2935 llvm_unreachable("Illegal cast to X86_MMX");
2937 llvm_unreachable("Casting to type that is not first-class");
2940 //===----------------------------------------------------------------------===//
2941 // CastInst SubClass Constructors
2942 //===----------------------------------------------------------------------===//
2944 /// Check that the construction parameters for a CastInst are correct. This
2945 /// could be broken out into the separate constructors but it is useful to have
2946 /// it in one place and to eliminate the redundant code for getting the sizes
2947 /// of the types involved.
2949 CastInst::castIsValid(Instruction::CastOps op
, Value
*S
, Type
*DstTy
) {
2950 // Check for type sanity on the arguments
2951 Type
*SrcTy
= S
->getType();
2953 if (!SrcTy
->isFirstClassType() || !DstTy
->isFirstClassType() ||
2954 SrcTy
->isAggregateType() || DstTy
->isAggregateType())
2957 // Get the size of the types in bits, we'll need this later
2958 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2959 unsigned DstBitSize
= DstTy
->getScalarSizeInBits();
2961 // If these are vector types, get the lengths of the vectors (using zero for
2962 // scalar types means that checking that vector lengths match also checks that
2963 // scalars are not being converted to vectors or vectors to scalars).
2964 unsigned SrcLength
= SrcTy
->isVectorTy() ?
2965 cast
<VectorType
>(SrcTy
)->getNumElements() : 0;
2966 unsigned DstLength
= DstTy
->isVectorTy() ?
2967 cast
<VectorType
>(DstTy
)->getNumElements() : 0;
2969 // Switch on the opcode provided
2971 default: return false; // This is an input error
2972 case Instruction::Trunc
:
2973 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isIntOrIntVectorTy() &&
2974 SrcLength
== DstLength
&& SrcBitSize
> DstBitSize
;
2975 case Instruction::ZExt
:
2976 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isIntOrIntVectorTy() &&
2977 SrcLength
== DstLength
&& SrcBitSize
< DstBitSize
;
2978 case Instruction::SExt
:
2979 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isIntOrIntVectorTy() &&
2980 SrcLength
== DstLength
&& SrcBitSize
< DstBitSize
;
2981 case Instruction::FPTrunc
:
2982 return SrcTy
->isFPOrFPVectorTy() && DstTy
->isFPOrFPVectorTy() &&
2983 SrcLength
== DstLength
&& SrcBitSize
> DstBitSize
;
2984 case Instruction::FPExt
:
2985 return SrcTy
->isFPOrFPVectorTy() && DstTy
->isFPOrFPVectorTy() &&
2986 SrcLength
== DstLength
&& SrcBitSize
< DstBitSize
;
2987 case Instruction::UIToFP
:
2988 case Instruction::SIToFP
:
2989 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isFPOrFPVectorTy() &&
2990 SrcLength
== DstLength
;
2991 case Instruction::FPToUI
:
2992 case Instruction::FPToSI
:
2993 return SrcTy
->isFPOrFPVectorTy() && DstTy
->isIntOrIntVectorTy() &&
2994 SrcLength
== DstLength
;
2995 case Instruction::PtrToInt
:
2996 if (isa
<VectorType
>(SrcTy
) != isa
<VectorType
>(DstTy
))
2998 if (VectorType
*VT
= dyn_cast
<VectorType
>(SrcTy
))
2999 if (VT
->getNumElements() != cast
<VectorType
>(DstTy
)->getNumElements())
3001 return SrcTy
->isPtrOrPtrVectorTy() && DstTy
->isIntOrIntVectorTy();
3002 case Instruction::IntToPtr
:
3003 if (isa
<VectorType
>(SrcTy
) != isa
<VectorType
>(DstTy
))
3005 if (VectorType
*VT
= dyn_cast
<VectorType
>(SrcTy
))
3006 if (VT
->getNumElements() != cast
<VectorType
>(DstTy
)->getNumElements())
3008 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isPtrOrPtrVectorTy();
3009 case Instruction::BitCast
: {
3010 PointerType
*SrcPtrTy
= dyn_cast
<PointerType
>(SrcTy
->getScalarType());
3011 PointerType
*DstPtrTy
= dyn_cast
<PointerType
>(DstTy
->getScalarType());
3013 // BitCast implies a no-op cast of type only. No bits change.
3014 // However, you can't cast pointers to anything but pointers.
3015 if (!SrcPtrTy
!= !DstPtrTy
)
3018 // For non-pointer cases, the cast is okay if the source and destination bit
3019 // widths are identical.
3021 return SrcTy
->getPrimitiveSizeInBits() == DstTy
->getPrimitiveSizeInBits();
3023 // If both are pointers then the address spaces must match.
3024 if (SrcPtrTy
->getAddressSpace() != DstPtrTy
->getAddressSpace())
3027 // A vector of pointers must have the same number of elements.
3028 VectorType
*SrcVecTy
= dyn_cast
<VectorType
>(SrcTy
);
3029 VectorType
*DstVecTy
= dyn_cast
<VectorType
>(DstTy
);
3030 if (SrcVecTy
&& DstVecTy
)
3031 return (SrcVecTy
->getNumElements() == DstVecTy
->getNumElements());
3033 return SrcVecTy
->getNumElements() == 1;
3035 return DstVecTy
->getNumElements() == 1;
3039 case Instruction::AddrSpaceCast
: {
3040 PointerType
*SrcPtrTy
= dyn_cast
<PointerType
>(SrcTy
->getScalarType());
3044 PointerType
*DstPtrTy
= dyn_cast
<PointerType
>(DstTy
->getScalarType());
3048 if (SrcPtrTy
->getAddressSpace() == DstPtrTy
->getAddressSpace())
3051 if (VectorType
*SrcVecTy
= dyn_cast
<VectorType
>(SrcTy
)) {
3052 if (VectorType
*DstVecTy
= dyn_cast
<VectorType
>(DstTy
))
3053 return (SrcVecTy
->getNumElements() == DstVecTy
->getNumElements());
3063 TruncInst::TruncInst(
3064 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3065 ) : CastInst(Ty
, Trunc
, S
, Name
, InsertBefore
) {
3066 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal Trunc");
3069 TruncInst::TruncInst(
3070 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3071 ) : CastInst(Ty
, Trunc
, S
, Name
, InsertAtEnd
) {
3072 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal Trunc");
3076 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3077 ) : CastInst(Ty
, ZExt
, S
, Name
, InsertBefore
) {
3078 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal ZExt");
3082 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3083 ) : CastInst(Ty
, ZExt
, S
, Name
, InsertAtEnd
) {
3084 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal ZExt");
3087 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3088 ) : CastInst(Ty
, SExt
, S
, Name
, InsertBefore
) {
3089 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SExt");
3093 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3094 ) : CastInst(Ty
, SExt
, S
, Name
, InsertAtEnd
) {
3095 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SExt");
3098 FPTruncInst::FPTruncInst(
3099 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3100 ) : CastInst(Ty
, FPTrunc
, S
, Name
, InsertBefore
) {
3101 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPTrunc");
3104 FPTruncInst::FPTruncInst(
3105 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3106 ) : CastInst(Ty
, FPTrunc
, S
, Name
, InsertAtEnd
) {
3107 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPTrunc");
3110 FPExtInst::FPExtInst(
3111 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3112 ) : CastInst(Ty
, FPExt
, S
, Name
, InsertBefore
) {
3113 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPExt");
3116 FPExtInst::FPExtInst(
3117 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3118 ) : CastInst(Ty
, FPExt
, S
, Name
, InsertAtEnd
) {
3119 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPExt");
3122 UIToFPInst::UIToFPInst(
3123 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3124 ) : CastInst(Ty
, UIToFP
, S
, Name
, InsertBefore
) {
3125 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal UIToFP");
3128 UIToFPInst::UIToFPInst(
3129 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3130 ) : CastInst(Ty
, UIToFP
, S
, Name
, InsertAtEnd
) {
3131 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal UIToFP");
3134 SIToFPInst::SIToFPInst(
3135 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3136 ) : CastInst(Ty
, SIToFP
, S
, Name
, InsertBefore
) {
3137 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SIToFP");
3140 SIToFPInst::SIToFPInst(
3141 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3142 ) : CastInst(Ty
, SIToFP
, S
, Name
, InsertAtEnd
) {
3143 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SIToFP");
3146 FPToUIInst::FPToUIInst(
3147 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3148 ) : CastInst(Ty
, FPToUI
, S
, Name
, InsertBefore
) {
3149 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToUI");
3152 FPToUIInst::FPToUIInst(
3153 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3154 ) : CastInst(Ty
, FPToUI
, S
, Name
, InsertAtEnd
) {
3155 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToUI");
3158 FPToSIInst::FPToSIInst(
3159 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3160 ) : CastInst(Ty
, FPToSI
, S
, Name
, InsertBefore
) {
3161 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToSI");
3164 FPToSIInst::FPToSIInst(
3165 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3166 ) : CastInst(Ty
, FPToSI
, S
, Name
, InsertAtEnd
) {
3167 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToSI");
3170 PtrToIntInst::PtrToIntInst(
3171 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3172 ) : CastInst(Ty
, PtrToInt
, S
, Name
, InsertBefore
) {
3173 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal PtrToInt");
3176 PtrToIntInst::PtrToIntInst(
3177 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3178 ) : CastInst(Ty
, PtrToInt
, S
, Name
, InsertAtEnd
) {
3179 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal PtrToInt");
3182 IntToPtrInst::IntToPtrInst(
3183 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3184 ) : CastInst(Ty
, IntToPtr
, S
, Name
, InsertBefore
) {
3185 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal IntToPtr");
3188 IntToPtrInst::IntToPtrInst(
3189 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3190 ) : CastInst(Ty
, IntToPtr
, S
, Name
, InsertAtEnd
) {
3191 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal IntToPtr");
3194 BitCastInst::BitCastInst(
3195 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3196 ) : CastInst(Ty
, BitCast
, S
, Name
, InsertBefore
) {
3197 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal BitCast");
3200 BitCastInst::BitCastInst(
3201 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3202 ) : CastInst(Ty
, BitCast
, S
, Name
, InsertAtEnd
) {
3203 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal BitCast");
3206 AddrSpaceCastInst::AddrSpaceCastInst(
3207 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3208 ) : CastInst(Ty
, AddrSpaceCast
, S
, Name
, InsertBefore
) {
3209 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal AddrSpaceCast");
3212 AddrSpaceCastInst::AddrSpaceCastInst(
3213 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3214 ) : CastInst(Ty
, AddrSpaceCast
, S
, Name
, InsertAtEnd
) {
3215 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal AddrSpaceCast");
3218 //===----------------------------------------------------------------------===//
3220 //===----------------------------------------------------------------------===//
3222 CmpInst::CmpInst(Type
*ty
, OtherOps op
, Predicate predicate
, Value
*LHS
,
3223 Value
*RHS
, const Twine
&Name
, Instruction
*InsertBefore
)
3224 : Instruction(ty
, op
,
3225 OperandTraits
<CmpInst
>::op_begin(this),
3226 OperandTraits
<CmpInst
>::operands(this),
3230 setPredicate((Predicate
)predicate
);
3234 CmpInst::CmpInst(Type
*ty
, OtherOps op
, Predicate predicate
, Value
*LHS
,
3235 Value
*RHS
, const Twine
&Name
, BasicBlock
*InsertAtEnd
)
3236 : Instruction(ty
, op
,
3237 OperandTraits
<CmpInst
>::op_begin(this),
3238 OperandTraits
<CmpInst
>::operands(this),
3242 setPredicate((Predicate
)predicate
);
3247 CmpInst::Create(OtherOps Op
, Predicate predicate
, Value
*S1
, Value
*S2
,
3248 const Twine
&Name
, Instruction
*InsertBefore
) {
3249 if (Op
== Instruction::ICmp
) {
3251 return new ICmpInst(InsertBefore
, CmpInst::Predicate(predicate
),
3254 return new ICmpInst(CmpInst::Predicate(predicate
),
3259 return new FCmpInst(InsertBefore
, CmpInst::Predicate(predicate
),
3262 return new FCmpInst(CmpInst::Predicate(predicate
),
3267 CmpInst::Create(OtherOps Op
, Predicate predicate
, Value
*S1
, Value
*S2
,
3268 const Twine
&Name
, BasicBlock
*InsertAtEnd
) {
3269 if (Op
== Instruction::ICmp
) {
3270 return new ICmpInst(*InsertAtEnd
, CmpInst::Predicate(predicate
),
3273 return new FCmpInst(*InsertAtEnd
, CmpInst::Predicate(predicate
),
3277 void CmpInst::swapOperands() {
3278 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
3281 cast
<FCmpInst
>(this)->swapOperands();
3284 bool CmpInst::isCommutative() const {
3285 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
3286 return IC
->isCommutative();
3287 return cast
<FCmpInst
>(this)->isCommutative();
3290 bool CmpInst::isEquality() const {
3291 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
3292 return IC
->isEquality();
3293 return cast
<FCmpInst
>(this)->isEquality();
3296 CmpInst::Predicate
CmpInst::getInversePredicate(Predicate pred
) {
3298 default: llvm_unreachable("Unknown cmp predicate!");
3299 case ICMP_EQ
: return ICMP_NE
;
3300 case ICMP_NE
: return ICMP_EQ
;
3301 case ICMP_UGT
: return ICMP_ULE
;
3302 case ICMP_ULT
: return ICMP_UGE
;
3303 case ICMP_UGE
: return ICMP_ULT
;
3304 case ICMP_ULE
: return ICMP_UGT
;
3305 case ICMP_SGT
: return ICMP_SLE
;
3306 case ICMP_SLT
: return ICMP_SGE
;
3307 case ICMP_SGE
: return ICMP_SLT
;
3308 case ICMP_SLE
: return ICMP_SGT
;
3310 case FCMP_OEQ
: return FCMP_UNE
;
3311 case FCMP_ONE
: return FCMP_UEQ
;
3312 case FCMP_OGT
: return FCMP_ULE
;
3313 case FCMP_OLT
: return FCMP_UGE
;
3314 case FCMP_OGE
: return FCMP_ULT
;
3315 case FCMP_OLE
: return FCMP_UGT
;
3316 case FCMP_UEQ
: return FCMP_ONE
;
3317 case FCMP_UNE
: return FCMP_OEQ
;
3318 case FCMP_UGT
: return FCMP_OLE
;
3319 case FCMP_ULT
: return FCMP_OGE
;
3320 case FCMP_UGE
: return FCMP_OLT
;
3321 case FCMP_ULE
: return FCMP_OGT
;
3322 case FCMP_ORD
: return FCMP_UNO
;
3323 case FCMP_UNO
: return FCMP_ORD
;
3324 case FCMP_TRUE
: return FCMP_FALSE
;
3325 case FCMP_FALSE
: return FCMP_TRUE
;
3329 StringRef
CmpInst::getPredicateName(Predicate Pred
) {
3331 default: return "unknown";
3332 case FCmpInst::FCMP_FALSE
: return "false";
3333 case FCmpInst::FCMP_OEQ
: return "oeq";
3334 case FCmpInst::FCMP_OGT
: return "ogt";
3335 case FCmpInst::FCMP_OGE
: return "oge";
3336 case FCmpInst::FCMP_OLT
: return "olt";
3337 case FCmpInst::FCMP_OLE
: return "ole";
3338 case FCmpInst::FCMP_ONE
: return "one";
3339 case FCmpInst::FCMP_ORD
: return "ord";
3340 case FCmpInst::FCMP_UNO
: return "uno";
3341 case FCmpInst::FCMP_UEQ
: return "ueq";
3342 case FCmpInst::FCMP_UGT
: return "ugt";
3343 case FCmpInst::FCMP_UGE
: return "uge";
3344 case FCmpInst::FCMP_ULT
: return "ult";
3345 case FCmpInst::FCMP_ULE
: return "ule";
3346 case FCmpInst::FCMP_UNE
: return "une";
3347 case FCmpInst::FCMP_TRUE
: return "true";
3348 case ICmpInst::ICMP_EQ
: return "eq";
3349 case ICmpInst::ICMP_NE
: return "ne";
3350 case ICmpInst::ICMP_SGT
: return "sgt";
3351 case ICmpInst::ICMP_SGE
: return "sge";
3352 case ICmpInst::ICMP_SLT
: return "slt";
3353 case ICmpInst::ICMP_SLE
: return "sle";
3354 case ICmpInst::ICMP_UGT
: return "ugt";
3355 case ICmpInst::ICMP_UGE
: return "uge";
3356 case ICmpInst::ICMP_ULT
: return "ult";
3357 case ICmpInst::ICMP_ULE
: return "ule";
3361 ICmpInst::Predicate
ICmpInst::getSignedPredicate(Predicate pred
) {
3363 default: llvm_unreachable("Unknown icmp predicate!");
3364 case ICMP_EQ
: case ICMP_NE
:
3365 case ICMP_SGT
: case ICMP_SLT
: case ICMP_SGE
: case ICMP_SLE
:
3367 case ICMP_UGT
: return ICMP_SGT
;
3368 case ICMP_ULT
: return ICMP_SLT
;
3369 case ICMP_UGE
: return ICMP_SGE
;
3370 case ICMP_ULE
: return ICMP_SLE
;
3374 ICmpInst::Predicate
ICmpInst::getUnsignedPredicate(Predicate pred
) {
3376 default: llvm_unreachable("Unknown icmp predicate!");
3377 case ICMP_EQ
: case ICMP_NE
:
3378 case ICMP_UGT
: case ICMP_ULT
: case ICMP_UGE
: case ICMP_ULE
:
3380 case ICMP_SGT
: return ICMP_UGT
;
3381 case ICMP_SLT
: return ICMP_ULT
;
3382 case ICMP_SGE
: return ICMP_UGE
;
3383 case ICMP_SLE
: return ICMP_ULE
;
3387 CmpInst::Predicate
CmpInst::getFlippedStrictnessPredicate(Predicate pred
) {
3389 default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3390 case ICMP_SGT
: return ICMP_SGE
;
3391 case ICMP_SLT
: return ICMP_SLE
;
3392 case ICMP_SGE
: return ICMP_SGT
;
3393 case ICMP_SLE
: return ICMP_SLT
;
3394 case ICMP_UGT
: return ICMP_UGE
;
3395 case ICMP_ULT
: return ICMP_ULE
;
3396 case ICMP_UGE
: return ICMP_UGT
;
3397 case ICMP_ULE
: return ICMP_ULT
;
3399 case FCMP_OGT
: return FCMP_OGE
;
3400 case FCMP_OLT
: return FCMP_OLE
;
3401 case FCMP_OGE
: return FCMP_OGT
;
3402 case FCMP_OLE
: return FCMP_OLT
;
3403 case FCMP_UGT
: return FCMP_UGE
;
3404 case FCMP_ULT
: return FCMP_ULE
;
3405 case FCMP_UGE
: return FCMP_UGT
;
3406 case FCMP_ULE
: return FCMP_ULT
;
3410 CmpInst::Predicate
CmpInst::getSwappedPredicate(Predicate pred
) {
3412 default: llvm_unreachable("Unknown cmp predicate!");
3413 case ICMP_EQ
: case ICMP_NE
:
3415 case ICMP_SGT
: return ICMP_SLT
;
3416 case ICMP_SLT
: return ICMP_SGT
;
3417 case ICMP_SGE
: return ICMP_SLE
;
3418 case ICMP_SLE
: return ICMP_SGE
;
3419 case ICMP_UGT
: return ICMP_ULT
;
3420 case ICMP_ULT
: return ICMP_UGT
;
3421 case ICMP_UGE
: return ICMP_ULE
;
3422 case ICMP_ULE
: return ICMP_UGE
;
3424 case FCMP_FALSE
: case FCMP_TRUE
:
3425 case FCMP_OEQ
: case FCMP_ONE
:
3426 case FCMP_UEQ
: case FCMP_UNE
:
3427 case FCMP_ORD
: case FCMP_UNO
:
3429 case FCMP_OGT
: return FCMP_OLT
;
3430 case FCMP_OLT
: return FCMP_OGT
;
3431 case FCMP_OGE
: return FCMP_OLE
;
3432 case FCMP_OLE
: return FCMP_OGE
;
3433 case FCMP_UGT
: return FCMP_ULT
;
3434 case FCMP_ULT
: return FCMP_UGT
;
3435 case FCMP_UGE
: return FCMP_ULE
;
3436 case FCMP_ULE
: return FCMP_UGE
;
3440 CmpInst::Predicate
CmpInst::getNonStrictPredicate(Predicate pred
) {
3442 case ICMP_SGT
: return ICMP_SGE
;
3443 case ICMP_SLT
: return ICMP_SLE
;
3444 case ICMP_UGT
: return ICMP_UGE
;
3445 case ICMP_ULT
: return ICMP_ULE
;
3446 case FCMP_OGT
: return FCMP_OGE
;
3447 case FCMP_OLT
: return FCMP_OLE
;
3448 case FCMP_UGT
: return FCMP_UGE
;
3449 case FCMP_ULT
: return FCMP_ULE
;
3450 default: return pred
;
3454 CmpInst::Predicate
CmpInst::getSignedPredicate(Predicate pred
) {
3455 assert(CmpInst::isUnsigned(pred
) && "Call only with signed predicates!");
3459 llvm_unreachable("Unknown predicate!");
3460 case CmpInst::ICMP_ULT
:
3461 return CmpInst::ICMP_SLT
;
3462 case CmpInst::ICMP_ULE
:
3463 return CmpInst::ICMP_SLE
;
3464 case CmpInst::ICMP_UGT
:
3465 return CmpInst::ICMP_SGT
;
3466 case CmpInst::ICMP_UGE
:
3467 return CmpInst::ICMP_SGE
;
3471 bool CmpInst::isUnsigned(Predicate predicate
) {
3472 switch (predicate
) {
3473 default: return false;
3474 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_ULE
: case ICmpInst::ICMP_UGT
:
3475 case ICmpInst::ICMP_UGE
: return true;
3479 bool CmpInst::isSigned(Predicate predicate
) {
3480 switch (predicate
) {
3481 default: return false;
3482 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_SLE
: case ICmpInst::ICMP_SGT
:
3483 case ICmpInst::ICMP_SGE
: return true;
3487 bool CmpInst::isOrdered(Predicate predicate
) {
3488 switch (predicate
) {
3489 default: return false;
3490 case FCmpInst::FCMP_OEQ
: case FCmpInst::FCMP_ONE
: case FCmpInst::FCMP_OGT
:
3491 case FCmpInst::FCMP_OLT
: case FCmpInst::FCMP_OGE
: case FCmpInst::FCMP_OLE
:
3492 case FCmpInst::FCMP_ORD
: return true;
3496 bool CmpInst::isUnordered(Predicate predicate
) {
3497 switch (predicate
) {
3498 default: return false;
3499 case FCmpInst::FCMP_UEQ
: case FCmpInst::FCMP_UNE
: case FCmpInst::FCMP_UGT
:
3500 case FCmpInst::FCMP_ULT
: case FCmpInst::FCMP_UGE
: case FCmpInst::FCMP_ULE
:
3501 case FCmpInst::FCMP_UNO
: return true;
3505 bool CmpInst::isTrueWhenEqual(Predicate predicate
) {
3507 default: return false;
3508 case ICMP_EQ
: case ICMP_UGE
: case ICMP_ULE
: case ICMP_SGE
: case ICMP_SLE
:
3509 case FCMP_TRUE
: case FCMP_UEQ
: case FCMP_UGE
: case FCMP_ULE
: return true;
3513 bool CmpInst::isFalseWhenEqual(Predicate predicate
) {
3515 case ICMP_NE
: case ICMP_UGT
: case ICMP_ULT
: case ICMP_SGT
: case ICMP_SLT
:
3516 case FCMP_FALSE
: case FCMP_ONE
: case FCMP_OGT
: case FCMP_OLT
: return true;
3517 default: return false;
3521 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1
, Predicate Pred2
) {
3522 // If the predicates match, then we know the first condition implies the
3531 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3532 return Pred2
== ICMP_UGE
|| Pred2
== ICMP_ULE
|| Pred2
== ICMP_SGE
||
3534 case ICMP_UGT
: // A >u B implies A != B and A >=u B are true.
3535 return Pred2
== ICMP_NE
|| Pred2
== ICMP_UGE
;
3536 case ICMP_ULT
: // A <u B implies A != B and A <=u B are true.
3537 return Pred2
== ICMP_NE
|| Pred2
== ICMP_ULE
;
3538 case ICMP_SGT
: // A >s B implies A != B and A >=s B are true.
3539 return Pred2
== ICMP_NE
|| Pred2
== ICMP_SGE
;
3540 case ICMP_SLT
: // A <s B implies A != B and A <=s B are true.
3541 return Pred2
== ICMP_NE
|| Pred2
== ICMP_SLE
;
3546 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1
, Predicate Pred2
) {
3547 return isImpliedTrueByMatchingCmp(Pred1
, getInversePredicate(Pred2
));
3550 //===----------------------------------------------------------------------===//
3551 // SwitchInst Implementation
3552 //===----------------------------------------------------------------------===//
3554 void SwitchInst::init(Value
*Value
, BasicBlock
*Default
, unsigned NumReserved
) {
3555 assert(Value
&& Default
&& NumReserved
);
3556 ReservedSpace
= NumReserved
;
3557 setNumHungOffUseOperands(2);
3558 allocHungoffUses(ReservedSpace
);
3564 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3565 /// switch on and a default destination. The number of additional cases can
3566 /// be specified here to make memory allocation more efficient. This
3567 /// constructor can also autoinsert before another instruction.
3568 SwitchInst::SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
3569 Instruction
*InsertBefore
)
3570 : TerminatorInst(Type::getVoidTy(Value
->getContext()), Instruction::Switch
,
3571 nullptr, 0, InsertBefore
) {
3572 init(Value
, Default
, 2+NumCases
*2);
3575 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3576 /// switch on and a default destination. The number of additional cases can
3577 /// be specified here to make memory allocation more efficient. This
3578 /// constructor also autoinserts at the end of the specified BasicBlock.
3579 SwitchInst::SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
3580 BasicBlock
*InsertAtEnd
)
3581 : TerminatorInst(Type::getVoidTy(Value
->getContext()), Instruction::Switch
,
3582 nullptr, 0, InsertAtEnd
) {
3583 init(Value
, Default
, 2+NumCases
*2);
3586 SwitchInst::SwitchInst(const SwitchInst
&SI
)
3587 : TerminatorInst(SI
.getType(), Instruction::Switch
, nullptr, 0) {
3588 init(SI
.getCondition(), SI
.getDefaultDest(), SI
.getNumOperands());
3589 setNumHungOffUseOperands(SI
.getNumOperands());
3590 Use
*OL
= getOperandList();
3591 const Use
*InOL
= SI
.getOperandList();
3592 for (unsigned i
= 2, E
= SI
.getNumOperands(); i
!= E
; i
+= 2) {
3594 OL
[i
+1] = InOL
[i
+1];
3596 SubclassOptionalData
= SI
.SubclassOptionalData
;
3600 /// addCase - Add an entry to the switch instruction...
3602 void SwitchInst::addCase(ConstantInt
*OnVal
, BasicBlock
*Dest
) {
3603 unsigned NewCaseIdx
= getNumCases();
3604 unsigned OpNo
= getNumOperands();
3605 if (OpNo
+2 > ReservedSpace
)
3606 growOperands(); // Get more space!
3607 // Initialize some new operands.
3608 assert(OpNo
+1 < ReservedSpace
&& "Growing didn't work!");
3609 setNumHungOffUseOperands(OpNo
+2);
3610 CaseHandle
Case(this, NewCaseIdx
);
3611 Case
.setValue(OnVal
);
3612 Case
.setSuccessor(Dest
);
3615 /// removeCase - This method removes the specified case and its successor
3616 /// from the switch instruction.
3617 SwitchInst::CaseIt
SwitchInst::removeCase(CaseIt I
) {
3618 unsigned idx
= I
->getCaseIndex();
3620 assert(2 + idx
*2 < getNumOperands() && "Case index out of range!!!");
3622 unsigned NumOps
= getNumOperands();
3623 Use
*OL
= getOperandList();
3625 // Overwrite this case with the end of the list.
3626 if (2 + (idx
+ 1) * 2 != NumOps
) {
3627 OL
[2 + idx
* 2] = OL
[NumOps
- 2];
3628 OL
[2 + idx
* 2 + 1] = OL
[NumOps
- 1];
3631 // Nuke the last value.
3632 OL
[NumOps
-2].set(nullptr);
3633 OL
[NumOps
-2+1].set(nullptr);
3634 setNumHungOffUseOperands(NumOps
-2);
3636 return CaseIt(this, idx
);
3639 /// growOperands - grow operands - This grows the operand list in response
3640 /// to a push_back style of operation. This grows the number of ops by 3 times.
3642 void SwitchInst::growOperands() {
3643 unsigned e
= getNumOperands();
3644 unsigned NumOps
= e
*3;
3646 ReservedSpace
= NumOps
;
3647 growHungoffUses(ReservedSpace
);
3650 //===----------------------------------------------------------------------===//
3651 // IndirectBrInst Implementation
3652 //===----------------------------------------------------------------------===//
3654 void IndirectBrInst::init(Value
*Address
, unsigned NumDests
) {
3655 assert(Address
&& Address
->getType()->isPointerTy() &&
3656 "Address of indirectbr must be a pointer");
3657 ReservedSpace
= 1+NumDests
;
3658 setNumHungOffUseOperands(1);
3659 allocHungoffUses(ReservedSpace
);
3665 /// growOperands - grow operands - This grows the operand list in response
3666 /// to a push_back style of operation. This grows the number of ops by 2 times.
3668 void IndirectBrInst::growOperands() {
3669 unsigned e
= getNumOperands();
3670 unsigned NumOps
= e
*2;
3672 ReservedSpace
= NumOps
;
3673 growHungoffUses(ReservedSpace
);
3676 IndirectBrInst::IndirectBrInst(Value
*Address
, unsigned NumCases
,
3677 Instruction
*InsertBefore
)
3678 : TerminatorInst(Type::getVoidTy(Address
->getContext()),Instruction::IndirectBr
,
3679 nullptr, 0, InsertBefore
) {
3680 init(Address
, NumCases
);
3683 IndirectBrInst::IndirectBrInst(Value
*Address
, unsigned NumCases
,
3684 BasicBlock
*InsertAtEnd
)
3685 : TerminatorInst(Type::getVoidTy(Address
->getContext()),Instruction::IndirectBr
,
3686 nullptr, 0, InsertAtEnd
) {
3687 init(Address
, NumCases
);
3690 IndirectBrInst::IndirectBrInst(const IndirectBrInst
&IBI
)
3691 : TerminatorInst(Type::getVoidTy(IBI
.getContext()), Instruction::IndirectBr
,
3692 nullptr, IBI
.getNumOperands()) {
3693 allocHungoffUses(IBI
.getNumOperands());
3694 Use
*OL
= getOperandList();
3695 const Use
*InOL
= IBI
.getOperandList();
3696 for (unsigned i
= 0, E
= IBI
.getNumOperands(); i
!= E
; ++i
)
3698 SubclassOptionalData
= IBI
.SubclassOptionalData
;
3701 /// addDestination - Add a destination.
3703 void IndirectBrInst::addDestination(BasicBlock
*DestBB
) {
3704 unsigned OpNo
= getNumOperands();
3705 if (OpNo
+1 > ReservedSpace
)
3706 growOperands(); // Get more space!
3707 // Initialize some new operands.
3708 assert(OpNo
< ReservedSpace
&& "Growing didn't work!");
3709 setNumHungOffUseOperands(OpNo
+1);
3710 getOperandList()[OpNo
] = DestBB
;
3713 /// removeDestination - This method removes the specified successor from the
3714 /// indirectbr instruction.
3715 void IndirectBrInst::removeDestination(unsigned idx
) {
3716 assert(idx
< getNumOperands()-1 && "Successor index out of range!");
3718 unsigned NumOps
= getNumOperands();
3719 Use
*OL
= getOperandList();
3721 // Replace this value with the last one.
3722 OL
[idx
+1] = OL
[NumOps
-1];
3724 // Nuke the last value.
3725 OL
[NumOps
-1].set(nullptr);
3726 setNumHungOffUseOperands(NumOps
-1);
3729 //===----------------------------------------------------------------------===//
3730 // cloneImpl() implementations
3731 //===----------------------------------------------------------------------===//
3733 // Define these methods here so vtables don't get emitted into every translation
3734 // unit that uses these classes.
3736 GetElementPtrInst
*GetElementPtrInst::cloneImpl() const {
3737 return new (getNumOperands()) GetElementPtrInst(*this);
3740 BinaryOperator
*BinaryOperator::cloneImpl() const {
3741 return Create(getOpcode(), Op
<0>(), Op
<1>());
3744 FCmpInst
*FCmpInst::cloneImpl() const {
3745 return new FCmpInst(getPredicate(), Op
<0>(), Op
<1>());
3748 ICmpInst
*ICmpInst::cloneImpl() const {
3749 return new ICmpInst(getPredicate(), Op
<0>(), Op
<1>());
3752 ExtractValueInst
*ExtractValueInst::cloneImpl() const {
3753 return new ExtractValueInst(*this);
3756 InsertValueInst
*InsertValueInst::cloneImpl() const {
3757 return new InsertValueInst(*this);
3760 AllocaInst
*AllocaInst::cloneImpl() const {
3761 AllocaInst
*Result
= new AllocaInst(getAllocatedType(),
3762 getType()->getAddressSpace(),
3763 (Value
*)getOperand(0), getAlignment());
3764 Result
->setUsedWithInAlloca(isUsedWithInAlloca());
3765 Result
->setSwiftError(isSwiftError());
3769 LoadInst
*LoadInst::cloneImpl() const {
3770 return new LoadInst(getOperand(0), Twine(), isVolatile(),
3771 getAlignment(), getOrdering(), getSyncScopeID());
3774 StoreInst
*StoreInst::cloneImpl() const {
3775 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3776 getAlignment(), getOrdering(), getSyncScopeID());
3780 AtomicCmpXchgInst
*AtomicCmpXchgInst::cloneImpl() const {
3781 AtomicCmpXchgInst
*Result
=
3782 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3783 getSuccessOrdering(), getFailureOrdering(),
3785 Result
->setVolatile(isVolatile());
3786 Result
->setWeak(isWeak());
3790 AtomicRMWInst
*AtomicRMWInst::cloneImpl() const {
3791 AtomicRMWInst
*Result
=
3792 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
3793 getOrdering(), getSyncScopeID());
3794 Result
->setVolatile(isVolatile());
3798 FenceInst
*FenceInst::cloneImpl() const {
3799 return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
3802 TruncInst
*TruncInst::cloneImpl() const {
3803 return new TruncInst(getOperand(0), getType());
3806 ZExtInst
*ZExtInst::cloneImpl() const {
3807 return new ZExtInst(getOperand(0), getType());
3810 SExtInst
*SExtInst::cloneImpl() const {
3811 return new SExtInst(getOperand(0), getType());
3814 FPTruncInst
*FPTruncInst::cloneImpl() const {
3815 return new FPTruncInst(getOperand(0), getType());
3818 FPExtInst
*FPExtInst::cloneImpl() const {
3819 return new FPExtInst(getOperand(0), getType());
3822 UIToFPInst
*UIToFPInst::cloneImpl() const {
3823 return new UIToFPInst(getOperand(0), getType());
3826 SIToFPInst
*SIToFPInst::cloneImpl() const {
3827 return new SIToFPInst(getOperand(0), getType());
3830 FPToUIInst
*FPToUIInst::cloneImpl() const {
3831 return new FPToUIInst(getOperand(0), getType());
3834 FPToSIInst
*FPToSIInst::cloneImpl() const {
3835 return new FPToSIInst(getOperand(0), getType());
3838 PtrToIntInst
*PtrToIntInst::cloneImpl() const {
3839 return new PtrToIntInst(getOperand(0), getType());
3842 IntToPtrInst
*IntToPtrInst::cloneImpl() const {
3843 return new IntToPtrInst(getOperand(0), getType());
3846 BitCastInst
*BitCastInst::cloneImpl() const {
3847 return new BitCastInst(getOperand(0), getType());
3850 AddrSpaceCastInst
*AddrSpaceCastInst::cloneImpl() const {
3851 return new AddrSpaceCastInst(getOperand(0), getType());
3854 CallInst
*CallInst::cloneImpl() const {
3855 if (hasOperandBundles()) {
3856 unsigned DescriptorBytes
= getNumOperandBundles() * sizeof(BundleOpInfo
);
3857 return new(getNumOperands(), DescriptorBytes
) CallInst(*this);
3859 return new(getNumOperands()) CallInst(*this);
3862 SelectInst
*SelectInst::cloneImpl() const {
3863 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3866 VAArgInst
*VAArgInst::cloneImpl() const {
3867 return new VAArgInst(getOperand(0), getType());
3870 ExtractElementInst
*ExtractElementInst::cloneImpl() const {
3871 return ExtractElementInst::Create(getOperand(0), getOperand(1));
3874 InsertElementInst
*InsertElementInst::cloneImpl() const {
3875 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3878 ShuffleVectorInst
*ShuffleVectorInst::cloneImpl() const {
3879 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3882 PHINode
*PHINode::cloneImpl() const { return new PHINode(*this); }
3884 LandingPadInst
*LandingPadInst::cloneImpl() const {
3885 return new LandingPadInst(*this);
3888 ReturnInst
*ReturnInst::cloneImpl() const {
3889 return new(getNumOperands()) ReturnInst(*this);
3892 BranchInst
*BranchInst::cloneImpl() const {
3893 return new(getNumOperands()) BranchInst(*this);
3896 SwitchInst
*SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
3898 IndirectBrInst
*IndirectBrInst::cloneImpl() const {
3899 return new IndirectBrInst(*this);
3902 InvokeInst
*InvokeInst::cloneImpl() const {
3903 if (hasOperandBundles()) {
3904 unsigned DescriptorBytes
= getNumOperandBundles() * sizeof(BundleOpInfo
);
3905 return new(getNumOperands(), DescriptorBytes
) InvokeInst(*this);
3907 return new(getNumOperands()) InvokeInst(*this);
3910 ResumeInst
*ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
3912 CleanupReturnInst
*CleanupReturnInst::cloneImpl() const {
3913 return new (getNumOperands()) CleanupReturnInst(*this);
3916 CatchReturnInst
*CatchReturnInst::cloneImpl() const {
3917 return new (getNumOperands()) CatchReturnInst(*this);
3920 CatchSwitchInst
*CatchSwitchInst::cloneImpl() const {
3921 return new CatchSwitchInst(*this);
3924 FuncletPadInst
*FuncletPadInst::cloneImpl() const {
3925 return new (getNumOperands()) FuncletPadInst(*this);
3928 UnreachableInst
*UnreachableInst::cloneImpl() const {
3929 LLVMContext
&Context
= getContext();
3930 return new UnreachableInst(Context
);