1 //===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Run a sanity check on the IR to ensure that Safepoints - if they've been
11 // inserted - were inserted correctly. In particular, look for use of
12 // non-relocated values after a safepoint. It's primary use is to check the
13 // correctness of safepoint insertion immediately after insertion, but it can
14 // also be used to verify that later transforms have not found a way to break
15 // safepoint semenatics.
17 // In its current form, this verify checks a property which is sufficient, but
18 // not neccessary for correctness. There are some cases where an unrelocated
19 // pointer can be used after the safepoint. Consider this example:
23 // (a',b') = safepoint(a,b)
27 // Because it is valid to reorder 'c' above the safepoint, this is legal. In
28 // practice, this is a somewhat uncommon transform, but CodeGenPrep does create
29 // idioms like this. The verifier knows about these cases and avoids reporting
32 //===----------------------------------------------------------------------===//
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/PostOrderIterator.h"
36 #include "llvm/ADT/SetOperations.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/IR/SafepointIRVerifier.h"
47 #include "llvm/IR/Statepoint.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/raw_ostream.h"
52 #define DEBUG_TYPE "safepoint-ir-verifier"
56 /// This option is used for writing test cases. Instead of crashing the program
57 /// when verification fails, report a message to the console (for FileCheck
58 /// usage) and continue execution as if nothing happened.
59 static cl::opt
<bool> PrintOnly("safepoint-ir-verifier-print-only",
64 /// This CFG Deadness finds dead blocks and edges. Algorithm starts with a set
65 /// of blocks unreachable from entry then propagates deadness using foldable
66 /// conditional branches without modifying CFG. So GVN does but it changes CFG
67 /// by splitting critical edges. In most cases passes rely on SimplifyCFG to
68 /// clean up dead blocks, but in some cases, like verification or loop passes
69 /// it's not possible.
71 const DominatorTree
*DT
= nullptr;
72 SetVector
<const BasicBlock
*> DeadBlocks
;
73 SetVector
<const Use
*> DeadEdges
; // Contains all dead edges from live blocks.
76 /// Return the edge that coresponds to the predecessor.
77 static const Use
& getEdge(const_pred_iterator
&PredIt
) {
78 auto &PU
= PredIt
.getUse();
79 return PU
.getUser()->getOperandUse(PU
.getOperandNo());
82 /// Return true if there is at least one live edge that corresponds to the
83 /// basic block InBB listed in the phi node.
84 bool hasLiveIncomingEdge(const PHINode
*PN
, const BasicBlock
*InBB
) const {
85 assert(!isDeadBlock(InBB
) && "block must be live");
86 const BasicBlock
* BB
= PN
->getParent();
88 for (const_pred_iterator
PredIt(BB
), End(BB
, true); PredIt
!= End
; ++PredIt
) {
89 if (InBB
== *PredIt
) {
90 if (!isDeadEdge(&getEdge(PredIt
)))
96 assert(Listed
&& "basic block is not found among incoming blocks");
101 bool isDeadBlock(const BasicBlock
*BB
) const {
102 return DeadBlocks
.count(BB
);
105 bool isDeadEdge(const Use
*U
) const {
106 assert(dyn_cast
<Instruction
>(U
->getUser())->isTerminator() &&
107 "edge must be operand of terminator");
108 assert(cast_or_null
<BasicBlock
>(U
->get()) &&
109 "edge must refer to basic block");
110 assert(!isDeadBlock(dyn_cast
<Instruction
>(U
->getUser())->getParent()) &&
111 "isDeadEdge() must be applied to edge from live block");
112 return DeadEdges
.count(U
);
115 bool hasLiveIncomingEdges(const BasicBlock
*BB
) const {
116 // Check if all incoming edges are dead.
117 for (const_pred_iterator
PredIt(BB
), End(BB
, true); PredIt
!= End
; ++PredIt
) {
118 auto &PU
= PredIt
.getUse();
119 const Use
&U
= PU
.getUser()->getOperandUse(PU
.getOperandNo());
120 if (!isDeadBlock(*PredIt
) && !isDeadEdge(&U
))
121 return true; // Found a live edge.
126 void processFunction(const Function
&F
, const DominatorTree
&DT
) {
129 // Start with all blocks unreachable from entry.
130 for (const BasicBlock
&BB
: F
)
131 if (!DT
.isReachableFromEntry(&BB
))
132 DeadBlocks
.insert(&BB
);
134 // Top-down walk of the dominator tree
135 ReversePostOrderTraversal
<const Function
*> RPOT(&F
);
136 for (const BasicBlock
*BB
: RPOT
) {
137 const TerminatorInst
*TI
= BB
->getTerminator();
138 assert(TI
&& "blocks must be well formed");
140 // For conditional branches, we can perform simple conditional propagation on
141 // the condition value itself.
142 const BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
);
143 if (!BI
|| !BI
->isConditional() || !isa
<Constant
>(BI
->getCondition()))
146 // If a branch has two identical successors, we cannot declare either dead.
147 if (BI
->getSuccessor(0) == BI
->getSuccessor(1))
150 ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(BI
->getCondition());
154 addDeadEdge(BI
->getOperandUse(Cond
->getZExtValue() ? 1 : 2));
159 void addDeadBlock(const BasicBlock
*BB
) {
160 SmallVector
<const BasicBlock
*, 4> NewDead
;
161 SmallSetVector
<const BasicBlock
*, 4> DF
;
163 NewDead
.push_back(BB
);
164 while (!NewDead
.empty()) {
165 const BasicBlock
*D
= NewDead
.pop_back_val();
169 // All blocks dominated by D are dead.
170 SmallVector
<BasicBlock
*, 8> Dom
;
171 DT
->getDescendants(const_cast<BasicBlock
*>(D
), Dom
);
172 // Do not need to mark all in and out edges dead
173 // because BB is marked dead and this is enough
175 DeadBlocks
.insert(Dom
.begin(), Dom
.end());
177 // Figure out the dominance-frontier(D).
178 for (BasicBlock
*B
: Dom
)
179 for (BasicBlock
*S
: successors(B
))
180 if (!isDeadBlock(S
) && !hasLiveIncomingEdges(S
))
181 NewDead
.push_back(S
);
185 void addDeadEdge(const Use
&DeadEdge
) {
186 if (!DeadEdges
.insert(&DeadEdge
))
189 BasicBlock
*BB
= cast_or_null
<BasicBlock
>(DeadEdge
.get());
190 if (hasLiveIncomingEdges(BB
))
198 static void Verify(const Function
&F
, const DominatorTree
&DT
,
199 const CFGDeadness
&CD
);
203 struct SafepointIRVerifier
: public FunctionPass
{
204 static char ID
; // Pass identification, replacement for typeid
205 SafepointIRVerifier() : FunctionPass(ID
) {
206 initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
209 bool runOnFunction(Function
&F
) override
{
210 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
212 CD
.processFunction(F
, DT
);
214 return false; // no modifications
217 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
218 AU
.addRequiredID(DominatorTreeWrapperPass::ID
);
219 AU
.setPreservesAll();
222 StringRef
getPassName() const override
{ return "safepoint verifier"; }
226 void llvm::verifySafepointIR(Function
&F
) {
227 SafepointIRVerifier pass
;
228 pass
.runOnFunction(F
);
231 char SafepointIRVerifier::ID
= 0;
233 FunctionPass
*llvm::createSafepointIRVerifierPass() {
234 return new SafepointIRVerifier();
237 INITIALIZE_PASS_BEGIN(SafepointIRVerifier
, "verify-safepoint-ir",
238 "Safepoint IR Verifier", false, false)
239 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
240 INITIALIZE_PASS_END(SafepointIRVerifier
, "verify-safepoint-ir",
241 "Safepoint IR Verifier", false, false)
243 static bool isGCPointerType(Type
*T
) {
244 if (auto *PT
= dyn_cast
<PointerType
>(T
))
245 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
246 // GC managed heap. We know that a pointer into this heap needs to be
247 // updated and that no other pointer does.
248 return (1 == PT
->getAddressSpace());
252 static bool containsGCPtrType(Type
*Ty
) {
253 if (isGCPointerType(Ty
))
255 if (VectorType
*VT
= dyn_cast
<VectorType
>(Ty
))
256 return isGCPointerType(VT
->getScalarType());
257 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(Ty
))
258 return containsGCPtrType(AT
->getElementType());
259 if (StructType
*ST
= dyn_cast
<StructType
>(Ty
))
260 return std::any_of(ST
->subtypes().begin(), ST
->subtypes().end(),
265 // Debugging aid -- prints a [Begin, End) range of values.
266 template<typename IteratorTy
>
267 static void PrintValueSet(raw_ostream
&OS
, IteratorTy Begin
, IteratorTy End
) {
269 while (Begin
!= End
) {
270 OS
<< **Begin
<< " ";
276 /// The verifier algorithm is phrased in terms of availability. The set of
277 /// values "available" at a given point in the control flow graph is the set of
278 /// correctly relocated value at that point, and is a subset of the set of
279 /// definitions dominating that point.
281 using AvailableValueSet
= DenseSet
<const Value
*>;
283 /// State we compute and track per basic block.
284 struct BasicBlockState
{
285 // Set of values available coming in, before the phi nodes
286 AvailableValueSet AvailableIn
;
288 // Set of values available going out
289 AvailableValueSet AvailableOut
;
291 // AvailableOut minus AvailableIn.
292 // All elements are Instructions
293 AvailableValueSet Contribution
;
295 // True if this block contains a safepoint and thus AvailableIn does not
296 // contribute to AvailableOut.
297 bool Cleared
= false;
300 /// A given derived pointer can have multiple base pointers through phi/selects.
301 /// This type indicates when the base pointer is exclusively constant
302 /// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
303 /// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
306 NonConstant
= 1, // Base pointers is not exclusively constant.
308 ExclusivelySomeConstant
// Base pointers for a given derived pointer is from a
309 // set of constants, but they are not exclusively
313 /// Return the baseType for Val which states whether Val is exclusively
314 /// derived from constant/null, or not exclusively derived from constant.
315 /// Val is exclusively derived off a constant base when all operands of phi and
316 /// selects are derived off a constant base.
317 static enum BaseType
getBaseType(const Value
*Val
) {
319 SmallVector
<const Value
*, 32> Worklist
;
320 DenseSet
<const Value
*> Visited
;
321 bool isExclusivelyDerivedFromNull
= true;
322 Worklist
.push_back(Val
);
323 // Strip through all the bitcasts and geps to get base pointer. Also check for
324 // the exclusive value when there can be multiple base pointers (through phis
326 while(!Worklist
.empty()) {
327 const Value
*V
= Worklist
.pop_back_val();
328 if (!Visited
.insert(V
).second
)
331 if (const auto *CI
= dyn_cast
<CastInst
>(V
)) {
332 Worklist
.push_back(CI
->stripPointerCasts());
335 if (const auto *GEP
= dyn_cast
<GetElementPtrInst
>(V
)) {
336 Worklist
.push_back(GEP
->getPointerOperand());
339 // Push all the incoming values of phi node into the worklist for
341 if (const auto *PN
= dyn_cast
<PHINode
>(V
)) {
342 for (Value
*InV
: PN
->incoming_values())
343 Worklist
.push_back(InV
);
346 if (const auto *SI
= dyn_cast
<SelectInst
>(V
)) {
347 // Push in the true and false values
348 Worklist
.push_back(SI
->getTrueValue());
349 Worklist
.push_back(SI
->getFalseValue());
352 if (isa
<Constant
>(V
)) {
353 // We found at least one base pointer which is non-null, so this derived
354 // pointer is not exclusively derived from null.
355 if (V
!= Constant::getNullValue(V
->getType()))
356 isExclusivelyDerivedFromNull
= false;
357 // Continue processing the remaining values to make sure it's exclusively
361 // At this point, we know that the base pointer is not exclusively
363 return BaseType::NonConstant
;
365 // Now, we know that the base pointer is exclusively constant, but we need to
366 // differentiate between exclusive null constant and non-null constant.
367 return isExclusivelyDerivedFromNull
? BaseType::ExclusivelyNull
368 : BaseType::ExclusivelySomeConstant
;
371 static bool isNotExclusivelyConstantDerived(const Value
*V
) {
372 return getBaseType(V
) == BaseType::NonConstant
;
376 class InstructionVerifier
;
378 /// Builds BasicBlockState for each BB of the function.
379 /// It can traverse function for verification and provides all required
382 /// GC pointer may be in one of three states: relocated, unrelocated and
384 /// Relocated pointer may be used without any restrictions.
385 /// Unrelocated pointer cannot be dereferenced, passed as argument to any call
386 /// or returned. Unrelocated pointer may be safely compared against another
387 /// unrelocated pointer or against a pointer exclusively derived from null.
388 /// Poisoned pointers are produced when we somehow derive pointer from relocated
389 /// and unrelocated pointers (e.g. phi, select). This pointers may be safely
390 /// used in a very limited number of situations. Currently the only way to use
391 /// it is comparison against constant exclusively derived from null. All
392 /// limitations arise due to their undefined state: this pointers should be
393 /// treated as relocated and unrelocated simultaneously.
394 /// Rules of deriving:
395 /// R + U = P - that's where the poisoned pointers come from
400 /// Where "+" - any operation that somehow derive pointer, U - unrelocated,
401 /// R - relocated and P - poisoned, C - constant, X - U or R or P or C or
402 /// nothing (in case when "+" is unary operation).
403 /// Deriving of pointers by itself is always safe.
404 /// NOTE: when we are making decision on the status of instruction's result:
405 /// a) for phi we need to check status of each input *at the end of
406 /// corresponding predecessor BB*.
407 /// b) for other instructions we need to check status of each input *at the
410 /// FIXME: This works fairly well except one case
412 /// p = *some GC-ptr def*
413 /// p1 = gep p, offset
421 /// p2 = phi [p, bb2] [p1, bb1]
422 /// p3 = phi [p, bb2] [p, bb1]
423 /// here p and p1 is unrelocated
424 /// p2 and p3 is poisoned (though they shouldn't be)
426 /// This leads to some weird results:
427 /// cmp eq p, p2 - illegal instruction (false-positive)
428 /// cmp eq p1, p2 - illegal instruction (false-positive)
429 /// cmp eq p, p3 - illegal instruction (false-positive)
430 /// cmp eq p, p1 - ok
431 /// To fix this we need to introduce conception of generations and be able to
432 /// check if two values belong to one generation or not. This way p2 will be
433 /// considered to be unrelocated and no false alarm will happen.
436 const CFGDeadness
&CD
;
437 SpecificBumpPtrAllocator
<BasicBlockState
> BSAllocator
;
438 DenseMap
<const BasicBlock
*, BasicBlockState
*> BlockMap
;
439 // This set contains defs of unrelocated pointers that are proved to be legal
440 // and don't need verification.
441 DenseSet
<const Instruction
*> ValidUnrelocatedDefs
;
442 // This set contains poisoned defs. They can be safely ignored during
444 DenseSet
<const Value
*> PoisonedDefs
;
447 GCPtrTracker(const Function
&F
, const DominatorTree
&DT
,
448 const CFGDeadness
&CD
);
450 bool hasLiveIncomingEdge(const PHINode
*PN
, const BasicBlock
*InBB
) const {
451 return CD
.hasLiveIncomingEdge(PN
, InBB
);
454 BasicBlockState
*getBasicBlockState(const BasicBlock
*BB
);
455 const BasicBlockState
*getBasicBlockState(const BasicBlock
*BB
) const;
457 bool isValuePoisoned(const Value
*V
) const { return PoisonedDefs
.count(V
); }
459 /// Traverse each BB of the function and call
460 /// InstructionVerifier::verifyInstruction for each possibly invalid
462 /// It destructively modifies GCPtrTracker so it's passed via rvalue reference
463 /// in order to prohibit further usages of GCPtrTracker as it'll be in
464 /// inconsistent state.
465 static void verifyFunction(GCPtrTracker
&&Tracker
,
466 InstructionVerifier
&Verifier
);
468 /// Returns true for reachable and live blocks.
469 bool isMapped(const BasicBlock
*BB
) const {
470 return BlockMap
.find(BB
) != BlockMap
.end();
474 /// Returns true if the instruction may be safely skipped during verification.
475 bool instructionMayBeSkipped(const Instruction
*I
) const;
477 /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for
478 /// each of them until it converges.
479 void recalculateBBsStates();
481 /// Remove from Contribution all defs that legally produce unrelocated
482 /// pointers and saves them to ValidUnrelocatedDefs.
483 /// Though Contribution should belong to BBS it is passed separately with
484 /// different const-modifier in order to emphasize (and guarantee) that only
485 /// Contribution will be changed.
486 /// Returns true if Contribution was changed otherwise false.
487 bool removeValidUnrelocatedDefs(const BasicBlock
*BB
,
488 const BasicBlockState
*BBS
,
489 AvailableValueSet
&Contribution
);
491 /// Gather all the definitions dominating the start of BB into Result. This is
492 /// simply the defs introduced by every dominating basic block and the
493 /// function arguments.
494 void gatherDominatingDefs(const BasicBlock
*BB
, AvailableValueSet
&Result
,
495 const DominatorTree
&DT
);
497 /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS,
498 /// which is the BasicBlockState for BB.
499 /// ContributionChanged is set when the verifier runs for the first time
500 /// (in this case Contribution was changed from 'empty' to its initial state)
501 /// or when Contribution of this BB was changed since last computation.
502 static void transferBlock(const BasicBlock
*BB
, BasicBlockState
&BBS
,
503 bool ContributionChanged
);
505 /// Model the effect of an instruction on the set of available values.
506 static void transferInstruction(const Instruction
&I
, bool &Cleared
,
507 AvailableValueSet
&Available
);
510 /// It is a visitor for GCPtrTracker::verifyFunction. It decides if the
511 /// instruction (which uses heap reference) is legal or not, given our safepoint
513 class InstructionVerifier
{
514 bool AnyInvalidUses
= false;
517 void verifyInstruction(const GCPtrTracker
*Tracker
, const Instruction
&I
,
518 const AvailableValueSet
&AvailableSet
);
520 bool hasAnyInvalidUses() const { return AnyInvalidUses
; }
523 void reportInvalidUse(const Value
&V
, const Instruction
&I
);
525 } // end anonymous namespace
527 GCPtrTracker::GCPtrTracker(const Function
&F
, const DominatorTree
&DT
,
528 const CFGDeadness
&CD
) : F(F
), CD(CD
) {
529 // Calculate Contribution of each live BB.
530 // Allocate BB states for live blocks.
531 for (const BasicBlock
&BB
: F
)
532 if (!CD
.isDeadBlock(&BB
)) {
533 BasicBlockState
*BBS
= new (BSAllocator
.Allocate()) BasicBlockState
;
534 for (const auto &I
: BB
)
535 transferInstruction(I
, BBS
->Cleared
, BBS
->Contribution
);
539 // Initialize AvailableIn/Out sets of each BB using only information about
541 for (auto &BBI
: BlockMap
) {
542 gatherDominatingDefs(BBI
.first
, BBI
.second
->AvailableIn
, DT
);
543 transferBlock(BBI
.first
, *BBI
.second
, true);
546 // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out
547 // sets of each BB until it converges. If any def is proved to be an
548 // unrelocated pointer, it will be removed from all BBSs.
549 recalculateBBsStates();
552 BasicBlockState
*GCPtrTracker::getBasicBlockState(const BasicBlock
*BB
) {
553 auto it
= BlockMap
.find(BB
);
554 return it
!= BlockMap
.end() ? it
->second
: nullptr;
557 const BasicBlockState
*GCPtrTracker::getBasicBlockState(
558 const BasicBlock
*BB
) const {
559 return const_cast<GCPtrTracker
*>(this)->getBasicBlockState(BB
);
562 bool GCPtrTracker::instructionMayBeSkipped(const Instruction
*I
) const {
563 // Poisoned defs are skipped since they are always safe by itself by
564 // definition (for details see comment to this class).
565 return ValidUnrelocatedDefs
.count(I
) || PoisonedDefs
.count(I
);
568 void GCPtrTracker::verifyFunction(GCPtrTracker
&&Tracker
,
569 InstructionVerifier
&Verifier
) {
570 // We need RPO here to a) report always the first error b) report errors in
571 // same order from run to run.
572 ReversePostOrderTraversal
<const Function
*> RPOT(&Tracker
.F
);
573 for (const BasicBlock
*BB
: RPOT
) {
574 BasicBlockState
*BBS
= Tracker
.getBasicBlockState(BB
);
578 // We destructively modify AvailableIn as we traverse the block instruction
580 AvailableValueSet
&AvailableSet
= BBS
->AvailableIn
;
581 for (const Instruction
&I
: *BB
) {
582 if (Tracker
.instructionMayBeSkipped(&I
))
583 continue; // This instruction shouldn't be added to AvailableSet.
585 Verifier
.verifyInstruction(&Tracker
, I
, AvailableSet
);
587 // Model the effect of current instruction on AvailableSet to keep the set
588 // relevant at each point of BB.
589 bool Cleared
= false;
590 transferInstruction(I
, Cleared
, AvailableSet
);
596 void GCPtrTracker::recalculateBBsStates() {
597 SetVector
<const BasicBlock
*> Worklist
;
598 // TODO: This order is suboptimal, it's better to replace it with priority
599 // queue where priority is RPO number of BB.
600 for (auto &BBI
: BlockMap
)
601 Worklist
.insert(BBI
.first
);
603 // This loop iterates the AvailableIn/Out sets until it converges.
604 // The AvailableIn and AvailableOut sets decrease as we iterate.
605 while (!Worklist
.empty()) {
606 const BasicBlock
*BB
= Worklist
.pop_back_val();
607 BasicBlockState
*BBS
= getBasicBlockState(BB
);
609 continue; // Ignore dead successors.
611 size_t OldInCount
= BBS
->AvailableIn
.size();
612 for (const_pred_iterator
PredIt(BB
), End(BB
, true); PredIt
!= End
; ++PredIt
) {
613 const BasicBlock
*PBB
= *PredIt
;
614 BasicBlockState
*PBBS
= getBasicBlockState(PBB
);
615 if (PBBS
&& !CD
.isDeadEdge(&CFGDeadness::getEdge(PredIt
)))
616 set_intersect(BBS
->AvailableIn
, PBBS
->AvailableOut
);
619 assert(OldInCount
>= BBS
->AvailableIn
.size() && "invariant!");
621 bool InputsChanged
= OldInCount
!= BBS
->AvailableIn
.size();
622 bool ContributionChanged
=
623 removeValidUnrelocatedDefs(BB
, BBS
, BBS
->Contribution
);
624 if (!InputsChanged
&& !ContributionChanged
)
627 size_t OldOutCount
= BBS
->AvailableOut
.size();
628 transferBlock(BB
, *BBS
, ContributionChanged
);
629 if (OldOutCount
!= BBS
->AvailableOut
.size()) {
630 assert(OldOutCount
> BBS
->AvailableOut
.size() && "invariant!");
631 Worklist
.insert(succ_begin(BB
), succ_end(BB
));
636 bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock
*BB
,
637 const BasicBlockState
*BBS
,
638 AvailableValueSet
&Contribution
) {
639 assert(&BBS
->Contribution
== &Contribution
&&
640 "Passed Contribution should be from the passed BasicBlockState!");
641 AvailableValueSet AvailableSet
= BBS
->AvailableIn
;
642 bool ContributionChanged
= false;
643 // For explanation why instructions are processed this way see
644 // "Rules of deriving" in the comment to this class.
645 for (const Instruction
&I
: *BB
) {
646 bool ValidUnrelocatedPointerDef
= false;
647 bool PoisonedPointerDef
= false;
648 // TODO: `select` instructions should be handled here too.
649 if (const PHINode
*PN
= dyn_cast
<PHINode
>(&I
)) {
650 if (containsGCPtrType(PN
->getType())) {
651 // If both is true, output is poisoned.
652 bool HasRelocatedInputs
= false;
653 bool HasUnrelocatedInputs
= false;
654 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
655 const BasicBlock
*InBB
= PN
->getIncomingBlock(i
);
656 if (!isMapped(InBB
) ||
657 !CD
.hasLiveIncomingEdge(PN
, InBB
))
658 continue; // Skip dead block or dead edge.
660 const Value
*InValue
= PN
->getIncomingValue(i
);
662 if (isNotExclusivelyConstantDerived(InValue
)) {
663 if (isValuePoisoned(InValue
)) {
664 // If any of inputs is poisoned, output is always poisoned too.
665 HasRelocatedInputs
= true;
666 HasUnrelocatedInputs
= true;
669 if (BlockMap
[InBB
]->AvailableOut
.count(InValue
))
670 HasRelocatedInputs
= true;
672 HasUnrelocatedInputs
= true;
675 if (HasUnrelocatedInputs
) {
676 if (HasRelocatedInputs
)
677 PoisonedPointerDef
= true;
679 ValidUnrelocatedPointerDef
= true;
682 } else if ((isa
<GetElementPtrInst
>(I
) || isa
<BitCastInst
>(I
)) &&
683 containsGCPtrType(I
.getType())) {
684 // GEP/bitcast of unrelocated pointer is legal by itself but this def
685 // shouldn't appear in any AvailableSet.
686 for (const Value
*V
: I
.operands())
687 if (containsGCPtrType(V
->getType()) &&
688 isNotExclusivelyConstantDerived(V
) && !AvailableSet
.count(V
)) {
689 if (isValuePoisoned(V
))
690 PoisonedPointerDef
= true;
692 ValidUnrelocatedPointerDef
= true;
696 assert(!(ValidUnrelocatedPointerDef
&& PoisonedPointerDef
) &&
697 "Value cannot be both unrelocated and poisoned!");
698 if (ValidUnrelocatedPointerDef
) {
699 // Remove def of unrelocated pointer from Contribution of this BB and
700 // trigger update of all its successors.
701 Contribution
.erase(&I
);
702 PoisonedDefs
.erase(&I
);
703 ValidUnrelocatedDefs
.insert(&I
);
704 LLVM_DEBUG(dbgs() << "Removing urelocated " << I
705 << " from Contribution of " << BB
->getName() << "\n");
706 ContributionChanged
= true;
707 } else if (PoisonedPointerDef
) {
708 // Mark pointer as poisoned, remove its def from Contribution and trigger
709 // update of all successors.
710 Contribution
.erase(&I
);
711 PoisonedDefs
.insert(&I
);
712 LLVM_DEBUG(dbgs() << "Removing poisoned " << I
<< " from Contribution of "
713 << BB
->getName() << "\n");
714 ContributionChanged
= true;
716 bool Cleared
= false;
717 transferInstruction(I
, Cleared
, AvailableSet
);
721 return ContributionChanged
;
724 void GCPtrTracker::gatherDominatingDefs(const BasicBlock
*BB
,
725 AvailableValueSet
&Result
,
726 const DominatorTree
&DT
) {
727 DomTreeNode
*DTN
= DT
[const_cast<BasicBlock
*>(BB
)];
729 assert(DTN
&& "Unreachable blocks are ignored");
730 while (DTN
->getIDom()) {
731 DTN
= DTN
->getIDom();
732 auto BBS
= getBasicBlockState(DTN
->getBlock());
733 assert(BBS
&& "immediate dominator cannot be dead for a live block");
734 const auto &Defs
= BBS
->Contribution
;
735 Result
.insert(Defs
.begin(), Defs
.end());
736 // If this block is 'Cleared', then nothing LiveIn to this block can be
737 // available after this block completes. Note: This turns out to be
738 // really important for reducing memory consuption of the initial available
739 // sets and thus peak memory usage by this verifier.
744 for (const Argument
&A
: BB
->getParent()->args())
745 if (containsGCPtrType(A
.getType()))
749 void GCPtrTracker::transferBlock(const BasicBlock
*BB
, BasicBlockState
&BBS
,
750 bool ContributionChanged
) {
751 const AvailableValueSet
&AvailableIn
= BBS
.AvailableIn
;
752 AvailableValueSet
&AvailableOut
= BBS
.AvailableOut
;
755 // AvailableOut will change only when Contribution changed.
756 if (ContributionChanged
)
757 AvailableOut
= BBS
.Contribution
;
759 // Otherwise, we need to reduce the AvailableOut set by things which are no
760 // longer in our AvailableIn
761 AvailableValueSet Temp
= BBS
.Contribution
;
762 set_union(Temp
, AvailableIn
);
763 AvailableOut
= std::move(Temp
);
766 LLVM_DEBUG(dbgs() << "Transfered block " << BB
->getName() << " from ";
767 PrintValueSet(dbgs(), AvailableIn
.begin(), AvailableIn
.end());
769 PrintValueSet(dbgs(), AvailableOut
.begin(), AvailableOut
.end());
773 void GCPtrTracker::transferInstruction(const Instruction
&I
, bool &Cleared
,
774 AvailableValueSet
&Available
) {
775 if (isStatepoint(I
)) {
778 } else if (containsGCPtrType(I
.getType()))
779 Available
.insert(&I
);
782 void InstructionVerifier::verifyInstruction(
783 const GCPtrTracker
*Tracker
, const Instruction
&I
,
784 const AvailableValueSet
&AvailableSet
) {
785 if (const PHINode
*PN
= dyn_cast
<PHINode
>(&I
)) {
786 if (containsGCPtrType(PN
->getType()))
787 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
788 const BasicBlock
*InBB
= PN
->getIncomingBlock(i
);
789 const BasicBlockState
*InBBS
= Tracker
->getBasicBlockState(InBB
);
791 !Tracker
->hasLiveIncomingEdge(PN
, InBB
))
792 continue; // Skip dead block or dead edge.
794 const Value
*InValue
= PN
->getIncomingValue(i
);
796 if (isNotExclusivelyConstantDerived(InValue
) &&
797 !InBBS
->AvailableOut
.count(InValue
))
798 reportInvalidUse(*InValue
, *PN
);
800 } else if (isa
<CmpInst
>(I
) &&
801 containsGCPtrType(I
.getOperand(0)->getType())) {
802 Value
*LHS
= I
.getOperand(0), *RHS
= I
.getOperand(1);
803 enum BaseType baseTyLHS
= getBaseType(LHS
),
804 baseTyRHS
= getBaseType(RHS
);
806 // Returns true if LHS and RHS are unrelocated pointers and they are
807 // valid unrelocated uses.
808 auto hasValidUnrelocatedUse
= [&AvailableSet
, Tracker
, baseTyLHS
, baseTyRHS
,
810 // A cmp instruction has valid unrelocated pointer operands only if
811 // both operands are unrelocated pointers.
812 // In the comparison between two pointers, if one is an unrelocated
813 // use, the other *should be* an unrelocated use, for this
814 // instruction to contain valid unrelocated uses. This unrelocated
815 // use can be a null constant as well, or another unrelocated
817 if (AvailableSet
.count(LHS
) || AvailableSet
.count(RHS
))
819 // Constant pointers (that are not exclusively null) may have
820 // meaning in different VMs, so we cannot reorder the compare
821 // against constant pointers before the safepoint. In other words,
822 // comparison of an unrelocated use against a non-null constant
824 if ((baseTyLHS
== BaseType::ExclusivelySomeConstant
&&
825 baseTyRHS
== BaseType::NonConstant
) ||
826 (baseTyLHS
== BaseType::NonConstant
&&
827 baseTyRHS
== BaseType::ExclusivelySomeConstant
))
830 // If one of pointers is poisoned and other is not exclusively derived
831 // from null it is an invalid expression: it produces poisoned result
832 // and unless we want to track all defs (not only gc pointers) the only
833 // option is to prohibit such instructions.
834 if ((Tracker
->isValuePoisoned(LHS
) && baseTyRHS
!= ExclusivelyNull
) ||
835 (Tracker
->isValuePoisoned(RHS
) && baseTyLHS
!= ExclusivelyNull
))
838 // All other cases are valid cases enumerated below:
839 // 1. Comparison between an exclusively derived null pointer and a
840 // constant base pointer.
841 // 2. Comparison between an exclusively derived null pointer and a
842 // non-constant unrelocated base pointer.
843 // 3. Comparison between 2 unrelocated pointers.
844 // 4. Comparison between a pointer exclusively derived from null and a
845 // non-constant poisoned pointer.
848 if (!hasValidUnrelocatedUse()) {
849 // Print out all non-constant derived pointers that are unrelocated
850 // uses, which are invalid.
851 if (baseTyLHS
== BaseType::NonConstant
&& !AvailableSet
.count(LHS
))
852 reportInvalidUse(*LHS
, I
);
853 if (baseTyRHS
== BaseType::NonConstant
&& !AvailableSet
.count(RHS
))
854 reportInvalidUse(*RHS
, I
);
857 for (const Value
*V
: I
.operands())
858 if (containsGCPtrType(V
->getType()) &&
859 isNotExclusivelyConstantDerived(V
) && !AvailableSet
.count(V
))
860 reportInvalidUse(*V
, I
);
864 void InstructionVerifier::reportInvalidUse(const Value
&V
,
865 const Instruction
&I
) {
866 errs() << "Illegal use of unrelocated value found!\n";
867 errs() << "Def: " << V
<< "\n";
868 errs() << "Use: " << I
<< "\n";
871 AnyInvalidUses
= true;
874 static void Verify(const Function
&F
, const DominatorTree
&DT
,
875 const CFGDeadness
&CD
) {
876 LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F
.getName()
879 dbgs() << "Verifying gc pointers in function: " << F
.getName() << "\n";
881 GCPtrTracker
Tracker(F
, DT
, CD
);
883 // We now have all the information we need to decide if the use of a heap
884 // reference is legal or not, given our safepoint semantics.
886 InstructionVerifier Verifier
;
887 GCPtrTracker::verifyFunction(std::move(Tracker
), Verifier
);
889 if (PrintOnly
&& !Verifier
.hasAnyInvalidUses()) {
890 dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F
.getName()