1 //===- Type.cpp - Implement the Type class --------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Type class for the IR library.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Type.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/Casting.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/raw_ostream.h"
35 //===----------------------------------------------------------------------===//
36 // Type Class Implementation
37 //===----------------------------------------------------------------------===//
39 Type
*Type::getPrimitiveType(LLVMContext
&C
, TypeID IDNumber
) {
41 case VoidTyID
: return getVoidTy(C
);
42 case HalfTyID
: return getHalfTy(C
);
43 case FloatTyID
: return getFloatTy(C
);
44 case DoubleTyID
: return getDoubleTy(C
);
45 case X86_FP80TyID
: return getX86_FP80Ty(C
);
46 case FP128TyID
: return getFP128Ty(C
);
47 case PPC_FP128TyID
: return getPPC_FP128Ty(C
);
48 case LabelTyID
: return getLabelTy(C
);
49 case MetadataTyID
: return getMetadataTy(C
);
50 case X86_MMXTyID
: return getX86_MMXTy(C
);
51 case TokenTyID
: return getTokenTy(C
);
57 bool Type::isIntegerTy(unsigned Bitwidth
) const {
58 return isIntegerTy() && cast
<IntegerType
>(this)->getBitWidth() == Bitwidth
;
61 bool Type::canLosslesslyBitCastTo(Type
*Ty
) const {
62 // Identity cast means no change so return true
66 // They are not convertible unless they are at least first class types
67 if (!this->isFirstClassType() || !Ty
->isFirstClassType())
70 // Vector -> Vector conversions are always lossless if the two vector types
71 // have the same size, otherwise not. Also, 64-bit vector types can be
72 // converted to x86mmx.
73 if (auto *thisPTy
= dyn_cast
<VectorType
>(this)) {
74 if (auto *thatPTy
= dyn_cast
<VectorType
>(Ty
))
75 return thisPTy
->getBitWidth() == thatPTy
->getBitWidth();
76 if (Ty
->getTypeID() == Type::X86_MMXTyID
&&
77 thisPTy
->getBitWidth() == 64)
81 if (this->getTypeID() == Type::X86_MMXTyID
)
82 if (auto *thatPTy
= dyn_cast
<VectorType
>(Ty
))
83 if (thatPTy
->getBitWidth() == 64)
86 // At this point we have only various mismatches of the first class types
87 // remaining and ptr->ptr. Just select the lossless conversions. Everything
88 // else is not lossless. Conservatively assume we can't losslessly convert
89 // between pointers with different address spaces.
90 if (auto *PTy
= dyn_cast
<PointerType
>(this)) {
91 if (auto *OtherPTy
= dyn_cast
<PointerType
>(Ty
))
92 return PTy
->getAddressSpace() == OtherPTy
->getAddressSpace();
95 return false; // Other types have no identity values
98 bool Type::isEmptyTy() const {
99 if (auto *ATy
= dyn_cast
<ArrayType
>(this)) {
100 unsigned NumElements
= ATy
->getNumElements();
101 return NumElements
== 0 || ATy
->getElementType()->isEmptyTy();
104 if (auto *STy
= dyn_cast
<StructType
>(this)) {
105 unsigned NumElements
= STy
->getNumElements();
106 for (unsigned i
= 0; i
< NumElements
; ++i
)
107 if (!STy
->getElementType(i
)->isEmptyTy())
115 unsigned Type::getPrimitiveSizeInBits() const {
116 switch (getTypeID()) {
117 case Type::HalfTyID
: return 16;
118 case Type::FloatTyID
: return 32;
119 case Type::DoubleTyID
: return 64;
120 case Type::X86_FP80TyID
: return 80;
121 case Type::FP128TyID
: return 128;
122 case Type::PPC_FP128TyID
: return 128;
123 case Type::X86_MMXTyID
: return 64;
124 case Type::IntegerTyID
: return cast
<IntegerType
>(this)->getBitWidth();
125 case Type::VectorTyID
: return cast
<VectorType
>(this)->getBitWidth();
130 unsigned Type::getScalarSizeInBits() const {
131 return getScalarType()->getPrimitiveSizeInBits();
134 int Type::getFPMantissaWidth() const {
135 if (auto *VTy
= dyn_cast
<VectorType
>(this))
136 return VTy
->getElementType()->getFPMantissaWidth();
137 assert(isFloatingPointTy() && "Not a floating point type!");
138 if (getTypeID() == HalfTyID
) return 11;
139 if (getTypeID() == FloatTyID
) return 24;
140 if (getTypeID() == DoubleTyID
) return 53;
141 if (getTypeID() == X86_FP80TyID
) return 64;
142 if (getTypeID() == FP128TyID
) return 113;
143 assert(getTypeID() == PPC_FP128TyID
&& "unknown fp type");
147 bool Type::isSizedDerivedType(SmallPtrSetImpl
<Type
*> *Visited
) const {
148 if (auto *ATy
= dyn_cast
<ArrayType
>(this))
149 return ATy
->getElementType()->isSized(Visited
);
151 if (auto *VTy
= dyn_cast
<VectorType
>(this))
152 return VTy
->getElementType()->isSized(Visited
);
154 return cast
<StructType
>(this)->isSized(Visited
);
157 //===----------------------------------------------------------------------===//
158 // Primitive 'Type' data
159 //===----------------------------------------------------------------------===//
161 Type
*Type::getVoidTy(LLVMContext
&C
) { return &C
.pImpl
->VoidTy
; }
162 Type
*Type::getLabelTy(LLVMContext
&C
) { return &C
.pImpl
->LabelTy
; }
163 Type
*Type::getHalfTy(LLVMContext
&C
) { return &C
.pImpl
->HalfTy
; }
164 Type
*Type::getFloatTy(LLVMContext
&C
) { return &C
.pImpl
->FloatTy
; }
165 Type
*Type::getDoubleTy(LLVMContext
&C
) { return &C
.pImpl
->DoubleTy
; }
166 Type
*Type::getMetadataTy(LLVMContext
&C
) { return &C
.pImpl
->MetadataTy
; }
167 Type
*Type::getTokenTy(LLVMContext
&C
) { return &C
.pImpl
->TokenTy
; }
168 Type
*Type::getX86_FP80Ty(LLVMContext
&C
) { return &C
.pImpl
->X86_FP80Ty
; }
169 Type
*Type::getFP128Ty(LLVMContext
&C
) { return &C
.pImpl
->FP128Ty
; }
170 Type
*Type::getPPC_FP128Ty(LLVMContext
&C
) { return &C
.pImpl
->PPC_FP128Ty
; }
171 Type
*Type::getX86_MMXTy(LLVMContext
&C
) { return &C
.pImpl
->X86_MMXTy
; }
173 IntegerType
*Type::getInt1Ty(LLVMContext
&C
) { return &C
.pImpl
->Int1Ty
; }
174 IntegerType
*Type::getInt8Ty(LLVMContext
&C
) { return &C
.pImpl
->Int8Ty
; }
175 IntegerType
*Type::getInt16Ty(LLVMContext
&C
) { return &C
.pImpl
->Int16Ty
; }
176 IntegerType
*Type::getInt32Ty(LLVMContext
&C
) { return &C
.pImpl
->Int32Ty
; }
177 IntegerType
*Type::getInt64Ty(LLVMContext
&C
) { return &C
.pImpl
->Int64Ty
; }
178 IntegerType
*Type::getInt128Ty(LLVMContext
&C
) { return &C
.pImpl
->Int128Ty
; }
180 IntegerType
*Type::getIntNTy(LLVMContext
&C
, unsigned N
) {
181 return IntegerType::get(C
, N
);
184 PointerType
*Type::getHalfPtrTy(LLVMContext
&C
, unsigned AS
) {
185 return getHalfTy(C
)->getPointerTo(AS
);
188 PointerType
*Type::getFloatPtrTy(LLVMContext
&C
, unsigned AS
) {
189 return getFloatTy(C
)->getPointerTo(AS
);
192 PointerType
*Type::getDoublePtrTy(LLVMContext
&C
, unsigned AS
) {
193 return getDoubleTy(C
)->getPointerTo(AS
);
196 PointerType
*Type::getX86_FP80PtrTy(LLVMContext
&C
, unsigned AS
) {
197 return getX86_FP80Ty(C
)->getPointerTo(AS
);
200 PointerType
*Type::getFP128PtrTy(LLVMContext
&C
, unsigned AS
) {
201 return getFP128Ty(C
)->getPointerTo(AS
);
204 PointerType
*Type::getPPC_FP128PtrTy(LLVMContext
&C
, unsigned AS
) {
205 return getPPC_FP128Ty(C
)->getPointerTo(AS
);
208 PointerType
*Type::getX86_MMXPtrTy(LLVMContext
&C
, unsigned AS
) {
209 return getX86_MMXTy(C
)->getPointerTo(AS
);
212 PointerType
*Type::getIntNPtrTy(LLVMContext
&C
, unsigned N
, unsigned AS
) {
213 return getIntNTy(C
, N
)->getPointerTo(AS
);
216 PointerType
*Type::getInt1PtrTy(LLVMContext
&C
, unsigned AS
) {
217 return getInt1Ty(C
)->getPointerTo(AS
);
220 PointerType
*Type::getInt8PtrTy(LLVMContext
&C
, unsigned AS
) {
221 return getInt8Ty(C
)->getPointerTo(AS
);
224 PointerType
*Type::getInt16PtrTy(LLVMContext
&C
, unsigned AS
) {
225 return getInt16Ty(C
)->getPointerTo(AS
);
228 PointerType
*Type::getInt32PtrTy(LLVMContext
&C
, unsigned AS
) {
229 return getInt32Ty(C
)->getPointerTo(AS
);
232 PointerType
*Type::getInt64PtrTy(LLVMContext
&C
, unsigned AS
) {
233 return getInt64Ty(C
)->getPointerTo(AS
);
236 //===----------------------------------------------------------------------===//
237 // IntegerType Implementation
238 //===----------------------------------------------------------------------===//
240 IntegerType
*IntegerType::get(LLVMContext
&C
, unsigned NumBits
) {
241 assert(NumBits
>= MIN_INT_BITS
&& "bitwidth too small");
242 assert(NumBits
<= MAX_INT_BITS
&& "bitwidth too large");
244 // Check for the built-in integer types
246 case 1: return cast
<IntegerType
>(Type::getInt1Ty(C
));
247 case 8: return cast
<IntegerType
>(Type::getInt8Ty(C
));
248 case 16: return cast
<IntegerType
>(Type::getInt16Ty(C
));
249 case 32: return cast
<IntegerType
>(Type::getInt32Ty(C
));
250 case 64: return cast
<IntegerType
>(Type::getInt64Ty(C
));
251 case 128: return cast
<IntegerType
>(Type::getInt128Ty(C
));
256 IntegerType
*&Entry
= C
.pImpl
->IntegerTypes
[NumBits
];
259 Entry
= new (C
.pImpl
->TypeAllocator
) IntegerType(C
, NumBits
);
264 bool IntegerType::isPowerOf2ByteWidth() const {
265 unsigned BitWidth
= getBitWidth();
266 return (BitWidth
> 7) && isPowerOf2_32(BitWidth
);
269 APInt
IntegerType::getMask() const {
270 return APInt::getAllOnesValue(getBitWidth());
273 //===----------------------------------------------------------------------===//
274 // FunctionType Implementation
275 //===----------------------------------------------------------------------===//
277 FunctionType::FunctionType(Type
*Result
, ArrayRef
<Type
*> Params
,
279 : Type(Result
->getContext(), FunctionTyID
) {
280 Type
**SubTys
= reinterpret_cast<Type
**>(this+1);
281 assert(isValidReturnType(Result
) && "invalid return type for function");
282 setSubclassData(IsVarArgs
);
286 for (unsigned i
= 0, e
= Params
.size(); i
!= e
; ++i
) {
287 assert(isValidArgumentType(Params
[i
]) &&
288 "Not a valid type for function argument!");
289 SubTys
[i
+1] = Params
[i
];
292 ContainedTys
= SubTys
;
293 NumContainedTys
= Params
.size() + 1; // + 1 for result type
296 // This is the factory function for the FunctionType class.
297 FunctionType
*FunctionType::get(Type
*ReturnType
,
298 ArrayRef
<Type
*> Params
, bool isVarArg
) {
299 LLVMContextImpl
*pImpl
= ReturnType
->getContext().pImpl
;
300 FunctionTypeKeyInfo::KeyTy
Key(ReturnType
, Params
, isVarArg
);
301 auto I
= pImpl
->FunctionTypes
.find_as(Key
);
304 if (I
== pImpl
->FunctionTypes
.end()) {
305 FT
= (FunctionType
*)pImpl
->TypeAllocator
.Allocate(
306 sizeof(FunctionType
) + sizeof(Type
*) * (Params
.size() + 1),
307 alignof(FunctionType
));
308 new (FT
) FunctionType(ReturnType
, Params
, isVarArg
);
309 pImpl
->FunctionTypes
.insert(FT
);
317 FunctionType
*FunctionType::get(Type
*Result
, bool isVarArg
) {
318 return get(Result
, None
, isVarArg
);
321 bool FunctionType::isValidReturnType(Type
*RetTy
) {
322 return !RetTy
->isFunctionTy() && !RetTy
->isLabelTy() &&
323 !RetTy
->isMetadataTy();
326 bool FunctionType::isValidArgumentType(Type
*ArgTy
) {
327 return ArgTy
->isFirstClassType();
330 //===----------------------------------------------------------------------===//
331 // StructType Implementation
332 //===----------------------------------------------------------------------===//
334 // Primitive Constructors.
336 StructType
*StructType::get(LLVMContext
&Context
, ArrayRef
<Type
*> ETypes
,
338 LLVMContextImpl
*pImpl
= Context
.pImpl
;
339 AnonStructTypeKeyInfo::KeyTy
Key(ETypes
, isPacked
);
340 auto I
= pImpl
->AnonStructTypes
.find_as(Key
);
343 if (I
== pImpl
->AnonStructTypes
.end()) {
344 // Value not found. Create a new type!
345 ST
= new (Context
.pImpl
->TypeAllocator
) StructType(Context
);
346 ST
->setSubclassData(SCDB_IsLiteral
); // Literal struct.
347 ST
->setBody(ETypes
, isPacked
);
348 Context
.pImpl
->AnonStructTypes
.insert(ST
);
356 void StructType::setBody(ArrayRef
<Type
*> Elements
, bool isPacked
) {
357 assert(isOpaque() && "Struct body already set!");
359 setSubclassData(getSubclassData() | SCDB_HasBody
);
361 setSubclassData(getSubclassData() | SCDB_Packed
);
363 NumContainedTys
= Elements
.size();
365 if (Elements
.empty()) {
366 ContainedTys
= nullptr;
370 ContainedTys
= Elements
.copy(getContext().pImpl
->TypeAllocator
).data();
373 void StructType::setName(StringRef Name
) {
374 if (Name
== getName()) return;
376 StringMap
<StructType
*> &SymbolTable
= getContext().pImpl
->NamedStructTypes
;
378 using EntryTy
= StringMap
<StructType
*>::MapEntryTy
;
380 // If this struct already had a name, remove its symbol table entry. Don't
381 // delete the data yet because it may be part of the new name.
382 if (SymbolTableEntry
)
383 SymbolTable
.remove((EntryTy
*)SymbolTableEntry
);
385 // If this is just removing the name, we're done.
387 if (SymbolTableEntry
) {
388 // Delete the old string data.
389 ((EntryTy
*)SymbolTableEntry
)->Destroy(SymbolTable
.getAllocator());
390 SymbolTableEntry
= nullptr;
395 // Look up the entry for the name.
397 getContext().pImpl
->NamedStructTypes
.insert(std::make_pair(Name
, this));
399 // While we have a name collision, try a random rename.
400 if (!IterBool
.second
) {
401 SmallString
<64> TempStr(Name
);
402 TempStr
.push_back('.');
403 raw_svector_ostream
TmpStream(TempStr
);
404 unsigned NameSize
= Name
.size();
407 TempStr
.resize(NameSize
+ 1);
408 TmpStream
<< getContext().pImpl
->NamedStructTypesUniqueID
++;
410 IterBool
= getContext().pImpl
->NamedStructTypes
.insert(
411 std::make_pair(TmpStream
.str(), this));
412 } while (!IterBool
.second
);
415 // Delete the old string data.
416 if (SymbolTableEntry
)
417 ((EntryTy
*)SymbolTableEntry
)->Destroy(SymbolTable
.getAllocator());
418 SymbolTableEntry
= &*IterBool
.first
;
421 //===----------------------------------------------------------------------===//
422 // StructType Helper functions.
424 StructType
*StructType::create(LLVMContext
&Context
, StringRef Name
) {
425 StructType
*ST
= new (Context
.pImpl
->TypeAllocator
) StructType(Context
);
431 StructType
*StructType::get(LLVMContext
&Context
, bool isPacked
) {
432 return get(Context
, None
, isPacked
);
435 StructType
*StructType::create(LLVMContext
&Context
, ArrayRef
<Type
*> Elements
,
436 StringRef Name
, bool isPacked
) {
437 StructType
*ST
= create(Context
, Name
);
438 ST
->setBody(Elements
, isPacked
);
442 StructType
*StructType::create(LLVMContext
&Context
, ArrayRef
<Type
*> Elements
) {
443 return create(Context
, Elements
, StringRef());
446 StructType
*StructType::create(LLVMContext
&Context
) {
447 return create(Context
, StringRef());
450 StructType
*StructType::create(ArrayRef
<Type
*> Elements
, StringRef Name
,
452 assert(!Elements
.empty() &&
453 "This method may not be invoked with an empty list");
454 return create(Elements
[0]->getContext(), Elements
, Name
, isPacked
);
457 StructType
*StructType::create(ArrayRef
<Type
*> Elements
) {
458 assert(!Elements
.empty() &&
459 "This method may not be invoked with an empty list");
460 return create(Elements
[0]->getContext(), Elements
, StringRef());
463 bool StructType::isSized(SmallPtrSetImpl
<Type
*> *Visited
) const {
464 if ((getSubclassData() & SCDB_IsSized
) != 0)
469 if (Visited
&& !Visited
->insert(const_cast<StructType
*>(this)).second
)
472 // Okay, our struct is sized if all of the elements are, but if one of the
473 // elements is opaque, the struct isn't sized *yet*, but may become sized in
474 // the future, so just bail out without caching.
475 for (element_iterator I
= element_begin(), E
= element_end(); I
!= E
; ++I
)
476 if (!(*I
)->isSized(Visited
))
479 // Here we cheat a bit and cast away const-ness. The goal is to memoize when
480 // we find a sized type, as types can only move from opaque to sized, not the
482 const_cast<StructType
*>(this)->setSubclassData(
483 getSubclassData() | SCDB_IsSized
);
487 StringRef
StructType::getName() const {
488 assert(!isLiteral() && "Literal structs never have names");
489 if (!SymbolTableEntry
) return StringRef();
491 return ((StringMapEntry
<StructType
*> *)SymbolTableEntry
)->getKey();
494 bool StructType::isValidElementType(Type
*ElemTy
) {
495 return !ElemTy
->isVoidTy() && !ElemTy
->isLabelTy() &&
496 !ElemTy
->isMetadataTy() && !ElemTy
->isFunctionTy() &&
497 !ElemTy
->isTokenTy();
500 bool StructType::isLayoutIdentical(StructType
*Other
) const {
501 if (this == Other
) return true;
503 if (isPacked() != Other
->isPacked())
506 return elements() == Other
->elements();
509 StructType
*Module::getTypeByName(StringRef Name
) const {
510 return getContext().pImpl
->NamedStructTypes
.lookup(Name
);
513 //===----------------------------------------------------------------------===//
514 // CompositeType Implementation
515 //===----------------------------------------------------------------------===//
517 Type
*CompositeType::getTypeAtIndex(const Value
*V
) const {
518 if (auto *STy
= dyn_cast
<StructType
>(this)) {
520 (unsigned)cast
<Constant
>(V
)->getUniqueInteger().getZExtValue();
521 assert(indexValid(Idx
) && "Invalid structure index!");
522 return STy
->getElementType(Idx
);
525 return cast
<SequentialType
>(this)->getElementType();
528 Type
*CompositeType::getTypeAtIndex(unsigned Idx
) const{
529 if (auto *STy
= dyn_cast
<StructType
>(this)) {
530 assert(indexValid(Idx
) && "Invalid structure index!");
531 return STy
->getElementType(Idx
);
534 return cast
<SequentialType
>(this)->getElementType();
537 bool CompositeType::indexValid(const Value
*V
) const {
538 if (auto *STy
= dyn_cast
<StructType
>(this)) {
539 // Structure indexes require (vectors of) 32-bit integer constants. In the
540 // vector case all of the indices must be equal.
541 if (!V
->getType()->isIntOrIntVectorTy(32))
543 const Constant
*C
= dyn_cast
<Constant
>(V
);
544 if (C
&& V
->getType()->isVectorTy())
545 C
= C
->getSplatValue();
546 const ConstantInt
*CU
= dyn_cast_or_null
<ConstantInt
>(C
);
547 return CU
&& CU
->getZExtValue() < STy
->getNumElements();
550 // Sequential types can be indexed by any integer.
551 return V
->getType()->isIntOrIntVectorTy();
554 bool CompositeType::indexValid(unsigned Idx
) const {
555 if (auto *STy
= dyn_cast
<StructType
>(this))
556 return Idx
< STy
->getNumElements();
557 // Sequential types can be indexed by any integer.
561 //===----------------------------------------------------------------------===//
562 // ArrayType Implementation
563 //===----------------------------------------------------------------------===//
565 ArrayType::ArrayType(Type
*ElType
, uint64_t NumEl
)
566 : SequentialType(ArrayTyID
, ElType
, NumEl
) {}
568 ArrayType
*ArrayType::get(Type
*ElementType
, uint64_t NumElements
) {
569 assert(isValidElementType(ElementType
) && "Invalid type for array element!");
571 LLVMContextImpl
*pImpl
= ElementType
->getContext().pImpl
;
573 pImpl
->ArrayTypes
[std::make_pair(ElementType
, NumElements
)];
576 Entry
= new (pImpl
->TypeAllocator
) ArrayType(ElementType
, NumElements
);
580 bool ArrayType::isValidElementType(Type
*ElemTy
) {
581 return !ElemTy
->isVoidTy() && !ElemTy
->isLabelTy() &&
582 !ElemTy
->isMetadataTy() && !ElemTy
->isFunctionTy() &&
583 !ElemTy
->isTokenTy();
586 //===----------------------------------------------------------------------===//
587 // VectorType Implementation
588 //===----------------------------------------------------------------------===//
590 VectorType::VectorType(Type
*ElType
, unsigned NumEl
)
591 : SequentialType(VectorTyID
, ElType
, NumEl
) {}
593 VectorType
*VectorType::get(Type
*ElementType
, unsigned NumElements
) {
594 assert(NumElements
> 0 && "#Elements of a VectorType must be greater than 0");
595 assert(isValidElementType(ElementType
) && "Element type of a VectorType must "
596 "be an integer, floating point, or "
599 LLVMContextImpl
*pImpl
= ElementType
->getContext().pImpl
;
600 VectorType
*&Entry
= ElementType
->getContext().pImpl
601 ->VectorTypes
[std::make_pair(ElementType
, NumElements
)];
604 Entry
= new (pImpl
->TypeAllocator
) VectorType(ElementType
, NumElements
);
608 bool VectorType::isValidElementType(Type
*ElemTy
) {
609 return ElemTy
->isIntegerTy() || ElemTy
->isFloatingPointTy() ||
610 ElemTy
->isPointerTy();
613 //===----------------------------------------------------------------------===//
614 // PointerType Implementation
615 //===----------------------------------------------------------------------===//
617 PointerType
*PointerType::get(Type
*EltTy
, unsigned AddressSpace
) {
618 assert(EltTy
&& "Can't get a pointer to <null> type!");
619 assert(isValidElementType(EltTy
) && "Invalid type for pointer element!");
621 LLVMContextImpl
*CImpl
= EltTy
->getContext().pImpl
;
623 // Since AddressSpace #0 is the common case, we special case it.
624 PointerType
*&Entry
= AddressSpace
== 0 ? CImpl
->PointerTypes
[EltTy
]
625 : CImpl
->ASPointerTypes
[std::make_pair(EltTy
, AddressSpace
)];
628 Entry
= new (CImpl
->TypeAllocator
) PointerType(EltTy
, AddressSpace
);
632 PointerType::PointerType(Type
*E
, unsigned AddrSpace
)
633 : Type(E
->getContext(), PointerTyID
), PointeeTy(E
) {
634 ContainedTys
= &PointeeTy
;
636 setSubclassData(AddrSpace
);
639 PointerType
*Type::getPointerTo(unsigned addrs
) const {
640 return PointerType::get(const_cast<Type
*>(this), addrs
);
643 bool PointerType::isValidElementType(Type
*ElemTy
) {
644 return !ElemTy
->isVoidTy() && !ElemTy
->isLabelTy() &&
645 !ElemTy
->isMetadataTy() && !ElemTy
->isTokenTy();
648 bool PointerType::isLoadableOrStorableType(Type
*ElemTy
) {
649 return isValidElementType(ElemTy
) && !ElemTy
->isFunctionTy();