[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / IR / Value.cpp
blob6dc48ad97cc64294575bed1fdec28fa2e211181d
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Value.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/DerivedUser.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/Statepoint.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/IR/ValueSymbolTable.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/ManagedStatic.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
40 using namespace llvm;
42 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
43 "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
44 cl::desc("Maximum size for the name of non-global values."));
46 //===----------------------------------------------------------------------===//
47 // Value Class
48 //===----------------------------------------------------------------------===//
49 static inline Type *checkType(Type *Ty) {
50 assert(Ty && "Value defined with a null type: Error!");
51 return Ty;
54 Value::Value(Type *ty, unsigned scid)
55 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
56 HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
57 NumUserOperands(0), IsUsedByMD(false), HasName(false) {
58 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
59 // FIXME: Why isn't this in the subclass gunk??
60 // Note, we cannot call isa<CallInst> before the CallInst has been
61 // constructed.
62 if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
63 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
64 "invalid CallInst type!");
65 else if (SubclassID != BasicBlockVal &&
66 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
67 assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
68 "Cannot create non-first-class values except for constants!");
69 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
70 "Value too big");
73 Value::~Value() {
74 // Notify all ValueHandles (if present) that this value is going away.
75 if (HasValueHandle)
76 ValueHandleBase::ValueIsDeleted(this);
77 if (isUsedByMetadata())
78 ValueAsMetadata::handleDeletion(this);
80 #ifndef NDEBUG // Only in -g mode...
81 // Check to make sure that there are no uses of this value that are still
82 // around when the value is destroyed. If there are, then we have a dangling
83 // reference and something is wrong. This code is here to print out where
84 // the value is still being referenced.
86 if (!use_empty()) {
87 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
88 for (auto *U : users())
89 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
91 #endif
92 assert(use_empty() && "Uses remain when a value is destroyed!");
94 // If this value is named, destroy the name. This should not be in a symtab
95 // at this point.
96 destroyValueName();
99 void Value::deleteValue() {
100 switch (getValueID()) {
101 #define HANDLE_VALUE(Name) \
102 case Value::Name##Val: \
103 delete static_cast<Name *>(this); \
104 break;
105 #define HANDLE_MEMORY_VALUE(Name) \
106 case Value::Name##Val: \
107 static_cast<DerivedUser *>(this)->DeleteValue( \
108 static_cast<DerivedUser *>(this)); \
109 break;
110 #define HANDLE_INSTRUCTION(Name) /* nothing */
111 #include "llvm/IR/Value.def"
113 #define HANDLE_INST(N, OPC, CLASS) \
114 case Value::InstructionVal + Instruction::OPC: \
115 delete static_cast<CLASS *>(this); \
116 break;
117 #define HANDLE_USER_INST(N, OPC, CLASS)
118 #include "llvm/IR/Instruction.def"
120 default:
121 llvm_unreachable("attempting to delete unknown value kind");
125 void Value::destroyValueName() {
126 ValueName *Name = getValueName();
127 if (Name)
128 Name->Destroy();
129 setValueName(nullptr);
132 bool Value::hasNUses(unsigned N) const {
133 const_use_iterator UI = use_begin(), E = use_end();
135 for (; N; --N, ++UI)
136 if (UI == E) return false; // Too few.
137 return UI == E;
140 bool Value::hasNUsesOrMore(unsigned N) const {
141 const_use_iterator UI = use_begin(), E = use_end();
143 for (; N; --N, ++UI)
144 if (UI == E) return false; // Too few.
146 return true;
149 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
150 // This can be computed either by scanning the instructions in BB, or by
151 // scanning the use list of this Value. Both lists can be very long, but
152 // usually one is quite short.
154 // Scan both lists simultaneously until one is exhausted. This limits the
155 // search to the shorter list.
156 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
157 const_user_iterator UI = user_begin(), UE = user_end();
158 for (; BI != BE && UI != UE; ++BI, ++UI) {
159 // Scan basic block: Check if this Value is used by the instruction at BI.
160 if (is_contained(BI->operands(), this))
161 return true;
162 // Scan use list: Check if the use at UI is in BB.
163 const auto *User = dyn_cast<Instruction>(*UI);
164 if (User && User->getParent() == BB)
165 return true;
167 return false;
170 unsigned Value::getNumUses() const {
171 return (unsigned)std::distance(use_begin(), use_end());
174 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
175 ST = nullptr;
176 if (Instruction *I = dyn_cast<Instruction>(V)) {
177 if (BasicBlock *P = I->getParent())
178 if (Function *PP = P->getParent())
179 ST = PP->getValueSymbolTable();
180 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
181 if (Function *P = BB->getParent())
182 ST = P->getValueSymbolTable();
183 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
184 if (Module *P = GV->getParent())
185 ST = &P->getValueSymbolTable();
186 } else if (Argument *A = dyn_cast<Argument>(V)) {
187 if (Function *P = A->getParent())
188 ST = P->getValueSymbolTable();
189 } else {
190 assert(isa<Constant>(V) && "Unknown value type!");
191 return true; // no name is setable for this.
193 return false;
196 ValueName *Value::getValueName() const {
197 if (!HasName) return nullptr;
199 LLVMContext &Ctx = getContext();
200 auto I = Ctx.pImpl->ValueNames.find(this);
201 assert(I != Ctx.pImpl->ValueNames.end() &&
202 "No name entry found!");
204 return I->second;
207 void Value::setValueName(ValueName *VN) {
208 LLVMContext &Ctx = getContext();
210 assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
211 "HasName bit out of sync!");
213 if (!VN) {
214 if (HasName)
215 Ctx.pImpl->ValueNames.erase(this);
216 HasName = false;
217 return;
220 HasName = true;
221 Ctx.pImpl->ValueNames[this] = VN;
224 StringRef Value::getName() const {
225 // Make sure the empty string is still a C string. For historical reasons,
226 // some clients want to call .data() on the result and expect it to be null
227 // terminated.
228 if (!hasName())
229 return StringRef("", 0);
230 return getValueName()->getKey();
233 void Value::setNameImpl(const Twine &NewName) {
234 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
235 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
236 return;
238 // Fast path for common IRBuilder case of setName("") when there is no name.
239 if (NewName.isTriviallyEmpty() && !hasName())
240 return;
242 SmallString<256> NameData;
243 StringRef NameRef = NewName.toStringRef(NameData);
244 assert(NameRef.find_first_of(0) == StringRef::npos &&
245 "Null bytes are not allowed in names");
247 // Name isn't changing?
248 if (getName() == NameRef)
249 return;
251 // Cap the size of non-GlobalValue names.
252 if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this))
253 NameRef =
254 NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize));
256 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
258 // Get the symbol table to update for this object.
259 ValueSymbolTable *ST;
260 if (getSymTab(this, ST))
261 return; // Cannot set a name on this value (e.g. constant).
263 if (!ST) { // No symbol table to update? Just do the change.
264 if (NameRef.empty()) {
265 // Free the name for this value.
266 destroyValueName();
267 return;
270 // NOTE: Could optimize for the case the name is shrinking to not deallocate
271 // then reallocated.
272 destroyValueName();
274 // Create the new name.
275 setValueName(ValueName::Create(NameRef));
276 getValueName()->setValue(this);
277 return;
280 // NOTE: Could optimize for the case the name is shrinking to not deallocate
281 // then reallocated.
282 if (hasName()) {
283 // Remove old name.
284 ST->removeValueName(getValueName());
285 destroyValueName();
287 if (NameRef.empty())
288 return;
291 // Name is changing to something new.
292 setValueName(ST->createValueName(NameRef, this));
295 void Value::setName(const Twine &NewName) {
296 setNameImpl(NewName);
297 if (Function *F = dyn_cast<Function>(this))
298 F->recalculateIntrinsicID();
301 void Value::takeName(Value *V) {
302 ValueSymbolTable *ST = nullptr;
303 // If this value has a name, drop it.
304 if (hasName()) {
305 // Get the symtab this is in.
306 if (getSymTab(this, ST)) {
307 // We can't set a name on this value, but we need to clear V's name if
308 // it has one.
309 if (V->hasName()) V->setName("");
310 return; // Cannot set a name on this value (e.g. constant).
313 // Remove old name.
314 if (ST)
315 ST->removeValueName(getValueName());
316 destroyValueName();
319 // Now we know that this has no name.
321 // If V has no name either, we're done.
322 if (!V->hasName()) return;
324 // Get this's symtab if we didn't before.
325 if (!ST) {
326 if (getSymTab(this, ST)) {
327 // Clear V's name.
328 V->setName("");
329 return; // Cannot set a name on this value (e.g. constant).
333 // Get V's ST, this should always succed, because V has a name.
334 ValueSymbolTable *VST;
335 bool Failure = getSymTab(V, VST);
336 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
338 // If these values are both in the same symtab, we can do this very fast.
339 // This works even if both values have no symtab yet.
340 if (ST == VST) {
341 // Take the name!
342 setValueName(V->getValueName());
343 V->setValueName(nullptr);
344 getValueName()->setValue(this);
345 return;
348 // Otherwise, things are slightly more complex. Remove V's name from VST and
349 // then reinsert it into ST.
351 if (VST)
352 VST->removeValueName(V->getValueName());
353 setValueName(V->getValueName());
354 V->setValueName(nullptr);
355 getValueName()->setValue(this);
357 if (ST)
358 ST->reinsertValue(this);
361 void Value::assertModuleIsMaterializedImpl() const {
362 #ifndef NDEBUG
363 const GlobalValue *GV = dyn_cast<GlobalValue>(this);
364 if (!GV)
365 return;
366 const Module *M = GV->getParent();
367 if (!M)
368 return;
369 assert(M->isMaterialized());
370 #endif
373 #ifndef NDEBUG
374 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
375 Constant *C) {
376 if (!Cache.insert(Expr).second)
377 return false;
379 for (auto &O : Expr->operands()) {
380 if (O == C)
381 return true;
382 auto *CE = dyn_cast<ConstantExpr>(O);
383 if (!CE)
384 continue;
385 if (contains(Cache, CE, C))
386 return true;
388 return false;
391 static bool contains(Value *Expr, Value *V) {
392 if (Expr == V)
393 return true;
395 auto *C = dyn_cast<Constant>(V);
396 if (!C)
397 return false;
399 auto *CE = dyn_cast<ConstantExpr>(Expr);
400 if (!CE)
401 return false;
403 SmallPtrSet<ConstantExpr *, 4> Cache;
404 return contains(Cache, CE, C);
406 #endif // NDEBUG
408 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
409 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
410 assert(!contains(New, this) &&
411 "this->replaceAllUsesWith(expr(this)) is NOT valid!");
412 assert(New->getType() == getType() &&
413 "replaceAllUses of value with new value of different type!");
415 // Notify all ValueHandles (if present) that this value is going away.
416 if (HasValueHandle)
417 ValueHandleBase::ValueIsRAUWd(this, New);
418 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
419 ValueAsMetadata::handleRAUW(this, New);
421 while (!materialized_use_empty()) {
422 Use &U = *UseList;
423 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
424 // constant because they are uniqued.
425 if (auto *C = dyn_cast<Constant>(U.getUser())) {
426 if (!isa<GlobalValue>(C)) {
427 C->handleOperandChange(this, New);
428 continue;
432 U.set(New);
435 if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
436 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
439 void Value::replaceAllUsesWith(Value *New) {
440 doRAUW(New, ReplaceMetadataUses::Yes);
443 void Value::replaceNonMetadataUsesWith(Value *New) {
444 doRAUW(New, ReplaceMetadataUses::No);
447 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
448 // This routine leaves uses within BB.
449 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
450 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
451 assert(!contains(New, this) &&
452 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
453 assert(New->getType() == getType() &&
454 "replaceUses of value with new value of different type!");
455 assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
457 use_iterator UI = use_begin(), E = use_end();
458 for (; UI != E;) {
459 Use &U = *UI;
460 ++UI;
461 auto *Usr = dyn_cast<Instruction>(U.getUser());
462 if (Usr && Usr->getParent() == BB)
463 continue;
464 U.set(New);
468 namespace {
469 // Various metrics for how much to strip off of pointers.
470 enum PointerStripKind {
471 PSK_ZeroIndices,
472 PSK_ZeroIndicesAndAliases,
473 PSK_ZeroIndicesAndAliasesAndInvariantGroups,
474 PSK_InBoundsConstantIndices,
475 PSK_InBounds
478 template <PointerStripKind StripKind>
479 static const Value *stripPointerCastsAndOffsets(const Value *V) {
480 if (!V->getType()->isPointerTy())
481 return V;
483 // Even though we don't look through PHI nodes, we could be called on an
484 // instruction in an unreachable block, which may be on a cycle.
485 SmallPtrSet<const Value *, 4> Visited;
487 Visited.insert(V);
488 do {
489 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
490 switch (StripKind) {
491 case PSK_ZeroIndicesAndAliases:
492 case PSK_ZeroIndicesAndAliasesAndInvariantGroups:
493 case PSK_ZeroIndices:
494 if (!GEP->hasAllZeroIndices())
495 return V;
496 break;
497 case PSK_InBoundsConstantIndices:
498 if (!GEP->hasAllConstantIndices())
499 return V;
500 LLVM_FALLTHROUGH;
501 case PSK_InBounds:
502 if (!GEP->isInBounds())
503 return V;
504 break;
506 V = GEP->getPointerOperand();
507 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
508 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
509 V = cast<Operator>(V)->getOperand(0);
510 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
511 if (StripKind == PSK_ZeroIndices || GA->isInterposable())
512 return V;
513 V = GA->getAliasee();
514 } else {
515 if (auto CS = ImmutableCallSite(V)) {
516 if (const Value *RV = CS.getReturnedArgOperand()) {
517 V = RV;
518 continue;
520 // The result of launder.invariant.group must alias it's argument,
521 // but it can't be marked with returned attribute, that's why it needs
522 // special case.
523 if (StripKind == PSK_ZeroIndicesAndAliasesAndInvariantGroups &&
524 (CS.getIntrinsicID() == Intrinsic::launder_invariant_group ||
525 CS.getIntrinsicID() == Intrinsic::strip_invariant_group)) {
526 V = CS.getArgOperand(0);
527 continue;
530 return V;
532 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
533 } while (Visited.insert(V).second);
535 return V;
537 } // end anonymous namespace
539 const Value *Value::stripPointerCasts() const {
540 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
543 const Value *Value::stripPointerCastsNoFollowAliases() const {
544 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
547 const Value *Value::stripInBoundsConstantOffsets() const {
548 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
551 const Value *Value::stripPointerCastsAndInvariantGroups() const {
552 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliasesAndInvariantGroups>(
553 this);
556 const Value *
557 Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
558 APInt &Offset) const {
559 if (!getType()->isPointerTy())
560 return this;
562 assert(Offset.getBitWidth() == DL.getIndexSizeInBits(cast<PointerType>(
563 getType())->getAddressSpace()) &&
564 "The offset bit width does not match the DL specification.");
566 // Even though we don't look through PHI nodes, we could be called on an
567 // instruction in an unreachable block, which may be on a cycle.
568 SmallPtrSet<const Value *, 4> Visited;
569 Visited.insert(this);
570 const Value *V = this;
571 do {
572 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
573 if (!GEP->isInBounds())
574 return V;
575 APInt GEPOffset(Offset);
576 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
577 return V;
578 Offset = GEPOffset;
579 V = GEP->getPointerOperand();
580 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
581 V = cast<Operator>(V)->getOperand(0);
582 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
583 V = GA->getAliasee();
584 } else {
585 if (auto CS = ImmutableCallSite(V))
586 if (const Value *RV = CS.getReturnedArgOperand()) {
587 V = RV;
588 continue;
591 return V;
593 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
594 } while (Visited.insert(V).second);
596 return V;
599 const Value *Value::stripInBoundsOffsets() const {
600 return stripPointerCastsAndOffsets<PSK_InBounds>(this);
603 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
604 bool &CanBeNull) const {
605 assert(getType()->isPointerTy() && "must be pointer");
607 uint64_t DerefBytes = 0;
608 CanBeNull = false;
609 if (const Argument *A = dyn_cast<Argument>(this)) {
610 DerefBytes = A->getDereferenceableBytes();
611 if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) {
612 Type *PT = cast<PointerType>(A->getType())->getElementType();
613 if (PT->isSized())
614 DerefBytes = DL.getTypeStoreSize(PT);
616 if (DerefBytes == 0) {
617 DerefBytes = A->getDereferenceableOrNullBytes();
618 CanBeNull = true;
620 } else if (auto CS = ImmutableCallSite(this)) {
621 DerefBytes = CS.getDereferenceableBytes(AttributeList::ReturnIndex);
622 if (DerefBytes == 0) {
623 DerefBytes = CS.getDereferenceableOrNullBytes(AttributeList::ReturnIndex);
624 CanBeNull = true;
626 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
627 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
628 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
629 DerefBytes = CI->getLimitedValue();
631 if (DerefBytes == 0) {
632 if (MDNode *MD =
633 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
634 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
635 DerefBytes = CI->getLimitedValue();
637 CanBeNull = true;
639 } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
640 if (!AI->isArrayAllocation()) {
641 DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType());
642 CanBeNull = false;
644 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
645 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
646 // TODO: Don't outright reject hasExternalWeakLinkage but set the
647 // CanBeNull flag.
648 DerefBytes = DL.getTypeStoreSize(GV->getValueType());
649 CanBeNull = false;
652 return DerefBytes;
655 unsigned Value::getPointerAlignment(const DataLayout &DL) const {
656 assert(getType()->isPointerTy() && "must be pointer");
658 unsigned Align = 0;
659 if (auto *GO = dyn_cast<GlobalObject>(this)) {
660 // Don't make any assumptions about function pointer alignment. Some
661 // targets use the LSBs to store additional information.
662 if (isa<Function>(GO))
663 return 0;
664 Align = GO->getAlignment();
665 if (Align == 0) {
666 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
667 Type *ObjectType = GVar->getValueType();
668 if (ObjectType->isSized()) {
669 // If the object is defined in the current Module, we'll be giving
670 // it the preferred alignment. Otherwise, we have to assume that it
671 // may only have the minimum ABI alignment.
672 if (GVar->isStrongDefinitionForLinker())
673 Align = DL.getPreferredAlignment(GVar);
674 else
675 Align = DL.getABITypeAlignment(ObjectType);
679 } else if (const Argument *A = dyn_cast<Argument>(this)) {
680 Align = A->getParamAlignment();
682 if (!Align && A->hasStructRetAttr()) {
683 // An sret parameter has at least the ABI alignment of the return type.
684 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
685 if (EltTy->isSized())
686 Align = DL.getABITypeAlignment(EltTy);
688 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
689 Align = AI->getAlignment();
690 if (Align == 0) {
691 Type *AllocatedType = AI->getAllocatedType();
692 if (AllocatedType->isSized())
693 Align = DL.getPrefTypeAlignment(AllocatedType);
695 } else if (auto CS = ImmutableCallSite(this))
696 Align = CS.getAttributes().getRetAlignment();
697 else if (const LoadInst *LI = dyn_cast<LoadInst>(this))
698 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
699 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
700 Align = CI->getLimitedValue();
703 return Align;
706 const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
707 const BasicBlock *PredBB) const {
708 auto *PN = dyn_cast<PHINode>(this);
709 if (PN && PN->getParent() == CurBB)
710 return PN->getIncomingValueForBlock(PredBB);
711 return this;
714 LLVMContext &Value::getContext() const { return VTy->getContext(); }
716 void Value::reverseUseList() {
717 if (!UseList || !UseList->Next)
718 // No need to reverse 0 or 1 uses.
719 return;
721 Use *Head = UseList;
722 Use *Current = UseList->Next;
723 Head->Next = nullptr;
724 while (Current) {
725 Use *Next = Current->Next;
726 Current->Next = Head;
727 Head->setPrev(&Current->Next);
728 Head = Current;
729 Current = Next;
731 UseList = Head;
732 Head->setPrev(&UseList);
735 bool Value::isSwiftError() const {
736 auto *Arg = dyn_cast<Argument>(this);
737 if (Arg)
738 return Arg->hasSwiftErrorAttr();
739 auto *Alloca = dyn_cast<AllocaInst>(this);
740 if (!Alloca)
741 return false;
742 return Alloca->isSwiftError();
745 //===----------------------------------------------------------------------===//
746 // ValueHandleBase Class
747 //===----------------------------------------------------------------------===//
749 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
750 assert(List && "Handle list is null?");
752 // Splice ourselves into the list.
753 Next = *List;
754 *List = this;
755 setPrevPtr(List);
756 if (Next) {
757 Next->setPrevPtr(&Next);
758 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
762 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
763 assert(List && "Must insert after existing node");
765 Next = List->Next;
766 setPrevPtr(&List->Next);
767 List->Next = this;
768 if (Next)
769 Next->setPrevPtr(&Next);
772 void ValueHandleBase::AddToUseList() {
773 assert(getValPtr() && "Null pointer doesn't have a use list!");
775 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
777 if (getValPtr()->HasValueHandle) {
778 // If this value already has a ValueHandle, then it must be in the
779 // ValueHandles map already.
780 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
781 assert(Entry && "Value doesn't have any handles?");
782 AddToExistingUseList(&Entry);
783 return;
786 // Ok, it doesn't have any handles yet, so we must insert it into the
787 // DenseMap. However, doing this insertion could cause the DenseMap to
788 // reallocate itself, which would invalidate all of the PrevP pointers that
789 // point into the old table. Handle this by checking for reallocation and
790 // updating the stale pointers only if needed.
791 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
792 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
794 ValueHandleBase *&Entry = Handles[getValPtr()];
795 assert(!Entry && "Value really did already have handles?");
796 AddToExistingUseList(&Entry);
797 getValPtr()->HasValueHandle = true;
799 // If reallocation didn't happen or if this was the first insertion, don't
800 // walk the table.
801 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
802 Handles.size() == 1) {
803 return;
806 // Okay, reallocation did happen. Fix the Prev Pointers.
807 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
808 E = Handles.end(); I != E; ++I) {
809 assert(I->second && I->first == I->second->getValPtr() &&
810 "List invariant broken!");
811 I->second->setPrevPtr(&I->second);
815 void ValueHandleBase::RemoveFromUseList() {
816 assert(getValPtr() && getValPtr()->HasValueHandle &&
817 "Pointer doesn't have a use list!");
819 // Unlink this from its use list.
820 ValueHandleBase **PrevPtr = getPrevPtr();
821 assert(*PrevPtr == this && "List invariant broken");
823 *PrevPtr = Next;
824 if (Next) {
825 assert(Next->getPrevPtr() == &Next && "List invariant broken");
826 Next->setPrevPtr(PrevPtr);
827 return;
830 // If the Next pointer was null, then it is possible that this was the last
831 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
832 // map.
833 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
834 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
835 if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
836 Handles.erase(getValPtr());
837 getValPtr()->HasValueHandle = false;
841 void ValueHandleBase::ValueIsDeleted(Value *V) {
842 assert(V->HasValueHandle && "Should only be called if ValueHandles present");
844 // Get the linked list base, which is guaranteed to exist since the
845 // HasValueHandle flag is set.
846 LLVMContextImpl *pImpl = V->getContext().pImpl;
847 ValueHandleBase *Entry = pImpl->ValueHandles[V];
848 assert(Entry && "Value bit set but no entries exist");
850 // We use a local ValueHandleBase as an iterator so that ValueHandles can add
851 // and remove themselves from the list without breaking our iteration. This
852 // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
853 // Note that we deliberately do not the support the case when dropping a value
854 // handle results in a new value handle being permanently added to the list
855 // (as might occur in theory for CallbackVH's): the new value handle will not
856 // be processed and the checking code will mete out righteous punishment if
857 // the handle is still present once we have finished processing all the other
858 // value handles (it is fine to momentarily add then remove a value handle).
859 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
860 Iterator.RemoveFromUseList();
861 Iterator.AddToExistingUseListAfter(Entry);
862 assert(Entry->Next == &Iterator && "Loop invariant broken.");
864 switch (Entry->getKind()) {
865 case Assert:
866 break;
867 case Weak:
868 case WeakTracking:
869 // WeakTracking and Weak just go to null, which unlinks them
870 // from the list.
871 Entry->operator=(nullptr);
872 break;
873 case Callback:
874 // Forward to the subclass's implementation.
875 static_cast<CallbackVH*>(Entry)->deleted();
876 break;
880 // All callbacks, weak references, and assertingVHs should be dropped by now.
881 if (V->HasValueHandle) {
882 #ifndef NDEBUG // Only in +Asserts mode...
883 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
884 << "\n";
885 if (pImpl->ValueHandles[V]->getKind() == Assert)
886 llvm_unreachable("An asserting value handle still pointed to this"
887 " value!");
889 #endif
890 llvm_unreachable("All references to V were not removed?");
894 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
895 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
896 assert(Old != New && "Changing value into itself!");
897 assert(Old->getType() == New->getType() &&
898 "replaceAllUses of value with new value of different type!");
900 // Get the linked list base, which is guaranteed to exist since the
901 // HasValueHandle flag is set.
902 LLVMContextImpl *pImpl = Old->getContext().pImpl;
903 ValueHandleBase *Entry = pImpl->ValueHandles[Old];
905 assert(Entry && "Value bit set but no entries exist");
907 // We use a local ValueHandleBase as an iterator so that
908 // ValueHandles can add and remove themselves from the list without
909 // breaking our iteration. This is not really an AssertingVH; we
910 // just have to give ValueHandleBase some kind.
911 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
912 Iterator.RemoveFromUseList();
913 Iterator.AddToExistingUseListAfter(Entry);
914 assert(Entry->Next == &Iterator && "Loop invariant broken.");
916 switch (Entry->getKind()) {
917 case Assert:
918 case Weak:
919 // Asserting and Weak handles do not follow RAUW implicitly.
920 break;
921 case WeakTracking:
922 // Weak goes to the new value, which will unlink it from Old's list.
923 Entry->operator=(New);
924 break;
925 case Callback:
926 // Forward to the subclass's implementation.
927 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
928 break;
932 #ifndef NDEBUG
933 // If any new weak value handles were added while processing the
934 // list, then complain about it now.
935 if (Old->HasValueHandle)
936 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
937 switch (Entry->getKind()) {
938 case WeakTracking:
939 dbgs() << "After RAUW from " << *Old->getType() << " %"
940 << Old->getName() << " to " << *New->getType() << " %"
941 << New->getName() << "\n";
942 llvm_unreachable(
943 "A weak tracking value handle still pointed to the old value!\n");
944 default:
945 break;
947 #endif
950 // Pin the vtable to this file.
951 void CallbackVH::anchor() {}