1 //===-- Value.cpp - Implement the Value class -----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Value, ValueHandle, and User classes.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Value.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/DerivedUser.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/Statepoint.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/IR/ValueSymbolTable.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/ManagedStatic.h"
37 #include "llvm/Support/raw_ostream.h"
42 static cl::opt
<unsigned> NonGlobalValueMaxNameSize(
43 "non-global-value-max-name-size", cl::Hidden
, cl::init(1024),
44 cl::desc("Maximum size for the name of non-global values."));
46 //===----------------------------------------------------------------------===//
48 //===----------------------------------------------------------------------===//
49 static inline Type
*checkType(Type
*Ty
) {
50 assert(Ty
&& "Value defined with a null type: Error!");
54 Value::Value(Type
*ty
, unsigned scid
)
55 : VTy(checkType(ty
)), UseList(nullptr), SubclassID(scid
),
56 HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
57 NumUserOperands(0), IsUsedByMD(false), HasName(false) {
58 static_assert(ConstantFirstVal
== 0, "!(SubclassID < ConstantFirstVal)");
59 // FIXME: Why isn't this in the subclass gunk??
60 // Note, we cannot call isa<CallInst> before the CallInst has been
62 if (SubclassID
== Instruction::Call
|| SubclassID
== Instruction::Invoke
)
63 assert((VTy
->isFirstClassType() || VTy
->isVoidTy() || VTy
->isStructTy()) &&
64 "invalid CallInst type!");
65 else if (SubclassID
!= BasicBlockVal
&&
66 (/*SubclassID < ConstantFirstVal ||*/ SubclassID
> ConstantLastVal
))
67 assert((VTy
->isFirstClassType() || VTy
->isVoidTy()) &&
68 "Cannot create non-first-class values except for constants!");
69 static_assert(sizeof(Value
) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
74 // Notify all ValueHandles (if present) that this value is going away.
76 ValueHandleBase::ValueIsDeleted(this);
77 if (isUsedByMetadata())
78 ValueAsMetadata::handleDeletion(this);
80 #ifndef NDEBUG // Only in -g mode...
81 // Check to make sure that there are no uses of this value that are still
82 // around when the value is destroyed. If there are, then we have a dangling
83 // reference and something is wrong. This code is here to print out where
84 // the value is still being referenced.
87 dbgs() << "While deleting: " << *VTy
<< " %" << getName() << "\n";
88 for (auto *U
: users())
89 dbgs() << "Use still stuck around after Def is destroyed:" << *U
<< "\n";
92 assert(use_empty() && "Uses remain when a value is destroyed!");
94 // If this value is named, destroy the name. This should not be in a symtab
99 void Value::deleteValue() {
100 switch (getValueID()) {
101 #define HANDLE_VALUE(Name) \
102 case Value::Name##Val: \
103 delete static_cast<Name *>(this); \
105 #define HANDLE_MEMORY_VALUE(Name) \
106 case Value::Name##Val: \
107 static_cast<DerivedUser *>(this)->DeleteValue( \
108 static_cast<DerivedUser *>(this)); \
110 #define HANDLE_INSTRUCTION(Name) /* nothing */
111 #include "llvm/IR/Value.def"
113 #define HANDLE_INST(N, OPC, CLASS) \
114 case Value::InstructionVal + Instruction::OPC: \
115 delete static_cast<CLASS *>(this); \
117 #define HANDLE_USER_INST(N, OPC, CLASS)
118 #include "llvm/IR/Instruction.def"
121 llvm_unreachable("attempting to delete unknown value kind");
125 void Value::destroyValueName() {
126 ValueName
*Name
= getValueName();
129 setValueName(nullptr);
132 bool Value::hasNUses(unsigned N
) const {
133 const_use_iterator UI
= use_begin(), E
= use_end();
136 if (UI
== E
) return false; // Too few.
140 bool Value::hasNUsesOrMore(unsigned N
) const {
141 const_use_iterator UI
= use_begin(), E
= use_end();
144 if (UI
== E
) return false; // Too few.
149 bool Value::isUsedInBasicBlock(const BasicBlock
*BB
) const {
150 // This can be computed either by scanning the instructions in BB, or by
151 // scanning the use list of this Value. Both lists can be very long, but
152 // usually one is quite short.
154 // Scan both lists simultaneously until one is exhausted. This limits the
155 // search to the shorter list.
156 BasicBlock::const_iterator BI
= BB
->begin(), BE
= BB
->end();
157 const_user_iterator UI
= user_begin(), UE
= user_end();
158 for (; BI
!= BE
&& UI
!= UE
; ++BI
, ++UI
) {
159 // Scan basic block: Check if this Value is used by the instruction at BI.
160 if (is_contained(BI
->operands(), this))
162 // Scan use list: Check if the use at UI is in BB.
163 const auto *User
= dyn_cast
<Instruction
>(*UI
);
164 if (User
&& User
->getParent() == BB
)
170 unsigned Value::getNumUses() const {
171 return (unsigned)std::distance(use_begin(), use_end());
174 static bool getSymTab(Value
*V
, ValueSymbolTable
*&ST
) {
176 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
177 if (BasicBlock
*P
= I
->getParent())
178 if (Function
*PP
= P
->getParent())
179 ST
= PP
->getValueSymbolTable();
180 } else if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(V
)) {
181 if (Function
*P
= BB
->getParent())
182 ST
= P
->getValueSymbolTable();
183 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
184 if (Module
*P
= GV
->getParent())
185 ST
= &P
->getValueSymbolTable();
186 } else if (Argument
*A
= dyn_cast
<Argument
>(V
)) {
187 if (Function
*P
= A
->getParent())
188 ST
= P
->getValueSymbolTable();
190 assert(isa
<Constant
>(V
) && "Unknown value type!");
191 return true; // no name is setable for this.
196 ValueName
*Value::getValueName() const {
197 if (!HasName
) return nullptr;
199 LLVMContext
&Ctx
= getContext();
200 auto I
= Ctx
.pImpl
->ValueNames
.find(this);
201 assert(I
!= Ctx
.pImpl
->ValueNames
.end() &&
202 "No name entry found!");
207 void Value::setValueName(ValueName
*VN
) {
208 LLVMContext
&Ctx
= getContext();
210 assert(HasName
== Ctx
.pImpl
->ValueNames
.count(this) &&
211 "HasName bit out of sync!");
215 Ctx
.pImpl
->ValueNames
.erase(this);
221 Ctx
.pImpl
->ValueNames
[this] = VN
;
224 StringRef
Value::getName() const {
225 // Make sure the empty string is still a C string. For historical reasons,
226 // some clients want to call .data() on the result and expect it to be null
229 return StringRef("", 0);
230 return getValueName()->getKey();
233 void Value::setNameImpl(const Twine
&NewName
) {
234 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
235 if (getContext().shouldDiscardValueNames() && !isa
<GlobalValue
>(this))
238 // Fast path for common IRBuilder case of setName("") when there is no name.
239 if (NewName
.isTriviallyEmpty() && !hasName())
242 SmallString
<256> NameData
;
243 StringRef NameRef
= NewName
.toStringRef(NameData
);
244 assert(NameRef
.find_first_of(0) == StringRef::npos
&&
245 "Null bytes are not allowed in names");
247 // Name isn't changing?
248 if (getName() == NameRef
)
251 // Cap the size of non-GlobalValue names.
252 if (NameRef
.size() > NonGlobalValueMaxNameSize
&& !isa
<GlobalValue
>(this))
254 NameRef
.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize
));
256 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
258 // Get the symbol table to update for this object.
259 ValueSymbolTable
*ST
;
260 if (getSymTab(this, ST
))
261 return; // Cannot set a name on this value (e.g. constant).
263 if (!ST
) { // No symbol table to update? Just do the change.
264 if (NameRef
.empty()) {
265 // Free the name for this value.
270 // NOTE: Could optimize for the case the name is shrinking to not deallocate
274 // Create the new name.
275 setValueName(ValueName::Create(NameRef
));
276 getValueName()->setValue(this);
280 // NOTE: Could optimize for the case the name is shrinking to not deallocate
284 ST
->removeValueName(getValueName());
291 // Name is changing to something new.
292 setValueName(ST
->createValueName(NameRef
, this));
295 void Value::setName(const Twine
&NewName
) {
296 setNameImpl(NewName
);
297 if (Function
*F
= dyn_cast
<Function
>(this))
298 F
->recalculateIntrinsicID();
301 void Value::takeName(Value
*V
) {
302 ValueSymbolTable
*ST
= nullptr;
303 // If this value has a name, drop it.
305 // Get the symtab this is in.
306 if (getSymTab(this, ST
)) {
307 // We can't set a name on this value, but we need to clear V's name if
309 if (V
->hasName()) V
->setName("");
310 return; // Cannot set a name on this value (e.g. constant).
315 ST
->removeValueName(getValueName());
319 // Now we know that this has no name.
321 // If V has no name either, we're done.
322 if (!V
->hasName()) return;
324 // Get this's symtab if we didn't before.
326 if (getSymTab(this, ST
)) {
329 return; // Cannot set a name on this value (e.g. constant).
333 // Get V's ST, this should always succed, because V has a name.
334 ValueSymbolTable
*VST
;
335 bool Failure
= getSymTab(V
, VST
);
336 assert(!Failure
&& "V has a name, so it should have a ST!"); (void)Failure
;
338 // If these values are both in the same symtab, we can do this very fast.
339 // This works even if both values have no symtab yet.
342 setValueName(V
->getValueName());
343 V
->setValueName(nullptr);
344 getValueName()->setValue(this);
348 // Otherwise, things are slightly more complex. Remove V's name from VST and
349 // then reinsert it into ST.
352 VST
->removeValueName(V
->getValueName());
353 setValueName(V
->getValueName());
354 V
->setValueName(nullptr);
355 getValueName()->setValue(this);
358 ST
->reinsertValue(this);
361 void Value::assertModuleIsMaterializedImpl() const {
363 const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(this);
366 const Module
*M
= GV
->getParent();
369 assert(M
->isMaterialized());
374 static bool contains(SmallPtrSetImpl
<ConstantExpr
*> &Cache
, ConstantExpr
*Expr
,
376 if (!Cache
.insert(Expr
).second
)
379 for (auto &O
: Expr
->operands()) {
382 auto *CE
= dyn_cast
<ConstantExpr
>(O
);
385 if (contains(Cache
, CE
, C
))
391 static bool contains(Value
*Expr
, Value
*V
) {
395 auto *C
= dyn_cast
<Constant
>(V
);
399 auto *CE
= dyn_cast
<ConstantExpr
>(Expr
);
403 SmallPtrSet
<ConstantExpr
*, 4> Cache
;
404 return contains(Cache
, CE
, C
);
408 void Value::doRAUW(Value
*New
, ReplaceMetadataUses ReplaceMetaUses
) {
409 assert(New
&& "Value::replaceAllUsesWith(<null>) is invalid!");
410 assert(!contains(New
, this) &&
411 "this->replaceAllUsesWith(expr(this)) is NOT valid!");
412 assert(New
->getType() == getType() &&
413 "replaceAllUses of value with new value of different type!");
415 // Notify all ValueHandles (if present) that this value is going away.
417 ValueHandleBase::ValueIsRAUWd(this, New
);
418 if (ReplaceMetaUses
== ReplaceMetadataUses::Yes
&& isUsedByMetadata())
419 ValueAsMetadata::handleRAUW(this, New
);
421 while (!materialized_use_empty()) {
423 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
424 // constant because they are uniqued.
425 if (auto *C
= dyn_cast
<Constant
>(U
.getUser())) {
426 if (!isa
<GlobalValue
>(C
)) {
427 C
->handleOperandChange(this, New
);
435 if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(this))
436 BB
->replaceSuccessorsPhiUsesWith(cast
<BasicBlock
>(New
));
439 void Value::replaceAllUsesWith(Value
*New
) {
440 doRAUW(New
, ReplaceMetadataUses::Yes
);
443 void Value::replaceNonMetadataUsesWith(Value
*New
) {
444 doRAUW(New
, ReplaceMetadataUses::No
);
447 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
448 // This routine leaves uses within BB.
449 void Value::replaceUsesOutsideBlock(Value
*New
, BasicBlock
*BB
) {
450 assert(New
&& "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
451 assert(!contains(New
, this) &&
452 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
453 assert(New
->getType() == getType() &&
454 "replaceUses of value with new value of different type!");
455 assert(BB
&& "Basic block that may contain a use of 'New' must be defined\n");
457 use_iterator UI
= use_begin(), E
= use_end();
461 auto *Usr
= dyn_cast
<Instruction
>(U
.getUser());
462 if (Usr
&& Usr
->getParent() == BB
)
469 // Various metrics for how much to strip off of pointers.
470 enum PointerStripKind
{
472 PSK_ZeroIndicesAndAliases
,
473 PSK_ZeroIndicesAndAliasesAndInvariantGroups
,
474 PSK_InBoundsConstantIndices
,
478 template <PointerStripKind StripKind
>
479 static const Value
*stripPointerCastsAndOffsets(const Value
*V
) {
480 if (!V
->getType()->isPointerTy())
483 // Even though we don't look through PHI nodes, we could be called on an
484 // instruction in an unreachable block, which may be on a cycle.
485 SmallPtrSet
<const Value
*, 4> Visited
;
489 if (auto *GEP
= dyn_cast
<GEPOperator
>(V
)) {
491 case PSK_ZeroIndicesAndAliases
:
492 case PSK_ZeroIndicesAndAliasesAndInvariantGroups
:
493 case PSK_ZeroIndices
:
494 if (!GEP
->hasAllZeroIndices())
497 case PSK_InBoundsConstantIndices
:
498 if (!GEP
->hasAllConstantIndices())
502 if (!GEP
->isInBounds())
506 V
= GEP
->getPointerOperand();
507 } else if (Operator::getOpcode(V
) == Instruction::BitCast
||
508 Operator::getOpcode(V
) == Instruction::AddrSpaceCast
) {
509 V
= cast
<Operator
>(V
)->getOperand(0);
510 } else if (auto *GA
= dyn_cast
<GlobalAlias
>(V
)) {
511 if (StripKind
== PSK_ZeroIndices
|| GA
->isInterposable())
513 V
= GA
->getAliasee();
515 if (auto CS
= ImmutableCallSite(V
)) {
516 if (const Value
*RV
= CS
.getReturnedArgOperand()) {
520 // The result of launder.invariant.group must alias it's argument,
521 // but it can't be marked with returned attribute, that's why it needs
523 if (StripKind
== PSK_ZeroIndicesAndAliasesAndInvariantGroups
&&
524 (CS
.getIntrinsicID() == Intrinsic::launder_invariant_group
||
525 CS
.getIntrinsicID() == Intrinsic::strip_invariant_group
)) {
526 V
= CS
.getArgOperand(0);
532 assert(V
->getType()->isPointerTy() && "Unexpected operand type!");
533 } while (Visited
.insert(V
).second
);
537 } // end anonymous namespace
539 const Value
*Value::stripPointerCasts() const {
540 return stripPointerCastsAndOffsets
<PSK_ZeroIndicesAndAliases
>(this);
543 const Value
*Value::stripPointerCastsNoFollowAliases() const {
544 return stripPointerCastsAndOffsets
<PSK_ZeroIndices
>(this);
547 const Value
*Value::stripInBoundsConstantOffsets() const {
548 return stripPointerCastsAndOffsets
<PSK_InBoundsConstantIndices
>(this);
551 const Value
*Value::stripPointerCastsAndInvariantGroups() const {
552 return stripPointerCastsAndOffsets
<PSK_ZeroIndicesAndAliasesAndInvariantGroups
>(
557 Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout
&DL
,
558 APInt
&Offset
) const {
559 if (!getType()->isPointerTy())
562 assert(Offset
.getBitWidth() == DL
.getIndexSizeInBits(cast
<PointerType
>(
563 getType())->getAddressSpace()) &&
564 "The offset bit width does not match the DL specification.");
566 // Even though we don't look through PHI nodes, we could be called on an
567 // instruction in an unreachable block, which may be on a cycle.
568 SmallPtrSet
<const Value
*, 4> Visited
;
569 Visited
.insert(this);
570 const Value
*V
= this;
572 if (auto *GEP
= dyn_cast
<GEPOperator
>(V
)) {
573 if (!GEP
->isInBounds())
575 APInt
GEPOffset(Offset
);
576 if (!GEP
->accumulateConstantOffset(DL
, GEPOffset
))
579 V
= GEP
->getPointerOperand();
580 } else if (Operator::getOpcode(V
) == Instruction::BitCast
) {
581 V
= cast
<Operator
>(V
)->getOperand(0);
582 } else if (auto *GA
= dyn_cast
<GlobalAlias
>(V
)) {
583 V
= GA
->getAliasee();
585 if (auto CS
= ImmutableCallSite(V
))
586 if (const Value
*RV
= CS
.getReturnedArgOperand()) {
593 assert(V
->getType()->isPointerTy() && "Unexpected operand type!");
594 } while (Visited
.insert(V
).second
);
599 const Value
*Value::stripInBoundsOffsets() const {
600 return stripPointerCastsAndOffsets
<PSK_InBounds
>(this);
603 uint64_t Value::getPointerDereferenceableBytes(const DataLayout
&DL
,
604 bool &CanBeNull
) const {
605 assert(getType()->isPointerTy() && "must be pointer");
607 uint64_t DerefBytes
= 0;
609 if (const Argument
*A
= dyn_cast
<Argument
>(this)) {
610 DerefBytes
= A
->getDereferenceableBytes();
611 if (DerefBytes
== 0 && (A
->hasByValAttr() || A
->hasStructRetAttr())) {
612 Type
*PT
= cast
<PointerType
>(A
->getType())->getElementType();
614 DerefBytes
= DL
.getTypeStoreSize(PT
);
616 if (DerefBytes
== 0) {
617 DerefBytes
= A
->getDereferenceableOrNullBytes();
620 } else if (auto CS
= ImmutableCallSite(this)) {
621 DerefBytes
= CS
.getDereferenceableBytes(AttributeList::ReturnIndex
);
622 if (DerefBytes
== 0) {
623 DerefBytes
= CS
.getDereferenceableOrNullBytes(AttributeList::ReturnIndex
);
626 } else if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(this)) {
627 if (MDNode
*MD
= LI
->getMetadata(LLVMContext::MD_dereferenceable
)) {
628 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(0));
629 DerefBytes
= CI
->getLimitedValue();
631 if (DerefBytes
== 0) {
633 LI
->getMetadata(LLVMContext::MD_dereferenceable_or_null
)) {
634 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(0));
635 DerefBytes
= CI
->getLimitedValue();
639 } else if (auto *AI
= dyn_cast
<AllocaInst
>(this)) {
640 if (!AI
->isArrayAllocation()) {
641 DerefBytes
= DL
.getTypeStoreSize(AI
->getAllocatedType());
644 } else if (auto *GV
= dyn_cast
<GlobalVariable
>(this)) {
645 if (GV
->getValueType()->isSized() && !GV
->hasExternalWeakLinkage()) {
646 // TODO: Don't outright reject hasExternalWeakLinkage but set the
648 DerefBytes
= DL
.getTypeStoreSize(GV
->getValueType());
655 unsigned Value::getPointerAlignment(const DataLayout
&DL
) const {
656 assert(getType()->isPointerTy() && "must be pointer");
659 if (auto *GO
= dyn_cast
<GlobalObject
>(this)) {
660 // Don't make any assumptions about function pointer alignment. Some
661 // targets use the LSBs to store additional information.
662 if (isa
<Function
>(GO
))
664 Align
= GO
->getAlignment();
666 if (auto *GVar
= dyn_cast
<GlobalVariable
>(GO
)) {
667 Type
*ObjectType
= GVar
->getValueType();
668 if (ObjectType
->isSized()) {
669 // If the object is defined in the current Module, we'll be giving
670 // it the preferred alignment. Otherwise, we have to assume that it
671 // may only have the minimum ABI alignment.
672 if (GVar
->isStrongDefinitionForLinker())
673 Align
= DL
.getPreferredAlignment(GVar
);
675 Align
= DL
.getABITypeAlignment(ObjectType
);
679 } else if (const Argument
*A
= dyn_cast
<Argument
>(this)) {
680 Align
= A
->getParamAlignment();
682 if (!Align
&& A
->hasStructRetAttr()) {
683 // An sret parameter has at least the ABI alignment of the return type.
684 Type
*EltTy
= cast
<PointerType
>(A
->getType())->getElementType();
685 if (EltTy
->isSized())
686 Align
= DL
.getABITypeAlignment(EltTy
);
688 } else if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(this)) {
689 Align
= AI
->getAlignment();
691 Type
*AllocatedType
= AI
->getAllocatedType();
692 if (AllocatedType
->isSized())
693 Align
= DL
.getPrefTypeAlignment(AllocatedType
);
695 } else if (auto CS
= ImmutableCallSite(this))
696 Align
= CS
.getAttributes().getRetAlignment();
697 else if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(this))
698 if (MDNode
*MD
= LI
->getMetadata(LLVMContext::MD_align
)) {
699 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(0));
700 Align
= CI
->getLimitedValue();
706 const Value
*Value::DoPHITranslation(const BasicBlock
*CurBB
,
707 const BasicBlock
*PredBB
) const {
708 auto *PN
= dyn_cast
<PHINode
>(this);
709 if (PN
&& PN
->getParent() == CurBB
)
710 return PN
->getIncomingValueForBlock(PredBB
);
714 LLVMContext
&Value::getContext() const { return VTy
->getContext(); }
716 void Value::reverseUseList() {
717 if (!UseList
|| !UseList
->Next
)
718 // No need to reverse 0 or 1 uses.
722 Use
*Current
= UseList
->Next
;
723 Head
->Next
= nullptr;
725 Use
*Next
= Current
->Next
;
726 Current
->Next
= Head
;
727 Head
->setPrev(&Current
->Next
);
732 Head
->setPrev(&UseList
);
735 bool Value::isSwiftError() const {
736 auto *Arg
= dyn_cast
<Argument
>(this);
738 return Arg
->hasSwiftErrorAttr();
739 auto *Alloca
= dyn_cast
<AllocaInst
>(this);
742 return Alloca
->isSwiftError();
745 //===----------------------------------------------------------------------===//
746 // ValueHandleBase Class
747 //===----------------------------------------------------------------------===//
749 void ValueHandleBase::AddToExistingUseList(ValueHandleBase
**List
) {
750 assert(List
&& "Handle list is null?");
752 // Splice ourselves into the list.
757 Next
->setPrevPtr(&Next
);
758 assert(getValPtr() == Next
->getValPtr() && "Added to wrong list?");
762 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase
*List
) {
763 assert(List
&& "Must insert after existing node");
766 setPrevPtr(&List
->Next
);
769 Next
->setPrevPtr(&Next
);
772 void ValueHandleBase::AddToUseList() {
773 assert(getValPtr() && "Null pointer doesn't have a use list!");
775 LLVMContextImpl
*pImpl
= getValPtr()->getContext().pImpl
;
777 if (getValPtr()->HasValueHandle
) {
778 // If this value already has a ValueHandle, then it must be in the
779 // ValueHandles map already.
780 ValueHandleBase
*&Entry
= pImpl
->ValueHandles
[getValPtr()];
781 assert(Entry
&& "Value doesn't have any handles?");
782 AddToExistingUseList(&Entry
);
786 // Ok, it doesn't have any handles yet, so we must insert it into the
787 // DenseMap. However, doing this insertion could cause the DenseMap to
788 // reallocate itself, which would invalidate all of the PrevP pointers that
789 // point into the old table. Handle this by checking for reallocation and
790 // updating the stale pointers only if needed.
791 DenseMap
<Value
*, ValueHandleBase
*> &Handles
= pImpl
->ValueHandles
;
792 const void *OldBucketPtr
= Handles
.getPointerIntoBucketsArray();
794 ValueHandleBase
*&Entry
= Handles
[getValPtr()];
795 assert(!Entry
&& "Value really did already have handles?");
796 AddToExistingUseList(&Entry
);
797 getValPtr()->HasValueHandle
= true;
799 // If reallocation didn't happen or if this was the first insertion, don't
801 if (Handles
.isPointerIntoBucketsArray(OldBucketPtr
) ||
802 Handles
.size() == 1) {
806 // Okay, reallocation did happen. Fix the Prev Pointers.
807 for (DenseMap
<Value
*, ValueHandleBase
*>::iterator I
= Handles
.begin(),
808 E
= Handles
.end(); I
!= E
; ++I
) {
809 assert(I
->second
&& I
->first
== I
->second
->getValPtr() &&
810 "List invariant broken!");
811 I
->second
->setPrevPtr(&I
->second
);
815 void ValueHandleBase::RemoveFromUseList() {
816 assert(getValPtr() && getValPtr()->HasValueHandle
&&
817 "Pointer doesn't have a use list!");
819 // Unlink this from its use list.
820 ValueHandleBase
**PrevPtr
= getPrevPtr();
821 assert(*PrevPtr
== this && "List invariant broken");
825 assert(Next
->getPrevPtr() == &Next
&& "List invariant broken");
826 Next
->setPrevPtr(PrevPtr
);
830 // If the Next pointer was null, then it is possible that this was the last
831 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
833 LLVMContextImpl
*pImpl
= getValPtr()->getContext().pImpl
;
834 DenseMap
<Value
*, ValueHandleBase
*> &Handles
= pImpl
->ValueHandles
;
835 if (Handles
.isPointerIntoBucketsArray(PrevPtr
)) {
836 Handles
.erase(getValPtr());
837 getValPtr()->HasValueHandle
= false;
841 void ValueHandleBase::ValueIsDeleted(Value
*V
) {
842 assert(V
->HasValueHandle
&& "Should only be called if ValueHandles present");
844 // Get the linked list base, which is guaranteed to exist since the
845 // HasValueHandle flag is set.
846 LLVMContextImpl
*pImpl
= V
->getContext().pImpl
;
847 ValueHandleBase
*Entry
= pImpl
->ValueHandles
[V
];
848 assert(Entry
&& "Value bit set but no entries exist");
850 // We use a local ValueHandleBase as an iterator so that ValueHandles can add
851 // and remove themselves from the list without breaking our iteration. This
852 // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
853 // Note that we deliberately do not the support the case when dropping a value
854 // handle results in a new value handle being permanently added to the list
855 // (as might occur in theory for CallbackVH's): the new value handle will not
856 // be processed and the checking code will mete out righteous punishment if
857 // the handle is still present once we have finished processing all the other
858 // value handles (it is fine to momentarily add then remove a value handle).
859 for (ValueHandleBase
Iterator(Assert
, *Entry
); Entry
; Entry
= Iterator
.Next
) {
860 Iterator
.RemoveFromUseList();
861 Iterator
.AddToExistingUseListAfter(Entry
);
862 assert(Entry
->Next
== &Iterator
&& "Loop invariant broken.");
864 switch (Entry
->getKind()) {
869 // WeakTracking and Weak just go to null, which unlinks them
871 Entry
->operator=(nullptr);
874 // Forward to the subclass's implementation.
875 static_cast<CallbackVH
*>(Entry
)->deleted();
880 // All callbacks, weak references, and assertingVHs should be dropped by now.
881 if (V
->HasValueHandle
) {
882 #ifndef NDEBUG // Only in +Asserts mode...
883 dbgs() << "While deleting: " << *V
->getType() << " %" << V
->getName()
885 if (pImpl
->ValueHandles
[V
]->getKind() == Assert
)
886 llvm_unreachable("An asserting value handle still pointed to this"
890 llvm_unreachable("All references to V were not removed?");
894 void ValueHandleBase::ValueIsRAUWd(Value
*Old
, Value
*New
) {
895 assert(Old
->HasValueHandle
&&"Should only be called if ValueHandles present");
896 assert(Old
!= New
&& "Changing value into itself!");
897 assert(Old
->getType() == New
->getType() &&
898 "replaceAllUses of value with new value of different type!");
900 // Get the linked list base, which is guaranteed to exist since the
901 // HasValueHandle flag is set.
902 LLVMContextImpl
*pImpl
= Old
->getContext().pImpl
;
903 ValueHandleBase
*Entry
= pImpl
->ValueHandles
[Old
];
905 assert(Entry
&& "Value bit set but no entries exist");
907 // We use a local ValueHandleBase as an iterator so that
908 // ValueHandles can add and remove themselves from the list without
909 // breaking our iteration. This is not really an AssertingVH; we
910 // just have to give ValueHandleBase some kind.
911 for (ValueHandleBase
Iterator(Assert
, *Entry
); Entry
; Entry
= Iterator
.Next
) {
912 Iterator
.RemoveFromUseList();
913 Iterator
.AddToExistingUseListAfter(Entry
);
914 assert(Entry
->Next
== &Iterator
&& "Loop invariant broken.");
916 switch (Entry
->getKind()) {
919 // Asserting and Weak handles do not follow RAUW implicitly.
922 // Weak goes to the new value, which will unlink it from Old's list.
923 Entry
->operator=(New
);
926 // Forward to the subclass's implementation.
927 static_cast<CallbackVH
*>(Entry
)->allUsesReplacedWith(New
);
933 // If any new weak value handles were added while processing the
934 // list, then complain about it now.
935 if (Old
->HasValueHandle
)
936 for (Entry
= pImpl
->ValueHandles
[Old
]; Entry
; Entry
= Entry
->Next
)
937 switch (Entry
->getKind()) {
939 dbgs() << "After RAUW from " << *Old
->getType() << " %"
940 << Old
->getName() << " to " << *New
->getType() << " %"
941 << New
->getName() << "\n";
943 "A weak tracking value handle still pointed to the old value!\n");
950 // Pin the vtable to this file.
951 void CallbackVH::anchor() {}