1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
42 // * Landingpad instructions must be in a function with a personality function.
43 // * All other things that are tested by asserts spread about the code...
45 //===----------------------------------------------------------------------===//
47 #include "llvm/IR/Verifier.h"
48 #include "llvm/ADT/APFloat.h"
49 #include "llvm/ADT/APInt.h"
50 #include "llvm/ADT/ArrayRef.h"
51 #include "llvm/ADT/DenseMap.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/Optional.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/SmallSet.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/StringExtras.h"
59 #include "llvm/ADT/StringMap.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/ADT/ilist.h"
63 #include "llvm/BinaryFormat/Dwarf.h"
64 #include "llvm/IR/Argument.h"
65 #include "llvm/IR/Attributes.h"
66 #include "llvm/IR/BasicBlock.h"
67 #include "llvm/IR/CFG.h"
68 #include "llvm/IR/CallSite.h"
69 #include "llvm/IR/CallingConv.h"
70 #include "llvm/IR/Comdat.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfo.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Dominators.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GlobalAlias.h"
82 #include "llvm/IR/GlobalValue.h"
83 #include "llvm/IR/GlobalVariable.h"
84 #include "llvm/IR/InlineAsm.h"
85 #include "llvm/IR/InstVisitor.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
94 #include "llvm/IR/ModuleSlotTracker.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/Use.h"
99 #include "llvm/IR/User.h"
100 #include "llvm/IR/Value.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
116 using namespace llvm
;
120 struct VerifierSupport
{
123 ModuleSlotTracker MST
;
124 const DataLayout
&DL
;
125 LLVMContext
&Context
;
127 /// Track the brokenness of the module while recursively visiting.
129 /// Broken debug info can be "recovered" from by stripping the debug info.
130 bool BrokenDebugInfo
= false;
131 /// Whether to treat broken debug info as an error.
132 bool TreatBrokenDebugInfoAsError
= true;
134 explicit VerifierSupport(raw_ostream
*OS
, const Module
&M
)
135 : OS(OS
), M(M
), MST(&M
), DL(M
.getDataLayout()), Context(M
.getContext()) {}
138 void Write(const Module
*M
) {
139 *OS
<< "; ModuleID = '" << M
->getModuleIdentifier() << "'\n";
142 void Write(const Value
*V
) {
145 if (isa
<Instruction
>(V
)) {
149 V
->printAsOperand(*OS
, true, MST
);
154 void Write(ImmutableCallSite CS
) {
155 Write(CS
.getInstruction());
158 void Write(const Metadata
*MD
) {
161 MD
->print(*OS
, MST
, &M
);
165 template <class T
> void Write(const MDTupleTypedArrayWrapper
<T
> &MD
) {
169 void Write(const NamedMDNode
*NMD
) {
172 NMD
->print(*OS
, MST
);
176 void Write(Type
*T
) {
182 void Write(const Comdat
*C
) {
188 void Write(const APInt
*AI
) {
194 void Write(const unsigned i
) { *OS
<< i
<< '\n'; }
196 template <typename T
> void Write(ArrayRef
<T
> Vs
) {
197 for (const T
&V
: Vs
)
201 template <typename T1
, typename
... Ts
>
202 void WriteTs(const T1
&V1
, const Ts
&... Vs
) {
207 template <typename
... Ts
> void WriteTs() {}
210 /// A check failed, so printout out the condition and the message.
212 /// This provides a nice place to put a breakpoint if you want to see why
213 /// something is not correct.
214 void CheckFailed(const Twine
&Message
) {
216 *OS
<< Message
<< '\n';
220 /// A check failed (with values to print).
222 /// This calls the Message-only version so that the above is easier to set a
224 template <typename T1
, typename
... Ts
>
225 void CheckFailed(const Twine
&Message
, const T1
&V1
, const Ts
&... Vs
) {
226 CheckFailed(Message
);
231 /// A debug info check failed.
232 void DebugInfoCheckFailed(const Twine
&Message
) {
234 *OS
<< Message
<< '\n';
235 Broken
|= TreatBrokenDebugInfoAsError
;
236 BrokenDebugInfo
= true;
239 /// A debug info check failed (with values to print).
240 template <typename T1
, typename
... Ts
>
241 void DebugInfoCheckFailed(const Twine
&Message
, const T1
&V1
,
243 DebugInfoCheckFailed(Message
);
253 class Verifier
: public InstVisitor
<Verifier
>, VerifierSupport
{
254 friend class InstVisitor
<Verifier
>;
258 /// When verifying a basic block, keep track of all of the
259 /// instructions we have seen so far.
261 /// This allows us to do efficient dominance checks for the case when an
262 /// instruction has an operand that is an instruction in the same block.
263 SmallPtrSet
<Instruction
*, 16> InstsInThisBlock
;
265 /// Keep track of the metadata nodes that have been checked already.
266 SmallPtrSet
<const Metadata
*, 32> MDNodes
;
268 /// Keep track which DISubprogram is attached to which function.
269 DenseMap
<const DISubprogram
*, const Function
*> DISubprogramAttachments
;
271 /// Track all DICompileUnits visited.
272 SmallPtrSet
<const Metadata
*, 2> CUVisited
;
274 /// The result type for a landingpad.
275 Type
*LandingPadResultTy
;
277 /// Whether we've seen a call to @llvm.localescape in this function
281 /// Whether the current function has a DISubprogram attached to it.
282 bool HasDebugInfo
= false;
284 /// Stores the count of how many objects were passed to llvm.localescape for a
285 /// given function and the largest index passed to llvm.localrecover.
286 DenseMap
<Function
*, std::pair
<unsigned, unsigned>> FrameEscapeInfo
;
288 // Maps catchswitches and cleanuppads that unwind to siblings to the
289 // terminators that indicate the unwind, used to detect cycles therein.
290 MapVector
<Instruction
*, TerminatorInst
*> SiblingFuncletInfo
;
292 /// Cache of constants visited in search of ConstantExprs.
293 SmallPtrSet
<const Constant
*, 32> ConstantExprVisited
;
295 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296 SmallVector
<const Function
*, 4> DeoptimizeDeclarations
;
298 // Verify that this GlobalValue is only used in this module.
299 // This map is used to avoid visiting uses twice. We can arrive at a user
300 // twice, if they have multiple operands. In particular for very large
301 // constant expressions, we can arrive at a particular user many times.
302 SmallPtrSet
<const Value
*, 32> GlobalValueVisited
;
304 // Keeps track of duplicate function argument debug info.
305 SmallVector
<const DILocalVariable
*, 16> DebugFnArgs
;
307 TBAAVerifier TBAAVerifyHelper
;
309 void checkAtomicMemAccessSize(Type
*Ty
, const Instruction
*I
);
312 explicit Verifier(raw_ostream
*OS
, bool ShouldTreatBrokenDebugInfoAsError
,
314 : VerifierSupport(OS
, M
), LandingPadResultTy(nullptr),
315 SawFrameEscape(false), TBAAVerifyHelper(this) {
316 TreatBrokenDebugInfoAsError
= ShouldTreatBrokenDebugInfoAsError
;
319 bool hasBrokenDebugInfo() const { return BrokenDebugInfo
; }
321 bool verify(const Function
&F
) {
322 assert(F
.getParent() == &M
&&
323 "An instance of this class only works with a specific module!");
325 // First ensure the function is well-enough formed to compute dominance
326 // information, and directly compute a dominance tree. We don't rely on the
327 // pass manager to provide this as it isolates us from a potentially
328 // out-of-date dominator tree and makes it significantly more complex to run
329 // this code outside of a pass manager.
330 // FIXME: It's really gross that we have to cast away constness here.
332 DT
.recalculate(const_cast<Function
&>(F
));
334 for (const BasicBlock
&BB
: F
) {
335 if (!BB
.empty() && BB
.back().isTerminator())
339 *OS
<< "Basic Block in function '" << F
.getName()
340 << "' does not have terminator!\n";
341 BB
.printAsOperand(*OS
, true, MST
);
348 // FIXME: We strip const here because the inst visitor strips const.
349 visit(const_cast<Function
&>(F
));
350 verifySiblingFuncletUnwinds();
351 InstsInThisBlock
.clear();
353 LandingPadResultTy
= nullptr;
354 SawFrameEscape
= false;
355 SiblingFuncletInfo
.clear();
360 /// Verify the module that this instance of \c Verifier was initialized with.
364 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365 for (const Function
&F
: M
)
366 if (F
.getIntrinsicID() == Intrinsic::experimental_deoptimize
)
367 DeoptimizeDeclarations
.push_back(&F
);
369 // Now that we've visited every function, verify that we never asked to
370 // recover a frame index that wasn't escaped.
371 verifyFrameRecoverIndices();
372 for (const GlobalVariable
&GV
: M
.globals())
373 visitGlobalVariable(GV
);
375 for (const GlobalAlias
&GA
: M
.aliases())
376 visitGlobalAlias(GA
);
378 for (const NamedMDNode
&NMD
: M
.named_metadata())
379 visitNamedMDNode(NMD
);
381 for (const StringMapEntry
<Comdat
> &SMEC
: M
.getComdatSymbolTable())
382 visitComdat(SMEC
.getValue());
385 visitModuleIdents(M
);
387 verifyCompileUnits();
389 verifyDeoptimizeCallingConvs();
390 DISubprogramAttachments
.clear();
395 // Verification methods...
396 void visitGlobalValue(const GlobalValue
&GV
);
397 void visitGlobalVariable(const GlobalVariable
&GV
);
398 void visitGlobalAlias(const GlobalAlias
&GA
);
399 void visitAliaseeSubExpr(const GlobalAlias
&A
, const Constant
&C
);
400 void visitAliaseeSubExpr(SmallPtrSetImpl
<const GlobalAlias
*> &Visited
,
401 const GlobalAlias
&A
, const Constant
&C
);
402 void visitNamedMDNode(const NamedMDNode
&NMD
);
403 void visitMDNode(const MDNode
&MD
);
404 void visitMetadataAsValue(const MetadataAsValue
&MD
, Function
*F
);
405 void visitValueAsMetadata(const ValueAsMetadata
&MD
, Function
*F
);
406 void visitComdat(const Comdat
&C
);
407 void visitModuleIdents(const Module
&M
);
408 void visitModuleFlags(const Module
&M
);
409 void visitModuleFlag(const MDNode
*Op
,
410 DenseMap
<const MDString
*, const MDNode
*> &SeenIDs
,
411 SmallVectorImpl
<const MDNode
*> &Requirements
);
412 void visitModuleFlagCGProfileEntry(const MDOperand
&MDO
);
413 void visitFunction(const Function
&F
);
414 void visitBasicBlock(BasicBlock
&BB
);
415 void visitRangeMetadata(Instruction
&I
, MDNode
*Range
, Type
*Ty
);
416 void visitDereferenceableMetadata(Instruction
&I
, MDNode
*MD
);
418 template <class Ty
> bool isValidMetadataArray(const MDTuple
&N
);
419 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
420 #include "llvm/IR/Metadata.def"
421 void visitDIScope(const DIScope
&N
);
422 void visitDIVariable(const DIVariable
&N
);
423 void visitDILexicalBlockBase(const DILexicalBlockBase
&N
);
424 void visitDITemplateParameter(const DITemplateParameter
&N
);
426 void visitTemplateParams(const MDNode
&N
, const Metadata
&RawParams
);
428 // InstVisitor overrides...
429 using InstVisitor
<Verifier
>::visit
;
430 void visit(Instruction
&I
);
432 void visitTruncInst(TruncInst
&I
);
433 void visitZExtInst(ZExtInst
&I
);
434 void visitSExtInst(SExtInst
&I
);
435 void visitFPTruncInst(FPTruncInst
&I
);
436 void visitFPExtInst(FPExtInst
&I
);
437 void visitFPToUIInst(FPToUIInst
&I
);
438 void visitFPToSIInst(FPToSIInst
&I
);
439 void visitUIToFPInst(UIToFPInst
&I
);
440 void visitSIToFPInst(SIToFPInst
&I
);
441 void visitIntToPtrInst(IntToPtrInst
&I
);
442 void visitPtrToIntInst(PtrToIntInst
&I
);
443 void visitBitCastInst(BitCastInst
&I
);
444 void visitAddrSpaceCastInst(AddrSpaceCastInst
&I
);
445 void visitPHINode(PHINode
&PN
);
446 void visitBinaryOperator(BinaryOperator
&B
);
447 void visitICmpInst(ICmpInst
&IC
);
448 void visitFCmpInst(FCmpInst
&FC
);
449 void visitExtractElementInst(ExtractElementInst
&EI
);
450 void visitInsertElementInst(InsertElementInst
&EI
);
451 void visitShuffleVectorInst(ShuffleVectorInst
&EI
);
452 void visitVAArgInst(VAArgInst
&VAA
) { visitInstruction(VAA
); }
453 void visitCallInst(CallInst
&CI
);
454 void visitInvokeInst(InvokeInst
&II
);
455 void visitGetElementPtrInst(GetElementPtrInst
&GEP
);
456 void visitLoadInst(LoadInst
&LI
);
457 void visitStoreInst(StoreInst
&SI
);
458 void verifyDominatesUse(Instruction
&I
, unsigned i
);
459 void visitInstruction(Instruction
&I
);
460 void visitTerminatorInst(TerminatorInst
&I
);
461 void visitBranchInst(BranchInst
&BI
);
462 void visitReturnInst(ReturnInst
&RI
);
463 void visitSwitchInst(SwitchInst
&SI
);
464 void visitIndirectBrInst(IndirectBrInst
&BI
);
465 void visitSelectInst(SelectInst
&SI
);
466 void visitUserOp1(Instruction
&I
);
467 void visitUserOp2(Instruction
&I
) { visitUserOp1(I
); }
468 void visitIntrinsicCallSite(Intrinsic::ID ID
, CallSite CS
);
469 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic
&FPI
);
470 void visitDbgIntrinsic(StringRef Kind
, DbgVariableIntrinsic
&DII
);
471 void visitDbgLabelIntrinsic(StringRef Kind
, DbgLabelInst
&DLI
);
472 void visitAtomicCmpXchgInst(AtomicCmpXchgInst
&CXI
);
473 void visitAtomicRMWInst(AtomicRMWInst
&RMWI
);
474 void visitFenceInst(FenceInst
&FI
);
475 void visitAllocaInst(AllocaInst
&AI
);
476 void visitExtractValueInst(ExtractValueInst
&EVI
);
477 void visitInsertValueInst(InsertValueInst
&IVI
);
478 void visitEHPadPredecessors(Instruction
&I
);
479 void visitLandingPadInst(LandingPadInst
&LPI
);
480 void visitResumeInst(ResumeInst
&RI
);
481 void visitCatchPadInst(CatchPadInst
&CPI
);
482 void visitCatchReturnInst(CatchReturnInst
&CatchReturn
);
483 void visitCleanupPadInst(CleanupPadInst
&CPI
);
484 void visitFuncletPadInst(FuncletPadInst
&FPI
);
485 void visitCatchSwitchInst(CatchSwitchInst
&CatchSwitch
);
486 void visitCleanupReturnInst(CleanupReturnInst
&CRI
);
488 void verifyCallSite(CallSite CS
);
489 void verifySwiftErrorCallSite(CallSite CS
, const Value
*SwiftErrorVal
);
490 void verifySwiftErrorValue(const Value
*SwiftErrorVal
);
491 void verifyMustTailCall(CallInst
&CI
);
492 bool performTypeCheck(Intrinsic::ID ID
, Function
*F
, Type
*Ty
, int VT
,
493 unsigned ArgNo
, std::string
&Suffix
);
494 bool verifyAttributeCount(AttributeList Attrs
, unsigned Params
);
495 void verifyAttributeTypes(AttributeSet Attrs
, bool IsFunction
,
497 void verifyParameterAttrs(AttributeSet Attrs
, Type
*Ty
, const Value
*V
);
498 void verifyFunctionAttrs(FunctionType
*FT
, AttributeList Attrs
,
500 void verifyFunctionMetadata(ArrayRef
<std::pair
<unsigned, MDNode
*>> MDs
);
502 void visitConstantExprsRecursively(const Constant
*EntryC
);
503 void visitConstantExpr(const ConstantExpr
*CE
);
504 void verifyStatepoint(ImmutableCallSite CS
);
505 void verifyFrameRecoverIndices();
506 void verifySiblingFuncletUnwinds();
508 void verifyFragmentExpression(const DbgVariableIntrinsic
&I
);
509 template <typename ValueOrMetadata
>
510 void verifyFragmentExpression(const DIVariable
&V
,
511 DIExpression::FragmentInfo Fragment
,
512 ValueOrMetadata
*Desc
);
513 void verifyFnArgs(const DbgVariableIntrinsic
&I
);
515 /// Module-level debug info verification...
516 void verifyCompileUnits();
518 /// Module-level verification that all @llvm.experimental.deoptimize
519 /// declarations share the same calling convention.
520 void verifyDeoptimizeCallingConvs();
523 } // end anonymous namespace
525 /// We know that cond should be true, if not print an error message.
526 #define Assert(C, ...) \
527 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
529 /// We know that a debug info condition should be true, if not print
530 /// an error message.
531 #define AssertDI(C, ...) \
532 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
534 void Verifier::visit(Instruction
&I
) {
535 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
536 Assert(I
.getOperand(i
) != nullptr, "Operand is null", &I
);
537 InstVisitor
<Verifier
>::visit(I
);
540 // Helper to recursively iterate over indirect users. By
541 // returning false, the callback can ask to stop recursing
543 static void forEachUser(const Value
*User
,
544 SmallPtrSet
<const Value
*, 32> &Visited
,
545 llvm::function_ref
<bool(const Value
*)> Callback
) {
546 if (!Visited
.insert(User
).second
)
548 for (const Value
*TheNextUser
: User
->materialized_users())
549 if (Callback(TheNextUser
))
550 forEachUser(TheNextUser
, Visited
, Callback
);
553 void Verifier::visitGlobalValue(const GlobalValue
&GV
) {
554 Assert(!GV
.isDeclaration() || GV
.hasValidDeclarationLinkage(),
555 "Global is external, but doesn't have external or weak linkage!", &GV
);
557 Assert(GV
.getAlignment() <= Value::MaximumAlignment
,
558 "huge alignment values are unsupported", &GV
);
559 Assert(!GV
.hasAppendingLinkage() || isa
<GlobalVariable
>(GV
),
560 "Only global variables can have appending linkage!", &GV
);
562 if (GV
.hasAppendingLinkage()) {
563 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(&GV
);
564 Assert(GVar
&& GVar
->getValueType()->isArrayTy(),
565 "Only global arrays can have appending linkage!", GVar
);
568 if (GV
.isDeclarationForLinker())
569 Assert(!GV
.hasComdat(), "Declaration may not be in a Comdat!", &GV
);
571 if (GV
.hasDLLImportStorageClass()) {
572 Assert(!GV
.isDSOLocal(),
573 "GlobalValue with DLLImport Storage is dso_local!", &GV
);
575 Assert((GV
.isDeclaration() && GV
.hasExternalLinkage()) ||
576 GV
.hasAvailableExternallyLinkage(),
577 "Global is marked as dllimport, but not external", &GV
);
580 if (GV
.hasLocalLinkage())
581 Assert(GV
.isDSOLocal(),
582 "GlobalValue with private or internal linkage must be dso_local!",
585 if (!GV
.hasDefaultVisibility() && !GV
.hasExternalWeakLinkage())
586 Assert(GV
.isDSOLocal(),
587 "GlobalValue with non default visibility must be dso_local!", &GV
);
589 forEachUser(&GV
, GlobalValueVisited
, [&](const Value
*V
) -> bool {
590 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
591 if (!I
->getParent() || !I
->getParent()->getParent())
592 CheckFailed("Global is referenced by parentless instruction!", &GV
, &M
,
594 else if (I
->getParent()->getParent()->getParent() != &M
)
595 CheckFailed("Global is referenced in a different module!", &GV
, &M
, I
,
596 I
->getParent()->getParent(),
597 I
->getParent()->getParent()->getParent());
599 } else if (const Function
*F
= dyn_cast
<Function
>(V
)) {
600 if (F
->getParent() != &M
)
601 CheckFailed("Global is used by function in a different module", &GV
, &M
,
609 void Verifier::visitGlobalVariable(const GlobalVariable
&GV
) {
610 if (GV
.hasInitializer()) {
611 Assert(GV
.getInitializer()->getType() == GV
.getValueType(),
612 "Global variable initializer type does not match global "
615 // If the global has common linkage, it must have a zero initializer and
616 // cannot be constant.
617 if (GV
.hasCommonLinkage()) {
618 Assert(GV
.getInitializer()->isNullValue(),
619 "'common' global must have a zero initializer!", &GV
);
620 Assert(!GV
.isConstant(), "'common' global may not be marked constant!",
622 Assert(!GV
.hasComdat(), "'common' global may not be in a Comdat!", &GV
);
626 if (GV
.hasName() && (GV
.getName() == "llvm.global_ctors" ||
627 GV
.getName() == "llvm.global_dtors")) {
628 Assert(!GV
.hasInitializer() || GV
.hasAppendingLinkage(),
629 "invalid linkage for intrinsic global variable", &GV
);
630 // Don't worry about emitting an error for it not being an array,
631 // visitGlobalValue will complain on appending non-array.
632 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(GV
.getValueType())) {
633 StructType
*STy
= dyn_cast
<StructType
>(ATy
->getElementType());
634 PointerType
*FuncPtrTy
=
635 FunctionType::get(Type::getVoidTy(Context
), false)->
636 getPointerTo(DL
.getProgramAddressSpace());
637 // FIXME: Reject the 2-field form in LLVM 4.0.
639 (STy
->getNumElements() == 2 || STy
->getNumElements() == 3) &&
640 STy
->getTypeAtIndex(0u)->isIntegerTy(32) &&
641 STy
->getTypeAtIndex(1) == FuncPtrTy
,
642 "wrong type for intrinsic global variable", &GV
);
643 if (STy
->getNumElements() == 3) {
644 Type
*ETy
= STy
->getTypeAtIndex(2);
645 Assert(ETy
->isPointerTy() &&
646 cast
<PointerType
>(ETy
)->getElementType()->isIntegerTy(8),
647 "wrong type for intrinsic global variable", &GV
);
652 if (GV
.hasName() && (GV
.getName() == "llvm.used" ||
653 GV
.getName() == "llvm.compiler.used")) {
654 Assert(!GV
.hasInitializer() || GV
.hasAppendingLinkage(),
655 "invalid linkage for intrinsic global variable", &GV
);
656 Type
*GVType
= GV
.getValueType();
657 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(GVType
)) {
658 PointerType
*PTy
= dyn_cast
<PointerType
>(ATy
->getElementType());
659 Assert(PTy
, "wrong type for intrinsic global variable", &GV
);
660 if (GV
.hasInitializer()) {
661 const Constant
*Init
= GV
.getInitializer();
662 const ConstantArray
*InitArray
= dyn_cast
<ConstantArray
>(Init
);
663 Assert(InitArray
, "wrong initalizer for intrinsic global variable",
665 for (Value
*Op
: InitArray
->operands()) {
666 Value
*V
= Op
->stripPointerCastsNoFollowAliases();
667 Assert(isa
<GlobalVariable
>(V
) || isa
<Function
>(V
) ||
669 "invalid llvm.used member", V
);
670 Assert(V
->hasName(), "members of llvm.used must be named", V
);
676 // Visit any debug info attachments.
677 SmallVector
<MDNode
*, 1> MDs
;
678 GV
.getMetadata(LLVMContext::MD_dbg
, MDs
);
679 for (auto *MD
: MDs
) {
680 if (auto *GVE
= dyn_cast
<DIGlobalVariableExpression
>(MD
))
681 visitDIGlobalVariableExpression(*GVE
);
683 AssertDI(false, "!dbg attachment of global variable must be a "
684 "DIGlobalVariableExpression");
687 if (!GV
.hasInitializer()) {
688 visitGlobalValue(GV
);
692 // Walk any aggregate initializers looking for bitcasts between address spaces
693 visitConstantExprsRecursively(GV
.getInitializer());
695 visitGlobalValue(GV
);
698 void Verifier::visitAliaseeSubExpr(const GlobalAlias
&GA
, const Constant
&C
) {
699 SmallPtrSet
<const GlobalAlias
*, 4> Visited
;
701 visitAliaseeSubExpr(Visited
, GA
, C
);
704 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl
<const GlobalAlias
*> &Visited
,
705 const GlobalAlias
&GA
, const Constant
&C
) {
706 if (const auto *GV
= dyn_cast
<GlobalValue
>(&C
)) {
707 Assert(!GV
->isDeclarationForLinker(), "Alias must point to a definition",
710 if (const auto *GA2
= dyn_cast
<GlobalAlias
>(GV
)) {
711 Assert(Visited
.insert(GA2
).second
, "Aliases cannot form a cycle", &GA
);
713 Assert(!GA2
->isInterposable(), "Alias cannot point to an interposable alias",
716 // Only continue verifying subexpressions of GlobalAliases.
717 // Do not recurse into global initializers.
722 if (const auto *CE
= dyn_cast
<ConstantExpr
>(&C
))
723 visitConstantExprsRecursively(CE
);
725 for (const Use
&U
: C
.operands()) {
727 if (const auto *GA2
= dyn_cast
<GlobalAlias
>(V
))
728 visitAliaseeSubExpr(Visited
, GA
, *GA2
->getAliasee());
729 else if (const auto *C2
= dyn_cast
<Constant
>(V
))
730 visitAliaseeSubExpr(Visited
, GA
, *C2
);
734 void Verifier::visitGlobalAlias(const GlobalAlias
&GA
) {
735 Assert(GlobalAlias::isValidLinkage(GA
.getLinkage()),
736 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
737 "weak_odr, or external linkage!",
739 const Constant
*Aliasee
= GA
.getAliasee();
740 Assert(Aliasee
, "Aliasee cannot be NULL!", &GA
);
741 Assert(GA
.getType() == Aliasee
->getType(),
742 "Alias and aliasee types should match!", &GA
);
744 Assert(isa
<GlobalValue
>(Aliasee
) || isa
<ConstantExpr
>(Aliasee
),
745 "Aliasee should be either GlobalValue or ConstantExpr", &GA
);
747 visitAliaseeSubExpr(GA
, *Aliasee
);
749 visitGlobalValue(GA
);
752 void Verifier::visitNamedMDNode(const NamedMDNode
&NMD
) {
753 // There used to be various other llvm.dbg.* nodes, but we don't support
754 // upgrading them and we want to reserve the namespace for future uses.
755 if (NMD
.getName().startswith("llvm.dbg."))
756 AssertDI(NMD
.getName() == "llvm.dbg.cu",
757 "unrecognized named metadata node in the llvm.dbg namespace",
759 for (const MDNode
*MD
: NMD
.operands()) {
760 if (NMD
.getName() == "llvm.dbg.cu")
761 AssertDI(MD
&& isa
<DICompileUnit
>(MD
), "invalid compile unit", &NMD
, MD
);
770 void Verifier::visitMDNode(const MDNode
&MD
) {
771 // Only visit each node once. Metadata can be mutually recursive, so this
772 // avoids infinite recursion here, as well as being an optimization.
773 if (!MDNodes
.insert(&MD
).second
)
776 switch (MD
.getMetadataID()) {
778 llvm_unreachable("Invalid MDNode subclass");
779 case Metadata::MDTupleKind
:
781 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
782 case Metadata::CLASS##Kind: \
783 visit##CLASS(cast<CLASS>(MD)); \
785 #include "llvm/IR/Metadata.def"
788 for (const Metadata
*Op
: MD
.operands()) {
791 Assert(!isa
<LocalAsMetadata
>(Op
), "Invalid operand for global metadata!",
793 if (auto *N
= dyn_cast
<MDNode
>(Op
)) {
797 if (auto *V
= dyn_cast
<ValueAsMetadata
>(Op
)) {
798 visitValueAsMetadata(*V
, nullptr);
803 // Check these last, so we diagnose problems in operands first.
804 Assert(!MD
.isTemporary(), "Expected no forward declarations!", &MD
);
805 Assert(MD
.isResolved(), "All nodes should be resolved!", &MD
);
808 void Verifier::visitValueAsMetadata(const ValueAsMetadata
&MD
, Function
*F
) {
809 Assert(MD
.getValue(), "Expected valid value", &MD
);
810 Assert(!MD
.getValue()->getType()->isMetadataTy(),
811 "Unexpected metadata round-trip through values", &MD
, MD
.getValue());
813 auto *L
= dyn_cast
<LocalAsMetadata
>(&MD
);
817 Assert(F
, "function-local metadata used outside a function", L
);
819 // If this was an instruction, bb, or argument, verify that it is in the
820 // function that we expect.
821 Function
*ActualF
= nullptr;
822 if (Instruction
*I
= dyn_cast
<Instruction
>(L
->getValue())) {
823 Assert(I
->getParent(), "function-local metadata not in basic block", L
, I
);
824 ActualF
= I
->getParent()->getParent();
825 } else if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(L
->getValue()))
826 ActualF
= BB
->getParent();
827 else if (Argument
*A
= dyn_cast
<Argument
>(L
->getValue()))
828 ActualF
= A
->getParent();
829 assert(ActualF
&& "Unimplemented function local metadata case!");
831 Assert(ActualF
== F
, "function-local metadata used in wrong function", L
);
834 void Verifier::visitMetadataAsValue(const MetadataAsValue
&MDV
, Function
*F
) {
835 Metadata
*MD
= MDV
.getMetadata();
836 if (auto *N
= dyn_cast
<MDNode
>(MD
)) {
841 // Only visit each node once. Metadata can be mutually recursive, so this
842 // avoids infinite recursion here, as well as being an optimization.
843 if (!MDNodes
.insert(MD
).second
)
846 if (auto *V
= dyn_cast
<ValueAsMetadata
>(MD
))
847 visitValueAsMetadata(*V
, F
);
850 static bool isType(const Metadata
*MD
) { return !MD
|| isa
<DIType
>(MD
); }
851 static bool isScope(const Metadata
*MD
) { return !MD
|| isa
<DIScope
>(MD
); }
852 static bool isDINode(const Metadata
*MD
) { return !MD
|| isa
<DINode
>(MD
); }
854 void Verifier::visitDILocation(const DILocation
&N
) {
855 AssertDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
856 "location requires a valid scope", &N
, N
.getRawScope());
857 if (auto *IA
= N
.getRawInlinedAt())
858 AssertDI(isa
<DILocation
>(IA
), "inlined-at should be a location", &N
, IA
);
859 if (auto *SP
= dyn_cast
<DISubprogram
>(N
.getRawScope()))
860 AssertDI(SP
->isDefinition(), "scope points into the type hierarchy", &N
);
863 void Verifier::visitGenericDINode(const GenericDINode
&N
) {
864 AssertDI(N
.getTag(), "invalid tag", &N
);
867 void Verifier::visitDIScope(const DIScope
&N
) {
868 if (auto *F
= N
.getRawFile())
869 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
872 void Verifier::visitDISubrange(const DISubrange
&N
) {
873 AssertDI(N
.getTag() == dwarf::DW_TAG_subrange_type
, "invalid tag", &N
);
874 auto Count
= N
.getCount();
875 AssertDI(Count
, "Count must either be a signed constant or a DIVariable",
877 AssertDI(!Count
.is
<ConstantInt
*>() ||
878 Count
.get
<ConstantInt
*>()->getSExtValue() >= -1,
879 "invalid subrange count", &N
);
882 void Verifier::visitDIEnumerator(const DIEnumerator
&N
) {
883 AssertDI(N
.getTag() == dwarf::DW_TAG_enumerator
, "invalid tag", &N
);
886 void Verifier::visitDIBasicType(const DIBasicType
&N
) {
887 AssertDI(N
.getTag() == dwarf::DW_TAG_base_type
||
888 N
.getTag() == dwarf::DW_TAG_unspecified_type
,
890 AssertDI(!(N
.isBigEndian() && N
.isLittleEndian()) ,
891 "has conflicting flags", &N
);
894 void Verifier::visitDIDerivedType(const DIDerivedType
&N
) {
895 // Common scope checks.
898 AssertDI(N
.getTag() == dwarf::DW_TAG_typedef
||
899 N
.getTag() == dwarf::DW_TAG_pointer_type
||
900 N
.getTag() == dwarf::DW_TAG_ptr_to_member_type
||
901 N
.getTag() == dwarf::DW_TAG_reference_type
||
902 N
.getTag() == dwarf::DW_TAG_rvalue_reference_type
||
903 N
.getTag() == dwarf::DW_TAG_const_type
||
904 N
.getTag() == dwarf::DW_TAG_volatile_type
||
905 N
.getTag() == dwarf::DW_TAG_restrict_type
||
906 N
.getTag() == dwarf::DW_TAG_atomic_type
||
907 N
.getTag() == dwarf::DW_TAG_member
||
908 N
.getTag() == dwarf::DW_TAG_inheritance
||
909 N
.getTag() == dwarf::DW_TAG_friend
,
911 if (N
.getTag() == dwarf::DW_TAG_ptr_to_member_type
) {
912 AssertDI(isType(N
.getRawExtraData()), "invalid pointer to member type", &N
,
913 N
.getRawExtraData());
916 AssertDI(isScope(N
.getRawScope()), "invalid scope", &N
, N
.getRawScope());
917 AssertDI(isType(N
.getRawBaseType()), "invalid base type", &N
,
920 if (N
.getDWARFAddressSpace()) {
921 AssertDI(N
.getTag() == dwarf::DW_TAG_pointer_type
||
922 N
.getTag() == dwarf::DW_TAG_reference_type
,
923 "DWARF address space only applies to pointer or reference types",
928 /// Detect mutually exclusive flags.
929 static bool hasConflictingReferenceFlags(unsigned Flags
) {
930 return ((Flags
& DINode::FlagLValueReference
) &&
931 (Flags
& DINode::FlagRValueReference
)) ||
932 ((Flags
& DINode::FlagTypePassByValue
) &&
933 (Flags
& DINode::FlagTypePassByReference
));
936 void Verifier::visitTemplateParams(const MDNode
&N
, const Metadata
&RawParams
) {
937 auto *Params
= dyn_cast
<MDTuple
>(&RawParams
);
938 AssertDI(Params
, "invalid template params", &N
, &RawParams
);
939 for (Metadata
*Op
: Params
->operands()) {
940 AssertDI(Op
&& isa
<DITemplateParameter
>(Op
), "invalid template parameter",
945 void Verifier::visitDICompositeType(const DICompositeType
&N
) {
946 // Common scope checks.
949 AssertDI(N
.getTag() == dwarf::DW_TAG_array_type
||
950 N
.getTag() == dwarf::DW_TAG_structure_type
||
951 N
.getTag() == dwarf::DW_TAG_union_type
||
952 N
.getTag() == dwarf::DW_TAG_enumeration_type
||
953 N
.getTag() == dwarf::DW_TAG_class_type
||
954 N
.getTag() == dwarf::DW_TAG_variant_part
,
957 AssertDI(isScope(N
.getRawScope()), "invalid scope", &N
, N
.getRawScope());
958 AssertDI(isType(N
.getRawBaseType()), "invalid base type", &N
,
961 AssertDI(!N
.getRawElements() || isa
<MDTuple
>(N
.getRawElements()),
962 "invalid composite elements", &N
, N
.getRawElements());
963 AssertDI(isType(N
.getRawVTableHolder()), "invalid vtable holder", &N
,
964 N
.getRawVTableHolder());
965 AssertDI(!hasConflictingReferenceFlags(N
.getFlags()),
966 "invalid reference flags", &N
);
969 const DINodeArray Elements
= N
.getElements();
970 AssertDI(Elements
.size() == 1 &&
971 Elements
[0]->getTag() == dwarf::DW_TAG_subrange_type
,
972 "invalid vector, expected one element of type subrange", &N
);
975 if (auto *Params
= N
.getRawTemplateParams())
976 visitTemplateParams(N
, *Params
);
978 if (N
.getTag() == dwarf::DW_TAG_class_type
||
979 N
.getTag() == dwarf::DW_TAG_union_type
) {
980 AssertDI(N
.getFile() && !N
.getFile()->getFilename().empty(),
981 "class/union requires a filename", &N
, N
.getFile());
984 if (auto *D
= N
.getRawDiscriminator()) {
985 AssertDI(isa
<DIDerivedType
>(D
) && N
.getTag() == dwarf::DW_TAG_variant_part
,
986 "discriminator can only appear on variant part");
990 void Verifier::visitDISubroutineType(const DISubroutineType
&N
) {
991 AssertDI(N
.getTag() == dwarf::DW_TAG_subroutine_type
, "invalid tag", &N
);
992 if (auto *Types
= N
.getRawTypeArray()) {
993 AssertDI(isa
<MDTuple
>(Types
), "invalid composite elements", &N
, Types
);
994 for (Metadata
*Ty
: N
.getTypeArray()->operands()) {
995 AssertDI(isType(Ty
), "invalid subroutine type ref", &N
, Types
, Ty
);
998 AssertDI(!hasConflictingReferenceFlags(N
.getFlags()),
999 "invalid reference flags", &N
);
1002 void Verifier::visitDIFile(const DIFile
&N
) {
1003 AssertDI(N
.getTag() == dwarf::DW_TAG_file_type
, "invalid tag", &N
);
1004 Optional
<DIFile::ChecksumInfo
<StringRef
>> Checksum
= N
.getChecksum();
1006 AssertDI(Checksum
->Kind
<= DIFile::ChecksumKind::CSK_Last
,
1007 "invalid checksum kind", &N
);
1009 switch (Checksum
->Kind
) {
1010 case DIFile::CSK_MD5
:
1013 case DIFile::CSK_SHA1
:
1017 AssertDI(Checksum
->Value
.size() == Size
, "invalid checksum length", &N
);
1018 AssertDI(Checksum
->Value
.find_if_not(llvm::isHexDigit
) == StringRef::npos
,
1019 "invalid checksum", &N
);
1023 void Verifier::visitDICompileUnit(const DICompileUnit
&N
) {
1024 AssertDI(N
.isDistinct(), "compile units must be distinct", &N
);
1025 AssertDI(N
.getTag() == dwarf::DW_TAG_compile_unit
, "invalid tag", &N
);
1027 // Don't bother verifying the compilation directory or producer string
1028 // as those could be empty.
1029 AssertDI(N
.getRawFile() && isa
<DIFile
>(N
.getRawFile()), "invalid file", &N
,
1031 AssertDI(!N
.getFile()->getFilename().empty(), "invalid filename", &N
,
1034 AssertDI((N
.getEmissionKind() <= DICompileUnit::LastEmissionKind
),
1035 "invalid emission kind", &N
);
1037 if (auto *Array
= N
.getRawEnumTypes()) {
1038 AssertDI(isa
<MDTuple
>(Array
), "invalid enum list", &N
, Array
);
1039 for (Metadata
*Op
: N
.getEnumTypes()->operands()) {
1040 auto *Enum
= dyn_cast_or_null
<DICompositeType
>(Op
);
1041 AssertDI(Enum
&& Enum
->getTag() == dwarf::DW_TAG_enumeration_type
,
1042 "invalid enum type", &N
, N
.getEnumTypes(), Op
);
1045 if (auto *Array
= N
.getRawRetainedTypes()) {
1046 AssertDI(isa
<MDTuple
>(Array
), "invalid retained type list", &N
, Array
);
1047 for (Metadata
*Op
: N
.getRetainedTypes()->operands()) {
1048 AssertDI(Op
&& (isa
<DIType
>(Op
) ||
1049 (isa
<DISubprogram
>(Op
) &&
1050 !cast
<DISubprogram
>(Op
)->isDefinition())),
1051 "invalid retained type", &N
, Op
);
1054 if (auto *Array
= N
.getRawGlobalVariables()) {
1055 AssertDI(isa
<MDTuple
>(Array
), "invalid global variable list", &N
, Array
);
1056 for (Metadata
*Op
: N
.getGlobalVariables()->operands()) {
1057 AssertDI(Op
&& (isa
<DIGlobalVariableExpression
>(Op
)),
1058 "invalid global variable ref", &N
, Op
);
1061 if (auto *Array
= N
.getRawImportedEntities()) {
1062 AssertDI(isa
<MDTuple
>(Array
), "invalid imported entity list", &N
, Array
);
1063 for (Metadata
*Op
: N
.getImportedEntities()->operands()) {
1064 AssertDI(Op
&& isa
<DIImportedEntity
>(Op
), "invalid imported entity ref",
1068 if (auto *Array
= N
.getRawMacros()) {
1069 AssertDI(isa
<MDTuple
>(Array
), "invalid macro list", &N
, Array
);
1070 for (Metadata
*Op
: N
.getMacros()->operands()) {
1071 AssertDI(Op
&& isa
<DIMacroNode
>(Op
), "invalid macro ref", &N
, Op
);
1074 CUVisited
.insert(&N
);
1077 void Verifier::visitDISubprogram(const DISubprogram
&N
) {
1078 AssertDI(N
.getTag() == dwarf::DW_TAG_subprogram
, "invalid tag", &N
);
1079 AssertDI(isScope(N
.getRawScope()), "invalid scope", &N
, N
.getRawScope());
1080 if (auto *F
= N
.getRawFile())
1081 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1083 AssertDI(N
.getLine() == 0, "line specified with no file", &N
, N
.getLine());
1084 if (auto *T
= N
.getRawType())
1085 AssertDI(isa
<DISubroutineType
>(T
), "invalid subroutine type", &N
, T
);
1086 AssertDI(isType(N
.getRawContainingType()), "invalid containing type", &N
,
1087 N
.getRawContainingType());
1088 if (auto *Params
= N
.getRawTemplateParams())
1089 visitTemplateParams(N
, *Params
);
1090 if (auto *S
= N
.getRawDeclaration())
1091 AssertDI(isa
<DISubprogram
>(S
) && !cast
<DISubprogram
>(S
)->isDefinition(),
1092 "invalid subprogram declaration", &N
, S
);
1093 if (auto *RawNode
= N
.getRawRetainedNodes()) {
1094 auto *Node
= dyn_cast
<MDTuple
>(RawNode
);
1095 AssertDI(Node
, "invalid retained nodes list", &N
, RawNode
);
1096 for (Metadata
*Op
: Node
->operands()) {
1097 AssertDI(Op
&& (isa
<DILocalVariable
>(Op
) || isa
<DILabel
>(Op
)),
1098 "invalid retained nodes, expected DILocalVariable or DILabel",
1102 AssertDI(!hasConflictingReferenceFlags(N
.getFlags()),
1103 "invalid reference flags", &N
);
1105 auto *Unit
= N
.getRawUnit();
1106 if (N
.isDefinition()) {
1107 // Subprogram definitions (not part of the type hierarchy).
1108 AssertDI(N
.isDistinct(), "subprogram definitions must be distinct", &N
);
1109 AssertDI(Unit
, "subprogram definitions must have a compile unit", &N
);
1110 AssertDI(isa
<DICompileUnit
>(Unit
), "invalid unit type", &N
, Unit
);
1112 // Subprogram declarations (part of the type hierarchy).
1113 AssertDI(!Unit
, "subprogram declarations must not have a compile unit", &N
);
1116 if (auto *RawThrownTypes
= N
.getRawThrownTypes()) {
1117 auto *ThrownTypes
= dyn_cast
<MDTuple
>(RawThrownTypes
);
1118 AssertDI(ThrownTypes
, "invalid thrown types list", &N
, RawThrownTypes
);
1119 for (Metadata
*Op
: ThrownTypes
->operands())
1120 AssertDI(Op
&& isa
<DIType
>(Op
), "invalid thrown type", &N
, ThrownTypes
,
1124 if (N
.areAllCallsDescribed())
1125 AssertDI(N
.isDefinition(),
1126 "DIFlagAllCallsDescribed must be attached to a definition");
1129 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase
&N
) {
1130 AssertDI(N
.getTag() == dwarf::DW_TAG_lexical_block
, "invalid tag", &N
);
1131 AssertDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
1132 "invalid local scope", &N
, N
.getRawScope());
1133 if (auto *SP
= dyn_cast
<DISubprogram
>(N
.getRawScope()))
1134 AssertDI(SP
->isDefinition(), "scope points into the type hierarchy", &N
);
1137 void Verifier::visitDILexicalBlock(const DILexicalBlock
&N
) {
1138 visitDILexicalBlockBase(N
);
1140 AssertDI(N
.getLine() || !N
.getColumn(),
1141 "cannot have column info without line info", &N
);
1144 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile
&N
) {
1145 visitDILexicalBlockBase(N
);
1148 void Verifier::visitDINamespace(const DINamespace
&N
) {
1149 AssertDI(N
.getTag() == dwarf::DW_TAG_namespace
, "invalid tag", &N
);
1150 if (auto *S
= N
.getRawScope())
1151 AssertDI(isa
<DIScope
>(S
), "invalid scope ref", &N
, S
);
1154 void Verifier::visitDIMacro(const DIMacro
&N
) {
1155 AssertDI(N
.getMacinfoType() == dwarf::DW_MACINFO_define
||
1156 N
.getMacinfoType() == dwarf::DW_MACINFO_undef
,
1157 "invalid macinfo type", &N
);
1158 AssertDI(!N
.getName().empty(), "anonymous macro", &N
);
1159 if (!N
.getValue().empty()) {
1160 assert(N
.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1164 void Verifier::visitDIMacroFile(const DIMacroFile
&N
) {
1165 AssertDI(N
.getMacinfoType() == dwarf::DW_MACINFO_start_file
,
1166 "invalid macinfo type", &N
);
1167 if (auto *F
= N
.getRawFile())
1168 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1170 if (auto *Array
= N
.getRawElements()) {
1171 AssertDI(isa
<MDTuple
>(Array
), "invalid macro list", &N
, Array
);
1172 for (Metadata
*Op
: N
.getElements()->operands()) {
1173 AssertDI(Op
&& isa
<DIMacroNode
>(Op
), "invalid macro ref", &N
, Op
);
1178 void Verifier::visitDIModule(const DIModule
&N
) {
1179 AssertDI(N
.getTag() == dwarf::DW_TAG_module
, "invalid tag", &N
);
1180 AssertDI(!N
.getName().empty(), "anonymous module", &N
);
1183 void Verifier::visitDITemplateParameter(const DITemplateParameter
&N
) {
1184 AssertDI(isType(N
.getRawType()), "invalid type ref", &N
, N
.getRawType());
1187 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter
&N
) {
1188 visitDITemplateParameter(N
);
1190 AssertDI(N
.getTag() == dwarf::DW_TAG_template_type_parameter
, "invalid tag",
1194 void Verifier::visitDITemplateValueParameter(
1195 const DITemplateValueParameter
&N
) {
1196 visitDITemplateParameter(N
);
1198 AssertDI(N
.getTag() == dwarf::DW_TAG_template_value_parameter
||
1199 N
.getTag() == dwarf::DW_TAG_GNU_template_template_param
||
1200 N
.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack
,
1204 void Verifier::visitDIVariable(const DIVariable
&N
) {
1205 if (auto *S
= N
.getRawScope())
1206 AssertDI(isa
<DIScope
>(S
), "invalid scope", &N
, S
);
1207 if (auto *F
= N
.getRawFile())
1208 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1211 void Verifier::visitDIGlobalVariable(const DIGlobalVariable
&N
) {
1212 // Checks common to all variables.
1215 AssertDI(N
.getTag() == dwarf::DW_TAG_variable
, "invalid tag", &N
);
1216 AssertDI(!N
.getName().empty(), "missing global variable name", &N
);
1217 AssertDI(isType(N
.getRawType()), "invalid type ref", &N
, N
.getRawType());
1218 AssertDI(N
.getType(), "missing global variable type", &N
);
1219 if (auto *Member
= N
.getRawStaticDataMemberDeclaration()) {
1220 AssertDI(isa
<DIDerivedType
>(Member
),
1221 "invalid static data member declaration", &N
, Member
);
1225 void Verifier::visitDILocalVariable(const DILocalVariable
&N
) {
1226 // Checks common to all variables.
1229 AssertDI(isType(N
.getRawType()), "invalid type ref", &N
, N
.getRawType());
1230 AssertDI(N
.getTag() == dwarf::DW_TAG_variable
, "invalid tag", &N
);
1231 AssertDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
1232 "local variable requires a valid scope", &N
, N
.getRawScope());
1235 void Verifier::visitDILabel(const DILabel
&N
) {
1236 if (auto *S
= N
.getRawScope())
1237 AssertDI(isa
<DIScope
>(S
), "invalid scope", &N
, S
);
1238 if (auto *F
= N
.getRawFile())
1239 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1241 AssertDI(N
.getTag() == dwarf::DW_TAG_label
, "invalid tag", &N
);
1242 AssertDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
1243 "label requires a valid scope", &N
, N
.getRawScope());
1246 void Verifier::visitDIExpression(const DIExpression
&N
) {
1247 AssertDI(N
.isValid(), "invalid expression", &N
);
1250 void Verifier::visitDIGlobalVariableExpression(
1251 const DIGlobalVariableExpression
&GVE
) {
1252 AssertDI(GVE
.getVariable(), "missing variable");
1253 if (auto *Var
= GVE
.getVariable())
1254 visitDIGlobalVariable(*Var
);
1255 if (auto *Expr
= GVE
.getExpression()) {
1256 visitDIExpression(*Expr
);
1257 if (auto Fragment
= Expr
->getFragmentInfo())
1258 verifyFragmentExpression(*GVE
.getVariable(), *Fragment
, &GVE
);
1262 void Verifier::visitDIObjCProperty(const DIObjCProperty
&N
) {
1263 AssertDI(N
.getTag() == dwarf::DW_TAG_APPLE_property
, "invalid tag", &N
);
1264 if (auto *T
= N
.getRawType())
1265 AssertDI(isType(T
), "invalid type ref", &N
, T
);
1266 if (auto *F
= N
.getRawFile())
1267 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1270 void Verifier::visitDIImportedEntity(const DIImportedEntity
&N
) {
1271 AssertDI(N
.getTag() == dwarf::DW_TAG_imported_module
||
1272 N
.getTag() == dwarf::DW_TAG_imported_declaration
,
1274 if (auto *S
= N
.getRawScope())
1275 AssertDI(isa
<DIScope
>(S
), "invalid scope for imported entity", &N
, S
);
1276 AssertDI(isDINode(N
.getRawEntity()), "invalid imported entity", &N
,
1280 void Verifier::visitComdat(const Comdat
&C
) {
1281 // The Module is invalid if the GlobalValue has private linkage. Entities
1282 // with private linkage don't have entries in the symbol table.
1283 if (const GlobalValue
*GV
= M
.getNamedValue(C
.getName()))
1284 Assert(!GV
->hasPrivateLinkage(), "comdat global value has private linkage",
1288 void Verifier::visitModuleIdents(const Module
&M
) {
1289 const NamedMDNode
*Idents
= M
.getNamedMetadata("llvm.ident");
1293 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1294 // Scan each llvm.ident entry and make sure that this requirement is met.
1295 for (const MDNode
*N
: Idents
->operands()) {
1296 Assert(N
->getNumOperands() == 1,
1297 "incorrect number of operands in llvm.ident metadata", N
);
1298 Assert(dyn_cast_or_null
<MDString
>(N
->getOperand(0)),
1299 ("invalid value for llvm.ident metadata entry operand"
1300 "(the operand should be a string)"),
1305 void Verifier::visitModuleFlags(const Module
&M
) {
1306 const NamedMDNode
*Flags
= M
.getModuleFlagsMetadata();
1309 // Scan each flag, and track the flags and requirements.
1310 DenseMap
<const MDString
*, const MDNode
*> SeenIDs
;
1311 SmallVector
<const MDNode
*, 16> Requirements
;
1312 for (const MDNode
*MDN
: Flags
->operands())
1313 visitModuleFlag(MDN
, SeenIDs
, Requirements
);
1315 // Validate that the requirements in the module are valid.
1316 for (const MDNode
*Requirement
: Requirements
) {
1317 const MDString
*Flag
= cast
<MDString
>(Requirement
->getOperand(0));
1318 const Metadata
*ReqValue
= Requirement
->getOperand(1);
1320 const MDNode
*Op
= SeenIDs
.lookup(Flag
);
1322 CheckFailed("invalid requirement on flag, flag is not present in module",
1327 if (Op
->getOperand(2) != ReqValue
) {
1328 CheckFailed(("invalid requirement on flag, "
1329 "flag does not have the required value"),
1337 Verifier::visitModuleFlag(const MDNode
*Op
,
1338 DenseMap
<const MDString
*, const MDNode
*> &SeenIDs
,
1339 SmallVectorImpl
<const MDNode
*> &Requirements
) {
1340 // Each module flag should have three arguments, the merge behavior (a
1341 // constant int), the flag ID (an MDString), and the value.
1342 Assert(Op
->getNumOperands() == 3,
1343 "incorrect number of operands in module flag", Op
);
1344 Module::ModFlagBehavior MFB
;
1345 if (!Module::isValidModFlagBehavior(Op
->getOperand(0), MFB
)) {
1347 mdconst::dyn_extract_or_null
<ConstantInt
>(Op
->getOperand(0)),
1348 "invalid behavior operand in module flag (expected constant integer)",
1351 "invalid behavior operand in module flag (unexpected constant)",
1354 MDString
*ID
= dyn_cast_or_null
<MDString
>(Op
->getOperand(1));
1355 Assert(ID
, "invalid ID operand in module flag (expected metadata string)",
1358 // Sanity check the values for behaviors with additional requirements.
1361 case Module::Warning
:
1362 case Module::Override
:
1363 // These behavior types accept any value.
1367 Assert(mdconst::dyn_extract_or_null
<ConstantInt
>(Op
->getOperand(2)),
1368 "invalid value for 'max' module flag (expected constant integer)",
1373 case Module::Require
: {
1374 // The value should itself be an MDNode with two operands, a flag ID (an
1375 // MDString), and a value.
1376 MDNode
*Value
= dyn_cast
<MDNode
>(Op
->getOperand(2));
1377 Assert(Value
&& Value
->getNumOperands() == 2,
1378 "invalid value for 'require' module flag (expected metadata pair)",
1380 Assert(isa
<MDString
>(Value
->getOperand(0)),
1381 ("invalid value for 'require' module flag "
1382 "(first value operand should be a string)"),
1383 Value
->getOperand(0));
1385 // Append it to the list of requirements, to check once all module flags are
1387 Requirements
.push_back(Value
);
1391 case Module::Append
:
1392 case Module::AppendUnique
: {
1393 // These behavior types require the operand be an MDNode.
1394 Assert(isa
<MDNode
>(Op
->getOperand(2)),
1395 "invalid value for 'append'-type module flag "
1396 "(expected a metadata node)",
1402 // Unless this is a "requires" flag, check the ID is unique.
1403 if (MFB
!= Module::Require
) {
1404 bool Inserted
= SeenIDs
.insert(std::make_pair(ID
, Op
)).second
;
1406 "module flag identifiers must be unique (or of 'require' type)", ID
);
1409 if (ID
->getString() == "wchar_size") {
1411 = mdconst::dyn_extract_or_null
<ConstantInt
>(Op
->getOperand(2));
1412 Assert(Value
, "wchar_size metadata requires constant integer argument");
1415 if (ID
->getString() == "Linker Options") {
1416 // If the llvm.linker.options named metadata exists, we assume that the
1417 // bitcode reader has upgraded the module flag. Otherwise the flag might
1418 // have been created by a client directly.
1419 Assert(M
.getNamedMetadata("llvm.linker.options"),
1420 "'Linker Options' named metadata no longer supported");
1423 if (ID
->getString() == "CG Profile") {
1424 for (const MDOperand
&MDO
: cast
<MDNode
>(Op
->getOperand(2))->operands())
1425 visitModuleFlagCGProfileEntry(MDO
);
1429 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand
&MDO
) {
1430 auto CheckFunction
= [&](const MDOperand
&FuncMDO
) {
1433 auto F
= dyn_cast
<ValueAsMetadata
>(FuncMDO
);
1434 Assert(F
&& isa
<Function
>(F
->getValue()), "expected a Function or null",
1437 auto Node
= dyn_cast_or_null
<MDNode
>(MDO
);
1438 Assert(Node
&& Node
->getNumOperands() == 3, "expected a MDNode triple", MDO
);
1439 CheckFunction(Node
->getOperand(0));
1440 CheckFunction(Node
->getOperand(1));
1441 auto Count
= dyn_cast_or_null
<ConstantAsMetadata
>(Node
->getOperand(2));
1442 Assert(Count
&& Count
->getType()->isIntegerTy(),
1443 "expected an integer constant", Node
->getOperand(2));
1446 /// Return true if this attribute kind only applies to functions.
1447 static bool isFuncOnlyAttr(Attribute::AttrKind Kind
) {
1449 case Attribute::NoReturn
:
1450 case Attribute::NoCfCheck
:
1451 case Attribute::NoUnwind
:
1452 case Attribute::NoInline
:
1453 case Attribute::AlwaysInline
:
1454 case Attribute::OptimizeForSize
:
1455 case Attribute::StackProtect
:
1456 case Attribute::StackProtectReq
:
1457 case Attribute::StackProtectStrong
:
1458 case Attribute::SafeStack
:
1459 case Attribute::ShadowCallStack
:
1460 case Attribute::NoRedZone
:
1461 case Attribute::NoImplicitFloat
:
1462 case Attribute::Naked
:
1463 case Attribute::InlineHint
:
1464 case Attribute::StackAlignment
:
1465 case Attribute::UWTable
:
1466 case Attribute::NonLazyBind
:
1467 case Attribute::ReturnsTwice
:
1468 case Attribute::SanitizeAddress
:
1469 case Attribute::SanitizeHWAddress
:
1470 case Attribute::SanitizeThread
:
1471 case Attribute::SanitizeMemory
:
1472 case Attribute::MinSize
:
1473 case Attribute::NoDuplicate
:
1474 case Attribute::Builtin
:
1475 case Attribute::NoBuiltin
:
1476 case Attribute::Cold
:
1477 case Attribute::OptForFuzzing
:
1478 case Attribute::OptimizeNone
:
1479 case Attribute::JumpTable
:
1480 case Attribute::Convergent
:
1481 case Attribute::ArgMemOnly
:
1482 case Attribute::NoRecurse
:
1483 case Attribute::InaccessibleMemOnly
:
1484 case Attribute::InaccessibleMemOrArgMemOnly
:
1485 case Attribute::AllocSize
:
1486 case Attribute::SpeculativeLoadHardening
:
1487 case Attribute::Speculatable
:
1488 case Attribute::StrictFP
:
1496 /// Return true if this is a function attribute that can also appear on
1498 static bool isFuncOrArgAttr(Attribute::AttrKind Kind
) {
1499 return Kind
== Attribute::ReadOnly
|| Kind
== Attribute::WriteOnly
||
1500 Kind
== Attribute::ReadNone
;
1503 void Verifier::verifyAttributeTypes(AttributeSet Attrs
, bool IsFunction
,
1505 for (Attribute A
: Attrs
) {
1506 if (A
.isStringAttribute())
1509 if (isFuncOnlyAttr(A
.getKindAsEnum())) {
1511 CheckFailed("Attribute '" + A
.getAsString() +
1512 "' only applies to functions!",
1516 } else if (IsFunction
&& !isFuncOrArgAttr(A
.getKindAsEnum())) {
1517 CheckFailed("Attribute '" + A
.getAsString() +
1518 "' does not apply to functions!",
1525 // VerifyParameterAttrs - Check the given attributes for an argument or return
1526 // value of the specified type. The value V is printed in error messages.
1527 void Verifier::verifyParameterAttrs(AttributeSet Attrs
, Type
*Ty
,
1529 if (!Attrs
.hasAttributes())
1532 verifyAttributeTypes(Attrs
, /*IsFunction=*/false, V
);
1534 // Check for mutually incompatible attributes. Only inreg is compatible with
1536 unsigned AttrCount
= 0;
1537 AttrCount
+= Attrs
.hasAttribute(Attribute::ByVal
);
1538 AttrCount
+= Attrs
.hasAttribute(Attribute::InAlloca
);
1539 AttrCount
+= Attrs
.hasAttribute(Attribute::StructRet
) ||
1540 Attrs
.hasAttribute(Attribute::InReg
);
1541 AttrCount
+= Attrs
.hasAttribute(Attribute::Nest
);
1542 Assert(AttrCount
<= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1543 "and 'sret' are incompatible!",
1546 Assert(!(Attrs
.hasAttribute(Attribute::InAlloca
) &&
1547 Attrs
.hasAttribute(Attribute::ReadOnly
)),
1549 "'inalloca and readonly' are incompatible!",
1552 Assert(!(Attrs
.hasAttribute(Attribute::StructRet
) &&
1553 Attrs
.hasAttribute(Attribute::Returned
)),
1555 "'sret and returned' are incompatible!",
1558 Assert(!(Attrs
.hasAttribute(Attribute::ZExt
) &&
1559 Attrs
.hasAttribute(Attribute::SExt
)),
1561 "'zeroext and signext' are incompatible!",
1564 Assert(!(Attrs
.hasAttribute(Attribute::ReadNone
) &&
1565 Attrs
.hasAttribute(Attribute::ReadOnly
)),
1567 "'readnone and readonly' are incompatible!",
1570 Assert(!(Attrs
.hasAttribute(Attribute::ReadNone
) &&
1571 Attrs
.hasAttribute(Attribute::WriteOnly
)),
1573 "'readnone and writeonly' are incompatible!",
1576 Assert(!(Attrs
.hasAttribute(Attribute::ReadOnly
) &&
1577 Attrs
.hasAttribute(Attribute::WriteOnly
)),
1579 "'readonly and writeonly' are incompatible!",
1582 Assert(!(Attrs
.hasAttribute(Attribute::NoInline
) &&
1583 Attrs
.hasAttribute(Attribute::AlwaysInline
)),
1585 "'noinline and alwaysinline' are incompatible!",
1588 AttrBuilder IncompatibleAttrs
= AttributeFuncs::typeIncompatible(Ty
);
1589 Assert(!AttrBuilder(Attrs
).overlaps(IncompatibleAttrs
),
1590 "Wrong types for attribute: " +
1591 AttributeSet::get(Context
, IncompatibleAttrs
).getAsString(),
1594 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
)) {
1595 SmallPtrSet
<Type
*, 4> Visited
;
1596 if (!PTy
->getElementType()->isSized(&Visited
)) {
1597 Assert(!Attrs
.hasAttribute(Attribute::ByVal
) &&
1598 !Attrs
.hasAttribute(Attribute::InAlloca
),
1599 "Attributes 'byval' and 'inalloca' do not support unsized types!",
1602 if (!isa
<PointerType
>(PTy
->getElementType()))
1603 Assert(!Attrs
.hasAttribute(Attribute::SwiftError
),
1604 "Attribute 'swifterror' only applies to parameters "
1605 "with pointer to pointer type!",
1608 Assert(!Attrs
.hasAttribute(Attribute::ByVal
),
1609 "Attribute 'byval' only applies to parameters with pointer type!",
1611 Assert(!Attrs
.hasAttribute(Attribute::SwiftError
),
1612 "Attribute 'swifterror' only applies to parameters "
1613 "with pointer type!",
1618 // Check parameter attributes against a function type.
1619 // The value V is printed in error messages.
1620 void Verifier::verifyFunctionAttrs(FunctionType
*FT
, AttributeList Attrs
,
1622 if (Attrs
.isEmpty())
1625 bool SawNest
= false;
1626 bool SawReturned
= false;
1627 bool SawSRet
= false;
1628 bool SawSwiftSelf
= false;
1629 bool SawSwiftError
= false;
1631 // Verify return value attributes.
1632 AttributeSet RetAttrs
= Attrs
.getRetAttributes();
1633 Assert((!RetAttrs
.hasAttribute(Attribute::ByVal
) &&
1634 !RetAttrs
.hasAttribute(Attribute::Nest
) &&
1635 !RetAttrs
.hasAttribute(Attribute::StructRet
) &&
1636 !RetAttrs
.hasAttribute(Attribute::NoCapture
) &&
1637 !RetAttrs
.hasAttribute(Attribute::Returned
) &&
1638 !RetAttrs
.hasAttribute(Attribute::InAlloca
) &&
1639 !RetAttrs
.hasAttribute(Attribute::SwiftSelf
) &&
1640 !RetAttrs
.hasAttribute(Attribute::SwiftError
)),
1641 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1642 "'returned', 'swiftself', and 'swifterror' do not apply to return "
1645 Assert((!RetAttrs
.hasAttribute(Attribute::ReadOnly
) &&
1646 !RetAttrs
.hasAttribute(Attribute::WriteOnly
) &&
1647 !RetAttrs
.hasAttribute(Attribute::ReadNone
)),
1648 "Attribute '" + RetAttrs
.getAsString() +
1649 "' does not apply to function returns",
1651 verifyParameterAttrs(RetAttrs
, FT
->getReturnType(), V
);
1653 // Verify parameter attributes.
1654 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
) {
1655 Type
*Ty
= FT
->getParamType(i
);
1656 AttributeSet ArgAttrs
= Attrs
.getParamAttributes(i
);
1658 verifyParameterAttrs(ArgAttrs
, Ty
, V
);
1660 if (ArgAttrs
.hasAttribute(Attribute::Nest
)) {
1661 Assert(!SawNest
, "More than one parameter has attribute nest!", V
);
1665 if (ArgAttrs
.hasAttribute(Attribute::Returned
)) {
1666 Assert(!SawReturned
, "More than one parameter has attribute returned!",
1668 Assert(Ty
->canLosslesslyBitCastTo(FT
->getReturnType()),
1669 "Incompatible argument and return types for 'returned' attribute",
1674 if (ArgAttrs
.hasAttribute(Attribute::StructRet
)) {
1675 Assert(!SawSRet
, "Cannot have multiple 'sret' parameters!", V
);
1676 Assert(i
== 0 || i
== 1,
1677 "Attribute 'sret' is not on first or second parameter!", V
);
1681 if (ArgAttrs
.hasAttribute(Attribute::SwiftSelf
)) {
1682 Assert(!SawSwiftSelf
, "Cannot have multiple 'swiftself' parameters!", V
);
1683 SawSwiftSelf
= true;
1686 if (ArgAttrs
.hasAttribute(Attribute::SwiftError
)) {
1687 Assert(!SawSwiftError
, "Cannot have multiple 'swifterror' parameters!",
1689 SawSwiftError
= true;
1692 if (ArgAttrs
.hasAttribute(Attribute::InAlloca
)) {
1693 Assert(i
== FT
->getNumParams() - 1,
1694 "inalloca isn't on the last parameter!", V
);
1698 if (!Attrs
.hasAttributes(AttributeList::FunctionIndex
))
1701 verifyAttributeTypes(Attrs
.getFnAttributes(), /*IsFunction=*/true, V
);
1703 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadNone
) &&
1704 Attrs
.hasFnAttribute(Attribute::ReadOnly
)),
1705 "Attributes 'readnone and readonly' are incompatible!", V
);
1707 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadNone
) &&
1708 Attrs
.hasFnAttribute(Attribute::WriteOnly
)),
1709 "Attributes 'readnone and writeonly' are incompatible!", V
);
1711 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadOnly
) &&
1712 Attrs
.hasFnAttribute(Attribute::WriteOnly
)),
1713 "Attributes 'readonly and writeonly' are incompatible!", V
);
1715 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadNone
) &&
1716 Attrs
.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly
)),
1717 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1721 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadNone
) &&
1722 Attrs
.hasFnAttribute(Attribute::InaccessibleMemOnly
)),
1723 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V
);
1725 Assert(!(Attrs
.hasFnAttribute(Attribute::NoInline
) &&
1726 Attrs
.hasFnAttribute(Attribute::AlwaysInline
)),
1727 "Attributes 'noinline and alwaysinline' are incompatible!", V
);
1729 if (Attrs
.hasFnAttribute(Attribute::OptimizeNone
)) {
1730 Assert(Attrs
.hasFnAttribute(Attribute::NoInline
),
1731 "Attribute 'optnone' requires 'noinline'!", V
);
1733 Assert(!Attrs
.hasFnAttribute(Attribute::OptimizeForSize
),
1734 "Attributes 'optsize and optnone' are incompatible!", V
);
1736 Assert(!Attrs
.hasFnAttribute(Attribute::MinSize
),
1737 "Attributes 'minsize and optnone' are incompatible!", V
);
1740 if (Attrs
.hasFnAttribute(Attribute::JumpTable
)) {
1741 const GlobalValue
*GV
= cast
<GlobalValue
>(V
);
1742 Assert(GV
->hasGlobalUnnamedAddr(),
1743 "Attribute 'jumptable' requires 'unnamed_addr'", V
);
1746 if (Attrs
.hasFnAttribute(Attribute::AllocSize
)) {
1747 std::pair
<unsigned, Optional
<unsigned>> Args
=
1748 Attrs
.getAllocSizeArgs(AttributeList::FunctionIndex
);
1750 auto CheckParam
= [&](StringRef Name
, unsigned ParamNo
) {
1751 if (ParamNo
>= FT
->getNumParams()) {
1752 CheckFailed("'allocsize' " + Name
+ " argument is out of bounds", V
);
1756 if (!FT
->getParamType(ParamNo
)->isIntegerTy()) {
1757 CheckFailed("'allocsize' " + Name
+
1758 " argument must refer to an integer parameter",
1766 if (!CheckParam("element size", Args
.first
))
1769 if (Args
.second
&& !CheckParam("number of elements", *Args
.second
))
1774 void Verifier::verifyFunctionMetadata(
1775 ArrayRef
<std::pair
<unsigned, MDNode
*>> MDs
) {
1776 for (const auto &Pair
: MDs
) {
1777 if (Pair
.first
== LLVMContext::MD_prof
) {
1778 MDNode
*MD
= Pair
.second
;
1779 Assert(MD
->getNumOperands() >= 2,
1780 "!prof annotations should have no less than 2 operands", MD
);
1782 // Check first operand.
1783 Assert(MD
->getOperand(0) != nullptr, "first operand should not be null",
1785 Assert(isa
<MDString
>(MD
->getOperand(0)),
1786 "expected string with name of the !prof annotation", MD
);
1787 MDString
*MDS
= cast
<MDString
>(MD
->getOperand(0));
1788 StringRef ProfName
= MDS
->getString();
1789 Assert(ProfName
.equals("function_entry_count") ||
1790 ProfName
.equals("synthetic_function_entry_count"),
1791 "first operand should be 'function_entry_count'"
1792 " or 'synthetic_function_entry_count'",
1795 // Check second operand.
1796 Assert(MD
->getOperand(1) != nullptr, "second operand should not be null",
1798 Assert(isa
<ConstantAsMetadata
>(MD
->getOperand(1)),
1799 "expected integer argument to function_entry_count", MD
);
1804 void Verifier::visitConstantExprsRecursively(const Constant
*EntryC
) {
1805 if (!ConstantExprVisited
.insert(EntryC
).second
)
1808 SmallVector
<const Constant
*, 16> Stack
;
1809 Stack
.push_back(EntryC
);
1811 while (!Stack
.empty()) {
1812 const Constant
*C
= Stack
.pop_back_val();
1814 // Check this constant expression.
1815 if (const auto *CE
= dyn_cast
<ConstantExpr
>(C
))
1816 visitConstantExpr(CE
);
1818 if (const auto *GV
= dyn_cast
<GlobalValue
>(C
)) {
1819 // Global Values get visited separately, but we do need to make sure
1820 // that the global value is in the correct module
1821 Assert(GV
->getParent() == &M
, "Referencing global in another module!",
1822 EntryC
, &M
, GV
, GV
->getParent());
1826 // Visit all sub-expressions.
1827 for (const Use
&U
: C
->operands()) {
1828 const auto *OpC
= dyn_cast
<Constant
>(U
);
1831 if (!ConstantExprVisited
.insert(OpC
).second
)
1833 Stack
.push_back(OpC
);
1838 void Verifier::visitConstantExpr(const ConstantExpr
*CE
) {
1839 if (CE
->getOpcode() == Instruction::BitCast
)
1840 Assert(CastInst::castIsValid(Instruction::BitCast
, CE
->getOperand(0),
1842 "Invalid bitcast", CE
);
1844 if (CE
->getOpcode() == Instruction::IntToPtr
||
1845 CE
->getOpcode() == Instruction::PtrToInt
) {
1846 auto *PtrTy
= CE
->getOpcode() == Instruction::IntToPtr
1848 : CE
->getOperand(0)->getType();
1849 StringRef Msg
= CE
->getOpcode() == Instruction::IntToPtr
1850 ? "inttoptr not supported for non-integral pointers"
1851 : "ptrtoint not supported for non-integral pointers";
1853 !DL
.isNonIntegralPointerType(cast
<PointerType
>(PtrTy
->getScalarType())),
1858 bool Verifier::verifyAttributeCount(AttributeList Attrs
, unsigned Params
) {
1859 // There shouldn't be more attribute sets than there are parameters plus the
1860 // function and return value.
1861 return Attrs
.getNumAttrSets() <= Params
+ 2;
1864 /// Verify that statepoint intrinsic is well formed.
1865 void Verifier::verifyStatepoint(ImmutableCallSite CS
) {
1866 assert(CS
.getCalledFunction() &&
1867 CS
.getCalledFunction()->getIntrinsicID() ==
1868 Intrinsic::experimental_gc_statepoint
);
1870 const Instruction
&CI
= *CS
.getInstruction();
1872 Assert(!CS
.doesNotAccessMemory() && !CS
.onlyReadsMemory() &&
1873 !CS
.onlyAccessesArgMemory(),
1874 "gc.statepoint must read and write all memory to preserve "
1875 "reordering restrictions required by safepoint semantics",
1878 const Value
*IDV
= CS
.getArgument(0);
1879 Assert(isa
<ConstantInt
>(IDV
), "gc.statepoint ID must be a constant integer",
1882 const Value
*NumPatchBytesV
= CS
.getArgument(1);
1883 Assert(isa
<ConstantInt
>(NumPatchBytesV
),
1884 "gc.statepoint number of patchable bytes must be a constant integer",
1886 const int64_t NumPatchBytes
=
1887 cast
<ConstantInt
>(NumPatchBytesV
)->getSExtValue();
1888 assert(isInt
<32>(NumPatchBytes
) && "NumPatchBytesV is an i32!");
1889 Assert(NumPatchBytes
>= 0, "gc.statepoint number of patchable bytes must be "
1893 const Value
*Target
= CS
.getArgument(2);
1894 auto *PT
= dyn_cast
<PointerType
>(Target
->getType());
1895 Assert(PT
&& PT
->getElementType()->isFunctionTy(),
1896 "gc.statepoint callee must be of function pointer type", &CI
, Target
);
1897 FunctionType
*TargetFuncType
= cast
<FunctionType
>(PT
->getElementType());
1899 const Value
*NumCallArgsV
= CS
.getArgument(3);
1900 Assert(isa
<ConstantInt
>(NumCallArgsV
),
1901 "gc.statepoint number of arguments to underlying call "
1902 "must be constant integer",
1904 const int NumCallArgs
= cast
<ConstantInt
>(NumCallArgsV
)->getZExtValue();
1905 Assert(NumCallArgs
>= 0,
1906 "gc.statepoint number of arguments to underlying call "
1909 const int NumParams
= (int)TargetFuncType
->getNumParams();
1910 if (TargetFuncType
->isVarArg()) {
1911 Assert(NumCallArgs
>= NumParams
,
1912 "gc.statepoint mismatch in number of vararg call args", &CI
);
1914 // TODO: Remove this limitation
1915 Assert(TargetFuncType
->getReturnType()->isVoidTy(),
1916 "gc.statepoint doesn't support wrapping non-void "
1917 "vararg functions yet",
1920 Assert(NumCallArgs
== NumParams
,
1921 "gc.statepoint mismatch in number of call args", &CI
);
1923 const Value
*FlagsV
= CS
.getArgument(4);
1924 Assert(isa
<ConstantInt
>(FlagsV
),
1925 "gc.statepoint flags must be constant integer", &CI
);
1926 const uint64_t Flags
= cast
<ConstantInt
>(FlagsV
)->getZExtValue();
1927 Assert((Flags
& ~(uint64_t)StatepointFlags::MaskAll
) == 0,
1928 "unknown flag used in gc.statepoint flags argument", &CI
);
1930 // Verify that the types of the call parameter arguments match
1931 // the type of the wrapped callee.
1932 for (int i
= 0; i
< NumParams
; i
++) {
1933 Type
*ParamType
= TargetFuncType
->getParamType(i
);
1934 Type
*ArgType
= CS
.getArgument(5 + i
)->getType();
1935 Assert(ArgType
== ParamType
,
1936 "gc.statepoint call argument does not match wrapped "
1941 const int EndCallArgsInx
= 4 + NumCallArgs
;
1943 const Value
*NumTransitionArgsV
= CS
.getArgument(EndCallArgsInx
+1);
1944 Assert(isa
<ConstantInt
>(NumTransitionArgsV
),
1945 "gc.statepoint number of transition arguments "
1946 "must be constant integer",
1948 const int NumTransitionArgs
=
1949 cast
<ConstantInt
>(NumTransitionArgsV
)->getZExtValue();
1950 Assert(NumTransitionArgs
>= 0,
1951 "gc.statepoint number of transition arguments must be positive", &CI
);
1952 const int EndTransitionArgsInx
= EndCallArgsInx
+ 1 + NumTransitionArgs
;
1954 const Value
*NumDeoptArgsV
= CS
.getArgument(EndTransitionArgsInx
+1);
1955 Assert(isa
<ConstantInt
>(NumDeoptArgsV
),
1956 "gc.statepoint number of deoptimization arguments "
1957 "must be constant integer",
1959 const int NumDeoptArgs
= cast
<ConstantInt
>(NumDeoptArgsV
)->getZExtValue();
1960 Assert(NumDeoptArgs
>= 0, "gc.statepoint number of deoptimization arguments "
1964 const int ExpectedNumArgs
=
1965 7 + NumCallArgs
+ NumTransitionArgs
+ NumDeoptArgs
;
1966 Assert(ExpectedNumArgs
<= (int)CS
.arg_size(),
1967 "gc.statepoint too few arguments according to length fields", &CI
);
1969 // Check that the only uses of this gc.statepoint are gc.result or
1970 // gc.relocate calls which are tied to this statepoint and thus part
1971 // of the same statepoint sequence
1972 for (const User
*U
: CI
.users()) {
1973 const CallInst
*Call
= dyn_cast
<const CallInst
>(U
);
1974 Assert(Call
, "illegal use of statepoint token", &CI
, U
);
1975 if (!Call
) continue;
1976 Assert(isa
<GCRelocateInst
>(Call
) || isa
<GCResultInst
>(Call
),
1977 "gc.result or gc.relocate are the only value uses "
1978 "of a gc.statepoint",
1980 if (isa
<GCResultInst
>(Call
)) {
1981 Assert(Call
->getArgOperand(0) == &CI
,
1982 "gc.result connected to wrong gc.statepoint", &CI
, Call
);
1983 } else if (isa
<GCRelocateInst
>(Call
)) {
1984 Assert(Call
->getArgOperand(0) == &CI
,
1985 "gc.relocate connected to wrong gc.statepoint", &CI
, Call
);
1989 // Note: It is legal for a single derived pointer to be listed multiple
1990 // times. It's non-optimal, but it is legal. It can also happen after
1991 // insertion if we strip a bitcast away.
1992 // Note: It is really tempting to check that each base is relocated and
1993 // that a derived pointer is never reused as a base pointer. This turns
1994 // out to be problematic since optimizations run after safepoint insertion
1995 // can recognize equality properties that the insertion logic doesn't know
1996 // about. See example statepoint.ll in the verifier subdirectory
1999 void Verifier::verifyFrameRecoverIndices() {
2000 for (auto &Counts
: FrameEscapeInfo
) {
2001 Function
*F
= Counts
.first
;
2002 unsigned EscapedObjectCount
= Counts
.second
.first
;
2003 unsigned MaxRecoveredIndex
= Counts
.second
.second
;
2004 Assert(MaxRecoveredIndex
<= EscapedObjectCount
,
2005 "all indices passed to llvm.localrecover must be less than the "
2006 "number of arguments passed ot llvm.localescape in the parent "
2012 static Instruction
*getSuccPad(TerminatorInst
*Terminator
) {
2013 BasicBlock
*UnwindDest
;
2014 if (auto *II
= dyn_cast
<InvokeInst
>(Terminator
))
2015 UnwindDest
= II
->getUnwindDest();
2016 else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(Terminator
))
2017 UnwindDest
= CSI
->getUnwindDest();
2019 UnwindDest
= cast
<CleanupReturnInst
>(Terminator
)->getUnwindDest();
2020 return UnwindDest
->getFirstNonPHI();
2023 void Verifier::verifySiblingFuncletUnwinds() {
2024 SmallPtrSet
<Instruction
*, 8> Visited
;
2025 SmallPtrSet
<Instruction
*, 8> Active
;
2026 for (const auto &Pair
: SiblingFuncletInfo
) {
2027 Instruction
*PredPad
= Pair
.first
;
2028 if (Visited
.count(PredPad
))
2030 Active
.insert(PredPad
);
2031 TerminatorInst
*Terminator
= Pair
.second
;
2033 Instruction
*SuccPad
= getSuccPad(Terminator
);
2034 if (Active
.count(SuccPad
)) {
2035 // Found a cycle; report error
2036 Instruction
*CyclePad
= SuccPad
;
2037 SmallVector
<Instruction
*, 8> CycleNodes
;
2039 CycleNodes
.push_back(CyclePad
);
2040 TerminatorInst
*CycleTerminator
= SiblingFuncletInfo
[CyclePad
];
2041 if (CycleTerminator
!= CyclePad
)
2042 CycleNodes
.push_back(CycleTerminator
);
2043 CyclePad
= getSuccPad(CycleTerminator
);
2044 } while (CyclePad
!= SuccPad
);
2045 Assert(false, "EH pads can't handle each other's exceptions",
2046 ArrayRef
<Instruction
*>(CycleNodes
));
2048 // Don't re-walk a node we've already checked
2049 if (!Visited
.insert(SuccPad
).second
)
2051 // Walk to this successor if it has a map entry.
2053 auto TermI
= SiblingFuncletInfo
.find(PredPad
);
2054 if (TermI
== SiblingFuncletInfo
.end())
2056 Terminator
= TermI
->second
;
2057 Active
.insert(PredPad
);
2059 // Each node only has one successor, so we've walked all the active
2060 // nodes' successors.
2065 // visitFunction - Verify that a function is ok.
2067 void Verifier::visitFunction(const Function
&F
) {
2068 visitGlobalValue(F
);
2070 // Check function arguments.
2071 FunctionType
*FT
= F
.getFunctionType();
2072 unsigned NumArgs
= F
.arg_size();
2074 Assert(&Context
== &F
.getContext(),
2075 "Function context does not match Module context!", &F
);
2077 Assert(!F
.hasCommonLinkage(), "Functions may not have common linkage", &F
);
2078 Assert(FT
->getNumParams() == NumArgs
,
2079 "# formal arguments must match # of arguments for function type!", &F
,
2081 Assert(F
.getReturnType()->isFirstClassType() ||
2082 F
.getReturnType()->isVoidTy() || F
.getReturnType()->isStructTy(),
2083 "Functions cannot return aggregate values!", &F
);
2085 Assert(!F
.hasStructRetAttr() || F
.getReturnType()->isVoidTy(),
2086 "Invalid struct return type!", &F
);
2088 AttributeList Attrs
= F
.getAttributes();
2090 Assert(verifyAttributeCount(Attrs
, FT
->getNumParams()),
2091 "Attribute after last parameter!", &F
);
2093 // Check function attributes.
2094 verifyFunctionAttrs(FT
, Attrs
, &F
);
2096 // On function declarations/definitions, we do not support the builtin
2097 // attribute. We do not check this in VerifyFunctionAttrs since that is
2098 // checking for Attributes that can/can not ever be on functions.
2099 Assert(!Attrs
.hasFnAttribute(Attribute::Builtin
),
2100 "Attribute 'builtin' can only be applied to a callsite.", &F
);
2102 // Check that this function meets the restrictions on this calling convention.
2103 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2104 // restrictions can be lifted.
2105 switch (F
.getCallingConv()) {
2107 case CallingConv::C
:
2109 case CallingConv::AMDGPU_KERNEL
:
2110 case CallingConv::SPIR_KERNEL
:
2111 Assert(F
.getReturnType()->isVoidTy(),
2112 "Calling convention requires void return type", &F
);
2114 case CallingConv::AMDGPU_VS
:
2115 case CallingConv::AMDGPU_HS
:
2116 case CallingConv::AMDGPU_GS
:
2117 case CallingConv::AMDGPU_PS
:
2118 case CallingConv::AMDGPU_CS
:
2119 Assert(!F
.hasStructRetAttr(),
2120 "Calling convention does not allow sret", &F
);
2122 case CallingConv::Fast
:
2123 case CallingConv::Cold
:
2124 case CallingConv::Intel_OCL_BI
:
2125 case CallingConv::PTX_Kernel
:
2126 case CallingConv::PTX_Device
:
2127 Assert(!F
.isVarArg(), "Calling convention does not support varargs or "
2128 "perfect forwarding!",
2133 bool isLLVMdotName
= F
.getName().size() >= 5 &&
2134 F
.getName().substr(0, 5) == "llvm.";
2136 // Check that the argument values match the function type for this function...
2138 for (const Argument
&Arg
: F
.args()) {
2139 Assert(Arg
.getType() == FT
->getParamType(i
),
2140 "Argument value does not match function argument type!", &Arg
,
2141 FT
->getParamType(i
));
2142 Assert(Arg
.getType()->isFirstClassType(),
2143 "Function arguments must have first-class types!", &Arg
);
2144 if (!isLLVMdotName
) {
2145 Assert(!Arg
.getType()->isMetadataTy(),
2146 "Function takes metadata but isn't an intrinsic", &Arg
, &F
);
2147 Assert(!Arg
.getType()->isTokenTy(),
2148 "Function takes token but isn't an intrinsic", &Arg
, &F
);
2151 // Check that swifterror argument is only used by loads and stores.
2152 if (Attrs
.hasParamAttribute(i
, Attribute::SwiftError
)) {
2153 verifySwiftErrorValue(&Arg
);
2159 Assert(!F
.getReturnType()->isTokenTy(),
2160 "Functions returns a token but isn't an intrinsic", &F
);
2162 // Get the function metadata attachments.
2163 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
2164 F
.getAllMetadata(MDs
);
2165 assert(F
.hasMetadata() != MDs
.empty() && "Bit out-of-sync");
2166 verifyFunctionMetadata(MDs
);
2168 // Check validity of the personality function
2169 if (F
.hasPersonalityFn()) {
2170 auto *Per
= dyn_cast
<Function
>(F
.getPersonalityFn()->stripPointerCasts());
2172 Assert(Per
->getParent() == F
.getParent(),
2173 "Referencing personality function in another module!",
2174 &F
, F
.getParent(), Per
, Per
->getParent());
2177 if (F
.isMaterializable()) {
2178 // Function has a body somewhere we can't see.
2179 Assert(MDs
.empty(), "unmaterialized function cannot have metadata", &F
,
2180 MDs
.empty() ? nullptr : MDs
.front().second
);
2181 } else if (F
.isDeclaration()) {
2182 for (const auto &I
: MDs
) {
2183 AssertDI(I
.first
!= LLVMContext::MD_dbg
,
2184 "function declaration may not have a !dbg attachment", &F
);
2185 Assert(I
.first
!= LLVMContext::MD_prof
,
2186 "function declaration may not have a !prof attachment", &F
);
2188 // Verify the metadata itself.
2189 visitMDNode(*I
.second
);
2191 Assert(!F
.hasPersonalityFn(),
2192 "Function declaration shouldn't have a personality routine", &F
);
2194 // Verify that this function (which has a body) is not named "llvm.*". It
2195 // is not legal to define intrinsics.
2196 Assert(!isLLVMdotName
, "llvm intrinsics cannot be defined!", &F
);
2198 // Check the entry node
2199 const BasicBlock
*Entry
= &F
.getEntryBlock();
2200 Assert(pred_empty(Entry
),
2201 "Entry block to function must not have predecessors!", Entry
);
2203 // The address of the entry block cannot be taken, unless it is dead.
2204 if (Entry
->hasAddressTaken()) {
2205 Assert(!BlockAddress::lookup(Entry
)->isConstantUsed(),
2206 "blockaddress may not be used with the entry block!", Entry
);
2209 unsigned NumDebugAttachments
= 0, NumProfAttachments
= 0;
2210 // Visit metadata attachments.
2211 for (const auto &I
: MDs
) {
2212 // Verify that the attachment is legal.
2216 case LLVMContext::MD_dbg
: {
2217 ++NumDebugAttachments
;
2218 AssertDI(NumDebugAttachments
== 1,
2219 "function must have a single !dbg attachment", &F
, I
.second
);
2220 AssertDI(isa
<DISubprogram
>(I
.second
),
2221 "function !dbg attachment must be a subprogram", &F
, I
.second
);
2222 auto *SP
= cast
<DISubprogram
>(I
.second
);
2223 const Function
*&AttachedTo
= DISubprogramAttachments
[SP
];
2224 AssertDI(!AttachedTo
|| AttachedTo
== &F
,
2225 "DISubprogram attached to more than one function", SP
, &F
);
2229 case LLVMContext::MD_prof
:
2230 ++NumProfAttachments
;
2231 Assert(NumProfAttachments
== 1,
2232 "function must have a single !prof attachment", &F
, I
.second
);
2236 // Verify the metadata itself.
2237 visitMDNode(*I
.second
);
2241 // If this function is actually an intrinsic, verify that it is only used in
2242 // direct call/invokes, never having its "address taken".
2243 // Only do this if the module is materialized, otherwise we don't have all the
2245 if (F
.getIntrinsicID() && F
.getParent()->isMaterialized()) {
2247 if (F
.hasAddressTaken(&U
))
2248 Assert(false, "Invalid user of intrinsic instruction!", U
);
2251 auto *N
= F
.getSubprogram();
2252 HasDebugInfo
= (N
!= nullptr);
2256 // Check that all !dbg attachments lead to back to N (or, at least, another
2257 // subprogram that describes the same function).
2259 // FIXME: Check this incrementally while visiting !dbg attachments.
2260 // FIXME: Only check when N is the canonical subprogram for F.
2261 SmallPtrSet
<const MDNode
*, 32> Seen
;
2263 for (auto &I
: BB
) {
2264 // Be careful about using DILocation here since we might be dealing with
2265 // broken code (this is the Verifier after all).
2267 dyn_cast_or_null
<DILocation
>(I
.getDebugLoc().getAsMDNode());
2270 if (!Seen
.insert(DL
).second
)
2273 Metadata
*Parent
= DL
->getRawScope();
2274 AssertDI(Parent
&& isa
<DILocalScope
>(Parent
),
2275 "DILocation's scope must be a DILocalScope", N
, &F
, &I
, DL
,
2277 DILocalScope
*Scope
= DL
->getInlinedAtScope();
2278 if (Scope
&& !Seen
.insert(Scope
).second
)
2281 DISubprogram
*SP
= Scope
? Scope
->getSubprogram() : nullptr;
2283 // Scope and SP could be the same MDNode and we don't want to skip
2284 // validation in that case
2285 if (SP
&& ((Scope
!= SP
) && !Seen
.insert(SP
).second
))
2288 // FIXME: Once N is canonical, check "SP == &N".
2289 AssertDI(SP
->describes(&F
),
2290 "!dbg attachment points at wrong subprogram for function", N
, &F
,
2295 // verifyBasicBlock - Verify that a basic block is well formed...
2297 void Verifier::visitBasicBlock(BasicBlock
&BB
) {
2298 InstsInThisBlock
.clear();
2300 // Ensure that basic blocks have terminators!
2301 Assert(BB
.getTerminator(), "Basic Block does not have terminator!", &BB
);
2303 // Check constraints that this basic block imposes on all of the PHI nodes in
2305 if (isa
<PHINode
>(BB
.front())) {
2306 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(&BB
), pred_end(&BB
));
2307 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> Values
;
2309 for (const PHINode
&PN
: BB
.phis()) {
2310 // Ensure that PHI nodes have at least one entry!
2311 Assert(PN
.getNumIncomingValues() != 0,
2312 "PHI nodes must have at least one entry. If the block is dead, "
2313 "the PHI should be removed!",
2315 Assert(PN
.getNumIncomingValues() == Preds
.size(),
2316 "PHINode should have one entry for each predecessor of its "
2317 "parent basic block!",
2320 // Get and sort all incoming values in the PHI node...
2322 Values
.reserve(PN
.getNumIncomingValues());
2323 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
2325 std::make_pair(PN
.getIncomingBlock(i
), PN
.getIncomingValue(i
)));
2328 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
) {
2329 // Check to make sure that if there is more than one entry for a
2330 // particular basic block in this PHI node, that the incoming values are
2333 Assert(i
== 0 || Values
[i
].first
!= Values
[i
- 1].first
||
2334 Values
[i
].second
== Values
[i
- 1].second
,
2335 "PHI node has multiple entries for the same basic block with "
2336 "different incoming values!",
2337 &PN
, Values
[i
].first
, Values
[i
].second
, Values
[i
- 1].second
);
2339 // Check to make sure that the predecessors and PHI node entries are
2341 Assert(Values
[i
].first
== Preds
[i
],
2342 "PHI node entries do not match predecessors!", &PN
,
2343 Values
[i
].first
, Preds
[i
]);
2348 // Check that all instructions have their parent pointers set up correctly.
2351 Assert(I
.getParent() == &BB
, "Instruction has bogus parent pointer!");
2355 void Verifier::visitTerminatorInst(TerminatorInst
&I
) {
2356 // Ensure that terminators only exist at the end of the basic block.
2357 Assert(&I
== I
.getParent()->getTerminator(),
2358 "Terminator found in the middle of a basic block!", I
.getParent());
2359 visitInstruction(I
);
2362 void Verifier::visitBranchInst(BranchInst
&BI
) {
2363 if (BI
.isConditional()) {
2364 Assert(BI
.getCondition()->getType()->isIntegerTy(1),
2365 "Branch condition is not 'i1' type!", &BI
, BI
.getCondition());
2367 visitTerminatorInst(BI
);
2370 void Verifier::visitReturnInst(ReturnInst
&RI
) {
2371 Function
*F
= RI
.getParent()->getParent();
2372 unsigned N
= RI
.getNumOperands();
2373 if (F
->getReturnType()->isVoidTy())
2375 "Found return instr that returns non-void in Function of void "
2377 &RI
, F
->getReturnType());
2379 Assert(N
== 1 && F
->getReturnType() == RI
.getOperand(0)->getType(),
2380 "Function return type does not match operand "
2381 "type of return inst!",
2382 &RI
, F
->getReturnType());
2384 // Check to make sure that the return value has necessary properties for
2386 visitTerminatorInst(RI
);
2389 void Verifier::visitSwitchInst(SwitchInst
&SI
) {
2390 // Check to make sure that all of the constants in the switch instruction
2391 // have the same type as the switched-on value.
2392 Type
*SwitchTy
= SI
.getCondition()->getType();
2393 SmallPtrSet
<ConstantInt
*, 32> Constants
;
2394 for (auto &Case
: SI
.cases()) {
2395 Assert(Case
.getCaseValue()->getType() == SwitchTy
,
2396 "Switch constants must all be same type as switch value!", &SI
);
2397 Assert(Constants
.insert(Case
.getCaseValue()).second
,
2398 "Duplicate integer as switch case", &SI
, Case
.getCaseValue());
2401 visitTerminatorInst(SI
);
2404 void Verifier::visitIndirectBrInst(IndirectBrInst
&BI
) {
2405 Assert(BI
.getAddress()->getType()->isPointerTy(),
2406 "Indirectbr operand must have pointer type!", &BI
);
2407 for (unsigned i
= 0, e
= BI
.getNumDestinations(); i
!= e
; ++i
)
2408 Assert(BI
.getDestination(i
)->getType()->isLabelTy(),
2409 "Indirectbr destinations must all have pointer type!", &BI
);
2411 visitTerminatorInst(BI
);
2414 void Verifier::visitSelectInst(SelectInst
&SI
) {
2415 Assert(!SelectInst::areInvalidOperands(SI
.getOperand(0), SI
.getOperand(1),
2417 "Invalid operands for select instruction!", &SI
);
2419 Assert(SI
.getTrueValue()->getType() == SI
.getType(),
2420 "Select values must have same type as select instruction!", &SI
);
2421 visitInstruction(SI
);
2424 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2425 /// a pass, if any exist, it's an error.
2427 void Verifier::visitUserOp1(Instruction
&I
) {
2428 Assert(false, "User-defined operators should not live outside of a pass!", &I
);
2431 void Verifier::visitTruncInst(TruncInst
&I
) {
2432 // Get the source and destination types
2433 Type
*SrcTy
= I
.getOperand(0)->getType();
2434 Type
*DestTy
= I
.getType();
2436 // Get the size of the types in bits, we'll need this later
2437 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2438 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2440 Assert(SrcTy
->isIntOrIntVectorTy(), "Trunc only operates on integer", &I
);
2441 Assert(DestTy
->isIntOrIntVectorTy(), "Trunc only produces integer", &I
);
2442 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2443 "trunc source and destination must both be a vector or neither", &I
);
2444 Assert(SrcBitSize
> DestBitSize
, "DestTy too big for Trunc", &I
);
2446 visitInstruction(I
);
2449 void Verifier::visitZExtInst(ZExtInst
&I
) {
2450 // Get the source and destination types
2451 Type
*SrcTy
= I
.getOperand(0)->getType();
2452 Type
*DestTy
= I
.getType();
2454 // Get the size of the types in bits, we'll need this later
2455 Assert(SrcTy
->isIntOrIntVectorTy(), "ZExt only operates on integer", &I
);
2456 Assert(DestTy
->isIntOrIntVectorTy(), "ZExt only produces an integer", &I
);
2457 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2458 "zext source and destination must both be a vector or neither", &I
);
2459 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2460 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2462 Assert(SrcBitSize
< DestBitSize
, "Type too small for ZExt", &I
);
2464 visitInstruction(I
);
2467 void Verifier::visitSExtInst(SExtInst
&I
) {
2468 // Get the source and destination types
2469 Type
*SrcTy
= I
.getOperand(0)->getType();
2470 Type
*DestTy
= I
.getType();
2472 // Get the size of the types in bits, we'll need this later
2473 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2474 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2476 Assert(SrcTy
->isIntOrIntVectorTy(), "SExt only operates on integer", &I
);
2477 Assert(DestTy
->isIntOrIntVectorTy(), "SExt only produces an integer", &I
);
2478 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2479 "sext source and destination must both be a vector or neither", &I
);
2480 Assert(SrcBitSize
< DestBitSize
, "Type too small for SExt", &I
);
2482 visitInstruction(I
);
2485 void Verifier::visitFPTruncInst(FPTruncInst
&I
) {
2486 // Get the source and destination types
2487 Type
*SrcTy
= I
.getOperand(0)->getType();
2488 Type
*DestTy
= I
.getType();
2489 // Get the size of the types in bits, we'll need this later
2490 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2491 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2493 Assert(SrcTy
->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I
);
2494 Assert(DestTy
->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I
);
2495 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2496 "fptrunc source and destination must both be a vector or neither", &I
);
2497 Assert(SrcBitSize
> DestBitSize
, "DestTy too big for FPTrunc", &I
);
2499 visitInstruction(I
);
2502 void Verifier::visitFPExtInst(FPExtInst
&I
) {
2503 // Get the source and destination types
2504 Type
*SrcTy
= I
.getOperand(0)->getType();
2505 Type
*DestTy
= I
.getType();
2507 // Get the size of the types in bits, we'll need this later
2508 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2509 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2511 Assert(SrcTy
->isFPOrFPVectorTy(), "FPExt only operates on FP", &I
);
2512 Assert(DestTy
->isFPOrFPVectorTy(), "FPExt only produces an FP", &I
);
2513 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2514 "fpext source and destination must both be a vector or neither", &I
);
2515 Assert(SrcBitSize
< DestBitSize
, "DestTy too small for FPExt", &I
);
2517 visitInstruction(I
);
2520 void Verifier::visitUIToFPInst(UIToFPInst
&I
) {
2521 // Get the source and destination types
2522 Type
*SrcTy
= I
.getOperand(0)->getType();
2523 Type
*DestTy
= I
.getType();
2525 bool SrcVec
= SrcTy
->isVectorTy();
2526 bool DstVec
= DestTy
->isVectorTy();
2528 Assert(SrcVec
== DstVec
,
2529 "UIToFP source and dest must both be vector or scalar", &I
);
2530 Assert(SrcTy
->isIntOrIntVectorTy(),
2531 "UIToFP source must be integer or integer vector", &I
);
2532 Assert(DestTy
->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2535 if (SrcVec
&& DstVec
)
2536 Assert(cast
<VectorType
>(SrcTy
)->getNumElements() ==
2537 cast
<VectorType
>(DestTy
)->getNumElements(),
2538 "UIToFP source and dest vector length mismatch", &I
);
2540 visitInstruction(I
);
2543 void Verifier::visitSIToFPInst(SIToFPInst
&I
) {
2544 // Get the source and destination types
2545 Type
*SrcTy
= I
.getOperand(0)->getType();
2546 Type
*DestTy
= I
.getType();
2548 bool SrcVec
= SrcTy
->isVectorTy();
2549 bool DstVec
= DestTy
->isVectorTy();
2551 Assert(SrcVec
== DstVec
,
2552 "SIToFP source and dest must both be vector or scalar", &I
);
2553 Assert(SrcTy
->isIntOrIntVectorTy(),
2554 "SIToFP source must be integer or integer vector", &I
);
2555 Assert(DestTy
->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2558 if (SrcVec
&& DstVec
)
2559 Assert(cast
<VectorType
>(SrcTy
)->getNumElements() ==
2560 cast
<VectorType
>(DestTy
)->getNumElements(),
2561 "SIToFP source and dest vector length mismatch", &I
);
2563 visitInstruction(I
);
2566 void Verifier::visitFPToUIInst(FPToUIInst
&I
) {
2567 // Get the source and destination types
2568 Type
*SrcTy
= I
.getOperand(0)->getType();
2569 Type
*DestTy
= I
.getType();
2571 bool SrcVec
= SrcTy
->isVectorTy();
2572 bool DstVec
= DestTy
->isVectorTy();
2574 Assert(SrcVec
== DstVec
,
2575 "FPToUI source and dest must both be vector or scalar", &I
);
2576 Assert(SrcTy
->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2578 Assert(DestTy
->isIntOrIntVectorTy(),
2579 "FPToUI result must be integer or integer vector", &I
);
2581 if (SrcVec
&& DstVec
)
2582 Assert(cast
<VectorType
>(SrcTy
)->getNumElements() ==
2583 cast
<VectorType
>(DestTy
)->getNumElements(),
2584 "FPToUI source and dest vector length mismatch", &I
);
2586 visitInstruction(I
);
2589 void Verifier::visitFPToSIInst(FPToSIInst
&I
) {
2590 // Get the source and destination types
2591 Type
*SrcTy
= I
.getOperand(0)->getType();
2592 Type
*DestTy
= I
.getType();
2594 bool SrcVec
= SrcTy
->isVectorTy();
2595 bool DstVec
= DestTy
->isVectorTy();
2597 Assert(SrcVec
== DstVec
,
2598 "FPToSI source and dest must both be vector or scalar", &I
);
2599 Assert(SrcTy
->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2601 Assert(DestTy
->isIntOrIntVectorTy(),
2602 "FPToSI result must be integer or integer vector", &I
);
2604 if (SrcVec
&& DstVec
)
2605 Assert(cast
<VectorType
>(SrcTy
)->getNumElements() ==
2606 cast
<VectorType
>(DestTy
)->getNumElements(),
2607 "FPToSI source and dest vector length mismatch", &I
);
2609 visitInstruction(I
);
2612 void Verifier::visitPtrToIntInst(PtrToIntInst
&I
) {
2613 // Get the source and destination types
2614 Type
*SrcTy
= I
.getOperand(0)->getType();
2615 Type
*DestTy
= I
.getType();
2617 Assert(SrcTy
->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I
);
2619 if (auto *PTy
= dyn_cast
<PointerType
>(SrcTy
->getScalarType()))
2620 Assert(!DL
.isNonIntegralPointerType(PTy
),
2621 "ptrtoint not supported for non-integral pointers");
2623 Assert(DestTy
->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I
);
2624 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(), "PtrToInt type mismatch",
2627 if (SrcTy
->isVectorTy()) {
2628 VectorType
*VSrc
= dyn_cast
<VectorType
>(SrcTy
);
2629 VectorType
*VDest
= dyn_cast
<VectorType
>(DestTy
);
2630 Assert(VSrc
->getNumElements() == VDest
->getNumElements(),
2631 "PtrToInt Vector width mismatch", &I
);
2634 visitInstruction(I
);
2637 void Verifier::visitIntToPtrInst(IntToPtrInst
&I
) {
2638 // Get the source and destination types
2639 Type
*SrcTy
= I
.getOperand(0)->getType();
2640 Type
*DestTy
= I
.getType();
2642 Assert(SrcTy
->isIntOrIntVectorTy(),
2643 "IntToPtr source must be an integral", &I
);
2644 Assert(DestTy
->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I
);
2646 if (auto *PTy
= dyn_cast
<PointerType
>(DestTy
->getScalarType()))
2647 Assert(!DL
.isNonIntegralPointerType(PTy
),
2648 "inttoptr not supported for non-integral pointers");
2650 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(), "IntToPtr type mismatch",
2652 if (SrcTy
->isVectorTy()) {
2653 VectorType
*VSrc
= dyn_cast
<VectorType
>(SrcTy
);
2654 VectorType
*VDest
= dyn_cast
<VectorType
>(DestTy
);
2655 Assert(VSrc
->getNumElements() == VDest
->getNumElements(),
2656 "IntToPtr Vector width mismatch", &I
);
2658 visitInstruction(I
);
2661 void Verifier::visitBitCastInst(BitCastInst
&I
) {
2663 CastInst::castIsValid(Instruction::BitCast
, I
.getOperand(0), I
.getType()),
2664 "Invalid bitcast", &I
);
2665 visitInstruction(I
);
2668 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst
&I
) {
2669 Type
*SrcTy
= I
.getOperand(0)->getType();
2670 Type
*DestTy
= I
.getType();
2672 Assert(SrcTy
->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2674 Assert(DestTy
->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2676 Assert(SrcTy
->getPointerAddressSpace() != DestTy
->getPointerAddressSpace(),
2677 "AddrSpaceCast must be between different address spaces", &I
);
2678 if (SrcTy
->isVectorTy())
2679 Assert(SrcTy
->getVectorNumElements() == DestTy
->getVectorNumElements(),
2680 "AddrSpaceCast vector pointer number of elements mismatch", &I
);
2681 visitInstruction(I
);
2684 /// visitPHINode - Ensure that a PHI node is well formed.
2686 void Verifier::visitPHINode(PHINode
&PN
) {
2687 // Ensure that the PHI nodes are all grouped together at the top of the block.
2688 // This can be tested by checking whether the instruction before this is
2689 // either nonexistent (because this is begin()) or is a PHI node. If not,
2690 // then there is some other instruction before a PHI.
2691 Assert(&PN
== &PN
.getParent()->front() ||
2692 isa
<PHINode
>(--BasicBlock::iterator(&PN
)),
2693 "PHI nodes not grouped at top of basic block!", &PN
, PN
.getParent());
2695 // Check that a PHI doesn't yield a Token.
2696 Assert(!PN
.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2698 // Check that all of the values of the PHI node have the same type as the
2699 // result, and that the incoming blocks are really basic blocks.
2700 for (Value
*IncValue
: PN
.incoming_values()) {
2701 Assert(PN
.getType() == IncValue
->getType(),
2702 "PHI node operands are not the same type as the result!", &PN
);
2705 // All other PHI node constraints are checked in the visitBasicBlock method.
2707 visitInstruction(PN
);
2710 void Verifier::verifyCallSite(CallSite CS
) {
2711 Instruction
*I
= CS
.getInstruction();
2713 Assert(CS
.getCalledValue()->getType()->isPointerTy(),
2714 "Called function must be a pointer!", I
);
2715 PointerType
*FPTy
= cast
<PointerType
>(CS
.getCalledValue()->getType());
2717 Assert(FPTy
->getElementType()->isFunctionTy(),
2718 "Called function is not pointer to function type!", I
);
2720 Assert(FPTy
->getElementType() == CS
.getFunctionType(),
2721 "Called function is not the same type as the call!", I
);
2723 FunctionType
*FTy
= CS
.getFunctionType();
2725 // Verify that the correct number of arguments are being passed
2726 if (FTy
->isVarArg())
2727 Assert(CS
.arg_size() >= FTy
->getNumParams(),
2728 "Called function requires more parameters than were provided!", I
);
2730 Assert(CS
.arg_size() == FTy
->getNumParams(),
2731 "Incorrect number of arguments passed to called function!", I
);
2733 // Verify that all arguments to the call match the function type.
2734 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
2735 Assert(CS
.getArgument(i
)->getType() == FTy
->getParamType(i
),
2736 "Call parameter type does not match function signature!",
2737 CS
.getArgument(i
), FTy
->getParamType(i
), I
);
2739 AttributeList Attrs
= CS
.getAttributes();
2741 Assert(verifyAttributeCount(Attrs
, CS
.arg_size()),
2742 "Attribute after last parameter!", I
);
2744 if (Attrs
.hasAttribute(AttributeList::FunctionIndex
, Attribute::Speculatable
)) {
2745 // Don't allow speculatable on call sites, unless the underlying function
2746 // declaration is also speculatable.
2748 = dyn_cast
<Function
>(CS
.getCalledValue()->stripPointerCasts());
2749 Assert(Callee
&& Callee
->isSpeculatable(),
2750 "speculatable attribute may not apply to call sites", I
);
2753 // Verify call attributes.
2754 verifyFunctionAttrs(FTy
, Attrs
, I
);
2756 // Conservatively check the inalloca argument.
2757 // We have a bug if we can find that there is an underlying alloca without
2759 if (CS
.hasInAllocaArgument()) {
2760 Value
*InAllocaArg
= CS
.getArgument(FTy
->getNumParams() - 1);
2761 if (auto AI
= dyn_cast
<AllocaInst
>(InAllocaArg
->stripInBoundsOffsets()))
2762 Assert(AI
->isUsedWithInAlloca(),
2763 "inalloca argument for call has mismatched alloca", AI
, I
);
2766 // For each argument of the callsite, if it has the swifterror argument,
2767 // make sure the underlying alloca/parameter it comes from has a swifterror as
2769 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
2770 if (CS
.paramHasAttr(i
, Attribute::SwiftError
)) {
2771 Value
*SwiftErrorArg
= CS
.getArgument(i
);
2772 if (auto AI
= dyn_cast
<AllocaInst
>(SwiftErrorArg
->stripInBoundsOffsets())) {
2773 Assert(AI
->isSwiftError(),
2774 "swifterror argument for call has mismatched alloca", AI
, I
);
2777 auto ArgI
= dyn_cast
<Argument
>(SwiftErrorArg
);
2778 Assert(ArgI
, "swifterror argument should come from an alloca or parameter", SwiftErrorArg
, I
);
2779 Assert(ArgI
->hasSwiftErrorAttr(),
2780 "swifterror argument for call has mismatched parameter", ArgI
, I
);
2783 if (FTy
->isVarArg()) {
2784 // FIXME? is 'nest' even legal here?
2785 bool SawNest
= false;
2786 bool SawReturned
= false;
2788 for (unsigned Idx
= 0; Idx
< FTy
->getNumParams(); ++Idx
) {
2789 if (Attrs
.hasParamAttribute(Idx
, Attribute::Nest
))
2791 if (Attrs
.hasParamAttribute(Idx
, Attribute::Returned
))
2795 // Check attributes on the varargs part.
2796 for (unsigned Idx
= FTy
->getNumParams(); Idx
< CS
.arg_size(); ++Idx
) {
2797 Type
*Ty
= CS
.getArgument(Idx
)->getType();
2798 AttributeSet ArgAttrs
= Attrs
.getParamAttributes(Idx
);
2799 verifyParameterAttrs(ArgAttrs
, Ty
, I
);
2801 if (ArgAttrs
.hasAttribute(Attribute::Nest
)) {
2802 Assert(!SawNest
, "More than one parameter has attribute nest!", I
);
2806 if (ArgAttrs
.hasAttribute(Attribute::Returned
)) {
2807 Assert(!SawReturned
, "More than one parameter has attribute returned!",
2809 Assert(Ty
->canLosslesslyBitCastTo(FTy
->getReturnType()),
2810 "Incompatible argument and return types for 'returned' "
2816 Assert(!ArgAttrs
.hasAttribute(Attribute::StructRet
),
2817 "Attribute 'sret' cannot be used for vararg call arguments!", I
);
2819 if (ArgAttrs
.hasAttribute(Attribute::InAlloca
))
2820 Assert(Idx
== CS
.arg_size() - 1, "inalloca isn't on the last argument!",
2825 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2826 if (CS
.getCalledFunction() == nullptr ||
2827 !CS
.getCalledFunction()->getName().startswith("llvm.")) {
2828 for (Type
*ParamTy
: FTy
->params()) {
2829 Assert(!ParamTy
->isMetadataTy(),
2830 "Function has metadata parameter but isn't an intrinsic", I
);
2831 Assert(!ParamTy
->isTokenTy(),
2832 "Function has token parameter but isn't an intrinsic", I
);
2836 // Verify that indirect calls don't return tokens.
2837 if (CS
.getCalledFunction() == nullptr)
2838 Assert(!FTy
->getReturnType()->isTokenTy(),
2839 "Return type cannot be token for indirect call!");
2841 if (Function
*F
= CS
.getCalledFunction())
2842 if (Intrinsic::ID ID
= (Intrinsic::ID
)F
->getIntrinsicID())
2843 visitIntrinsicCallSite(ID
, CS
);
2845 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2846 // at most one "gc-transition" operand bundle.
2847 bool FoundDeoptBundle
= false, FoundFuncletBundle
= false,
2848 FoundGCTransitionBundle
= false;
2849 for (unsigned i
= 0, e
= CS
.getNumOperandBundles(); i
< e
; ++i
) {
2850 OperandBundleUse BU
= CS
.getOperandBundleAt(i
);
2851 uint32_t Tag
= BU
.getTagID();
2852 if (Tag
== LLVMContext::OB_deopt
) {
2853 Assert(!FoundDeoptBundle
, "Multiple deopt operand bundles", I
);
2854 FoundDeoptBundle
= true;
2855 } else if (Tag
== LLVMContext::OB_gc_transition
) {
2856 Assert(!FoundGCTransitionBundle
, "Multiple gc-transition operand bundles",
2858 FoundGCTransitionBundle
= true;
2859 } else if (Tag
== LLVMContext::OB_funclet
) {
2860 Assert(!FoundFuncletBundle
, "Multiple funclet operand bundles", I
);
2861 FoundFuncletBundle
= true;
2862 Assert(BU
.Inputs
.size() == 1,
2863 "Expected exactly one funclet bundle operand", I
);
2864 Assert(isa
<FuncletPadInst
>(BU
.Inputs
.front()),
2865 "Funclet bundle operands should correspond to a FuncletPadInst",
2870 // Verify that each inlinable callsite of a debug-info-bearing function in a
2871 // debug-info-bearing function has a debug location attached to it. Failure to
2872 // do so causes assertion failures when the inliner sets up inline scope info.
2873 if (I
->getFunction()->getSubprogram() && CS
.getCalledFunction() &&
2874 CS
.getCalledFunction()->getSubprogram())
2875 AssertDI(I
->getDebugLoc(), "inlinable function call in a function with "
2876 "debug info must have a !dbg location",
2879 visitInstruction(*I
);
2882 /// Two types are "congruent" if they are identical, or if they are both pointer
2883 /// types with different pointee types and the same address space.
2884 static bool isTypeCongruent(Type
*L
, Type
*R
) {
2887 PointerType
*PL
= dyn_cast
<PointerType
>(L
);
2888 PointerType
*PR
= dyn_cast
<PointerType
>(R
);
2891 return PL
->getAddressSpace() == PR
->getAddressSpace();
2894 static AttrBuilder
getParameterABIAttributes(int I
, AttributeList Attrs
) {
2895 static const Attribute::AttrKind ABIAttrs
[] = {
2896 Attribute::StructRet
, Attribute::ByVal
, Attribute::InAlloca
,
2897 Attribute::InReg
, Attribute::Returned
, Attribute::SwiftSelf
,
2898 Attribute::SwiftError
};
2900 for (auto AK
: ABIAttrs
) {
2901 if (Attrs
.hasParamAttribute(I
, AK
))
2902 Copy
.addAttribute(AK
);
2904 if (Attrs
.hasParamAttribute(I
, Attribute::Alignment
))
2905 Copy
.addAlignmentAttr(Attrs
.getParamAlignment(I
));
2909 void Verifier::verifyMustTailCall(CallInst
&CI
) {
2910 Assert(!CI
.isInlineAsm(), "cannot use musttail call with inline asm", &CI
);
2912 // - The caller and callee prototypes must match. Pointer types of
2913 // parameters or return types may differ in pointee type, but not
2915 Function
*F
= CI
.getParent()->getParent();
2916 FunctionType
*CallerTy
= F
->getFunctionType();
2917 FunctionType
*CalleeTy
= CI
.getFunctionType();
2918 if (!CI
.getCalledFunction() || !CI
.getCalledFunction()->isIntrinsic()) {
2919 Assert(CallerTy
->getNumParams() == CalleeTy
->getNumParams(),
2920 "cannot guarantee tail call due to mismatched parameter counts",
2922 for (int I
= 0, E
= CallerTy
->getNumParams(); I
!= E
; ++I
) {
2924 isTypeCongruent(CallerTy
->getParamType(I
), CalleeTy
->getParamType(I
)),
2925 "cannot guarantee tail call due to mismatched parameter types", &CI
);
2928 Assert(CallerTy
->isVarArg() == CalleeTy
->isVarArg(),
2929 "cannot guarantee tail call due to mismatched varargs", &CI
);
2930 Assert(isTypeCongruent(CallerTy
->getReturnType(), CalleeTy
->getReturnType()),
2931 "cannot guarantee tail call due to mismatched return types", &CI
);
2933 // - The calling conventions of the caller and callee must match.
2934 Assert(F
->getCallingConv() == CI
.getCallingConv(),
2935 "cannot guarantee tail call due to mismatched calling conv", &CI
);
2937 // - All ABI-impacting function attributes, such as sret, byval, inreg,
2938 // returned, and inalloca, must match.
2939 AttributeList CallerAttrs
= F
->getAttributes();
2940 AttributeList CalleeAttrs
= CI
.getAttributes();
2941 for (int I
= 0, E
= CallerTy
->getNumParams(); I
!= E
; ++I
) {
2942 AttrBuilder CallerABIAttrs
= getParameterABIAttributes(I
, CallerAttrs
);
2943 AttrBuilder CalleeABIAttrs
= getParameterABIAttributes(I
, CalleeAttrs
);
2944 Assert(CallerABIAttrs
== CalleeABIAttrs
,
2945 "cannot guarantee tail call due to mismatched ABI impacting "
2946 "function attributes",
2947 &CI
, CI
.getOperand(I
));
2950 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2951 // or a pointer bitcast followed by a ret instruction.
2952 // - The ret instruction must return the (possibly bitcasted) value
2953 // produced by the call or void.
2954 Value
*RetVal
= &CI
;
2955 Instruction
*Next
= CI
.getNextNode();
2957 // Handle the optional bitcast.
2958 if (BitCastInst
*BI
= dyn_cast_or_null
<BitCastInst
>(Next
)) {
2959 Assert(BI
->getOperand(0) == RetVal
,
2960 "bitcast following musttail call must use the call", BI
);
2962 Next
= BI
->getNextNode();
2965 // Check the return.
2966 ReturnInst
*Ret
= dyn_cast_or_null
<ReturnInst
>(Next
);
2967 Assert(Ret
, "musttail call must precede a ret with an optional bitcast",
2969 Assert(!Ret
->getReturnValue() || Ret
->getReturnValue() == RetVal
,
2970 "musttail call result must be returned", Ret
);
2973 void Verifier::visitCallInst(CallInst
&CI
) {
2974 verifyCallSite(&CI
);
2976 if (CI
.isMustTailCall())
2977 verifyMustTailCall(CI
);
2980 void Verifier::visitInvokeInst(InvokeInst
&II
) {
2981 verifyCallSite(&II
);
2983 // Verify that the first non-PHI instruction of the unwind destination is an
2984 // exception handling instruction.
2986 II
.getUnwindDest()->isEHPad(),
2987 "The unwind destination does not have an exception handling instruction!",
2990 visitTerminatorInst(II
);
2993 /// visitBinaryOperator - Check that both arguments to the binary operator are
2994 /// of the same type!
2996 void Verifier::visitBinaryOperator(BinaryOperator
&B
) {
2997 Assert(B
.getOperand(0)->getType() == B
.getOperand(1)->getType(),
2998 "Both operands to a binary operator are not of the same type!", &B
);
3000 switch (B
.getOpcode()) {
3001 // Check that integer arithmetic operators are only used with
3002 // integral operands.
3003 case Instruction::Add
:
3004 case Instruction::Sub
:
3005 case Instruction::Mul
:
3006 case Instruction::SDiv
:
3007 case Instruction::UDiv
:
3008 case Instruction::SRem
:
3009 case Instruction::URem
:
3010 Assert(B
.getType()->isIntOrIntVectorTy(),
3011 "Integer arithmetic operators only work with integral types!", &B
);
3012 Assert(B
.getType() == B
.getOperand(0)->getType(),
3013 "Integer arithmetic operators must have same type "
3014 "for operands and result!",
3017 // Check that floating-point arithmetic operators are only used with
3018 // floating-point operands.
3019 case Instruction::FAdd
:
3020 case Instruction::FSub
:
3021 case Instruction::FMul
:
3022 case Instruction::FDiv
:
3023 case Instruction::FRem
:
3024 Assert(B
.getType()->isFPOrFPVectorTy(),
3025 "Floating-point arithmetic operators only work with "
3026 "floating-point types!",
3028 Assert(B
.getType() == B
.getOperand(0)->getType(),
3029 "Floating-point arithmetic operators must have same type "
3030 "for operands and result!",
3033 // Check that logical operators are only used with integral operands.
3034 case Instruction::And
:
3035 case Instruction::Or
:
3036 case Instruction::Xor
:
3037 Assert(B
.getType()->isIntOrIntVectorTy(),
3038 "Logical operators only work with integral types!", &B
);
3039 Assert(B
.getType() == B
.getOperand(0)->getType(),
3040 "Logical operators must have same type for operands and result!",
3043 case Instruction::Shl
:
3044 case Instruction::LShr
:
3045 case Instruction::AShr
:
3046 Assert(B
.getType()->isIntOrIntVectorTy(),
3047 "Shifts only work with integral types!", &B
);
3048 Assert(B
.getType() == B
.getOperand(0)->getType(),
3049 "Shift return type must be same as operands!", &B
);
3052 llvm_unreachable("Unknown BinaryOperator opcode!");
3055 visitInstruction(B
);
3058 void Verifier::visitICmpInst(ICmpInst
&IC
) {
3059 // Check that the operands are the same type
3060 Type
*Op0Ty
= IC
.getOperand(0)->getType();
3061 Type
*Op1Ty
= IC
.getOperand(1)->getType();
3062 Assert(Op0Ty
== Op1Ty
,
3063 "Both operands to ICmp instruction are not of the same type!", &IC
);
3064 // Check that the operands are the right type
3065 Assert(Op0Ty
->isIntOrIntVectorTy() || Op0Ty
->isPtrOrPtrVectorTy(),
3066 "Invalid operand types for ICmp instruction", &IC
);
3067 // Check that the predicate is valid.
3068 Assert(IC
.isIntPredicate(),
3069 "Invalid predicate in ICmp instruction!", &IC
);
3071 visitInstruction(IC
);
3074 void Verifier::visitFCmpInst(FCmpInst
&FC
) {
3075 // Check that the operands are the same type
3076 Type
*Op0Ty
= FC
.getOperand(0)->getType();
3077 Type
*Op1Ty
= FC
.getOperand(1)->getType();
3078 Assert(Op0Ty
== Op1Ty
,
3079 "Both operands to FCmp instruction are not of the same type!", &FC
);
3080 // Check that the operands are the right type
3081 Assert(Op0Ty
->isFPOrFPVectorTy(),
3082 "Invalid operand types for FCmp instruction", &FC
);
3083 // Check that the predicate is valid.
3084 Assert(FC
.isFPPredicate(),
3085 "Invalid predicate in FCmp instruction!", &FC
);
3087 visitInstruction(FC
);
3090 void Verifier::visitExtractElementInst(ExtractElementInst
&EI
) {
3092 ExtractElementInst::isValidOperands(EI
.getOperand(0), EI
.getOperand(1)),
3093 "Invalid extractelement operands!", &EI
);
3094 visitInstruction(EI
);
3097 void Verifier::visitInsertElementInst(InsertElementInst
&IE
) {
3098 Assert(InsertElementInst::isValidOperands(IE
.getOperand(0), IE
.getOperand(1),
3100 "Invalid insertelement operands!", &IE
);
3101 visitInstruction(IE
);
3104 void Verifier::visitShuffleVectorInst(ShuffleVectorInst
&SV
) {
3105 Assert(ShuffleVectorInst::isValidOperands(SV
.getOperand(0), SV
.getOperand(1),
3107 "Invalid shufflevector operands!", &SV
);
3108 visitInstruction(SV
);
3111 void Verifier::visitGetElementPtrInst(GetElementPtrInst
&GEP
) {
3112 Type
*TargetTy
= GEP
.getPointerOperandType()->getScalarType();
3114 Assert(isa
<PointerType
>(TargetTy
),
3115 "GEP base pointer is not a vector or a vector of pointers", &GEP
);
3116 Assert(GEP
.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP
);
3118 SmallVector
<Value
*, 16> Idxs(GEP
.idx_begin(), GEP
.idx_end());
3120 Idxs
, [](Value
* V
) { return V
->getType()->isIntOrIntVectorTy(); }),
3121 "GEP indexes must be integers", &GEP
);
3123 GetElementPtrInst::getIndexedType(GEP
.getSourceElementType(), Idxs
);
3124 Assert(ElTy
, "Invalid indices for GEP pointer type!", &GEP
);
3126 Assert(GEP
.getType()->isPtrOrPtrVectorTy() &&
3127 GEP
.getResultElementType() == ElTy
,
3128 "GEP is not of right type for indices!", &GEP
, ElTy
);
3130 if (GEP
.getType()->isVectorTy()) {
3131 // Additional checks for vector GEPs.
3132 unsigned GEPWidth
= GEP
.getType()->getVectorNumElements();
3133 if (GEP
.getPointerOperandType()->isVectorTy())
3134 Assert(GEPWidth
== GEP
.getPointerOperandType()->getVectorNumElements(),
3135 "Vector GEP result width doesn't match operand's", &GEP
);
3136 for (Value
*Idx
: Idxs
) {
3137 Type
*IndexTy
= Idx
->getType();
3138 if (IndexTy
->isVectorTy()) {
3139 unsigned IndexWidth
= IndexTy
->getVectorNumElements();
3140 Assert(IndexWidth
== GEPWidth
, "Invalid GEP index vector width", &GEP
);
3142 Assert(IndexTy
->isIntOrIntVectorTy(),
3143 "All GEP indices should be of integer type");
3147 if (auto *PTy
= dyn_cast
<PointerType
>(GEP
.getType())) {
3148 Assert(GEP
.getAddressSpace() == PTy
->getAddressSpace(),
3149 "GEP address space doesn't match type", &GEP
);
3152 visitInstruction(GEP
);
3155 static bool isContiguous(const ConstantRange
&A
, const ConstantRange
&B
) {
3156 return A
.getUpper() == B
.getLower() || A
.getLower() == B
.getUpper();
3159 void Verifier::visitRangeMetadata(Instruction
&I
, MDNode
*Range
, Type
*Ty
) {
3160 assert(Range
&& Range
== I
.getMetadata(LLVMContext::MD_range
) &&
3161 "precondition violation");
3163 unsigned NumOperands
= Range
->getNumOperands();
3164 Assert(NumOperands
% 2 == 0, "Unfinished range!", Range
);
3165 unsigned NumRanges
= NumOperands
/ 2;
3166 Assert(NumRanges
>= 1, "It should have at least one range!", Range
);
3168 ConstantRange
LastRange(1); // Dummy initial value
3169 for (unsigned i
= 0; i
< NumRanges
; ++i
) {
3171 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(2 * i
));
3172 Assert(Low
, "The lower limit must be an integer!", Low
);
3174 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(2 * i
+ 1));
3175 Assert(High
, "The upper limit must be an integer!", High
);
3176 Assert(High
->getType() == Low
->getType() && High
->getType() == Ty
,
3177 "Range types must match instruction type!", &I
);
3179 APInt HighV
= High
->getValue();
3180 APInt LowV
= Low
->getValue();
3181 ConstantRange
CurRange(LowV
, HighV
);
3182 Assert(!CurRange
.isEmptySet() && !CurRange
.isFullSet(),
3183 "Range must not be empty!", Range
);
3185 Assert(CurRange
.intersectWith(LastRange
).isEmptySet(),
3186 "Intervals are overlapping", Range
);
3187 Assert(LowV
.sgt(LastRange
.getLower()), "Intervals are not in order",
3189 Assert(!isContiguous(CurRange
, LastRange
), "Intervals are contiguous",
3192 LastRange
= ConstantRange(LowV
, HighV
);
3194 if (NumRanges
> 2) {
3196 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(0))->getValue();
3198 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(1))->getValue();
3199 ConstantRange
FirstRange(FirstLow
, FirstHigh
);
3200 Assert(FirstRange
.intersectWith(LastRange
).isEmptySet(),
3201 "Intervals are overlapping", Range
);
3202 Assert(!isContiguous(FirstRange
, LastRange
), "Intervals are contiguous",
3207 void Verifier::checkAtomicMemAccessSize(Type
*Ty
, const Instruction
*I
) {
3208 unsigned Size
= DL
.getTypeSizeInBits(Ty
);
3209 Assert(Size
>= 8, "atomic memory access' size must be byte-sized", Ty
, I
);
3210 Assert(!(Size
& (Size
- 1)),
3211 "atomic memory access' operand must have a power-of-two size", Ty
, I
);
3214 void Verifier::visitLoadInst(LoadInst
&LI
) {
3215 PointerType
*PTy
= dyn_cast
<PointerType
>(LI
.getOperand(0)->getType());
3216 Assert(PTy
, "Load operand must be a pointer.", &LI
);
3217 Type
*ElTy
= LI
.getType();
3218 Assert(LI
.getAlignment() <= Value::MaximumAlignment
,
3219 "huge alignment values are unsupported", &LI
);
3220 Assert(ElTy
->isSized(), "loading unsized types is not allowed", &LI
);
3221 if (LI
.isAtomic()) {
3222 Assert(LI
.getOrdering() != AtomicOrdering::Release
&&
3223 LI
.getOrdering() != AtomicOrdering::AcquireRelease
,
3224 "Load cannot have Release ordering", &LI
);
3225 Assert(LI
.getAlignment() != 0,
3226 "Atomic load must specify explicit alignment", &LI
);
3227 Assert(ElTy
->isIntOrPtrTy() || ElTy
->isFloatingPointTy(),
3228 "atomic load operand must have integer, pointer, or floating point "
3231 checkAtomicMemAccessSize(ElTy
, &LI
);
3233 Assert(LI
.getSyncScopeID() == SyncScope::System
,
3234 "Non-atomic load cannot have SynchronizationScope specified", &LI
);
3237 visitInstruction(LI
);
3240 void Verifier::visitStoreInst(StoreInst
&SI
) {
3241 PointerType
*PTy
= dyn_cast
<PointerType
>(SI
.getOperand(1)->getType());
3242 Assert(PTy
, "Store operand must be a pointer.", &SI
);
3243 Type
*ElTy
= PTy
->getElementType();
3244 Assert(ElTy
== SI
.getOperand(0)->getType(),
3245 "Stored value type does not match pointer operand type!", &SI
, ElTy
);
3246 Assert(SI
.getAlignment() <= Value::MaximumAlignment
,
3247 "huge alignment values are unsupported", &SI
);
3248 Assert(ElTy
->isSized(), "storing unsized types is not allowed", &SI
);
3249 if (SI
.isAtomic()) {
3250 Assert(SI
.getOrdering() != AtomicOrdering::Acquire
&&
3251 SI
.getOrdering() != AtomicOrdering::AcquireRelease
,
3252 "Store cannot have Acquire ordering", &SI
);
3253 Assert(SI
.getAlignment() != 0,
3254 "Atomic store must specify explicit alignment", &SI
);
3255 Assert(ElTy
->isIntOrPtrTy() || ElTy
->isFloatingPointTy(),
3256 "atomic store operand must have integer, pointer, or floating point "
3259 checkAtomicMemAccessSize(ElTy
, &SI
);
3261 Assert(SI
.getSyncScopeID() == SyncScope::System
,
3262 "Non-atomic store cannot have SynchronizationScope specified", &SI
);
3264 visitInstruction(SI
);
3267 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3268 void Verifier::verifySwiftErrorCallSite(CallSite CS
,
3269 const Value
*SwiftErrorVal
) {
3271 for (CallSite::arg_iterator I
= CS
.arg_begin(), E
= CS
.arg_end();
3272 I
!= E
; ++I
, ++Idx
) {
3273 if (*I
== SwiftErrorVal
) {
3274 Assert(CS
.paramHasAttr(Idx
, Attribute::SwiftError
),
3275 "swifterror value when used in a callsite should be marked "
3276 "with swifterror attribute",
3282 void Verifier::verifySwiftErrorValue(const Value
*SwiftErrorVal
) {
3283 // Check that swifterror value is only used by loads, stores, or as
3284 // a swifterror argument.
3285 for (const User
*U
: SwiftErrorVal
->users()) {
3286 Assert(isa
<LoadInst
>(U
) || isa
<StoreInst
>(U
) || isa
<CallInst
>(U
) ||
3288 "swifterror value can only be loaded and stored from, or "
3289 "as a swifterror argument!",
3291 // If it is used by a store, check it is the second operand.
3292 if (auto StoreI
= dyn_cast
<StoreInst
>(U
))
3293 Assert(StoreI
->getOperand(1) == SwiftErrorVal
,
3294 "swifterror value should be the second operand when used "
3295 "by stores", SwiftErrorVal
, U
);
3296 if (auto CallI
= dyn_cast
<CallInst
>(U
))
3297 verifySwiftErrorCallSite(const_cast<CallInst
*>(CallI
), SwiftErrorVal
);
3298 if (auto II
= dyn_cast
<InvokeInst
>(U
))
3299 verifySwiftErrorCallSite(const_cast<InvokeInst
*>(II
), SwiftErrorVal
);
3303 void Verifier::visitAllocaInst(AllocaInst
&AI
) {
3304 SmallPtrSet
<Type
*, 4> Visited
;
3305 PointerType
*PTy
= AI
.getType();
3306 // TODO: Relax this restriction?
3307 Assert(PTy
->getAddressSpace() == DL
.getAllocaAddrSpace(),
3308 "Allocation instruction pointer not in the stack address space!",
3310 Assert(AI
.getAllocatedType()->isSized(&Visited
),
3311 "Cannot allocate unsized type", &AI
);
3312 Assert(AI
.getArraySize()->getType()->isIntegerTy(),
3313 "Alloca array size must have integer type", &AI
);
3314 Assert(AI
.getAlignment() <= Value::MaximumAlignment
,
3315 "huge alignment values are unsupported", &AI
);
3317 if (AI
.isSwiftError()) {
3318 verifySwiftErrorValue(&AI
);
3321 visitInstruction(AI
);
3324 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst
&CXI
) {
3326 // FIXME: more conditions???
3327 Assert(CXI
.getSuccessOrdering() != AtomicOrdering::NotAtomic
,
3328 "cmpxchg instructions must be atomic.", &CXI
);
3329 Assert(CXI
.getFailureOrdering() != AtomicOrdering::NotAtomic
,
3330 "cmpxchg instructions must be atomic.", &CXI
);
3331 Assert(CXI
.getSuccessOrdering() != AtomicOrdering::Unordered
,
3332 "cmpxchg instructions cannot be unordered.", &CXI
);
3333 Assert(CXI
.getFailureOrdering() != AtomicOrdering::Unordered
,
3334 "cmpxchg instructions cannot be unordered.", &CXI
);
3335 Assert(!isStrongerThan(CXI
.getFailureOrdering(), CXI
.getSuccessOrdering()),
3336 "cmpxchg instructions failure argument shall be no stronger than the "
3339 Assert(CXI
.getFailureOrdering() != AtomicOrdering::Release
&&
3340 CXI
.getFailureOrdering() != AtomicOrdering::AcquireRelease
,
3341 "cmpxchg failure ordering cannot include release semantics", &CXI
);
3343 PointerType
*PTy
= dyn_cast
<PointerType
>(CXI
.getOperand(0)->getType());
3344 Assert(PTy
, "First cmpxchg operand must be a pointer.", &CXI
);
3345 Type
*ElTy
= PTy
->getElementType();
3346 Assert(ElTy
->isIntOrPtrTy(),
3347 "cmpxchg operand must have integer or pointer type", ElTy
, &CXI
);
3348 checkAtomicMemAccessSize(ElTy
, &CXI
);
3349 Assert(ElTy
== CXI
.getOperand(1)->getType(),
3350 "Expected value type does not match pointer operand type!", &CXI
,
3352 Assert(ElTy
== CXI
.getOperand(2)->getType(),
3353 "Stored value type does not match pointer operand type!", &CXI
, ElTy
);
3354 visitInstruction(CXI
);
3357 void Verifier::visitAtomicRMWInst(AtomicRMWInst
&RMWI
) {
3358 Assert(RMWI
.getOrdering() != AtomicOrdering::NotAtomic
,
3359 "atomicrmw instructions must be atomic.", &RMWI
);
3360 Assert(RMWI
.getOrdering() != AtomicOrdering::Unordered
,
3361 "atomicrmw instructions cannot be unordered.", &RMWI
);
3362 auto Op
= RMWI
.getOperation();
3363 PointerType
*PTy
= dyn_cast
<PointerType
>(RMWI
.getOperand(0)->getType());
3364 Assert(PTy
, "First atomicrmw operand must be a pointer.", &RMWI
);
3365 Type
*ElTy
= PTy
->getElementType();
3366 Assert(ElTy
->isIntegerTy(), "atomicrmw " +
3367 AtomicRMWInst::getOperationName(Op
) +
3368 " operand must have integer type!",
3370 checkAtomicMemAccessSize(ElTy
, &RMWI
);
3371 Assert(ElTy
== RMWI
.getOperand(1)->getType(),
3372 "Argument value type does not match pointer operand type!", &RMWI
,
3374 Assert(AtomicRMWInst::FIRST_BINOP
<= Op
&& Op
<= AtomicRMWInst::LAST_BINOP
,
3375 "Invalid binary operation!", &RMWI
);
3376 visitInstruction(RMWI
);
3379 void Verifier::visitFenceInst(FenceInst
&FI
) {
3380 const AtomicOrdering Ordering
= FI
.getOrdering();
3381 Assert(Ordering
== AtomicOrdering::Acquire
||
3382 Ordering
== AtomicOrdering::Release
||
3383 Ordering
== AtomicOrdering::AcquireRelease
||
3384 Ordering
== AtomicOrdering::SequentiallyConsistent
,
3385 "fence instructions may only have acquire, release, acq_rel, or "
3386 "seq_cst ordering.",
3388 visitInstruction(FI
);
3391 void Verifier::visitExtractValueInst(ExtractValueInst
&EVI
) {
3392 Assert(ExtractValueInst::getIndexedType(EVI
.getAggregateOperand()->getType(),
3393 EVI
.getIndices()) == EVI
.getType(),
3394 "Invalid ExtractValueInst operands!", &EVI
);
3396 visitInstruction(EVI
);
3399 void Verifier::visitInsertValueInst(InsertValueInst
&IVI
) {
3400 Assert(ExtractValueInst::getIndexedType(IVI
.getAggregateOperand()->getType(),
3401 IVI
.getIndices()) ==
3402 IVI
.getOperand(1)->getType(),
3403 "Invalid InsertValueInst operands!", &IVI
);
3405 visitInstruction(IVI
);
3408 static Value
*getParentPad(Value
*EHPad
) {
3409 if (auto *FPI
= dyn_cast
<FuncletPadInst
>(EHPad
))
3410 return FPI
->getParentPad();
3412 return cast
<CatchSwitchInst
>(EHPad
)->getParentPad();
3415 void Verifier::visitEHPadPredecessors(Instruction
&I
) {
3416 assert(I
.isEHPad());
3418 BasicBlock
*BB
= I
.getParent();
3419 Function
*F
= BB
->getParent();
3421 Assert(BB
!= &F
->getEntryBlock(), "EH pad cannot be in entry block.", &I
);
3423 if (auto *LPI
= dyn_cast
<LandingPadInst
>(&I
)) {
3424 // The landingpad instruction defines its parent as a landing pad block. The
3425 // landing pad block may be branched to only by the unwind edge of an
3427 for (BasicBlock
*PredBB
: predecessors(BB
)) {
3428 const auto *II
= dyn_cast
<InvokeInst
>(PredBB
->getTerminator());
3429 Assert(II
&& II
->getUnwindDest() == BB
&& II
->getNormalDest() != BB
,
3430 "Block containing LandingPadInst must be jumped to "
3431 "only by the unwind edge of an invoke.",
3436 if (auto *CPI
= dyn_cast
<CatchPadInst
>(&I
)) {
3437 if (!pred_empty(BB
))
3438 Assert(BB
->getUniquePredecessor() == CPI
->getCatchSwitch()->getParent(),
3439 "Block containg CatchPadInst must be jumped to "
3440 "only by its catchswitch.",
3442 Assert(BB
!= CPI
->getCatchSwitch()->getUnwindDest(),
3443 "Catchswitch cannot unwind to one of its catchpads",
3444 CPI
->getCatchSwitch(), CPI
);
3448 // Verify that each pred has a legal terminator with a legal to/from EH
3449 // pad relationship.
3450 Instruction
*ToPad
= &I
;
3451 Value
*ToPadParent
= getParentPad(ToPad
);
3452 for (BasicBlock
*PredBB
: predecessors(BB
)) {
3453 TerminatorInst
*TI
= PredBB
->getTerminator();
3455 if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
3456 Assert(II
->getUnwindDest() == BB
&& II
->getNormalDest() != BB
,
3457 "EH pad must be jumped to via an unwind edge", ToPad
, II
);
3458 if (auto Bundle
= II
->getOperandBundle(LLVMContext::OB_funclet
))
3459 FromPad
= Bundle
->Inputs
[0];
3461 FromPad
= ConstantTokenNone::get(II
->getContext());
3462 } else if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(TI
)) {
3463 FromPad
= CRI
->getOperand(0);
3464 Assert(FromPad
!= ToPadParent
, "A cleanupret must exit its cleanup", CRI
);
3465 } else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(TI
)) {
3468 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad
, TI
);
3471 // The edge may exit from zero or more nested pads.
3472 SmallSet
<Value
*, 8> Seen
;
3473 for (;; FromPad
= getParentPad(FromPad
)) {
3474 Assert(FromPad
!= ToPad
,
3475 "EH pad cannot handle exceptions raised within it", FromPad
, TI
);
3476 if (FromPad
== ToPadParent
) {
3477 // This is a legal unwind edge.
3480 Assert(!isa
<ConstantTokenNone
>(FromPad
),
3481 "A single unwind edge may only enter one EH pad", TI
);
3482 Assert(Seen
.insert(FromPad
).second
,
3483 "EH pad jumps through a cycle of pads", FromPad
);
3488 void Verifier::visitLandingPadInst(LandingPadInst
&LPI
) {
3489 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3491 Assert(LPI
.getNumClauses() > 0 || LPI
.isCleanup(),
3492 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI
);
3494 visitEHPadPredecessors(LPI
);
3496 if (!LandingPadResultTy
)
3497 LandingPadResultTy
= LPI
.getType();
3499 Assert(LandingPadResultTy
== LPI
.getType(),
3500 "The landingpad instruction should have a consistent result type "
3501 "inside a function.",
3504 Function
*F
= LPI
.getParent()->getParent();
3505 Assert(F
->hasPersonalityFn(),
3506 "LandingPadInst needs to be in a function with a personality.", &LPI
);
3508 // The landingpad instruction must be the first non-PHI instruction in the
3510 Assert(LPI
.getParent()->getLandingPadInst() == &LPI
,
3511 "LandingPadInst not the first non-PHI instruction in the block.",
3514 for (unsigned i
= 0, e
= LPI
.getNumClauses(); i
< e
; ++i
) {
3515 Constant
*Clause
= LPI
.getClause(i
);
3516 if (LPI
.isCatch(i
)) {
3517 Assert(isa
<PointerType
>(Clause
->getType()),
3518 "Catch operand does not have pointer type!", &LPI
);
3520 Assert(LPI
.isFilter(i
), "Clause is neither catch nor filter!", &LPI
);
3521 Assert(isa
<ConstantArray
>(Clause
) || isa
<ConstantAggregateZero
>(Clause
),
3522 "Filter operand is not an array of constants!", &LPI
);
3526 visitInstruction(LPI
);
3529 void Verifier::visitResumeInst(ResumeInst
&RI
) {
3530 Assert(RI
.getFunction()->hasPersonalityFn(),
3531 "ResumeInst needs to be in a function with a personality.", &RI
);
3533 if (!LandingPadResultTy
)
3534 LandingPadResultTy
= RI
.getValue()->getType();
3536 Assert(LandingPadResultTy
== RI
.getValue()->getType(),
3537 "The resume instruction should have a consistent result type "
3538 "inside a function.",
3541 visitTerminatorInst(RI
);
3544 void Verifier::visitCatchPadInst(CatchPadInst
&CPI
) {
3545 BasicBlock
*BB
= CPI
.getParent();
3547 Function
*F
= BB
->getParent();
3548 Assert(F
->hasPersonalityFn(),
3549 "CatchPadInst needs to be in a function with a personality.", &CPI
);
3551 Assert(isa
<CatchSwitchInst
>(CPI
.getParentPad()),
3552 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3553 CPI
.getParentPad());
3555 // The catchpad instruction must be the first non-PHI instruction in the
3557 Assert(BB
->getFirstNonPHI() == &CPI
,
3558 "CatchPadInst not the first non-PHI instruction in the block.", &CPI
);
3560 visitEHPadPredecessors(CPI
);
3561 visitFuncletPadInst(CPI
);
3564 void Verifier::visitCatchReturnInst(CatchReturnInst
&CatchReturn
) {
3565 Assert(isa
<CatchPadInst
>(CatchReturn
.getOperand(0)),
3566 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn
,
3567 CatchReturn
.getOperand(0));
3569 visitTerminatorInst(CatchReturn
);
3572 void Verifier::visitCleanupPadInst(CleanupPadInst
&CPI
) {
3573 BasicBlock
*BB
= CPI
.getParent();
3575 Function
*F
= BB
->getParent();
3576 Assert(F
->hasPersonalityFn(),
3577 "CleanupPadInst needs to be in a function with a personality.", &CPI
);
3579 // The cleanuppad instruction must be the first non-PHI instruction in the
3581 Assert(BB
->getFirstNonPHI() == &CPI
,
3582 "CleanupPadInst not the first non-PHI instruction in the block.",
3585 auto *ParentPad
= CPI
.getParentPad();
3586 Assert(isa
<ConstantTokenNone
>(ParentPad
) || isa
<FuncletPadInst
>(ParentPad
),
3587 "CleanupPadInst has an invalid parent.", &CPI
);
3589 visitEHPadPredecessors(CPI
);
3590 visitFuncletPadInst(CPI
);
3593 void Verifier::visitFuncletPadInst(FuncletPadInst
&FPI
) {
3594 User
*FirstUser
= nullptr;
3595 Value
*FirstUnwindPad
= nullptr;
3596 SmallVector
<FuncletPadInst
*, 8> Worklist({&FPI
});
3597 SmallSet
<FuncletPadInst
*, 8> Seen
;
3599 while (!Worklist
.empty()) {
3600 FuncletPadInst
*CurrentPad
= Worklist
.pop_back_val();
3601 Assert(Seen
.insert(CurrentPad
).second
,
3602 "FuncletPadInst must not be nested within itself", CurrentPad
);
3603 Value
*UnresolvedAncestorPad
= nullptr;
3604 for (User
*U
: CurrentPad
->users()) {
3605 BasicBlock
*UnwindDest
;
3606 if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(U
)) {
3607 UnwindDest
= CRI
->getUnwindDest();
3608 } else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(U
)) {
3609 // We allow catchswitch unwind to caller to nest
3610 // within an outer pad that unwinds somewhere else,
3611 // because catchswitch doesn't have a nounwind variant.
3612 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3613 if (CSI
->unwindsToCaller())
3615 UnwindDest
= CSI
->getUnwindDest();
3616 } else if (auto *II
= dyn_cast
<InvokeInst
>(U
)) {
3617 UnwindDest
= II
->getUnwindDest();
3618 } else if (isa
<CallInst
>(U
)) {
3619 // Calls which don't unwind may be found inside funclet
3620 // pads that unwind somewhere else. We don't *require*
3621 // such calls to be annotated nounwind.
3623 } else if (auto *CPI
= dyn_cast
<CleanupPadInst
>(U
)) {
3624 // The unwind dest for a cleanup can only be found by
3625 // recursive search. Add it to the worklist, and we'll
3626 // search for its first use that determines where it unwinds.
3627 Worklist
.push_back(CPI
);
3630 Assert(isa
<CatchReturnInst
>(U
), "Bogus funclet pad use", U
);
3637 UnwindPad
= UnwindDest
->getFirstNonPHI();
3638 if (!cast
<Instruction
>(UnwindPad
)->isEHPad())
3640 Value
*UnwindParent
= getParentPad(UnwindPad
);
3641 // Ignore unwind edges that don't exit CurrentPad.
3642 if (UnwindParent
== CurrentPad
)
3644 // Determine whether the original funclet pad is exited,
3645 // and if we are scanning nested pads determine how many
3646 // of them are exited so we can stop searching their
3648 Value
*ExitedPad
= CurrentPad
;
3651 if (ExitedPad
== &FPI
) {
3653 // Now we can resolve any ancestors of CurrentPad up to
3654 // FPI, but not including FPI since we need to make sure
3655 // to check all direct users of FPI for consistency.
3656 UnresolvedAncestorPad
= &FPI
;
3659 Value
*ExitedParent
= getParentPad(ExitedPad
);
3660 if (ExitedParent
== UnwindParent
) {
3661 // ExitedPad is the ancestor-most pad which this unwind
3662 // edge exits, so we can resolve up to it, meaning that
3663 // ExitedParent is the first ancestor still unresolved.
3664 UnresolvedAncestorPad
= ExitedParent
;
3667 ExitedPad
= ExitedParent
;
3668 } while (!isa
<ConstantTokenNone
>(ExitedPad
));
3670 // Unwinding to caller exits all pads.
3671 UnwindPad
= ConstantTokenNone::get(FPI
.getContext());
3673 UnresolvedAncestorPad
= &FPI
;
3677 // This unwind edge exits FPI. Make sure it agrees with other
3680 Assert(UnwindPad
== FirstUnwindPad
, "Unwind edges out of a funclet "
3681 "pad must have the same unwind "
3683 &FPI
, U
, FirstUser
);
3686 FirstUnwindPad
= UnwindPad
;
3687 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3688 if (isa
<CleanupPadInst
>(&FPI
) && !isa
<ConstantTokenNone
>(UnwindPad
) &&
3689 getParentPad(UnwindPad
) == getParentPad(&FPI
))
3690 SiblingFuncletInfo
[&FPI
] = cast
<TerminatorInst
>(U
);
3693 // Make sure we visit all uses of FPI, but for nested pads stop as
3694 // soon as we know where they unwind to.
3695 if (CurrentPad
!= &FPI
)
3698 if (UnresolvedAncestorPad
) {
3699 if (CurrentPad
== UnresolvedAncestorPad
) {
3700 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3701 // we've found an unwind edge that exits it, because we need to verify
3702 // all direct uses of FPI.
3703 assert(CurrentPad
== &FPI
);
3706 // Pop off the worklist any nested pads that we've found an unwind
3707 // destination for. The pads on the worklist are the uncles,
3708 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3709 // for all ancestors of CurrentPad up to but not including
3710 // UnresolvedAncestorPad.
3711 Value
*ResolvedPad
= CurrentPad
;
3712 while (!Worklist
.empty()) {
3713 Value
*UnclePad
= Worklist
.back();
3714 Value
*AncestorPad
= getParentPad(UnclePad
);
3715 // Walk ResolvedPad up the ancestor list until we either find the
3716 // uncle's parent or the last resolved ancestor.
3717 while (ResolvedPad
!= AncestorPad
) {
3718 Value
*ResolvedParent
= getParentPad(ResolvedPad
);
3719 if (ResolvedParent
== UnresolvedAncestorPad
) {
3722 ResolvedPad
= ResolvedParent
;
3724 // If the resolved ancestor search didn't find the uncle's parent,
3725 // then the uncle is not yet resolved.
3726 if (ResolvedPad
!= AncestorPad
)
3728 // This uncle is resolved, so pop it from the worklist.
3729 Worklist
.pop_back();
3734 if (FirstUnwindPad
) {
3735 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(FPI
.getParentPad())) {
3736 BasicBlock
*SwitchUnwindDest
= CatchSwitch
->getUnwindDest();
3737 Value
*SwitchUnwindPad
;
3738 if (SwitchUnwindDest
)
3739 SwitchUnwindPad
= SwitchUnwindDest
->getFirstNonPHI();
3741 SwitchUnwindPad
= ConstantTokenNone::get(FPI
.getContext());
3742 Assert(SwitchUnwindPad
== FirstUnwindPad
,
3743 "Unwind edges out of a catch must have the same unwind dest as "
3744 "the parent catchswitch",
3745 &FPI
, FirstUser
, CatchSwitch
);
3749 visitInstruction(FPI
);
3752 void Verifier::visitCatchSwitchInst(CatchSwitchInst
&CatchSwitch
) {
3753 BasicBlock
*BB
= CatchSwitch
.getParent();
3755 Function
*F
= BB
->getParent();
3756 Assert(F
->hasPersonalityFn(),
3757 "CatchSwitchInst needs to be in a function with a personality.",
3760 // The catchswitch instruction must be the first non-PHI instruction in the
3762 Assert(BB
->getFirstNonPHI() == &CatchSwitch
,
3763 "CatchSwitchInst not the first non-PHI instruction in the block.",
3766 auto *ParentPad
= CatchSwitch
.getParentPad();
3767 Assert(isa
<ConstantTokenNone
>(ParentPad
) || isa
<FuncletPadInst
>(ParentPad
),
3768 "CatchSwitchInst has an invalid parent.", ParentPad
);
3770 if (BasicBlock
*UnwindDest
= CatchSwitch
.getUnwindDest()) {
3771 Instruction
*I
= UnwindDest
->getFirstNonPHI();
3772 Assert(I
->isEHPad() && !isa
<LandingPadInst
>(I
),
3773 "CatchSwitchInst must unwind to an EH block which is not a "
3777 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3778 if (getParentPad(I
) == ParentPad
)
3779 SiblingFuncletInfo
[&CatchSwitch
] = &CatchSwitch
;
3782 Assert(CatchSwitch
.getNumHandlers() != 0,
3783 "CatchSwitchInst cannot have empty handler list", &CatchSwitch
);
3785 for (BasicBlock
*Handler
: CatchSwitch
.handlers()) {
3786 Assert(isa
<CatchPadInst
>(Handler
->getFirstNonPHI()),
3787 "CatchSwitchInst handlers must be catchpads", &CatchSwitch
, Handler
);
3790 visitEHPadPredecessors(CatchSwitch
);
3791 visitTerminatorInst(CatchSwitch
);
3794 void Verifier::visitCleanupReturnInst(CleanupReturnInst
&CRI
) {
3795 Assert(isa
<CleanupPadInst
>(CRI
.getOperand(0)),
3796 "CleanupReturnInst needs to be provided a CleanupPad", &CRI
,
3799 if (BasicBlock
*UnwindDest
= CRI
.getUnwindDest()) {
3800 Instruction
*I
= UnwindDest
->getFirstNonPHI();
3801 Assert(I
->isEHPad() && !isa
<LandingPadInst
>(I
),
3802 "CleanupReturnInst must unwind to an EH block which is not a "
3807 visitTerminatorInst(CRI
);
3810 void Verifier::verifyDominatesUse(Instruction
&I
, unsigned i
) {
3811 Instruction
*Op
= cast
<Instruction
>(I
.getOperand(i
));
3812 // If the we have an invalid invoke, don't try to compute the dominance.
3813 // We already reject it in the invoke specific checks and the dominance
3814 // computation doesn't handle multiple edges.
3815 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Op
)) {
3816 if (II
->getNormalDest() == II
->getUnwindDest())
3820 // Quick check whether the def has already been encountered in the same block.
3821 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3822 // uses are defined to happen on the incoming edge, not at the instruction.
3824 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3825 // wrapping an SSA value, assert that we've already encountered it. See
3826 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3827 if (!isa
<PHINode
>(I
) && InstsInThisBlock
.count(Op
))
3830 const Use
&U
= I
.getOperandUse(i
);
3831 Assert(DT
.dominates(Op
, U
),
3832 "Instruction does not dominate all uses!", Op
, &I
);
3835 void Verifier::visitDereferenceableMetadata(Instruction
& I
, MDNode
* MD
) {
3836 Assert(I
.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3837 "apply only to pointer types", &I
);
3838 Assert(isa
<LoadInst
>(I
),
3839 "dereferenceable, dereferenceable_or_null apply only to load"
3840 " instructions, use attributes for calls or invokes", &I
);
3841 Assert(MD
->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3842 "take one operand!", &I
);
3843 ConstantInt
*CI
= mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(0));
3844 Assert(CI
&& CI
->getType()->isIntegerTy(64), "dereferenceable, "
3845 "dereferenceable_or_null metadata value must be an i64!", &I
);
3848 /// verifyInstruction - Verify that an instruction is well formed.
3850 void Verifier::visitInstruction(Instruction
&I
) {
3851 BasicBlock
*BB
= I
.getParent();
3852 Assert(BB
, "Instruction not embedded in basic block!", &I
);
3854 if (!isa
<PHINode
>(I
)) { // Check that non-phi nodes are not self referential
3855 for (User
*U
: I
.users()) {
3856 Assert(U
!= (User
*)&I
|| !DT
.isReachableFromEntry(BB
),
3857 "Only PHI nodes may reference their own value!", &I
);
3861 // Check that void typed values don't have names
3862 Assert(!I
.getType()->isVoidTy() || !I
.hasName(),
3863 "Instruction has a name, but provides a void value!", &I
);
3865 // Check that the return value of the instruction is either void or a legal
3867 Assert(I
.getType()->isVoidTy() || I
.getType()->isFirstClassType(),
3868 "Instruction returns a non-scalar type!", &I
);
3870 // Check that the instruction doesn't produce metadata. Calls are already
3871 // checked against the callee type.
3872 Assert(!I
.getType()->isMetadataTy() || isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
),
3873 "Invalid use of metadata!", &I
);
3875 // Check that all uses of the instruction, if they are instructions
3876 // themselves, actually have parent basic blocks. If the use is not an
3877 // instruction, it is an error!
3878 for (Use
&U
: I
.uses()) {
3879 if (Instruction
*Used
= dyn_cast
<Instruction
>(U
.getUser()))
3880 Assert(Used
->getParent() != nullptr,
3881 "Instruction referencing"
3882 " instruction not embedded in a basic block!",
3885 CheckFailed("Use of instruction is not an instruction!", U
);
3890 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
3891 Assert(I
.getOperand(i
) != nullptr, "Instruction has null operand!", &I
);
3893 // Check to make sure that only first-class-values are operands to
3895 if (!I
.getOperand(i
)->getType()->isFirstClassType()) {
3896 Assert(false, "Instruction operands must be first-class values!", &I
);
3899 if (Function
*F
= dyn_cast
<Function
>(I
.getOperand(i
))) {
3900 // Check to make sure that the "address of" an intrinsic function is never
3903 !F
->isIntrinsic() ||
3904 i
== (isa
<CallInst
>(I
) ? e
- 1 : isa
<InvokeInst
>(I
) ? e
- 3 : 0),
3905 "Cannot take the address of an intrinsic!", &I
);
3907 !F
->isIntrinsic() || isa
<CallInst
>(I
) ||
3908 F
->getIntrinsicID() == Intrinsic::donothing
||
3909 F
->getIntrinsicID() == Intrinsic::coro_resume
||
3910 F
->getIntrinsicID() == Intrinsic::coro_destroy
||
3911 F
->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
||
3912 F
->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
||
3913 F
->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
,
3914 "Cannot invoke an intrinsic other than donothing, patchpoint, "
3915 "statepoint, coro_resume or coro_destroy",
3917 Assert(F
->getParent() == &M
, "Referencing function in another module!",
3918 &I
, &M
, F
, F
->getParent());
3919 } else if (BasicBlock
*OpBB
= dyn_cast
<BasicBlock
>(I
.getOperand(i
))) {
3920 Assert(OpBB
->getParent() == BB
->getParent(),
3921 "Referring to a basic block in another function!", &I
);
3922 } else if (Argument
*OpArg
= dyn_cast
<Argument
>(I
.getOperand(i
))) {
3923 Assert(OpArg
->getParent() == BB
->getParent(),
3924 "Referring to an argument in another function!", &I
);
3925 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(I
.getOperand(i
))) {
3926 Assert(GV
->getParent() == &M
, "Referencing global in another module!", &I
,
3927 &M
, GV
, GV
->getParent());
3928 } else if (isa
<Instruction
>(I
.getOperand(i
))) {
3929 verifyDominatesUse(I
, i
);
3930 } else if (isa
<InlineAsm
>(I
.getOperand(i
))) {
3931 Assert((i
+ 1 == e
&& isa
<CallInst
>(I
)) ||
3932 (i
+ 3 == e
&& isa
<InvokeInst
>(I
)),
3933 "Cannot take the address of an inline asm!", &I
);
3934 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(I
.getOperand(i
))) {
3935 if (CE
->getType()->isPtrOrPtrVectorTy() ||
3936 !DL
.getNonIntegralAddressSpaces().empty()) {
3937 // If we have a ConstantExpr pointer, we need to see if it came from an
3938 // illegal bitcast. If the datalayout string specifies non-integral
3939 // address spaces then we also need to check for illegal ptrtoint and
3940 // inttoptr expressions.
3941 visitConstantExprsRecursively(CE
);
3946 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_fpmath
)) {
3947 Assert(I
.getType()->isFPOrFPVectorTy(),
3948 "fpmath requires a floating point result!", &I
);
3949 Assert(MD
->getNumOperands() == 1, "fpmath takes one operand!", &I
);
3950 if (ConstantFP
*CFP0
=
3951 mdconst::dyn_extract_or_null
<ConstantFP
>(MD
->getOperand(0))) {
3952 const APFloat
&Accuracy
= CFP0
->getValueAPF();
3953 Assert(&Accuracy
.getSemantics() == &APFloat::IEEEsingle(),
3954 "fpmath accuracy must have float type", &I
);
3955 Assert(Accuracy
.isFiniteNonZero() && !Accuracy
.isNegative(),
3956 "fpmath accuracy not a positive number!", &I
);
3958 Assert(false, "invalid fpmath accuracy!", &I
);
3962 if (MDNode
*Range
= I
.getMetadata(LLVMContext::MD_range
)) {
3963 Assert(isa
<LoadInst
>(I
) || isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
),
3964 "Ranges are only for loads, calls and invokes!", &I
);
3965 visitRangeMetadata(I
, Range
, I
.getType());
3968 if (I
.getMetadata(LLVMContext::MD_nonnull
)) {
3969 Assert(I
.getType()->isPointerTy(), "nonnull applies only to pointer types",
3971 Assert(isa
<LoadInst
>(I
),
3972 "nonnull applies only to load instructions, use attributes"
3973 " for calls or invokes",
3977 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_dereferenceable
))
3978 visitDereferenceableMetadata(I
, MD
);
3980 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_dereferenceable_or_null
))
3981 visitDereferenceableMetadata(I
, MD
);
3983 if (MDNode
*TBAA
= I
.getMetadata(LLVMContext::MD_tbaa
))
3984 TBAAVerifyHelper
.visitTBAAMetadata(I
, TBAA
);
3986 if (MDNode
*AlignMD
= I
.getMetadata(LLVMContext::MD_align
)) {
3987 Assert(I
.getType()->isPointerTy(), "align applies only to pointer types",
3989 Assert(isa
<LoadInst
>(I
), "align applies only to load instructions, "
3990 "use attributes for calls or invokes", &I
);
3991 Assert(AlignMD
->getNumOperands() == 1, "align takes one operand!", &I
);
3992 ConstantInt
*CI
= mdconst::dyn_extract
<ConstantInt
>(AlignMD
->getOperand(0));
3993 Assert(CI
&& CI
->getType()->isIntegerTy(64),
3994 "align metadata value must be an i64!", &I
);
3995 uint64_t Align
= CI
->getZExtValue();
3996 Assert(isPowerOf2_64(Align
),
3997 "align metadata value must be a power of 2!", &I
);
3998 Assert(Align
<= Value::MaximumAlignment
,
3999 "alignment is larger that implementation defined limit", &I
);
4002 if (MDNode
*N
= I
.getDebugLoc().getAsMDNode()) {
4003 AssertDI(isa
<DILocation
>(N
), "invalid !dbg metadata attachment", &I
, N
);
4007 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(&I
))
4008 verifyFragmentExpression(*DII
);
4010 InstsInThisBlock
.insert(&I
);
4013 /// Allow intrinsics to be verified in different ways.
4014 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID
, CallSite CS
) {
4015 Function
*IF
= CS
.getCalledFunction();
4016 Assert(IF
->isDeclaration(), "Intrinsic functions should never be defined!",
4019 // Verify that the intrinsic prototype lines up with what the .td files
4021 FunctionType
*IFTy
= IF
->getFunctionType();
4022 bool IsVarArg
= IFTy
->isVarArg();
4024 SmallVector
<Intrinsic::IITDescriptor
, 8> Table
;
4025 getIntrinsicInfoTableEntries(ID
, Table
);
4026 ArrayRef
<Intrinsic::IITDescriptor
> TableRef
= Table
;
4028 SmallVector
<Type
*, 4> ArgTys
;
4029 Assert(!Intrinsic::matchIntrinsicType(IFTy
->getReturnType(),
4031 "Intrinsic has incorrect return type!", IF
);
4032 for (unsigned i
= 0, e
= IFTy
->getNumParams(); i
!= e
; ++i
)
4033 Assert(!Intrinsic::matchIntrinsicType(IFTy
->getParamType(i
),
4035 "Intrinsic has incorrect argument type!", IF
);
4037 // Verify if the intrinsic call matches the vararg property.
4039 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg
, TableRef
),
4040 "Intrinsic was not defined with variable arguments!", IF
);
4042 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg
, TableRef
),
4043 "Callsite was not defined with variable arguments!", IF
);
4045 // All descriptors should be absorbed by now.
4046 Assert(TableRef
.empty(), "Intrinsic has too few arguments!", IF
);
4048 // Now that we have the intrinsic ID and the actual argument types (and we
4049 // know they are legal for the intrinsic!) get the intrinsic name through the
4050 // usual means. This allows us to verify the mangling of argument types into
4052 const std::string ExpectedName
= Intrinsic::getName(ID
, ArgTys
);
4053 Assert(ExpectedName
== IF
->getName(),
4054 "Intrinsic name not mangled correctly for type arguments! "
4059 // If the intrinsic takes MDNode arguments, verify that they are either global
4060 // or are local to *this* function.
4061 for (Value
*V
: CS
.args())
4062 if (auto *MD
= dyn_cast
<MetadataAsValue
>(V
))
4063 visitMetadataAsValue(*MD
, CS
.getCaller());
4068 case Intrinsic::coro_id
: {
4069 auto *InfoArg
= CS
.getArgOperand(3)->stripPointerCasts();
4070 if (isa
<ConstantPointerNull
>(InfoArg
))
4072 auto *GV
= dyn_cast
<GlobalVariable
>(InfoArg
);
4073 Assert(GV
&& GV
->isConstant() && GV
->hasDefinitiveInitializer(),
4074 "info argument of llvm.coro.begin must refer to an initialized "
4076 Constant
*Init
= GV
->getInitializer();
4077 Assert(isa
<ConstantStruct
>(Init
) || isa
<ConstantArray
>(Init
),
4078 "info argument of llvm.coro.begin must refer to either a struct or "
4082 case Intrinsic::ctlz
: // llvm.ctlz
4083 case Intrinsic::cttz
: // llvm.cttz
4084 Assert(isa
<ConstantInt
>(CS
.getArgOperand(1)),
4085 "is_zero_undef argument of bit counting intrinsics must be a "
4089 case Intrinsic::experimental_constrained_fadd
:
4090 case Intrinsic::experimental_constrained_fsub
:
4091 case Intrinsic::experimental_constrained_fmul
:
4092 case Intrinsic::experimental_constrained_fdiv
:
4093 case Intrinsic::experimental_constrained_frem
:
4094 case Intrinsic::experimental_constrained_fma
:
4095 case Intrinsic::experimental_constrained_sqrt
:
4096 case Intrinsic::experimental_constrained_pow
:
4097 case Intrinsic::experimental_constrained_powi
:
4098 case Intrinsic::experimental_constrained_sin
:
4099 case Intrinsic::experimental_constrained_cos
:
4100 case Intrinsic::experimental_constrained_exp
:
4101 case Intrinsic::experimental_constrained_exp2
:
4102 case Intrinsic::experimental_constrained_log
:
4103 case Intrinsic::experimental_constrained_log10
:
4104 case Intrinsic::experimental_constrained_log2
:
4105 case Intrinsic::experimental_constrained_rint
:
4106 case Intrinsic::experimental_constrained_nearbyint
:
4107 visitConstrainedFPIntrinsic(
4108 cast
<ConstrainedFPIntrinsic
>(*CS
.getInstruction()));
4110 case Intrinsic::dbg_declare
: // llvm.dbg.declare
4111 Assert(isa
<MetadataAsValue
>(CS
.getArgOperand(0)),
4112 "invalid llvm.dbg.declare intrinsic call 1", CS
);
4113 visitDbgIntrinsic("declare", cast
<DbgVariableIntrinsic
>(*CS
.getInstruction()));
4115 case Intrinsic::dbg_addr
: // llvm.dbg.addr
4116 visitDbgIntrinsic("addr", cast
<DbgVariableIntrinsic
>(*CS
.getInstruction()));
4118 case Intrinsic::dbg_value
: // llvm.dbg.value
4119 visitDbgIntrinsic("value", cast
<DbgVariableIntrinsic
>(*CS
.getInstruction()));
4121 case Intrinsic::dbg_label
: // llvm.dbg.label
4122 visitDbgLabelIntrinsic("label", cast
<DbgLabelInst
>(*CS
.getInstruction()));
4124 case Intrinsic::memcpy
:
4125 case Intrinsic::memmove
:
4126 case Intrinsic::memset
: {
4127 const auto *MI
= cast
<MemIntrinsic
>(CS
.getInstruction());
4128 auto IsValidAlignment
= [&](unsigned Alignment
) -> bool {
4129 return Alignment
== 0 || isPowerOf2_32(Alignment
);
4131 Assert(IsValidAlignment(MI
->getDestAlignment()),
4132 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4134 if (const auto *MTI
= dyn_cast
<MemTransferInst
>(MI
)) {
4135 Assert(IsValidAlignment(MTI
->getSourceAlignment()),
4136 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4139 Assert(isa
<ConstantInt
>(CS
.getArgOperand(3)),
4140 "isvolatile argument of memory intrinsics must be a constant int",
4144 case Intrinsic::memcpy_element_unordered_atomic
:
4145 case Intrinsic::memmove_element_unordered_atomic
:
4146 case Intrinsic::memset_element_unordered_atomic
: {
4147 const auto *AMI
= cast
<AtomicMemIntrinsic
>(CS
.getInstruction());
4149 ConstantInt
*ElementSizeCI
=
4150 dyn_cast
<ConstantInt
>(AMI
->getRawElementSizeInBytes());
4151 Assert(ElementSizeCI
,
4152 "element size of the element-wise unordered atomic memory "
4153 "intrinsic must be a constant int",
4155 const APInt
&ElementSizeVal
= ElementSizeCI
->getValue();
4156 Assert(ElementSizeVal
.isPowerOf2(),
4157 "element size of the element-wise atomic memory intrinsic "
4158 "must be a power of 2",
4161 if (auto *LengthCI
= dyn_cast
<ConstantInt
>(AMI
->getLength())) {
4162 uint64_t Length
= LengthCI
->getZExtValue();
4163 uint64_t ElementSize
= AMI
->getElementSizeInBytes();
4164 Assert((Length
% ElementSize
) == 0,
4165 "constant length must be a multiple of the element size in the "
4166 "element-wise atomic memory intrinsic",
4170 auto IsValidAlignment
= [&](uint64_t Alignment
) {
4171 return isPowerOf2_64(Alignment
) && ElementSizeVal
.ule(Alignment
);
4173 uint64_t DstAlignment
= AMI
->getDestAlignment();
4174 Assert(IsValidAlignment(DstAlignment
),
4175 "incorrect alignment of the destination argument", CS
);
4176 if (const auto *AMT
= dyn_cast
<AtomicMemTransferInst
>(AMI
)) {
4177 uint64_t SrcAlignment
= AMT
->getSourceAlignment();
4178 Assert(IsValidAlignment(SrcAlignment
),
4179 "incorrect alignment of the source argument", CS
);
4183 case Intrinsic::gcroot
:
4184 case Intrinsic::gcwrite
:
4185 case Intrinsic::gcread
:
4186 if (ID
== Intrinsic::gcroot
) {
4188 dyn_cast
<AllocaInst
>(CS
.getArgOperand(0)->stripPointerCasts());
4189 Assert(AI
, "llvm.gcroot parameter #1 must be an alloca.", CS
);
4190 Assert(isa
<Constant
>(CS
.getArgOperand(1)),
4191 "llvm.gcroot parameter #2 must be a constant.", CS
);
4192 if (!AI
->getAllocatedType()->isPointerTy()) {
4193 Assert(!isa
<ConstantPointerNull
>(CS
.getArgOperand(1)),
4194 "llvm.gcroot parameter #1 must either be a pointer alloca, "
4195 "or argument #2 must be a non-null constant.",
4200 Assert(CS
.getParent()->getParent()->hasGC(),
4201 "Enclosing function does not use GC.", CS
);
4203 case Intrinsic::init_trampoline
:
4204 Assert(isa
<Function
>(CS
.getArgOperand(1)->stripPointerCasts()),
4205 "llvm.init_trampoline parameter #2 must resolve to a function.",
4208 case Intrinsic::prefetch
:
4209 Assert(isa
<ConstantInt
>(CS
.getArgOperand(1)) &&
4210 isa
<ConstantInt
>(CS
.getArgOperand(2)) &&
4211 cast
<ConstantInt
>(CS
.getArgOperand(1))->getZExtValue() < 2 &&
4212 cast
<ConstantInt
>(CS
.getArgOperand(2))->getZExtValue() < 4,
4213 "invalid arguments to llvm.prefetch", CS
);
4215 case Intrinsic::stackprotector
:
4216 Assert(isa
<AllocaInst
>(CS
.getArgOperand(1)->stripPointerCasts()),
4217 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS
);
4219 case Intrinsic::lifetime_start
:
4220 case Intrinsic::lifetime_end
:
4221 case Intrinsic::invariant_start
:
4222 Assert(isa
<ConstantInt
>(CS
.getArgOperand(0)),
4223 "size argument of memory use markers must be a constant integer",
4226 case Intrinsic::invariant_end
:
4227 Assert(isa
<ConstantInt
>(CS
.getArgOperand(1)),
4228 "llvm.invariant.end parameter #2 must be a constant integer", CS
);
4231 case Intrinsic::localescape
: {
4232 BasicBlock
*BB
= CS
.getParent();
4233 Assert(BB
== &BB
->getParent()->front(),
4234 "llvm.localescape used outside of entry block", CS
);
4235 Assert(!SawFrameEscape
,
4236 "multiple calls to llvm.localescape in one function", CS
);
4237 for (Value
*Arg
: CS
.args()) {
4238 if (isa
<ConstantPointerNull
>(Arg
))
4239 continue; // Null values are allowed as placeholders.
4240 auto *AI
= dyn_cast
<AllocaInst
>(Arg
->stripPointerCasts());
4241 Assert(AI
&& AI
->isStaticAlloca(),
4242 "llvm.localescape only accepts static allocas", CS
);
4244 FrameEscapeInfo
[BB
->getParent()].first
= CS
.getNumArgOperands();
4245 SawFrameEscape
= true;
4248 case Intrinsic::localrecover
: {
4249 Value
*FnArg
= CS
.getArgOperand(0)->stripPointerCasts();
4250 Function
*Fn
= dyn_cast
<Function
>(FnArg
);
4251 Assert(Fn
&& !Fn
->isDeclaration(),
4252 "llvm.localrecover first "
4253 "argument must be function defined in this module",
4255 auto *IdxArg
= dyn_cast
<ConstantInt
>(CS
.getArgOperand(2));
4256 Assert(IdxArg
, "idx argument of llvm.localrecover must be a constant int",
4258 auto &Entry
= FrameEscapeInfo
[Fn
];
4259 Entry
.second
= unsigned(
4260 std::max(uint64_t(Entry
.second
), IdxArg
->getLimitedValue(~0U) + 1));
4264 case Intrinsic::experimental_gc_statepoint
:
4265 Assert(!CS
.isInlineAsm(),
4266 "gc.statepoint support for inline assembly unimplemented", CS
);
4267 Assert(CS
.getParent()->getParent()->hasGC(),
4268 "Enclosing function does not use GC.", CS
);
4270 verifyStatepoint(CS
);
4272 case Intrinsic::experimental_gc_result
: {
4273 Assert(CS
.getParent()->getParent()->hasGC(),
4274 "Enclosing function does not use GC.", CS
);
4275 // Are we tied to a statepoint properly?
4276 CallSite
StatepointCS(CS
.getArgOperand(0));
4277 const Function
*StatepointFn
=
4278 StatepointCS
.getInstruction() ? StatepointCS
.getCalledFunction() : nullptr;
4279 Assert(StatepointFn
&& StatepointFn
->isDeclaration() &&
4280 StatepointFn
->getIntrinsicID() ==
4281 Intrinsic::experimental_gc_statepoint
,
4282 "gc.result operand #1 must be from a statepoint", CS
,
4283 CS
.getArgOperand(0));
4285 // Assert that result type matches wrapped callee.
4286 const Value
*Target
= StatepointCS
.getArgument(2);
4287 auto *PT
= cast
<PointerType
>(Target
->getType());
4288 auto *TargetFuncType
= cast
<FunctionType
>(PT
->getElementType());
4289 Assert(CS
.getType() == TargetFuncType
->getReturnType(),
4290 "gc.result result type does not match wrapped callee", CS
);
4293 case Intrinsic::experimental_gc_relocate
: {
4294 Assert(CS
.getNumArgOperands() == 3, "wrong number of arguments", CS
);
4296 Assert(isa
<PointerType
>(CS
.getType()->getScalarType()),
4297 "gc.relocate must return a pointer or a vector of pointers", CS
);
4299 // Check that this relocate is correctly tied to the statepoint
4301 // This is case for relocate on the unwinding path of an invoke statepoint
4302 if (LandingPadInst
*LandingPad
=
4303 dyn_cast
<LandingPadInst
>(CS
.getArgOperand(0))) {
4305 const BasicBlock
*InvokeBB
=
4306 LandingPad
->getParent()->getUniquePredecessor();
4308 // Landingpad relocates should have only one predecessor with invoke
4309 // statepoint terminator
4310 Assert(InvokeBB
, "safepoints should have unique landingpads",
4311 LandingPad
->getParent());
4312 Assert(InvokeBB
->getTerminator(), "safepoint block should be well formed",
4314 Assert(isStatepoint(InvokeBB
->getTerminator()),
4315 "gc relocate should be linked to a statepoint", InvokeBB
);
4318 // In all other cases relocate should be tied to the statepoint directly.
4319 // This covers relocates on a normal return path of invoke statepoint and
4320 // relocates of a call statepoint.
4321 auto Token
= CS
.getArgOperand(0);
4322 Assert(isa
<Instruction
>(Token
) && isStatepoint(cast
<Instruction
>(Token
)),
4323 "gc relocate is incorrectly tied to the statepoint", CS
, Token
);
4326 // Verify rest of the relocate arguments.
4328 ImmutableCallSite
StatepointCS(
4329 cast
<GCRelocateInst
>(*CS
.getInstruction()).getStatepoint());
4331 // Both the base and derived must be piped through the safepoint.
4332 Value
* Base
= CS
.getArgOperand(1);
4333 Assert(isa
<ConstantInt
>(Base
),
4334 "gc.relocate operand #2 must be integer offset", CS
);
4336 Value
* Derived
= CS
.getArgOperand(2);
4337 Assert(isa
<ConstantInt
>(Derived
),
4338 "gc.relocate operand #3 must be integer offset", CS
);
4340 const int BaseIndex
= cast
<ConstantInt
>(Base
)->getZExtValue();
4341 const int DerivedIndex
= cast
<ConstantInt
>(Derived
)->getZExtValue();
4343 Assert(0 <= BaseIndex
&& BaseIndex
< (int)StatepointCS
.arg_size(),
4344 "gc.relocate: statepoint base index out of bounds", CS
);
4345 Assert(0 <= DerivedIndex
&& DerivedIndex
< (int)StatepointCS
.arg_size(),
4346 "gc.relocate: statepoint derived index out of bounds", CS
);
4348 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4349 // section of the statepoint's argument.
4350 Assert(StatepointCS
.arg_size() > 0,
4351 "gc.statepoint: insufficient arguments");
4352 Assert(isa
<ConstantInt
>(StatepointCS
.getArgument(3)),
4353 "gc.statement: number of call arguments must be constant integer");
4354 const unsigned NumCallArgs
=
4355 cast
<ConstantInt
>(StatepointCS
.getArgument(3))->getZExtValue();
4356 Assert(StatepointCS
.arg_size() > NumCallArgs
+ 5,
4357 "gc.statepoint: mismatch in number of call arguments");
4358 Assert(isa
<ConstantInt
>(StatepointCS
.getArgument(NumCallArgs
+ 5)),
4359 "gc.statepoint: number of transition arguments must be "
4360 "a constant integer");
4361 const int NumTransitionArgs
=
4362 cast
<ConstantInt
>(StatepointCS
.getArgument(NumCallArgs
+ 5))
4364 const int DeoptArgsStart
= 4 + NumCallArgs
+ 1 + NumTransitionArgs
+ 1;
4365 Assert(isa
<ConstantInt
>(StatepointCS
.getArgument(DeoptArgsStart
)),
4366 "gc.statepoint: number of deoptimization arguments must be "
4367 "a constant integer");
4368 const int NumDeoptArgs
=
4369 cast
<ConstantInt
>(StatepointCS
.getArgument(DeoptArgsStart
))
4371 const int GCParamArgsStart
= DeoptArgsStart
+ 1 + NumDeoptArgs
;
4372 const int GCParamArgsEnd
= StatepointCS
.arg_size();
4373 Assert(GCParamArgsStart
<= BaseIndex
&& BaseIndex
< GCParamArgsEnd
,
4374 "gc.relocate: statepoint base index doesn't fall within the "
4375 "'gc parameters' section of the statepoint call",
4377 Assert(GCParamArgsStart
<= DerivedIndex
&& DerivedIndex
< GCParamArgsEnd
,
4378 "gc.relocate: statepoint derived index doesn't fall within the "
4379 "'gc parameters' section of the statepoint call",
4382 // Relocated value must be either a pointer type or vector-of-pointer type,
4383 // but gc_relocate does not need to return the same pointer type as the
4384 // relocated pointer. It can be casted to the correct type later if it's
4385 // desired. However, they must have the same address space and 'vectorness'
4386 GCRelocateInst
&Relocate
= cast
<GCRelocateInst
>(*CS
.getInstruction());
4387 Assert(Relocate
.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4388 "gc.relocate: relocated value must be a gc pointer", CS
);
4390 auto ResultType
= CS
.getType();
4391 auto DerivedType
= Relocate
.getDerivedPtr()->getType();
4392 Assert(ResultType
->isVectorTy() == DerivedType
->isVectorTy(),
4393 "gc.relocate: vector relocates to vector and pointer to pointer",
4396 ResultType
->getPointerAddressSpace() ==
4397 DerivedType
->getPointerAddressSpace(),
4398 "gc.relocate: relocating a pointer shouldn't change its address space",
4402 case Intrinsic::eh_exceptioncode
:
4403 case Intrinsic::eh_exceptionpointer
: {
4404 Assert(isa
<CatchPadInst
>(CS
.getArgOperand(0)),
4405 "eh.exceptionpointer argument must be a catchpad", CS
);
4408 case Intrinsic::masked_load
: {
4409 Assert(CS
.getType()->isVectorTy(), "masked_load: must return a vector", CS
);
4411 Value
*Ptr
= CS
.getArgOperand(0);
4412 //Value *Alignment = CS.getArgOperand(1);
4413 Value
*Mask
= CS
.getArgOperand(2);
4414 Value
*PassThru
= CS
.getArgOperand(3);
4415 Assert(Mask
->getType()->isVectorTy(),
4416 "masked_load: mask must be vector", CS
);
4418 // DataTy is the overloaded type
4419 Type
*DataTy
= cast
<PointerType
>(Ptr
->getType())->getElementType();
4420 Assert(DataTy
== CS
.getType(),
4421 "masked_load: return must match pointer type", CS
);
4422 Assert(PassThru
->getType() == DataTy
,
4423 "masked_load: pass through and data type must match", CS
);
4424 Assert(Mask
->getType()->getVectorNumElements() ==
4425 DataTy
->getVectorNumElements(),
4426 "masked_load: vector mask must be same length as data", CS
);
4429 case Intrinsic::masked_store
: {
4430 Value
*Val
= CS
.getArgOperand(0);
4431 Value
*Ptr
= CS
.getArgOperand(1);
4432 //Value *Alignment = CS.getArgOperand(2);
4433 Value
*Mask
= CS
.getArgOperand(3);
4434 Assert(Mask
->getType()->isVectorTy(),
4435 "masked_store: mask must be vector", CS
);
4437 // DataTy is the overloaded type
4438 Type
*DataTy
= cast
<PointerType
>(Ptr
->getType())->getElementType();
4439 Assert(DataTy
== Val
->getType(),
4440 "masked_store: storee must match pointer type", CS
);
4441 Assert(Mask
->getType()->getVectorNumElements() ==
4442 DataTy
->getVectorNumElements(),
4443 "masked_store: vector mask must be same length as data", CS
);
4447 case Intrinsic::experimental_guard
: {
4448 Assert(CS
.isCall(), "experimental_guard cannot be invoked", CS
);
4449 Assert(CS
.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1,
4450 "experimental_guard must have exactly one "
4451 "\"deopt\" operand bundle");
4455 case Intrinsic::experimental_deoptimize
: {
4456 Assert(CS
.isCall(), "experimental_deoptimize cannot be invoked", CS
);
4457 Assert(CS
.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1,
4458 "experimental_deoptimize must have exactly one "
4459 "\"deopt\" operand bundle");
4460 Assert(CS
.getType() == CS
.getInstruction()->getFunction()->getReturnType(),
4461 "experimental_deoptimize return type must match caller return type");
4464 auto *DeoptCI
= CS
.getInstruction();
4465 auto *RI
= dyn_cast
<ReturnInst
>(DeoptCI
->getNextNode());
4467 "calls to experimental_deoptimize must be followed by a return");
4469 if (!CS
.getType()->isVoidTy() && RI
)
4470 Assert(RI
->getReturnValue() == DeoptCI
,
4471 "calls to experimental_deoptimize must be followed by a return "
4472 "of the value computed by experimental_deoptimize");
4480 /// Carefully grab the subprogram from a local scope.
4482 /// This carefully grabs the subprogram from a local scope, avoiding the
4483 /// built-in assertions that would typically fire.
4484 static DISubprogram
*getSubprogram(Metadata
*LocalScope
) {
4488 if (auto *SP
= dyn_cast
<DISubprogram
>(LocalScope
))
4491 if (auto *LB
= dyn_cast
<DILexicalBlockBase
>(LocalScope
))
4492 return getSubprogram(LB
->getRawScope());
4494 // Just return null; broken scope chains are checked elsewhere.
4495 assert(!isa
<DILocalScope
>(LocalScope
) && "Unknown type of local scope");
4499 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic
&FPI
) {
4500 unsigned NumOperands
= FPI
.getNumArgOperands();
4501 Assert(((NumOperands
== 5 && FPI
.isTernaryOp()) ||
4502 (NumOperands
== 3 && FPI
.isUnaryOp()) || (NumOperands
== 4)),
4503 "invalid arguments for constrained FP intrinsic", &FPI
);
4504 Assert(isa
<MetadataAsValue
>(FPI
.getArgOperand(NumOperands
-1)),
4505 "invalid exception behavior argument", &FPI
);
4506 Assert(isa
<MetadataAsValue
>(FPI
.getArgOperand(NumOperands
-2)),
4507 "invalid rounding mode argument", &FPI
);
4508 Assert(FPI
.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
,
4509 "invalid rounding mode argument", &FPI
);
4510 Assert(FPI
.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid
,
4511 "invalid exception behavior argument", &FPI
);
4514 void Verifier::visitDbgIntrinsic(StringRef Kind
, DbgVariableIntrinsic
&DII
) {
4515 auto *MD
= cast
<MetadataAsValue
>(DII
.getArgOperand(0))->getMetadata();
4516 AssertDI(isa
<ValueAsMetadata
>(MD
) ||
4517 (isa
<MDNode
>(MD
) && !cast
<MDNode
>(MD
)->getNumOperands()),
4518 "invalid llvm.dbg." + Kind
+ " intrinsic address/value", &DII
, MD
);
4519 AssertDI(isa
<DILocalVariable
>(DII
.getRawVariable()),
4520 "invalid llvm.dbg." + Kind
+ " intrinsic variable", &DII
,
4521 DII
.getRawVariable());
4522 AssertDI(isa
<DIExpression
>(DII
.getRawExpression()),
4523 "invalid llvm.dbg." + Kind
+ " intrinsic expression", &DII
,
4524 DII
.getRawExpression());
4526 // Ignore broken !dbg attachments; they're checked elsewhere.
4527 if (MDNode
*N
= DII
.getDebugLoc().getAsMDNode())
4528 if (!isa
<DILocation
>(N
))
4531 BasicBlock
*BB
= DII
.getParent();
4532 Function
*F
= BB
? BB
->getParent() : nullptr;
4534 // The scopes for variables and !dbg attachments must agree.
4535 DILocalVariable
*Var
= DII
.getVariable();
4536 DILocation
*Loc
= DII
.getDebugLoc();
4537 AssertDI(Loc
, "llvm.dbg." + Kind
+ " intrinsic requires a !dbg attachment",
4540 DISubprogram
*VarSP
= getSubprogram(Var
->getRawScope());
4541 DISubprogram
*LocSP
= getSubprogram(Loc
->getRawScope());
4542 if (!VarSP
|| !LocSP
)
4543 return; // Broken scope chains are checked elsewhere.
4545 AssertDI(VarSP
== LocSP
, "mismatched subprogram between llvm.dbg." + Kind
+
4546 " variable and !dbg attachment",
4547 &DII
, BB
, F
, Var
, Var
->getScope()->getSubprogram(), Loc
,
4548 Loc
->getScope()->getSubprogram());
4550 // This check is redundant with one in visitLocalVariable().
4551 AssertDI(isType(Var
->getRawType()), "invalid type ref", Var
,
4553 if (auto *Type
= dyn_cast_or_null
<DIType
>(Var
->getRawType()))
4554 if (Type
->isBlockByrefStruct())
4555 AssertDI(DII
.getExpression() && DII
.getExpression()->getNumElements(),
4556 "BlockByRef variable without complex expression", Var
, &DII
);
4561 void Verifier::visitDbgLabelIntrinsic(StringRef Kind
, DbgLabelInst
&DLI
) {
4562 AssertDI(isa
<DILabel
>(DLI
.getRawLabel()),
4563 "invalid llvm.dbg." + Kind
+ " intrinsic variable", &DLI
,
4566 // Ignore broken !dbg attachments; they're checked elsewhere.
4567 if (MDNode
*N
= DLI
.getDebugLoc().getAsMDNode())
4568 if (!isa
<DILocation
>(N
))
4571 BasicBlock
*BB
= DLI
.getParent();
4572 Function
*F
= BB
? BB
->getParent() : nullptr;
4574 // The scopes for variables and !dbg attachments must agree.
4575 DILabel
*Label
= DLI
.getLabel();
4576 DILocation
*Loc
= DLI
.getDebugLoc();
4577 Assert(Loc
, "llvm.dbg." + Kind
+ " intrinsic requires a !dbg attachment",
4580 DISubprogram
*LabelSP
= getSubprogram(Label
->getRawScope());
4581 DISubprogram
*LocSP
= getSubprogram(Loc
->getRawScope());
4582 if (!LabelSP
|| !LocSP
)
4585 AssertDI(LabelSP
== LocSP
, "mismatched subprogram between llvm.dbg." + Kind
+
4586 " label and !dbg attachment",
4587 &DLI
, BB
, F
, Label
, Label
->getScope()->getSubprogram(), Loc
,
4588 Loc
->getScope()->getSubprogram());
4591 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic
&I
) {
4592 DILocalVariable
*V
= dyn_cast_or_null
<DILocalVariable
>(I
.getRawVariable());
4593 DIExpression
*E
= dyn_cast_or_null
<DIExpression
>(I
.getRawExpression());
4595 // We don't know whether this intrinsic verified correctly.
4596 if (!V
|| !E
|| !E
->isValid())
4599 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4600 auto Fragment
= E
->getFragmentInfo();
4604 // The frontend helps out GDB by emitting the members of local anonymous
4605 // unions as artificial local variables with shared storage. When SROA splits
4606 // the storage for artificial local variables that are smaller than the entire
4607 // union, the overhang piece will be outside of the allotted space for the
4608 // variable and this check fails.
4609 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4610 if (V
->isArtificial())
4613 verifyFragmentExpression(*V
, *Fragment
, &I
);
4616 template <typename ValueOrMetadata
>
4617 void Verifier::verifyFragmentExpression(const DIVariable
&V
,
4618 DIExpression::FragmentInfo Fragment
,
4619 ValueOrMetadata
*Desc
) {
4620 // If there's no size, the type is broken, but that should be checked
4622 auto VarSize
= V
.getSizeInBits();
4626 unsigned FragSize
= Fragment
.SizeInBits
;
4627 unsigned FragOffset
= Fragment
.OffsetInBits
;
4628 AssertDI(FragSize
+ FragOffset
<= *VarSize
,
4629 "fragment is larger than or outside of variable", Desc
, &V
);
4630 AssertDI(FragSize
!= *VarSize
, "fragment covers entire variable", Desc
, &V
);
4633 void Verifier::verifyFnArgs(const DbgVariableIntrinsic
&I
) {
4634 // This function does not take the scope of noninlined function arguments into
4635 // account. Don't run it if current function is nodebug, because it may
4636 // contain inlined debug intrinsics.
4640 // For performance reasons only check non-inlined ones.
4641 if (I
.getDebugLoc()->getInlinedAt())
4644 DILocalVariable
*Var
= I
.getVariable();
4645 AssertDI(Var
, "dbg intrinsic without variable");
4647 unsigned ArgNo
= Var
->getArg();
4651 // Verify there are no duplicate function argument debug info entries.
4652 // These will cause hard-to-debug assertions in the DWARF backend.
4653 if (DebugFnArgs
.size() < ArgNo
)
4654 DebugFnArgs
.resize(ArgNo
, nullptr);
4656 auto *Prev
= DebugFnArgs
[ArgNo
- 1];
4657 DebugFnArgs
[ArgNo
- 1] = Var
;
4658 AssertDI(!Prev
|| (Prev
== Var
), "conflicting debug info for argument", &I
,
4662 void Verifier::verifyCompileUnits() {
4663 // When more than one Module is imported into the same context, such as during
4664 // an LTO build before linking the modules, ODR type uniquing may cause types
4665 // to point to a different CU. This check does not make sense in this case.
4666 if (M
.getContext().isODRUniquingDebugTypes())
4668 auto *CUs
= M
.getNamedMetadata("llvm.dbg.cu");
4669 SmallPtrSet
<const Metadata
*, 2> Listed
;
4671 Listed
.insert(CUs
->op_begin(), CUs
->op_end());
4672 for (auto *CU
: CUVisited
)
4673 AssertDI(Listed
.count(CU
), "DICompileUnit not listed in llvm.dbg.cu", CU
);
4677 void Verifier::verifyDeoptimizeCallingConvs() {
4678 if (DeoptimizeDeclarations
.empty())
4681 const Function
*First
= DeoptimizeDeclarations
[0];
4682 for (auto *F
: makeArrayRef(DeoptimizeDeclarations
).slice(1)) {
4683 Assert(First
->getCallingConv() == F
->getCallingConv(),
4684 "All llvm.experimental.deoptimize declarations must have the same "
4685 "calling convention",
4690 //===----------------------------------------------------------------------===//
4691 // Implement the public interfaces to this file...
4692 //===----------------------------------------------------------------------===//
4694 bool llvm::verifyFunction(const Function
&f
, raw_ostream
*OS
) {
4695 Function
&F
= const_cast<Function
&>(f
);
4697 // Don't use a raw_null_ostream. Printing IR is expensive.
4698 Verifier
V(OS
, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f
.getParent());
4700 // Note that this function's return value is inverted from what you would
4701 // expect of a function called "verify".
4702 return !V
.verify(F
);
4705 bool llvm::verifyModule(const Module
&M
, raw_ostream
*OS
,
4706 bool *BrokenDebugInfo
) {
4707 // Don't use a raw_null_ostream. Printing IR is expensive.
4708 Verifier
V(OS
, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo
, M
);
4710 bool Broken
= false;
4711 for (const Function
&F
: M
)
4712 Broken
|= !V
.verify(F
);
4714 Broken
|= !V
.verify();
4715 if (BrokenDebugInfo
)
4716 *BrokenDebugInfo
= V
.hasBrokenDebugInfo();
4717 // Note that this function's return value is inverted from what you would
4718 // expect of a function called "verify".
4724 struct VerifierLegacyPass
: public FunctionPass
{
4727 std::unique_ptr
<Verifier
> V
;
4728 bool FatalErrors
= true;
4730 VerifierLegacyPass() : FunctionPass(ID
) {
4731 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4733 explicit VerifierLegacyPass(bool FatalErrors
)
4735 FatalErrors(FatalErrors
) {
4736 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4739 bool doInitialization(Module
&M
) override
{
4740 V
= llvm::make_unique
<Verifier
>(
4741 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M
);
4745 bool runOnFunction(Function
&F
) override
{
4746 if (!V
->verify(F
) && FatalErrors
) {
4747 errs() << "in function " << F
.getName() << '\n';
4748 report_fatal_error("Broken function found, compilation aborted!");
4753 bool doFinalization(Module
&M
) override
{
4754 bool HasErrors
= false;
4755 for (Function
&F
: M
)
4756 if (F
.isDeclaration())
4757 HasErrors
|= !V
->verify(F
);
4759 HasErrors
|= !V
->verify();
4760 if (FatalErrors
&& (HasErrors
|| V
->hasBrokenDebugInfo()))
4761 report_fatal_error("Broken module found, compilation aborted!");
4765 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
4766 AU
.setPreservesAll();
4770 } // end anonymous namespace
4772 /// Helper to issue failure from the TBAA verification
4773 template <typename
... Tys
> void TBAAVerifier::CheckFailed(Tys
&&... Args
) {
4775 return Diagnostic
->CheckFailed(Args
...);
4778 #define AssertTBAA(C, ...) \
4781 CheckFailed(__VA_ARGS__); \
4786 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
4787 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4788 /// struct-type node describing an aggregate data structure (like a struct).
4789 TBAAVerifier::TBAABaseNodeSummary
4790 TBAAVerifier::verifyTBAABaseNode(Instruction
&I
, const MDNode
*BaseNode
,
4792 if (BaseNode
->getNumOperands() < 2) {
4793 CheckFailed("Base nodes must have at least two operands", &I
, BaseNode
);
4797 auto Itr
= TBAABaseNodes
.find(BaseNode
);
4798 if (Itr
!= TBAABaseNodes
.end())
4801 auto Result
= verifyTBAABaseNodeImpl(I
, BaseNode
, IsNewFormat
);
4802 auto InsertResult
= TBAABaseNodes
.insert({BaseNode
, Result
});
4804 assert(InsertResult
.second
&& "We just checked!");
4808 TBAAVerifier::TBAABaseNodeSummary
4809 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction
&I
, const MDNode
*BaseNode
,
4811 const TBAAVerifier::TBAABaseNodeSummary InvalidNode
= {true, ~0u};
4813 if (BaseNode
->getNumOperands() == 2) {
4814 // Scalar nodes can only be accessed at offset 0.
4815 return isValidScalarTBAANode(BaseNode
)
4816 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4821 if (BaseNode
->getNumOperands() % 3 != 0) {
4822 CheckFailed("Access tag nodes must have the number of operands that is a "
4823 "multiple of 3!", BaseNode
);
4827 if (BaseNode
->getNumOperands() % 2 != 1) {
4828 CheckFailed("Struct tag nodes must have an odd number of operands!",
4834 // Check the type size field.
4836 auto *TypeSizeNode
= mdconst::dyn_extract_or_null
<ConstantInt
>(
4837 BaseNode
->getOperand(1));
4838 if (!TypeSizeNode
) {
4839 CheckFailed("Type size nodes must be constants!", &I
, BaseNode
);
4844 // Check the type name field. In the new format it can be anything.
4845 if (!IsNewFormat
&& !isa
<MDString
>(BaseNode
->getOperand(0))) {
4846 CheckFailed("Struct tag nodes have a string as their first operand",
4851 bool Failed
= false;
4853 Optional
<APInt
> PrevOffset
;
4854 unsigned BitWidth
= ~0u;
4856 // We've already checked that BaseNode is not a degenerate root node with one
4857 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4858 unsigned FirstFieldOpNo
= IsNewFormat
? 3 : 1;
4859 unsigned NumOpsPerField
= IsNewFormat
? 3 : 2;
4860 for (unsigned Idx
= FirstFieldOpNo
; Idx
< BaseNode
->getNumOperands();
4861 Idx
+= NumOpsPerField
) {
4862 const MDOperand
&FieldTy
= BaseNode
->getOperand(Idx
);
4863 const MDOperand
&FieldOffset
= BaseNode
->getOperand(Idx
+ 1);
4864 if (!isa
<MDNode
>(FieldTy
)) {
4865 CheckFailed("Incorrect field entry in struct type node!", &I
, BaseNode
);
4870 auto *OffsetEntryCI
=
4871 mdconst::dyn_extract_or_null
<ConstantInt
>(FieldOffset
);
4872 if (!OffsetEntryCI
) {
4873 CheckFailed("Offset entries must be constants!", &I
, BaseNode
);
4878 if (BitWidth
== ~0u)
4879 BitWidth
= OffsetEntryCI
->getBitWidth();
4881 if (OffsetEntryCI
->getBitWidth() != BitWidth
) {
4883 "Bitwidth between the offsets and struct type entries must match", &I
,
4889 // NB! As far as I can tell, we generate a non-strictly increasing offset
4890 // sequence only from structs that have zero size bit fields. When
4891 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4892 // pick the field lexically the latest in struct type metadata node. This
4893 // mirrors the actual behavior of the alias analysis implementation.
4895 !PrevOffset
|| PrevOffset
->ule(OffsetEntryCI
->getValue());
4898 CheckFailed("Offsets must be increasing!", &I
, BaseNode
);
4902 PrevOffset
= OffsetEntryCI
->getValue();
4905 auto *MemberSizeNode
= mdconst::dyn_extract_or_null
<ConstantInt
>(
4906 BaseNode
->getOperand(Idx
+ 2));
4907 if (!MemberSizeNode
) {
4908 CheckFailed("Member size entries must be constants!", &I
, BaseNode
);
4915 return Failed
? InvalidNode
4916 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth
);
4919 static bool IsRootTBAANode(const MDNode
*MD
) {
4920 return MD
->getNumOperands() < 2;
4923 static bool IsScalarTBAANodeImpl(const MDNode
*MD
,
4924 SmallPtrSetImpl
<const MDNode
*> &Visited
) {
4925 if (MD
->getNumOperands() != 2 && MD
->getNumOperands() != 3)
4928 if (!isa
<MDString
>(MD
->getOperand(0)))
4931 if (MD
->getNumOperands() == 3) {
4932 auto *Offset
= mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(2));
4933 if (!(Offset
&& Offset
->isZero() && isa
<MDString
>(MD
->getOperand(0))))
4937 auto *Parent
= dyn_cast_or_null
<MDNode
>(MD
->getOperand(1));
4938 return Parent
&& Visited
.insert(Parent
).second
&&
4939 (IsRootTBAANode(Parent
) || IsScalarTBAANodeImpl(Parent
, Visited
));
4942 bool TBAAVerifier::isValidScalarTBAANode(const MDNode
*MD
) {
4943 auto ResultIt
= TBAAScalarNodes
.find(MD
);
4944 if (ResultIt
!= TBAAScalarNodes
.end())
4945 return ResultIt
->second
;
4947 SmallPtrSet
<const MDNode
*, 4> Visited
;
4948 bool Result
= IsScalarTBAANodeImpl(MD
, Visited
);
4949 auto InsertResult
= TBAAScalarNodes
.insert({MD
, Result
});
4951 assert(InsertResult
.second
&& "Just checked!");
4956 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
4957 /// Offset in place to be the offset within the field node returned.
4959 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4960 MDNode
*TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction
&I
,
4961 const MDNode
*BaseNode
,
4964 assert(BaseNode
->getNumOperands() >= 2 && "Invalid base node!");
4966 // Scalar nodes have only one possible "field" -- their parent in the access
4967 // hierarchy. Offset must be zero at this point, but our caller is supposed
4969 if (BaseNode
->getNumOperands() == 2)
4970 return cast
<MDNode
>(BaseNode
->getOperand(1));
4972 unsigned FirstFieldOpNo
= IsNewFormat
? 3 : 1;
4973 unsigned NumOpsPerField
= IsNewFormat
? 3 : 2;
4974 for (unsigned Idx
= FirstFieldOpNo
; Idx
< BaseNode
->getNumOperands();
4975 Idx
+= NumOpsPerField
) {
4976 auto *OffsetEntryCI
=
4977 mdconst::extract
<ConstantInt
>(BaseNode
->getOperand(Idx
+ 1));
4978 if (OffsetEntryCI
->getValue().ugt(Offset
)) {
4979 if (Idx
== FirstFieldOpNo
) {
4980 CheckFailed("Could not find TBAA parent in struct type node", &I
,
4985 unsigned PrevIdx
= Idx
- NumOpsPerField
;
4986 auto *PrevOffsetEntryCI
=
4987 mdconst::extract
<ConstantInt
>(BaseNode
->getOperand(PrevIdx
+ 1));
4988 Offset
-= PrevOffsetEntryCI
->getValue();
4989 return cast
<MDNode
>(BaseNode
->getOperand(PrevIdx
));
4993 unsigned LastIdx
= BaseNode
->getNumOperands() - NumOpsPerField
;
4994 auto *LastOffsetEntryCI
= mdconst::extract
<ConstantInt
>(
4995 BaseNode
->getOperand(LastIdx
+ 1));
4996 Offset
-= LastOffsetEntryCI
->getValue();
4997 return cast
<MDNode
>(BaseNode
->getOperand(LastIdx
));
5000 static bool isNewFormatTBAATypeNode(llvm::MDNode
*Type
) {
5001 if (!Type
|| Type
->getNumOperands() < 3)
5004 // In the new format type nodes shall have a reference to the parent type as
5005 // its first operand.
5006 MDNode
*Parent
= dyn_cast_or_null
<MDNode
>(Type
->getOperand(0));
5013 bool TBAAVerifier::visitTBAAMetadata(Instruction
&I
, const MDNode
*MD
) {
5014 AssertTBAA(isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
) || isa
<CallInst
>(I
) ||
5015 isa
<VAArgInst
>(I
) || isa
<AtomicRMWInst
>(I
) ||
5016 isa
<AtomicCmpXchgInst
>(I
),
5017 "This instruction shall not have a TBAA access tag!", &I
);
5019 bool IsStructPathTBAA
=
5020 isa
<MDNode
>(MD
->getOperand(0)) && MD
->getNumOperands() >= 3;
5024 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I
);
5026 MDNode
*BaseNode
= dyn_cast_or_null
<MDNode
>(MD
->getOperand(0));
5027 MDNode
*AccessType
= dyn_cast_or_null
<MDNode
>(MD
->getOperand(1));
5029 bool IsNewFormat
= isNewFormatTBAATypeNode(AccessType
);
5032 AssertTBAA(MD
->getNumOperands() == 4 || MD
->getNumOperands() == 5,
5033 "Access tag metadata must have either 4 or 5 operands", &I
, MD
);
5035 AssertTBAA(MD
->getNumOperands() < 5,
5036 "Struct tag metadata must have either 3 or 4 operands", &I
, MD
);
5039 // Check the access size field.
5041 auto *AccessSizeNode
= mdconst::dyn_extract_or_null
<ConstantInt
>(
5043 AssertTBAA(AccessSizeNode
, "Access size field must be a constant", &I
, MD
);
5046 // Check the immutability flag.
5047 unsigned ImmutabilityFlagOpNo
= IsNewFormat
? 4 : 3;
5048 if (MD
->getNumOperands() == ImmutabilityFlagOpNo
+ 1) {
5049 auto *IsImmutableCI
= mdconst::dyn_extract_or_null
<ConstantInt
>(
5050 MD
->getOperand(ImmutabilityFlagOpNo
));
5051 AssertTBAA(IsImmutableCI
,
5052 "Immutability tag on struct tag metadata must be a constant",
5055 IsImmutableCI
->isZero() || IsImmutableCI
->isOne(),
5056 "Immutability part of the struct tag metadata must be either 0 or 1",
5060 AssertTBAA(BaseNode
&& AccessType
,
5061 "Malformed struct tag metadata: base and access-type "
5062 "should be non-null and point to Metadata nodes",
5063 &I
, MD
, BaseNode
, AccessType
);
5066 AssertTBAA(isValidScalarTBAANode(AccessType
),
5067 "Access type node must be a valid scalar type", &I
, MD
,
5071 auto *OffsetCI
= mdconst::dyn_extract_or_null
<ConstantInt
>(MD
->getOperand(2));
5072 AssertTBAA(OffsetCI
, "Offset must be constant integer", &I
, MD
);
5074 APInt Offset
= OffsetCI
->getValue();
5075 bool SeenAccessTypeInPath
= false;
5077 SmallPtrSet
<MDNode
*, 4> StructPath
;
5079 for (/* empty */; BaseNode
&& !IsRootTBAANode(BaseNode
);
5080 BaseNode
= getFieldNodeFromTBAABaseNode(I
, BaseNode
, Offset
,
5082 if (!StructPath
.insert(BaseNode
).second
) {
5083 CheckFailed("Cycle detected in struct path", &I
, MD
);
5088 unsigned BaseNodeBitWidth
;
5089 std::tie(Invalid
, BaseNodeBitWidth
) = verifyTBAABaseNode(I
, BaseNode
,
5092 // If the base node is invalid in itself, then we've already printed all the
5093 // errors we wanted to print.
5097 SeenAccessTypeInPath
|= BaseNode
== AccessType
;
5099 if (isValidScalarTBAANode(BaseNode
) || BaseNode
== AccessType
)
5100 AssertTBAA(Offset
== 0, "Offset not zero at the point of scalar access",
5103 AssertTBAA(BaseNodeBitWidth
== Offset
.getBitWidth() ||
5104 (BaseNodeBitWidth
== 0 && Offset
== 0) ||
5105 (IsNewFormat
&& BaseNodeBitWidth
== ~0u),
5106 "Access bit-width not the same as description bit-width", &I
, MD
,
5107 BaseNodeBitWidth
, Offset
.getBitWidth());
5109 if (IsNewFormat
&& SeenAccessTypeInPath
)
5113 AssertTBAA(SeenAccessTypeInPath
, "Did not see access type in access path!",
5118 char VerifierLegacyPass::ID
= 0;
5119 INITIALIZE_PASS(VerifierLegacyPass
, "verify", "Module Verifier", false, false)
5121 FunctionPass
*llvm::createVerifierPass(bool FatalErrors
) {
5122 return new VerifierLegacyPass(FatalErrors
);
5125 AnalysisKey
VerifierAnalysis::Key
;
5126 VerifierAnalysis::Result
VerifierAnalysis::run(Module
&M
,
5127 ModuleAnalysisManager
&) {
5129 Res
.IRBroken
= llvm::verifyModule(M
, &dbgs(), &Res
.DebugInfoBroken
);
5133 VerifierAnalysis::Result
VerifierAnalysis::run(Function
&F
,
5134 FunctionAnalysisManager
&) {
5135 return { llvm::verifyFunction(F
, &dbgs()), false };
5138 PreservedAnalyses
VerifierPass::run(Module
&M
, ModuleAnalysisManager
&AM
) {
5139 auto Res
= AM
.getResult
<VerifierAnalysis
>(M
);
5140 if (FatalErrors
&& (Res
.IRBroken
|| Res
.DebugInfoBroken
))
5141 report_fatal_error("Broken module found, compilation aborted!");
5143 return PreservedAnalyses::all();
5146 PreservedAnalyses
VerifierPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
5147 auto res
= AM
.getResult
<VerifierAnalysis
>(F
);
5148 if (res
.IRBroken
&& FatalErrors
)
5149 report_fatal_error("Broken function found, compilation aborted!");
5151 return PreservedAnalyses::all();