[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / IR / Verifier.cpp
blob8304ec6e8f4a404be1ec17712634a0ba0234bd18
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
41 // block.
42 // * Landingpad instructions must be in a function with a personality function.
43 // * All other things that are tested by asserts spread about the code...
45 //===----------------------------------------------------------------------===//
47 #include "llvm/IR/Verifier.h"
48 #include "llvm/ADT/APFloat.h"
49 #include "llvm/ADT/APInt.h"
50 #include "llvm/ADT/ArrayRef.h"
51 #include "llvm/ADT/DenseMap.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/Optional.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/SmallSet.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/StringExtras.h"
59 #include "llvm/ADT/StringMap.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/ADT/ilist.h"
63 #include "llvm/BinaryFormat/Dwarf.h"
64 #include "llvm/IR/Argument.h"
65 #include "llvm/IR/Attributes.h"
66 #include "llvm/IR/BasicBlock.h"
67 #include "llvm/IR/CFG.h"
68 #include "llvm/IR/CallSite.h"
69 #include "llvm/IR/CallingConv.h"
70 #include "llvm/IR/Comdat.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfo.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Dominators.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GlobalAlias.h"
82 #include "llvm/IR/GlobalValue.h"
83 #include "llvm/IR/GlobalVariable.h"
84 #include "llvm/IR/InlineAsm.h"
85 #include "llvm/IR/InstVisitor.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
94 #include "llvm/IR/ModuleSlotTracker.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/Use.h"
99 #include "llvm/IR/User.h"
100 #include "llvm/IR/Value.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
116 using namespace llvm;
118 namespace llvm {
120 struct VerifierSupport {
121 raw_ostream *OS;
122 const Module &M;
123 ModuleSlotTracker MST;
124 const DataLayout &DL;
125 LLVMContext &Context;
127 /// Track the brokenness of the module while recursively visiting.
128 bool Broken = false;
129 /// Broken debug info can be "recovered" from by stripping the debug info.
130 bool BrokenDebugInfo = false;
131 /// Whether to treat broken debug info as an error.
132 bool TreatBrokenDebugInfoAsError = true;
134 explicit VerifierSupport(raw_ostream *OS, const Module &M)
135 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
137 private:
138 void Write(const Module *M) {
139 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
142 void Write(const Value *V) {
143 if (!V)
144 return;
145 if (isa<Instruction>(V)) {
146 V->print(*OS, MST);
147 *OS << '\n';
148 } else {
149 V->printAsOperand(*OS, true, MST);
150 *OS << '\n';
154 void Write(ImmutableCallSite CS) {
155 Write(CS.getInstruction());
158 void Write(const Metadata *MD) {
159 if (!MD)
160 return;
161 MD->print(*OS, MST, &M);
162 *OS << '\n';
165 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
166 Write(MD.get());
169 void Write(const NamedMDNode *NMD) {
170 if (!NMD)
171 return;
172 NMD->print(*OS, MST);
173 *OS << '\n';
176 void Write(Type *T) {
177 if (!T)
178 return;
179 *OS << ' ' << *T;
182 void Write(const Comdat *C) {
183 if (!C)
184 return;
185 *OS << *C;
188 void Write(const APInt *AI) {
189 if (!AI)
190 return;
191 *OS << *AI << '\n';
194 void Write(const unsigned i) { *OS << i << '\n'; }
196 template <typename T> void Write(ArrayRef<T> Vs) {
197 for (const T &V : Vs)
198 Write(V);
201 template <typename T1, typename... Ts>
202 void WriteTs(const T1 &V1, const Ts &... Vs) {
203 Write(V1);
204 WriteTs(Vs...);
207 template <typename... Ts> void WriteTs() {}
209 public:
210 /// A check failed, so printout out the condition and the message.
212 /// This provides a nice place to put a breakpoint if you want to see why
213 /// something is not correct.
214 void CheckFailed(const Twine &Message) {
215 if (OS)
216 *OS << Message << '\n';
217 Broken = true;
220 /// A check failed (with values to print).
222 /// This calls the Message-only version so that the above is easier to set a
223 /// breakpoint on.
224 template <typename T1, typename... Ts>
225 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
226 CheckFailed(Message);
227 if (OS)
228 WriteTs(V1, Vs...);
231 /// A debug info check failed.
232 void DebugInfoCheckFailed(const Twine &Message) {
233 if (OS)
234 *OS << Message << '\n';
235 Broken |= TreatBrokenDebugInfoAsError;
236 BrokenDebugInfo = true;
239 /// A debug info check failed (with values to print).
240 template <typename T1, typename... Ts>
241 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
242 const Ts &... Vs) {
243 DebugInfoCheckFailed(Message);
244 if (OS)
245 WriteTs(V1, Vs...);
249 } // namespace llvm
251 namespace {
253 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
254 friend class InstVisitor<Verifier>;
256 DominatorTree DT;
258 /// When verifying a basic block, keep track of all of the
259 /// instructions we have seen so far.
261 /// This allows us to do efficient dominance checks for the case when an
262 /// instruction has an operand that is an instruction in the same block.
263 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
265 /// Keep track of the metadata nodes that have been checked already.
266 SmallPtrSet<const Metadata *, 32> MDNodes;
268 /// Keep track which DISubprogram is attached to which function.
269 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
271 /// Track all DICompileUnits visited.
272 SmallPtrSet<const Metadata *, 2> CUVisited;
274 /// The result type for a landingpad.
275 Type *LandingPadResultTy;
277 /// Whether we've seen a call to @llvm.localescape in this function
278 /// already.
279 bool SawFrameEscape;
281 /// Whether the current function has a DISubprogram attached to it.
282 bool HasDebugInfo = false;
284 /// Stores the count of how many objects were passed to llvm.localescape for a
285 /// given function and the largest index passed to llvm.localrecover.
286 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
288 // Maps catchswitches and cleanuppads that unwind to siblings to the
289 // terminators that indicate the unwind, used to detect cycles therein.
290 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
292 /// Cache of constants visited in search of ConstantExprs.
293 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
295 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296 SmallVector<const Function *, 4> DeoptimizeDeclarations;
298 // Verify that this GlobalValue is only used in this module.
299 // This map is used to avoid visiting uses twice. We can arrive at a user
300 // twice, if they have multiple operands. In particular for very large
301 // constant expressions, we can arrive at a particular user many times.
302 SmallPtrSet<const Value *, 32> GlobalValueVisited;
304 // Keeps track of duplicate function argument debug info.
305 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
307 TBAAVerifier TBAAVerifyHelper;
309 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
311 public:
312 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313 const Module &M)
314 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315 SawFrameEscape(false), TBAAVerifyHelper(this) {
316 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
319 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
321 bool verify(const Function &F) {
322 assert(F.getParent() == &M &&
323 "An instance of this class only works with a specific module!");
325 // First ensure the function is well-enough formed to compute dominance
326 // information, and directly compute a dominance tree. We don't rely on the
327 // pass manager to provide this as it isolates us from a potentially
328 // out-of-date dominator tree and makes it significantly more complex to run
329 // this code outside of a pass manager.
330 // FIXME: It's really gross that we have to cast away constness here.
331 if (!F.empty())
332 DT.recalculate(const_cast<Function &>(F));
334 for (const BasicBlock &BB : F) {
335 if (!BB.empty() && BB.back().isTerminator())
336 continue;
338 if (OS) {
339 *OS << "Basic Block in function '" << F.getName()
340 << "' does not have terminator!\n";
341 BB.printAsOperand(*OS, true, MST);
342 *OS << "\n";
344 return false;
347 Broken = false;
348 // FIXME: We strip const here because the inst visitor strips const.
349 visit(const_cast<Function &>(F));
350 verifySiblingFuncletUnwinds();
351 InstsInThisBlock.clear();
352 DebugFnArgs.clear();
353 LandingPadResultTy = nullptr;
354 SawFrameEscape = false;
355 SiblingFuncletInfo.clear();
357 return !Broken;
360 /// Verify the module that this instance of \c Verifier was initialized with.
361 bool verify() {
362 Broken = false;
364 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365 for (const Function &F : M)
366 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367 DeoptimizeDeclarations.push_back(&F);
369 // Now that we've visited every function, verify that we never asked to
370 // recover a frame index that wasn't escaped.
371 verifyFrameRecoverIndices();
372 for (const GlobalVariable &GV : M.globals())
373 visitGlobalVariable(GV);
375 for (const GlobalAlias &GA : M.aliases())
376 visitGlobalAlias(GA);
378 for (const NamedMDNode &NMD : M.named_metadata())
379 visitNamedMDNode(NMD);
381 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382 visitComdat(SMEC.getValue());
384 visitModuleFlags(M);
385 visitModuleIdents(M);
387 verifyCompileUnits();
389 verifyDeoptimizeCallingConvs();
390 DISubprogramAttachments.clear();
391 return !Broken;
394 private:
395 // Verification methods...
396 void visitGlobalValue(const GlobalValue &GV);
397 void visitGlobalVariable(const GlobalVariable &GV);
398 void visitGlobalAlias(const GlobalAlias &GA);
399 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
400 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
401 const GlobalAlias &A, const Constant &C);
402 void visitNamedMDNode(const NamedMDNode &NMD);
403 void visitMDNode(const MDNode &MD);
404 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
405 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
406 void visitComdat(const Comdat &C);
407 void visitModuleIdents(const Module &M);
408 void visitModuleFlags(const Module &M);
409 void visitModuleFlag(const MDNode *Op,
410 DenseMap<const MDString *, const MDNode *> &SeenIDs,
411 SmallVectorImpl<const MDNode *> &Requirements);
412 void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
413 void visitFunction(const Function &F);
414 void visitBasicBlock(BasicBlock &BB);
415 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
416 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
418 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
419 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
420 #include "llvm/IR/Metadata.def"
421 void visitDIScope(const DIScope &N);
422 void visitDIVariable(const DIVariable &N);
423 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
424 void visitDITemplateParameter(const DITemplateParameter &N);
426 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
428 // InstVisitor overrides...
429 using InstVisitor<Verifier>::visit;
430 void visit(Instruction &I);
432 void visitTruncInst(TruncInst &I);
433 void visitZExtInst(ZExtInst &I);
434 void visitSExtInst(SExtInst &I);
435 void visitFPTruncInst(FPTruncInst &I);
436 void visitFPExtInst(FPExtInst &I);
437 void visitFPToUIInst(FPToUIInst &I);
438 void visitFPToSIInst(FPToSIInst &I);
439 void visitUIToFPInst(UIToFPInst &I);
440 void visitSIToFPInst(SIToFPInst &I);
441 void visitIntToPtrInst(IntToPtrInst &I);
442 void visitPtrToIntInst(PtrToIntInst &I);
443 void visitBitCastInst(BitCastInst &I);
444 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
445 void visitPHINode(PHINode &PN);
446 void visitBinaryOperator(BinaryOperator &B);
447 void visitICmpInst(ICmpInst &IC);
448 void visitFCmpInst(FCmpInst &FC);
449 void visitExtractElementInst(ExtractElementInst &EI);
450 void visitInsertElementInst(InsertElementInst &EI);
451 void visitShuffleVectorInst(ShuffleVectorInst &EI);
452 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
453 void visitCallInst(CallInst &CI);
454 void visitInvokeInst(InvokeInst &II);
455 void visitGetElementPtrInst(GetElementPtrInst &GEP);
456 void visitLoadInst(LoadInst &LI);
457 void visitStoreInst(StoreInst &SI);
458 void verifyDominatesUse(Instruction &I, unsigned i);
459 void visitInstruction(Instruction &I);
460 void visitTerminatorInst(TerminatorInst &I);
461 void visitBranchInst(BranchInst &BI);
462 void visitReturnInst(ReturnInst &RI);
463 void visitSwitchInst(SwitchInst &SI);
464 void visitIndirectBrInst(IndirectBrInst &BI);
465 void visitSelectInst(SelectInst &SI);
466 void visitUserOp1(Instruction &I);
467 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
468 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
469 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
470 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
471 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
472 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
473 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
474 void visitFenceInst(FenceInst &FI);
475 void visitAllocaInst(AllocaInst &AI);
476 void visitExtractValueInst(ExtractValueInst &EVI);
477 void visitInsertValueInst(InsertValueInst &IVI);
478 void visitEHPadPredecessors(Instruction &I);
479 void visitLandingPadInst(LandingPadInst &LPI);
480 void visitResumeInst(ResumeInst &RI);
481 void visitCatchPadInst(CatchPadInst &CPI);
482 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
483 void visitCleanupPadInst(CleanupPadInst &CPI);
484 void visitFuncletPadInst(FuncletPadInst &FPI);
485 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
486 void visitCleanupReturnInst(CleanupReturnInst &CRI);
488 void verifyCallSite(CallSite CS);
489 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
490 void verifySwiftErrorValue(const Value *SwiftErrorVal);
491 void verifyMustTailCall(CallInst &CI);
492 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
493 unsigned ArgNo, std::string &Suffix);
494 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
495 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
496 const Value *V);
497 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
498 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
499 const Value *V);
500 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
502 void visitConstantExprsRecursively(const Constant *EntryC);
503 void visitConstantExpr(const ConstantExpr *CE);
504 void verifyStatepoint(ImmutableCallSite CS);
505 void verifyFrameRecoverIndices();
506 void verifySiblingFuncletUnwinds();
508 void verifyFragmentExpression(const DbgVariableIntrinsic &I);
509 template <typename ValueOrMetadata>
510 void verifyFragmentExpression(const DIVariable &V,
511 DIExpression::FragmentInfo Fragment,
512 ValueOrMetadata *Desc);
513 void verifyFnArgs(const DbgVariableIntrinsic &I);
515 /// Module-level debug info verification...
516 void verifyCompileUnits();
518 /// Module-level verification that all @llvm.experimental.deoptimize
519 /// declarations share the same calling convention.
520 void verifyDeoptimizeCallingConvs();
523 } // end anonymous namespace
525 /// We know that cond should be true, if not print an error message.
526 #define Assert(C, ...) \
527 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
529 /// We know that a debug info condition should be true, if not print
530 /// an error message.
531 #define AssertDI(C, ...) \
532 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
534 void Verifier::visit(Instruction &I) {
535 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
536 Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
537 InstVisitor<Verifier>::visit(I);
540 // Helper to recursively iterate over indirect users. By
541 // returning false, the callback can ask to stop recursing
542 // further.
543 static void forEachUser(const Value *User,
544 SmallPtrSet<const Value *, 32> &Visited,
545 llvm::function_ref<bool(const Value *)> Callback) {
546 if (!Visited.insert(User).second)
547 return;
548 for (const Value *TheNextUser : User->materialized_users())
549 if (Callback(TheNextUser))
550 forEachUser(TheNextUser, Visited, Callback);
553 void Verifier::visitGlobalValue(const GlobalValue &GV) {
554 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
555 "Global is external, but doesn't have external or weak linkage!", &GV);
557 Assert(GV.getAlignment() <= Value::MaximumAlignment,
558 "huge alignment values are unsupported", &GV);
559 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
560 "Only global variables can have appending linkage!", &GV);
562 if (GV.hasAppendingLinkage()) {
563 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
564 Assert(GVar && GVar->getValueType()->isArrayTy(),
565 "Only global arrays can have appending linkage!", GVar);
568 if (GV.isDeclarationForLinker())
569 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
571 if (GV.hasDLLImportStorageClass()) {
572 Assert(!GV.isDSOLocal(),
573 "GlobalValue with DLLImport Storage is dso_local!", &GV);
575 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
576 GV.hasAvailableExternallyLinkage(),
577 "Global is marked as dllimport, but not external", &GV);
580 if (GV.hasLocalLinkage())
581 Assert(GV.isDSOLocal(),
582 "GlobalValue with private or internal linkage must be dso_local!",
583 &GV);
585 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
586 Assert(GV.isDSOLocal(),
587 "GlobalValue with non default visibility must be dso_local!", &GV);
589 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
590 if (const Instruction *I = dyn_cast<Instruction>(V)) {
591 if (!I->getParent() || !I->getParent()->getParent())
592 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
594 else if (I->getParent()->getParent()->getParent() != &M)
595 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
596 I->getParent()->getParent(),
597 I->getParent()->getParent()->getParent());
598 return false;
599 } else if (const Function *F = dyn_cast<Function>(V)) {
600 if (F->getParent() != &M)
601 CheckFailed("Global is used by function in a different module", &GV, &M,
602 F, F->getParent());
603 return false;
605 return true;
609 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
610 if (GV.hasInitializer()) {
611 Assert(GV.getInitializer()->getType() == GV.getValueType(),
612 "Global variable initializer type does not match global "
613 "variable type!",
614 &GV);
615 // If the global has common linkage, it must have a zero initializer and
616 // cannot be constant.
617 if (GV.hasCommonLinkage()) {
618 Assert(GV.getInitializer()->isNullValue(),
619 "'common' global must have a zero initializer!", &GV);
620 Assert(!GV.isConstant(), "'common' global may not be marked constant!",
621 &GV);
622 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
626 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
627 GV.getName() == "llvm.global_dtors")) {
628 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
629 "invalid linkage for intrinsic global variable", &GV);
630 // Don't worry about emitting an error for it not being an array,
631 // visitGlobalValue will complain on appending non-array.
632 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
633 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
634 PointerType *FuncPtrTy =
635 FunctionType::get(Type::getVoidTy(Context), false)->
636 getPointerTo(DL.getProgramAddressSpace());
637 // FIXME: Reject the 2-field form in LLVM 4.0.
638 Assert(STy &&
639 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
640 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
641 STy->getTypeAtIndex(1) == FuncPtrTy,
642 "wrong type for intrinsic global variable", &GV);
643 if (STy->getNumElements() == 3) {
644 Type *ETy = STy->getTypeAtIndex(2);
645 Assert(ETy->isPointerTy() &&
646 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
647 "wrong type for intrinsic global variable", &GV);
652 if (GV.hasName() && (GV.getName() == "llvm.used" ||
653 GV.getName() == "llvm.compiler.used")) {
654 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
655 "invalid linkage for intrinsic global variable", &GV);
656 Type *GVType = GV.getValueType();
657 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
658 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
659 Assert(PTy, "wrong type for intrinsic global variable", &GV);
660 if (GV.hasInitializer()) {
661 const Constant *Init = GV.getInitializer();
662 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
663 Assert(InitArray, "wrong initalizer for intrinsic global variable",
664 Init);
665 for (Value *Op : InitArray->operands()) {
666 Value *V = Op->stripPointerCastsNoFollowAliases();
667 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
668 isa<GlobalAlias>(V),
669 "invalid llvm.used member", V);
670 Assert(V->hasName(), "members of llvm.used must be named", V);
676 // Visit any debug info attachments.
677 SmallVector<MDNode *, 1> MDs;
678 GV.getMetadata(LLVMContext::MD_dbg, MDs);
679 for (auto *MD : MDs) {
680 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
681 visitDIGlobalVariableExpression(*GVE);
682 else
683 AssertDI(false, "!dbg attachment of global variable must be a "
684 "DIGlobalVariableExpression");
687 if (!GV.hasInitializer()) {
688 visitGlobalValue(GV);
689 return;
692 // Walk any aggregate initializers looking for bitcasts between address spaces
693 visitConstantExprsRecursively(GV.getInitializer());
695 visitGlobalValue(GV);
698 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
699 SmallPtrSet<const GlobalAlias*, 4> Visited;
700 Visited.insert(&GA);
701 visitAliaseeSubExpr(Visited, GA, C);
704 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
705 const GlobalAlias &GA, const Constant &C) {
706 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
707 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
708 &GA);
710 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
711 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
713 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
714 &GA);
715 } else {
716 // Only continue verifying subexpressions of GlobalAliases.
717 // Do not recurse into global initializers.
718 return;
722 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
723 visitConstantExprsRecursively(CE);
725 for (const Use &U : C.operands()) {
726 Value *V = &*U;
727 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
728 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
729 else if (const auto *C2 = dyn_cast<Constant>(V))
730 visitAliaseeSubExpr(Visited, GA, *C2);
734 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
735 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
736 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
737 "weak_odr, or external linkage!",
738 &GA);
739 const Constant *Aliasee = GA.getAliasee();
740 Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
741 Assert(GA.getType() == Aliasee->getType(),
742 "Alias and aliasee types should match!", &GA);
744 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
745 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
747 visitAliaseeSubExpr(GA, *Aliasee);
749 visitGlobalValue(GA);
752 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
753 // There used to be various other llvm.dbg.* nodes, but we don't support
754 // upgrading them and we want to reserve the namespace for future uses.
755 if (NMD.getName().startswith("llvm.dbg."))
756 AssertDI(NMD.getName() == "llvm.dbg.cu",
757 "unrecognized named metadata node in the llvm.dbg namespace",
758 &NMD);
759 for (const MDNode *MD : NMD.operands()) {
760 if (NMD.getName() == "llvm.dbg.cu")
761 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
763 if (!MD)
764 continue;
766 visitMDNode(*MD);
770 void Verifier::visitMDNode(const MDNode &MD) {
771 // Only visit each node once. Metadata can be mutually recursive, so this
772 // avoids infinite recursion here, as well as being an optimization.
773 if (!MDNodes.insert(&MD).second)
774 return;
776 switch (MD.getMetadataID()) {
777 default:
778 llvm_unreachable("Invalid MDNode subclass");
779 case Metadata::MDTupleKind:
780 break;
781 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
782 case Metadata::CLASS##Kind: \
783 visit##CLASS(cast<CLASS>(MD)); \
784 break;
785 #include "llvm/IR/Metadata.def"
788 for (const Metadata *Op : MD.operands()) {
789 if (!Op)
790 continue;
791 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
792 &MD, Op);
793 if (auto *N = dyn_cast<MDNode>(Op)) {
794 visitMDNode(*N);
795 continue;
797 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
798 visitValueAsMetadata(*V, nullptr);
799 continue;
803 // Check these last, so we diagnose problems in operands first.
804 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
805 Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
808 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
809 Assert(MD.getValue(), "Expected valid value", &MD);
810 Assert(!MD.getValue()->getType()->isMetadataTy(),
811 "Unexpected metadata round-trip through values", &MD, MD.getValue());
813 auto *L = dyn_cast<LocalAsMetadata>(&MD);
814 if (!L)
815 return;
817 Assert(F, "function-local metadata used outside a function", L);
819 // If this was an instruction, bb, or argument, verify that it is in the
820 // function that we expect.
821 Function *ActualF = nullptr;
822 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
823 Assert(I->getParent(), "function-local metadata not in basic block", L, I);
824 ActualF = I->getParent()->getParent();
825 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
826 ActualF = BB->getParent();
827 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
828 ActualF = A->getParent();
829 assert(ActualF && "Unimplemented function local metadata case!");
831 Assert(ActualF == F, "function-local metadata used in wrong function", L);
834 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
835 Metadata *MD = MDV.getMetadata();
836 if (auto *N = dyn_cast<MDNode>(MD)) {
837 visitMDNode(*N);
838 return;
841 // Only visit each node once. Metadata can be mutually recursive, so this
842 // avoids infinite recursion here, as well as being an optimization.
843 if (!MDNodes.insert(MD).second)
844 return;
846 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
847 visitValueAsMetadata(*V, F);
850 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
851 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
852 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
854 void Verifier::visitDILocation(const DILocation &N) {
855 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
856 "location requires a valid scope", &N, N.getRawScope());
857 if (auto *IA = N.getRawInlinedAt())
858 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
859 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
860 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
863 void Verifier::visitGenericDINode(const GenericDINode &N) {
864 AssertDI(N.getTag(), "invalid tag", &N);
867 void Verifier::visitDIScope(const DIScope &N) {
868 if (auto *F = N.getRawFile())
869 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
872 void Verifier::visitDISubrange(const DISubrange &N) {
873 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
874 auto Count = N.getCount();
875 AssertDI(Count, "Count must either be a signed constant or a DIVariable",
876 &N);
877 AssertDI(!Count.is<ConstantInt*>() ||
878 Count.get<ConstantInt*>()->getSExtValue() >= -1,
879 "invalid subrange count", &N);
882 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
883 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
886 void Verifier::visitDIBasicType(const DIBasicType &N) {
887 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
888 N.getTag() == dwarf::DW_TAG_unspecified_type,
889 "invalid tag", &N);
890 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
891 "has conflicting flags", &N);
894 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
895 // Common scope checks.
896 visitDIScope(N);
898 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
899 N.getTag() == dwarf::DW_TAG_pointer_type ||
900 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
901 N.getTag() == dwarf::DW_TAG_reference_type ||
902 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
903 N.getTag() == dwarf::DW_TAG_const_type ||
904 N.getTag() == dwarf::DW_TAG_volatile_type ||
905 N.getTag() == dwarf::DW_TAG_restrict_type ||
906 N.getTag() == dwarf::DW_TAG_atomic_type ||
907 N.getTag() == dwarf::DW_TAG_member ||
908 N.getTag() == dwarf::DW_TAG_inheritance ||
909 N.getTag() == dwarf::DW_TAG_friend,
910 "invalid tag", &N);
911 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
912 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
913 N.getRawExtraData());
916 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
917 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
918 N.getRawBaseType());
920 if (N.getDWARFAddressSpace()) {
921 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
922 N.getTag() == dwarf::DW_TAG_reference_type,
923 "DWARF address space only applies to pointer or reference types",
924 &N);
928 /// Detect mutually exclusive flags.
929 static bool hasConflictingReferenceFlags(unsigned Flags) {
930 return ((Flags & DINode::FlagLValueReference) &&
931 (Flags & DINode::FlagRValueReference)) ||
932 ((Flags & DINode::FlagTypePassByValue) &&
933 (Flags & DINode::FlagTypePassByReference));
936 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
937 auto *Params = dyn_cast<MDTuple>(&RawParams);
938 AssertDI(Params, "invalid template params", &N, &RawParams);
939 for (Metadata *Op : Params->operands()) {
940 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
941 &N, Params, Op);
945 void Verifier::visitDICompositeType(const DICompositeType &N) {
946 // Common scope checks.
947 visitDIScope(N);
949 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
950 N.getTag() == dwarf::DW_TAG_structure_type ||
951 N.getTag() == dwarf::DW_TAG_union_type ||
952 N.getTag() == dwarf::DW_TAG_enumeration_type ||
953 N.getTag() == dwarf::DW_TAG_class_type ||
954 N.getTag() == dwarf::DW_TAG_variant_part,
955 "invalid tag", &N);
957 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
958 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
959 N.getRawBaseType());
961 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
962 "invalid composite elements", &N, N.getRawElements());
963 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
964 N.getRawVTableHolder());
965 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
966 "invalid reference flags", &N);
968 if (N.isVector()) {
969 const DINodeArray Elements = N.getElements();
970 AssertDI(Elements.size() == 1 &&
971 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
972 "invalid vector, expected one element of type subrange", &N);
975 if (auto *Params = N.getRawTemplateParams())
976 visitTemplateParams(N, *Params);
978 if (N.getTag() == dwarf::DW_TAG_class_type ||
979 N.getTag() == dwarf::DW_TAG_union_type) {
980 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
981 "class/union requires a filename", &N, N.getFile());
984 if (auto *D = N.getRawDiscriminator()) {
985 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
986 "discriminator can only appear on variant part");
990 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
991 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
992 if (auto *Types = N.getRawTypeArray()) {
993 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
994 for (Metadata *Ty : N.getTypeArray()->operands()) {
995 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
998 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
999 "invalid reference flags", &N);
1002 void Verifier::visitDIFile(const DIFile &N) {
1003 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1004 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1005 if (Checksum) {
1006 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1007 "invalid checksum kind", &N);
1008 size_t Size;
1009 switch (Checksum->Kind) {
1010 case DIFile::CSK_MD5:
1011 Size = 32;
1012 break;
1013 case DIFile::CSK_SHA1:
1014 Size = 40;
1015 break;
1017 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1018 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1019 "invalid checksum", &N);
1023 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1024 AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1025 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1027 // Don't bother verifying the compilation directory or producer string
1028 // as those could be empty.
1029 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1030 N.getRawFile());
1031 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1032 N.getFile());
1034 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1035 "invalid emission kind", &N);
1037 if (auto *Array = N.getRawEnumTypes()) {
1038 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1039 for (Metadata *Op : N.getEnumTypes()->operands()) {
1040 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1041 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1042 "invalid enum type", &N, N.getEnumTypes(), Op);
1045 if (auto *Array = N.getRawRetainedTypes()) {
1046 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1047 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1048 AssertDI(Op && (isa<DIType>(Op) ||
1049 (isa<DISubprogram>(Op) &&
1050 !cast<DISubprogram>(Op)->isDefinition())),
1051 "invalid retained type", &N, Op);
1054 if (auto *Array = N.getRawGlobalVariables()) {
1055 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1056 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1057 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1058 "invalid global variable ref", &N, Op);
1061 if (auto *Array = N.getRawImportedEntities()) {
1062 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1063 for (Metadata *Op : N.getImportedEntities()->operands()) {
1064 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1065 &N, Op);
1068 if (auto *Array = N.getRawMacros()) {
1069 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1070 for (Metadata *Op : N.getMacros()->operands()) {
1071 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1074 CUVisited.insert(&N);
1077 void Verifier::visitDISubprogram(const DISubprogram &N) {
1078 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1079 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1080 if (auto *F = N.getRawFile())
1081 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1082 else
1083 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1084 if (auto *T = N.getRawType())
1085 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1086 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1087 N.getRawContainingType());
1088 if (auto *Params = N.getRawTemplateParams())
1089 visitTemplateParams(N, *Params);
1090 if (auto *S = N.getRawDeclaration())
1091 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1092 "invalid subprogram declaration", &N, S);
1093 if (auto *RawNode = N.getRawRetainedNodes()) {
1094 auto *Node = dyn_cast<MDTuple>(RawNode);
1095 AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1096 for (Metadata *Op : Node->operands()) {
1097 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1098 "invalid retained nodes, expected DILocalVariable or DILabel",
1099 &N, Node, Op);
1102 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1103 "invalid reference flags", &N);
1105 auto *Unit = N.getRawUnit();
1106 if (N.isDefinition()) {
1107 // Subprogram definitions (not part of the type hierarchy).
1108 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1109 AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1110 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1111 } else {
1112 // Subprogram declarations (part of the type hierarchy).
1113 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1116 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1117 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1118 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1119 for (Metadata *Op : ThrownTypes->operands())
1120 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1121 Op);
1124 if (N.areAllCallsDescribed())
1125 AssertDI(N.isDefinition(),
1126 "DIFlagAllCallsDescribed must be attached to a definition");
1129 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1130 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1131 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1132 "invalid local scope", &N, N.getRawScope());
1133 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1134 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1137 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1138 visitDILexicalBlockBase(N);
1140 AssertDI(N.getLine() || !N.getColumn(),
1141 "cannot have column info without line info", &N);
1144 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1145 visitDILexicalBlockBase(N);
1148 void Verifier::visitDINamespace(const DINamespace &N) {
1149 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1150 if (auto *S = N.getRawScope())
1151 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1154 void Verifier::visitDIMacro(const DIMacro &N) {
1155 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1156 N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1157 "invalid macinfo type", &N);
1158 AssertDI(!N.getName().empty(), "anonymous macro", &N);
1159 if (!N.getValue().empty()) {
1160 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1164 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1165 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1166 "invalid macinfo type", &N);
1167 if (auto *F = N.getRawFile())
1168 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1170 if (auto *Array = N.getRawElements()) {
1171 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1172 for (Metadata *Op : N.getElements()->operands()) {
1173 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1178 void Verifier::visitDIModule(const DIModule &N) {
1179 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1180 AssertDI(!N.getName().empty(), "anonymous module", &N);
1183 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1184 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1187 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1188 visitDITemplateParameter(N);
1190 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1191 &N);
1194 void Verifier::visitDITemplateValueParameter(
1195 const DITemplateValueParameter &N) {
1196 visitDITemplateParameter(N);
1198 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1199 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1200 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1201 "invalid tag", &N);
1204 void Verifier::visitDIVariable(const DIVariable &N) {
1205 if (auto *S = N.getRawScope())
1206 AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1207 if (auto *F = N.getRawFile())
1208 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1211 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1212 // Checks common to all variables.
1213 visitDIVariable(N);
1215 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1216 AssertDI(!N.getName().empty(), "missing global variable name", &N);
1217 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1218 AssertDI(N.getType(), "missing global variable type", &N);
1219 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1220 AssertDI(isa<DIDerivedType>(Member),
1221 "invalid static data member declaration", &N, Member);
1225 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1226 // Checks common to all variables.
1227 visitDIVariable(N);
1229 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1230 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1231 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1232 "local variable requires a valid scope", &N, N.getRawScope());
1235 void Verifier::visitDILabel(const DILabel &N) {
1236 if (auto *S = N.getRawScope())
1237 AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1238 if (auto *F = N.getRawFile())
1239 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1241 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1242 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1243 "label requires a valid scope", &N, N.getRawScope());
1246 void Verifier::visitDIExpression(const DIExpression &N) {
1247 AssertDI(N.isValid(), "invalid expression", &N);
1250 void Verifier::visitDIGlobalVariableExpression(
1251 const DIGlobalVariableExpression &GVE) {
1252 AssertDI(GVE.getVariable(), "missing variable");
1253 if (auto *Var = GVE.getVariable())
1254 visitDIGlobalVariable(*Var);
1255 if (auto *Expr = GVE.getExpression()) {
1256 visitDIExpression(*Expr);
1257 if (auto Fragment = Expr->getFragmentInfo())
1258 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1262 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1263 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1264 if (auto *T = N.getRawType())
1265 AssertDI(isType(T), "invalid type ref", &N, T);
1266 if (auto *F = N.getRawFile())
1267 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1270 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1271 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1272 N.getTag() == dwarf::DW_TAG_imported_declaration,
1273 "invalid tag", &N);
1274 if (auto *S = N.getRawScope())
1275 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1276 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1277 N.getRawEntity());
1280 void Verifier::visitComdat(const Comdat &C) {
1281 // The Module is invalid if the GlobalValue has private linkage. Entities
1282 // with private linkage don't have entries in the symbol table.
1283 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1284 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1285 GV);
1288 void Verifier::visitModuleIdents(const Module &M) {
1289 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1290 if (!Idents)
1291 return;
1293 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1294 // Scan each llvm.ident entry and make sure that this requirement is met.
1295 for (const MDNode *N : Idents->operands()) {
1296 Assert(N->getNumOperands() == 1,
1297 "incorrect number of operands in llvm.ident metadata", N);
1298 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1299 ("invalid value for llvm.ident metadata entry operand"
1300 "(the operand should be a string)"),
1301 N->getOperand(0));
1305 void Verifier::visitModuleFlags(const Module &M) {
1306 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1307 if (!Flags) return;
1309 // Scan each flag, and track the flags and requirements.
1310 DenseMap<const MDString*, const MDNode*> SeenIDs;
1311 SmallVector<const MDNode*, 16> Requirements;
1312 for (const MDNode *MDN : Flags->operands())
1313 visitModuleFlag(MDN, SeenIDs, Requirements);
1315 // Validate that the requirements in the module are valid.
1316 for (const MDNode *Requirement : Requirements) {
1317 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1318 const Metadata *ReqValue = Requirement->getOperand(1);
1320 const MDNode *Op = SeenIDs.lookup(Flag);
1321 if (!Op) {
1322 CheckFailed("invalid requirement on flag, flag is not present in module",
1323 Flag);
1324 continue;
1327 if (Op->getOperand(2) != ReqValue) {
1328 CheckFailed(("invalid requirement on flag, "
1329 "flag does not have the required value"),
1330 Flag);
1331 continue;
1336 void
1337 Verifier::visitModuleFlag(const MDNode *Op,
1338 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1339 SmallVectorImpl<const MDNode *> &Requirements) {
1340 // Each module flag should have three arguments, the merge behavior (a
1341 // constant int), the flag ID (an MDString), and the value.
1342 Assert(Op->getNumOperands() == 3,
1343 "incorrect number of operands in module flag", Op);
1344 Module::ModFlagBehavior MFB;
1345 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1346 Assert(
1347 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1348 "invalid behavior operand in module flag (expected constant integer)",
1349 Op->getOperand(0));
1350 Assert(false,
1351 "invalid behavior operand in module flag (unexpected constant)",
1352 Op->getOperand(0));
1354 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1355 Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1356 Op->getOperand(1));
1358 // Sanity check the values for behaviors with additional requirements.
1359 switch (MFB) {
1360 case Module::Error:
1361 case Module::Warning:
1362 case Module::Override:
1363 // These behavior types accept any value.
1364 break;
1366 case Module::Max: {
1367 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1368 "invalid value for 'max' module flag (expected constant integer)",
1369 Op->getOperand(2));
1370 break;
1373 case Module::Require: {
1374 // The value should itself be an MDNode with two operands, a flag ID (an
1375 // MDString), and a value.
1376 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1377 Assert(Value && Value->getNumOperands() == 2,
1378 "invalid value for 'require' module flag (expected metadata pair)",
1379 Op->getOperand(2));
1380 Assert(isa<MDString>(Value->getOperand(0)),
1381 ("invalid value for 'require' module flag "
1382 "(first value operand should be a string)"),
1383 Value->getOperand(0));
1385 // Append it to the list of requirements, to check once all module flags are
1386 // scanned.
1387 Requirements.push_back(Value);
1388 break;
1391 case Module::Append:
1392 case Module::AppendUnique: {
1393 // These behavior types require the operand be an MDNode.
1394 Assert(isa<MDNode>(Op->getOperand(2)),
1395 "invalid value for 'append'-type module flag "
1396 "(expected a metadata node)",
1397 Op->getOperand(2));
1398 break;
1402 // Unless this is a "requires" flag, check the ID is unique.
1403 if (MFB != Module::Require) {
1404 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1405 Assert(Inserted,
1406 "module flag identifiers must be unique (or of 'require' type)", ID);
1409 if (ID->getString() == "wchar_size") {
1410 ConstantInt *Value
1411 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1412 Assert(Value, "wchar_size metadata requires constant integer argument");
1415 if (ID->getString() == "Linker Options") {
1416 // If the llvm.linker.options named metadata exists, we assume that the
1417 // bitcode reader has upgraded the module flag. Otherwise the flag might
1418 // have been created by a client directly.
1419 Assert(M.getNamedMetadata("llvm.linker.options"),
1420 "'Linker Options' named metadata no longer supported");
1423 if (ID->getString() == "CG Profile") {
1424 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1425 visitModuleFlagCGProfileEntry(MDO);
1429 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1430 auto CheckFunction = [&](const MDOperand &FuncMDO) {
1431 if (!FuncMDO)
1432 return;
1433 auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1434 Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1435 FuncMDO);
1437 auto Node = dyn_cast_or_null<MDNode>(MDO);
1438 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1439 CheckFunction(Node->getOperand(0));
1440 CheckFunction(Node->getOperand(1));
1441 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1442 Assert(Count && Count->getType()->isIntegerTy(),
1443 "expected an integer constant", Node->getOperand(2));
1446 /// Return true if this attribute kind only applies to functions.
1447 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1448 switch (Kind) {
1449 case Attribute::NoReturn:
1450 case Attribute::NoCfCheck:
1451 case Attribute::NoUnwind:
1452 case Attribute::NoInline:
1453 case Attribute::AlwaysInline:
1454 case Attribute::OptimizeForSize:
1455 case Attribute::StackProtect:
1456 case Attribute::StackProtectReq:
1457 case Attribute::StackProtectStrong:
1458 case Attribute::SafeStack:
1459 case Attribute::ShadowCallStack:
1460 case Attribute::NoRedZone:
1461 case Attribute::NoImplicitFloat:
1462 case Attribute::Naked:
1463 case Attribute::InlineHint:
1464 case Attribute::StackAlignment:
1465 case Attribute::UWTable:
1466 case Attribute::NonLazyBind:
1467 case Attribute::ReturnsTwice:
1468 case Attribute::SanitizeAddress:
1469 case Attribute::SanitizeHWAddress:
1470 case Attribute::SanitizeThread:
1471 case Attribute::SanitizeMemory:
1472 case Attribute::MinSize:
1473 case Attribute::NoDuplicate:
1474 case Attribute::Builtin:
1475 case Attribute::NoBuiltin:
1476 case Attribute::Cold:
1477 case Attribute::OptForFuzzing:
1478 case Attribute::OptimizeNone:
1479 case Attribute::JumpTable:
1480 case Attribute::Convergent:
1481 case Attribute::ArgMemOnly:
1482 case Attribute::NoRecurse:
1483 case Attribute::InaccessibleMemOnly:
1484 case Attribute::InaccessibleMemOrArgMemOnly:
1485 case Attribute::AllocSize:
1486 case Attribute::SpeculativeLoadHardening:
1487 case Attribute::Speculatable:
1488 case Attribute::StrictFP:
1489 return true;
1490 default:
1491 break;
1493 return false;
1496 /// Return true if this is a function attribute that can also appear on
1497 /// arguments.
1498 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1499 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1500 Kind == Attribute::ReadNone;
1503 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1504 const Value *V) {
1505 for (Attribute A : Attrs) {
1506 if (A.isStringAttribute())
1507 continue;
1509 if (isFuncOnlyAttr(A.getKindAsEnum())) {
1510 if (!IsFunction) {
1511 CheckFailed("Attribute '" + A.getAsString() +
1512 "' only applies to functions!",
1514 return;
1516 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1517 CheckFailed("Attribute '" + A.getAsString() +
1518 "' does not apply to functions!",
1520 return;
1525 // VerifyParameterAttrs - Check the given attributes for an argument or return
1526 // value of the specified type. The value V is printed in error messages.
1527 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1528 const Value *V) {
1529 if (!Attrs.hasAttributes())
1530 return;
1532 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1534 // Check for mutually incompatible attributes. Only inreg is compatible with
1535 // sret.
1536 unsigned AttrCount = 0;
1537 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1538 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1539 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1540 Attrs.hasAttribute(Attribute::InReg);
1541 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1542 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1543 "and 'sret' are incompatible!",
1546 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1547 Attrs.hasAttribute(Attribute::ReadOnly)),
1548 "Attributes "
1549 "'inalloca and readonly' are incompatible!",
1552 Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1553 Attrs.hasAttribute(Attribute::Returned)),
1554 "Attributes "
1555 "'sret and returned' are incompatible!",
1558 Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1559 Attrs.hasAttribute(Attribute::SExt)),
1560 "Attributes "
1561 "'zeroext and signext' are incompatible!",
1564 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1565 Attrs.hasAttribute(Attribute::ReadOnly)),
1566 "Attributes "
1567 "'readnone and readonly' are incompatible!",
1570 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1571 Attrs.hasAttribute(Attribute::WriteOnly)),
1572 "Attributes "
1573 "'readnone and writeonly' are incompatible!",
1576 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1577 Attrs.hasAttribute(Attribute::WriteOnly)),
1578 "Attributes "
1579 "'readonly and writeonly' are incompatible!",
1582 Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1583 Attrs.hasAttribute(Attribute::AlwaysInline)),
1584 "Attributes "
1585 "'noinline and alwaysinline' are incompatible!",
1588 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1589 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1590 "Wrong types for attribute: " +
1591 AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1594 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1595 SmallPtrSet<Type*, 4> Visited;
1596 if (!PTy->getElementType()->isSized(&Visited)) {
1597 Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1598 !Attrs.hasAttribute(Attribute::InAlloca),
1599 "Attributes 'byval' and 'inalloca' do not support unsized types!",
1602 if (!isa<PointerType>(PTy->getElementType()))
1603 Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1604 "Attribute 'swifterror' only applies to parameters "
1605 "with pointer to pointer type!",
1607 } else {
1608 Assert(!Attrs.hasAttribute(Attribute::ByVal),
1609 "Attribute 'byval' only applies to parameters with pointer type!",
1611 Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1612 "Attribute 'swifterror' only applies to parameters "
1613 "with pointer type!",
1618 // Check parameter attributes against a function type.
1619 // The value V is printed in error messages.
1620 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1621 const Value *V) {
1622 if (Attrs.isEmpty())
1623 return;
1625 bool SawNest = false;
1626 bool SawReturned = false;
1627 bool SawSRet = false;
1628 bool SawSwiftSelf = false;
1629 bool SawSwiftError = false;
1631 // Verify return value attributes.
1632 AttributeSet RetAttrs = Attrs.getRetAttributes();
1633 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1634 !RetAttrs.hasAttribute(Attribute::Nest) &&
1635 !RetAttrs.hasAttribute(Attribute::StructRet) &&
1636 !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1637 !RetAttrs.hasAttribute(Attribute::Returned) &&
1638 !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1639 !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1640 !RetAttrs.hasAttribute(Attribute::SwiftError)),
1641 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1642 "'returned', 'swiftself', and 'swifterror' do not apply to return "
1643 "values!",
1645 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1646 !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1647 !RetAttrs.hasAttribute(Attribute::ReadNone)),
1648 "Attribute '" + RetAttrs.getAsString() +
1649 "' does not apply to function returns",
1651 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1653 // Verify parameter attributes.
1654 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1655 Type *Ty = FT->getParamType(i);
1656 AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1658 verifyParameterAttrs(ArgAttrs, Ty, V);
1660 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1661 Assert(!SawNest, "More than one parameter has attribute nest!", V);
1662 SawNest = true;
1665 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1666 Assert(!SawReturned, "More than one parameter has attribute returned!",
1668 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1669 "Incompatible argument and return types for 'returned' attribute",
1671 SawReturned = true;
1674 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1675 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1676 Assert(i == 0 || i == 1,
1677 "Attribute 'sret' is not on first or second parameter!", V);
1678 SawSRet = true;
1681 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1682 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1683 SawSwiftSelf = true;
1686 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1687 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1689 SawSwiftError = true;
1692 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1693 Assert(i == FT->getNumParams() - 1,
1694 "inalloca isn't on the last parameter!", V);
1698 if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1699 return;
1701 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1703 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1704 Attrs.hasFnAttribute(Attribute::ReadOnly)),
1705 "Attributes 'readnone and readonly' are incompatible!", V);
1707 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1708 Attrs.hasFnAttribute(Attribute::WriteOnly)),
1709 "Attributes 'readnone and writeonly' are incompatible!", V);
1711 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1712 Attrs.hasFnAttribute(Attribute::WriteOnly)),
1713 "Attributes 'readonly and writeonly' are incompatible!", V);
1715 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1716 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1717 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1718 "incompatible!",
1721 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1722 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1723 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1725 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1726 Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1727 "Attributes 'noinline and alwaysinline' are incompatible!", V);
1729 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1730 Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1731 "Attribute 'optnone' requires 'noinline'!", V);
1733 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1734 "Attributes 'optsize and optnone' are incompatible!", V);
1736 Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1737 "Attributes 'minsize and optnone' are incompatible!", V);
1740 if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1741 const GlobalValue *GV = cast<GlobalValue>(V);
1742 Assert(GV->hasGlobalUnnamedAddr(),
1743 "Attribute 'jumptable' requires 'unnamed_addr'", V);
1746 if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1747 std::pair<unsigned, Optional<unsigned>> Args =
1748 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1750 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1751 if (ParamNo >= FT->getNumParams()) {
1752 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1753 return false;
1756 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1757 CheckFailed("'allocsize' " + Name +
1758 " argument must refer to an integer parameter",
1760 return false;
1763 return true;
1766 if (!CheckParam("element size", Args.first))
1767 return;
1769 if (Args.second && !CheckParam("number of elements", *Args.second))
1770 return;
1774 void Verifier::verifyFunctionMetadata(
1775 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1776 for (const auto &Pair : MDs) {
1777 if (Pair.first == LLVMContext::MD_prof) {
1778 MDNode *MD = Pair.second;
1779 Assert(MD->getNumOperands() >= 2,
1780 "!prof annotations should have no less than 2 operands", MD);
1782 // Check first operand.
1783 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1784 MD);
1785 Assert(isa<MDString>(MD->getOperand(0)),
1786 "expected string with name of the !prof annotation", MD);
1787 MDString *MDS = cast<MDString>(MD->getOperand(0));
1788 StringRef ProfName = MDS->getString();
1789 Assert(ProfName.equals("function_entry_count") ||
1790 ProfName.equals("synthetic_function_entry_count"),
1791 "first operand should be 'function_entry_count'"
1792 " or 'synthetic_function_entry_count'",
1793 MD);
1795 // Check second operand.
1796 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1797 MD);
1798 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1799 "expected integer argument to function_entry_count", MD);
1804 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1805 if (!ConstantExprVisited.insert(EntryC).second)
1806 return;
1808 SmallVector<const Constant *, 16> Stack;
1809 Stack.push_back(EntryC);
1811 while (!Stack.empty()) {
1812 const Constant *C = Stack.pop_back_val();
1814 // Check this constant expression.
1815 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1816 visitConstantExpr(CE);
1818 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1819 // Global Values get visited separately, but we do need to make sure
1820 // that the global value is in the correct module
1821 Assert(GV->getParent() == &M, "Referencing global in another module!",
1822 EntryC, &M, GV, GV->getParent());
1823 continue;
1826 // Visit all sub-expressions.
1827 for (const Use &U : C->operands()) {
1828 const auto *OpC = dyn_cast<Constant>(U);
1829 if (!OpC)
1830 continue;
1831 if (!ConstantExprVisited.insert(OpC).second)
1832 continue;
1833 Stack.push_back(OpC);
1838 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1839 if (CE->getOpcode() == Instruction::BitCast)
1840 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1841 CE->getType()),
1842 "Invalid bitcast", CE);
1844 if (CE->getOpcode() == Instruction::IntToPtr ||
1845 CE->getOpcode() == Instruction::PtrToInt) {
1846 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1847 ? CE->getType()
1848 : CE->getOperand(0)->getType();
1849 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1850 ? "inttoptr not supported for non-integral pointers"
1851 : "ptrtoint not supported for non-integral pointers";
1852 Assert(
1853 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1854 Msg);
1858 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1859 // There shouldn't be more attribute sets than there are parameters plus the
1860 // function and return value.
1861 return Attrs.getNumAttrSets() <= Params + 2;
1864 /// Verify that statepoint intrinsic is well formed.
1865 void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1866 assert(CS.getCalledFunction() &&
1867 CS.getCalledFunction()->getIntrinsicID() ==
1868 Intrinsic::experimental_gc_statepoint);
1870 const Instruction &CI = *CS.getInstruction();
1872 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1873 !CS.onlyAccessesArgMemory(),
1874 "gc.statepoint must read and write all memory to preserve "
1875 "reordering restrictions required by safepoint semantics",
1876 &CI);
1878 const Value *IDV = CS.getArgument(0);
1879 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1880 &CI);
1882 const Value *NumPatchBytesV = CS.getArgument(1);
1883 Assert(isa<ConstantInt>(NumPatchBytesV),
1884 "gc.statepoint number of patchable bytes must be a constant integer",
1885 &CI);
1886 const int64_t NumPatchBytes =
1887 cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1888 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1889 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1890 "positive",
1891 &CI);
1893 const Value *Target = CS.getArgument(2);
1894 auto *PT = dyn_cast<PointerType>(Target->getType());
1895 Assert(PT && PT->getElementType()->isFunctionTy(),
1896 "gc.statepoint callee must be of function pointer type", &CI, Target);
1897 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1899 const Value *NumCallArgsV = CS.getArgument(3);
1900 Assert(isa<ConstantInt>(NumCallArgsV),
1901 "gc.statepoint number of arguments to underlying call "
1902 "must be constant integer",
1903 &CI);
1904 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1905 Assert(NumCallArgs >= 0,
1906 "gc.statepoint number of arguments to underlying call "
1907 "must be positive",
1908 &CI);
1909 const int NumParams = (int)TargetFuncType->getNumParams();
1910 if (TargetFuncType->isVarArg()) {
1911 Assert(NumCallArgs >= NumParams,
1912 "gc.statepoint mismatch in number of vararg call args", &CI);
1914 // TODO: Remove this limitation
1915 Assert(TargetFuncType->getReturnType()->isVoidTy(),
1916 "gc.statepoint doesn't support wrapping non-void "
1917 "vararg functions yet",
1918 &CI);
1919 } else
1920 Assert(NumCallArgs == NumParams,
1921 "gc.statepoint mismatch in number of call args", &CI);
1923 const Value *FlagsV = CS.getArgument(4);
1924 Assert(isa<ConstantInt>(FlagsV),
1925 "gc.statepoint flags must be constant integer", &CI);
1926 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1927 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1928 "unknown flag used in gc.statepoint flags argument", &CI);
1930 // Verify that the types of the call parameter arguments match
1931 // the type of the wrapped callee.
1932 for (int i = 0; i < NumParams; i++) {
1933 Type *ParamType = TargetFuncType->getParamType(i);
1934 Type *ArgType = CS.getArgument(5 + i)->getType();
1935 Assert(ArgType == ParamType,
1936 "gc.statepoint call argument does not match wrapped "
1937 "function type",
1938 &CI);
1941 const int EndCallArgsInx = 4 + NumCallArgs;
1943 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1944 Assert(isa<ConstantInt>(NumTransitionArgsV),
1945 "gc.statepoint number of transition arguments "
1946 "must be constant integer",
1947 &CI);
1948 const int NumTransitionArgs =
1949 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1950 Assert(NumTransitionArgs >= 0,
1951 "gc.statepoint number of transition arguments must be positive", &CI);
1952 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1954 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1955 Assert(isa<ConstantInt>(NumDeoptArgsV),
1956 "gc.statepoint number of deoptimization arguments "
1957 "must be constant integer",
1958 &CI);
1959 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1960 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1961 "must be positive",
1962 &CI);
1964 const int ExpectedNumArgs =
1965 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1966 Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1967 "gc.statepoint too few arguments according to length fields", &CI);
1969 // Check that the only uses of this gc.statepoint are gc.result or
1970 // gc.relocate calls which are tied to this statepoint and thus part
1971 // of the same statepoint sequence
1972 for (const User *U : CI.users()) {
1973 const CallInst *Call = dyn_cast<const CallInst>(U);
1974 Assert(Call, "illegal use of statepoint token", &CI, U);
1975 if (!Call) continue;
1976 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),
1977 "gc.result or gc.relocate are the only value uses "
1978 "of a gc.statepoint",
1979 &CI, U);
1980 if (isa<GCResultInst>(Call)) {
1981 Assert(Call->getArgOperand(0) == &CI,
1982 "gc.result connected to wrong gc.statepoint", &CI, Call);
1983 } else if (isa<GCRelocateInst>(Call)) {
1984 Assert(Call->getArgOperand(0) == &CI,
1985 "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1989 // Note: It is legal for a single derived pointer to be listed multiple
1990 // times. It's non-optimal, but it is legal. It can also happen after
1991 // insertion if we strip a bitcast away.
1992 // Note: It is really tempting to check that each base is relocated and
1993 // that a derived pointer is never reused as a base pointer. This turns
1994 // out to be problematic since optimizations run after safepoint insertion
1995 // can recognize equality properties that the insertion logic doesn't know
1996 // about. See example statepoint.ll in the verifier subdirectory
1999 void Verifier::verifyFrameRecoverIndices() {
2000 for (auto &Counts : FrameEscapeInfo) {
2001 Function *F = Counts.first;
2002 unsigned EscapedObjectCount = Counts.second.first;
2003 unsigned MaxRecoveredIndex = Counts.second.second;
2004 Assert(MaxRecoveredIndex <= EscapedObjectCount,
2005 "all indices passed to llvm.localrecover must be less than the "
2006 "number of arguments passed ot llvm.localescape in the parent "
2007 "function",
2012 static Instruction *getSuccPad(TerminatorInst *Terminator) {
2013 BasicBlock *UnwindDest;
2014 if (auto *II = dyn_cast<InvokeInst>(Terminator))
2015 UnwindDest = II->getUnwindDest();
2016 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2017 UnwindDest = CSI->getUnwindDest();
2018 else
2019 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2020 return UnwindDest->getFirstNonPHI();
2023 void Verifier::verifySiblingFuncletUnwinds() {
2024 SmallPtrSet<Instruction *, 8> Visited;
2025 SmallPtrSet<Instruction *, 8> Active;
2026 for (const auto &Pair : SiblingFuncletInfo) {
2027 Instruction *PredPad = Pair.first;
2028 if (Visited.count(PredPad))
2029 continue;
2030 Active.insert(PredPad);
2031 TerminatorInst *Terminator = Pair.second;
2032 do {
2033 Instruction *SuccPad = getSuccPad(Terminator);
2034 if (Active.count(SuccPad)) {
2035 // Found a cycle; report error
2036 Instruction *CyclePad = SuccPad;
2037 SmallVector<Instruction *, 8> CycleNodes;
2038 do {
2039 CycleNodes.push_back(CyclePad);
2040 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
2041 if (CycleTerminator != CyclePad)
2042 CycleNodes.push_back(CycleTerminator);
2043 CyclePad = getSuccPad(CycleTerminator);
2044 } while (CyclePad != SuccPad);
2045 Assert(false, "EH pads can't handle each other's exceptions",
2046 ArrayRef<Instruction *>(CycleNodes));
2048 // Don't re-walk a node we've already checked
2049 if (!Visited.insert(SuccPad).second)
2050 break;
2051 // Walk to this successor if it has a map entry.
2052 PredPad = SuccPad;
2053 auto TermI = SiblingFuncletInfo.find(PredPad);
2054 if (TermI == SiblingFuncletInfo.end())
2055 break;
2056 Terminator = TermI->second;
2057 Active.insert(PredPad);
2058 } while (true);
2059 // Each node only has one successor, so we've walked all the active
2060 // nodes' successors.
2061 Active.clear();
2065 // visitFunction - Verify that a function is ok.
2067 void Verifier::visitFunction(const Function &F) {
2068 visitGlobalValue(F);
2070 // Check function arguments.
2071 FunctionType *FT = F.getFunctionType();
2072 unsigned NumArgs = F.arg_size();
2074 Assert(&Context == &F.getContext(),
2075 "Function context does not match Module context!", &F);
2077 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2078 Assert(FT->getNumParams() == NumArgs,
2079 "# formal arguments must match # of arguments for function type!", &F,
2080 FT);
2081 Assert(F.getReturnType()->isFirstClassType() ||
2082 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2083 "Functions cannot return aggregate values!", &F);
2085 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2086 "Invalid struct return type!", &F);
2088 AttributeList Attrs = F.getAttributes();
2090 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2091 "Attribute after last parameter!", &F);
2093 // Check function attributes.
2094 verifyFunctionAttrs(FT, Attrs, &F);
2096 // On function declarations/definitions, we do not support the builtin
2097 // attribute. We do not check this in VerifyFunctionAttrs since that is
2098 // checking for Attributes that can/can not ever be on functions.
2099 Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2100 "Attribute 'builtin' can only be applied to a callsite.", &F);
2102 // Check that this function meets the restrictions on this calling convention.
2103 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2104 // restrictions can be lifted.
2105 switch (F.getCallingConv()) {
2106 default:
2107 case CallingConv::C:
2108 break;
2109 case CallingConv::AMDGPU_KERNEL:
2110 case CallingConv::SPIR_KERNEL:
2111 Assert(F.getReturnType()->isVoidTy(),
2112 "Calling convention requires void return type", &F);
2113 LLVM_FALLTHROUGH;
2114 case CallingConv::AMDGPU_VS:
2115 case CallingConv::AMDGPU_HS:
2116 case CallingConv::AMDGPU_GS:
2117 case CallingConv::AMDGPU_PS:
2118 case CallingConv::AMDGPU_CS:
2119 Assert(!F.hasStructRetAttr(),
2120 "Calling convention does not allow sret", &F);
2121 LLVM_FALLTHROUGH;
2122 case CallingConv::Fast:
2123 case CallingConv::Cold:
2124 case CallingConv::Intel_OCL_BI:
2125 case CallingConv::PTX_Kernel:
2126 case CallingConv::PTX_Device:
2127 Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2128 "perfect forwarding!",
2129 &F);
2130 break;
2133 bool isLLVMdotName = F.getName().size() >= 5 &&
2134 F.getName().substr(0, 5) == "llvm.";
2136 // Check that the argument values match the function type for this function...
2137 unsigned i = 0;
2138 for (const Argument &Arg : F.args()) {
2139 Assert(Arg.getType() == FT->getParamType(i),
2140 "Argument value does not match function argument type!", &Arg,
2141 FT->getParamType(i));
2142 Assert(Arg.getType()->isFirstClassType(),
2143 "Function arguments must have first-class types!", &Arg);
2144 if (!isLLVMdotName) {
2145 Assert(!Arg.getType()->isMetadataTy(),
2146 "Function takes metadata but isn't an intrinsic", &Arg, &F);
2147 Assert(!Arg.getType()->isTokenTy(),
2148 "Function takes token but isn't an intrinsic", &Arg, &F);
2151 // Check that swifterror argument is only used by loads and stores.
2152 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2153 verifySwiftErrorValue(&Arg);
2155 ++i;
2158 if (!isLLVMdotName)
2159 Assert(!F.getReturnType()->isTokenTy(),
2160 "Functions returns a token but isn't an intrinsic", &F);
2162 // Get the function metadata attachments.
2163 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2164 F.getAllMetadata(MDs);
2165 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2166 verifyFunctionMetadata(MDs);
2168 // Check validity of the personality function
2169 if (F.hasPersonalityFn()) {
2170 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2171 if (Per)
2172 Assert(Per->getParent() == F.getParent(),
2173 "Referencing personality function in another module!",
2174 &F, F.getParent(), Per, Per->getParent());
2177 if (F.isMaterializable()) {
2178 // Function has a body somewhere we can't see.
2179 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2180 MDs.empty() ? nullptr : MDs.front().second);
2181 } else if (F.isDeclaration()) {
2182 for (const auto &I : MDs) {
2183 AssertDI(I.first != LLVMContext::MD_dbg,
2184 "function declaration may not have a !dbg attachment", &F);
2185 Assert(I.first != LLVMContext::MD_prof,
2186 "function declaration may not have a !prof attachment", &F);
2188 // Verify the metadata itself.
2189 visitMDNode(*I.second);
2191 Assert(!F.hasPersonalityFn(),
2192 "Function declaration shouldn't have a personality routine", &F);
2193 } else {
2194 // Verify that this function (which has a body) is not named "llvm.*". It
2195 // is not legal to define intrinsics.
2196 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2198 // Check the entry node
2199 const BasicBlock *Entry = &F.getEntryBlock();
2200 Assert(pred_empty(Entry),
2201 "Entry block to function must not have predecessors!", Entry);
2203 // The address of the entry block cannot be taken, unless it is dead.
2204 if (Entry->hasAddressTaken()) {
2205 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2206 "blockaddress may not be used with the entry block!", Entry);
2209 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2210 // Visit metadata attachments.
2211 for (const auto &I : MDs) {
2212 // Verify that the attachment is legal.
2213 switch (I.first) {
2214 default:
2215 break;
2216 case LLVMContext::MD_dbg: {
2217 ++NumDebugAttachments;
2218 AssertDI(NumDebugAttachments == 1,
2219 "function must have a single !dbg attachment", &F, I.second);
2220 AssertDI(isa<DISubprogram>(I.second),
2221 "function !dbg attachment must be a subprogram", &F, I.second);
2222 auto *SP = cast<DISubprogram>(I.second);
2223 const Function *&AttachedTo = DISubprogramAttachments[SP];
2224 AssertDI(!AttachedTo || AttachedTo == &F,
2225 "DISubprogram attached to more than one function", SP, &F);
2226 AttachedTo = &F;
2227 break;
2229 case LLVMContext::MD_prof:
2230 ++NumProfAttachments;
2231 Assert(NumProfAttachments == 1,
2232 "function must have a single !prof attachment", &F, I.second);
2233 break;
2236 // Verify the metadata itself.
2237 visitMDNode(*I.second);
2241 // If this function is actually an intrinsic, verify that it is only used in
2242 // direct call/invokes, never having its "address taken".
2243 // Only do this if the module is materialized, otherwise we don't have all the
2244 // uses.
2245 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2246 const User *U;
2247 if (F.hasAddressTaken(&U))
2248 Assert(false, "Invalid user of intrinsic instruction!", U);
2251 auto *N = F.getSubprogram();
2252 HasDebugInfo = (N != nullptr);
2253 if (!HasDebugInfo)
2254 return;
2256 // Check that all !dbg attachments lead to back to N (or, at least, another
2257 // subprogram that describes the same function).
2259 // FIXME: Check this incrementally while visiting !dbg attachments.
2260 // FIXME: Only check when N is the canonical subprogram for F.
2261 SmallPtrSet<const MDNode *, 32> Seen;
2262 for (auto &BB : F)
2263 for (auto &I : BB) {
2264 // Be careful about using DILocation here since we might be dealing with
2265 // broken code (this is the Verifier after all).
2266 DILocation *DL =
2267 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2268 if (!DL)
2269 continue;
2270 if (!Seen.insert(DL).second)
2271 continue;
2273 Metadata *Parent = DL->getRawScope();
2274 AssertDI(Parent && isa<DILocalScope>(Parent),
2275 "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2276 Parent);
2277 DILocalScope *Scope = DL->getInlinedAtScope();
2278 if (Scope && !Seen.insert(Scope).second)
2279 continue;
2281 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2283 // Scope and SP could be the same MDNode and we don't want to skip
2284 // validation in that case
2285 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2286 continue;
2288 // FIXME: Once N is canonical, check "SP == &N".
2289 AssertDI(SP->describes(&F),
2290 "!dbg attachment points at wrong subprogram for function", N, &F,
2291 &I, DL, Scope, SP);
2295 // verifyBasicBlock - Verify that a basic block is well formed...
2297 void Verifier::visitBasicBlock(BasicBlock &BB) {
2298 InstsInThisBlock.clear();
2300 // Ensure that basic blocks have terminators!
2301 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2303 // Check constraints that this basic block imposes on all of the PHI nodes in
2304 // it.
2305 if (isa<PHINode>(BB.front())) {
2306 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2307 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2308 llvm::sort(Preds);
2309 for (const PHINode &PN : BB.phis()) {
2310 // Ensure that PHI nodes have at least one entry!
2311 Assert(PN.getNumIncomingValues() != 0,
2312 "PHI nodes must have at least one entry. If the block is dead, "
2313 "the PHI should be removed!",
2314 &PN);
2315 Assert(PN.getNumIncomingValues() == Preds.size(),
2316 "PHINode should have one entry for each predecessor of its "
2317 "parent basic block!",
2318 &PN);
2320 // Get and sort all incoming values in the PHI node...
2321 Values.clear();
2322 Values.reserve(PN.getNumIncomingValues());
2323 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2324 Values.push_back(
2325 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2326 llvm::sort(Values);
2328 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2329 // Check to make sure that if there is more than one entry for a
2330 // particular basic block in this PHI node, that the incoming values are
2331 // all identical.
2333 Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2334 Values[i].second == Values[i - 1].second,
2335 "PHI node has multiple entries for the same basic block with "
2336 "different incoming values!",
2337 &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2339 // Check to make sure that the predecessors and PHI node entries are
2340 // matched up.
2341 Assert(Values[i].first == Preds[i],
2342 "PHI node entries do not match predecessors!", &PN,
2343 Values[i].first, Preds[i]);
2348 // Check that all instructions have their parent pointers set up correctly.
2349 for (auto &I : BB)
2351 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2355 void Verifier::visitTerminatorInst(TerminatorInst &I) {
2356 // Ensure that terminators only exist at the end of the basic block.
2357 Assert(&I == I.getParent()->getTerminator(),
2358 "Terminator found in the middle of a basic block!", I.getParent());
2359 visitInstruction(I);
2362 void Verifier::visitBranchInst(BranchInst &BI) {
2363 if (BI.isConditional()) {
2364 Assert(BI.getCondition()->getType()->isIntegerTy(1),
2365 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2367 visitTerminatorInst(BI);
2370 void Verifier::visitReturnInst(ReturnInst &RI) {
2371 Function *F = RI.getParent()->getParent();
2372 unsigned N = RI.getNumOperands();
2373 if (F->getReturnType()->isVoidTy())
2374 Assert(N == 0,
2375 "Found return instr that returns non-void in Function of void "
2376 "return type!",
2377 &RI, F->getReturnType());
2378 else
2379 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2380 "Function return type does not match operand "
2381 "type of return inst!",
2382 &RI, F->getReturnType());
2384 // Check to make sure that the return value has necessary properties for
2385 // terminators...
2386 visitTerminatorInst(RI);
2389 void Verifier::visitSwitchInst(SwitchInst &SI) {
2390 // Check to make sure that all of the constants in the switch instruction
2391 // have the same type as the switched-on value.
2392 Type *SwitchTy = SI.getCondition()->getType();
2393 SmallPtrSet<ConstantInt*, 32> Constants;
2394 for (auto &Case : SI.cases()) {
2395 Assert(Case.getCaseValue()->getType() == SwitchTy,
2396 "Switch constants must all be same type as switch value!", &SI);
2397 Assert(Constants.insert(Case.getCaseValue()).second,
2398 "Duplicate integer as switch case", &SI, Case.getCaseValue());
2401 visitTerminatorInst(SI);
2404 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2405 Assert(BI.getAddress()->getType()->isPointerTy(),
2406 "Indirectbr operand must have pointer type!", &BI);
2407 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2408 Assert(BI.getDestination(i)->getType()->isLabelTy(),
2409 "Indirectbr destinations must all have pointer type!", &BI);
2411 visitTerminatorInst(BI);
2414 void Verifier::visitSelectInst(SelectInst &SI) {
2415 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2416 SI.getOperand(2)),
2417 "Invalid operands for select instruction!", &SI);
2419 Assert(SI.getTrueValue()->getType() == SI.getType(),
2420 "Select values must have same type as select instruction!", &SI);
2421 visitInstruction(SI);
2424 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2425 /// a pass, if any exist, it's an error.
2427 void Verifier::visitUserOp1(Instruction &I) {
2428 Assert(false, "User-defined operators should not live outside of a pass!", &I);
2431 void Verifier::visitTruncInst(TruncInst &I) {
2432 // Get the source and destination types
2433 Type *SrcTy = I.getOperand(0)->getType();
2434 Type *DestTy = I.getType();
2436 // Get the size of the types in bits, we'll need this later
2437 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2438 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2440 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2441 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2442 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2443 "trunc source and destination must both be a vector or neither", &I);
2444 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2446 visitInstruction(I);
2449 void Verifier::visitZExtInst(ZExtInst &I) {
2450 // Get the source and destination types
2451 Type *SrcTy = I.getOperand(0)->getType();
2452 Type *DestTy = I.getType();
2454 // Get the size of the types in bits, we'll need this later
2455 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2456 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2457 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2458 "zext source and destination must both be a vector or neither", &I);
2459 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2460 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2462 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2464 visitInstruction(I);
2467 void Verifier::visitSExtInst(SExtInst &I) {
2468 // Get the source and destination types
2469 Type *SrcTy = I.getOperand(0)->getType();
2470 Type *DestTy = I.getType();
2472 // Get the size of the types in bits, we'll need this later
2473 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2474 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2476 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2477 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2478 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2479 "sext source and destination must both be a vector or neither", &I);
2480 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2482 visitInstruction(I);
2485 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2486 // Get the source and destination types
2487 Type *SrcTy = I.getOperand(0)->getType();
2488 Type *DestTy = I.getType();
2489 // Get the size of the types in bits, we'll need this later
2490 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2491 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2493 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2494 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2495 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2496 "fptrunc source and destination must both be a vector or neither", &I);
2497 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2499 visitInstruction(I);
2502 void Verifier::visitFPExtInst(FPExtInst &I) {
2503 // Get the source and destination types
2504 Type *SrcTy = I.getOperand(0)->getType();
2505 Type *DestTy = I.getType();
2507 // Get the size of the types in bits, we'll need this later
2508 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2509 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2511 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2512 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2513 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2514 "fpext source and destination must both be a vector or neither", &I);
2515 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2517 visitInstruction(I);
2520 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2521 // Get the source and destination types
2522 Type *SrcTy = I.getOperand(0)->getType();
2523 Type *DestTy = I.getType();
2525 bool SrcVec = SrcTy->isVectorTy();
2526 bool DstVec = DestTy->isVectorTy();
2528 Assert(SrcVec == DstVec,
2529 "UIToFP source and dest must both be vector or scalar", &I);
2530 Assert(SrcTy->isIntOrIntVectorTy(),
2531 "UIToFP source must be integer or integer vector", &I);
2532 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2533 &I);
2535 if (SrcVec && DstVec)
2536 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2537 cast<VectorType>(DestTy)->getNumElements(),
2538 "UIToFP source and dest vector length mismatch", &I);
2540 visitInstruction(I);
2543 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2544 // Get the source and destination types
2545 Type *SrcTy = I.getOperand(0)->getType();
2546 Type *DestTy = I.getType();
2548 bool SrcVec = SrcTy->isVectorTy();
2549 bool DstVec = DestTy->isVectorTy();
2551 Assert(SrcVec == DstVec,
2552 "SIToFP source and dest must both be vector or scalar", &I);
2553 Assert(SrcTy->isIntOrIntVectorTy(),
2554 "SIToFP source must be integer or integer vector", &I);
2555 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2556 &I);
2558 if (SrcVec && DstVec)
2559 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2560 cast<VectorType>(DestTy)->getNumElements(),
2561 "SIToFP source and dest vector length mismatch", &I);
2563 visitInstruction(I);
2566 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2567 // Get the source and destination types
2568 Type *SrcTy = I.getOperand(0)->getType();
2569 Type *DestTy = I.getType();
2571 bool SrcVec = SrcTy->isVectorTy();
2572 bool DstVec = DestTy->isVectorTy();
2574 Assert(SrcVec == DstVec,
2575 "FPToUI source and dest must both be vector or scalar", &I);
2576 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2577 &I);
2578 Assert(DestTy->isIntOrIntVectorTy(),
2579 "FPToUI result must be integer or integer vector", &I);
2581 if (SrcVec && DstVec)
2582 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2583 cast<VectorType>(DestTy)->getNumElements(),
2584 "FPToUI source and dest vector length mismatch", &I);
2586 visitInstruction(I);
2589 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2590 // Get the source and destination types
2591 Type *SrcTy = I.getOperand(0)->getType();
2592 Type *DestTy = I.getType();
2594 bool SrcVec = SrcTy->isVectorTy();
2595 bool DstVec = DestTy->isVectorTy();
2597 Assert(SrcVec == DstVec,
2598 "FPToSI source and dest must both be vector or scalar", &I);
2599 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2600 &I);
2601 Assert(DestTy->isIntOrIntVectorTy(),
2602 "FPToSI result must be integer or integer vector", &I);
2604 if (SrcVec && DstVec)
2605 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2606 cast<VectorType>(DestTy)->getNumElements(),
2607 "FPToSI source and dest vector length mismatch", &I);
2609 visitInstruction(I);
2612 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2613 // Get the source and destination types
2614 Type *SrcTy = I.getOperand(0)->getType();
2615 Type *DestTy = I.getType();
2617 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2619 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2620 Assert(!DL.isNonIntegralPointerType(PTy),
2621 "ptrtoint not supported for non-integral pointers");
2623 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2624 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2625 &I);
2627 if (SrcTy->isVectorTy()) {
2628 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2629 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2630 Assert(VSrc->getNumElements() == VDest->getNumElements(),
2631 "PtrToInt Vector width mismatch", &I);
2634 visitInstruction(I);
2637 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2638 // Get the source and destination types
2639 Type *SrcTy = I.getOperand(0)->getType();
2640 Type *DestTy = I.getType();
2642 Assert(SrcTy->isIntOrIntVectorTy(),
2643 "IntToPtr source must be an integral", &I);
2644 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2646 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2647 Assert(!DL.isNonIntegralPointerType(PTy),
2648 "inttoptr not supported for non-integral pointers");
2650 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2651 &I);
2652 if (SrcTy->isVectorTy()) {
2653 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2654 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2655 Assert(VSrc->getNumElements() == VDest->getNumElements(),
2656 "IntToPtr Vector width mismatch", &I);
2658 visitInstruction(I);
2661 void Verifier::visitBitCastInst(BitCastInst &I) {
2662 Assert(
2663 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2664 "Invalid bitcast", &I);
2665 visitInstruction(I);
2668 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2669 Type *SrcTy = I.getOperand(0)->getType();
2670 Type *DestTy = I.getType();
2672 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2673 &I);
2674 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2675 &I);
2676 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2677 "AddrSpaceCast must be between different address spaces", &I);
2678 if (SrcTy->isVectorTy())
2679 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2680 "AddrSpaceCast vector pointer number of elements mismatch", &I);
2681 visitInstruction(I);
2684 /// visitPHINode - Ensure that a PHI node is well formed.
2686 void Verifier::visitPHINode(PHINode &PN) {
2687 // Ensure that the PHI nodes are all grouped together at the top of the block.
2688 // This can be tested by checking whether the instruction before this is
2689 // either nonexistent (because this is begin()) or is a PHI node. If not,
2690 // then there is some other instruction before a PHI.
2691 Assert(&PN == &PN.getParent()->front() ||
2692 isa<PHINode>(--BasicBlock::iterator(&PN)),
2693 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2695 // Check that a PHI doesn't yield a Token.
2696 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2698 // Check that all of the values of the PHI node have the same type as the
2699 // result, and that the incoming blocks are really basic blocks.
2700 for (Value *IncValue : PN.incoming_values()) {
2701 Assert(PN.getType() == IncValue->getType(),
2702 "PHI node operands are not the same type as the result!", &PN);
2705 // All other PHI node constraints are checked in the visitBasicBlock method.
2707 visitInstruction(PN);
2710 void Verifier::verifyCallSite(CallSite CS) {
2711 Instruction *I = CS.getInstruction();
2713 Assert(CS.getCalledValue()->getType()->isPointerTy(),
2714 "Called function must be a pointer!", I);
2715 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2717 Assert(FPTy->getElementType()->isFunctionTy(),
2718 "Called function is not pointer to function type!", I);
2720 Assert(FPTy->getElementType() == CS.getFunctionType(),
2721 "Called function is not the same type as the call!", I);
2723 FunctionType *FTy = CS.getFunctionType();
2725 // Verify that the correct number of arguments are being passed
2726 if (FTy->isVarArg())
2727 Assert(CS.arg_size() >= FTy->getNumParams(),
2728 "Called function requires more parameters than were provided!", I);
2729 else
2730 Assert(CS.arg_size() == FTy->getNumParams(),
2731 "Incorrect number of arguments passed to called function!", I);
2733 // Verify that all arguments to the call match the function type.
2734 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2735 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2736 "Call parameter type does not match function signature!",
2737 CS.getArgument(i), FTy->getParamType(i), I);
2739 AttributeList Attrs = CS.getAttributes();
2741 Assert(verifyAttributeCount(Attrs, CS.arg_size()),
2742 "Attribute after last parameter!", I);
2744 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2745 // Don't allow speculatable on call sites, unless the underlying function
2746 // declaration is also speculatable.
2747 Function *Callee
2748 = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
2749 Assert(Callee && Callee->isSpeculatable(),
2750 "speculatable attribute may not apply to call sites", I);
2753 // Verify call attributes.
2754 verifyFunctionAttrs(FTy, Attrs, I);
2756 // Conservatively check the inalloca argument.
2757 // We have a bug if we can find that there is an underlying alloca without
2758 // inalloca.
2759 if (CS.hasInAllocaArgument()) {
2760 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2761 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2762 Assert(AI->isUsedWithInAlloca(),
2763 "inalloca argument for call has mismatched alloca", AI, I);
2766 // For each argument of the callsite, if it has the swifterror argument,
2767 // make sure the underlying alloca/parameter it comes from has a swifterror as
2768 // well.
2769 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2770 if (CS.paramHasAttr(i, Attribute::SwiftError)) {
2771 Value *SwiftErrorArg = CS.getArgument(i);
2772 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2773 Assert(AI->isSwiftError(),
2774 "swifterror argument for call has mismatched alloca", AI, I);
2775 continue;
2777 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2778 Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I);
2779 Assert(ArgI->hasSwiftErrorAttr(),
2780 "swifterror argument for call has mismatched parameter", ArgI, I);
2783 if (FTy->isVarArg()) {
2784 // FIXME? is 'nest' even legal here?
2785 bool SawNest = false;
2786 bool SawReturned = false;
2788 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2789 if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2790 SawNest = true;
2791 if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2792 SawReturned = true;
2795 // Check attributes on the varargs part.
2796 for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) {
2797 Type *Ty = CS.getArgument(Idx)->getType();
2798 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2799 verifyParameterAttrs(ArgAttrs, Ty, I);
2801 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2802 Assert(!SawNest, "More than one parameter has attribute nest!", I);
2803 SawNest = true;
2806 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2807 Assert(!SawReturned, "More than one parameter has attribute returned!",
2809 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2810 "Incompatible argument and return types for 'returned' "
2811 "attribute",
2813 SawReturned = true;
2816 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2817 "Attribute 'sret' cannot be used for vararg call arguments!", I);
2819 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2820 Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!",
2825 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2826 if (CS.getCalledFunction() == nullptr ||
2827 !CS.getCalledFunction()->getName().startswith("llvm.")) {
2828 for (Type *ParamTy : FTy->params()) {
2829 Assert(!ParamTy->isMetadataTy(),
2830 "Function has metadata parameter but isn't an intrinsic", I);
2831 Assert(!ParamTy->isTokenTy(),
2832 "Function has token parameter but isn't an intrinsic", I);
2836 // Verify that indirect calls don't return tokens.
2837 if (CS.getCalledFunction() == nullptr)
2838 Assert(!FTy->getReturnType()->isTokenTy(),
2839 "Return type cannot be token for indirect call!");
2841 if (Function *F = CS.getCalledFunction())
2842 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2843 visitIntrinsicCallSite(ID, CS);
2845 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2846 // at most one "gc-transition" operand bundle.
2847 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2848 FoundGCTransitionBundle = false;
2849 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2850 OperandBundleUse BU = CS.getOperandBundleAt(i);
2851 uint32_t Tag = BU.getTagID();
2852 if (Tag == LLVMContext::OB_deopt) {
2853 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2854 FoundDeoptBundle = true;
2855 } else if (Tag == LLVMContext::OB_gc_transition) {
2856 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2858 FoundGCTransitionBundle = true;
2859 } else if (Tag == LLVMContext::OB_funclet) {
2860 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2861 FoundFuncletBundle = true;
2862 Assert(BU.Inputs.size() == 1,
2863 "Expected exactly one funclet bundle operand", I);
2864 Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2865 "Funclet bundle operands should correspond to a FuncletPadInst",
2870 // Verify that each inlinable callsite of a debug-info-bearing function in a
2871 // debug-info-bearing function has a debug location attached to it. Failure to
2872 // do so causes assertion failures when the inliner sets up inline scope info.
2873 if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2874 CS.getCalledFunction()->getSubprogram())
2875 AssertDI(I->getDebugLoc(), "inlinable function call in a function with "
2876 "debug info must have a !dbg location",
2879 visitInstruction(*I);
2882 /// Two types are "congruent" if they are identical, or if they are both pointer
2883 /// types with different pointee types and the same address space.
2884 static bool isTypeCongruent(Type *L, Type *R) {
2885 if (L == R)
2886 return true;
2887 PointerType *PL = dyn_cast<PointerType>(L);
2888 PointerType *PR = dyn_cast<PointerType>(R);
2889 if (!PL || !PR)
2890 return false;
2891 return PL->getAddressSpace() == PR->getAddressSpace();
2894 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
2895 static const Attribute::AttrKind ABIAttrs[] = {
2896 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2897 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2898 Attribute::SwiftError};
2899 AttrBuilder Copy;
2900 for (auto AK : ABIAttrs) {
2901 if (Attrs.hasParamAttribute(I, AK))
2902 Copy.addAttribute(AK);
2904 if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2905 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2906 return Copy;
2909 void Verifier::verifyMustTailCall(CallInst &CI) {
2910 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2912 // - The caller and callee prototypes must match. Pointer types of
2913 // parameters or return types may differ in pointee type, but not
2914 // address space.
2915 Function *F = CI.getParent()->getParent();
2916 FunctionType *CallerTy = F->getFunctionType();
2917 FunctionType *CalleeTy = CI.getFunctionType();
2918 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
2919 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2920 "cannot guarantee tail call due to mismatched parameter counts",
2921 &CI);
2922 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2923 Assert(
2924 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2925 "cannot guarantee tail call due to mismatched parameter types", &CI);
2928 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2929 "cannot guarantee tail call due to mismatched varargs", &CI);
2930 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2931 "cannot guarantee tail call due to mismatched return types", &CI);
2933 // - The calling conventions of the caller and callee must match.
2934 Assert(F->getCallingConv() == CI.getCallingConv(),
2935 "cannot guarantee tail call due to mismatched calling conv", &CI);
2937 // - All ABI-impacting function attributes, such as sret, byval, inreg,
2938 // returned, and inalloca, must match.
2939 AttributeList CallerAttrs = F->getAttributes();
2940 AttributeList CalleeAttrs = CI.getAttributes();
2941 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2942 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2943 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2944 Assert(CallerABIAttrs == CalleeABIAttrs,
2945 "cannot guarantee tail call due to mismatched ABI impacting "
2946 "function attributes",
2947 &CI, CI.getOperand(I));
2950 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2951 // or a pointer bitcast followed by a ret instruction.
2952 // - The ret instruction must return the (possibly bitcasted) value
2953 // produced by the call or void.
2954 Value *RetVal = &CI;
2955 Instruction *Next = CI.getNextNode();
2957 // Handle the optional bitcast.
2958 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2959 Assert(BI->getOperand(0) == RetVal,
2960 "bitcast following musttail call must use the call", BI);
2961 RetVal = BI;
2962 Next = BI->getNextNode();
2965 // Check the return.
2966 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2967 Assert(Ret, "musttail call must precede a ret with an optional bitcast",
2968 &CI);
2969 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2970 "musttail call result must be returned", Ret);
2973 void Verifier::visitCallInst(CallInst &CI) {
2974 verifyCallSite(&CI);
2976 if (CI.isMustTailCall())
2977 verifyMustTailCall(CI);
2980 void Verifier::visitInvokeInst(InvokeInst &II) {
2981 verifyCallSite(&II);
2983 // Verify that the first non-PHI instruction of the unwind destination is an
2984 // exception handling instruction.
2985 Assert(
2986 II.getUnwindDest()->isEHPad(),
2987 "The unwind destination does not have an exception handling instruction!",
2988 &II);
2990 visitTerminatorInst(II);
2993 /// visitBinaryOperator - Check that both arguments to the binary operator are
2994 /// of the same type!
2996 void Verifier::visitBinaryOperator(BinaryOperator &B) {
2997 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2998 "Both operands to a binary operator are not of the same type!", &B);
3000 switch (B.getOpcode()) {
3001 // Check that integer arithmetic operators are only used with
3002 // integral operands.
3003 case Instruction::Add:
3004 case Instruction::Sub:
3005 case Instruction::Mul:
3006 case Instruction::SDiv:
3007 case Instruction::UDiv:
3008 case Instruction::SRem:
3009 case Instruction::URem:
3010 Assert(B.getType()->isIntOrIntVectorTy(),
3011 "Integer arithmetic operators only work with integral types!", &B);
3012 Assert(B.getType() == B.getOperand(0)->getType(),
3013 "Integer arithmetic operators must have same type "
3014 "for operands and result!",
3015 &B);
3016 break;
3017 // Check that floating-point arithmetic operators are only used with
3018 // floating-point operands.
3019 case Instruction::FAdd:
3020 case Instruction::FSub:
3021 case Instruction::FMul:
3022 case Instruction::FDiv:
3023 case Instruction::FRem:
3024 Assert(B.getType()->isFPOrFPVectorTy(),
3025 "Floating-point arithmetic operators only work with "
3026 "floating-point types!",
3027 &B);
3028 Assert(B.getType() == B.getOperand(0)->getType(),
3029 "Floating-point arithmetic operators must have same type "
3030 "for operands and result!",
3031 &B);
3032 break;
3033 // Check that logical operators are only used with integral operands.
3034 case Instruction::And:
3035 case Instruction::Or:
3036 case Instruction::Xor:
3037 Assert(B.getType()->isIntOrIntVectorTy(),
3038 "Logical operators only work with integral types!", &B);
3039 Assert(B.getType() == B.getOperand(0)->getType(),
3040 "Logical operators must have same type for operands and result!",
3041 &B);
3042 break;
3043 case Instruction::Shl:
3044 case Instruction::LShr:
3045 case Instruction::AShr:
3046 Assert(B.getType()->isIntOrIntVectorTy(),
3047 "Shifts only work with integral types!", &B);
3048 Assert(B.getType() == B.getOperand(0)->getType(),
3049 "Shift return type must be same as operands!", &B);
3050 break;
3051 default:
3052 llvm_unreachable("Unknown BinaryOperator opcode!");
3055 visitInstruction(B);
3058 void Verifier::visitICmpInst(ICmpInst &IC) {
3059 // Check that the operands are the same type
3060 Type *Op0Ty = IC.getOperand(0)->getType();
3061 Type *Op1Ty = IC.getOperand(1)->getType();
3062 Assert(Op0Ty == Op1Ty,
3063 "Both operands to ICmp instruction are not of the same type!", &IC);
3064 // Check that the operands are the right type
3065 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3066 "Invalid operand types for ICmp instruction", &IC);
3067 // Check that the predicate is valid.
3068 Assert(IC.isIntPredicate(),
3069 "Invalid predicate in ICmp instruction!", &IC);
3071 visitInstruction(IC);
3074 void Verifier::visitFCmpInst(FCmpInst &FC) {
3075 // Check that the operands are the same type
3076 Type *Op0Ty = FC.getOperand(0)->getType();
3077 Type *Op1Ty = FC.getOperand(1)->getType();
3078 Assert(Op0Ty == Op1Ty,
3079 "Both operands to FCmp instruction are not of the same type!", &FC);
3080 // Check that the operands are the right type
3081 Assert(Op0Ty->isFPOrFPVectorTy(),
3082 "Invalid operand types for FCmp instruction", &FC);
3083 // Check that the predicate is valid.
3084 Assert(FC.isFPPredicate(),
3085 "Invalid predicate in FCmp instruction!", &FC);
3087 visitInstruction(FC);
3090 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3091 Assert(
3092 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3093 "Invalid extractelement operands!", &EI);
3094 visitInstruction(EI);
3097 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3098 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3099 IE.getOperand(2)),
3100 "Invalid insertelement operands!", &IE);
3101 visitInstruction(IE);
3104 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3105 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3106 SV.getOperand(2)),
3107 "Invalid shufflevector operands!", &SV);
3108 visitInstruction(SV);
3111 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3112 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3114 Assert(isa<PointerType>(TargetTy),
3115 "GEP base pointer is not a vector or a vector of pointers", &GEP);
3116 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3118 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3119 Assert(all_of(
3120 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3121 "GEP indexes must be integers", &GEP);
3122 Type *ElTy =
3123 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3124 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3126 Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3127 GEP.getResultElementType() == ElTy,
3128 "GEP is not of right type for indices!", &GEP, ElTy);
3130 if (GEP.getType()->isVectorTy()) {
3131 // Additional checks for vector GEPs.
3132 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3133 if (GEP.getPointerOperandType()->isVectorTy())
3134 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3135 "Vector GEP result width doesn't match operand's", &GEP);
3136 for (Value *Idx : Idxs) {
3137 Type *IndexTy = Idx->getType();
3138 if (IndexTy->isVectorTy()) {
3139 unsigned IndexWidth = IndexTy->getVectorNumElements();
3140 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3142 Assert(IndexTy->isIntOrIntVectorTy(),
3143 "All GEP indices should be of integer type");
3147 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3148 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3149 "GEP address space doesn't match type", &GEP);
3152 visitInstruction(GEP);
3155 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3156 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3159 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3160 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3161 "precondition violation");
3163 unsigned NumOperands = Range->getNumOperands();
3164 Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3165 unsigned NumRanges = NumOperands / 2;
3166 Assert(NumRanges >= 1, "It should have at least one range!", Range);
3168 ConstantRange LastRange(1); // Dummy initial value
3169 for (unsigned i = 0; i < NumRanges; ++i) {
3170 ConstantInt *Low =
3171 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3172 Assert(Low, "The lower limit must be an integer!", Low);
3173 ConstantInt *High =
3174 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3175 Assert(High, "The upper limit must be an integer!", High);
3176 Assert(High->getType() == Low->getType() && High->getType() == Ty,
3177 "Range types must match instruction type!", &I);
3179 APInt HighV = High->getValue();
3180 APInt LowV = Low->getValue();
3181 ConstantRange CurRange(LowV, HighV);
3182 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3183 "Range must not be empty!", Range);
3184 if (i != 0) {
3185 Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3186 "Intervals are overlapping", Range);
3187 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3188 Range);
3189 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3190 Range);
3192 LastRange = ConstantRange(LowV, HighV);
3194 if (NumRanges > 2) {
3195 APInt FirstLow =
3196 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3197 APInt FirstHigh =
3198 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3199 ConstantRange FirstRange(FirstLow, FirstHigh);
3200 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3201 "Intervals are overlapping", Range);
3202 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3203 Range);
3207 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3208 unsigned Size = DL.getTypeSizeInBits(Ty);
3209 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3210 Assert(!(Size & (Size - 1)),
3211 "atomic memory access' operand must have a power-of-two size", Ty, I);
3214 void Verifier::visitLoadInst(LoadInst &LI) {
3215 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3216 Assert(PTy, "Load operand must be a pointer.", &LI);
3217 Type *ElTy = LI.getType();
3218 Assert(LI.getAlignment() <= Value::MaximumAlignment,
3219 "huge alignment values are unsupported", &LI);
3220 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3221 if (LI.isAtomic()) {
3222 Assert(LI.getOrdering() != AtomicOrdering::Release &&
3223 LI.getOrdering() != AtomicOrdering::AcquireRelease,
3224 "Load cannot have Release ordering", &LI);
3225 Assert(LI.getAlignment() != 0,
3226 "Atomic load must specify explicit alignment", &LI);
3227 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3228 "atomic load operand must have integer, pointer, or floating point "
3229 "type!",
3230 ElTy, &LI);
3231 checkAtomicMemAccessSize(ElTy, &LI);
3232 } else {
3233 Assert(LI.getSyncScopeID() == SyncScope::System,
3234 "Non-atomic load cannot have SynchronizationScope specified", &LI);
3237 visitInstruction(LI);
3240 void Verifier::visitStoreInst(StoreInst &SI) {
3241 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3242 Assert(PTy, "Store operand must be a pointer.", &SI);
3243 Type *ElTy = PTy->getElementType();
3244 Assert(ElTy == SI.getOperand(0)->getType(),
3245 "Stored value type does not match pointer operand type!", &SI, ElTy);
3246 Assert(SI.getAlignment() <= Value::MaximumAlignment,
3247 "huge alignment values are unsupported", &SI);
3248 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3249 if (SI.isAtomic()) {
3250 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3251 SI.getOrdering() != AtomicOrdering::AcquireRelease,
3252 "Store cannot have Acquire ordering", &SI);
3253 Assert(SI.getAlignment() != 0,
3254 "Atomic store must specify explicit alignment", &SI);
3255 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3256 "atomic store operand must have integer, pointer, or floating point "
3257 "type!",
3258 ElTy, &SI);
3259 checkAtomicMemAccessSize(ElTy, &SI);
3260 } else {
3261 Assert(SI.getSyncScopeID() == SyncScope::System,
3262 "Non-atomic store cannot have SynchronizationScope specified", &SI);
3264 visitInstruction(SI);
3267 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3268 void Verifier::verifySwiftErrorCallSite(CallSite CS,
3269 const Value *SwiftErrorVal) {
3270 unsigned Idx = 0;
3271 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3272 I != E; ++I, ++Idx) {
3273 if (*I == SwiftErrorVal) {
3274 Assert(CS.paramHasAttr(Idx, Attribute::SwiftError),
3275 "swifterror value when used in a callsite should be marked "
3276 "with swifterror attribute",
3277 SwiftErrorVal, CS);
3282 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3283 // Check that swifterror value is only used by loads, stores, or as
3284 // a swifterror argument.
3285 for (const User *U : SwiftErrorVal->users()) {
3286 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3287 isa<InvokeInst>(U),
3288 "swifterror value can only be loaded and stored from, or "
3289 "as a swifterror argument!",
3290 SwiftErrorVal, U);
3291 // If it is used by a store, check it is the second operand.
3292 if (auto StoreI = dyn_cast<StoreInst>(U))
3293 Assert(StoreI->getOperand(1) == SwiftErrorVal,
3294 "swifterror value should be the second operand when used "
3295 "by stores", SwiftErrorVal, U);
3296 if (auto CallI = dyn_cast<CallInst>(U))
3297 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3298 if (auto II = dyn_cast<InvokeInst>(U))
3299 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3303 void Verifier::visitAllocaInst(AllocaInst &AI) {
3304 SmallPtrSet<Type*, 4> Visited;
3305 PointerType *PTy = AI.getType();
3306 // TODO: Relax this restriction?
3307 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
3308 "Allocation instruction pointer not in the stack address space!",
3309 &AI);
3310 Assert(AI.getAllocatedType()->isSized(&Visited),
3311 "Cannot allocate unsized type", &AI);
3312 Assert(AI.getArraySize()->getType()->isIntegerTy(),
3313 "Alloca array size must have integer type", &AI);
3314 Assert(AI.getAlignment() <= Value::MaximumAlignment,
3315 "huge alignment values are unsupported", &AI);
3317 if (AI.isSwiftError()) {
3318 verifySwiftErrorValue(&AI);
3321 visitInstruction(AI);
3324 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3326 // FIXME: more conditions???
3327 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3328 "cmpxchg instructions must be atomic.", &CXI);
3329 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3330 "cmpxchg instructions must be atomic.", &CXI);
3331 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3332 "cmpxchg instructions cannot be unordered.", &CXI);
3333 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3334 "cmpxchg instructions cannot be unordered.", &CXI);
3335 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3336 "cmpxchg instructions failure argument shall be no stronger than the "
3337 "success argument",
3338 &CXI);
3339 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3340 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3341 "cmpxchg failure ordering cannot include release semantics", &CXI);
3343 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3344 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3345 Type *ElTy = PTy->getElementType();
3346 Assert(ElTy->isIntOrPtrTy(),
3347 "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3348 checkAtomicMemAccessSize(ElTy, &CXI);
3349 Assert(ElTy == CXI.getOperand(1)->getType(),
3350 "Expected value type does not match pointer operand type!", &CXI,
3351 ElTy);
3352 Assert(ElTy == CXI.getOperand(2)->getType(),
3353 "Stored value type does not match pointer operand type!", &CXI, ElTy);
3354 visitInstruction(CXI);
3357 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3358 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3359 "atomicrmw instructions must be atomic.", &RMWI);
3360 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3361 "atomicrmw instructions cannot be unordered.", &RMWI);
3362 auto Op = RMWI.getOperation();
3363 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3364 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3365 Type *ElTy = PTy->getElementType();
3366 Assert(ElTy->isIntegerTy(), "atomicrmw " +
3367 AtomicRMWInst::getOperationName(Op) +
3368 " operand must have integer type!",
3369 &RMWI, ElTy);
3370 checkAtomicMemAccessSize(ElTy, &RMWI);
3371 Assert(ElTy == RMWI.getOperand(1)->getType(),
3372 "Argument value type does not match pointer operand type!", &RMWI,
3373 ElTy);
3374 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3375 "Invalid binary operation!", &RMWI);
3376 visitInstruction(RMWI);
3379 void Verifier::visitFenceInst(FenceInst &FI) {
3380 const AtomicOrdering Ordering = FI.getOrdering();
3381 Assert(Ordering == AtomicOrdering::Acquire ||
3382 Ordering == AtomicOrdering::Release ||
3383 Ordering == AtomicOrdering::AcquireRelease ||
3384 Ordering == AtomicOrdering::SequentiallyConsistent,
3385 "fence instructions may only have acquire, release, acq_rel, or "
3386 "seq_cst ordering.",
3387 &FI);
3388 visitInstruction(FI);
3391 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3392 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3393 EVI.getIndices()) == EVI.getType(),
3394 "Invalid ExtractValueInst operands!", &EVI);
3396 visitInstruction(EVI);
3399 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3400 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3401 IVI.getIndices()) ==
3402 IVI.getOperand(1)->getType(),
3403 "Invalid InsertValueInst operands!", &IVI);
3405 visitInstruction(IVI);
3408 static Value *getParentPad(Value *EHPad) {
3409 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3410 return FPI->getParentPad();
3412 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3415 void Verifier::visitEHPadPredecessors(Instruction &I) {
3416 assert(I.isEHPad());
3418 BasicBlock *BB = I.getParent();
3419 Function *F = BB->getParent();
3421 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3423 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3424 // The landingpad instruction defines its parent as a landing pad block. The
3425 // landing pad block may be branched to only by the unwind edge of an
3426 // invoke.
3427 for (BasicBlock *PredBB : predecessors(BB)) {
3428 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3429 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3430 "Block containing LandingPadInst must be jumped to "
3431 "only by the unwind edge of an invoke.",
3432 LPI);
3434 return;
3436 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3437 if (!pred_empty(BB))
3438 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3439 "Block containg CatchPadInst must be jumped to "
3440 "only by its catchswitch.",
3441 CPI);
3442 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3443 "Catchswitch cannot unwind to one of its catchpads",
3444 CPI->getCatchSwitch(), CPI);
3445 return;
3448 // Verify that each pred has a legal terminator with a legal to/from EH
3449 // pad relationship.
3450 Instruction *ToPad = &I;
3451 Value *ToPadParent = getParentPad(ToPad);
3452 for (BasicBlock *PredBB : predecessors(BB)) {
3453 TerminatorInst *TI = PredBB->getTerminator();
3454 Value *FromPad;
3455 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3456 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3457 "EH pad must be jumped to via an unwind edge", ToPad, II);
3458 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3459 FromPad = Bundle->Inputs[0];
3460 else
3461 FromPad = ConstantTokenNone::get(II->getContext());
3462 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3463 FromPad = CRI->getOperand(0);
3464 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3465 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3466 FromPad = CSI;
3467 } else {
3468 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3471 // The edge may exit from zero or more nested pads.
3472 SmallSet<Value *, 8> Seen;
3473 for (;; FromPad = getParentPad(FromPad)) {
3474 Assert(FromPad != ToPad,
3475 "EH pad cannot handle exceptions raised within it", FromPad, TI);
3476 if (FromPad == ToPadParent) {
3477 // This is a legal unwind edge.
3478 break;
3480 Assert(!isa<ConstantTokenNone>(FromPad),
3481 "A single unwind edge may only enter one EH pad", TI);
3482 Assert(Seen.insert(FromPad).second,
3483 "EH pad jumps through a cycle of pads", FromPad);
3488 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3489 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3490 // isn't a cleanup.
3491 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3492 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3494 visitEHPadPredecessors(LPI);
3496 if (!LandingPadResultTy)
3497 LandingPadResultTy = LPI.getType();
3498 else
3499 Assert(LandingPadResultTy == LPI.getType(),
3500 "The landingpad instruction should have a consistent result type "
3501 "inside a function.",
3502 &LPI);
3504 Function *F = LPI.getParent()->getParent();
3505 Assert(F->hasPersonalityFn(),
3506 "LandingPadInst needs to be in a function with a personality.", &LPI);
3508 // The landingpad instruction must be the first non-PHI instruction in the
3509 // block.
3510 Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3511 "LandingPadInst not the first non-PHI instruction in the block.",
3512 &LPI);
3514 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3515 Constant *Clause = LPI.getClause(i);
3516 if (LPI.isCatch(i)) {
3517 Assert(isa<PointerType>(Clause->getType()),
3518 "Catch operand does not have pointer type!", &LPI);
3519 } else {
3520 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3521 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3522 "Filter operand is not an array of constants!", &LPI);
3526 visitInstruction(LPI);
3529 void Verifier::visitResumeInst(ResumeInst &RI) {
3530 Assert(RI.getFunction()->hasPersonalityFn(),
3531 "ResumeInst needs to be in a function with a personality.", &RI);
3533 if (!LandingPadResultTy)
3534 LandingPadResultTy = RI.getValue()->getType();
3535 else
3536 Assert(LandingPadResultTy == RI.getValue()->getType(),
3537 "The resume instruction should have a consistent result type "
3538 "inside a function.",
3539 &RI);
3541 visitTerminatorInst(RI);
3544 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3545 BasicBlock *BB = CPI.getParent();
3547 Function *F = BB->getParent();
3548 Assert(F->hasPersonalityFn(),
3549 "CatchPadInst needs to be in a function with a personality.", &CPI);
3551 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3552 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3553 CPI.getParentPad());
3555 // The catchpad instruction must be the first non-PHI instruction in the
3556 // block.
3557 Assert(BB->getFirstNonPHI() == &CPI,
3558 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3560 visitEHPadPredecessors(CPI);
3561 visitFuncletPadInst(CPI);
3564 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3565 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3566 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3567 CatchReturn.getOperand(0));
3569 visitTerminatorInst(CatchReturn);
3572 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3573 BasicBlock *BB = CPI.getParent();
3575 Function *F = BB->getParent();
3576 Assert(F->hasPersonalityFn(),
3577 "CleanupPadInst needs to be in a function with a personality.", &CPI);
3579 // The cleanuppad instruction must be the first non-PHI instruction in the
3580 // block.
3581 Assert(BB->getFirstNonPHI() == &CPI,
3582 "CleanupPadInst not the first non-PHI instruction in the block.",
3583 &CPI);
3585 auto *ParentPad = CPI.getParentPad();
3586 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3587 "CleanupPadInst has an invalid parent.", &CPI);
3589 visitEHPadPredecessors(CPI);
3590 visitFuncletPadInst(CPI);
3593 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3594 User *FirstUser = nullptr;
3595 Value *FirstUnwindPad = nullptr;
3596 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3597 SmallSet<FuncletPadInst *, 8> Seen;
3599 while (!Worklist.empty()) {
3600 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3601 Assert(Seen.insert(CurrentPad).second,
3602 "FuncletPadInst must not be nested within itself", CurrentPad);
3603 Value *UnresolvedAncestorPad = nullptr;
3604 for (User *U : CurrentPad->users()) {
3605 BasicBlock *UnwindDest;
3606 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3607 UnwindDest = CRI->getUnwindDest();
3608 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3609 // We allow catchswitch unwind to caller to nest
3610 // within an outer pad that unwinds somewhere else,
3611 // because catchswitch doesn't have a nounwind variant.
3612 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3613 if (CSI->unwindsToCaller())
3614 continue;
3615 UnwindDest = CSI->getUnwindDest();
3616 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3617 UnwindDest = II->getUnwindDest();
3618 } else if (isa<CallInst>(U)) {
3619 // Calls which don't unwind may be found inside funclet
3620 // pads that unwind somewhere else. We don't *require*
3621 // such calls to be annotated nounwind.
3622 continue;
3623 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3624 // The unwind dest for a cleanup can only be found by
3625 // recursive search. Add it to the worklist, and we'll
3626 // search for its first use that determines where it unwinds.
3627 Worklist.push_back(CPI);
3628 continue;
3629 } else {
3630 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3631 continue;
3634 Value *UnwindPad;
3635 bool ExitsFPI;
3636 if (UnwindDest) {
3637 UnwindPad = UnwindDest->getFirstNonPHI();
3638 if (!cast<Instruction>(UnwindPad)->isEHPad())
3639 continue;
3640 Value *UnwindParent = getParentPad(UnwindPad);
3641 // Ignore unwind edges that don't exit CurrentPad.
3642 if (UnwindParent == CurrentPad)
3643 continue;
3644 // Determine whether the original funclet pad is exited,
3645 // and if we are scanning nested pads determine how many
3646 // of them are exited so we can stop searching their
3647 // children.
3648 Value *ExitedPad = CurrentPad;
3649 ExitsFPI = false;
3650 do {
3651 if (ExitedPad == &FPI) {
3652 ExitsFPI = true;
3653 // Now we can resolve any ancestors of CurrentPad up to
3654 // FPI, but not including FPI since we need to make sure
3655 // to check all direct users of FPI for consistency.
3656 UnresolvedAncestorPad = &FPI;
3657 break;
3659 Value *ExitedParent = getParentPad(ExitedPad);
3660 if (ExitedParent == UnwindParent) {
3661 // ExitedPad is the ancestor-most pad which this unwind
3662 // edge exits, so we can resolve up to it, meaning that
3663 // ExitedParent is the first ancestor still unresolved.
3664 UnresolvedAncestorPad = ExitedParent;
3665 break;
3667 ExitedPad = ExitedParent;
3668 } while (!isa<ConstantTokenNone>(ExitedPad));
3669 } else {
3670 // Unwinding to caller exits all pads.
3671 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3672 ExitsFPI = true;
3673 UnresolvedAncestorPad = &FPI;
3676 if (ExitsFPI) {
3677 // This unwind edge exits FPI. Make sure it agrees with other
3678 // such edges.
3679 if (FirstUser) {
3680 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3681 "pad must have the same unwind "
3682 "dest",
3683 &FPI, U, FirstUser);
3684 } else {
3685 FirstUser = U;
3686 FirstUnwindPad = UnwindPad;
3687 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3688 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3689 getParentPad(UnwindPad) == getParentPad(&FPI))
3690 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3693 // Make sure we visit all uses of FPI, but for nested pads stop as
3694 // soon as we know where they unwind to.
3695 if (CurrentPad != &FPI)
3696 break;
3698 if (UnresolvedAncestorPad) {
3699 if (CurrentPad == UnresolvedAncestorPad) {
3700 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3701 // we've found an unwind edge that exits it, because we need to verify
3702 // all direct uses of FPI.
3703 assert(CurrentPad == &FPI);
3704 continue;
3706 // Pop off the worklist any nested pads that we've found an unwind
3707 // destination for. The pads on the worklist are the uncles,
3708 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3709 // for all ancestors of CurrentPad up to but not including
3710 // UnresolvedAncestorPad.
3711 Value *ResolvedPad = CurrentPad;
3712 while (!Worklist.empty()) {
3713 Value *UnclePad = Worklist.back();
3714 Value *AncestorPad = getParentPad(UnclePad);
3715 // Walk ResolvedPad up the ancestor list until we either find the
3716 // uncle's parent or the last resolved ancestor.
3717 while (ResolvedPad != AncestorPad) {
3718 Value *ResolvedParent = getParentPad(ResolvedPad);
3719 if (ResolvedParent == UnresolvedAncestorPad) {
3720 break;
3722 ResolvedPad = ResolvedParent;
3724 // If the resolved ancestor search didn't find the uncle's parent,
3725 // then the uncle is not yet resolved.
3726 if (ResolvedPad != AncestorPad)
3727 break;
3728 // This uncle is resolved, so pop it from the worklist.
3729 Worklist.pop_back();
3734 if (FirstUnwindPad) {
3735 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3736 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3737 Value *SwitchUnwindPad;
3738 if (SwitchUnwindDest)
3739 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3740 else
3741 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3742 Assert(SwitchUnwindPad == FirstUnwindPad,
3743 "Unwind edges out of a catch must have the same unwind dest as "
3744 "the parent catchswitch",
3745 &FPI, FirstUser, CatchSwitch);
3749 visitInstruction(FPI);
3752 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3753 BasicBlock *BB = CatchSwitch.getParent();
3755 Function *F = BB->getParent();
3756 Assert(F->hasPersonalityFn(),
3757 "CatchSwitchInst needs to be in a function with a personality.",
3758 &CatchSwitch);
3760 // The catchswitch instruction must be the first non-PHI instruction in the
3761 // block.
3762 Assert(BB->getFirstNonPHI() == &CatchSwitch,
3763 "CatchSwitchInst not the first non-PHI instruction in the block.",
3764 &CatchSwitch);
3766 auto *ParentPad = CatchSwitch.getParentPad();
3767 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3768 "CatchSwitchInst has an invalid parent.", ParentPad);
3770 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3771 Instruction *I = UnwindDest->getFirstNonPHI();
3772 Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3773 "CatchSwitchInst must unwind to an EH block which is not a "
3774 "landingpad.",
3775 &CatchSwitch);
3777 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3778 if (getParentPad(I) == ParentPad)
3779 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3782 Assert(CatchSwitch.getNumHandlers() != 0,
3783 "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3785 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3786 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3787 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3790 visitEHPadPredecessors(CatchSwitch);
3791 visitTerminatorInst(CatchSwitch);
3794 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3795 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3796 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3797 CRI.getOperand(0));
3799 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3800 Instruction *I = UnwindDest->getFirstNonPHI();
3801 Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3802 "CleanupReturnInst must unwind to an EH block which is not a "
3803 "landingpad.",
3804 &CRI);
3807 visitTerminatorInst(CRI);
3810 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3811 Instruction *Op = cast<Instruction>(I.getOperand(i));
3812 // If the we have an invalid invoke, don't try to compute the dominance.
3813 // We already reject it in the invoke specific checks and the dominance
3814 // computation doesn't handle multiple edges.
3815 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3816 if (II->getNormalDest() == II->getUnwindDest())
3817 return;
3820 // Quick check whether the def has already been encountered in the same block.
3821 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3822 // uses are defined to happen on the incoming edge, not at the instruction.
3824 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3825 // wrapping an SSA value, assert that we've already encountered it. See
3826 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3827 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3828 return;
3830 const Use &U = I.getOperandUse(i);
3831 Assert(DT.dominates(Op, U),
3832 "Instruction does not dominate all uses!", Op, &I);
3835 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3836 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3837 "apply only to pointer types", &I);
3838 Assert(isa<LoadInst>(I),
3839 "dereferenceable, dereferenceable_or_null apply only to load"
3840 " instructions, use attributes for calls or invokes", &I);
3841 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3842 "take one operand!", &I);
3843 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3844 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3845 "dereferenceable_or_null metadata value must be an i64!", &I);
3848 /// verifyInstruction - Verify that an instruction is well formed.
3850 void Verifier::visitInstruction(Instruction &I) {
3851 BasicBlock *BB = I.getParent();
3852 Assert(BB, "Instruction not embedded in basic block!", &I);
3854 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3855 for (User *U : I.users()) {
3856 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3857 "Only PHI nodes may reference their own value!", &I);
3861 // Check that void typed values don't have names
3862 Assert(!I.getType()->isVoidTy() || !I.hasName(),
3863 "Instruction has a name, but provides a void value!", &I);
3865 // Check that the return value of the instruction is either void or a legal
3866 // value type.
3867 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3868 "Instruction returns a non-scalar type!", &I);
3870 // Check that the instruction doesn't produce metadata. Calls are already
3871 // checked against the callee type.
3872 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3873 "Invalid use of metadata!", &I);
3875 // Check that all uses of the instruction, if they are instructions
3876 // themselves, actually have parent basic blocks. If the use is not an
3877 // instruction, it is an error!
3878 for (Use &U : I.uses()) {
3879 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3880 Assert(Used->getParent() != nullptr,
3881 "Instruction referencing"
3882 " instruction not embedded in a basic block!",
3883 &I, Used);
3884 else {
3885 CheckFailed("Use of instruction is not an instruction!", U);
3886 return;
3890 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3891 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3893 // Check to make sure that only first-class-values are operands to
3894 // instructions.
3895 if (!I.getOperand(i)->getType()->isFirstClassType()) {
3896 Assert(false, "Instruction operands must be first-class values!", &I);
3899 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3900 // Check to make sure that the "address of" an intrinsic function is never
3901 // taken.
3902 Assert(
3903 !F->isIntrinsic() ||
3904 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3905 "Cannot take the address of an intrinsic!", &I);
3906 Assert(
3907 !F->isIntrinsic() || isa<CallInst>(I) ||
3908 F->getIntrinsicID() == Intrinsic::donothing ||
3909 F->getIntrinsicID() == Intrinsic::coro_resume ||
3910 F->getIntrinsicID() == Intrinsic::coro_destroy ||
3911 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3912 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3913 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3914 "Cannot invoke an intrinsic other than donothing, patchpoint, "
3915 "statepoint, coro_resume or coro_destroy",
3916 &I);
3917 Assert(F->getParent() == &M, "Referencing function in another module!",
3918 &I, &M, F, F->getParent());
3919 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3920 Assert(OpBB->getParent() == BB->getParent(),
3921 "Referring to a basic block in another function!", &I);
3922 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3923 Assert(OpArg->getParent() == BB->getParent(),
3924 "Referring to an argument in another function!", &I);
3925 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3926 Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
3927 &M, GV, GV->getParent());
3928 } else if (isa<Instruction>(I.getOperand(i))) {
3929 verifyDominatesUse(I, i);
3930 } else if (isa<InlineAsm>(I.getOperand(i))) {
3931 Assert((i + 1 == e && isa<CallInst>(I)) ||
3932 (i + 3 == e && isa<InvokeInst>(I)),
3933 "Cannot take the address of an inline asm!", &I);
3934 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3935 if (CE->getType()->isPtrOrPtrVectorTy() ||
3936 !DL.getNonIntegralAddressSpaces().empty()) {
3937 // If we have a ConstantExpr pointer, we need to see if it came from an
3938 // illegal bitcast. If the datalayout string specifies non-integral
3939 // address spaces then we also need to check for illegal ptrtoint and
3940 // inttoptr expressions.
3941 visitConstantExprsRecursively(CE);
3946 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3947 Assert(I.getType()->isFPOrFPVectorTy(),
3948 "fpmath requires a floating point result!", &I);
3949 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3950 if (ConstantFP *CFP0 =
3951 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3952 const APFloat &Accuracy = CFP0->getValueAPF();
3953 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
3954 "fpmath accuracy must have float type", &I);
3955 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3956 "fpmath accuracy not a positive number!", &I);
3957 } else {
3958 Assert(false, "invalid fpmath accuracy!", &I);
3962 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3963 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3964 "Ranges are only for loads, calls and invokes!", &I);
3965 visitRangeMetadata(I, Range, I.getType());
3968 if (I.getMetadata(LLVMContext::MD_nonnull)) {
3969 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3970 &I);
3971 Assert(isa<LoadInst>(I),
3972 "nonnull applies only to load instructions, use attributes"
3973 " for calls or invokes",
3974 &I);
3977 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3978 visitDereferenceableMetadata(I, MD);
3980 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3981 visitDereferenceableMetadata(I, MD);
3983 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3984 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3986 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3987 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3988 &I);
3989 Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3990 "use attributes for calls or invokes", &I);
3991 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3992 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3993 Assert(CI && CI->getType()->isIntegerTy(64),
3994 "align metadata value must be an i64!", &I);
3995 uint64_t Align = CI->getZExtValue();
3996 Assert(isPowerOf2_64(Align),
3997 "align metadata value must be a power of 2!", &I);
3998 Assert(Align <= Value::MaximumAlignment,
3999 "alignment is larger that implementation defined limit", &I);
4002 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4003 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4004 visitMDNode(*N);
4007 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I))
4008 verifyFragmentExpression(*DII);
4010 InstsInThisBlock.insert(&I);
4013 /// Allow intrinsics to be verified in different ways.
4014 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
4015 Function *IF = CS.getCalledFunction();
4016 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4017 IF);
4019 // Verify that the intrinsic prototype lines up with what the .td files
4020 // describe.
4021 FunctionType *IFTy = IF->getFunctionType();
4022 bool IsVarArg = IFTy->isVarArg();
4024 SmallVector<Intrinsic::IITDescriptor, 8> Table;
4025 getIntrinsicInfoTableEntries(ID, Table);
4026 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4028 SmallVector<Type *, 4> ArgTys;
4029 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
4030 TableRef, ArgTys),
4031 "Intrinsic has incorrect return type!", IF);
4032 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
4033 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
4034 TableRef, ArgTys),
4035 "Intrinsic has incorrect argument type!", IF);
4037 // Verify if the intrinsic call matches the vararg property.
4038 if (IsVarArg)
4039 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4040 "Intrinsic was not defined with variable arguments!", IF);
4041 else
4042 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4043 "Callsite was not defined with variable arguments!", IF);
4045 // All descriptors should be absorbed by now.
4046 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4048 // Now that we have the intrinsic ID and the actual argument types (and we
4049 // know they are legal for the intrinsic!) get the intrinsic name through the
4050 // usual means. This allows us to verify the mangling of argument types into
4051 // the name.
4052 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4053 Assert(ExpectedName == IF->getName(),
4054 "Intrinsic name not mangled correctly for type arguments! "
4055 "Should be: " +
4056 ExpectedName,
4057 IF);
4059 // If the intrinsic takes MDNode arguments, verify that they are either global
4060 // or are local to *this* function.
4061 for (Value *V : CS.args())
4062 if (auto *MD = dyn_cast<MetadataAsValue>(V))
4063 visitMetadataAsValue(*MD, CS.getCaller());
4065 switch (ID) {
4066 default:
4067 break;
4068 case Intrinsic::coro_id: {
4069 auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
4070 if (isa<ConstantPointerNull>(InfoArg))
4071 break;
4072 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4073 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4074 "info argument of llvm.coro.begin must refer to an initialized "
4075 "constant");
4076 Constant *Init = GV->getInitializer();
4077 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4078 "info argument of llvm.coro.begin must refer to either a struct or "
4079 "an array");
4080 break;
4082 case Intrinsic::ctlz: // llvm.ctlz
4083 case Intrinsic::cttz: // llvm.cttz
4084 Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4085 "is_zero_undef argument of bit counting intrinsics must be a "
4086 "constant int",
4087 CS);
4088 break;
4089 case Intrinsic::experimental_constrained_fadd:
4090 case Intrinsic::experimental_constrained_fsub:
4091 case Intrinsic::experimental_constrained_fmul:
4092 case Intrinsic::experimental_constrained_fdiv:
4093 case Intrinsic::experimental_constrained_frem:
4094 case Intrinsic::experimental_constrained_fma:
4095 case Intrinsic::experimental_constrained_sqrt:
4096 case Intrinsic::experimental_constrained_pow:
4097 case Intrinsic::experimental_constrained_powi:
4098 case Intrinsic::experimental_constrained_sin:
4099 case Intrinsic::experimental_constrained_cos:
4100 case Intrinsic::experimental_constrained_exp:
4101 case Intrinsic::experimental_constrained_exp2:
4102 case Intrinsic::experimental_constrained_log:
4103 case Intrinsic::experimental_constrained_log10:
4104 case Intrinsic::experimental_constrained_log2:
4105 case Intrinsic::experimental_constrained_rint:
4106 case Intrinsic::experimental_constrained_nearbyint:
4107 visitConstrainedFPIntrinsic(
4108 cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
4109 break;
4110 case Intrinsic::dbg_declare: // llvm.dbg.declare
4111 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
4112 "invalid llvm.dbg.declare intrinsic call 1", CS);
4113 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(*CS.getInstruction()));
4114 break;
4115 case Intrinsic::dbg_addr: // llvm.dbg.addr
4116 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(*CS.getInstruction()));
4117 break;
4118 case Intrinsic::dbg_value: // llvm.dbg.value
4119 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(*CS.getInstruction()));
4120 break;
4121 case Intrinsic::dbg_label: // llvm.dbg.label
4122 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(*CS.getInstruction()));
4123 break;
4124 case Intrinsic::memcpy:
4125 case Intrinsic::memmove:
4126 case Intrinsic::memset: {
4127 const auto *MI = cast<MemIntrinsic>(CS.getInstruction());
4128 auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4129 return Alignment == 0 || isPowerOf2_32(Alignment);
4131 Assert(IsValidAlignment(MI->getDestAlignment()),
4132 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4133 CS);
4134 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4135 Assert(IsValidAlignment(MTI->getSourceAlignment()),
4136 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4137 CS);
4139 Assert(isa<ConstantInt>(CS.getArgOperand(3)),
4140 "isvolatile argument of memory intrinsics must be a constant int",
4141 CS);
4142 break;
4144 case Intrinsic::memcpy_element_unordered_atomic:
4145 case Intrinsic::memmove_element_unordered_atomic:
4146 case Intrinsic::memset_element_unordered_atomic: {
4147 const auto *AMI = cast<AtomicMemIntrinsic>(CS.getInstruction());
4149 ConstantInt *ElementSizeCI =
4150 dyn_cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4151 Assert(ElementSizeCI,
4152 "element size of the element-wise unordered atomic memory "
4153 "intrinsic must be a constant int",
4154 CS);
4155 const APInt &ElementSizeVal = ElementSizeCI->getValue();
4156 Assert(ElementSizeVal.isPowerOf2(),
4157 "element size of the element-wise atomic memory intrinsic "
4158 "must be a power of 2",
4159 CS);
4161 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4162 uint64_t Length = LengthCI->getZExtValue();
4163 uint64_t ElementSize = AMI->getElementSizeInBytes();
4164 Assert((Length % ElementSize) == 0,
4165 "constant length must be a multiple of the element size in the "
4166 "element-wise atomic memory intrinsic",
4167 CS);
4170 auto IsValidAlignment = [&](uint64_t Alignment) {
4171 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4173 uint64_t DstAlignment = AMI->getDestAlignment();
4174 Assert(IsValidAlignment(DstAlignment),
4175 "incorrect alignment of the destination argument", CS);
4176 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4177 uint64_t SrcAlignment = AMT->getSourceAlignment();
4178 Assert(IsValidAlignment(SrcAlignment),
4179 "incorrect alignment of the source argument", CS);
4181 break;
4183 case Intrinsic::gcroot:
4184 case Intrinsic::gcwrite:
4185 case Intrinsic::gcread:
4186 if (ID == Intrinsic::gcroot) {
4187 AllocaInst *AI =
4188 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
4189 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
4190 Assert(isa<Constant>(CS.getArgOperand(1)),
4191 "llvm.gcroot parameter #2 must be a constant.", CS);
4192 if (!AI->getAllocatedType()->isPointerTy()) {
4193 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
4194 "llvm.gcroot parameter #1 must either be a pointer alloca, "
4195 "or argument #2 must be a non-null constant.",
4196 CS);
4200 Assert(CS.getParent()->getParent()->hasGC(),
4201 "Enclosing function does not use GC.", CS);
4202 break;
4203 case Intrinsic::init_trampoline:
4204 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
4205 "llvm.init_trampoline parameter #2 must resolve to a function.",
4206 CS);
4207 break;
4208 case Intrinsic::prefetch:
4209 Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
4210 isa<ConstantInt>(CS.getArgOperand(2)) &&
4211 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
4212 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
4213 "invalid arguments to llvm.prefetch", CS);
4214 break;
4215 case Intrinsic::stackprotector:
4216 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
4217 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
4218 break;
4219 case Intrinsic::lifetime_start:
4220 case Intrinsic::lifetime_end:
4221 case Intrinsic::invariant_start:
4222 Assert(isa<ConstantInt>(CS.getArgOperand(0)),
4223 "size argument of memory use markers must be a constant integer",
4224 CS);
4225 break;
4226 case Intrinsic::invariant_end:
4227 Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4228 "llvm.invariant.end parameter #2 must be a constant integer", CS);
4229 break;
4231 case Intrinsic::localescape: {
4232 BasicBlock *BB = CS.getParent();
4233 Assert(BB == &BB->getParent()->front(),
4234 "llvm.localescape used outside of entry block", CS);
4235 Assert(!SawFrameEscape,
4236 "multiple calls to llvm.localescape in one function", CS);
4237 for (Value *Arg : CS.args()) {
4238 if (isa<ConstantPointerNull>(Arg))
4239 continue; // Null values are allowed as placeholders.
4240 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4241 Assert(AI && AI->isStaticAlloca(),
4242 "llvm.localescape only accepts static allocas", CS);
4244 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4245 SawFrameEscape = true;
4246 break;
4248 case Intrinsic::localrecover: {
4249 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4250 Function *Fn = dyn_cast<Function>(FnArg);
4251 Assert(Fn && !Fn->isDeclaration(),
4252 "llvm.localrecover first "
4253 "argument must be function defined in this module",
4254 CS);
4255 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4256 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
4257 CS);
4258 auto &Entry = FrameEscapeInfo[Fn];
4259 Entry.second = unsigned(
4260 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4261 break;
4264 case Intrinsic::experimental_gc_statepoint:
4265 Assert(!CS.isInlineAsm(),
4266 "gc.statepoint support for inline assembly unimplemented", CS);
4267 Assert(CS.getParent()->getParent()->hasGC(),
4268 "Enclosing function does not use GC.", CS);
4270 verifyStatepoint(CS);
4271 break;
4272 case Intrinsic::experimental_gc_result: {
4273 Assert(CS.getParent()->getParent()->hasGC(),
4274 "Enclosing function does not use GC.", CS);
4275 // Are we tied to a statepoint properly?
4276 CallSite StatepointCS(CS.getArgOperand(0));
4277 const Function *StatepointFn =
4278 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4279 Assert(StatepointFn && StatepointFn->isDeclaration() &&
4280 StatepointFn->getIntrinsicID() ==
4281 Intrinsic::experimental_gc_statepoint,
4282 "gc.result operand #1 must be from a statepoint", CS,
4283 CS.getArgOperand(0));
4285 // Assert that result type matches wrapped callee.
4286 const Value *Target = StatepointCS.getArgument(2);
4287 auto *PT = cast<PointerType>(Target->getType());
4288 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4289 Assert(CS.getType() == TargetFuncType->getReturnType(),
4290 "gc.result result type does not match wrapped callee", CS);
4291 break;
4293 case Intrinsic::experimental_gc_relocate: {
4294 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
4296 Assert(isa<PointerType>(CS.getType()->getScalarType()),
4297 "gc.relocate must return a pointer or a vector of pointers", CS);
4299 // Check that this relocate is correctly tied to the statepoint
4301 // This is case for relocate on the unwinding path of an invoke statepoint
4302 if (LandingPadInst *LandingPad =
4303 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4305 const BasicBlock *InvokeBB =
4306 LandingPad->getParent()->getUniquePredecessor();
4308 // Landingpad relocates should have only one predecessor with invoke
4309 // statepoint terminator
4310 Assert(InvokeBB, "safepoints should have unique landingpads",
4311 LandingPad->getParent());
4312 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4313 InvokeBB);
4314 Assert(isStatepoint(InvokeBB->getTerminator()),
4315 "gc relocate should be linked to a statepoint", InvokeBB);
4317 else {
4318 // In all other cases relocate should be tied to the statepoint directly.
4319 // This covers relocates on a normal return path of invoke statepoint and
4320 // relocates of a call statepoint.
4321 auto Token = CS.getArgOperand(0);
4322 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4323 "gc relocate is incorrectly tied to the statepoint", CS, Token);
4326 // Verify rest of the relocate arguments.
4328 ImmutableCallSite StatepointCS(
4329 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4331 // Both the base and derived must be piped through the safepoint.
4332 Value* Base = CS.getArgOperand(1);
4333 Assert(isa<ConstantInt>(Base),
4334 "gc.relocate operand #2 must be integer offset", CS);
4336 Value* Derived = CS.getArgOperand(2);
4337 Assert(isa<ConstantInt>(Derived),
4338 "gc.relocate operand #3 must be integer offset", CS);
4340 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4341 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4342 // Check the bounds
4343 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
4344 "gc.relocate: statepoint base index out of bounds", CS);
4345 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
4346 "gc.relocate: statepoint derived index out of bounds", CS);
4348 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4349 // section of the statepoint's argument.
4350 Assert(StatepointCS.arg_size() > 0,
4351 "gc.statepoint: insufficient arguments");
4352 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
4353 "gc.statement: number of call arguments must be constant integer");
4354 const unsigned NumCallArgs =
4355 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4356 Assert(StatepointCS.arg_size() > NumCallArgs + 5,
4357 "gc.statepoint: mismatch in number of call arguments");
4358 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
4359 "gc.statepoint: number of transition arguments must be "
4360 "a constant integer");
4361 const int NumTransitionArgs =
4362 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4363 ->getZExtValue();
4364 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4365 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
4366 "gc.statepoint: number of deoptimization arguments must be "
4367 "a constant integer");
4368 const int NumDeoptArgs =
4369 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4370 ->getZExtValue();
4371 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4372 const int GCParamArgsEnd = StatepointCS.arg_size();
4373 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4374 "gc.relocate: statepoint base index doesn't fall within the "
4375 "'gc parameters' section of the statepoint call",
4376 CS);
4377 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4378 "gc.relocate: statepoint derived index doesn't fall within the "
4379 "'gc parameters' section of the statepoint call",
4380 CS);
4382 // Relocated value must be either a pointer type or vector-of-pointer type,
4383 // but gc_relocate does not need to return the same pointer type as the
4384 // relocated pointer. It can be casted to the correct type later if it's
4385 // desired. However, they must have the same address space and 'vectorness'
4386 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4387 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4388 "gc.relocate: relocated value must be a gc pointer", CS);
4390 auto ResultType = CS.getType();
4391 auto DerivedType = Relocate.getDerivedPtr()->getType();
4392 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4393 "gc.relocate: vector relocates to vector and pointer to pointer",
4394 CS);
4395 Assert(
4396 ResultType->getPointerAddressSpace() ==
4397 DerivedType->getPointerAddressSpace(),
4398 "gc.relocate: relocating a pointer shouldn't change its address space",
4399 CS);
4400 break;
4402 case Intrinsic::eh_exceptioncode:
4403 case Intrinsic::eh_exceptionpointer: {
4404 Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
4405 "eh.exceptionpointer argument must be a catchpad", CS);
4406 break;
4408 case Intrinsic::masked_load: {
4409 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS);
4411 Value *Ptr = CS.getArgOperand(0);
4412 //Value *Alignment = CS.getArgOperand(1);
4413 Value *Mask = CS.getArgOperand(2);
4414 Value *PassThru = CS.getArgOperand(3);
4415 Assert(Mask->getType()->isVectorTy(),
4416 "masked_load: mask must be vector", CS);
4418 // DataTy is the overloaded type
4419 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4420 Assert(DataTy == CS.getType(),
4421 "masked_load: return must match pointer type", CS);
4422 Assert(PassThru->getType() == DataTy,
4423 "masked_load: pass through and data type must match", CS);
4424 Assert(Mask->getType()->getVectorNumElements() ==
4425 DataTy->getVectorNumElements(),
4426 "masked_load: vector mask must be same length as data", CS);
4427 break;
4429 case Intrinsic::masked_store: {
4430 Value *Val = CS.getArgOperand(0);
4431 Value *Ptr = CS.getArgOperand(1);
4432 //Value *Alignment = CS.getArgOperand(2);
4433 Value *Mask = CS.getArgOperand(3);
4434 Assert(Mask->getType()->isVectorTy(),
4435 "masked_store: mask must be vector", CS);
4437 // DataTy is the overloaded type
4438 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4439 Assert(DataTy == Val->getType(),
4440 "masked_store: storee must match pointer type", CS);
4441 Assert(Mask->getType()->getVectorNumElements() ==
4442 DataTy->getVectorNumElements(),
4443 "masked_store: vector mask must be same length as data", CS);
4444 break;
4447 case Intrinsic::experimental_guard: {
4448 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS);
4449 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4450 "experimental_guard must have exactly one "
4451 "\"deopt\" operand bundle");
4452 break;
4455 case Intrinsic::experimental_deoptimize: {
4456 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS);
4457 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4458 "experimental_deoptimize must have exactly one "
4459 "\"deopt\" operand bundle");
4460 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),
4461 "experimental_deoptimize return type must match caller return type");
4463 if (CS.isCall()) {
4464 auto *DeoptCI = CS.getInstruction();
4465 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4466 Assert(RI,
4467 "calls to experimental_deoptimize must be followed by a return");
4469 if (!CS.getType()->isVoidTy() && RI)
4470 Assert(RI->getReturnValue() == DeoptCI,
4471 "calls to experimental_deoptimize must be followed by a return "
4472 "of the value computed by experimental_deoptimize");
4475 break;
4480 /// Carefully grab the subprogram from a local scope.
4482 /// This carefully grabs the subprogram from a local scope, avoiding the
4483 /// built-in assertions that would typically fire.
4484 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4485 if (!LocalScope)
4486 return nullptr;
4488 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4489 return SP;
4491 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4492 return getSubprogram(LB->getRawScope());
4494 // Just return null; broken scope chains are checked elsewhere.
4495 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4496 return nullptr;
4499 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4500 unsigned NumOperands = FPI.getNumArgOperands();
4501 Assert(((NumOperands == 5 && FPI.isTernaryOp()) ||
4502 (NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)),
4503 "invalid arguments for constrained FP intrinsic", &FPI);
4504 Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)),
4505 "invalid exception behavior argument", &FPI);
4506 Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)),
4507 "invalid rounding mode argument", &FPI);
4508 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,
4509 "invalid rounding mode argument", &FPI);
4510 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,
4511 "invalid exception behavior argument", &FPI);
4514 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
4515 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4516 AssertDI(isa<ValueAsMetadata>(MD) ||
4517 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4518 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4519 AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4520 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4521 DII.getRawVariable());
4522 AssertDI(isa<DIExpression>(DII.getRawExpression()),
4523 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4524 DII.getRawExpression());
4526 // Ignore broken !dbg attachments; they're checked elsewhere.
4527 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4528 if (!isa<DILocation>(N))
4529 return;
4531 BasicBlock *BB = DII.getParent();
4532 Function *F = BB ? BB->getParent() : nullptr;
4534 // The scopes for variables and !dbg attachments must agree.
4535 DILocalVariable *Var = DII.getVariable();
4536 DILocation *Loc = DII.getDebugLoc();
4537 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4538 &DII, BB, F);
4540 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4541 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4542 if (!VarSP || !LocSP)
4543 return; // Broken scope chains are checked elsewhere.
4545 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4546 " variable and !dbg attachment",
4547 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4548 Loc->getScope()->getSubprogram());
4550 // This check is redundant with one in visitLocalVariable().
4551 AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
4552 Var->getRawType());
4553 if (auto *Type = dyn_cast_or_null<DIType>(Var->getRawType()))
4554 if (Type->isBlockByrefStruct())
4555 AssertDI(DII.getExpression() && DII.getExpression()->getNumElements(),
4556 "BlockByRef variable without complex expression", Var, &DII);
4558 verifyFnArgs(DII);
4561 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4562 AssertDI(isa<DILabel>(DLI.getRawLabel()),
4563 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
4564 DLI.getRawLabel());
4566 // Ignore broken !dbg attachments; they're checked elsewhere.
4567 if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4568 if (!isa<DILocation>(N))
4569 return;
4571 BasicBlock *BB = DLI.getParent();
4572 Function *F = BB ? BB->getParent() : nullptr;
4574 // The scopes for variables and !dbg attachments must agree.
4575 DILabel *Label = DLI.getLabel();
4576 DILocation *Loc = DLI.getDebugLoc();
4577 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4578 &DLI, BB, F);
4580 DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4581 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4582 if (!LabelSP || !LocSP)
4583 return;
4585 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4586 " label and !dbg attachment",
4587 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
4588 Loc->getScope()->getSubprogram());
4591 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
4592 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4593 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4595 // We don't know whether this intrinsic verified correctly.
4596 if (!V || !E || !E->isValid())
4597 return;
4599 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4600 auto Fragment = E->getFragmentInfo();
4601 if (!Fragment)
4602 return;
4604 // The frontend helps out GDB by emitting the members of local anonymous
4605 // unions as artificial local variables with shared storage. When SROA splits
4606 // the storage for artificial local variables that are smaller than the entire
4607 // union, the overhang piece will be outside of the allotted space for the
4608 // variable and this check fails.
4609 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4610 if (V->isArtificial())
4611 return;
4613 verifyFragmentExpression(*V, *Fragment, &I);
4616 template <typename ValueOrMetadata>
4617 void Verifier::verifyFragmentExpression(const DIVariable &V,
4618 DIExpression::FragmentInfo Fragment,
4619 ValueOrMetadata *Desc) {
4620 // If there's no size, the type is broken, but that should be checked
4621 // elsewhere.
4622 auto VarSize = V.getSizeInBits();
4623 if (!VarSize)
4624 return;
4626 unsigned FragSize = Fragment.SizeInBits;
4627 unsigned FragOffset = Fragment.OffsetInBits;
4628 AssertDI(FragSize + FragOffset <= *VarSize,
4629 "fragment is larger than or outside of variable", Desc, &V);
4630 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
4633 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
4634 // This function does not take the scope of noninlined function arguments into
4635 // account. Don't run it if current function is nodebug, because it may
4636 // contain inlined debug intrinsics.
4637 if (!HasDebugInfo)
4638 return;
4640 // For performance reasons only check non-inlined ones.
4641 if (I.getDebugLoc()->getInlinedAt())
4642 return;
4644 DILocalVariable *Var = I.getVariable();
4645 AssertDI(Var, "dbg intrinsic without variable");
4647 unsigned ArgNo = Var->getArg();
4648 if (!ArgNo)
4649 return;
4651 // Verify there are no duplicate function argument debug info entries.
4652 // These will cause hard-to-debug assertions in the DWARF backend.
4653 if (DebugFnArgs.size() < ArgNo)
4654 DebugFnArgs.resize(ArgNo, nullptr);
4656 auto *Prev = DebugFnArgs[ArgNo - 1];
4657 DebugFnArgs[ArgNo - 1] = Var;
4658 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
4659 Prev, Var);
4662 void Verifier::verifyCompileUnits() {
4663 // When more than one Module is imported into the same context, such as during
4664 // an LTO build before linking the modules, ODR type uniquing may cause types
4665 // to point to a different CU. This check does not make sense in this case.
4666 if (M.getContext().isODRUniquingDebugTypes())
4667 return;
4668 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4669 SmallPtrSet<const Metadata *, 2> Listed;
4670 if (CUs)
4671 Listed.insert(CUs->op_begin(), CUs->op_end());
4672 for (auto *CU : CUVisited)
4673 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
4674 CUVisited.clear();
4677 void Verifier::verifyDeoptimizeCallingConvs() {
4678 if (DeoptimizeDeclarations.empty())
4679 return;
4681 const Function *First = DeoptimizeDeclarations[0];
4682 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4683 Assert(First->getCallingConv() == F->getCallingConv(),
4684 "All llvm.experimental.deoptimize declarations must have the same "
4685 "calling convention",
4686 First, F);
4690 //===----------------------------------------------------------------------===//
4691 // Implement the public interfaces to this file...
4692 //===----------------------------------------------------------------------===//
4694 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4695 Function &F = const_cast<Function &>(f);
4697 // Don't use a raw_null_ostream. Printing IR is expensive.
4698 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4700 // Note that this function's return value is inverted from what you would
4701 // expect of a function called "verify".
4702 return !V.verify(F);
4705 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4706 bool *BrokenDebugInfo) {
4707 // Don't use a raw_null_ostream. Printing IR is expensive.
4708 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4710 bool Broken = false;
4711 for (const Function &F : M)
4712 Broken |= !V.verify(F);
4714 Broken |= !V.verify();
4715 if (BrokenDebugInfo)
4716 *BrokenDebugInfo = V.hasBrokenDebugInfo();
4717 // Note that this function's return value is inverted from what you would
4718 // expect of a function called "verify".
4719 return Broken;
4722 namespace {
4724 struct VerifierLegacyPass : public FunctionPass {
4725 static char ID;
4727 std::unique_ptr<Verifier> V;
4728 bool FatalErrors = true;
4730 VerifierLegacyPass() : FunctionPass(ID) {
4731 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4733 explicit VerifierLegacyPass(bool FatalErrors)
4734 : FunctionPass(ID),
4735 FatalErrors(FatalErrors) {
4736 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4739 bool doInitialization(Module &M) override {
4740 V = llvm::make_unique<Verifier>(
4741 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4742 return false;
4745 bool runOnFunction(Function &F) override {
4746 if (!V->verify(F) && FatalErrors) {
4747 errs() << "in function " << F.getName() << '\n';
4748 report_fatal_error("Broken function found, compilation aborted!");
4750 return false;
4753 bool doFinalization(Module &M) override {
4754 bool HasErrors = false;
4755 for (Function &F : M)
4756 if (F.isDeclaration())
4757 HasErrors |= !V->verify(F);
4759 HasErrors |= !V->verify();
4760 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
4761 report_fatal_error("Broken module found, compilation aborted!");
4762 return false;
4765 void getAnalysisUsage(AnalysisUsage &AU) const override {
4766 AU.setPreservesAll();
4770 } // end anonymous namespace
4772 /// Helper to issue failure from the TBAA verification
4773 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4774 if (Diagnostic)
4775 return Diagnostic->CheckFailed(Args...);
4778 #define AssertTBAA(C, ...) \
4779 do { \
4780 if (!(C)) { \
4781 CheckFailed(__VA_ARGS__); \
4782 return false; \
4784 } while (false)
4786 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
4787 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4788 /// struct-type node describing an aggregate data structure (like a struct).
4789 TBAAVerifier::TBAABaseNodeSummary
4790 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
4791 bool IsNewFormat) {
4792 if (BaseNode->getNumOperands() < 2) {
4793 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4794 return {true, ~0u};
4797 auto Itr = TBAABaseNodes.find(BaseNode);
4798 if (Itr != TBAABaseNodes.end())
4799 return Itr->second;
4801 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
4802 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4803 (void)InsertResult;
4804 assert(InsertResult.second && "We just checked!");
4805 return Result;
4808 TBAAVerifier::TBAABaseNodeSummary
4809 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
4810 bool IsNewFormat) {
4811 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4813 if (BaseNode->getNumOperands() == 2) {
4814 // Scalar nodes can only be accessed at offset 0.
4815 return isValidScalarTBAANode(BaseNode)
4816 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4817 : InvalidNode;
4820 if (IsNewFormat) {
4821 if (BaseNode->getNumOperands() % 3 != 0) {
4822 CheckFailed("Access tag nodes must have the number of operands that is a "
4823 "multiple of 3!", BaseNode);
4824 return InvalidNode;
4826 } else {
4827 if (BaseNode->getNumOperands() % 2 != 1) {
4828 CheckFailed("Struct tag nodes must have an odd number of operands!",
4829 BaseNode);
4830 return InvalidNode;
4834 // Check the type size field.
4835 if (IsNewFormat) {
4836 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4837 BaseNode->getOperand(1));
4838 if (!TypeSizeNode) {
4839 CheckFailed("Type size nodes must be constants!", &I, BaseNode);
4840 return InvalidNode;
4844 // Check the type name field. In the new format it can be anything.
4845 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
4846 CheckFailed("Struct tag nodes have a string as their first operand",
4847 BaseNode);
4848 return InvalidNode;
4851 bool Failed = false;
4853 Optional<APInt> PrevOffset;
4854 unsigned BitWidth = ~0u;
4856 // We've already checked that BaseNode is not a degenerate root node with one
4857 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4858 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4859 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4860 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4861 Idx += NumOpsPerField) {
4862 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4863 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4864 if (!isa<MDNode>(FieldTy)) {
4865 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4866 Failed = true;
4867 continue;
4870 auto *OffsetEntryCI =
4871 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4872 if (!OffsetEntryCI) {
4873 CheckFailed("Offset entries must be constants!", &I, BaseNode);
4874 Failed = true;
4875 continue;
4878 if (BitWidth == ~0u)
4879 BitWidth = OffsetEntryCI->getBitWidth();
4881 if (OffsetEntryCI->getBitWidth() != BitWidth) {
4882 CheckFailed(
4883 "Bitwidth between the offsets and struct type entries must match", &I,
4884 BaseNode);
4885 Failed = true;
4886 continue;
4889 // NB! As far as I can tell, we generate a non-strictly increasing offset
4890 // sequence only from structs that have zero size bit fields. When
4891 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4892 // pick the field lexically the latest in struct type metadata node. This
4893 // mirrors the actual behavior of the alias analysis implementation.
4894 bool IsAscending =
4895 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4897 if (!IsAscending) {
4898 CheckFailed("Offsets must be increasing!", &I, BaseNode);
4899 Failed = true;
4902 PrevOffset = OffsetEntryCI->getValue();
4904 if (IsNewFormat) {
4905 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4906 BaseNode->getOperand(Idx + 2));
4907 if (!MemberSizeNode) {
4908 CheckFailed("Member size entries must be constants!", &I, BaseNode);
4909 Failed = true;
4910 continue;
4915 return Failed ? InvalidNode
4916 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4919 static bool IsRootTBAANode(const MDNode *MD) {
4920 return MD->getNumOperands() < 2;
4923 static bool IsScalarTBAANodeImpl(const MDNode *MD,
4924 SmallPtrSetImpl<const MDNode *> &Visited) {
4925 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4926 return false;
4928 if (!isa<MDString>(MD->getOperand(0)))
4929 return false;
4931 if (MD->getNumOperands() == 3) {
4932 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4933 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4934 return false;
4937 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4938 return Parent && Visited.insert(Parent).second &&
4939 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4942 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4943 auto ResultIt = TBAAScalarNodes.find(MD);
4944 if (ResultIt != TBAAScalarNodes.end())
4945 return ResultIt->second;
4947 SmallPtrSet<const MDNode *, 4> Visited;
4948 bool Result = IsScalarTBAANodeImpl(MD, Visited);
4949 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4950 (void)InsertResult;
4951 assert(InsertResult.second && "Just checked!");
4953 return Result;
4956 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
4957 /// Offset in place to be the offset within the field node returned.
4959 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4960 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4961 const MDNode *BaseNode,
4962 APInt &Offset,
4963 bool IsNewFormat) {
4964 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
4966 // Scalar nodes have only one possible "field" -- their parent in the access
4967 // hierarchy. Offset must be zero at this point, but our caller is supposed
4968 // to Assert that.
4969 if (BaseNode->getNumOperands() == 2)
4970 return cast<MDNode>(BaseNode->getOperand(1));
4972 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4973 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4974 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4975 Idx += NumOpsPerField) {
4976 auto *OffsetEntryCI =
4977 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4978 if (OffsetEntryCI->getValue().ugt(Offset)) {
4979 if (Idx == FirstFieldOpNo) {
4980 CheckFailed("Could not find TBAA parent in struct type node", &I,
4981 BaseNode, &Offset);
4982 return nullptr;
4985 unsigned PrevIdx = Idx - NumOpsPerField;
4986 auto *PrevOffsetEntryCI =
4987 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
4988 Offset -= PrevOffsetEntryCI->getValue();
4989 return cast<MDNode>(BaseNode->getOperand(PrevIdx));
4993 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
4994 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4995 BaseNode->getOperand(LastIdx + 1));
4996 Offset -= LastOffsetEntryCI->getValue();
4997 return cast<MDNode>(BaseNode->getOperand(LastIdx));
5000 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
5001 if (!Type || Type->getNumOperands() < 3)
5002 return false;
5004 // In the new format type nodes shall have a reference to the parent type as
5005 // its first operand.
5006 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
5007 if (!Parent)
5008 return false;
5010 return true;
5013 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
5014 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
5015 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
5016 isa<AtomicCmpXchgInst>(I),
5017 "This instruction shall not have a TBAA access tag!", &I);
5019 bool IsStructPathTBAA =
5020 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
5022 AssertTBAA(
5023 IsStructPathTBAA,
5024 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
5026 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5027 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5029 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5031 if (IsNewFormat) {
5032 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
5033 "Access tag metadata must have either 4 or 5 operands", &I, MD);
5034 } else {
5035 AssertTBAA(MD->getNumOperands() < 5,
5036 "Struct tag metadata must have either 3 or 4 operands", &I, MD);
5039 // Check the access size field.
5040 if (IsNewFormat) {
5041 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5042 MD->getOperand(3));
5043 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
5046 // Check the immutability flag.
5047 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5048 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5049 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5050 MD->getOperand(ImmutabilityFlagOpNo));
5051 AssertTBAA(IsImmutableCI,
5052 "Immutability tag on struct tag metadata must be a constant",
5053 &I, MD);
5054 AssertTBAA(
5055 IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5056 "Immutability part of the struct tag metadata must be either 0 or 1",
5057 &I, MD);
5060 AssertTBAA(BaseNode && AccessType,
5061 "Malformed struct tag metadata: base and access-type "
5062 "should be non-null and point to Metadata nodes",
5063 &I, MD, BaseNode, AccessType);
5065 if (!IsNewFormat) {
5066 AssertTBAA(isValidScalarTBAANode(AccessType),
5067 "Access type node must be a valid scalar type", &I, MD,
5068 AccessType);
5071 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5072 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5074 APInt Offset = OffsetCI->getValue();
5075 bool SeenAccessTypeInPath = false;
5077 SmallPtrSet<MDNode *, 4> StructPath;
5079 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5080 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5081 IsNewFormat)) {
5082 if (!StructPath.insert(BaseNode).second) {
5083 CheckFailed("Cycle detected in struct path", &I, MD);
5084 return false;
5087 bool Invalid;
5088 unsigned BaseNodeBitWidth;
5089 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5090 IsNewFormat);
5092 // If the base node is invalid in itself, then we've already printed all the
5093 // errors we wanted to print.
5094 if (Invalid)
5095 return false;
5097 SeenAccessTypeInPath |= BaseNode == AccessType;
5099 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5100 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5101 &I, MD, &Offset);
5103 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5104 (BaseNodeBitWidth == 0 && Offset == 0) ||
5105 (IsNewFormat && BaseNodeBitWidth == ~0u),
5106 "Access bit-width not the same as description bit-width", &I, MD,
5107 BaseNodeBitWidth, Offset.getBitWidth());
5109 if (IsNewFormat && SeenAccessTypeInPath)
5110 break;
5113 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5114 &I, MD);
5115 return true;
5118 char VerifierLegacyPass::ID = 0;
5119 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5121 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5122 return new VerifierLegacyPass(FatalErrors);
5125 AnalysisKey VerifierAnalysis::Key;
5126 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5127 ModuleAnalysisManager &) {
5128 Result Res;
5129 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5130 return Res;
5133 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5134 FunctionAnalysisManager &) {
5135 return { llvm::verifyFunction(F, &dbgs()), false };
5138 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5139 auto Res = AM.getResult<VerifierAnalysis>(M);
5140 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5141 report_fatal_error("Broken module found, compilation aborted!");
5143 return PreservedAnalyses::all();
5146 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5147 auto res = AM.getResult<VerifierAnalysis>(F);
5148 if (res.IRBroken && FatalErrors)
5149 report_fatal_error("Broken function found, compilation aborted!");
5151 return PreservedAnalyses::all();