[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / lib / Target / SystemZ / SystemZTargetTransformInfo.cpp
blob1eaeb9699bf6ff866a35dec9aff73d94f28ea5f7
1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // SystemZ target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
15 //===----------------------------------------------------------------------===//
17 #include "SystemZTargetTransformInfo.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/CodeGen/BasicTTIImpl.h"
20 #include "llvm/CodeGen/CostTable.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/Support/Debug.h"
24 using namespace llvm;
26 #define DEBUG_TYPE "systemztti"
28 //===----------------------------------------------------------------------===//
30 // SystemZ cost model.
32 //===----------------------------------------------------------------------===//
34 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
35 assert(Ty->isIntegerTy());
37 unsigned BitSize = Ty->getPrimitiveSizeInBits();
38 // There is no cost model for constants with a bit size of 0. Return TCC_Free
39 // here, so that constant hoisting will ignore this constant.
40 if (BitSize == 0)
41 return TTI::TCC_Free;
42 // No cost model for operations on integers larger than 64 bit implemented yet.
43 if (BitSize > 64)
44 return TTI::TCC_Free;
46 if (Imm == 0)
47 return TTI::TCC_Free;
49 if (Imm.getBitWidth() <= 64) {
50 // Constants loaded via lgfi.
51 if (isInt<32>(Imm.getSExtValue()))
52 return TTI::TCC_Basic;
53 // Constants loaded via llilf.
54 if (isUInt<32>(Imm.getZExtValue()))
55 return TTI::TCC_Basic;
56 // Constants loaded via llihf:
57 if ((Imm.getZExtValue() & 0xffffffff) == 0)
58 return TTI::TCC_Basic;
60 return 2 * TTI::TCC_Basic;
63 return 4 * TTI::TCC_Basic;
66 int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
67 const APInt &Imm, Type *Ty) {
68 assert(Ty->isIntegerTy());
70 unsigned BitSize = Ty->getPrimitiveSizeInBits();
71 // There is no cost model for constants with a bit size of 0. Return TCC_Free
72 // here, so that constant hoisting will ignore this constant.
73 if (BitSize == 0)
74 return TTI::TCC_Free;
75 // No cost model for operations on integers larger than 64 bit implemented yet.
76 if (BitSize > 64)
77 return TTI::TCC_Free;
79 switch (Opcode) {
80 default:
81 return TTI::TCC_Free;
82 case Instruction::GetElementPtr:
83 // Always hoist the base address of a GetElementPtr. This prevents the
84 // creation of new constants for every base constant that gets constant
85 // folded with the offset.
86 if (Idx == 0)
87 return 2 * TTI::TCC_Basic;
88 return TTI::TCC_Free;
89 case Instruction::Store:
90 if (Idx == 0 && Imm.getBitWidth() <= 64) {
91 // Any 8-bit immediate store can by implemented via mvi.
92 if (BitSize == 8)
93 return TTI::TCC_Free;
94 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
95 if (isInt<16>(Imm.getSExtValue()))
96 return TTI::TCC_Free;
98 break;
99 case Instruction::ICmp:
100 if (Idx == 1 && Imm.getBitWidth() <= 64) {
101 // Comparisons against signed 32-bit immediates implemented via cgfi.
102 if (isInt<32>(Imm.getSExtValue()))
103 return TTI::TCC_Free;
104 // Comparisons against unsigned 32-bit immediates implemented via clgfi.
105 if (isUInt<32>(Imm.getZExtValue()))
106 return TTI::TCC_Free;
108 break;
109 case Instruction::Add:
110 case Instruction::Sub:
111 if (Idx == 1 && Imm.getBitWidth() <= 64) {
112 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
113 if (isUInt<32>(Imm.getZExtValue()))
114 return TTI::TCC_Free;
115 // Or their negation, by swapping addition vs. subtraction.
116 if (isUInt<32>(-Imm.getSExtValue()))
117 return TTI::TCC_Free;
119 break;
120 case Instruction::Mul:
121 if (Idx == 1 && Imm.getBitWidth() <= 64) {
122 // We use msgfi to multiply by 32-bit signed immediates.
123 if (isInt<32>(Imm.getSExtValue()))
124 return TTI::TCC_Free;
126 break;
127 case Instruction::Or:
128 case Instruction::Xor:
129 if (Idx == 1 && Imm.getBitWidth() <= 64) {
130 // Masks supported by oilf/xilf.
131 if (isUInt<32>(Imm.getZExtValue()))
132 return TTI::TCC_Free;
133 // Masks supported by oihf/xihf.
134 if ((Imm.getZExtValue() & 0xffffffff) == 0)
135 return TTI::TCC_Free;
137 break;
138 case Instruction::And:
139 if (Idx == 1 && Imm.getBitWidth() <= 64) {
140 // Any 32-bit AND operation can by implemented via nilf.
141 if (BitSize <= 32)
142 return TTI::TCC_Free;
143 // 64-bit masks supported by nilf.
144 if (isUInt<32>(~Imm.getZExtValue()))
145 return TTI::TCC_Free;
146 // 64-bit masks supported by nilh.
147 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
148 return TTI::TCC_Free;
149 // Some 64-bit AND operations can be implemented via risbg.
150 const SystemZInstrInfo *TII = ST->getInstrInfo();
151 unsigned Start, End;
152 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
153 return TTI::TCC_Free;
155 break;
156 case Instruction::Shl:
157 case Instruction::LShr:
158 case Instruction::AShr:
159 // Always return TCC_Free for the shift value of a shift instruction.
160 if (Idx == 1)
161 return TTI::TCC_Free;
162 break;
163 case Instruction::UDiv:
164 case Instruction::SDiv:
165 case Instruction::URem:
166 case Instruction::SRem:
167 case Instruction::Trunc:
168 case Instruction::ZExt:
169 case Instruction::SExt:
170 case Instruction::IntToPtr:
171 case Instruction::PtrToInt:
172 case Instruction::BitCast:
173 case Instruction::PHI:
174 case Instruction::Call:
175 case Instruction::Select:
176 case Instruction::Ret:
177 case Instruction::Load:
178 break;
181 return SystemZTTIImpl::getIntImmCost(Imm, Ty);
184 int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
185 const APInt &Imm, Type *Ty) {
186 assert(Ty->isIntegerTy());
188 unsigned BitSize = Ty->getPrimitiveSizeInBits();
189 // There is no cost model for constants with a bit size of 0. Return TCC_Free
190 // here, so that constant hoisting will ignore this constant.
191 if (BitSize == 0)
192 return TTI::TCC_Free;
193 // No cost model for operations on integers larger than 64 bit implemented yet.
194 if (BitSize > 64)
195 return TTI::TCC_Free;
197 switch (IID) {
198 default:
199 return TTI::TCC_Free;
200 case Intrinsic::sadd_with_overflow:
201 case Intrinsic::uadd_with_overflow:
202 case Intrinsic::ssub_with_overflow:
203 case Intrinsic::usub_with_overflow:
204 // These get expanded to include a normal addition/subtraction.
205 if (Idx == 1 && Imm.getBitWidth() <= 64) {
206 if (isUInt<32>(Imm.getZExtValue()))
207 return TTI::TCC_Free;
208 if (isUInt<32>(-Imm.getSExtValue()))
209 return TTI::TCC_Free;
211 break;
212 case Intrinsic::smul_with_overflow:
213 case Intrinsic::umul_with_overflow:
214 // These get expanded to include a normal multiplication.
215 if (Idx == 1 && Imm.getBitWidth() <= 64) {
216 if (isInt<32>(Imm.getSExtValue()))
217 return TTI::TCC_Free;
219 break;
220 case Intrinsic::experimental_stackmap:
221 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
222 return TTI::TCC_Free;
223 break;
224 case Intrinsic::experimental_patchpoint_void:
225 case Intrinsic::experimental_patchpoint_i64:
226 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
227 return TTI::TCC_Free;
228 break;
230 return SystemZTTIImpl::getIntImmCost(Imm, Ty);
233 TargetTransformInfo::PopcntSupportKind
234 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
235 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
236 if (ST->hasPopulationCount() && TyWidth <= 64)
237 return TTI::PSK_FastHardware;
238 return TTI::PSK_Software;
241 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
242 TTI::UnrollingPreferences &UP) {
243 // Find out if L contains a call, what the machine instruction count
244 // estimate is, and how many stores there are.
245 bool HasCall = false;
246 unsigned NumStores = 0;
247 for (auto &BB : L->blocks())
248 for (auto &I : *BB) {
249 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
250 ImmutableCallSite CS(&I);
251 if (const Function *F = CS.getCalledFunction()) {
252 if (isLoweredToCall(F))
253 HasCall = true;
254 if (F->getIntrinsicID() == Intrinsic::memcpy ||
255 F->getIntrinsicID() == Intrinsic::memset)
256 NumStores++;
257 } else { // indirect call.
258 HasCall = true;
261 if (isa<StoreInst>(&I)) {
262 Type *MemAccessTy = I.getOperand(0)->getType();
263 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0);
267 // The z13 processor will run out of store tags if too many stores
268 // are fed into it too quickly. Therefore make sure there are not
269 // too many stores in the resulting unrolled loop.
270 unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX);
272 if (HasCall) {
273 // Only allow full unrolling if loop has any calls.
274 UP.FullUnrollMaxCount = Max;
275 UP.MaxCount = 1;
276 return;
279 UP.MaxCount = Max;
280 if (UP.MaxCount <= 1)
281 return;
283 // Allow partial and runtime trip count unrolling.
284 UP.Partial = UP.Runtime = true;
286 UP.PartialThreshold = 75;
287 UP.DefaultUnrollRuntimeCount = 4;
289 // Allow expensive instructions in the pre-header of the loop.
290 UP.AllowExpensiveTripCount = true;
292 UP.Force = true;
296 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
297 TargetTransformInfo::LSRCost &C2) {
298 // SystemZ specific: check instruction count (first), and don't care about
299 // ImmCost, since offsets are checked explicitly.
300 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
301 C1.NumIVMuls, C1.NumBaseAdds,
302 C1.ScaleCost, C1.SetupCost) <
303 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
304 C2.NumIVMuls, C2.NumBaseAdds,
305 C2.ScaleCost, C2.SetupCost);
308 unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) {
309 if (!Vector)
310 // Discount the stack pointer. Also leave out %r0, since it can't
311 // be used in an address.
312 return 14;
313 if (ST->hasVector())
314 return 32;
315 return 0;
318 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const {
319 if (!Vector)
320 return 64;
321 if (ST->hasVector())
322 return 128;
323 return 0;
326 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
327 EVT VT = TLI->getValueType(DL, DataType);
328 return (VT.isScalarInteger() && TLI->isTypeLegal(VT));
331 // Return the bit size for the scalar type or vector element
332 // type. getScalarSizeInBits() returns 0 for a pointer type.
333 static unsigned getScalarSizeInBits(Type *Ty) {
334 unsigned Size =
335 (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits());
336 assert(Size > 0 && "Element must have non-zero size.");
337 return Size;
340 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector
341 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of
342 // 3.
343 static unsigned getNumVectorRegs(Type *Ty) {
344 assert(Ty->isVectorTy() && "Expected vector type");
345 unsigned WideBits = getScalarSizeInBits(Ty) * Ty->getVectorNumElements();
346 assert(WideBits > 0 && "Could not compute size of vector");
347 return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
350 int SystemZTTIImpl::getArithmeticInstrCost(
351 unsigned Opcode, Type *Ty,
352 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
353 TTI::OperandValueProperties Opd1PropInfo,
354 TTI::OperandValueProperties Opd2PropInfo,
355 ArrayRef<const Value *> Args) {
357 // TODO: return a good value for BB-VECTORIZER that includes the
358 // immediate loads, which we do not want to count for the loop
359 // vectorizer, since they are hopefully hoisted out of the loop. This
360 // would require a new parameter 'InLoop', but not sure if constant
361 // args are common enough to motivate this.
363 unsigned ScalarBits = Ty->getScalarSizeInBits();
365 // Div with a constant which is a power of 2 will be converted by
366 // DAGCombiner to use shifts. With vector shift-element instructions, a
367 // vector sdiv costs about as much as a scalar one.
368 const unsigned SDivCostEstimate = 4;
369 bool SDivPow2 = false;
370 bool UDivPow2 = false;
371 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv) &&
372 Args.size() == 2) {
373 const ConstantInt *CI = nullptr;
374 if (const Constant *C = dyn_cast<Constant>(Args[1])) {
375 if (C->getType()->isVectorTy())
376 CI = dyn_cast_or_null<const ConstantInt>(C->getSplatValue());
377 else
378 CI = dyn_cast<const ConstantInt>(C);
380 if (CI != nullptr &&
381 (CI->getValue().isPowerOf2() || (-CI->getValue()).isPowerOf2())) {
382 if (Opcode == Instruction::SDiv)
383 SDivPow2 = true;
384 else
385 UDivPow2 = true;
389 if (Ty->isVectorTy()) {
390 assert (ST->hasVector() && "getArithmeticInstrCost() called with vector type.");
391 unsigned VF = Ty->getVectorNumElements();
392 unsigned NumVectors = getNumVectorRegs(Ty);
394 // These vector operations are custom handled, but are still supported
395 // with one instruction per vector, regardless of element size.
396 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
397 Opcode == Instruction::AShr || UDivPow2) {
398 return NumVectors;
401 if (SDivPow2)
402 return (NumVectors * SDivCostEstimate);
404 // Temporary hack: disable high vectorization factors with integer
405 // division/remainder, which will get scalarized and handled with GR128
406 // registers. The mischeduler is not clever enough to avoid spilling yet.
407 if ((Opcode == Instruction::UDiv || Opcode == Instruction::SDiv ||
408 Opcode == Instruction::URem || Opcode == Instruction::SRem) && VF > 4)
409 return 1000;
411 // These FP operations are supported with a single vector instruction for
412 // double (base implementation assumes float generally costs 2). For
413 // FP128, the scalar cost is 1, and there is no overhead since the values
414 // are already in scalar registers.
415 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
416 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
417 switch (ScalarBits) {
418 case 32: {
419 // The vector enhancements facility 1 provides v4f32 instructions.
420 if (ST->hasVectorEnhancements1())
421 return NumVectors;
422 // Return the cost of multiple scalar invocation plus the cost of
423 // inserting and extracting the values.
424 unsigned ScalarCost = getArithmeticInstrCost(Opcode, Ty->getScalarType());
425 unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args);
426 // FIXME: VF 2 for these FP operations are currently just as
427 // expensive as for VF 4.
428 if (VF == 2)
429 Cost *= 2;
430 return Cost;
432 case 64:
433 case 128:
434 return NumVectors;
435 default:
436 break;
440 // There is no native support for FRem.
441 if (Opcode == Instruction::FRem) {
442 unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args);
443 // FIXME: VF 2 for float is currently just as expensive as for VF 4.
444 if (VF == 2 && ScalarBits == 32)
445 Cost *= 2;
446 return Cost;
449 else { // Scalar:
450 // These FP operations are supported with a dedicated instruction for
451 // float, double and fp128 (base implementation assumes float generally
452 // costs 2).
453 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
454 Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
455 return 1;
457 // There is no native support for FRem.
458 if (Opcode == Instruction::FRem)
459 return LIBCALL_COST;
461 if (Opcode == Instruction::LShr || Opcode == Instruction::AShr)
462 return (ScalarBits >= 32 ? 1 : 2 /*ext*/);
464 // Or requires one instruction, although it has custom handling for i64.
465 if (Opcode == Instruction::Or)
466 return 1;
468 if (Opcode == Instruction::Xor && ScalarBits == 1) {
469 if (ST->hasLoadStoreOnCond2())
470 return 5; // 2 * (li 0; loc 1); xor
471 return 7; // 2 * ipm sequences ; xor ; shift ; compare
474 if (UDivPow2)
475 return 1;
476 if (SDivPow2)
477 return SDivCostEstimate;
479 // An extra extension for narrow types is needed.
480 if ((Opcode == Instruction::SDiv || Opcode == Instruction::SRem))
481 // sext of op(s) for narrow types
482 return (ScalarBits < 32 ? 4 : (ScalarBits == 32 ? 2 : 1));
484 if (Opcode == Instruction::UDiv || Opcode == Instruction::URem)
485 // Clearing of low 64 bit reg + sext of op(s) for narrow types + dl[g]r
486 return (ScalarBits < 32 ? 4 : 2);
489 // Fallback to the default implementation.
490 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
491 Opd1PropInfo, Opd2PropInfo, Args);
494 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
495 Type *SubTp) {
496 assert (Tp->isVectorTy());
497 assert (ST->hasVector() && "getShuffleCost() called.");
498 unsigned NumVectors = getNumVectorRegs(Tp);
500 // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
502 // FP128 values are always in scalar registers, so there is no work
503 // involved with a shuffle, except for broadcast. In that case register
504 // moves are done with a single instruction per element.
505 if (Tp->getScalarType()->isFP128Ty())
506 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
508 switch (Kind) {
509 case TargetTransformInfo::SK_ExtractSubvector:
510 // ExtractSubvector Index indicates start offset.
512 // Extracting a subvector from first index is a noop.
513 return (Index == 0 ? 0 : NumVectors);
515 case TargetTransformInfo::SK_Broadcast:
516 // Loop vectorizer calls here to figure out the extra cost of
517 // broadcasting a loaded value to all elements of a vector. Since vlrep
518 // loads and replicates with a single instruction, adjust the returned
519 // value.
520 return NumVectors - 1;
522 default:
524 // SystemZ supports single instruction permutation / replication.
525 return NumVectors;
528 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
531 // Return the log2 difference of the element sizes of the two vector types.
532 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
533 unsigned Bits0 = Ty0->getScalarSizeInBits();
534 unsigned Bits1 = Ty1->getScalarSizeInBits();
536 if (Bits1 > Bits0)
537 return (Log2_32(Bits1) - Log2_32(Bits0));
539 return (Log2_32(Bits0) - Log2_32(Bits1));
542 // Return the number of instructions needed to truncate SrcTy to DstTy.
543 unsigned SystemZTTIImpl::
544 getVectorTruncCost(Type *SrcTy, Type *DstTy) {
545 assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
546 assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() &&
547 "Packing must reduce size of vector type.");
548 assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() &&
549 "Packing should not change number of elements.");
551 // TODO: Since fp32 is expanded, the extract cost should always be 0.
553 unsigned NumParts = getNumVectorRegs(SrcTy);
554 if (NumParts <= 2)
555 // Up to 2 vector registers can be truncated efficiently with pack or
556 // permute. The latter requires an immediate mask to be loaded, which
557 // typically gets hoisted out of a loop. TODO: return a good value for
558 // BB-VECTORIZER that includes the immediate loads, which we do not want
559 // to count for the loop vectorizer.
560 return 1;
562 unsigned Cost = 0;
563 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
564 unsigned VF = SrcTy->getVectorNumElements();
565 for (unsigned P = 0; P < Log2Diff; ++P) {
566 if (NumParts > 1)
567 NumParts /= 2;
568 Cost += NumParts;
571 // Currently, a general mix of permutes and pack instructions is output by
572 // isel, which follow the cost computation above except for this case which
573 // is one instruction less:
574 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
575 DstTy->getScalarSizeInBits() == 8)
576 Cost--;
578 return Cost;
581 // Return the cost of converting a vector bitmask produced by a compare
582 // (SrcTy), to the type of the select or extend instruction (DstTy).
583 unsigned SystemZTTIImpl::
584 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
585 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
586 "Should only be called with vector types.");
588 unsigned PackCost = 0;
589 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
590 unsigned DstScalarBits = DstTy->getScalarSizeInBits();
591 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
592 if (SrcScalarBits > DstScalarBits)
593 // The bitmask will be truncated.
594 PackCost = getVectorTruncCost(SrcTy, DstTy);
595 else if (SrcScalarBits < DstScalarBits) {
596 unsigned DstNumParts = getNumVectorRegs(DstTy);
597 // Each vector select needs its part of the bitmask unpacked.
598 PackCost = Log2Diff * DstNumParts;
599 // Extra cost for moving part of mask before unpacking.
600 PackCost += DstNumParts - 1;
603 return PackCost;
606 // Return the type of the compared operands. This is needed to compute the
607 // cost for a Select / ZExt or SExt instruction.
608 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
609 Type *OpTy = nullptr;
610 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
611 OpTy = CI->getOperand(0)->getType();
612 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
613 if (LogicI->getNumOperands() == 2)
614 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
615 if (isa<CmpInst>(LogicI->getOperand(1)))
616 OpTy = CI0->getOperand(0)->getType();
618 if (OpTy != nullptr) {
619 if (VF == 1) {
620 assert (!OpTy->isVectorTy() && "Expected scalar type");
621 return OpTy;
623 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may
624 // be either scalar or already vectorized with a same or lesser VF.
625 Type *ElTy = OpTy->getScalarType();
626 return VectorType::get(ElTy, VF);
629 return nullptr;
632 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
633 const Instruction *I) {
634 unsigned DstScalarBits = Dst->getScalarSizeInBits();
635 unsigned SrcScalarBits = Src->getScalarSizeInBits();
637 if (Src->isVectorTy()) {
638 assert (ST->hasVector() && "getCastInstrCost() called with vector type.");
639 assert (Dst->isVectorTy());
640 unsigned VF = Src->getVectorNumElements();
641 unsigned NumDstVectors = getNumVectorRegs(Dst);
642 unsigned NumSrcVectors = getNumVectorRegs(Src);
644 if (Opcode == Instruction::Trunc) {
645 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
646 return 0; // Check for NOOP conversions.
647 return getVectorTruncCost(Src, Dst);
650 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
651 if (SrcScalarBits >= 8) {
652 // ZExt/SExt will be handled with one unpack per doubling of width.
653 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
655 // For types that spans multiple vector registers, some additional
656 // instructions are used to setup the unpacking.
657 unsigned NumSrcVectorOps =
658 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
659 : (NumDstVectors / 2));
661 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
663 else if (SrcScalarBits == 1) {
664 // This should be extension of a compare i1 result.
665 // If we know what the widths of the compared operands, get the
666 // cost of converting it to Dst. Otherwise assume same widths.
667 unsigned Cost = 0;
668 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
669 if (CmpOpTy != nullptr)
670 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
671 if (Opcode == Instruction::ZExt)
672 // One 'vn' per dst vector with an immediate mask.
673 Cost += NumDstVectors;
674 return Cost;
678 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
679 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
680 // TODO: Fix base implementation which could simplify things a bit here
681 // (seems to miss on differentiating on scalar/vector types).
683 // Only 64 bit vector conversions are natively supported.
684 if (SrcScalarBits == 64 && DstScalarBits == 64)
685 return NumDstVectors;
687 // Return the cost of multiple scalar invocation plus the cost of
688 // inserting and extracting the values. Base implementation does not
689 // realize float->int gets scalarized.
690 unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(),
691 Src->getScalarType());
692 unsigned TotCost = VF * ScalarCost;
693 bool NeedsInserts = true, NeedsExtracts = true;
694 // FP128 registers do not get inserted or extracted.
695 if (DstScalarBits == 128 &&
696 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
697 NeedsInserts = false;
698 if (SrcScalarBits == 128 &&
699 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
700 NeedsExtracts = false;
702 TotCost += getScalarizationOverhead(Dst, NeedsInserts, NeedsExtracts);
704 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
705 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
706 TotCost *= 2;
708 return TotCost;
711 if (Opcode == Instruction::FPTrunc) {
712 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements.
713 return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false);
714 else // double -> float
715 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
718 if (Opcode == Instruction::FPExt) {
719 if (SrcScalarBits == 32 && DstScalarBits == 64) {
720 // float -> double is very rare and currently unoptimized. Instead of
721 // using vldeb, which can do two at a time, all conversions are
722 // scalarized.
723 return VF * 2;
725 // -> fp128. VF * lxdb/lxeb + extraction of elements.
726 return VF + getScalarizationOverhead(Src, false, true);
729 else { // Scalar
730 assert (!Dst->isVectorTy());
732 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)
733 return (SrcScalarBits >= 32 ? 1 : 2 /*i8/i16 extend*/);
735 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
736 Src->isIntegerTy(1)) {
737 if (ST->hasLoadStoreOnCond2())
738 return 2; // li 0; loc 1
740 // This should be extension of a compare i1 result, which is done with
741 // ipm and a varying sequence of instructions.
742 unsigned Cost = 0;
743 if (Opcode == Instruction::SExt)
744 Cost = (DstScalarBits < 64 ? 3 : 4);
745 if (Opcode == Instruction::ZExt)
746 Cost = 3;
747 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
748 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
749 // If operands of an fp-type was compared, this costs +1.
750 Cost++;
751 return Cost;
755 return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
758 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
759 const Instruction *I) {
760 if (ValTy->isVectorTy()) {
761 assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type.");
762 unsigned VF = ValTy->getVectorNumElements();
764 // Called with a compare instruction.
765 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
766 unsigned PredicateExtraCost = 0;
767 if (I != nullptr) {
768 // Some predicates cost one or two extra instructions.
769 switch (cast<CmpInst>(I)->getPredicate()) {
770 case CmpInst::Predicate::ICMP_NE:
771 case CmpInst::Predicate::ICMP_UGE:
772 case CmpInst::Predicate::ICMP_ULE:
773 case CmpInst::Predicate::ICMP_SGE:
774 case CmpInst::Predicate::ICMP_SLE:
775 PredicateExtraCost = 1;
776 break;
777 case CmpInst::Predicate::FCMP_ONE:
778 case CmpInst::Predicate::FCMP_ORD:
779 case CmpInst::Predicate::FCMP_UEQ:
780 case CmpInst::Predicate::FCMP_UNO:
781 PredicateExtraCost = 2;
782 break;
783 default:
784 break;
788 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
789 // floats. FIXME: <2 x float> generates same code as <4 x float>.
790 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
791 unsigned NumVecs_cmp = getNumVectorRegs(ValTy);
793 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
794 return Cost;
796 else { // Called with a select instruction.
797 assert (Opcode == Instruction::Select);
799 // We can figure out the extra cost of packing / unpacking if the
800 // instruction was passed and the compare instruction is found.
801 unsigned PackCost = 0;
802 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
803 if (CmpOpTy != nullptr)
804 PackCost =
805 getVectorBitmaskConversionCost(CmpOpTy, ValTy);
807 return getNumVectorRegs(ValTy) /*vsel*/ + PackCost;
810 else { // Scalar
811 switch (Opcode) {
812 case Instruction::ICmp: {
813 unsigned Cost = 1;
814 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
815 Cost += 2; // extend both operands
816 return Cost;
818 case Instruction::Select:
819 if (ValTy->isFloatingPointTy())
820 return 4; // No load on condition for FP, so this costs a conditional jump.
821 return 1; // Load On Condition.
825 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr);
828 int SystemZTTIImpl::
829 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
830 // vlvgp will insert two grs into a vector register, so only count half the
831 // number of instructions.
832 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
833 return ((Index % 2 == 0) ? 1 : 0);
835 if (Opcode == Instruction::ExtractElement) {
836 int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1);
838 // Give a slight penalty for moving out of vector pipeline to FXU unit.
839 if (Index == 0 && Val->isIntOrIntVectorTy())
840 Cost += 1;
842 return Cost;
845 return BaseT::getVectorInstrCost(Opcode, Val, Index);
848 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
849 unsigned Alignment, unsigned AddressSpace,
850 const Instruction *I) {
851 assert(!Src->isVoidTy() && "Invalid type");
853 if (!Src->isVectorTy() && Opcode == Instruction::Load &&
854 I != nullptr && I->hasOneUse()) {
855 const Instruction *UserI = cast<Instruction>(*I->user_begin());
856 unsigned Bits = getScalarSizeInBits(Src);
857 bool FoldsLoad = false;
858 switch (UserI->getOpcode()) {
859 case Instruction::ICmp:
860 case Instruction::Add:
861 case Instruction::Sub:
862 case Instruction::Mul:
863 case Instruction::SDiv:
864 case Instruction::UDiv:
865 case Instruction::And:
866 case Instruction::Or:
867 case Instruction::Xor:
868 // This also makes sense for float operations, but disabled for now due
869 // to regressions.
870 // case Instruction::FCmp:
871 // case Instruction::FAdd:
872 // case Instruction::FSub:
873 // case Instruction::FMul:
874 // case Instruction::FDiv:
875 FoldsLoad = (Bits == 32 || Bits == 64);
876 break;
879 if (FoldsLoad) {
880 assert (UserI->getNumOperands() == 2 &&
881 "Expected to only handle binops.");
883 // UserI can't fold two loads, so in that case return 0 cost only
884 // half of the time.
885 for (unsigned i = 0; i < 2; ++i) {
886 if (UserI->getOperand(i) == I)
887 continue;
888 if (LoadInst *LI = dyn_cast<LoadInst>(UserI->getOperand(i))) {
889 if (LI->hasOneUse())
890 return i == 0;
894 return 0;
898 unsigned NumOps =
899 (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src));
901 if (Src->getScalarSizeInBits() == 128)
902 // 128 bit scalars are held in a pair of two 64 bit registers.
903 NumOps *= 2;
905 return NumOps;
908 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
909 unsigned Factor,
910 ArrayRef<unsigned> Indices,
911 unsigned Alignment,
912 unsigned AddressSpace,
913 bool IsMasked) {
914 if (IsMasked)
915 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
916 Alignment, AddressSpace, IsMasked);
917 assert(isa<VectorType>(VecTy) &&
918 "Expect a vector type for interleaved memory op");
920 int NumWideParts = getNumVectorRegs(VecTy);
922 // How many source vectors are handled to produce a vectorized operand?
923 int NumElsPerVector = (VecTy->getVectorNumElements() / NumWideParts);
924 int NumSrcParts =
925 ((NumWideParts > NumElsPerVector) ? NumElsPerVector : NumWideParts);
927 // A Load group may have gaps.
928 unsigned NumOperands =
929 ((Opcode == Instruction::Load) ? Indices.size() : Factor);
931 // Each needed permute takes two vectors as input.
932 if (NumSrcParts > 1)
933 NumSrcParts--;
934 int NumPermutes = NumSrcParts * NumOperands;
936 // Cost of load/store operations and the permutations needed.
937 return NumWideParts + NumPermutes;