1 //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 /// This file defines the pass that looks through the machine instructions
11 /// late in the compilation, and finds byte or word instructions that
12 /// can be profitably replaced with 32 bit instructions that give equivalent
13 /// results for the bits of the results that are used. There are two possible
14 /// reasons to do this.
16 /// One reason is to avoid false-dependences on the upper portions
17 /// of the registers. Only instructions that have a destination register
18 /// which is not in any of the source registers can be affected by this.
19 /// Any instruction where one of the source registers is also the destination
20 /// register is unaffected, because it has a true dependence on the source
21 /// register already. So, this consideration primarily affects load
22 /// instructions and register-to-register moves. It would
23 /// seem like cmov(s) would also be affected, but because of the way cmov is
24 /// really implemented by most machines as reading both the destination and
25 /// and source registers, and then "merging" the two based on a condition,
26 /// it really already should be considered as having a true dependence on the
27 /// destination register as well.
29 /// The other reason to do this is for potential code size savings. Word
30 /// operations need an extra override byte compared to their 32 bit
31 /// versions. So this can convert many word operations to their larger
32 /// size, saving a byte in encoding. This could introduce partial register
33 /// dependences where none existed however. As an example take:
36 /// now if this were to get transformed into
39 /// because the addl encodes shorter than the addw, this would introduce
40 /// a use of a register that was only partially written earlier. On older
41 /// Intel processors this can be quite a performance penalty, so this should
42 /// probably only be done when it can be proven that a new partial dependence
43 /// wouldn't be created, or when your know a newer processor is being
44 /// targeted, or when optimizing for minimum code size.
46 //===----------------------------------------------------------------------===//
49 #include "X86InstrInfo.h"
50 #include "X86Subtarget.h"
51 #include "llvm/ADT/Statistic.h"
52 #include "llvm/CodeGen/LivePhysRegs.h"
53 #include "llvm/CodeGen/MachineFunctionPass.h"
54 #include "llvm/CodeGen/MachineInstrBuilder.h"
55 #include "llvm/CodeGen/MachineLoopInfo.h"
56 #include "llvm/CodeGen/MachineRegisterInfo.h"
57 #include "llvm/CodeGen/Passes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
63 #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
64 #define FIXUPBW_NAME "x86-fixup-bw-insts"
66 #define DEBUG_TYPE FIXUPBW_NAME
68 // Option to allow this optimization pass to have fine-grained control.
70 FixupBWInsts("fixup-byte-word-insts",
71 cl::desc("Change byte and word instructions to larger sizes"),
72 cl::init(true), cl::Hidden
);
75 class FixupBWInstPass
: public MachineFunctionPass
{
76 /// Loop over all of the instructions in the basic block replacing applicable
77 /// byte or word instructions with better alternatives.
78 void processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&MBB
);
80 /// This sets the \p SuperDestReg to the 32 bit super reg of the original
81 /// destination register of the MachineInstr passed in. It returns true if
82 /// that super register is dead just prior to \p OrigMI, and false if not.
83 bool getSuperRegDestIfDead(MachineInstr
*OrigMI
,
84 unsigned &SuperDestReg
) const;
86 /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
87 /// register if it is safe to do so. Return the replacement instruction if
88 /// OK, otherwise return nullptr.
89 MachineInstr
*tryReplaceLoad(unsigned New32BitOpcode
, MachineInstr
*MI
) const;
91 /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
92 /// safe to do so. Return the replacement instruction if OK, otherwise return
94 MachineInstr
*tryReplaceCopy(MachineInstr
*MI
) const;
96 // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
97 // possible. Return the replacement instruction if OK, return nullptr
99 MachineInstr
*tryReplaceInstr(MachineInstr
*MI
, MachineBasicBlock
&MBB
) const;
104 StringRef
getPassName() const override
{ return FIXUPBW_DESC
; }
106 FixupBWInstPass() : MachineFunctionPass(ID
) {
107 initializeFixupBWInstPassPass(*PassRegistry::getPassRegistry());
110 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
111 AU
.addRequired
<MachineLoopInfo
>(); // Machine loop info is used to
112 // guide some heuristics.
113 MachineFunctionPass::getAnalysisUsage(AU
);
116 /// Loop over all of the basic blocks, replacing byte and word instructions by
117 /// equivalent 32 bit instructions where performance or code size can be
119 bool runOnMachineFunction(MachineFunction
&MF
) override
;
121 MachineFunctionProperties
getRequiredProperties() const override
{
122 return MachineFunctionProperties().set(
123 MachineFunctionProperties::Property::NoVRegs
);
129 /// Machine instruction info used throughout the class.
130 const X86InstrInfo
*TII
;
132 /// Local member for function's OptForSize attribute.
135 /// Machine loop info used for guiding some heruistics.
136 MachineLoopInfo
*MLI
;
138 /// Register Liveness information after the current instruction.
139 LivePhysRegs LiveRegs
;
141 char FixupBWInstPass::ID
= 0;
144 INITIALIZE_PASS(FixupBWInstPass
, FIXUPBW_NAME
, FIXUPBW_DESC
, false, false)
146 FunctionPass
*llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
148 bool FixupBWInstPass::runOnMachineFunction(MachineFunction
&MF
) {
149 if (!FixupBWInsts
|| skipFunction(MF
.getFunction()))
153 TII
= MF
.getSubtarget
<X86Subtarget
>().getInstrInfo();
154 OptForSize
= MF
.getFunction().optForSize();
155 MLI
= &getAnalysis
<MachineLoopInfo
>();
156 LiveRegs
.init(TII
->getRegisterInfo());
158 LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
160 // Process all basic blocks.
162 processBasicBlock(MF
, MBB
);
164 LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";);
169 /// Check if after \p OrigMI the only portion of super register
170 /// of the destination register of \p OrigMI that is alive is that
171 /// destination register.
173 /// If so, return that super register in \p SuperDestReg.
174 bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr
*OrigMI
,
175 unsigned &SuperDestReg
) const {
176 auto *TRI
= &TII
->getRegisterInfo();
178 unsigned OrigDestReg
= OrigMI
->getOperand(0).getReg();
179 SuperDestReg
= getX86SubSuperRegister(OrigDestReg
, 32);
181 const auto SubRegIdx
= TRI
->getSubRegIndex(SuperDestReg
, OrigDestReg
);
183 // Make sure that the sub-register that this instruction has as its
184 // destination is the lowest order sub-register of the super-register.
185 // If it isn't, then the register isn't really dead even if the
186 // super-register is considered dead.
187 if (SubRegIdx
== X86::sub_8bit_hi
)
190 // If neither the destination-super register nor any applicable subregisters
191 // are live after this instruction, then the super register is safe to use.
192 if (!LiveRegs
.contains(SuperDestReg
)) {
193 // If the original destination register was not the low 8-bit subregister
194 // then the super register check is sufficient.
195 if (SubRegIdx
!= X86::sub_8bit
)
197 // If the original destination register was the low 8-bit subregister and
198 // we also need to check the 16-bit subregister and the high 8-bit
200 if (!LiveRegs
.contains(getX86SubSuperRegister(OrigDestReg
, 16)) &&
201 !LiveRegs
.contains(getX86SubSuperRegister(SuperDestReg
, 8,
204 // Otherwise, we have a little more checking to do.
207 // If we get here, the super-register destination (or some part of it) is
208 // marked as live after the original instruction.
210 // The X86 backend does not have subregister liveness tracking enabled,
211 // so liveness information might be overly conservative. Specifically, the
212 // super register might be marked as live because it is implicitly defined
213 // by the instruction we are examining.
215 // However, for some specific instructions (this pass only cares about MOVs)
216 // we can produce more precise results by analysing that MOV's operands.
218 // Indeed, if super-register is not live before the mov it means that it
219 // was originally <read-undef> and so we are free to modify these
220 // undef upper bits. That may happen in case where the use is in another MBB
221 // and the vreg/physreg corresponding to the move has higher width than
222 // necessary (e.g. due to register coalescing with a "truncate" copy).
223 // So, we would like to handle patterns like this:
225 // %bb.2: derived from LLVM BB %if.then
227 // Predecessors according to CFG: %bb.0
228 // %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
229 // ; No implicit %eax
230 // Successors according to CFG: %bb.3(?%)
232 // %bb.3: derived from LLVM BB %if.end
233 // Live Ins: %eax Only %ax is actually live
234 // Predecessors according to CFG: %bb.2 %bb.1
235 // %ax = KILL %ax, implicit killed %eax
237 unsigned Opc
= OrigMI
->getOpcode(); (void)Opc
;
238 // These are the opcodes currently handled by the pass, if something
239 // else will be added we need to ensure that new opcode has the same
241 assert((Opc
== X86::MOV8rm
|| Opc
== X86::MOV16rm
|| Opc
== X86::MOV8rr
||
242 Opc
== X86::MOV16rr
) &&
243 "Unexpected opcode.");
245 bool IsDefined
= false;
246 for (auto &MO
: OrigMI
->implicit_operands()) {
250 assert((MO
.isDef() || MO
.isUse()) && "Expected Def or Use only!");
252 if (MO
.isDef() && TRI
->isSuperRegisterEq(OrigDestReg
, MO
.getReg()))
255 // If MO is a use of any part of the destination register but is not equal
256 // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
257 // For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
258 // %eax, or %rax will prevent us from using the %eax register.
259 if (MO
.isUse() && !TRI
->isSubRegisterEq(OrigDestReg
, MO
.getReg()) &&
260 TRI
->regsOverlap(SuperDestReg
, MO
.getReg()))
263 // Reg is not Imp-def'ed -> it's live both before/after the instruction.
267 // Otherwise, the Reg is not live before the MI and the MOV can't
268 // make it really live, so it's in fact dead even after the MI.
272 MachineInstr
*FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode
,
273 MachineInstr
*MI
) const {
276 // We are going to try to rewrite this load to a larger zero-extending
277 // load. This is safe if all portions of the 32 bit super-register
278 // of the original destination register, except for the original destination
279 // register are dead. getSuperRegDestIfDead checks that.
280 if (!getSuperRegDestIfDead(MI
, NewDestReg
))
283 // Safe to change the instruction.
284 MachineInstrBuilder MIB
=
285 BuildMI(*MF
, MI
->getDebugLoc(), TII
->get(New32BitOpcode
), NewDestReg
);
287 unsigned NumArgs
= MI
->getNumOperands();
288 for (unsigned i
= 1; i
< NumArgs
; ++i
)
289 MIB
.add(MI
->getOperand(i
));
291 MIB
.setMemRefs(MI
->memoperands());
296 MachineInstr
*FixupBWInstPass::tryReplaceCopy(MachineInstr
*MI
) const {
297 assert(MI
->getNumExplicitOperands() == 2);
298 auto &OldDest
= MI
->getOperand(0);
299 auto &OldSrc
= MI
->getOperand(1);
302 if (!getSuperRegDestIfDead(MI
, NewDestReg
))
305 unsigned NewSrcReg
= getX86SubSuperRegister(OldSrc
.getReg(), 32);
307 // This is only correct if we access the same subregister index: otherwise,
308 // we could try to replace "movb %ah, %al" with "movl %eax, %eax".
309 auto *TRI
= &TII
->getRegisterInfo();
310 if (TRI
->getSubRegIndex(NewSrcReg
, OldSrc
.getReg()) !=
311 TRI
->getSubRegIndex(NewDestReg
, OldDest
.getReg()))
314 // Safe to change the instruction.
315 // Don't set src flags, as we don't know if we're also killing the superreg.
316 // However, the superregister might not be defined; make it explicit that
317 // we don't care about the higher bits by reading it as Undef, and adding
318 // an imp-use on the original subregister.
319 MachineInstrBuilder MIB
=
320 BuildMI(*MF
, MI
->getDebugLoc(), TII
->get(X86::MOV32rr
), NewDestReg
)
321 .addReg(NewSrcReg
, RegState::Undef
)
322 .addReg(OldSrc
.getReg(), RegState::Implicit
);
324 // Drop imp-defs/uses that would be redundant with the new def/use.
325 for (auto &Op
: MI
->implicit_operands())
326 if (Op
.getReg() != (Op
.isDef() ? NewDestReg
: NewSrcReg
))
332 MachineInstr
*FixupBWInstPass::tryReplaceInstr(MachineInstr
*MI
,
333 MachineBasicBlock
&MBB
) const {
334 // See if this is an instruction of the type we are currently looking for.
335 switch (MI
->getOpcode()) {
338 // Only replace 8 bit loads with the zero extending versions if
339 // in an inner most loop and not optimizing for size. This takes
340 // an extra byte to encode, and provides limited performance upside.
341 if (MachineLoop
*ML
= MLI
->getLoopFor(&MBB
))
342 if (ML
->begin() == ML
->end() && !OptForSize
)
343 return tryReplaceLoad(X86::MOVZX32rm8
, MI
);
347 // Always try to replace 16 bit load with 32 bit zero extending.
348 // Code size is the same, and there is sometimes a perf advantage
349 // from eliminating a false dependence on the upper portion of
351 return tryReplaceLoad(X86::MOVZX32rm16
, MI
);
355 // Always try to replace 8/16 bit copies with a 32 bit copy.
356 // Code size is either less (16) or equal (8), and there is sometimes a
357 // perf advantage from eliminating a false dependence on the upper portion
359 return tryReplaceCopy(MI
);
362 // nothing to do here.
369 void FixupBWInstPass::processBasicBlock(MachineFunction
&MF
,
370 MachineBasicBlock
&MBB
) {
372 // This algorithm doesn't delete the instructions it is replacing
373 // right away. By leaving the existing instructions in place, the
374 // register liveness information doesn't change, and this makes the
375 // analysis that goes on be better than if the replaced instructions
376 // were immediately removed.
378 // This algorithm always creates a replacement instruction
379 // and notes that and the original in a data structure, until the
380 // whole BB has been analyzed. This keeps the replacement instructions
381 // from making it seem as if the larger register might be live.
382 SmallVector
<std::pair
<MachineInstr
*, MachineInstr
*>, 8> MIReplacements
;
384 // Start computing liveness for this block. We iterate from the end to be able
385 // to update this for each instruction.
387 // We run after PEI, so we need to AddPristinesAndCSRs.
388 LiveRegs
.addLiveOuts(MBB
);
390 for (auto I
= MBB
.rbegin(); I
!= MBB
.rend(); ++I
) {
391 MachineInstr
*MI
= &*I
;
393 if (MachineInstr
*NewMI
= tryReplaceInstr(MI
, MBB
))
394 MIReplacements
.push_back(std::make_pair(MI
, NewMI
));
396 // We're done with this instruction, update liveness for the next one.
397 LiveRegs
.stepBackward(*MI
);
400 while (!MIReplacements
.empty()) {
401 MachineInstr
*MI
= MIReplacements
.back().first
;
402 MachineInstr
*NewMI
= MIReplacements
.back().second
;
403 MIReplacements
.pop_back();
404 MBB
.insert(MI
, NewMI
);