1 //======- X86RetpolineThunks.cpp - Construct retpoline thunks for x86 --=====//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
11 /// Pass that injects an MI thunk implementing a "retpoline". This is
12 /// a RET-implemented trampoline that is used to lower indirect calls in a way
13 /// that prevents speculation on some x86 processors and can be used to mitigate
14 /// security vulnerabilities due to targeted speculative execution and side
15 /// channels such as CVE-2017-5715.
17 /// TODO(chandlerc): All of this code could use better comments and
20 //===----------------------------------------------------------------------===//
23 #include "X86InstrBuilder.h"
24 #include "X86Subtarget.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
39 #define DEBUG_TYPE "x86-retpoline-thunks"
41 static const char ThunkNamePrefix
[] = "__llvm_retpoline_";
42 static const char R11ThunkName
[] = "__llvm_retpoline_r11";
43 static const char EAXThunkName
[] = "__llvm_retpoline_eax";
44 static const char ECXThunkName
[] = "__llvm_retpoline_ecx";
45 static const char EDXThunkName
[] = "__llvm_retpoline_edx";
46 static const char EDIThunkName
[] = "__llvm_retpoline_edi";
49 class X86RetpolineThunks
: public MachineFunctionPass
{
53 X86RetpolineThunks() : MachineFunctionPass(ID
) {}
55 StringRef
getPassName() const override
{ return "X86 Retpoline Thunks"; }
57 bool doInitialization(Module
&M
) override
;
58 bool runOnMachineFunction(MachineFunction
&F
) override
;
60 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
61 MachineFunctionPass::getAnalysisUsage(AU
);
62 AU
.addRequired
<MachineModuleInfo
>();
63 AU
.addPreserved
<MachineModuleInfo
>();
67 MachineModuleInfo
*MMI
;
68 const TargetMachine
*TM
;
70 const X86Subtarget
*STI
;
71 const X86InstrInfo
*TII
;
75 void createThunkFunction(Module
&M
, StringRef Name
);
76 void insertRegReturnAddrClobber(MachineBasicBlock
&MBB
, unsigned Reg
);
77 void populateThunk(MachineFunction
&MF
, Optional
<unsigned> Reg
= None
);
80 } // end anonymous namespace
82 FunctionPass
*llvm::createX86RetpolineThunksPass() {
83 return new X86RetpolineThunks();
86 char X86RetpolineThunks::ID
= 0;
88 bool X86RetpolineThunks::doInitialization(Module
&M
) {
89 InsertedThunks
= false;
93 bool X86RetpolineThunks::runOnMachineFunction(MachineFunction
&MF
) {
94 LLVM_DEBUG(dbgs() << getPassName() << '\n');
96 TM
= &MF
.getTarget();;
97 STI
= &MF
.getSubtarget
<X86Subtarget
>();
98 TII
= STI
->getInstrInfo();
99 Is64Bit
= TM
->getTargetTriple().getArch() == Triple::x86_64
;
101 MMI
= &getAnalysis
<MachineModuleInfo
>();
102 Module
&M
= const_cast<Module
&>(*MMI
->getModule());
104 // If this function is not a thunk, check to see if we need to insert
106 if (!MF
.getName().startswith(ThunkNamePrefix
)) {
107 // If we've already inserted a thunk, nothing else to do.
111 // Only add a thunk if one of the functions has the retpoline feature
112 // enabled in its subtarget, and doesn't enable external thunks.
113 // FIXME: Conditionalize on indirect calls so we don't emit a thunk when
114 // nothing will end up calling it.
115 // FIXME: It's a little silly to look at every function just to enumerate
116 // the subtargets, but eventually we'll want to look at them for indirect
117 // calls, so maybe this is OK.
118 if ((!STI
->useRetpolineIndirectCalls() &&
119 !STI
->useRetpolineIndirectBranches()) ||
120 STI
->useRetpolineExternalThunk())
123 // Otherwise, we need to insert the thunk.
124 // WARNING: This is not really a well behaving thing to do in a function
125 // pass. We extract the module and insert a new function (and machine
126 // function) directly into the module.
128 createThunkFunction(M
, R11ThunkName
);
130 for (StringRef Name
:
131 {EAXThunkName
, ECXThunkName
, EDXThunkName
, EDIThunkName
})
132 createThunkFunction(M
, Name
);
133 InsertedThunks
= true;
137 // If this *is* a thunk function, we need to populate it with the correct MI.
139 assert(MF
.getName() == "__llvm_retpoline_r11" &&
140 "Should only have an r11 thunk on 64-bit targets");
142 // __llvm_retpoline_r11:
143 // callq .Lr11_call_target
144 // .Lr11_capture_spec:
147 // jmp .Lr11_capture_spec
149 // .Lr11_call_target:
152 populateThunk(MF
, X86::R11
);
154 // For 32-bit targets we need to emit a collection of thunks for various
155 // possible scratch registers as well as a fallback that uses EDI, which is
156 // normally callee saved.
157 // __llvm_retpoline_eax:
158 // calll .Leax_call_target
159 // .Leax_capture_spec:
161 // jmp .Leax_capture_spec
163 // .Leax_call_target:
164 // movl %eax, (%esp) # Clobber return addr
167 // __llvm_retpoline_ecx:
172 // __llvm_retpoline_edx:
177 // __llvm_retpoline_edi:
181 if (MF
.getName() == EAXThunkName
)
182 populateThunk(MF
, X86::EAX
);
183 else if (MF
.getName() == ECXThunkName
)
184 populateThunk(MF
, X86::ECX
);
185 else if (MF
.getName() == EDXThunkName
)
186 populateThunk(MF
, X86::EDX
);
187 else if (MF
.getName() == EDIThunkName
)
188 populateThunk(MF
, X86::EDI
);
190 llvm_unreachable("Invalid thunk name on x86-32!");
196 void X86RetpolineThunks::createThunkFunction(Module
&M
, StringRef Name
) {
197 assert(Name
.startswith(ThunkNamePrefix
) &&
198 "Created a thunk with an unexpected prefix!");
200 LLVMContext
&Ctx
= M
.getContext();
201 auto Type
= FunctionType::get(Type::getVoidTy(Ctx
), false);
203 Function::Create(Type
, GlobalValue::LinkOnceODRLinkage
, Name
, &M
);
204 F
->setVisibility(GlobalValue::HiddenVisibility
);
205 F
->setComdat(M
.getOrInsertComdat(Name
));
207 // Add Attributes so that we don't create a frame, unwind information, or
210 B
.addAttribute(llvm::Attribute::NoUnwind
);
211 B
.addAttribute(llvm::Attribute::Naked
);
212 F
->addAttributes(llvm::AttributeList::FunctionIndex
, B
);
214 // Populate our function a bit so that we can verify.
215 BasicBlock
*Entry
= BasicBlock::Create(Ctx
, "entry", F
);
216 IRBuilder
<> Builder(Entry
);
218 Builder
.CreateRetVoid();
220 // MachineFunctions/MachineBasicBlocks aren't created automatically for the
221 // IR-level constructs we already made. Create them and insert them into the
223 MachineFunction
&MF
= MMI
->getOrCreateMachineFunction(*F
);
224 MachineBasicBlock
*EntryMBB
= MF
.CreateMachineBasicBlock(Entry
);
226 // Insert EntryMBB into MF. It's not in the module until we do this.
227 MF
.insert(MF
.end(), EntryMBB
);
230 void X86RetpolineThunks::insertRegReturnAddrClobber(MachineBasicBlock
&MBB
,
232 const unsigned MovOpc
= Is64Bit
? X86::MOV64mr
: X86::MOV32mr
;
233 const unsigned SPReg
= Is64Bit
? X86::RSP
: X86::ESP
;
234 addRegOffset(BuildMI(&MBB
, DebugLoc(), TII
->get(MovOpc
)), SPReg
, false, 0)
238 void X86RetpolineThunks::populateThunk(MachineFunction
&MF
,
239 Optional
<unsigned> Reg
) {
240 // Set MF properties. We never use vregs...
241 MF
.getProperties().set(MachineFunctionProperties::Property::NoVRegs
);
243 MachineBasicBlock
*Entry
= &MF
.front();
246 MachineBasicBlock
*CaptureSpec
= MF
.CreateMachineBasicBlock(Entry
->getBasicBlock());
247 MachineBasicBlock
*CallTarget
= MF
.CreateMachineBasicBlock(Entry
->getBasicBlock());
248 MF
.push_back(CaptureSpec
);
249 MF
.push_back(CallTarget
);
251 const unsigned CallOpc
= Is64Bit
? X86::CALL64pcrel32
: X86::CALLpcrel32
;
252 const unsigned RetOpc
= Is64Bit
? X86::RETQ
: X86::RETL
;
254 BuildMI(Entry
, DebugLoc(), TII
->get(CallOpc
)).addMBB(CallTarget
);
255 Entry
->addSuccessor(CallTarget
);
256 Entry
->addSuccessor(CaptureSpec
);
257 CallTarget
->setHasAddressTaken();
259 // In the capture loop for speculation, we want to stop the processor from
260 // speculating as fast as possible. On Intel processors, the PAUSE instruction
261 // will block speculation without consuming any execution resources. On AMD
262 // processors, the PAUSE instruction is (essentially) a nop, so we also use an
263 // LFENCE instruction which they have advised will stop speculation as well
264 // with minimal resource utilization. We still end the capture with a jump to
265 // form an infinite loop to fully guarantee that no matter what implementation
266 // of the x86 ISA, speculating this code path never escapes.
267 BuildMI(CaptureSpec
, DebugLoc(), TII
->get(X86::PAUSE
));
268 BuildMI(CaptureSpec
, DebugLoc(), TII
->get(X86::LFENCE
));
269 BuildMI(CaptureSpec
, DebugLoc(), TII
->get(X86::JMP_1
)).addMBB(CaptureSpec
);
270 CaptureSpec
->setHasAddressTaken();
271 CaptureSpec
->addSuccessor(CaptureSpec
);
273 CallTarget
->setAlignment(4);
274 insertRegReturnAddrClobber(*CallTarget
, *Reg
);
275 BuildMI(CallTarget
, DebugLoc(), TII
->get(RetOpc
));