[llvm-exegesis] Fix missing std::move.
[llvm-complete.git] / tools / llvm-objdump / llvm-objdump.cpp
blob64c3823295c8c25c7609154f4e19e9f75c901095
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that works like binutils "objdump", that is, it
11 // dumps out a plethora of information about an object file depending on the
12 // flags.
14 // The flags and output of this program should be near identical to those of
15 // binutils objdump.
17 //===----------------------------------------------------------------------===//
19 #include "llvm-objdump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/Demangle/Demangle.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCInstPrinter.h"
35 #include "llvm/MC/MCInstrAnalysis.h"
36 #include "llvm/MC/MCInstrInfo.h"
37 #include "llvm/MC/MCObjectFileInfo.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/MC/MCSubtargetInfo.h"
40 #include "llvm/Object/Archive.h"
41 #include "llvm/Object/COFF.h"
42 #include "llvm/Object/COFFImportFile.h"
43 #include "llvm/Object/ELFObjectFile.h"
44 #include "llvm/Object/MachO.h"
45 #include "llvm/Object/MachOUniversal.h"
46 #include "llvm/Object/ObjectFile.h"
47 #include "llvm/Object/Wasm.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/Errc.h"
52 #include "llvm/Support/FileSystem.h"
53 #include "llvm/Support/Format.h"
54 #include "llvm/Support/GraphWriter.h"
55 #include "llvm/Support/Host.h"
56 #include "llvm/Support/InitLLVM.h"
57 #include "llvm/Support/MemoryBuffer.h"
58 #include "llvm/Support/SourceMgr.h"
59 #include "llvm/Support/StringSaver.h"
60 #include "llvm/Support/TargetRegistry.h"
61 #include "llvm/Support/TargetSelect.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include <algorithm>
64 #include <cctype>
65 #include <cstring>
66 #include <system_error>
67 #include <unordered_map>
68 #include <utility>
70 using namespace llvm;
71 using namespace object;
73 cl::opt<bool>
74 llvm::AllHeaders("all-headers",
75 cl::desc("Display all available header information"));
76 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
77 cl::aliasopt(AllHeaders));
79 static cl::list<std::string>
80 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
82 cl::opt<bool>
83 llvm::Disassemble("disassemble",
84 cl::desc("Display assembler mnemonics for the machine instructions"));
85 static cl::alias
86 Disassembled("d", cl::desc("Alias for --disassemble"),
87 cl::aliasopt(Disassemble));
89 cl::opt<bool>
90 llvm::DisassembleAll("disassemble-all",
91 cl::desc("Display assembler mnemonics for the machine instructions"));
92 static cl::alias
93 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
94 cl::aliasopt(DisassembleAll));
96 cl::opt<bool> llvm::Demangle("demangle", cl::desc("Demangle symbols names"),
97 cl::init(false));
99 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
100 cl::aliasopt(llvm::Demangle));
102 static cl::list<std::string>
103 DisassembleFunctions("df",
104 cl::CommaSeparated,
105 cl::desc("List of functions to disassemble"));
106 static StringSet<> DisasmFuncsSet;
108 cl::opt<bool>
109 llvm::Relocations("r", cl::desc("Display the relocation entries in the file"));
111 cl::opt<bool>
112 llvm::DynamicRelocations("dynamic-reloc",
113 cl::desc("Display the dynamic relocation entries in the file"));
114 static cl::alias
115 DynamicRelocationsd("R", cl::desc("Alias for --dynamic-reloc"),
116 cl::aliasopt(DynamicRelocations));
118 cl::opt<bool>
119 llvm::SectionContents("s", cl::desc("Display the content of each section"));
121 cl::opt<bool>
122 llvm::SymbolTable("t", cl::desc("Display the symbol table"));
124 cl::opt<bool>
125 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
127 cl::opt<bool>
128 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
130 cl::opt<bool>
131 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
133 cl::opt<bool>
134 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
136 cl::opt<bool>
137 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
139 cl::opt<bool>
140 llvm::RawClangAST("raw-clang-ast",
141 cl::desc("Dump the raw binary contents of the clang AST section"));
143 static cl::opt<bool>
144 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
145 static cl::alias
146 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt));
148 cl::opt<std::string>
149 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
150 "see -version for available targets"));
152 cl::opt<std::string>
153 llvm::MCPU("mcpu",
154 cl::desc("Target a specific cpu type (-mcpu=help for details)"),
155 cl::value_desc("cpu-name"),
156 cl::init(""));
158 cl::opt<std::string>
159 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
160 "see -version for available targets"));
162 cl::opt<bool>
163 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
164 "headers for each section."));
165 static cl::alias
166 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"),
167 cl::aliasopt(SectionHeaders));
168 static cl::alias
169 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"),
170 cl::aliasopt(SectionHeaders));
172 cl::list<std::string>
173 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
174 "With -macho dump segment,section"));
175 cl::alias
176 static FilterSectionsj("j", cl::desc("Alias for --section"),
177 cl::aliasopt(llvm::FilterSections));
179 cl::list<std::string>
180 llvm::MAttrs("mattr",
181 cl::CommaSeparated,
182 cl::desc("Target specific attributes"),
183 cl::value_desc("a1,+a2,-a3,..."));
185 cl::opt<bool>
186 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
187 "instructions, do not print "
188 "the instruction bytes."));
189 cl::opt<bool>
190 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
192 cl::opt<bool>
193 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
195 static cl::alias
196 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
197 cl::aliasopt(UnwindInfo));
199 cl::opt<bool>
200 llvm::PrivateHeaders("private-headers",
201 cl::desc("Display format specific file headers"));
203 cl::opt<bool>
204 llvm::FirstPrivateHeader("private-header",
205 cl::desc("Display only the first format specific file "
206 "header"));
208 static cl::alias
209 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"),
210 cl::aliasopt(PrivateHeaders));
212 cl::opt<bool> llvm::FileHeaders(
213 "file-headers",
214 cl::desc("Display the contents of the overall file header"));
216 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
217 cl::aliasopt(FileHeaders));
219 cl::opt<bool>
220 llvm::ArchiveHeaders("archive-headers",
221 cl::desc("Display archive header information"));
223 cl::alias
224 ArchiveHeadersShort("a", cl::desc("Alias for --archive-headers"),
225 cl::aliasopt(ArchiveHeaders));
227 cl::opt<bool>
228 llvm::PrintImmHex("print-imm-hex",
229 cl::desc("Use hex format for immediate values"));
231 cl::opt<bool> PrintFaultMaps("fault-map-section",
232 cl::desc("Display contents of faultmap section"));
234 cl::opt<DIDumpType> llvm::DwarfDumpType(
235 "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
236 cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
238 cl::opt<bool> PrintSource(
239 "source",
240 cl::desc(
241 "Display source inlined with disassembly. Implies disassemble object"));
243 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
244 cl::aliasopt(PrintSource));
246 cl::opt<bool> PrintLines("line-numbers",
247 cl::desc("Display source line numbers with "
248 "disassembly. Implies disassemble object"));
250 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
251 cl::aliasopt(PrintLines));
253 cl::opt<unsigned long long>
254 StartAddress("start-address", cl::desc("Disassemble beginning at address"),
255 cl::value_desc("address"), cl::init(0));
256 cl::opt<unsigned long long>
257 StopAddress("stop-address", cl::desc("Stop disassembly at address"),
258 cl::value_desc("address"), cl::init(UINT64_MAX));
259 static StringRef ToolName;
261 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
263 namespace {
264 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate;
266 class SectionFilterIterator {
267 public:
268 SectionFilterIterator(FilterPredicate P,
269 llvm::object::section_iterator const &I,
270 llvm::object::section_iterator const &E)
271 : Predicate(std::move(P)), Iterator(I), End(E) {
272 ScanPredicate();
274 const llvm::object::SectionRef &operator*() const { return *Iterator; }
275 SectionFilterIterator &operator++() {
276 ++Iterator;
277 ScanPredicate();
278 return *this;
280 bool operator!=(SectionFilterIterator const &Other) const {
281 return Iterator != Other.Iterator;
284 private:
285 void ScanPredicate() {
286 while (Iterator != End && !Predicate(*Iterator)) {
287 ++Iterator;
290 FilterPredicate Predicate;
291 llvm::object::section_iterator Iterator;
292 llvm::object::section_iterator End;
295 class SectionFilter {
296 public:
297 SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O)
298 : Predicate(std::move(P)), Object(O) {}
299 SectionFilterIterator begin() {
300 return SectionFilterIterator(Predicate, Object.section_begin(),
301 Object.section_end());
303 SectionFilterIterator end() {
304 return SectionFilterIterator(Predicate, Object.section_end(),
305 Object.section_end());
308 private:
309 FilterPredicate Predicate;
310 llvm::object::ObjectFile const &Object;
312 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) {
313 return SectionFilter(
314 [](llvm::object::SectionRef const &S) {
315 if (FilterSections.empty())
316 return true;
317 llvm::StringRef String;
318 std::error_code error = S.getName(String);
319 if (error)
320 return false;
321 return is_contained(FilterSections, String);
327 void llvm::error(std::error_code EC) {
328 if (!EC)
329 return;
331 errs() << ToolName << ": error reading file: " << EC.message() << ".\n";
332 errs().flush();
333 exit(1);
336 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
337 errs() << ToolName << ": " << Message << ".\n";
338 errs().flush();
339 exit(1);
342 void llvm::warn(StringRef Message) {
343 errs() << ToolName << ": warning: " << Message << ".\n";
344 errs().flush();
347 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
348 Twine Message) {
349 errs() << ToolName << ": '" << File << "': " << Message << ".\n";
350 exit(1);
353 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
354 std::error_code EC) {
355 assert(EC);
356 errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n";
357 exit(1);
360 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
361 llvm::Error E) {
362 assert(E);
363 std::string Buf;
364 raw_string_ostream OS(Buf);
365 logAllUnhandledErrors(std::move(E), OS, "");
366 OS.flush();
367 errs() << ToolName << ": '" << File << "': " << Buf;
368 exit(1);
371 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
372 StringRef FileName,
373 llvm::Error E,
374 StringRef ArchitectureName) {
375 assert(E);
376 errs() << ToolName << ": ";
377 if (ArchiveName != "")
378 errs() << ArchiveName << "(" << FileName << ")";
379 else
380 errs() << "'" << FileName << "'";
381 if (!ArchitectureName.empty())
382 errs() << " (for architecture " << ArchitectureName << ")";
383 std::string Buf;
384 raw_string_ostream OS(Buf);
385 logAllUnhandledErrors(std::move(E), OS, "");
386 OS.flush();
387 errs() << ": " << Buf;
388 exit(1);
391 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
392 const object::Archive::Child &C,
393 llvm::Error E,
394 StringRef ArchitectureName) {
395 Expected<StringRef> NameOrErr = C.getName();
396 // TODO: if we have a error getting the name then it would be nice to print
397 // the index of which archive member this is and or its offset in the
398 // archive instead of "???" as the name.
399 if (!NameOrErr) {
400 consumeError(NameOrErr.takeError());
401 llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
402 } else
403 llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
404 ArchitectureName);
407 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
408 // Figure out the target triple.
409 llvm::Triple TheTriple("unknown-unknown-unknown");
410 if (TripleName.empty()) {
411 if (Obj) {
412 TheTriple = Obj->makeTriple();
414 } else {
415 TheTriple.setTriple(Triple::normalize(TripleName));
417 // Use the triple, but also try to combine with ARM build attributes.
418 if (Obj) {
419 auto Arch = Obj->getArch();
420 if (Arch == Triple::arm || Arch == Triple::armeb) {
421 Obj->setARMSubArch(TheTriple);
426 // Get the target specific parser.
427 std::string Error;
428 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
429 Error);
430 if (!TheTarget) {
431 if (Obj)
432 report_error(Obj->getFileName(), "can't find target: " + Error);
433 else
434 error("can't find target: " + Error);
437 // Update the triple name and return the found target.
438 TripleName = TheTriple.getTriple();
439 return TheTarget;
442 bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) {
443 return a.getOffset() < b.getOffset();
446 template <class ELFT>
447 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
448 const RelocationRef &RelRef,
449 SmallVectorImpl<char> &Result) {
450 DataRefImpl Rel = RelRef.getRawDataRefImpl();
452 typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
453 typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
454 typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
456 const ELFFile<ELFT> &EF = *Obj->getELFFile();
458 auto SecOrErr = EF.getSection(Rel.d.a);
459 if (!SecOrErr)
460 return errorToErrorCode(SecOrErr.takeError());
461 const Elf_Shdr *Sec = *SecOrErr;
462 auto SymTabOrErr = EF.getSection(Sec->sh_link);
463 if (!SymTabOrErr)
464 return errorToErrorCode(SymTabOrErr.takeError());
465 const Elf_Shdr *SymTab = *SymTabOrErr;
466 assert(SymTab->sh_type == ELF::SHT_SYMTAB ||
467 SymTab->sh_type == ELF::SHT_DYNSYM);
468 auto StrTabSec = EF.getSection(SymTab->sh_link);
469 if (!StrTabSec)
470 return errorToErrorCode(StrTabSec.takeError());
471 auto StrTabOrErr = EF.getStringTable(*StrTabSec);
472 if (!StrTabOrErr)
473 return errorToErrorCode(StrTabOrErr.takeError());
474 StringRef StrTab = *StrTabOrErr;
475 int64_t addend = 0;
476 // If there is no Symbol associated with the relocation, we set the undef
477 // boolean value to 'true'. This will prevent us from calling functions that
478 // requires the relocation to be associated with a symbol.
479 bool undef = false;
480 switch (Sec->sh_type) {
481 default:
482 return object_error::parse_failed;
483 case ELF::SHT_REL: {
484 // TODO: Read implicit addend from section data.
485 break;
487 case ELF::SHT_RELA: {
488 const Elf_Rela *ERela = Obj->getRela(Rel);
489 addend = ERela->r_addend;
490 undef = ERela->getSymbol(false) == 0;
491 break;
494 StringRef Target;
495 if (!undef) {
496 symbol_iterator SI = RelRef.getSymbol();
497 const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl());
498 if (symb->getType() == ELF::STT_SECTION) {
499 Expected<section_iterator> SymSI = SI->getSection();
500 if (!SymSI)
501 return errorToErrorCode(SymSI.takeError());
502 const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl());
503 auto SecName = EF.getSectionName(SymSec);
504 if (!SecName)
505 return errorToErrorCode(SecName.takeError());
506 Target = *SecName;
507 } else {
508 Expected<StringRef> SymName = symb->getName(StrTab);
509 if (!SymName)
510 return errorToErrorCode(SymName.takeError());
511 Target = *SymName;
513 } else
514 Target = "*ABS*";
516 // Default scheme is to print Target, as well as "+ <addend>" for nonzero
517 // addend. Should be acceptable for all normal purposes.
518 std::string fmtbuf;
519 raw_string_ostream fmt(fmtbuf);
520 fmt << Target;
521 if (addend != 0)
522 fmt << (addend < 0 ? "" : "+") << addend;
523 fmt.flush();
524 Result.append(fmtbuf.begin(), fmtbuf.end());
525 return std::error_code();
528 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
529 const RelocationRef &Rel,
530 SmallVectorImpl<char> &Result) {
531 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
532 return getRelocationValueString(ELF32LE, Rel, Result);
533 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
534 return getRelocationValueString(ELF64LE, Rel, Result);
535 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
536 return getRelocationValueString(ELF32BE, Rel, Result);
537 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
538 return getRelocationValueString(ELF64BE, Rel, Result);
541 static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
542 const RelocationRef &Rel,
543 SmallVectorImpl<char> &Result) {
544 symbol_iterator SymI = Rel.getSymbol();
545 Expected<StringRef> SymNameOrErr = SymI->getName();
546 if (!SymNameOrErr)
547 return errorToErrorCode(SymNameOrErr.takeError());
548 StringRef SymName = *SymNameOrErr;
549 Result.append(SymName.begin(), SymName.end());
550 return std::error_code();
553 static void printRelocationTargetName(const MachOObjectFile *O,
554 const MachO::any_relocation_info &RE,
555 raw_string_ostream &fmt) {
556 bool IsScattered = O->isRelocationScattered(RE);
558 // Target of a scattered relocation is an address. In the interest of
559 // generating pretty output, scan through the symbol table looking for a
560 // symbol that aligns with that address. If we find one, print it.
561 // Otherwise, we just print the hex address of the target.
562 if (IsScattered) {
563 uint32_t Val = O->getPlainRelocationSymbolNum(RE);
565 for (const SymbolRef &Symbol : O->symbols()) {
566 std::error_code ec;
567 Expected<uint64_t> Addr = Symbol.getAddress();
568 if (!Addr)
569 report_error(O->getFileName(), Addr.takeError());
570 if (*Addr != Val)
571 continue;
572 Expected<StringRef> Name = Symbol.getName();
573 if (!Name)
574 report_error(O->getFileName(), Name.takeError());
575 fmt << *Name;
576 return;
579 // If we couldn't find a symbol that this relocation refers to, try
580 // to find a section beginning instead.
581 for (const SectionRef &Section : ToolSectionFilter(*O)) {
582 std::error_code ec;
584 StringRef Name;
585 uint64_t Addr = Section.getAddress();
586 if (Addr != Val)
587 continue;
588 if ((ec = Section.getName(Name)))
589 report_error(O->getFileName(), ec);
590 fmt << Name;
591 return;
594 fmt << format("0x%x", Val);
595 return;
598 StringRef S;
599 bool isExtern = O->getPlainRelocationExternal(RE);
600 uint64_t Val = O->getPlainRelocationSymbolNum(RE);
602 if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) {
603 fmt << format("0x%0" PRIx64, Val);
604 return;
605 } else if (isExtern) {
606 symbol_iterator SI = O->symbol_begin();
607 advance(SI, Val);
608 Expected<StringRef> SOrErr = SI->getName();
609 if (!SOrErr)
610 report_error(O->getFileName(), SOrErr.takeError());
611 S = *SOrErr;
612 } else {
613 section_iterator SI = O->section_begin();
614 // Adjust for the fact that sections are 1-indexed.
615 if (Val == 0) {
616 fmt << "0 (?,?)";
617 return;
619 uint32_t i = Val - 1;
620 while (i != 0 && SI != O->section_end()) {
621 i--;
622 advance(SI, 1);
624 if (SI == O->section_end())
625 fmt << Val << " (?,?)";
626 else
627 SI->getName(S);
630 fmt << S;
633 static std::error_code getRelocationValueString(const WasmObjectFile *Obj,
634 const RelocationRef &RelRef,
635 SmallVectorImpl<char> &Result) {
636 const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef);
637 symbol_iterator SI = RelRef.getSymbol();
638 std::string fmtbuf;
639 raw_string_ostream fmt(fmtbuf);
640 if (SI == Obj->symbol_end()) {
641 // Not all wasm relocations have symbols associated with them.
642 // In particular R_WEBASSEMBLY_TYPE_INDEX_LEB.
643 fmt << Rel.Index;
644 } else {
645 Expected<StringRef> SymNameOrErr = SI->getName();
646 if (!SymNameOrErr)
647 return errorToErrorCode(SymNameOrErr.takeError());
648 StringRef SymName = *SymNameOrErr;
649 Result.append(SymName.begin(), SymName.end());
651 fmt << (Rel.Addend < 0 ? "" : "+") << Rel.Addend;
652 fmt.flush();
653 Result.append(fmtbuf.begin(), fmtbuf.end());
654 return std::error_code();
657 static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
658 const RelocationRef &RelRef,
659 SmallVectorImpl<char> &Result) {
660 DataRefImpl Rel = RelRef.getRawDataRefImpl();
661 MachO::any_relocation_info RE = Obj->getRelocation(Rel);
663 unsigned Arch = Obj->getArch();
665 std::string fmtbuf;
666 raw_string_ostream fmt(fmtbuf);
667 unsigned Type = Obj->getAnyRelocationType(RE);
668 bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
670 // Determine any addends that should be displayed with the relocation.
671 // These require decoding the relocation type, which is triple-specific.
673 // X86_64 has entirely custom relocation types.
674 if (Arch == Triple::x86_64) {
675 bool isPCRel = Obj->getAnyRelocationPCRel(RE);
677 switch (Type) {
678 case MachO::X86_64_RELOC_GOT_LOAD:
679 case MachO::X86_64_RELOC_GOT: {
680 printRelocationTargetName(Obj, RE, fmt);
681 fmt << "@GOT";
682 if (isPCRel)
683 fmt << "PCREL";
684 break;
686 case MachO::X86_64_RELOC_SUBTRACTOR: {
687 DataRefImpl RelNext = Rel;
688 Obj->moveRelocationNext(RelNext);
689 MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
691 // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
692 // X86_64_RELOC_UNSIGNED.
693 // NOTE: Scattered relocations don't exist on x86_64.
694 unsigned RType = Obj->getAnyRelocationType(RENext);
695 if (RType != MachO::X86_64_RELOC_UNSIGNED)
696 report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after "
697 "X86_64_RELOC_SUBTRACTOR.");
699 // The X86_64_RELOC_UNSIGNED contains the minuend symbol;
700 // X86_64_RELOC_SUBTRACTOR contains the subtrahend.
701 printRelocationTargetName(Obj, RENext, fmt);
702 fmt << "-";
703 printRelocationTargetName(Obj, RE, fmt);
704 break;
706 case MachO::X86_64_RELOC_TLV:
707 printRelocationTargetName(Obj, RE, fmt);
708 fmt << "@TLV";
709 if (isPCRel)
710 fmt << "P";
711 break;
712 case MachO::X86_64_RELOC_SIGNED_1:
713 printRelocationTargetName(Obj, RE, fmt);
714 fmt << "-1";
715 break;
716 case MachO::X86_64_RELOC_SIGNED_2:
717 printRelocationTargetName(Obj, RE, fmt);
718 fmt << "-2";
719 break;
720 case MachO::X86_64_RELOC_SIGNED_4:
721 printRelocationTargetName(Obj, RE, fmt);
722 fmt << "-4";
723 break;
724 default:
725 printRelocationTargetName(Obj, RE, fmt);
726 break;
728 // X86 and ARM share some relocation types in common.
729 } else if (Arch == Triple::x86 || Arch == Triple::arm ||
730 Arch == Triple::ppc) {
731 // Generic relocation types...
732 switch (Type) {
733 case MachO::GENERIC_RELOC_PAIR: // prints no info
734 return std::error_code();
735 case MachO::GENERIC_RELOC_SECTDIFF: {
736 DataRefImpl RelNext = Rel;
737 Obj->moveRelocationNext(RelNext);
738 MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
740 // X86 sect diff's must be followed by a relocation of type
741 // GENERIC_RELOC_PAIR.
742 unsigned RType = Obj->getAnyRelocationType(RENext);
744 if (RType != MachO::GENERIC_RELOC_PAIR)
745 report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
746 "GENERIC_RELOC_SECTDIFF.");
748 printRelocationTargetName(Obj, RE, fmt);
749 fmt << "-";
750 printRelocationTargetName(Obj, RENext, fmt);
751 break;
755 if (Arch == Triple::x86 || Arch == Triple::ppc) {
756 switch (Type) {
757 case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
758 DataRefImpl RelNext = Rel;
759 Obj->moveRelocationNext(RelNext);
760 MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
762 // X86 sect diff's must be followed by a relocation of type
763 // GENERIC_RELOC_PAIR.
764 unsigned RType = Obj->getAnyRelocationType(RENext);
765 if (RType != MachO::GENERIC_RELOC_PAIR)
766 report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
767 "GENERIC_RELOC_LOCAL_SECTDIFF.");
769 printRelocationTargetName(Obj, RE, fmt);
770 fmt << "-";
771 printRelocationTargetName(Obj, RENext, fmt);
772 break;
774 case MachO::GENERIC_RELOC_TLV: {
775 printRelocationTargetName(Obj, RE, fmt);
776 fmt << "@TLV";
777 if (IsPCRel)
778 fmt << "P";
779 break;
781 default:
782 printRelocationTargetName(Obj, RE, fmt);
784 } else { // ARM-specific relocations
785 switch (Type) {
786 case MachO::ARM_RELOC_HALF:
787 case MachO::ARM_RELOC_HALF_SECTDIFF: {
788 // Half relocations steal a bit from the length field to encode
789 // whether this is an upper16 or a lower16 relocation.
790 bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1;
792 if (isUpper)
793 fmt << ":upper16:(";
794 else
795 fmt << ":lower16:(";
796 printRelocationTargetName(Obj, RE, fmt);
798 DataRefImpl RelNext = Rel;
799 Obj->moveRelocationNext(RelNext);
800 MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
802 // ARM half relocs must be followed by a relocation of type
803 // ARM_RELOC_PAIR.
804 unsigned RType = Obj->getAnyRelocationType(RENext);
805 if (RType != MachO::ARM_RELOC_PAIR)
806 report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after "
807 "ARM_RELOC_HALF");
809 // NOTE: The half of the target virtual address is stashed in the
810 // address field of the secondary relocation, but we can't reverse
811 // engineer the constant offset from it without decoding the movw/movt
812 // instruction to find the other half in its immediate field.
814 // ARM_RELOC_HALF_SECTDIFF encodes the second section in the
815 // symbol/section pointer of the follow-on relocation.
816 if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
817 fmt << "-";
818 printRelocationTargetName(Obj, RENext, fmt);
821 fmt << ")";
822 break;
824 default: { printRelocationTargetName(Obj, RE, fmt); }
827 } else
828 printRelocationTargetName(Obj, RE, fmt);
830 fmt.flush();
831 Result.append(fmtbuf.begin(), fmtbuf.end());
832 return std::error_code();
835 static std::error_code getRelocationValueString(const RelocationRef &Rel,
836 SmallVectorImpl<char> &Result) {
837 const ObjectFile *Obj = Rel.getObject();
838 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
839 return getRelocationValueString(ELF, Rel, Result);
840 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
841 return getRelocationValueString(COFF, Rel, Result);
842 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
843 return getRelocationValueString(Wasm, Rel, Result);
844 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
845 return getRelocationValueString(MachO, Rel, Result);
846 llvm_unreachable("unknown object file format");
849 /// Indicates whether this relocation should hidden when listing
850 /// relocations, usually because it is the trailing part of a multipart
851 /// relocation that will be printed as part of the leading relocation.
852 static bool getHidden(RelocationRef RelRef) {
853 const ObjectFile *Obj = RelRef.getObject();
854 auto *MachO = dyn_cast<MachOObjectFile>(Obj);
855 if (!MachO)
856 return false;
858 unsigned Arch = MachO->getArch();
859 DataRefImpl Rel = RelRef.getRawDataRefImpl();
860 uint64_t Type = MachO->getRelocationType(Rel);
862 // On arches that use the generic relocations, GENERIC_RELOC_PAIR
863 // is always hidden.
864 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) {
865 if (Type == MachO::GENERIC_RELOC_PAIR)
866 return true;
867 } else if (Arch == Triple::x86_64) {
868 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
869 // an X86_64_RELOC_SUBTRACTOR.
870 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
871 DataRefImpl RelPrev = Rel;
872 RelPrev.d.a--;
873 uint64_t PrevType = MachO->getRelocationType(RelPrev);
874 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
875 return true;
879 return false;
882 namespace {
883 class SourcePrinter {
884 protected:
885 DILineInfo OldLineInfo;
886 const ObjectFile *Obj = nullptr;
887 std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
888 // File name to file contents of source
889 std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
890 // Mark the line endings of the cached source
891 std::unordered_map<std::string, std::vector<StringRef>> LineCache;
893 private:
894 bool cacheSource(const DILineInfo& LineInfoFile);
896 public:
897 SourcePrinter() = default;
898 SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
899 symbolize::LLVMSymbolizer::Options SymbolizerOpts(
900 DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
901 DefaultArch);
902 Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
904 virtual ~SourcePrinter() = default;
905 virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
906 StringRef Delimiter = "; ");
909 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
910 std::unique_ptr<MemoryBuffer> Buffer;
911 if (LineInfo.Source) {
912 Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
913 } else {
914 auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
915 if (!BufferOrError)
916 return false;
917 Buffer = std::move(*BufferOrError);
919 // Chomp the file to get lines
920 size_t BufferSize = Buffer->getBufferSize();
921 const char *BufferStart = Buffer->getBufferStart();
922 for (const char *Start = BufferStart, *End = BufferStart;
923 End < BufferStart + BufferSize; End++)
924 if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
925 (*End == '\r' && *(End + 1) == '\n')) {
926 LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start));
927 if (*End == '\r')
928 End++;
929 Start = End + 1;
931 SourceCache[LineInfo.FileName] = std::move(Buffer);
932 return true;
935 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
936 StringRef Delimiter) {
937 if (!Symbolizer)
938 return;
939 DILineInfo LineInfo = DILineInfo();
940 auto ExpectecLineInfo =
941 Symbolizer->symbolizeCode(Obj->getFileName(), Address);
942 if (!ExpectecLineInfo)
943 consumeError(ExpectecLineInfo.takeError());
944 else
945 LineInfo = *ExpectecLineInfo;
947 if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
948 LineInfo.Line == 0)
949 return;
951 if (PrintLines)
952 OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
953 if (PrintSource) {
954 if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
955 if (!cacheSource(LineInfo))
956 return;
957 auto FileBuffer = SourceCache.find(LineInfo.FileName);
958 if (FileBuffer != SourceCache.end()) {
959 auto LineBuffer = LineCache.find(LineInfo.FileName);
960 if (LineBuffer != LineCache.end()) {
961 if (LineInfo.Line > LineBuffer->second.size())
962 return;
963 // Vector begins at 0, line numbers are non-zero
964 OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
965 << "\n";
969 OldLineInfo = LineInfo;
972 static bool isArmElf(const ObjectFile *Obj) {
973 return (Obj->isELF() &&
974 (Obj->getArch() == Triple::aarch64 ||
975 Obj->getArch() == Triple::aarch64_be ||
976 Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
977 Obj->getArch() == Triple::thumb ||
978 Obj->getArch() == Triple::thumbeb));
981 class PrettyPrinter {
982 public:
983 virtual ~PrettyPrinter() = default;
984 virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
985 ArrayRef<uint8_t> Bytes, uint64_t Address,
986 raw_ostream &OS, StringRef Annot,
987 MCSubtargetInfo const &STI, SourcePrinter *SP,
988 std::vector<RelocationRef> *Rels = nullptr) {
989 if (SP && (PrintSource || PrintLines))
990 SP->printSourceLine(OS, Address);
991 if (!NoLeadingAddr)
992 OS << format("%8" PRIx64 ":", Address);
993 if (!NoShowRawInsn) {
994 OS << "\t";
995 dumpBytes(Bytes, OS);
997 if (MI)
998 IP.printInst(MI, OS, "", STI);
999 else
1000 OS << " <unknown>";
1003 PrettyPrinter PrettyPrinterInst;
1004 class HexagonPrettyPrinter : public PrettyPrinter {
1005 public:
1006 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
1007 raw_ostream &OS) {
1008 uint32_t opcode =
1009 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
1010 if (!NoLeadingAddr)
1011 OS << format("%8" PRIx64 ":", Address);
1012 if (!NoShowRawInsn) {
1013 OS << "\t";
1014 dumpBytes(Bytes.slice(0, 4), OS);
1015 OS << format("%08" PRIx32, opcode);
1018 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1019 uint64_t Address, raw_ostream &OS, StringRef Annot,
1020 MCSubtargetInfo const &STI, SourcePrinter *SP,
1021 std::vector<RelocationRef> *Rels) override {
1022 if (SP && (PrintSource || PrintLines))
1023 SP->printSourceLine(OS, Address, "");
1024 if (!MI) {
1025 printLead(Bytes, Address, OS);
1026 OS << " <unknown>";
1027 return;
1029 std::string Buffer;
1031 raw_string_ostream TempStream(Buffer);
1032 IP.printInst(MI, TempStream, "", STI);
1034 StringRef Contents(Buffer);
1035 // Split off bundle attributes
1036 auto PacketBundle = Contents.rsplit('\n');
1037 // Split off first instruction from the rest
1038 auto HeadTail = PacketBundle.first.split('\n');
1039 auto Preamble = " { ";
1040 auto Separator = "";
1041 StringRef Fmt = "\t\t\t%08" PRIx64 ": ";
1042 std::vector<RelocationRef>::const_iterator rel_cur = Rels->begin();
1043 std::vector<RelocationRef>::const_iterator rel_end = Rels->end();
1045 // Hexagon's packets require relocations to be inline rather than
1046 // clustered at the end of the packet.
1047 auto PrintReloc = [&]() -> void {
1048 while ((rel_cur != rel_end) && (rel_cur->getOffset() <= Address)) {
1049 if (rel_cur->getOffset() == Address) {
1050 SmallString<16> name;
1051 SmallString<32> val;
1052 rel_cur->getTypeName(name);
1053 error(getRelocationValueString(*rel_cur, val));
1054 OS << Separator << format(Fmt.data(), Address) << name << "\t" << val
1055 << "\n";
1056 return;
1058 rel_cur++;
1062 while(!HeadTail.first.empty()) {
1063 OS << Separator;
1064 Separator = "\n";
1065 if (SP && (PrintSource || PrintLines))
1066 SP->printSourceLine(OS, Address, "");
1067 printLead(Bytes, Address, OS);
1068 OS << Preamble;
1069 Preamble = " ";
1070 StringRef Inst;
1071 auto Duplex = HeadTail.first.split('\v');
1072 if(!Duplex.second.empty()){
1073 OS << Duplex.first;
1074 OS << "; ";
1075 Inst = Duplex.second;
1077 else
1078 Inst = HeadTail.first;
1079 OS << Inst;
1080 HeadTail = HeadTail.second.split('\n');
1081 if (HeadTail.first.empty())
1082 OS << " } " << PacketBundle.second;
1083 PrintReloc();
1084 Bytes = Bytes.slice(4);
1085 Address += 4;
1089 HexagonPrettyPrinter HexagonPrettyPrinterInst;
1091 class AMDGCNPrettyPrinter : public PrettyPrinter {
1092 public:
1093 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1094 uint64_t Address, raw_ostream &OS, StringRef Annot,
1095 MCSubtargetInfo const &STI, SourcePrinter *SP,
1096 std::vector<RelocationRef> *Rels) override {
1097 if (SP && (PrintSource || PrintLines))
1098 SP->printSourceLine(OS, Address);
1100 typedef support::ulittle32_t U32;
1102 if (MI) {
1103 SmallString<40> InstStr;
1104 raw_svector_ostream IS(InstStr);
1106 IP.printInst(MI, IS, "", STI);
1108 OS << left_justify(IS.str(), 60);
1109 } else {
1110 // an unrecognized encoding - this is probably data so represent it
1111 // using the .long directive, or .byte directive if fewer than 4 bytes
1112 // remaining
1113 if (Bytes.size() >= 4) {
1114 OS << format("\t.long 0x%08" PRIx32 " ",
1115 static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
1116 OS.indent(42);
1117 } else {
1118 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
1119 for (unsigned int i = 1; i < Bytes.size(); i++)
1120 OS << format(", 0x%02" PRIx8, Bytes[i]);
1121 OS.indent(55 - (6 * Bytes.size()));
1125 OS << format("// %012" PRIX64 ": ", Address);
1126 if (Bytes.size() >=4) {
1127 for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
1128 Bytes.size() / sizeof(U32)))
1129 // D should be explicitly casted to uint32_t here as it is passed
1130 // by format to snprintf as vararg.
1131 OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
1132 } else {
1133 for (unsigned int i = 0; i < Bytes.size(); i++)
1134 OS << format("%02" PRIX8 " ", Bytes[i]);
1137 if (!Annot.empty())
1138 OS << "// " << Annot;
1141 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
1143 class BPFPrettyPrinter : public PrettyPrinter {
1144 public:
1145 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1146 uint64_t Address, raw_ostream &OS, StringRef Annot,
1147 MCSubtargetInfo const &STI, SourcePrinter *SP,
1148 std::vector<RelocationRef> *Rels) override {
1149 if (SP && (PrintSource || PrintLines))
1150 SP->printSourceLine(OS, Address);
1151 if (!NoLeadingAddr)
1152 OS << format("%8" PRId64 ":", Address / 8);
1153 if (!NoShowRawInsn) {
1154 OS << "\t";
1155 dumpBytes(Bytes, OS);
1157 if (MI)
1158 IP.printInst(MI, OS, "", STI);
1159 else
1160 OS << " <unknown>";
1163 BPFPrettyPrinter BPFPrettyPrinterInst;
1165 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
1166 switch(Triple.getArch()) {
1167 default:
1168 return PrettyPrinterInst;
1169 case Triple::hexagon:
1170 return HexagonPrettyPrinterInst;
1171 case Triple::amdgcn:
1172 return AMDGCNPrettyPrinterInst;
1173 case Triple::bpfel:
1174 case Triple::bpfeb:
1175 return BPFPrettyPrinterInst;
1180 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1181 assert(Obj->isELF());
1182 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1183 return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1184 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1185 return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1186 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1187 return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1188 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1189 return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1190 llvm_unreachable("Unsupported binary format");
1193 template <class ELFT> static void
1194 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1195 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1196 for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1197 uint8_t SymbolType = Symbol.getELFType();
1198 if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
1199 continue;
1201 Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1202 if (!AddressOrErr)
1203 report_error(Obj->getFileName(), AddressOrErr.takeError());
1204 uint64_t Address = *AddressOrErr;
1206 Expected<StringRef> Name = Symbol.getName();
1207 if (!Name)
1208 report_error(Obj->getFileName(), Name.takeError());
1209 if (Name->empty())
1210 continue;
1212 Expected<section_iterator> SectionOrErr = Symbol.getSection();
1213 if (!SectionOrErr)
1214 report_error(Obj->getFileName(), SectionOrErr.takeError());
1215 section_iterator SecI = *SectionOrErr;
1216 if (SecI == Obj->section_end())
1217 continue;
1219 AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1223 static void
1224 addDynamicElfSymbols(const ObjectFile *Obj,
1225 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1226 assert(Obj->isELF());
1227 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1228 addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1229 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1230 addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1231 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1232 addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1233 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1234 addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1235 else
1236 llvm_unreachable("Unsupported binary format");
1239 static void addPltEntries(const ObjectFile *Obj,
1240 std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1241 StringSaver &Saver) {
1242 Optional<SectionRef> Plt = None;
1243 for (const SectionRef &Section : Obj->sections()) {
1244 StringRef Name;
1245 if (Section.getName(Name))
1246 continue;
1247 if (Name == ".plt")
1248 Plt = Section;
1250 if (!Plt)
1251 return;
1252 if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
1253 for (auto PltEntry : ElfObj->getPltAddresses()) {
1254 SymbolRef Symbol(PltEntry.first, ElfObj);
1256 uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1258 Expected<StringRef> NameOrErr = Symbol.getName();
1259 if (!NameOrErr)
1260 report_error(Obj->getFileName(), NameOrErr.takeError());
1261 if (NameOrErr->empty())
1262 continue;
1263 StringRef Name = Saver.save((*NameOrErr + "@plt").str());
1265 AllSymbols[*Plt].emplace_back(PltEntry.second, Name, SymbolType);
1270 static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1271 if (StartAddress > StopAddress)
1272 error("Start address should be less than stop address");
1274 const Target *TheTarget = getTarget(Obj);
1276 // Package up features to be passed to target/subtarget
1277 SubtargetFeatures Features = Obj->getFeatures();
1278 if (MAttrs.size()) {
1279 for (unsigned i = 0; i != MAttrs.size(); ++i)
1280 Features.AddFeature(MAttrs[i]);
1283 std::unique_ptr<const MCRegisterInfo> MRI(
1284 TheTarget->createMCRegInfo(TripleName));
1285 if (!MRI)
1286 report_error(Obj->getFileName(), "no register info for target " +
1287 TripleName);
1289 // Set up disassembler.
1290 std::unique_ptr<const MCAsmInfo> AsmInfo(
1291 TheTarget->createMCAsmInfo(*MRI, TripleName));
1292 if (!AsmInfo)
1293 report_error(Obj->getFileName(), "no assembly info for target " +
1294 TripleName);
1295 std::unique_ptr<const MCSubtargetInfo> STI(
1296 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1297 if (!STI)
1298 report_error(Obj->getFileName(), "no subtarget info for target " +
1299 TripleName);
1300 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1301 if (!MII)
1302 report_error(Obj->getFileName(), "no instruction info for target " +
1303 TripleName);
1304 MCObjectFileInfo MOFI;
1305 MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1306 // FIXME: for now initialize MCObjectFileInfo with default values
1307 MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1309 std::unique_ptr<MCDisassembler> DisAsm(
1310 TheTarget->createMCDisassembler(*STI, Ctx));
1311 if (!DisAsm)
1312 report_error(Obj->getFileName(), "no disassembler for target " +
1313 TripleName);
1315 std::unique_ptr<const MCInstrAnalysis> MIA(
1316 TheTarget->createMCInstrAnalysis(MII.get()));
1318 int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1319 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1320 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1321 if (!IP)
1322 report_error(Obj->getFileName(), "no instruction printer for target " +
1323 TripleName);
1324 IP->setPrintImmHex(PrintImmHex);
1325 PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1327 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ": " :
1328 "\t\t\t%08" PRIx64 ": ";
1330 SourcePrinter SP(Obj, TheTarget->getName());
1332 // Create a mapping, RelocSecs = SectionRelocMap[S], where sections
1333 // in RelocSecs contain the relocations for section S.
1334 std::error_code EC;
1335 std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
1336 for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1337 section_iterator Sec2 = Section.getRelocatedSection();
1338 if (Sec2 != Obj->section_end())
1339 SectionRelocMap[*Sec2].push_back(Section);
1342 // Create a mapping from virtual address to symbol name. This is used to
1343 // pretty print the symbols while disassembling.
1344 std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1345 SectionSymbolsTy AbsoluteSymbols;
1346 for (const SymbolRef &Symbol : Obj->symbols()) {
1347 Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1348 if (!AddressOrErr)
1349 report_error(Obj->getFileName(), AddressOrErr.takeError());
1350 uint64_t Address = *AddressOrErr;
1352 Expected<StringRef> Name = Symbol.getName();
1353 if (!Name)
1354 report_error(Obj->getFileName(), Name.takeError());
1355 if (Name->empty())
1356 continue;
1358 Expected<section_iterator> SectionOrErr = Symbol.getSection();
1359 if (!SectionOrErr)
1360 report_error(Obj->getFileName(), SectionOrErr.takeError());
1362 uint8_t SymbolType = ELF::STT_NOTYPE;
1363 if (Obj->isELF())
1364 SymbolType = getElfSymbolType(Obj, Symbol);
1366 section_iterator SecI = *SectionOrErr;
1367 if (SecI != Obj->section_end())
1368 AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1369 else
1370 AbsoluteSymbols.emplace_back(Address, *Name, SymbolType);
1374 if (AllSymbols.empty() && Obj->isELF())
1375 addDynamicElfSymbols(Obj, AllSymbols);
1377 BumpPtrAllocator A;
1378 StringSaver Saver(A);
1379 addPltEntries(Obj, AllSymbols, Saver);
1381 // Create a mapping from virtual address to section.
1382 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1383 for (SectionRef Sec : Obj->sections())
1384 SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1385 array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1387 // Linked executables (.exe and .dll files) typically don't include a real
1388 // symbol table but they might contain an export table.
1389 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1390 for (const auto &ExportEntry : COFFObj->export_directories()) {
1391 StringRef Name;
1392 error(ExportEntry.getSymbolName(Name));
1393 if (Name.empty())
1394 continue;
1395 uint32_t RVA;
1396 error(ExportEntry.getExportRVA(RVA));
1398 uint64_t VA = COFFObj->getImageBase() + RVA;
1399 auto Sec = std::upper_bound(
1400 SectionAddresses.begin(), SectionAddresses.end(), VA,
1401 [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1402 return LHS < RHS.first;
1404 if (Sec != SectionAddresses.begin())
1405 --Sec;
1406 else
1407 Sec = SectionAddresses.end();
1409 if (Sec != SectionAddresses.end())
1410 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1411 else
1412 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1416 // Sort all the symbols, this allows us to use a simple binary search to find
1417 // a symbol near an address.
1418 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1419 array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1420 array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1422 for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1423 if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1424 continue;
1426 uint64_t SectionAddr = Section.getAddress();
1427 uint64_t SectSize = Section.getSize();
1428 if (!SectSize)
1429 continue;
1431 // Get the list of all the symbols in this section.
1432 SectionSymbolsTy &Symbols = AllSymbols[Section];
1433 std::vector<uint64_t> DataMappingSymsAddr;
1434 std::vector<uint64_t> TextMappingSymsAddr;
1435 if (isArmElf(Obj)) {
1436 for (const auto &Symb : Symbols) {
1437 uint64_t Address = std::get<0>(Symb);
1438 StringRef Name = std::get<1>(Symb);
1439 if (Name.startswith("$d"))
1440 DataMappingSymsAddr.push_back(Address - SectionAddr);
1441 if (Name.startswith("$x"))
1442 TextMappingSymsAddr.push_back(Address - SectionAddr);
1443 if (Name.startswith("$a"))
1444 TextMappingSymsAddr.push_back(Address - SectionAddr);
1445 if (Name.startswith("$t"))
1446 TextMappingSymsAddr.push_back(Address - SectionAddr);
1450 llvm::sort(DataMappingSymsAddr);
1451 llvm::sort(TextMappingSymsAddr);
1453 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1454 // AMDGPU disassembler uses symbolizer for printing labels
1455 std::unique_ptr<MCRelocationInfo> RelInfo(
1456 TheTarget->createMCRelocationInfo(TripleName, Ctx));
1457 if (RelInfo) {
1458 std::unique_ptr<MCSymbolizer> Symbolizer(
1459 TheTarget->createMCSymbolizer(
1460 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1461 DisAsm->setSymbolizer(std::move(Symbolizer));
1465 // Make a list of all the relocations for this section.
1466 std::vector<RelocationRef> Rels;
1467 if (InlineRelocs) {
1468 for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
1469 for (const RelocationRef &Reloc : RelocSec.relocations()) {
1470 Rels.push_back(Reloc);
1475 // Sort relocations by address.
1476 llvm::sort(Rels, RelocAddressLess);
1478 StringRef SegmentName = "";
1479 if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1480 DataRefImpl DR = Section.getRawDataRefImpl();
1481 SegmentName = MachO->getSectionFinalSegmentName(DR);
1483 StringRef SectionName;
1484 error(Section.getName(SectionName));
1486 // If the section has no symbol at the start, just insert a dummy one.
1487 if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1488 Symbols.insert(
1489 Symbols.begin(),
1490 std::make_tuple(SectionAddr, SectionName,
1491 Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1494 SmallString<40> Comments;
1495 raw_svector_ostream CommentStream(Comments);
1497 StringRef BytesStr;
1498 error(Section.getContents(BytesStr));
1499 ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1500 BytesStr.size());
1502 uint64_t Size;
1503 uint64_t Index;
1504 bool PrintedSection = false;
1506 std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin();
1507 std::vector<RelocationRef>::const_iterator rel_end = Rels.end();
1508 // Disassemble symbol by symbol.
1509 for (unsigned si = 0, se = Symbols.size(); si != se; ++si) {
1510 uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr;
1511 // The end is either the section end or the beginning of the next
1512 // symbol.
1513 uint64_t End =
1514 (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr;
1515 // Don't try to disassemble beyond the end of section contents.
1516 if (End > SectSize)
1517 End = SectSize;
1518 // If this symbol has the same address as the next symbol, then skip it.
1519 if (Start >= End)
1520 continue;
1522 // Check if we need to skip symbol
1523 // Skip if the symbol's data is not between StartAddress and StopAddress
1524 if (End + SectionAddr < StartAddress ||
1525 Start + SectionAddr > StopAddress) {
1526 continue;
1529 /// Skip if user requested specific symbols and this is not in the list
1530 if (!DisasmFuncsSet.empty() &&
1531 !DisasmFuncsSet.count(std::get<1>(Symbols[si])))
1532 continue;
1534 if (!PrintedSection) {
1535 PrintedSection = true;
1536 outs() << "Disassembly of section ";
1537 if (!SegmentName.empty())
1538 outs() << SegmentName << ",";
1539 outs() << SectionName << ':';
1542 // Stop disassembly at the stop address specified
1543 if (End + SectionAddr > StopAddress)
1544 End = StopAddress - SectionAddr;
1546 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1547 if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1548 // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1549 Start += 256;
1551 if (si == se - 1 ||
1552 std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1553 // cut trailing zeroes at the end of kernel
1554 // cut up to 256 bytes
1555 const uint64_t EndAlign = 256;
1556 const auto Limit = End - (std::min)(EndAlign, End - Start);
1557 while (End > Limit &&
1558 *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1559 End -= 4;
1563 auto PrintSymbol = [](StringRef Name) {
1564 outs() << '\n' << Name << ":\n";
1566 StringRef SymbolName = std::get<1>(Symbols[si]);
1567 if (Demangle) {
1568 char *DemangledSymbol = nullptr;
1569 size_t Size = 0;
1570 int Status = -1;
1571 if (SymbolName.startswith("_Z"))
1572 DemangledSymbol = itaniumDemangle(SymbolName.data(), DemangledSymbol,
1573 &Size, &Status);
1574 else if (SymbolName.startswith("?"))
1575 DemangledSymbol = microsoftDemangle(SymbolName.data(),
1576 DemangledSymbol, &Size, &Status);
1578 if (Status == 0 && DemangledSymbol)
1579 PrintSymbol(StringRef(DemangledSymbol));
1580 else
1581 PrintSymbol(SymbolName);
1583 if (DemangledSymbol)
1584 free(DemangledSymbol);
1585 } else
1586 PrintSymbol(SymbolName);
1588 // Don't print raw contents of a virtual section. A virtual section
1589 // doesn't have any contents in the file.
1590 if (Section.isVirtual()) {
1591 outs() << "...\n";
1592 continue;
1595 #ifndef NDEBUG
1596 raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1597 #else
1598 raw_ostream &DebugOut = nulls();
1599 #endif
1601 for (Index = Start; Index < End; Index += Size) {
1602 MCInst Inst;
1604 if (Index + SectionAddr < StartAddress ||
1605 Index + SectionAddr > StopAddress) {
1606 // skip byte by byte till StartAddress is reached
1607 Size = 1;
1608 continue;
1610 // AArch64 ELF binaries can interleave data and text in the
1611 // same section. We rely on the markers introduced to
1612 // understand what we need to dump. If the data marker is within a
1613 // function, it is denoted as a word/short etc
1614 if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT &&
1615 !DisassembleAll) {
1616 uint64_t Stride = 0;
1618 auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1619 DataMappingSymsAddr.end(), Index);
1620 if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1621 // Switch to data.
1622 while (Index < End) {
1623 outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1624 outs() << "\t";
1625 if (Index + 4 <= End) {
1626 Stride = 4;
1627 dumpBytes(Bytes.slice(Index, 4), outs());
1628 outs() << "\t.word\t";
1629 uint32_t Data = 0;
1630 if (Obj->isLittleEndian()) {
1631 const auto Word =
1632 reinterpret_cast<const support::ulittle32_t *>(
1633 Bytes.data() + Index);
1634 Data = *Word;
1635 } else {
1636 const auto Word = reinterpret_cast<const support::ubig32_t *>(
1637 Bytes.data() + Index);
1638 Data = *Word;
1640 outs() << "0x" << format("%08" PRIx32, Data);
1641 } else if (Index + 2 <= End) {
1642 Stride = 2;
1643 dumpBytes(Bytes.slice(Index, 2), outs());
1644 outs() << "\t\t.short\t";
1645 uint16_t Data = 0;
1646 if (Obj->isLittleEndian()) {
1647 const auto Short =
1648 reinterpret_cast<const support::ulittle16_t *>(
1649 Bytes.data() + Index);
1650 Data = *Short;
1651 } else {
1652 const auto Short =
1653 reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1654 Index);
1655 Data = *Short;
1657 outs() << "0x" << format("%04" PRIx16, Data);
1658 } else {
1659 Stride = 1;
1660 dumpBytes(Bytes.slice(Index, 1), outs());
1661 outs() << "\t\t.byte\t";
1662 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1664 Index += Stride;
1665 outs() << "\n";
1666 auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1667 TextMappingSymsAddr.end(), Index);
1668 if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1669 break;
1674 // If there is a data symbol inside an ELF text section and we are only
1675 // disassembling text (applicable all architectures),
1676 // we are in a situation where we must print the data and not
1677 // disassemble it.
1678 if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT &&
1679 !DisassembleAll && Section.isText()) {
1680 // print out data up to 8 bytes at a time in hex and ascii
1681 uint8_t AsciiData[9] = {'\0'};
1682 uint8_t Byte;
1683 int NumBytes = 0;
1685 for (Index = Start; Index < End; Index += 1) {
1686 if (((SectionAddr + Index) < StartAddress) ||
1687 ((SectionAddr + Index) > StopAddress))
1688 continue;
1689 if (NumBytes == 0) {
1690 outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1691 outs() << "\t";
1693 Byte = Bytes.slice(Index)[0];
1694 outs() << format(" %02x", Byte);
1695 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1697 uint8_t IndentOffset = 0;
1698 NumBytes++;
1699 if (Index == End - 1 || NumBytes > 8) {
1700 // Indent the space for less than 8 bytes data.
1701 // 2 spaces for byte and one for space between bytes
1702 IndentOffset = 3 * (8 - NumBytes);
1703 for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1704 AsciiData[Excess] = '\0';
1705 NumBytes = 8;
1707 if (NumBytes == 8) {
1708 AsciiData[8] = '\0';
1709 outs() << std::string(IndentOffset, ' ') << " ";
1710 outs() << reinterpret_cast<char *>(AsciiData);
1711 outs() << '\n';
1712 NumBytes = 0;
1716 if (Index >= End)
1717 break;
1719 // Disassemble a real instruction or a data when disassemble all is
1720 // provided
1721 bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1722 SectionAddr + Index, DebugOut,
1723 CommentStream);
1724 if (Size == 0)
1725 Size = 1;
1727 PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1728 Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1729 *STI, &SP, &Rels);
1730 outs() << CommentStream.str();
1731 Comments.clear();
1733 // Try to resolve the target of a call, tail call, etc. to a specific
1734 // symbol.
1735 if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1736 MIA->isConditionalBranch(Inst))) {
1737 uint64_t Target;
1738 if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1739 // In a relocatable object, the target's section must reside in
1740 // the same section as the call instruction or it is accessed
1741 // through a relocation.
1743 // In a non-relocatable object, the target may be in any section.
1745 // N.B. We don't walk the relocations in the relocatable case yet.
1746 auto *TargetSectionSymbols = &Symbols;
1747 if (!Obj->isRelocatableObject()) {
1748 auto SectionAddress = std::upper_bound(
1749 SectionAddresses.begin(), SectionAddresses.end(), Target,
1750 [](uint64_t LHS,
1751 const std::pair<uint64_t, SectionRef> &RHS) {
1752 return LHS < RHS.first;
1754 if (SectionAddress != SectionAddresses.begin()) {
1755 --SectionAddress;
1756 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1757 } else {
1758 TargetSectionSymbols = &AbsoluteSymbols;
1762 // Find the first symbol in the section whose offset is less than
1763 // or equal to the target. If there isn't a section that contains
1764 // the target, find the nearest preceding absolute symbol.
1765 auto TargetSym = std::upper_bound(
1766 TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1767 Target, [](uint64_t LHS,
1768 const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1769 return LHS < std::get<0>(RHS);
1771 if (TargetSym == TargetSectionSymbols->begin()) {
1772 TargetSectionSymbols = &AbsoluteSymbols;
1773 TargetSym = std::upper_bound(
1774 AbsoluteSymbols.begin(), AbsoluteSymbols.end(),
1775 Target, [](uint64_t LHS,
1776 const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1777 return LHS < std::get<0>(RHS);
1780 if (TargetSym != TargetSectionSymbols->begin()) {
1781 --TargetSym;
1782 uint64_t TargetAddress = std::get<0>(*TargetSym);
1783 StringRef TargetName = std::get<1>(*TargetSym);
1784 outs() << " <" << TargetName;
1785 uint64_t Disp = Target - TargetAddress;
1786 if (Disp)
1787 outs() << "+0x" << Twine::utohexstr(Disp);
1788 outs() << '>';
1792 outs() << "\n";
1794 // Hexagon does this in pretty printer
1795 if (Obj->getArch() != Triple::hexagon)
1796 // Print relocation for instruction.
1797 while (rel_cur != rel_end) {
1798 bool hidden = getHidden(*rel_cur);
1799 uint64_t addr = rel_cur->getOffset();
1800 SmallString<16> name;
1801 SmallString<32> val;
1803 // If this relocation is hidden, skip it.
1804 if (hidden || ((SectionAddr + addr) < StartAddress)) {
1805 ++rel_cur;
1806 continue;
1809 // Stop when rel_cur's address is past the current instruction.
1810 if (addr >= Index + Size) break;
1811 rel_cur->getTypeName(name);
1812 error(getRelocationValueString(*rel_cur, val));
1813 outs() << format(Fmt.data(), SectionAddr + addr) << name
1814 << "\t" << val << "\n";
1815 ++rel_cur;
1822 void llvm::PrintRelocations(const ObjectFile *Obj) {
1823 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1824 "%08" PRIx64;
1825 // Regular objdump doesn't print relocations in non-relocatable object
1826 // files.
1827 if (!Obj->isRelocatableObject())
1828 return;
1830 for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1831 if (Section.relocation_begin() == Section.relocation_end())
1832 continue;
1833 StringRef secname;
1834 error(Section.getName(secname));
1835 outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n";
1836 for (const RelocationRef &Reloc : Section.relocations()) {
1837 bool hidden = getHidden(Reloc);
1838 uint64_t address = Reloc.getOffset();
1839 SmallString<32> relocname;
1840 SmallString<32> valuestr;
1841 if (address < StartAddress || address > StopAddress || hidden)
1842 continue;
1843 Reloc.getTypeName(relocname);
1844 error(getRelocationValueString(Reloc, valuestr));
1845 outs() << format(Fmt.data(), address) << " " << relocname << " "
1846 << valuestr << "\n";
1848 outs() << "\n";
1852 void llvm::PrintDynamicRelocations(const ObjectFile *Obj) {
1854 // For the moment, this option is for ELF only
1855 if (!Obj->isELF())
1856 return;
1858 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1860 if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1861 error("not a dynamic object");
1862 return;
1865 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1867 std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1868 if (DynRelSec.empty())
1869 return;
1871 outs() << "DYNAMIC RELOCATION RECORDS\n";
1872 for (const SectionRef &Section : DynRelSec) {
1873 if (Section.relocation_begin() == Section.relocation_end())
1874 continue;
1875 for (const RelocationRef &Reloc : Section.relocations()) {
1876 uint64_t address = Reloc.getOffset();
1877 SmallString<32> relocname;
1878 SmallString<32> valuestr;
1879 Reloc.getTypeName(relocname);
1880 error(getRelocationValueString(Reloc, valuestr));
1881 outs() << format(Fmt.data(), address) << " " << relocname << " "
1882 << valuestr << "\n";
1887 void llvm::PrintSectionHeaders(const ObjectFile *Obj) {
1888 outs() << "Sections:\n"
1889 "Idx Name Size Address Type\n";
1890 for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1891 StringRef Name;
1892 error(Section.getName(Name));
1893 uint64_t Address = Section.getAddress();
1894 uint64_t Size = Section.getSize();
1895 bool Text = Section.isText();
1896 bool Data = Section.isData();
1897 bool BSS = Section.isBSS();
1898 std::string Type = (std::string(Text ? "TEXT " : "") +
1899 (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1900 outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n",
1901 (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1902 Address, Type.c_str());
1906 void llvm::PrintSectionContents(const ObjectFile *Obj) {
1907 std::error_code EC;
1908 for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1909 StringRef Name;
1910 StringRef Contents;
1911 error(Section.getName(Name));
1912 uint64_t BaseAddr = Section.getAddress();
1913 uint64_t Size = Section.getSize();
1914 if (!Size)
1915 continue;
1917 outs() << "Contents of section " << Name << ":\n";
1918 if (Section.isBSS()) {
1919 outs() << format("<skipping contents of bss section at [%04" PRIx64
1920 ", %04" PRIx64 ")>\n",
1921 BaseAddr, BaseAddr + Size);
1922 continue;
1925 error(Section.getContents(Contents));
1927 // Dump out the content as hex and printable ascii characters.
1928 for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) {
1929 outs() << format(" %04" PRIx64 " ", BaseAddr + addr);
1930 // Dump line of hex.
1931 for (std::size_t i = 0; i < 16; ++i) {
1932 if (i != 0 && i % 4 == 0)
1933 outs() << ' ';
1934 if (addr + i < end)
1935 outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true)
1936 << hexdigit(Contents[addr + i] & 0xF, true);
1937 else
1938 outs() << " ";
1940 // Print ascii.
1941 outs() << " ";
1942 for (std::size_t i = 0; i < 16 && addr + i < end; ++i) {
1943 if (isPrint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF))
1944 outs() << Contents[addr + i];
1945 else
1946 outs() << ".";
1948 outs() << "\n";
1953 void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName,
1954 StringRef ArchitectureName) {
1955 outs() << "SYMBOL TABLE:\n";
1957 if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) {
1958 printCOFFSymbolTable(coff);
1959 return;
1961 for (const SymbolRef &Symbol : o->symbols()) {
1962 Expected<uint64_t> AddressOrError = Symbol.getAddress();
1963 if (!AddressOrError)
1964 report_error(ArchiveName, o->getFileName(), AddressOrError.takeError(),
1965 ArchitectureName);
1966 uint64_t Address = *AddressOrError;
1967 if ((Address < StartAddress) || (Address > StopAddress))
1968 continue;
1969 Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1970 if (!TypeOrError)
1971 report_error(ArchiveName, o->getFileName(), TypeOrError.takeError(),
1972 ArchitectureName);
1973 SymbolRef::Type Type = *TypeOrError;
1974 uint32_t Flags = Symbol.getFlags();
1975 Expected<section_iterator> SectionOrErr = Symbol.getSection();
1976 if (!SectionOrErr)
1977 report_error(ArchiveName, o->getFileName(), SectionOrErr.takeError(),
1978 ArchitectureName);
1979 section_iterator Section = *SectionOrErr;
1980 StringRef Name;
1981 if (Type == SymbolRef::ST_Debug && Section != o->section_end()) {
1982 Section->getName(Name);
1983 } else {
1984 Expected<StringRef> NameOrErr = Symbol.getName();
1985 if (!NameOrErr)
1986 report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(),
1987 ArchitectureName);
1988 Name = *NameOrErr;
1991 bool Global = Flags & SymbolRef::SF_Global;
1992 bool Weak = Flags & SymbolRef::SF_Weak;
1993 bool Absolute = Flags & SymbolRef::SF_Absolute;
1994 bool Common = Flags & SymbolRef::SF_Common;
1995 bool Hidden = Flags & SymbolRef::SF_Hidden;
1997 char GlobLoc = ' ';
1998 if (Type != SymbolRef::ST_Unknown)
1999 GlobLoc = Global ? 'g' : 'l';
2000 char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2001 ? 'd' : ' ';
2002 char FileFunc = ' ';
2003 if (Type == SymbolRef::ST_File)
2004 FileFunc = 'f';
2005 else if (Type == SymbolRef::ST_Function)
2006 FileFunc = 'F';
2008 const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 :
2009 "%08" PRIx64;
2011 outs() << format(Fmt, Address) << " "
2012 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
2013 << (Weak ? 'w' : ' ') // Weak?
2014 << ' ' // Constructor. Not supported yet.
2015 << ' ' // Warning. Not supported yet.
2016 << ' ' // Indirect reference to another symbol.
2017 << Debug // Debugging (d) or dynamic (D) symbol.
2018 << FileFunc // Name of function (F), file (f) or object (O).
2019 << ' ';
2020 if (Absolute) {
2021 outs() << "*ABS*";
2022 } else if (Common) {
2023 outs() << "*COM*";
2024 } else if (Section == o->section_end()) {
2025 outs() << "*UND*";
2026 } else {
2027 if (const MachOObjectFile *MachO =
2028 dyn_cast<const MachOObjectFile>(o)) {
2029 DataRefImpl DR = Section->getRawDataRefImpl();
2030 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
2031 outs() << SegmentName << ",";
2033 StringRef SectionName;
2034 error(Section->getName(SectionName));
2035 outs() << SectionName;
2038 outs() << '\t';
2039 if (Common || isa<ELFObjectFileBase>(o)) {
2040 uint64_t Val =
2041 Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
2042 outs() << format("\t %08" PRIx64 " ", Val);
2045 if (Hidden) {
2046 outs() << ".hidden ";
2048 outs() << Name
2049 << '\n';
2053 static void PrintUnwindInfo(const ObjectFile *o) {
2054 outs() << "Unwind info:\n\n";
2056 if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) {
2057 printCOFFUnwindInfo(coff);
2058 } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2059 printMachOUnwindInfo(MachO);
2060 else {
2061 // TODO: Extract DWARF dump tool to objdump.
2062 errs() << "This operation is only currently supported "
2063 "for COFF and MachO object files.\n";
2064 return;
2068 void llvm::printExportsTrie(const ObjectFile *o) {
2069 outs() << "Exports trie:\n";
2070 if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2071 printMachOExportsTrie(MachO);
2072 else {
2073 errs() << "This operation is only currently supported "
2074 "for Mach-O executable files.\n";
2075 return;
2079 void llvm::printRebaseTable(ObjectFile *o) {
2080 outs() << "Rebase table:\n";
2081 if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2082 printMachORebaseTable(MachO);
2083 else {
2084 errs() << "This operation is only currently supported "
2085 "for Mach-O executable files.\n";
2086 return;
2090 void llvm::printBindTable(ObjectFile *o) {
2091 outs() << "Bind table:\n";
2092 if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2093 printMachOBindTable(MachO);
2094 else {
2095 errs() << "This operation is only currently supported "
2096 "for Mach-O executable files.\n";
2097 return;
2101 void llvm::printLazyBindTable(ObjectFile *o) {
2102 outs() << "Lazy bind table:\n";
2103 if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2104 printMachOLazyBindTable(MachO);
2105 else {
2106 errs() << "This operation is only currently supported "
2107 "for Mach-O executable files.\n";
2108 return;
2112 void llvm::printWeakBindTable(ObjectFile *o) {
2113 outs() << "Weak bind table:\n";
2114 if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2115 printMachOWeakBindTable(MachO);
2116 else {
2117 errs() << "This operation is only currently supported "
2118 "for Mach-O executable files.\n";
2119 return;
2123 /// Dump the raw contents of the __clangast section so the output can be piped
2124 /// into llvm-bcanalyzer.
2125 void llvm::printRawClangAST(const ObjectFile *Obj) {
2126 if (outs().is_displayed()) {
2127 errs() << "The -raw-clang-ast option will dump the raw binary contents of "
2128 "the clang ast section.\n"
2129 "Please redirect the output to a file or another program such as "
2130 "llvm-bcanalyzer.\n";
2131 return;
2134 StringRef ClangASTSectionName("__clangast");
2135 if (isa<COFFObjectFile>(Obj)) {
2136 ClangASTSectionName = "clangast";
2139 Optional<object::SectionRef> ClangASTSection;
2140 for (auto Sec : ToolSectionFilter(*Obj)) {
2141 StringRef Name;
2142 Sec.getName(Name);
2143 if (Name == ClangASTSectionName) {
2144 ClangASTSection = Sec;
2145 break;
2148 if (!ClangASTSection)
2149 return;
2151 StringRef ClangASTContents;
2152 error(ClangASTSection.getValue().getContents(ClangASTContents));
2153 outs().write(ClangASTContents.data(), ClangASTContents.size());
2156 static void printFaultMaps(const ObjectFile *Obj) {
2157 const char *FaultMapSectionName = nullptr;
2159 if (isa<ELFObjectFileBase>(Obj)) {
2160 FaultMapSectionName = ".llvm_faultmaps";
2161 } else if (isa<MachOObjectFile>(Obj)) {
2162 FaultMapSectionName = "__llvm_faultmaps";
2163 } else {
2164 errs() << "This operation is only currently supported "
2165 "for ELF and Mach-O executable files.\n";
2166 return;
2169 Optional<object::SectionRef> FaultMapSection;
2171 for (auto Sec : ToolSectionFilter(*Obj)) {
2172 StringRef Name;
2173 Sec.getName(Name);
2174 if (Name == FaultMapSectionName) {
2175 FaultMapSection = Sec;
2176 break;
2180 outs() << "FaultMap table:\n";
2182 if (!FaultMapSection.hasValue()) {
2183 outs() << "<not found>\n";
2184 return;
2187 StringRef FaultMapContents;
2188 error(FaultMapSection.getValue().getContents(FaultMapContents));
2190 FaultMapParser FMP(FaultMapContents.bytes_begin(),
2191 FaultMapContents.bytes_end());
2193 outs() << FMP;
2196 static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) {
2197 if (o->isELF()) {
2198 printELFFileHeader(o);
2199 return printELFDynamicSection(o);
2201 if (o->isCOFF())
2202 return printCOFFFileHeader(o);
2203 if (o->isWasm())
2204 return printWasmFileHeader(o);
2205 if (o->isMachO()) {
2206 printMachOFileHeader(o);
2207 if (!onlyFirst)
2208 printMachOLoadCommands(o);
2209 return;
2211 report_error(o->getFileName(), "Invalid/Unsupported object file format");
2214 static void printFileHeaders(const ObjectFile *o) {
2215 if (!o->isELF() && !o->isCOFF())
2216 report_error(o->getFileName(), "Invalid/Unsupported object file format");
2218 Triple::ArchType AT = o->getArch();
2219 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2220 Expected<uint64_t> StartAddrOrErr = o->getStartAddress();
2221 if (!StartAddrOrErr)
2222 report_error(o->getFileName(), StartAddrOrErr.takeError());
2223 outs() << "start address: "
2224 << format("0x%0*x", o->getBytesInAddress(), StartAddrOrErr.get())
2225 << "\n";
2228 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2229 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2230 if (!ModeOrErr) {
2231 errs() << "ill-formed archive entry.\n";
2232 consumeError(ModeOrErr.takeError());
2233 return;
2235 sys::fs::perms Mode = ModeOrErr.get();
2236 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2237 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2238 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2239 outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2240 outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2241 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2242 outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2243 outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2244 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2246 outs() << " ";
2248 Expected<unsigned> UIDOrErr = C.getUID();
2249 if (!UIDOrErr)
2250 report_error(Filename, UIDOrErr.takeError());
2251 unsigned UID = UIDOrErr.get();
2252 outs() << format("%d/", UID);
2254 Expected<unsigned> GIDOrErr = C.getGID();
2255 if (!GIDOrErr)
2256 report_error(Filename, GIDOrErr.takeError());
2257 unsigned GID = GIDOrErr.get();
2258 outs() << format("%-d ", GID);
2260 Expected<uint64_t> Size = C.getRawSize();
2261 if (!Size)
2262 report_error(Filename, Size.takeError());
2263 outs() << format("%6" PRId64, Size.get()) << " ";
2265 StringRef RawLastModified = C.getRawLastModified();
2266 unsigned Seconds;
2267 if (RawLastModified.getAsInteger(10, Seconds))
2268 outs() << "(date: \"" << RawLastModified
2269 << "\" contains non-decimal chars) ";
2270 else {
2271 // Since ctime(3) returns a 26 character string of the form:
2272 // "Sun Sep 16 01:03:52 1973\n\0"
2273 // just print 24 characters.
2274 time_t t = Seconds;
2275 outs() << format("%.24s ", ctime(&t));
2278 StringRef Name = "";
2279 Expected<StringRef> NameOrErr = C.getName();
2280 if (!NameOrErr) {
2281 consumeError(NameOrErr.takeError());
2282 Expected<StringRef> RawNameOrErr = C.getRawName();
2283 if (!RawNameOrErr)
2284 report_error(Filename, NameOrErr.takeError());
2285 Name = RawNameOrErr.get();
2286 } else {
2287 Name = NameOrErr.get();
2289 outs() << Name << "\n";
2292 static void DumpObject(ObjectFile *o, const Archive *a = nullptr,
2293 const Archive::Child *c = nullptr) {
2294 StringRef ArchiveName = a != nullptr ? a->getFileName() : "";
2295 // Avoid other output when using a raw option.
2296 if (!RawClangAST) {
2297 outs() << '\n';
2298 if (a)
2299 outs() << a->getFileName() << "(" << o->getFileName() << ")";
2300 else
2301 outs() << o->getFileName();
2302 outs() << ":\tfile format " << o->getFileFormatName() << "\n\n";
2305 if (ArchiveHeaders && !MachOOpt)
2306 printArchiveChild(a->getFileName(), *c);
2307 if (Disassemble)
2308 DisassembleObject(o, Relocations);
2309 if (Relocations && !Disassemble)
2310 PrintRelocations(o);
2311 if (DynamicRelocations)
2312 PrintDynamicRelocations(o);
2313 if (SectionHeaders)
2314 PrintSectionHeaders(o);
2315 if (SectionContents)
2316 PrintSectionContents(o);
2317 if (SymbolTable)
2318 PrintSymbolTable(o, ArchiveName);
2319 if (UnwindInfo)
2320 PrintUnwindInfo(o);
2321 if (PrivateHeaders || FirstPrivateHeader)
2322 printPrivateFileHeaders(o, FirstPrivateHeader);
2323 if (FileHeaders)
2324 printFileHeaders(o);
2325 if (ExportsTrie)
2326 printExportsTrie(o);
2327 if (Rebase)
2328 printRebaseTable(o);
2329 if (Bind)
2330 printBindTable(o);
2331 if (LazyBind)
2332 printLazyBindTable(o);
2333 if (WeakBind)
2334 printWeakBindTable(o);
2335 if (RawClangAST)
2336 printRawClangAST(o);
2337 if (PrintFaultMaps)
2338 printFaultMaps(o);
2339 if (DwarfDumpType != DIDT_Null) {
2340 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*o);
2341 // Dump the complete DWARF structure.
2342 DIDumpOptions DumpOpts;
2343 DumpOpts.DumpType = DwarfDumpType;
2344 DICtx->dump(outs(), DumpOpts);
2348 static void DumpObject(const COFFImportFile *I, const Archive *A,
2349 const Archive::Child *C = nullptr) {
2350 StringRef ArchiveName = A ? A->getFileName() : "";
2352 // Avoid other output when using a raw option.
2353 if (!RawClangAST)
2354 outs() << '\n'
2355 << ArchiveName << "(" << I->getFileName() << ")"
2356 << ":\tfile format COFF-import-file"
2357 << "\n\n";
2359 if (ArchiveHeaders && !MachOOpt)
2360 printArchiveChild(A->getFileName(), *C);
2361 if (SymbolTable)
2362 printCOFFSymbolTable(I);
2365 /// Dump each object file in \a a;
2366 static void DumpArchive(const Archive *a) {
2367 Error Err = Error::success();
2368 for (auto &C : a->children(Err)) {
2369 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2370 if (!ChildOrErr) {
2371 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2372 report_error(a->getFileName(), C, std::move(E));
2373 continue;
2375 if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2376 DumpObject(o, a, &C);
2377 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2378 DumpObject(I, a, &C);
2379 else
2380 report_error(a->getFileName(), object_error::invalid_file_type);
2382 if (Err)
2383 report_error(a->getFileName(), std::move(Err));
2386 /// Open file and figure out how to dump it.
2387 static void DumpInput(StringRef file) {
2389 // If we are using the Mach-O specific object file parser, then let it parse
2390 // the file and process the command line options. So the -arch flags can
2391 // be used to select specific slices, etc.
2392 if (MachOOpt) {
2393 ParseInputMachO(file);
2394 return;
2397 // Attempt to open the binary.
2398 Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2399 if (!BinaryOrErr)
2400 report_error(file, BinaryOrErr.takeError());
2401 Binary &Binary = *BinaryOrErr.get().getBinary();
2403 if (Archive *a = dyn_cast<Archive>(&Binary))
2404 DumpArchive(a);
2405 else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary))
2406 DumpObject(o);
2407 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2408 ParseInputMachO(UB);
2409 else
2410 report_error(file, object_error::invalid_file_type);
2413 int main(int argc, char **argv) {
2414 InitLLVM X(argc, argv);
2416 // Initialize targets and assembly printers/parsers.
2417 llvm::InitializeAllTargetInfos();
2418 llvm::InitializeAllTargetMCs();
2419 llvm::InitializeAllDisassemblers();
2421 // Register the target printer for --version.
2422 cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2424 cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2426 ToolName = argv[0];
2428 // Defaults to a.out if no filenames specified.
2429 if (InputFilenames.size() == 0)
2430 InputFilenames.push_back("a.out");
2432 if (AllHeaders)
2433 PrivateHeaders = Relocations = SectionHeaders = SymbolTable = true;
2435 if (DisassembleAll || PrintSource || PrintLines)
2436 Disassemble = true;
2438 if (!Disassemble
2439 && !Relocations
2440 && !DynamicRelocations
2441 && !SectionHeaders
2442 && !SectionContents
2443 && !SymbolTable
2444 && !UnwindInfo
2445 && !PrivateHeaders
2446 && !FileHeaders
2447 && !FirstPrivateHeader
2448 && !ExportsTrie
2449 && !Rebase
2450 && !Bind
2451 && !LazyBind
2452 && !WeakBind
2453 && !RawClangAST
2454 && !(UniversalHeaders && MachOOpt)
2455 && !ArchiveHeaders
2456 && !(IndirectSymbols && MachOOpt)
2457 && !(DataInCode && MachOOpt)
2458 && !(LinkOptHints && MachOOpt)
2459 && !(InfoPlist && MachOOpt)
2460 && !(DylibsUsed && MachOOpt)
2461 && !(DylibId && MachOOpt)
2462 && !(ObjcMetaData && MachOOpt)
2463 && !(FilterSections.size() != 0 && MachOOpt)
2464 && !PrintFaultMaps
2465 && DwarfDumpType == DIDT_Null) {
2466 cl::PrintHelpMessage();
2467 return 2;
2470 DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2471 DisassembleFunctions.end());
2473 llvm::for_each(InputFilenames, DumpInput);
2475 return EXIT_SUCCESS;