[ARM] Fix for MVE VPT block pass
[llvm-complete.git] / utils / TableGen / FixedLenDecoderEmitter.cpp
blobf5e975d2e5ae98df73ee2225a8018a58a98bf6d2
1 //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // It contains the tablegen backend that emits the decoder functions for
10 // targets with fixed length instruction set.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenInstruction.h"
15 #include "CodeGenTarget.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/CachedHashString.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/MC/MCFixedLenDisassembler.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/FormattedStream.h"
30 #include "llvm/Support/LEB128.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/TableGen/Error.h"
33 #include "llvm/TableGen/Record.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstddef>
37 #include <cstdint>
38 #include <map>
39 #include <memory>
40 #include <set>
41 #include <string>
42 #include <utility>
43 #include <vector>
45 using namespace llvm;
47 #define DEBUG_TYPE "decoder-emitter"
49 namespace {
51 STATISTIC(NumEncodings, "Number of encodings considered");
52 STATISTIC(NumEncodingsLackingDisasm, "Number of encodings without disassembler info");
53 STATISTIC(NumInstructions, "Number of instructions considered");
54 STATISTIC(NumEncodingsSupported, "Number of encodings supported");
55 STATISTIC(NumEncodingsOmitted, "Number of encodings omitted");
57 struct EncodingField {
58 unsigned Base, Width, Offset;
59 EncodingField(unsigned B, unsigned W, unsigned O)
60 : Base(B), Width(W), Offset(O) { }
63 struct OperandInfo {
64 std::vector<EncodingField> Fields;
65 std::string Decoder;
66 bool HasCompleteDecoder;
68 OperandInfo(std::string D, bool HCD)
69 : Decoder(std::move(D)), HasCompleteDecoder(HCD) {}
71 void addField(unsigned Base, unsigned Width, unsigned Offset) {
72 Fields.push_back(EncodingField(Base, Width, Offset));
75 unsigned numFields() const { return Fields.size(); }
77 typedef std::vector<EncodingField>::const_iterator const_iterator;
79 const_iterator begin() const { return Fields.begin(); }
80 const_iterator end() const { return Fields.end(); }
83 typedef std::vector<uint8_t> DecoderTable;
84 typedef uint32_t DecoderFixup;
85 typedef std::vector<DecoderFixup> FixupList;
86 typedef std::vector<FixupList> FixupScopeList;
87 typedef SmallSetVector<CachedHashString, 16> PredicateSet;
88 typedef SmallSetVector<CachedHashString, 16> DecoderSet;
89 struct DecoderTableInfo {
90 DecoderTable Table;
91 FixupScopeList FixupStack;
92 PredicateSet Predicates;
93 DecoderSet Decoders;
96 struct EncodingAndInst {
97 const Record *EncodingDef;
98 const CodeGenInstruction *Inst;
100 EncodingAndInst(const Record *EncodingDef, const CodeGenInstruction *Inst)
101 : EncodingDef(EncodingDef), Inst(Inst) {}
104 struct EncodingIDAndOpcode {
105 unsigned EncodingID;
106 unsigned Opcode;
108 EncodingIDAndOpcode() : EncodingID(0), Opcode(0) {}
109 EncodingIDAndOpcode(unsigned EncodingID, unsigned Opcode)
110 : EncodingID(EncodingID), Opcode(Opcode) {}
113 raw_ostream &operator<<(raw_ostream &OS, const EncodingAndInst &Value) {
114 if (Value.EncodingDef != Value.Inst->TheDef)
115 OS << Value.EncodingDef->getName() << ":";
116 OS << Value.Inst->TheDef->getName();
117 return OS;
120 class FixedLenDecoderEmitter {
121 RecordKeeper &RK;
122 std::vector<EncodingAndInst> NumberedEncodings;
124 public:
125 // Defaults preserved here for documentation, even though they aren't
126 // strictly necessary given the way that this is currently being called.
127 FixedLenDecoderEmitter(RecordKeeper &R, std::string PredicateNamespace,
128 std::string GPrefix = "if (",
129 std::string GPostfix = " == MCDisassembler::Fail)",
130 std::string ROK = "MCDisassembler::Success",
131 std::string RFail = "MCDisassembler::Fail",
132 std::string L = "")
133 : RK(R), Target(R), PredicateNamespace(std::move(PredicateNamespace)),
134 GuardPrefix(std::move(GPrefix)), GuardPostfix(std::move(GPostfix)),
135 ReturnOK(std::move(ROK)), ReturnFail(std::move(RFail)),
136 Locals(std::move(L)) {}
138 // Emit the decoder state machine table.
139 void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
140 unsigned Indentation, unsigned BitWidth,
141 StringRef Namespace) const;
142 void emitPredicateFunction(formatted_raw_ostream &OS,
143 PredicateSet &Predicates,
144 unsigned Indentation) const;
145 void emitDecoderFunction(formatted_raw_ostream &OS,
146 DecoderSet &Decoders,
147 unsigned Indentation) const;
149 // run - Output the code emitter
150 void run(raw_ostream &o);
152 private:
153 CodeGenTarget Target;
155 public:
156 std::string PredicateNamespace;
157 std::string GuardPrefix, GuardPostfix;
158 std::string ReturnOK, ReturnFail;
159 std::string Locals;
162 } // end anonymous namespace
164 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
165 // for a bit value.
167 // BIT_UNFILTERED is used as the init value for a filter position. It is used
168 // only for filter processings.
169 typedef enum {
170 BIT_TRUE, // '1'
171 BIT_FALSE, // '0'
172 BIT_UNSET, // '?'
173 BIT_UNFILTERED // unfiltered
174 } bit_value_t;
176 static bool ValueSet(bit_value_t V) {
177 return (V == BIT_TRUE || V == BIT_FALSE);
180 static bool ValueNotSet(bit_value_t V) {
181 return (V == BIT_UNSET);
184 static int Value(bit_value_t V) {
185 return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
188 static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
189 if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index)))
190 return bit->getValue() ? BIT_TRUE : BIT_FALSE;
192 // The bit is uninitialized.
193 return BIT_UNSET;
196 // Prints the bit value for each position.
197 static void dumpBits(raw_ostream &o, const BitsInit &bits) {
198 for (unsigned index = bits.getNumBits(); index > 0; --index) {
199 switch (bitFromBits(bits, index - 1)) {
200 case BIT_TRUE:
201 o << "1";
202 break;
203 case BIT_FALSE:
204 o << "0";
205 break;
206 case BIT_UNSET:
207 o << "_";
208 break;
209 default:
210 llvm_unreachable("unexpected return value from bitFromBits");
215 static BitsInit &getBitsField(const Record &def, StringRef str) {
216 BitsInit *bits = def.getValueAsBitsInit(str);
217 return *bits;
220 // Representation of the instruction to work on.
221 typedef std::vector<bit_value_t> insn_t;
223 namespace {
225 class FilterChooser;
227 /// Filter - Filter works with FilterChooser to produce the decoding tree for
228 /// the ISA.
230 /// It is useful to think of a Filter as governing the switch stmts of the
231 /// decoding tree in a certain level. Each case stmt delegates to an inferior
232 /// FilterChooser to decide what further decoding logic to employ, or in another
233 /// words, what other remaining bits to look at. The FilterChooser eventually
234 /// chooses a best Filter to do its job.
236 /// This recursive scheme ends when the number of Opcodes assigned to the
237 /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
238 /// the Filter/FilterChooser combo does not know how to distinguish among the
239 /// Opcodes assigned.
241 /// An example of a conflict is
243 /// Conflict:
244 /// 111101000.00........00010000....
245 /// 111101000.00........0001........
246 /// 1111010...00........0001........
247 /// 1111010...00....................
248 /// 1111010.........................
249 /// 1111............................
250 /// ................................
251 /// VST4q8a 111101000_00________00010000____
252 /// VST4q8b 111101000_00________00010000____
254 /// The Debug output shows the path that the decoding tree follows to reach the
255 /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
256 /// even registers, while VST4q8b is a vst4 to double-spaced odd registers.
258 /// The encoding info in the .td files does not specify this meta information,
259 /// which could have been used by the decoder to resolve the conflict. The
260 /// decoder could try to decode the even/odd register numbering and assign to
261 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
262 /// version and return the Opcode since the two have the same Asm format string.
263 class Filter {
264 protected:
265 const FilterChooser *Owner;// points to the FilterChooser who owns this filter
266 unsigned StartBit; // the starting bit position
267 unsigned NumBits; // number of bits to filter
268 bool Mixed; // a mixed region contains both set and unset bits
270 // Map of well-known segment value to the set of uid's with that value.
271 std::map<uint64_t, std::vector<EncodingIDAndOpcode>>
272 FilteredInstructions;
274 // Set of uid's with non-constant segment values.
275 std::vector<EncodingIDAndOpcode> VariableInstructions;
277 // Map of well-known segment value to its delegate.
278 std::map<unsigned, std::unique_ptr<const FilterChooser>> FilterChooserMap;
280 // Number of instructions which fall under FilteredInstructions category.
281 unsigned NumFiltered;
283 // Keeps track of the last opcode in the filtered bucket.
284 EncodingIDAndOpcode LastOpcFiltered;
286 public:
287 Filter(Filter &&f);
288 Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
290 ~Filter() = default;
292 unsigned getNumFiltered() const { return NumFiltered; }
294 EncodingIDAndOpcode getSingletonOpc() const {
295 assert(NumFiltered == 1);
296 return LastOpcFiltered;
299 // Return the filter chooser for the group of instructions without constant
300 // segment values.
301 const FilterChooser &getVariableFC() const {
302 assert(NumFiltered == 1);
303 assert(FilterChooserMap.size() == 1);
304 return *(FilterChooserMap.find((unsigned)-1)->second);
307 // Divides the decoding task into sub tasks and delegates them to the
308 // inferior FilterChooser's.
310 // A special case arises when there's only one entry in the filtered
311 // instructions. In order to unambiguously decode the singleton, we need to
312 // match the remaining undecoded encoding bits against the singleton.
313 void recurse();
315 // Emit table entries to decode instructions given a segment or segments of
316 // bits.
317 void emitTableEntry(DecoderTableInfo &TableInfo) const;
319 // Returns the number of fanout produced by the filter. More fanout implies
320 // the filter distinguishes more categories of instructions.
321 unsigned usefulness() const;
322 }; // end class Filter
324 } // end anonymous namespace
326 // These are states of our finite state machines used in FilterChooser's
327 // filterProcessor() which produces the filter candidates to use.
328 typedef enum {
329 ATTR_NONE,
330 ATTR_FILTERED,
331 ATTR_ALL_SET,
332 ATTR_ALL_UNSET,
333 ATTR_MIXED
334 } bitAttr_t;
336 /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
337 /// in order to perform the decoding of instructions at the current level.
339 /// Decoding proceeds from the top down. Based on the well-known encoding bits
340 /// of instructions available, FilterChooser builds up the possible Filters that
341 /// can further the task of decoding by distinguishing among the remaining
342 /// candidate instructions.
344 /// Once a filter has been chosen, it is called upon to divide the decoding task
345 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
346 /// processings.
348 /// It is useful to think of a Filter as governing the switch stmts of the
349 /// decoding tree. And each case is delegated to an inferior FilterChooser to
350 /// decide what further remaining bits to look at.
351 namespace {
353 class FilterChooser {
354 protected:
355 friend class Filter;
357 // Vector of codegen instructions to choose our filter.
358 ArrayRef<EncodingAndInst> AllInstructions;
360 // Vector of uid's for this filter chooser to work on.
361 // The first member of the pair is the opcode id being decoded, the second is
362 // the opcode id that should be emitted.
363 const std::vector<EncodingIDAndOpcode> &Opcodes;
365 // Lookup table for the operand decoding of instructions.
366 const std::map<unsigned, std::vector<OperandInfo>> &Operands;
368 // Vector of candidate filters.
369 std::vector<Filter> Filters;
371 // Array of bit values passed down from our parent.
372 // Set to all BIT_UNFILTERED's for Parent == NULL.
373 std::vector<bit_value_t> FilterBitValues;
375 // Links to the FilterChooser above us in the decoding tree.
376 const FilterChooser *Parent;
378 // Index of the best filter from Filters.
379 int BestIndex;
381 // Width of instructions
382 unsigned BitWidth;
384 // Parent emitter
385 const FixedLenDecoderEmitter *Emitter;
387 public:
388 FilterChooser(ArrayRef<EncodingAndInst> Insts,
389 const std::vector<EncodingIDAndOpcode> &IDs,
390 const std::map<unsigned, std::vector<OperandInfo>> &Ops,
391 unsigned BW, const FixedLenDecoderEmitter *E)
392 : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
393 FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1),
394 BitWidth(BW), Emitter(E) {
395 doFilter();
398 FilterChooser(ArrayRef<EncodingAndInst> Insts,
399 const std::vector<EncodingIDAndOpcode> &IDs,
400 const std::map<unsigned, std::vector<OperandInfo>> &Ops,
401 const std::vector<bit_value_t> &ParentFilterBitValues,
402 const FilterChooser &parent)
403 : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
404 FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1),
405 BitWidth(parent.BitWidth), Emitter(parent.Emitter) {
406 doFilter();
409 FilterChooser(const FilterChooser &) = delete;
410 void operator=(const FilterChooser &) = delete;
412 unsigned getBitWidth() const { return BitWidth; }
414 protected:
415 // Populates the insn given the uid.
416 void insnWithID(insn_t &Insn, unsigned Opcode) const {
417 BitsInit &Bits = getBitsField(*AllInstructions[Opcode].EncodingDef, "Inst");
419 // We may have a SoftFail bitmask, which specifies a mask where an encoding
420 // may differ from the value in "Inst" and yet still be valid, but the
421 // disassembler should return SoftFail instead of Success.
423 // This is used for marking UNPREDICTABLE instructions in the ARM world.
424 BitsInit *SFBits =
425 AllInstructions[Opcode].EncodingDef->getValueAsBitsInit("SoftFail");
427 for (unsigned i = 0; i < BitWidth; ++i) {
428 if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
429 Insn.push_back(BIT_UNSET);
430 else
431 Insn.push_back(bitFromBits(Bits, i));
435 // Emit the name of the encoding/instruction pair.
436 void emitNameWithID(raw_ostream &OS, unsigned Opcode) const {
437 const Record *EncodingDef = AllInstructions[Opcode].EncodingDef;
438 const Record *InstDef = AllInstructions[Opcode].Inst->TheDef;
439 if (EncodingDef != InstDef)
440 OS << EncodingDef->getName() << ":";
441 OS << InstDef->getName();
444 // Populates the field of the insn given the start position and the number of
445 // consecutive bits to scan for.
447 // Returns false if there exists any uninitialized bit value in the range.
448 // Returns true, otherwise.
449 bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
450 unsigned NumBits) const;
452 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
453 /// filter array as a series of chars.
454 void dumpFilterArray(raw_ostream &o,
455 const std::vector<bit_value_t> & filter) const;
457 /// dumpStack - dumpStack traverses the filter chooser chain and calls
458 /// dumpFilterArray on each filter chooser up to the top level one.
459 void dumpStack(raw_ostream &o, const char *prefix) const;
461 Filter &bestFilter() {
462 assert(BestIndex != -1 && "BestIndex not set");
463 return Filters[BestIndex];
466 bool PositionFiltered(unsigned i) const {
467 return ValueSet(FilterBitValues[i]);
470 // Calculates the island(s) needed to decode the instruction.
471 // This returns a lit of undecoded bits of an instructions, for example,
472 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
473 // decoded bits in order to verify that the instruction matches the Opcode.
474 unsigned getIslands(std::vector<unsigned> &StartBits,
475 std::vector<unsigned> &EndBits,
476 std::vector<uint64_t> &FieldVals,
477 const insn_t &Insn) const;
479 // Emits code to check the Predicates member of an instruction are true.
480 // Returns true if predicate matches were emitted, false otherwise.
481 bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
482 unsigned Opc) const;
484 bool doesOpcodeNeedPredicate(unsigned Opc) const;
485 unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
486 void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
487 unsigned Opc) const;
489 void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
490 unsigned Opc) const;
492 // Emits table entries to decode the singleton.
493 void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
494 EncodingIDAndOpcode Opc) const;
496 // Emits code to decode the singleton, and then to decode the rest.
497 void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
498 const Filter &Best) const;
500 void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
501 const OperandInfo &OpInfo,
502 bool &OpHasCompleteDecoder) const;
504 void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc,
505 bool &HasCompleteDecoder) const;
506 unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc,
507 bool &HasCompleteDecoder) const;
509 // Assign a single filter and run with it.
510 void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
512 // reportRegion is a helper function for filterProcessor to mark a region as
513 // eligible for use as a filter region.
514 void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
515 bool AllowMixed);
517 // FilterProcessor scans the well-known encoding bits of the instructions and
518 // builds up a list of candidate filters. It chooses the best filter and
519 // recursively descends down the decoding tree.
520 bool filterProcessor(bool AllowMixed, bool Greedy = true);
522 // Decides on the best configuration of filter(s) to use in order to decode
523 // the instructions. A conflict of instructions may occur, in which case we
524 // dump the conflict set to the standard error.
525 void doFilter();
527 public:
528 // emitTableEntries - Emit state machine entries to decode our share of
529 // instructions.
530 void emitTableEntries(DecoderTableInfo &TableInfo) const;
533 } // end anonymous namespace
535 ///////////////////////////
536 // //
537 // Filter Implementation //
538 // //
539 ///////////////////////////
541 Filter::Filter(Filter &&f)
542 : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
543 FilteredInstructions(std::move(f.FilteredInstructions)),
544 VariableInstructions(std::move(f.VariableInstructions)),
545 FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered),
546 LastOpcFiltered(f.LastOpcFiltered) {
549 Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
550 bool mixed)
551 : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
552 assert(StartBit + NumBits - 1 < Owner->BitWidth);
554 NumFiltered = 0;
555 LastOpcFiltered = {0, 0};
557 for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
558 insn_t Insn;
560 // Populates the insn given the uid.
561 Owner->insnWithID(Insn, Owner->Opcodes[i].EncodingID);
563 uint64_t Field;
564 // Scans the segment for possibly well-specified encoding bits.
565 bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
567 if (ok) {
568 // The encoding bits are well-known. Lets add the uid of the
569 // instruction into the bucket keyed off the constant field value.
570 LastOpcFiltered = Owner->Opcodes[i];
571 FilteredInstructions[Field].push_back(LastOpcFiltered);
572 ++NumFiltered;
573 } else {
574 // Some of the encoding bit(s) are unspecified. This contributes to
575 // one additional member of "Variable" instructions.
576 VariableInstructions.push_back(Owner->Opcodes[i]);
580 assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
581 && "Filter returns no instruction categories");
584 // Divides the decoding task into sub tasks and delegates them to the
585 // inferior FilterChooser's.
587 // A special case arises when there's only one entry in the filtered
588 // instructions. In order to unambiguously decode the singleton, we need to
589 // match the remaining undecoded encoding bits against the singleton.
590 void Filter::recurse() {
591 // Starts by inheriting our parent filter chooser's filter bit values.
592 std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
594 if (!VariableInstructions.empty()) {
595 // Conservatively marks each segment position as BIT_UNSET.
596 for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
597 BitValueArray[StartBit + bitIndex] = BIT_UNSET;
599 // Delegates to an inferior filter chooser for further processing on this
600 // group of instructions whose segment values are variable.
601 FilterChooserMap.insert(
602 std::make_pair(-1U, llvm::make_unique<FilterChooser>(
603 Owner->AllInstructions, VariableInstructions,
604 Owner->Operands, BitValueArray, *Owner)));
607 // No need to recurse for a singleton filtered instruction.
608 // See also Filter::emit*().
609 if (getNumFiltered() == 1) {
610 assert(FilterChooserMap.size() == 1);
611 return;
614 // Otherwise, create sub choosers.
615 for (const auto &Inst : FilteredInstructions) {
617 // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
618 for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
619 if (Inst.first & (1ULL << bitIndex))
620 BitValueArray[StartBit + bitIndex] = BIT_TRUE;
621 else
622 BitValueArray[StartBit + bitIndex] = BIT_FALSE;
625 // Delegates to an inferior filter chooser for further processing on this
626 // category of instructions.
627 FilterChooserMap.insert(std::make_pair(
628 Inst.first, llvm::make_unique<FilterChooser>(
629 Owner->AllInstructions, Inst.second,
630 Owner->Operands, BitValueArray, *Owner)));
634 static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
635 uint32_t DestIdx) {
636 // Any NumToSkip fixups in the current scope can resolve to the
637 // current location.
638 for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
639 E = Fixups.rend();
640 I != E; ++I) {
641 // Calculate the distance from the byte following the fixup entry byte
642 // to the destination. The Target is calculated from after the 16-bit
643 // NumToSkip entry itself, so subtract two from the displacement here
644 // to account for that.
645 uint32_t FixupIdx = *I;
646 uint32_t Delta = DestIdx - FixupIdx - 3;
647 // Our NumToSkip entries are 24-bits. Make sure our table isn't too
648 // big.
649 assert(Delta < (1u << 24));
650 Table[FixupIdx] = (uint8_t)Delta;
651 Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
652 Table[FixupIdx + 2] = (uint8_t)(Delta >> 16);
656 // Emit table entries to decode instructions given a segment or segments
657 // of bits.
658 void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
659 TableInfo.Table.push_back(MCD::OPC_ExtractField);
660 TableInfo.Table.push_back(StartBit);
661 TableInfo.Table.push_back(NumBits);
663 // A new filter entry begins a new scope for fixup resolution.
664 TableInfo.FixupStack.emplace_back();
666 DecoderTable &Table = TableInfo.Table;
668 size_t PrevFilter = 0;
669 bool HasFallthrough = false;
670 for (auto &Filter : FilterChooserMap) {
671 // Field value -1 implies a non-empty set of variable instructions.
672 // See also recurse().
673 if (Filter.first == (unsigned)-1) {
674 HasFallthrough = true;
676 // Each scope should always have at least one filter value to check
677 // for.
678 assert(PrevFilter != 0 && "empty filter set!");
679 FixupList &CurScope = TableInfo.FixupStack.back();
680 // Resolve any NumToSkip fixups in the current scope.
681 resolveTableFixups(Table, CurScope, Table.size());
682 CurScope.clear();
683 PrevFilter = 0; // Don't re-process the filter's fallthrough.
684 } else {
685 Table.push_back(MCD::OPC_FilterValue);
686 // Encode and emit the value to filter against.
687 uint8_t Buffer[16];
688 unsigned Len = encodeULEB128(Filter.first, Buffer);
689 Table.insert(Table.end(), Buffer, Buffer + Len);
690 // Reserve space for the NumToSkip entry. We'll backpatch the value
691 // later.
692 PrevFilter = Table.size();
693 Table.push_back(0);
694 Table.push_back(0);
695 Table.push_back(0);
698 // We arrive at a category of instructions with the same segment value.
699 // Now delegate to the sub filter chooser for further decodings.
700 // The case may fallthrough, which happens if the remaining well-known
701 // encoding bits do not match exactly.
702 Filter.second->emitTableEntries(TableInfo);
704 // Now that we've emitted the body of the handler, update the NumToSkip
705 // of the filter itself to be able to skip forward when false. Subtract
706 // two as to account for the width of the NumToSkip field itself.
707 if (PrevFilter) {
708 uint32_t NumToSkip = Table.size() - PrevFilter - 3;
709 assert(NumToSkip < (1u << 24) && "disassembler decoding table too large!");
710 Table[PrevFilter] = (uint8_t)NumToSkip;
711 Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
712 Table[PrevFilter + 2] = (uint8_t)(NumToSkip >> 16);
716 // Any remaining unresolved fixups bubble up to the parent fixup scope.
717 assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
718 FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
719 FixupScopeList::iterator Dest = Source - 1;
720 Dest->insert(Dest->end(), Source->begin(), Source->end());
721 TableInfo.FixupStack.pop_back();
723 // If there is no fallthrough, then the final filter should get fixed
724 // up according to the enclosing scope rather than the current position.
725 if (!HasFallthrough)
726 TableInfo.FixupStack.back().push_back(PrevFilter);
729 // Returns the number of fanout produced by the filter. More fanout implies
730 // the filter distinguishes more categories of instructions.
731 unsigned Filter::usefulness() const {
732 if (!VariableInstructions.empty())
733 return FilteredInstructions.size();
734 else
735 return FilteredInstructions.size() + 1;
738 //////////////////////////////////
739 // //
740 // Filterchooser Implementation //
741 // //
742 //////////////////////////////////
744 // Emit the decoder state machine table.
745 void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS,
746 DecoderTable &Table,
747 unsigned Indentation,
748 unsigned BitWidth,
749 StringRef Namespace) const {
750 OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
751 << BitWidth << "[] = {\n";
753 Indentation += 2;
755 // FIXME: We may be able to use the NumToSkip values to recover
756 // appropriate indentation levels.
757 DecoderTable::const_iterator I = Table.begin();
758 DecoderTable::const_iterator E = Table.end();
759 while (I != E) {
760 assert (I < E && "incomplete decode table entry!");
762 uint64_t Pos = I - Table.begin();
763 OS << "/* " << Pos << " */";
764 OS.PadToColumn(12);
766 switch (*I) {
767 default:
768 PrintFatalError("invalid decode table opcode");
769 case MCD::OPC_ExtractField: {
770 ++I;
771 unsigned Start = *I++;
772 unsigned Len = *I++;
773 OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
774 << Len << ", // Inst{";
775 if (Len > 1)
776 OS << (Start + Len - 1) << "-";
777 OS << Start << "} ...\n";
778 break;
780 case MCD::OPC_FilterValue: {
781 ++I;
782 OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
783 // The filter value is ULEB128 encoded.
784 while (*I >= 128)
785 OS << (unsigned)*I++ << ", ";
786 OS << (unsigned)*I++ << ", ";
788 // 24-bit numtoskip value.
789 uint8_t Byte = *I++;
790 uint32_t NumToSkip = Byte;
791 OS << (unsigned)Byte << ", ";
792 Byte = *I++;
793 OS << (unsigned)Byte << ", ";
794 NumToSkip |= Byte << 8;
795 Byte = *I++;
796 OS << utostr(Byte) << ", ";
797 NumToSkip |= Byte << 16;
798 OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
799 break;
801 case MCD::OPC_CheckField: {
802 ++I;
803 unsigned Start = *I++;
804 unsigned Len = *I++;
805 OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
806 << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
807 // ULEB128 encoded field value.
808 for (; *I >= 128; ++I)
809 OS << (unsigned)*I << ", ";
810 OS << (unsigned)*I++ << ", ";
811 // 24-bit numtoskip value.
812 uint8_t Byte = *I++;
813 uint32_t NumToSkip = Byte;
814 OS << (unsigned)Byte << ", ";
815 Byte = *I++;
816 OS << (unsigned)Byte << ", ";
817 NumToSkip |= Byte << 8;
818 Byte = *I++;
819 OS << utostr(Byte) << ", ";
820 NumToSkip |= Byte << 16;
821 OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
822 break;
824 case MCD::OPC_CheckPredicate: {
825 ++I;
826 OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
827 for (; *I >= 128; ++I)
828 OS << (unsigned)*I << ", ";
829 OS << (unsigned)*I++ << ", ";
831 // 24-bit numtoskip value.
832 uint8_t Byte = *I++;
833 uint32_t NumToSkip = Byte;
834 OS << (unsigned)Byte << ", ";
835 Byte = *I++;
836 OS << (unsigned)Byte << ", ";
837 NumToSkip |= Byte << 8;
838 Byte = *I++;
839 OS << utostr(Byte) << ", ";
840 NumToSkip |= Byte << 16;
841 OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
842 break;
844 case MCD::OPC_Decode:
845 case MCD::OPC_TryDecode: {
846 bool IsTry = *I == MCD::OPC_TryDecode;
847 ++I;
848 // Extract the ULEB128 encoded Opcode to a buffer.
849 uint8_t Buffer[16], *p = Buffer;
850 while ((*p++ = *I++) >= 128)
851 assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
852 && "ULEB128 value too large!");
853 // Decode the Opcode value.
854 unsigned Opc = decodeULEB128(Buffer);
855 OS.indent(Indentation) << "MCD::OPC_" << (IsTry ? "Try" : "")
856 << "Decode, ";
857 for (p = Buffer; *p >= 128; ++p)
858 OS << (unsigned)*p << ", ";
859 OS << (unsigned)*p << ", ";
861 // Decoder index.
862 for (; *I >= 128; ++I)
863 OS << (unsigned)*I << ", ";
864 OS << (unsigned)*I++ << ", ";
866 if (!IsTry) {
867 OS << "// Opcode: " << NumberedEncodings[Opc] << "\n";
868 break;
871 // Fallthrough for OPC_TryDecode.
873 // 24-bit numtoskip value.
874 uint8_t Byte = *I++;
875 uint32_t NumToSkip = Byte;
876 OS << (unsigned)Byte << ", ";
877 Byte = *I++;
878 OS << (unsigned)Byte << ", ";
879 NumToSkip |= Byte << 8;
880 Byte = *I++;
881 OS << utostr(Byte) << ", ";
882 NumToSkip |= Byte << 16;
884 OS << "// Opcode: " << NumberedEncodings[Opc]
885 << ", skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
886 break;
888 case MCD::OPC_SoftFail: {
889 ++I;
890 OS.indent(Indentation) << "MCD::OPC_SoftFail";
891 // Positive mask
892 uint64_t Value = 0;
893 unsigned Shift = 0;
894 do {
895 OS << ", " << (unsigned)*I;
896 Value += (*I & 0x7f) << Shift;
897 Shift += 7;
898 } while (*I++ >= 128);
899 if (Value > 127) {
900 OS << " /* 0x";
901 OS.write_hex(Value);
902 OS << " */";
904 // Negative mask
905 Value = 0;
906 Shift = 0;
907 do {
908 OS << ", " << (unsigned)*I;
909 Value += (*I & 0x7f) << Shift;
910 Shift += 7;
911 } while (*I++ >= 128);
912 if (Value > 127) {
913 OS << " /* 0x";
914 OS.write_hex(Value);
915 OS << " */";
917 OS << ",\n";
918 break;
920 case MCD::OPC_Fail: {
921 ++I;
922 OS.indent(Indentation) << "MCD::OPC_Fail,\n";
923 break;
927 OS.indent(Indentation) << "0\n";
929 Indentation -= 2;
931 OS.indent(Indentation) << "};\n\n";
934 void FixedLenDecoderEmitter::
935 emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates,
936 unsigned Indentation) const {
937 // The predicate function is just a big switch statement based on the
938 // input predicate index.
939 OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
940 << "const FeatureBitset& Bits) {\n";
941 Indentation += 2;
942 if (!Predicates.empty()) {
943 OS.indent(Indentation) << "switch (Idx) {\n";
944 OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
945 unsigned Index = 0;
946 for (const auto &Predicate : Predicates) {
947 OS.indent(Indentation) << "case " << Index++ << ":\n";
948 OS.indent(Indentation+2) << "return (" << Predicate << ");\n";
950 OS.indent(Indentation) << "}\n";
951 } else {
952 // No case statement to emit
953 OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n";
955 Indentation -= 2;
956 OS.indent(Indentation) << "}\n\n";
959 void FixedLenDecoderEmitter::
960 emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders,
961 unsigned Indentation) const {
962 // The decoder function is just a big switch statement based on the
963 // input decoder index.
964 OS.indent(Indentation) << "template<typename InsnType>\n";
965 OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
966 << " unsigned Idx, InsnType insn, MCInst &MI,\n";
967 OS.indent(Indentation) << " uint64_t "
968 << "Address, const void *Decoder, bool &DecodeComplete) {\n";
969 Indentation += 2;
970 OS.indent(Indentation) << "DecodeComplete = true;\n";
971 OS.indent(Indentation) << "InsnType tmp;\n";
972 OS.indent(Indentation) << "switch (Idx) {\n";
973 OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
974 unsigned Index = 0;
975 for (const auto &Decoder : Decoders) {
976 OS.indent(Indentation) << "case " << Index++ << ":\n";
977 OS << Decoder;
978 OS.indent(Indentation+2) << "return S;\n";
980 OS.indent(Indentation) << "}\n";
981 Indentation -= 2;
982 OS.indent(Indentation) << "}\n\n";
985 // Populates the field of the insn given the start position and the number of
986 // consecutive bits to scan for.
988 // Returns false if and on the first uninitialized bit value encountered.
989 // Returns true, otherwise.
990 bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
991 unsigned StartBit, unsigned NumBits) const {
992 Field = 0;
994 for (unsigned i = 0; i < NumBits; ++i) {
995 if (Insn[StartBit + i] == BIT_UNSET)
996 return false;
998 if (Insn[StartBit + i] == BIT_TRUE)
999 Field = Field | (1ULL << i);
1002 return true;
1005 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
1006 /// filter array as a series of chars.
1007 void FilterChooser::dumpFilterArray(raw_ostream &o,
1008 const std::vector<bit_value_t> &filter) const {
1009 for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
1010 switch (filter[bitIndex - 1]) {
1011 case BIT_UNFILTERED:
1012 o << ".";
1013 break;
1014 case BIT_UNSET:
1015 o << "_";
1016 break;
1017 case BIT_TRUE:
1018 o << "1";
1019 break;
1020 case BIT_FALSE:
1021 o << "0";
1022 break;
1027 /// dumpStack - dumpStack traverses the filter chooser chain and calls
1028 /// dumpFilterArray on each filter chooser up to the top level one.
1029 void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
1030 const FilterChooser *current = this;
1032 while (current) {
1033 o << prefix;
1034 dumpFilterArray(o, current->FilterBitValues);
1035 o << '\n';
1036 current = current->Parent;
1040 // Calculates the island(s) needed to decode the instruction.
1041 // This returns a list of undecoded bits of an instructions, for example,
1042 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
1043 // decoded bits in order to verify that the instruction matches the Opcode.
1044 unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
1045 std::vector<unsigned> &EndBits,
1046 std::vector<uint64_t> &FieldVals,
1047 const insn_t &Insn) const {
1048 unsigned Num, BitNo;
1049 Num = BitNo = 0;
1051 uint64_t FieldVal = 0;
1053 // 0: Init
1054 // 1: Water (the bit value does not affect decoding)
1055 // 2: Island (well-known bit value needed for decoding)
1056 int State = 0;
1057 int64_t Val = -1;
1059 for (unsigned i = 0; i < BitWidth; ++i) {
1060 Val = Value(Insn[i]);
1061 bool Filtered = PositionFiltered(i);
1062 switch (State) {
1063 default: llvm_unreachable("Unreachable code!");
1064 case 0:
1065 case 1:
1066 if (Filtered || Val == -1)
1067 State = 1; // Still in Water
1068 else {
1069 State = 2; // Into the Island
1070 BitNo = 0;
1071 StartBits.push_back(i);
1072 FieldVal = Val;
1074 break;
1075 case 2:
1076 if (Filtered || Val == -1) {
1077 State = 1; // Into the Water
1078 EndBits.push_back(i - 1);
1079 FieldVals.push_back(FieldVal);
1080 ++Num;
1081 } else {
1082 State = 2; // Still in Island
1083 ++BitNo;
1084 FieldVal = FieldVal | Val << BitNo;
1086 break;
1089 // If we are still in Island after the loop, do some housekeeping.
1090 if (State == 2) {
1091 EndBits.push_back(BitWidth - 1);
1092 FieldVals.push_back(FieldVal);
1093 ++Num;
1096 assert(StartBits.size() == Num && EndBits.size() == Num &&
1097 FieldVals.size() == Num);
1098 return Num;
1101 void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
1102 const OperandInfo &OpInfo,
1103 bool &OpHasCompleteDecoder) const {
1104 const std::string &Decoder = OpInfo.Decoder;
1106 if (OpInfo.numFields() != 1)
1107 o.indent(Indentation) << "tmp = 0;\n";
1109 for (const EncodingField &EF : OpInfo) {
1110 o.indent(Indentation) << "tmp ";
1111 if (OpInfo.numFields() != 1) o << '|';
1112 o << "= fieldFromInstruction"
1113 << "(insn, " << EF.Base << ", " << EF.Width << ')';
1114 if (OpInfo.numFields() != 1 || EF.Offset != 0)
1115 o << " << " << EF.Offset;
1116 o << ";\n";
1119 if (Decoder != "") {
1120 OpHasCompleteDecoder = OpInfo.HasCompleteDecoder;
1121 o.indent(Indentation) << Emitter->GuardPrefix << Decoder
1122 << "(MI, tmp, Address, Decoder)"
1123 << Emitter->GuardPostfix
1124 << " { " << (OpHasCompleteDecoder ? "" : "DecodeComplete = false; ")
1125 << "return MCDisassembler::Fail; }\n";
1126 } else {
1127 OpHasCompleteDecoder = true;
1128 o.indent(Indentation) << "MI.addOperand(MCOperand::createImm(tmp));\n";
1132 void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
1133 unsigned Opc, bool &HasCompleteDecoder) const {
1134 HasCompleteDecoder = true;
1136 for (const auto &Op : Operands.find(Opc)->second) {
1137 // If a custom instruction decoder was specified, use that.
1138 if (Op.numFields() == 0 && !Op.Decoder.empty()) {
1139 HasCompleteDecoder = Op.HasCompleteDecoder;
1140 OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder
1141 << "(MI, insn, Address, Decoder)"
1142 << Emitter->GuardPostfix
1143 << " { " << (HasCompleteDecoder ? "" : "DecodeComplete = false; ")
1144 << "return MCDisassembler::Fail; }\n";
1145 break;
1148 bool OpHasCompleteDecoder;
1149 emitBinaryParser(OS, Indentation, Op, OpHasCompleteDecoder);
1150 if (!OpHasCompleteDecoder)
1151 HasCompleteDecoder = false;
1155 unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
1156 unsigned Opc,
1157 bool &HasCompleteDecoder) const {
1158 // Build up the predicate string.
1159 SmallString<256> Decoder;
1160 // FIXME: emitDecoder() function can take a buffer directly rather than
1161 // a stream.
1162 raw_svector_ostream S(Decoder);
1163 unsigned I = 4;
1164 emitDecoder(S, I, Opc, HasCompleteDecoder);
1166 // Using the full decoder string as the key value here is a bit
1167 // heavyweight, but is effective. If the string comparisons become a
1168 // performance concern, we can implement a mangling of the predicate
1169 // data easily enough with a map back to the actual string. That's
1170 // overkill for now, though.
1172 // Make sure the predicate is in the table.
1173 Decoders.insert(CachedHashString(Decoder));
1174 // Now figure out the index for when we write out the table.
1175 DecoderSet::const_iterator P = find(Decoders, Decoder.str());
1176 return (unsigned)(P - Decoders.begin());
1179 static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
1180 const std::string &PredicateNamespace) {
1181 if (str[0] == '!')
1182 o << "!Bits[" << PredicateNamespace << "::"
1183 << str.slice(1,str.size()) << "]";
1184 else
1185 o << "Bits[" << PredicateNamespace << "::" << str << "]";
1188 bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
1189 unsigned Opc) const {
1190 ListInit *Predicates =
1191 AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
1192 bool IsFirstEmission = true;
1193 for (unsigned i = 0; i < Predicates->size(); ++i) {
1194 Record *Pred = Predicates->getElementAsRecord(i);
1195 if (!Pred->getValue("AssemblerMatcherPredicate"))
1196 continue;
1198 StringRef P = Pred->getValueAsString("AssemblerCondString");
1200 if (P.empty())
1201 continue;
1203 if (!IsFirstEmission)
1204 o << " && ";
1206 std::pair<StringRef, StringRef> pairs = P.split(',');
1207 while (!pairs.second.empty()) {
1208 emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
1209 o << " && ";
1210 pairs = pairs.second.split(',');
1212 emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
1213 IsFirstEmission = false;
1215 return !Predicates->empty();
1218 bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
1219 ListInit *Predicates =
1220 AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
1221 for (unsigned i = 0; i < Predicates->size(); ++i) {
1222 Record *Pred = Predicates->getElementAsRecord(i);
1223 if (!Pred->getValue("AssemblerMatcherPredicate"))
1224 continue;
1226 StringRef P = Pred->getValueAsString("AssemblerCondString");
1228 if (P.empty())
1229 continue;
1231 return true;
1233 return false;
1236 unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
1237 StringRef Predicate) const {
1238 // Using the full predicate string as the key value here is a bit
1239 // heavyweight, but is effective. If the string comparisons become a
1240 // performance concern, we can implement a mangling of the predicate
1241 // data easily enough with a map back to the actual string. That's
1242 // overkill for now, though.
1244 // Make sure the predicate is in the table.
1245 TableInfo.Predicates.insert(CachedHashString(Predicate));
1246 // Now figure out the index for when we write out the table.
1247 PredicateSet::const_iterator P = find(TableInfo.Predicates, Predicate);
1248 return (unsigned)(P - TableInfo.Predicates.begin());
1251 void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
1252 unsigned Opc) const {
1253 if (!doesOpcodeNeedPredicate(Opc))
1254 return;
1256 // Build up the predicate string.
1257 SmallString<256> Predicate;
1258 // FIXME: emitPredicateMatch() functions can take a buffer directly rather
1259 // than a stream.
1260 raw_svector_ostream PS(Predicate);
1261 unsigned I = 0;
1262 emitPredicateMatch(PS, I, Opc);
1264 // Figure out the index into the predicate table for the predicate just
1265 // computed.
1266 unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
1267 SmallString<16> PBytes;
1268 raw_svector_ostream S(PBytes);
1269 encodeULEB128(PIdx, S);
1271 TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
1272 // Predicate index
1273 for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
1274 TableInfo.Table.push_back(PBytes[i]);
1275 // Push location for NumToSkip backpatching.
1276 TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1277 TableInfo.Table.push_back(0);
1278 TableInfo.Table.push_back(0);
1279 TableInfo.Table.push_back(0);
1282 void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
1283 unsigned Opc) const {
1284 BitsInit *SFBits =
1285 AllInstructions[Opc].EncodingDef->getValueAsBitsInit("SoftFail");
1286 if (!SFBits) return;
1287 BitsInit *InstBits =
1288 AllInstructions[Opc].EncodingDef->getValueAsBitsInit("Inst");
1290 APInt PositiveMask(BitWidth, 0ULL);
1291 APInt NegativeMask(BitWidth, 0ULL);
1292 for (unsigned i = 0; i < BitWidth; ++i) {
1293 bit_value_t B = bitFromBits(*SFBits, i);
1294 bit_value_t IB = bitFromBits(*InstBits, i);
1296 if (B != BIT_TRUE) continue;
1298 switch (IB) {
1299 case BIT_FALSE:
1300 // The bit is meant to be false, so emit a check to see if it is true.
1301 PositiveMask.setBit(i);
1302 break;
1303 case BIT_TRUE:
1304 // The bit is meant to be true, so emit a check to see if it is false.
1305 NegativeMask.setBit(i);
1306 break;
1307 default:
1308 // The bit is not set; this must be an error!
1309 errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in "
1310 << AllInstructions[Opc] << " is set but Inst{" << i
1311 << "} is unset!\n"
1312 << " - You can only mark a bit as SoftFail if it is fully defined"
1313 << " (1/0 - not '?') in Inst\n";
1314 return;
1318 bool NeedPositiveMask = PositiveMask.getBoolValue();
1319 bool NeedNegativeMask = NegativeMask.getBoolValue();
1321 if (!NeedPositiveMask && !NeedNegativeMask)
1322 return;
1324 TableInfo.Table.push_back(MCD::OPC_SoftFail);
1326 SmallString<16> MaskBytes;
1327 raw_svector_ostream S(MaskBytes);
1328 if (NeedPositiveMask) {
1329 encodeULEB128(PositiveMask.getZExtValue(), S);
1330 for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1331 TableInfo.Table.push_back(MaskBytes[i]);
1332 } else
1333 TableInfo.Table.push_back(0);
1334 if (NeedNegativeMask) {
1335 MaskBytes.clear();
1336 encodeULEB128(NegativeMask.getZExtValue(), S);
1337 for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1338 TableInfo.Table.push_back(MaskBytes[i]);
1339 } else
1340 TableInfo.Table.push_back(0);
1343 // Emits table entries to decode the singleton.
1344 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1345 EncodingIDAndOpcode Opc) const {
1346 std::vector<unsigned> StartBits;
1347 std::vector<unsigned> EndBits;
1348 std::vector<uint64_t> FieldVals;
1349 insn_t Insn;
1350 insnWithID(Insn, Opc.EncodingID);
1352 // Look for islands of undecoded bits of the singleton.
1353 getIslands(StartBits, EndBits, FieldVals, Insn);
1355 unsigned Size = StartBits.size();
1357 // Emit the predicate table entry if one is needed.
1358 emitPredicateTableEntry(TableInfo, Opc.EncodingID);
1360 // Check any additional encoding fields needed.
1361 for (unsigned I = Size; I != 0; --I) {
1362 unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
1363 TableInfo.Table.push_back(MCD::OPC_CheckField);
1364 TableInfo.Table.push_back(StartBits[I-1]);
1365 TableInfo.Table.push_back(NumBits);
1366 uint8_t Buffer[16], *p;
1367 encodeULEB128(FieldVals[I-1], Buffer);
1368 for (p = Buffer; *p >= 128 ; ++p)
1369 TableInfo.Table.push_back(*p);
1370 TableInfo.Table.push_back(*p);
1371 // Push location for NumToSkip backpatching.
1372 TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1373 // The fixup is always 24-bits, so go ahead and allocate the space
1374 // in the table so all our relative position calculations work OK even
1375 // before we fully resolve the real value here.
1376 TableInfo.Table.push_back(0);
1377 TableInfo.Table.push_back(0);
1378 TableInfo.Table.push_back(0);
1381 // Check for soft failure of the match.
1382 emitSoftFailTableEntry(TableInfo, Opc.EncodingID);
1384 bool HasCompleteDecoder;
1385 unsigned DIdx =
1386 getDecoderIndex(TableInfo.Decoders, Opc.EncodingID, HasCompleteDecoder);
1388 // Produce OPC_Decode or OPC_TryDecode opcode based on the information
1389 // whether the instruction decoder is complete or not. If it is complete
1390 // then it handles all possible values of remaining variable/unfiltered bits
1391 // and for any value can determine if the bitpattern is a valid instruction
1392 // or not. This means OPC_Decode will be the final step in the decoding
1393 // process. If it is not complete, then the Fail return code from the
1394 // decoder method indicates that additional processing should be done to see
1395 // if there is any other instruction that also matches the bitpattern and
1396 // can decode it.
1397 TableInfo.Table.push_back(HasCompleteDecoder ? MCD::OPC_Decode :
1398 MCD::OPC_TryDecode);
1399 NumEncodingsSupported++;
1400 uint8_t Buffer[16], *p;
1401 encodeULEB128(Opc.Opcode, Buffer);
1402 for (p = Buffer; *p >= 128 ; ++p)
1403 TableInfo.Table.push_back(*p);
1404 TableInfo.Table.push_back(*p);
1406 SmallString<16> Bytes;
1407 raw_svector_ostream S(Bytes);
1408 encodeULEB128(DIdx, S);
1410 // Decoder index
1411 for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
1412 TableInfo.Table.push_back(Bytes[i]);
1414 if (!HasCompleteDecoder) {
1415 // Push location for NumToSkip backpatching.
1416 TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1417 // Allocate the space for the fixup.
1418 TableInfo.Table.push_back(0);
1419 TableInfo.Table.push_back(0);
1420 TableInfo.Table.push_back(0);
1424 // Emits table entries to decode the singleton, and then to decode the rest.
1425 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1426 const Filter &Best) const {
1427 EncodingIDAndOpcode Opc = Best.getSingletonOpc();
1429 // complex singletons need predicate checks from the first singleton
1430 // to refer forward to the variable filterchooser that follows.
1431 TableInfo.FixupStack.emplace_back();
1433 emitSingletonTableEntry(TableInfo, Opc);
1435 resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
1436 TableInfo.Table.size());
1437 TableInfo.FixupStack.pop_back();
1439 Best.getVariableFC().emitTableEntries(TableInfo);
1442 // Assign a single filter and run with it. Top level API client can initialize
1443 // with a single filter to start the filtering process.
1444 void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
1445 bool mixed) {
1446 Filters.clear();
1447 Filters.emplace_back(*this, startBit, numBit, true);
1448 BestIndex = 0; // Sole Filter instance to choose from.
1449 bestFilter().recurse();
1452 // reportRegion is a helper function for filterProcessor to mark a region as
1453 // eligible for use as a filter region.
1454 void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
1455 unsigned BitIndex, bool AllowMixed) {
1456 if (RA == ATTR_MIXED && AllowMixed)
1457 Filters.emplace_back(*this, StartBit, BitIndex - StartBit, true);
1458 else if (RA == ATTR_ALL_SET && !AllowMixed)
1459 Filters.emplace_back(*this, StartBit, BitIndex - StartBit, false);
1462 // FilterProcessor scans the well-known encoding bits of the instructions and
1463 // builds up a list of candidate filters. It chooses the best filter and
1464 // recursively descends down the decoding tree.
1465 bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
1466 Filters.clear();
1467 BestIndex = -1;
1468 unsigned numInstructions = Opcodes.size();
1470 assert(numInstructions && "Filter created with no instructions");
1472 // No further filtering is necessary.
1473 if (numInstructions == 1)
1474 return true;
1476 // Heuristics. See also doFilter()'s "Heuristics" comment when num of
1477 // instructions is 3.
1478 if (AllowMixed && !Greedy) {
1479 assert(numInstructions == 3);
1481 for (unsigned i = 0; i < Opcodes.size(); ++i) {
1482 std::vector<unsigned> StartBits;
1483 std::vector<unsigned> EndBits;
1484 std::vector<uint64_t> FieldVals;
1485 insn_t Insn;
1487 insnWithID(Insn, Opcodes[i].EncodingID);
1489 // Look for islands of undecoded bits of any instruction.
1490 if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
1491 // Found an instruction with island(s). Now just assign a filter.
1492 runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
1493 return true;
1498 unsigned BitIndex;
1500 // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1501 // The automaton consumes the corresponding bit from each
1502 // instruction.
1504 // Input symbols: 0, 1, and _ (unset).
1505 // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1506 // Initial state: NONE.
1508 // (NONE) ------- [01] -> (ALL_SET)
1509 // (NONE) ------- _ ----> (ALL_UNSET)
1510 // (ALL_SET) ---- [01] -> (ALL_SET)
1511 // (ALL_SET) ---- _ ----> (MIXED)
1512 // (ALL_UNSET) -- [01] -> (MIXED)
1513 // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1514 // (MIXED) ------ . ----> (MIXED)
1515 // (FILTERED)---- . ----> (FILTERED)
1517 std::vector<bitAttr_t> bitAttrs;
1519 // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1520 // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1521 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
1522 if (FilterBitValues[BitIndex] == BIT_TRUE ||
1523 FilterBitValues[BitIndex] == BIT_FALSE)
1524 bitAttrs.push_back(ATTR_FILTERED);
1525 else
1526 bitAttrs.push_back(ATTR_NONE);
1528 for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
1529 insn_t insn;
1531 insnWithID(insn, Opcodes[InsnIndex].EncodingID);
1533 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1534 switch (bitAttrs[BitIndex]) {
1535 case ATTR_NONE:
1536 if (insn[BitIndex] == BIT_UNSET)
1537 bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1538 else
1539 bitAttrs[BitIndex] = ATTR_ALL_SET;
1540 break;
1541 case ATTR_ALL_SET:
1542 if (insn[BitIndex] == BIT_UNSET)
1543 bitAttrs[BitIndex] = ATTR_MIXED;
1544 break;
1545 case ATTR_ALL_UNSET:
1546 if (insn[BitIndex] != BIT_UNSET)
1547 bitAttrs[BitIndex] = ATTR_MIXED;
1548 break;
1549 case ATTR_MIXED:
1550 case ATTR_FILTERED:
1551 break;
1556 // The regionAttr automaton consumes the bitAttrs automatons' state,
1557 // lowest-to-highest.
1559 // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1560 // States: NONE, ALL_SET, MIXED
1561 // Initial state: NONE
1563 // (NONE) ----- F --> (NONE)
1564 // (NONE) ----- S --> (ALL_SET) ; and set region start
1565 // (NONE) ----- U --> (NONE)
1566 // (NONE) ----- M --> (MIXED) ; and set region start
1567 // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
1568 // (ALL_SET) -- S --> (ALL_SET)
1569 // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
1570 // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
1571 // (MIXED) ---- F --> (NONE) ; and report a MIXED region
1572 // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
1573 // (MIXED) ---- U --> (NONE) ; and report a MIXED region
1574 // (MIXED) ---- M --> (MIXED)
1576 bitAttr_t RA = ATTR_NONE;
1577 unsigned StartBit = 0;
1579 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1580 bitAttr_t bitAttr = bitAttrs[BitIndex];
1582 assert(bitAttr != ATTR_NONE && "Bit without attributes");
1584 switch (RA) {
1585 case ATTR_NONE:
1586 switch (bitAttr) {
1587 case ATTR_FILTERED:
1588 break;
1589 case ATTR_ALL_SET:
1590 StartBit = BitIndex;
1591 RA = ATTR_ALL_SET;
1592 break;
1593 case ATTR_ALL_UNSET:
1594 break;
1595 case ATTR_MIXED:
1596 StartBit = BitIndex;
1597 RA = ATTR_MIXED;
1598 break;
1599 default:
1600 llvm_unreachable("Unexpected bitAttr!");
1602 break;
1603 case ATTR_ALL_SET:
1604 switch (bitAttr) {
1605 case ATTR_FILTERED:
1606 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1607 RA = ATTR_NONE;
1608 break;
1609 case ATTR_ALL_SET:
1610 break;
1611 case ATTR_ALL_UNSET:
1612 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1613 RA = ATTR_NONE;
1614 break;
1615 case ATTR_MIXED:
1616 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1617 StartBit = BitIndex;
1618 RA = ATTR_MIXED;
1619 break;
1620 default:
1621 llvm_unreachable("Unexpected bitAttr!");
1623 break;
1624 case ATTR_MIXED:
1625 switch (bitAttr) {
1626 case ATTR_FILTERED:
1627 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1628 StartBit = BitIndex;
1629 RA = ATTR_NONE;
1630 break;
1631 case ATTR_ALL_SET:
1632 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1633 StartBit = BitIndex;
1634 RA = ATTR_ALL_SET;
1635 break;
1636 case ATTR_ALL_UNSET:
1637 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1638 RA = ATTR_NONE;
1639 break;
1640 case ATTR_MIXED:
1641 break;
1642 default:
1643 llvm_unreachable("Unexpected bitAttr!");
1645 break;
1646 case ATTR_ALL_UNSET:
1647 llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
1648 case ATTR_FILTERED:
1649 llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
1653 // At the end, if we're still in ALL_SET or MIXED states, report a region
1654 switch (RA) {
1655 case ATTR_NONE:
1656 break;
1657 case ATTR_FILTERED:
1658 break;
1659 case ATTR_ALL_SET:
1660 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1661 break;
1662 case ATTR_ALL_UNSET:
1663 break;
1664 case ATTR_MIXED:
1665 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1666 break;
1669 // We have finished with the filter processings. Now it's time to choose
1670 // the best performing filter.
1671 BestIndex = 0;
1672 bool AllUseless = true;
1673 unsigned BestScore = 0;
1675 for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1676 unsigned Usefulness = Filters[i].usefulness();
1678 if (Usefulness)
1679 AllUseless = false;
1681 if (Usefulness > BestScore) {
1682 BestIndex = i;
1683 BestScore = Usefulness;
1687 if (!AllUseless)
1688 bestFilter().recurse();
1690 return !AllUseless;
1691 } // end of FilterChooser::filterProcessor(bool)
1693 // Decides on the best configuration of filter(s) to use in order to decode
1694 // the instructions. A conflict of instructions may occur, in which case we
1695 // dump the conflict set to the standard error.
1696 void FilterChooser::doFilter() {
1697 unsigned Num = Opcodes.size();
1698 assert(Num && "FilterChooser created with no instructions");
1700 // Try regions of consecutive known bit values first.
1701 if (filterProcessor(false))
1702 return;
1704 // Then regions of mixed bits (both known and unitialized bit values allowed).
1705 if (filterProcessor(true))
1706 return;
1708 // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1709 // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1710 // well-known encoding pattern. In such case, we backtrack and scan for the
1711 // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1712 if (Num == 3 && filterProcessor(true, false))
1713 return;
1715 // If we come to here, the instruction decoding has failed.
1716 // Set the BestIndex to -1 to indicate so.
1717 BestIndex = -1;
1720 // emitTableEntries - Emit state machine entries to decode our share of
1721 // instructions.
1722 void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
1723 if (Opcodes.size() == 1) {
1724 // There is only one instruction in the set, which is great!
1725 // Call emitSingletonDecoder() to see whether there are any remaining
1726 // encodings bits.
1727 emitSingletonTableEntry(TableInfo, Opcodes[0]);
1728 return;
1731 // Choose the best filter to do the decodings!
1732 if (BestIndex != -1) {
1733 const Filter &Best = Filters[BestIndex];
1734 if (Best.getNumFiltered() == 1)
1735 emitSingletonTableEntry(TableInfo, Best);
1736 else
1737 Best.emitTableEntry(TableInfo);
1738 return;
1741 // We don't know how to decode these instructions! Dump the
1742 // conflict set and bail.
1744 // Print out useful conflict information for postmortem analysis.
1745 errs() << "Decoding Conflict:\n";
1747 dumpStack(errs(), "\t\t");
1749 for (unsigned i = 0; i < Opcodes.size(); ++i) {
1750 errs() << '\t';
1751 emitNameWithID(errs(), Opcodes[i].EncodingID);
1752 errs() << " ";
1753 dumpBits(
1754 errs(),
1755 getBitsField(*AllInstructions[Opcodes[i].EncodingID].EncodingDef, "Inst"));
1756 errs() << '\n';
1760 static std::string findOperandDecoderMethod(TypedInit *TI) {
1761 std::string Decoder;
1763 Record *Record = cast<DefInit>(TI)->getDef();
1765 RecordVal *DecoderString = Record->getValue("DecoderMethod");
1766 StringInit *String = DecoderString ?
1767 dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1768 if (String) {
1769 Decoder = String->getValue();
1770 if (!Decoder.empty())
1771 return Decoder;
1774 if (Record->isSubClassOf("RegisterOperand"))
1775 Record = Record->getValueAsDef("RegClass");
1777 if (Record->isSubClassOf("RegisterClass")) {
1778 Decoder = "Decode" + Record->getName().str() + "RegisterClass";
1779 } else if (Record->isSubClassOf("PointerLikeRegClass")) {
1780 Decoder = "DecodePointerLikeRegClass" +
1781 utostr(Record->getValueAsInt("RegClassKind"));
1784 return Decoder;
1787 static bool
1788 populateInstruction(CodeGenTarget &Target, const Record &EncodingDef,
1789 const CodeGenInstruction &CGI, unsigned Opc,
1790 std::map<unsigned, std::vector<OperandInfo>> &Operands) {
1791 const Record &Def = *CGI.TheDef;
1792 // If all the bit positions are not specified; do not decode this instruction.
1793 // We are bound to fail! For proper disassembly, the well-known encoding bits
1794 // of the instruction must be fully specified.
1796 BitsInit &Bits = getBitsField(EncodingDef, "Inst");
1797 if (Bits.allInComplete()) return false;
1799 std::vector<OperandInfo> InsnOperands;
1801 // If the instruction has specified a custom decoding hook, use that instead
1802 // of trying to auto-generate the decoder.
1803 StringRef InstDecoder = EncodingDef.getValueAsString("DecoderMethod");
1804 if (InstDecoder != "") {
1805 bool HasCompleteInstDecoder = EncodingDef.getValueAsBit("hasCompleteDecoder");
1806 InsnOperands.push_back(OperandInfo(InstDecoder, HasCompleteInstDecoder));
1807 Operands[Opc] = InsnOperands;
1808 return true;
1811 // Generate a description of the operand of the instruction that we know
1812 // how to decode automatically.
1813 // FIXME: We'll need to have a way to manually override this as needed.
1815 // Gather the outputs/inputs of the instruction, so we can find their
1816 // positions in the encoding. This assumes for now that they appear in the
1817 // MCInst in the order that they're listed.
1818 std::vector<std::pair<Init*, StringRef>> InOutOperands;
1819 DagInit *Out = Def.getValueAsDag("OutOperandList");
1820 DagInit *In = Def.getValueAsDag("InOperandList");
1821 for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1822 InOutOperands.push_back(std::make_pair(Out->getArg(i),
1823 Out->getArgNameStr(i)));
1824 for (unsigned i = 0; i < In->getNumArgs(); ++i)
1825 InOutOperands.push_back(std::make_pair(In->getArg(i),
1826 In->getArgNameStr(i)));
1828 // Search for tied operands, so that we can correctly instantiate
1829 // operands that are not explicitly represented in the encoding.
1830 std::map<std::string, std::string> TiedNames;
1831 for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
1832 int tiedTo = CGI.Operands[i].getTiedRegister();
1833 if (tiedTo != -1) {
1834 std::pair<unsigned, unsigned> SO =
1835 CGI.Operands.getSubOperandNumber(tiedTo);
1836 TiedNames[InOutOperands[i].second] = InOutOperands[SO.first].second;
1837 TiedNames[InOutOperands[SO.first].second] = InOutOperands[i].second;
1841 std::map<std::string, std::vector<OperandInfo>> NumberedInsnOperands;
1842 std::set<std::string> NumberedInsnOperandsNoTie;
1843 if (Target.getInstructionSet()->
1844 getValueAsBit("decodePositionallyEncodedOperands")) {
1845 const std::vector<RecordVal> &Vals = Def.getValues();
1846 unsigned NumberedOp = 0;
1848 std::set<unsigned> NamedOpIndices;
1849 if (Target.getInstructionSet()->
1850 getValueAsBit("noNamedPositionallyEncodedOperands"))
1851 // Collect the set of operand indices that might correspond to named
1852 // operand, and skip these when assigning operands based on position.
1853 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1854 unsigned OpIdx;
1855 if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
1856 continue;
1858 NamedOpIndices.insert(OpIdx);
1861 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1862 // Ignore fixed fields in the record, we're looking for values like:
1863 // bits<5> RST = { ?, ?, ?, ?, ? };
1864 if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete())
1865 continue;
1867 // Determine if Vals[i] actually contributes to the Inst encoding.
1868 unsigned bi = 0;
1869 for (; bi < Bits.getNumBits(); ++bi) {
1870 VarInit *Var = nullptr;
1871 VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
1872 if (BI)
1873 Var = dyn_cast<VarInit>(BI->getBitVar());
1874 else
1875 Var = dyn_cast<VarInit>(Bits.getBit(bi));
1877 if (Var && Var->getName() == Vals[i].getName())
1878 break;
1881 if (bi == Bits.getNumBits())
1882 continue;
1884 // Skip variables that correspond to explicitly-named operands.
1885 unsigned OpIdx;
1886 if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
1887 continue;
1889 // Get the bit range for this operand:
1890 unsigned bitStart = bi++, bitWidth = 1;
1891 for (; bi < Bits.getNumBits(); ++bi) {
1892 VarInit *Var = nullptr;
1893 VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
1894 if (BI)
1895 Var = dyn_cast<VarInit>(BI->getBitVar());
1896 else
1897 Var = dyn_cast<VarInit>(Bits.getBit(bi));
1899 if (!Var)
1900 break;
1902 if (Var->getName() != Vals[i].getName())
1903 break;
1905 ++bitWidth;
1908 unsigned NumberOps = CGI.Operands.size();
1909 while (NumberedOp < NumberOps &&
1910 (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
1911 (!NamedOpIndices.empty() && NamedOpIndices.count(
1912 CGI.Operands.getSubOperandNumber(NumberedOp).first))))
1913 ++NumberedOp;
1915 OpIdx = NumberedOp++;
1917 // OpIdx now holds the ordered operand number of Vals[i].
1918 std::pair<unsigned, unsigned> SO =
1919 CGI.Operands.getSubOperandNumber(OpIdx);
1920 const std::string &Name = CGI.Operands[SO.first].Name;
1922 LLVM_DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName()
1923 << ": " << Name << "(" << SO.first << ", " << SO.second
1924 << ") => " << Vals[i].getName() << "\n");
1926 std::string Decoder;
1927 Record *TypeRecord = CGI.Operands[SO.first].Rec;
1929 RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
1930 StringInit *String = DecoderString ?
1931 dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1932 if (String && String->getValue() != "")
1933 Decoder = String->getValue();
1935 if (Decoder == "" &&
1936 CGI.Operands[SO.first].MIOperandInfo &&
1937 CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) {
1938 Init *Arg = CGI.Operands[SO.first].MIOperandInfo->
1939 getArg(SO.second);
1940 if (DefInit *DI = cast<DefInit>(Arg))
1941 TypeRecord = DI->getDef();
1944 bool isReg = false;
1945 if (TypeRecord->isSubClassOf("RegisterOperand"))
1946 TypeRecord = TypeRecord->getValueAsDef("RegClass");
1947 if (TypeRecord->isSubClassOf("RegisterClass")) {
1948 Decoder = "Decode" + TypeRecord->getName().str() + "RegisterClass";
1949 isReg = true;
1950 } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
1951 Decoder = "DecodePointerLikeRegClass" +
1952 utostr(TypeRecord->getValueAsInt("RegClassKind"));
1953 isReg = true;
1956 DecoderString = TypeRecord->getValue("DecoderMethod");
1957 String = DecoderString ?
1958 dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1959 if (!isReg && String && String->getValue() != "")
1960 Decoder = String->getValue();
1962 RecordVal *HasCompleteDecoderVal =
1963 TypeRecord->getValue("hasCompleteDecoder");
1964 BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ?
1965 dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) : nullptr;
1966 bool HasCompleteDecoder = HasCompleteDecoderBit ?
1967 HasCompleteDecoderBit->getValue() : true;
1969 OperandInfo OpInfo(Decoder, HasCompleteDecoder);
1970 OpInfo.addField(bitStart, bitWidth, 0);
1972 NumberedInsnOperands[Name].push_back(OpInfo);
1974 // FIXME: For complex operands with custom decoders we can't handle tied
1975 // sub-operands automatically. Skip those here and assume that this is
1976 // fixed up elsewhere.
1977 if (CGI.Operands[SO.first].MIOperandInfo &&
1978 CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 &&
1979 String && String->getValue() != "")
1980 NumberedInsnOperandsNoTie.insert(Name);
1984 // For each operand, see if we can figure out where it is encoded.
1985 for (const auto &Op : InOutOperands) {
1986 if (!NumberedInsnOperands[Op.second].empty()) {
1987 InsnOperands.insert(InsnOperands.end(),
1988 NumberedInsnOperands[Op.second].begin(),
1989 NumberedInsnOperands[Op.second].end());
1990 continue;
1992 if (!NumberedInsnOperands[TiedNames[Op.second]].empty()) {
1993 if (!NumberedInsnOperandsNoTie.count(TiedNames[Op.second])) {
1994 // Figure out to which (sub)operand we're tied.
1995 unsigned i = CGI.Operands.getOperandNamed(TiedNames[Op.second]);
1996 int tiedTo = CGI.Operands[i].getTiedRegister();
1997 if (tiedTo == -1) {
1998 i = CGI.Operands.getOperandNamed(Op.second);
1999 tiedTo = CGI.Operands[i].getTiedRegister();
2002 if (tiedTo != -1) {
2003 std::pair<unsigned, unsigned> SO =
2004 CGI.Operands.getSubOperandNumber(tiedTo);
2006 InsnOperands.push_back(NumberedInsnOperands[TiedNames[Op.second]]
2007 [SO.second]);
2010 continue;
2013 TypedInit *TI = cast<TypedInit>(Op.first);
2015 // At this point, we can locate the decoder field, but we need to know how
2016 // to interpret it. As a first step, require the target to provide
2017 // callbacks for decoding register classes.
2018 std::string Decoder = findOperandDecoderMethod(TI);
2019 Record *TypeRecord = cast<DefInit>(TI)->getDef();
2021 RecordVal *HasCompleteDecoderVal =
2022 TypeRecord->getValue("hasCompleteDecoder");
2023 BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ?
2024 dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) : nullptr;
2025 bool HasCompleteDecoder = HasCompleteDecoderBit ?
2026 HasCompleteDecoderBit->getValue() : true;
2028 OperandInfo OpInfo(Decoder, HasCompleteDecoder);
2029 unsigned Base = ~0U;
2030 unsigned Width = 0;
2031 unsigned Offset = 0;
2033 for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
2034 VarInit *Var = nullptr;
2035 VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
2036 if (BI)
2037 Var = dyn_cast<VarInit>(BI->getBitVar());
2038 else
2039 Var = dyn_cast<VarInit>(Bits.getBit(bi));
2041 if (!Var) {
2042 if (Base != ~0U) {
2043 OpInfo.addField(Base, Width, Offset);
2044 Base = ~0U;
2045 Width = 0;
2046 Offset = 0;
2048 continue;
2051 if (Var->getName() != Op.second &&
2052 Var->getName() != TiedNames[Op.second]) {
2053 if (Base != ~0U) {
2054 OpInfo.addField(Base, Width, Offset);
2055 Base = ~0U;
2056 Width = 0;
2057 Offset = 0;
2059 continue;
2062 if (Base == ~0U) {
2063 Base = bi;
2064 Width = 1;
2065 Offset = BI ? BI->getBitNum() : 0;
2066 } else if (BI && BI->getBitNum() != Offset + Width) {
2067 OpInfo.addField(Base, Width, Offset);
2068 Base = bi;
2069 Width = 1;
2070 Offset = BI->getBitNum();
2071 } else {
2072 ++Width;
2076 if (Base != ~0U)
2077 OpInfo.addField(Base, Width, Offset);
2079 if (OpInfo.numFields() > 0)
2080 InsnOperands.push_back(OpInfo);
2083 Operands[Opc] = InsnOperands;
2085 #if 0
2086 LLVM_DEBUG({
2087 // Dumps the instruction encoding bits.
2088 dumpBits(errs(), Bits);
2090 errs() << '\n';
2092 // Dumps the list of operand info.
2093 for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
2094 const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
2095 const std::string &OperandName = Info.Name;
2096 const Record &OperandDef = *Info.Rec;
2098 errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
2101 #endif
2103 return true;
2106 // emitFieldFromInstruction - Emit the templated helper function
2107 // fieldFromInstruction().
2108 // On Windows we make sure that this function is not inlined when
2109 // using the VS compiler. It has a bug which causes the function
2110 // to be optimized out in some circustances. See llvm.org/pr38292
2111 static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
2112 OS << "// Helper functions for extracting fields from encoded instructions.\n"
2113 << "// InsnType must either be integral or an APInt-like object that "
2114 "must:\n"
2115 << "// * Have a static const max_size_in_bits equal to the number of bits "
2116 "in the\n"
2117 << "// encoding.\n"
2118 << "// * be default-constructible and copy-constructible\n"
2119 << "// * be constructible from a uint64_t\n"
2120 << "// * be constructible from an APInt (this can be private)\n"
2121 << "// * Support getBitsSet(loBit, hiBit)\n"
2122 << "// * be convertible to uint64_t\n"
2123 << "// * Support the ~, &, ==, !=, and |= operators with other objects of "
2124 "the same type\n"
2125 << "// * Support shift (<<, >>) with signed and unsigned integers on the "
2126 "RHS\n"
2127 << "// * Support put (<<) to raw_ostream&\n"
2128 << "template<typename InsnType>\n"
2129 << "#if defined(_MSC_VER) && !defined(__clang__)\n"
2130 << "__declspec(noinline)\n"
2131 << "#endif\n"
2132 << "static InsnType fieldFromInstruction(InsnType insn, unsigned "
2133 "startBit,\n"
2134 << " unsigned numBits, "
2135 "std::true_type) {\n"
2136 << " assert(startBit + numBits <= 64 && \"Cannot support >64-bit "
2137 "extractions!\");\n"
2138 << " assert(startBit + numBits <= (sizeof(InsnType) * 8) &&\n"
2139 << " \"Instruction field out of bounds!\");\n"
2140 << " InsnType fieldMask;\n"
2141 << " if (numBits == sizeof(InsnType) * 8)\n"
2142 << " fieldMask = (InsnType)(-1LL);\n"
2143 << " else\n"
2144 << " fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
2145 << " return (insn & fieldMask) >> startBit;\n"
2146 << "}\n"
2147 << "\n"
2148 << "template<typename InsnType>\n"
2149 << "static InsnType fieldFromInstruction(InsnType insn, unsigned "
2150 "startBit,\n"
2151 << " unsigned numBits, "
2152 "std::false_type) {\n"
2153 << " assert(startBit + numBits <= InsnType::max_size_in_bits && "
2154 "\"Instruction field out of bounds!\");\n"
2155 << " InsnType fieldMask = InsnType::getBitsSet(0, numBits);\n"
2156 << " return (insn >> startBit) & fieldMask;\n"
2157 << "}\n"
2158 << "\n"
2159 << "template<typename InsnType>\n"
2160 << "static InsnType fieldFromInstruction(InsnType insn, unsigned "
2161 "startBit,\n"
2162 << " unsigned numBits) {\n"
2163 << " return fieldFromInstruction(insn, startBit, numBits, "
2164 "std::is_integral<InsnType>());\n"
2165 << "}\n\n";
2168 // emitDecodeInstruction - Emit the templated helper function
2169 // decodeInstruction().
2170 static void emitDecodeInstruction(formatted_raw_ostream &OS) {
2171 OS << "template<typename InsnType>\n"
2172 << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], "
2173 "MCInst &MI,\n"
2174 << " InsnType insn, uint64_t "
2175 "Address,\n"
2176 << " const void *DisAsm,\n"
2177 << " const MCSubtargetInfo &STI) {\n"
2178 << " const FeatureBitset& Bits = STI.getFeatureBits();\n"
2179 << "\n"
2180 << " const uint8_t *Ptr = DecodeTable;\n"
2181 << " InsnType CurFieldValue = 0;\n"
2182 << " DecodeStatus S = MCDisassembler::Success;\n"
2183 << " while (true) {\n"
2184 << " ptrdiff_t Loc = Ptr - DecodeTable;\n"
2185 << " switch (*Ptr) {\n"
2186 << " default:\n"
2187 << " errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
2188 << " return MCDisassembler::Fail;\n"
2189 << " case MCD::OPC_ExtractField: {\n"
2190 << " unsigned Start = *++Ptr;\n"
2191 << " unsigned Len = *++Ptr;\n"
2192 << " ++Ptr;\n"
2193 << " CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
2194 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << "
2195 "\", \"\n"
2196 << " << Len << \"): \" << CurFieldValue << \"\\n\");\n"
2197 << " break;\n"
2198 << " }\n"
2199 << " case MCD::OPC_FilterValue: {\n"
2200 << " // Decode the field value.\n"
2201 << " unsigned Len;\n"
2202 << " InsnType Val = decodeULEB128(++Ptr, &Len);\n"
2203 << " Ptr += Len;\n"
2204 << " // NumToSkip is a plain 24-bit integer.\n"
2205 << " unsigned NumToSkip = *Ptr++;\n"
2206 << " NumToSkip |= (*Ptr++) << 8;\n"
2207 << " NumToSkip |= (*Ptr++) << 16;\n"
2208 << "\n"
2209 << " // Perform the filter operation.\n"
2210 << " if (Val != CurFieldValue)\n"
2211 << " Ptr += NumToSkip;\n"
2212 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << "
2213 "\", \" << NumToSkip\n"
2214 << " << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" "
2215 ": \"PASS:\")\n"
2216 << " << \" continuing at \" << (Ptr - DecodeTable) << "
2217 "\"\\n\");\n"
2218 << "\n"
2219 << " break;\n"
2220 << " }\n"
2221 << " case MCD::OPC_CheckField: {\n"
2222 << " unsigned Start = *++Ptr;\n"
2223 << " unsigned Len = *++Ptr;\n"
2224 << " InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n"
2225 << " // Decode the field value.\n"
2226 << " InsnType ExpectedValue = decodeULEB128(++Ptr, &Len);\n"
2227 << " Ptr += Len;\n"
2228 << " // NumToSkip is a plain 24-bit integer.\n"
2229 << " unsigned NumToSkip = *Ptr++;\n"
2230 << " NumToSkip |= (*Ptr++) << 8;\n"
2231 << " NumToSkip |= (*Ptr++) << 16;\n"
2232 << "\n"
2233 << " // If the actual and expected values don't match, skip.\n"
2234 << " if (ExpectedValue != FieldValue)\n"
2235 << " Ptr += NumToSkip;\n"
2236 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << "
2237 "\", \"\n"
2238 << " << Len << \", \" << ExpectedValue << \", \" << "
2239 "NumToSkip\n"
2240 << " << \"): FieldValue = \" << FieldValue << \", "
2241 "ExpectedValue = \"\n"
2242 << " << ExpectedValue << \": \"\n"
2243 << " << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : "
2244 "\"FAIL\\n\"));\n"
2245 << " break;\n"
2246 << " }\n"
2247 << " case MCD::OPC_CheckPredicate: {\n"
2248 << " unsigned Len;\n"
2249 << " // Decode the Predicate Index value.\n"
2250 << " unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
2251 << " Ptr += Len;\n"
2252 << " // NumToSkip is a plain 24-bit integer.\n"
2253 << " unsigned NumToSkip = *Ptr++;\n"
2254 << " NumToSkip |= (*Ptr++) << 8;\n"
2255 << " NumToSkip |= (*Ptr++) << 16;\n"
2256 << " // Check the predicate.\n"
2257 << " bool Pred;\n"
2258 << " if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
2259 << " Ptr += NumToSkip;\n"
2260 << " (void)Pred;\n"
2261 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx "
2262 "<< \"): \"\n"
2263 << " << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
2264 << "\n"
2265 << " break;\n"
2266 << " }\n"
2267 << " case MCD::OPC_Decode: {\n"
2268 << " unsigned Len;\n"
2269 << " // Decode the Opcode value.\n"
2270 << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2271 << " Ptr += Len;\n"
2272 << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2273 << " Ptr += Len;\n"
2274 << "\n"
2275 << " MI.clear();\n"
2276 << " MI.setOpcode(Opc);\n"
2277 << " bool DecodeComplete;\n"
2278 << " S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, "
2279 "DecodeComplete);\n"
2280 << " assert(DecodeComplete);\n"
2281 << "\n"
2282 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
2283 << " << \", using decoder \" << DecodeIdx << \": \"\n"
2284 << " << (S != MCDisassembler::Fail ? \"PASS\" : "
2285 "\"FAIL\") << \"\\n\");\n"
2286 << " return S;\n"
2287 << " }\n"
2288 << " case MCD::OPC_TryDecode: {\n"
2289 << " unsigned Len;\n"
2290 << " // Decode the Opcode value.\n"
2291 << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2292 << " Ptr += Len;\n"
2293 << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2294 << " Ptr += Len;\n"
2295 << " // NumToSkip is a plain 24-bit integer.\n"
2296 << " unsigned NumToSkip = *Ptr++;\n"
2297 << " NumToSkip |= (*Ptr++) << 8;\n"
2298 << " NumToSkip |= (*Ptr++) << 16;\n"
2299 << "\n"
2300 << " // Perform the decode operation.\n"
2301 << " MCInst TmpMI;\n"
2302 << " TmpMI.setOpcode(Opc);\n"
2303 << " bool DecodeComplete;\n"
2304 << " S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, "
2305 "DecodeComplete);\n"
2306 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_TryDecode: opcode \" << "
2307 "Opc\n"
2308 << " << \", using decoder \" << DecodeIdx << \": \");\n"
2309 << "\n"
2310 << " if (DecodeComplete) {\n"
2311 << " // Decoding complete.\n"
2312 << " LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? \"PASS\" : "
2313 "\"FAIL\") << \"\\n\");\n"
2314 << " MI = TmpMI;\n"
2315 << " return S;\n"
2316 << " } else {\n"
2317 << " assert(S == MCDisassembler::Fail);\n"
2318 << " // If the decoding was incomplete, skip.\n"
2319 << " Ptr += NumToSkip;\n"
2320 << " LLVM_DEBUG(dbgs() << \"FAIL: continuing at \" << (Ptr - "
2321 "DecodeTable) << \"\\n\");\n"
2322 << " // Reset decode status. This also drops a SoftFail status "
2323 "that could be\n"
2324 << " // set before the decode attempt.\n"
2325 << " S = MCDisassembler::Success;\n"
2326 << " }\n"
2327 << " break;\n"
2328 << " }\n"
2329 << " case MCD::OPC_SoftFail: {\n"
2330 << " // Decode the mask values.\n"
2331 << " unsigned Len;\n"
2332 << " InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n"
2333 << " Ptr += Len;\n"
2334 << " InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n"
2335 << " Ptr += Len;\n"
2336 << " bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n"
2337 << " if (Fail)\n"
2338 << " S = MCDisassembler::SoftFail;\n"
2339 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? "
2340 "\"FAIL\\n\":\"PASS\\n\"));\n"
2341 << " break;\n"
2342 << " }\n"
2343 << " case MCD::OPC_Fail: {\n"
2344 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
2345 << " return MCDisassembler::Fail;\n"
2346 << " }\n"
2347 << " }\n"
2348 << " }\n"
2349 << " llvm_unreachable(\"bogosity detected in disassembler state "
2350 "machine!\");\n"
2351 << "}\n\n";
2354 // Emits disassembler code for instruction decoding.
2355 void FixedLenDecoderEmitter::run(raw_ostream &o) {
2356 formatted_raw_ostream OS(o);
2357 OS << "#include \"llvm/MC/MCInst.h\"\n";
2358 OS << "#include \"llvm/Support/Debug.h\"\n";
2359 OS << "#include \"llvm/Support/DataTypes.h\"\n";
2360 OS << "#include \"llvm/Support/LEB128.h\"\n";
2361 OS << "#include \"llvm/Support/raw_ostream.h\"\n";
2362 OS << "#include <assert.h>\n";
2363 OS << '\n';
2364 OS << "namespace llvm {\n\n";
2366 emitFieldFromInstruction(OS);
2368 Target.reverseBitsForLittleEndianEncoding();
2370 // Parameterize the decoders based on namespace and instruction width.
2371 const auto &NumberedInstructions = Target.getInstructionsByEnumValue();
2372 NumberedEncodings.reserve(NumberedInstructions.size());
2373 DenseMap<Record *, unsigned> IndexOfInstruction;
2374 for (const auto &NumberedInstruction : NumberedInstructions) {
2375 IndexOfInstruction[NumberedInstruction->TheDef] = NumberedEncodings.size();
2376 NumberedEncodings.emplace_back(NumberedInstruction->TheDef, NumberedInstruction);
2378 for (const auto &NumberedAlias : RK.getAllDerivedDefinitions("AdditionalEncoding"))
2379 NumberedEncodings.emplace_back(
2380 NumberedAlias,
2381 &Target.getInstruction(NumberedAlias->getValueAsDef("AliasOf")));
2383 std::map<std::pair<std::string, unsigned>, std::vector<EncodingIDAndOpcode>>
2384 OpcMap;
2385 std::map<unsigned, std::vector<OperandInfo>> Operands;
2387 for (unsigned i = 0; i < NumberedEncodings.size(); ++i) {
2388 const Record *EncodingDef = NumberedEncodings[i].EncodingDef;
2389 const CodeGenInstruction *Inst = NumberedEncodings[i].Inst;
2390 const Record *Def = Inst->TheDef;
2391 unsigned Size = EncodingDef->getValueAsInt("Size");
2392 if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
2393 Def->getValueAsBit("isPseudo") ||
2394 Def->getValueAsBit("isAsmParserOnly") ||
2395 Def->getValueAsBit("isCodeGenOnly")) {
2396 NumEncodingsLackingDisasm++;
2397 continue;
2400 if (i < NumberedInstructions.size())
2401 NumInstructions++;
2402 NumEncodings++;
2404 StringRef DecoderNamespace = EncodingDef->getValueAsString("DecoderNamespace");
2406 if (Size) {
2407 if (populateInstruction(Target, *EncodingDef, *Inst, i, Operands)) {
2408 OpcMap[std::make_pair(DecoderNamespace, Size)].emplace_back(i, IndexOfInstruction.find(Def)->second);
2409 } else
2410 NumEncodingsOmitted++;
2414 DecoderTableInfo TableInfo;
2415 for (const auto &Opc : OpcMap) {
2416 // Emit the decoder for this namespace+width combination.
2417 ArrayRef<EncodingAndInst> NumberedEncodingsRef(
2418 NumberedEncodings.data(), NumberedEncodings.size());
2419 FilterChooser FC(NumberedEncodingsRef, Opc.second, Operands,
2420 8 * Opc.first.second, this);
2422 // The decode table is cleared for each top level decoder function. The
2423 // predicates and decoders themselves, however, are shared across all
2424 // decoders to give more opportunities for uniqueing.
2425 TableInfo.Table.clear();
2426 TableInfo.FixupStack.clear();
2427 TableInfo.Table.reserve(16384);
2428 TableInfo.FixupStack.emplace_back();
2429 FC.emitTableEntries(TableInfo);
2430 // Any NumToSkip fixups in the top level scope can resolve to the
2431 // OPC_Fail at the end of the table.
2432 assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
2433 // Resolve any NumToSkip fixups in the current scope.
2434 resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
2435 TableInfo.Table.size());
2436 TableInfo.FixupStack.clear();
2438 TableInfo.Table.push_back(MCD::OPC_Fail);
2440 // Print the table to the output stream.
2441 emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first);
2442 OS.flush();
2445 // Emit the predicate function.
2446 emitPredicateFunction(OS, TableInfo.Predicates, 0);
2448 // Emit the decoder function.
2449 emitDecoderFunction(OS, TableInfo.Decoders, 0);
2451 // Emit the main entry point for the decoder, decodeInstruction().
2452 emitDecodeInstruction(OS);
2454 OS << "\n} // End llvm namespace\n";
2457 namespace llvm {
2459 void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS,
2460 const std::string &PredicateNamespace,
2461 const std::string &GPrefix,
2462 const std::string &GPostfix, const std::string &ROK,
2463 const std::string &RFail, const std::string &L) {
2464 FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix,
2465 ROK, RFail, L).run(OS);
2468 } // end namespace llvm