[ARM] MVE predicate store patterns
[llvm-complete.git] / utils / TableGen / GlobalISelEmitter.cpp
blob06cdfd4ab5970c5f0eb4519c47e7c37473cd956e
1 //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This tablegen backend emits code for use by the GlobalISel instruction
11 /// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
12 ///
13 /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
14 /// backend, filters out the ones that are unsupported, maps
15 /// SelectionDAG-specific constructs to their GlobalISel counterpart
16 /// (when applicable: MVT to LLT; SDNode to generic Instruction).
17 ///
18 /// Not all patterns are supported: pass the tablegen invocation
19 /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
20 /// as well as why.
21 ///
22 /// The generated file defines a single method:
23 /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
24 /// intended to be used in InstructionSelector::select as the first-step
25 /// selector for the patterns that don't require complex C++.
26 ///
27 /// FIXME: We'll probably want to eventually define a base
28 /// "TargetGenInstructionSelector" class.
29 ///
30 //===----------------------------------------------------------------------===//
32 #include "CodeGenDAGPatterns.h"
33 #include "SubtargetFeatureInfo.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/Support/CodeGenCoverage.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Error.h"
40 #include "llvm/Support/LowLevelTypeImpl.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include "llvm/Support/ScopedPrinter.h"
43 #include "llvm/TableGen/Error.h"
44 #include "llvm/TableGen/Record.h"
45 #include "llvm/TableGen/TableGenBackend.h"
46 #include <numeric>
47 #include <string>
48 using namespace llvm;
50 #define DEBUG_TYPE "gisel-emitter"
52 STATISTIC(NumPatternTotal, "Total number of patterns");
53 STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
54 STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
55 STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information");
56 STATISTIC(NumPatternEmitted, "Number of patterns emitted");
58 cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
60 static cl::opt<bool> WarnOnSkippedPatterns(
61 "warn-on-skipped-patterns",
62 cl::desc("Explain why a pattern was skipped for inclusion "
63 "in the GlobalISel selector"),
64 cl::init(false), cl::cat(GlobalISelEmitterCat));
66 static cl::opt<bool> GenerateCoverage(
67 "instrument-gisel-coverage",
68 cl::desc("Generate coverage instrumentation for GlobalISel"),
69 cl::init(false), cl::cat(GlobalISelEmitterCat));
71 static cl::opt<std::string> UseCoverageFile(
72 "gisel-coverage-file", cl::init(""),
73 cl::desc("Specify file to retrieve coverage information from"),
74 cl::cat(GlobalISelEmitterCat));
76 static cl::opt<bool> OptimizeMatchTable(
77 "optimize-match-table",
78 cl::desc("Generate an optimized version of the match table"),
79 cl::init(true), cl::cat(GlobalISelEmitterCat));
81 namespace {
82 //===- Helper functions ---------------------------------------------------===//
84 /// Get the name of the enum value used to number the predicate function.
85 std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) {
86 if (Predicate.hasGISelPredicateCode())
87 return "GIPFP_MI_" + Predicate.getFnName();
88 return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" +
89 Predicate.getFnName();
92 /// Get the opcode used to check this predicate.
93 std::string getMatchOpcodeForPredicate(const TreePredicateFn &Predicate) {
94 return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate";
97 /// This class stands in for LLT wherever we want to tablegen-erate an
98 /// equivalent at compiler run-time.
99 class LLTCodeGen {
100 private:
101 LLT Ty;
103 public:
104 LLTCodeGen() = default;
105 LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
107 std::string getCxxEnumValue() const {
108 std::string Str;
109 raw_string_ostream OS(Str);
111 emitCxxEnumValue(OS);
112 return OS.str();
115 void emitCxxEnumValue(raw_ostream &OS) const {
116 if (Ty.isScalar()) {
117 OS << "GILLT_s" << Ty.getSizeInBits();
118 return;
120 if (Ty.isVector()) {
121 OS << "GILLT_v" << Ty.getNumElements() << "s" << Ty.getScalarSizeInBits();
122 return;
124 if (Ty.isPointer()) {
125 OS << "GILLT_p" << Ty.getAddressSpace();
126 if (Ty.getSizeInBits() > 0)
127 OS << "s" << Ty.getSizeInBits();
128 return;
130 llvm_unreachable("Unhandled LLT");
133 void emitCxxConstructorCall(raw_ostream &OS) const {
134 if (Ty.isScalar()) {
135 OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
136 return;
138 if (Ty.isVector()) {
139 OS << "LLT::vector(" << Ty.getNumElements() << ", "
140 << Ty.getScalarSizeInBits() << ")";
141 return;
143 if (Ty.isPointer() && Ty.getSizeInBits() > 0) {
144 OS << "LLT::pointer(" << Ty.getAddressSpace() << ", "
145 << Ty.getSizeInBits() << ")";
146 return;
148 llvm_unreachable("Unhandled LLT");
151 const LLT &get() const { return Ty; }
153 /// This ordering is used for std::unique() and llvm::sort(). There's no
154 /// particular logic behind the order but either A < B or B < A must be
155 /// true if A != B.
156 bool operator<(const LLTCodeGen &Other) const {
157 if (Ty.isValid() != Other.Ty.isValid())
158 return Ty.isValid() < Other.Ty.isValid();
159 if (!Ty.isValid())
160 return false;
162 if (Ty.isVector() != Other.Ty.isVector())
163 return Ty.isVector() < Other.Ty.isVector();
164 if (Ty.isScalar() != Other.Ty.isScalar())
165 return Ty.isScalar() < Other.Ty.isScalar();
166 if (Ty.isPointer() != Other.Ty.isPointer())
167 return Ty.isPointer() < Other.Ty.isPointer();
169 if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace())
170 return Ty.getAddressSpace() < Other.Ty.getAddressSpace();
172 if (Ty.isVector() && Ty.getNumElements() != Other.Ty.getNumElements())
173 return Ty.getNumElements() < Other.Ty.getNumElements();
175 return Ty.getSizeInBits() < Other.Ty.getSizeInBits();
178 bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; }
181 // Track all types that are used so we can emit the corresponding enum.
182 std::set<LLTCodeGen> KnownTypes;
184 class InstructionMatcher;
185 /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
186 /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
187 static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
188 MVT VT(SVT);
190 if (VT.isVector() && VT.getVectorNumElements() != 1)
191 return LLTCodeGen(
192 LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
194 if (VT.isInteger() || VT.isFloatingPoint())
195 return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
196 return None;
199 static std::string explainPredicates(const TreePatternNode *N) {
200 std::string Explanation = "";
201 StringRef Separator = "";
202 for (const TreePredicateCall &Call : N->getPredicateCalls()) {
203 const TreePredicateFn &P = Call.Fn;
204 Explanation +=
205 (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
206 Separator = ", ";
208 if (P.isAlwaysTrue())
209 Explanation += " always-true";
210 if (P.isImmediatePattern())
211 Explanation += " immediate";
213 if (P.isUnindexed())
214 Explanation += " unindexed";
216 if (P.isNonExtLoad())
217 Explanation += " non-extload";
218 if (P.isAnyExtLoad())
219 Explanation += " extload";
220 if (P.isSignExtLoad())
221 Explanation += " sextload";
222 if (P.isZeroExtLoad())
223 Explanation += " zextload";
225 if (P.isNonTruncStore())
226 Explanation += " non-truncstore";
227 if (P.isTruncStore())
228 Explanation += " truncstore";
230 if (Record *VT = P.getMemoryVT())
231 Explanation += (" MemVT=" + VT->getName()).str();
232 if (Record *VT = P.getScalarMemoryVT())
233 Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str();
235 if (ListInit *AddrSpaces = P.getAddressSpaces()) {
236 raw_string_ostream OS(Explanation);
237 OS << " AddressSpaces=[";
239 StringRef AddrSpaceSeparator;
240 for (Init *Val : AddrSpaces->getValues()) {
241 IntInit *IntVal = dyn_cast<IntInit>(Val);
242 if (!IntVal)
243 continue;
245 OS << AddrSpaceSeparator << IntVal->getValue();
246 AddrSpaceSeparator = ", ";
249 OS << ']';
252 int64_t MinAlign = P.getMinAlignment();
253 if (MinAlign > 0)
254 Explanation += " MinAlign=" + utostr(MinAlign);
256 if (P.isAtomicOrderingMonotonic())
257 Explanation += " monotonic";
258 if (P.isAtomicOrderingAcquire())
259 Explanation += " acquire";
260 if (P.isAtomicOrderingRelease())
261 Explanation += " release";
262 if (P.isAtomicOrderingAcquireRelease())
263 Explanation += " acq_rel";
264 if (P.isAtomicOrderingSequentiallyConsistent())
265 Explanation += " seq_cst";
266 if (P.isAtomicOrderingAcquireOrStronger())
267 Explanation += " >=acquire";
268 if (P.isAtomicOrderingWeakerThanAcquire())
269 Explanation += " <acquire";
270 if (P.isAtomicOrderingReleaseOrStronger())
271 Explanation += " >=release";
272 if (P.isAtomicOrderingWeakerThanRelease())
273 Explanation += " <release";
275 return Explanation;
278 std::string explainOperator(Record *Operator) {
279 if (Operator->isSubClassOf("SDNode"))
280 return (" (" + Operator->getValueAsString("Opcode") + ")").str();
282 if (Operator->isSubClassOf("Intrinsic"))
283 return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();
285 if (Operator->isSubClassOf("ComplexPattern"))
286 return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() +
287 ")")
288 .str();
290 if (Operator->isSubClassOf("SDNodeXForm"))
291 return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() +
292 ")")
293 .str();
295 return (" (Operator " + Operator->getName() + " not understood)").str();
298 /// Helper function to let the emitter report skip reason error messages.
299 static Error failedImport(const Twine &Reason) {
300 return make_error<StringError>(Reason, inconvertibleErrorCode());
303 static Error isTrivialOperatorNode(const TreePatternNode *N) {
304 std::string Explanation = "";
305 std::string Separator = "";
307 bool HasUnsupportedPredicate = false;
308 for (const TreePredicateCall &Call : N->getPredicateCalls()) {
309 const TreePredicateFn &Predicate = Call.Fn;
311 if (Predicate.isAlwaysTrue())
312 continue;
314 if (Predicate.isImmediatePattern())
315 continue;
317 if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() ||
318 Predicate.isSignExtLoad() || Predicate.isZeroExtLoad())
319 continue;
321 if (Predicate.isNonTruncStore() || Predicate.isTruncStore())
322 continue;
324 if (Predicate.isLoad() && Predicate.getMemoryVT())
325 continue;
327 if (Predicate.isLoad() || Predicate.isStore()) {
328 if (Predicate.isUnindexed())
329 continue;
332 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
333 const ListInit *AddrSpaces = Predicate.getAddressSpaces();
334 if (AddrSpaces && !AddrSpaces->empty())
335 continue;
337 if (Predicate.getMinAlignment() > 0)
338 continue;
341 if (Predicate.isAtomic() && Predicate.getMemoryVT())
342 continue;
344 if (Predicate.isAtomic() &&
345 (Predicate.isAtomicOrderingMonotonic() ||
346 Predicate.isAtomicOrderingAcquire() ||
347 Predicate.isAtomicOrderingRelease() ||
348 Predicate.isAtomicOrderingAcquireRelease() ||
349 Predicate.isAtomicOrderingSequentiallyConsistent() ||
350 Predicate.isAtomicOrderingAcquireOrStronger() ||
351 Predicate.isAtomicOrderingWeakerThanAcquire() ||
352 Predicate.isAtomicOrderingReleaseOrStronger() ||
353 Predicate.isAtomicOrderingWeakerThanRelease()))
354 continue;
356 if (Predicate.hasGISelPredicateCode())
357 continue;
359 HasUnsupportedPredicate = true;
360 Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
361 Separator = ", ";
362 Explanation += (Separator + "first-failing:" +
363 Predicate.getOrigPatFragRecord()->getRecord()->getName())
364 .str();
365 break;
368 if (!HasUnsupportedPredicate)
369 return Error::success();
371 return failedImport(Explanation);
374 static Record *getInitValueAsRegClass(Init *V) {
375 if (DefInit *VDefInit = dyn_cast<DefInit>(V)) {
376 if (VDefInit->getDef()->isSubClassOf("RegisterOperand"))
377 return VDefInit->getDef()->getValueAsDef("RegClass");
378 if (VDefInit->getDef()->isSubClassOf("RegisterClass"))
379 return VDefInit->getDef();
381 return nullptr;
384 std::string
385 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
386 std::string Name = "GIFBS";
387 for (const auto &Feature : FeatureBitset)
388 Name += ("_" + Feature->getName()).str();
389 return Name;
392 //===- MatchTable Helpers -------------------------------------------------===//
394 class MatchTable;
396 /// A record to be stored in a MatchTable.
398 /// This class represents any and all output that may be required to emit the
399 /// MatchTable. Instances are most often configured to represent an opcode or
400 /// value that will be emitted to the table with some formatting but it can also
401 /// represent commas, comments, and other formatting instructions.
402 struct MatchTableRecord {
403 enum RecordFlagsBits {
404 MTRF_None = 0x0,
405 /// Causes EmitStr to be formatted as comment when emitted.
406 MTRF_Comment = 0x1,
407 /// Causes the record value to be followed by a comma when emitted.
408 MTRF_CommaFollows = 0x2,
409 /// Causes the record value to be followed by a line break when emitted.
410 MTRF_LineBreakFollows = 0x4,
411 /// Indicates that the record defines a label and causes an additional
412 /// comment to be emitted containing the index of the label.
413 MTRF_Label = 0x8,
414 /// Causes the record to be emitted as the index of the label specified by
415 /// LabelID along with a comment indicating where that label is.
416 MTRF_JumpTarget = 0x10,
417 /// Causes the formatter to add a level of indentation before emitting the
418 /// record.
419 MTRF_Indent = 0x20,
420 /// Causes the formatter to remove a level of indentation after emitting the
421 /// record.
422 MTRF_Outdent = 0x40,
425 /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to
426 /// reference or define.
427 unsigned LabelID;
428 /// The string to emit. Depending on the MTRF_* flags it may be a comment, a
429 /// value, a label name.
430 std::string EmitStr;
432 private:
433 /// The number of MatchTable elements described by this record. Comments are 0
434 /// while values are typically 1. Values >1 may occur when we need to emit
435 /// values that exceed the size of a MatchTable element.
436 unsigned NumElements;
438 public:
439 /// A bitfield of RecordFlagsBits flags.
440 unsigned Flags;
442 /// The actual run-time value, if known
443 int64_t RawValue;
445 MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr,
446 unsigned NumElements, unsigned Flags,
447 int64_t RawValue = std::numeric_limits<int64_t>::min())
448 : LabelID(LabelID_.hasValue() ? LabelID_.getValue() : ~0u),
449 EmitStr(EmitStr), NumElements(NumElements), Flags(Flags),
450 RawValue(RawValue) {
452 assert((!LabelID_.hasValue() || LabelID != ~0u) &&
453 "This value is reserved for non-labels");
455 MatchTableRecord(const MatchTableRecord &Other) = default;
456 MatchTableRecord(MatchTableRecord &&Other) = default;
458 /// Useful if a Match Table Record gets optimized out
459 void turnIntoComment() {
460 Flags |= MTRF_Comment;
461 Flags &= ~MTRF_CommaFollows;
462 NumElements = 0;
465 /// For Jump Table generation purposes
466 bool operator<(const MatchTableRecord &Other) const {
467 return RawValue < Other.RawValue;
469 int64_t getRawValue() const { return RawValue; }
471 void emit(raw_ostream &OS, bool LineBreakNextAfterThis,
472 const MatchTable &Table) const;
473 unsigned size() const { return NumElements; }
476 class Matcher;
478 /// Holds the contents of a generated MatchTable to enable formatting and the
479 /// necessary index tracking needed to support GIM_Try.
480 class MatchTable {
481 /// An unique identifier for the table. The generated table will be named
482 /// MatchTable${ID}.
483 unsigned ID;
484 /// The records that make up the table. Also includes comments describing the
485 /// values being emitted and line breaks to format it.
486 std::vector<MatchTableRecord> Contents;
487 /// The currently defined labels.
488 DenseMap<unsigned, unsigned> LabelMap;
489 /// Tracks the sum of MatchTableRecord::NumElements as the table is built.
490 unsigned CurrentSize = 0;
491 /// A unique identifier for a MatchTable label.
492 unsigned CurrentLabelID = 0;
493 /// Determines if the table should be instrumented for rule coverage tracking.
494 bool IsWithCoverage;
496 public:
497 static MatchTableRecord LineBreak;
498 static MatchTableRecord Comment(StringRef Comment) {
499 return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment);
501 static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) {
502 unsigned ExtraFlags = 0;
503 if (IndentAdjust > 0)
504 ExtraFlags |= MatchTableRecord::MTRF_Indent;
505 if (IndentAdjust < 0)
506 ExtraFlags |= MatchTableRecord::MTRF_Outdent;
508 return MatchTableRecord(None, Opcode, 1,
509 MatchTableRecord::MTRF_CommaFollows | ExtraFlags);
511 static MatchTableRecord NamedValue(StringRef NamedValue) {
512 return MatchTableRecord(None, NamedValue, 1,
513 MatchTableRecord::MTRF_CommaFollows);
515 static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) {
516 return MatchTableRecord(None, NamedValue, 1,
517 MatchTableRecord::MTRF_CommaFollows, RawValue);
519 static MatchTableRecord NamedValue(StringRef Namespace,
520 StringRef NamedValue) {
521 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
522 MatchTableRecord::MTRF_CommaFollows);
524 static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue,
525 int64_t RawValue) {
526 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
527 MatchTableRecord::MTRF_CommaFollows, RawValue);
529 static MatchTableRecord IntValue(int64_t IntValue) {
530 return MatchTableRecord(None, llvm::to_string(IntValue), 1,
531 MatchTableRecord::MTRF_CommaFollows);
533 static MatchTableRecord Label(unsigned LabelID) {
534 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0,
535 MatchTableRecord::MTRF_Label |
536 MatchTableRecord::MTRF_Comment |
537 MatchTableRecord::MTRF_LineBreakFollows);
539 static MatchTableRecord JumpTarget(unsigned LabelID) {
540 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1,
541 MatchTableRecord::MTRF_JumpTarget |
542 MatchTableRecord::MTRF_Comment |
543 MatchTableRecord::MTRF_CommaFollows);
546 static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage);
548 MatchTable(bool WithCoverage, unsigned ID = 0)
549 : ID(ID), IsWithCoverage(WithCoverage) {}
551 bool isWithCoverage() const { return IsWithCoverage; }
553 void push_back(const MatchTableRecord &Value) {
554 if (Value.Flags & MatchTableRecord::MTRF_Label)
555 defineLabel(Value.LabelID);
556 Contents.push_back(Value);
557 CurrentSize += Value.size();
560 unsigned allocateLabelID() { return CurrentLabelID++; }
562 void defineLabel(unsigned LabelID) {
563 LabelMap.insert(std::make_pair(LabelID, CurrentSize));
566 unsigned getLabelIndex(unsigned LabelID) const {
567 const auto I = LabelMap.find(LabelID);
568 assert(I != LabelMap.end() && "Use of undeclared label");
569 return I->second;
572 void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; }
574 void emitDeclaration(raw_ostream &OS) const {
575 unsigned Indentation = 4;
576 OS << " constexpr static int64_t MatchTable" << ID << "[] = {";
577 LineBreak.emit(OS, true, *this);
578 OS << std::string(Indentation, ' ');
580 for (auto I = Contents.begin(), E = Contents.end(); I != E;
581 ++I) {
582 bool LineBreakIsNext = false;
583 const auto &NextI = std::next(I);
585 if (NextI != E) {
586 if (NextI->EmitStr == "" &&
587 NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows)
588 LineBreakIsNext = true;
591 if (I->Flags & MatchTableRecord::MTRF_Indent)
592 Indentation += 2;
594 I->emit(OS, LineBreakIsNext, *this);
595 if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows)
596 OS << std::string(Indentation, ' ');
598 if (I->Flags & MatchTableRecord::MTRF_Outdent)
599 Indentation -= 2;
601 OS << "};\n";
605 MatchTableRecord MatchTable::LineBreak = {
606 None, "" /* Emit String */, 0 /* Elements */,
607 MatchTableRecord::MTRF_LineBreakFollows};
609 void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis,
610 const MatchTable &Table) const {
611 bool UseLineComment =
612 LineBreakIsNextAfterThis | (Flags & MTRF_LineBreakFollows);
613 if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows))
614 UseLineComment = false;
616 if (Flags & MTRF_Comment)
617 OS << (UseLineComment ? "// " : "/*");
619 OS << EmitStr;
620 if (Flags & MTRF_Label)
621 OS << ": @" << Table.getLabelIndex(LabelID);
623 if (Flags & MTRF_Comment && !UseLineComment)
624 OS << "*/";
626 if (Flags & MTRF_JumpTarget) {
627 if (Flags & MTRF_Comment)
628 OS << " ";
629 OS << Table.getLabelIndex(LabelID);
632 if (Flags & MTRF_CommaFollows) {
633 OS << ",";
634 if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows))
635 OS << " ";
638 if (Flags & MTRF_LineBreakFollows)
639 OS << "\n";
642 MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) {
643 Table.push_back(Value);
644 return Table;
647 //===- Matchers -----------------------------------------------------------===//
649 class OperandMatcher;
650 class MatchAction;
651 class PredicateMatcher;
652 class RuleMatcher;
654 class Matcher {
655 public:
656 virtual ~Matcher() = default;
657 virtual void optimize() {}
658 virtual void emit(MatchTable &Table) = 0;
660 virtual bool hasFirstCondition() const = 0;
661 virtual const PredicateMatcher &getFirstCondition() const = 0;
662 virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0;
665 MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules,
666 bool WithCoverage) {
667 MatchTable Table(WithCoverage);
668 for (Matcher *Rule : Rules)
669 Rule->emit(Table);
671 return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
674 class GroupMatcher final : public Matcher {
675 /// Conditions that form a common prefix of all the matchers contained.
676 SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions;
678 /// All the nested matchers, sharing a common prefix.
679 std::vector<Matcher *> Matchers;
681 /// An owning collection for any auxiliary matchers created while optimizing
682 /// nested matchers contained.
683 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
685 public:
686 /// Add a matcher to the collection of nested matchers if it meets the
687 /// requirements, and return true. If it doesn't, do nothing and return false.
689 /// Expected to preserve its argument, so it could be moved out later on.
690 bool addMatcher(Matcher &Candidate);
692 /// Mark the matcher as fully-built and ensure any invariants expected by both
693 /// optimize() and emit(...) methods. Generally, both sequences of calls
694 /// are expected to lead to a sensible result:
696 /// addMatcher(...)*; finalize(); optimize(); emit(...); and
697 /// addMatcher(...)*; finalize(); emit(...);
699 /// or generally
701 /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }*
703 /// Multiple calls to optimize() are expected to be handled gracefully, though
704 /// optimize() is not expected to be idempotent. Multiple calls to finalize()
705 /// aren't generally supported. emit(...) is expected to be non-mutating and
706 /// producing the exact same results upon repeated calls.
708 /// addMatcher() calls after the finalize() call are not supported.
710 /// finalize() and optimize() are both allowed to mutate the contained
711 /// matchers, so moving them out after finalize() is not supported.
712 void finalize();
713 void optimize() override;
714 void emit(MatchTable &Table) override;
716 /// Could be used to move out the matchers added previously, unless finalize()
717 /// has been already called. If any of the matchers are moved out, the group
718 /// becomes safe to destroy, but not safe to re-use for anything else.
719 iterator_range<std::vector<Matcher *>::iterator> matchers() {
720 return make_range(Matchers.begin(), Matchers.end());
722 size_t size() const { return Matchers.size(); }
723 bool empty() const { return Matchers.empty(); }
725 std::unique_ptr<PredicateMatcher> popFirstCondition() override {
726 assert(!Conditions.empty() &&
727 "Trying to pop a condition from a condition-less group");
728 std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front());
729 Conditions.erase(Conditions.begin());
730 return P;
732 const PredicateMatcher &getFirstCondition() const override {
733 assert(!Conditions.empty() &&
734 "Trying to get a condition from a condition-less group");
735 return *Conditions.front();
737 bool hasFirstCondition() const override { return !Conditions.empty(); }
739 private:
740 /// See if a candidate matcher could be added to this group solely by
741 /// analyzing its first condition.
742 bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
745 class SwitchMatcher : public Matcher {
746 /// All the nested matchers, representing distinct switch-cases. The first
747 /// conditions (as Matcher::getFirstCondition() reports) of all the nested
748 /// matchers must share the same type and path to a value they check, in other
749 /// words, be isIdenticalDownToValue, but have different values they check
750 /// against.
751 std::vector<Matcher *> Matchers;
753 /// The representative condition, with a type and a path (InsnVarID and OpIdx
754 /// in most cases) shared by all the matchers contained.
755 std::unique_ptr<PredicateMatcher> Condition = nullptr;
757 /// Temporary set used to check that the case values don't repeat within the
758 /// same switch.
759 std::set<MatchTableRecord> Values;
761 /// An owning collection for any auxiliary matchers created while optimizing
762 /// nested matchers contained.
763 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
765 public:
766 bool addMatcher(Matcher &Candidate);
768 void finalize();
769 void emit(MatchTable &Table) override;
771 iterator_range<std::vector<Matcher *>::iterator> matchers() {
772 return make_range(Matchers.begin(), Matchers.end());
774 size_t size() const { return Matchers.size(); }
775 bool empty() const { return Matchers.empty(); }
777 std::unique_ptr<PredicateMatcher> popFirstCondition() override {
778 // SwitchMatcher doesn't have a common first condition for its cases, as all
779 // the cases only share a kind of a value (a type and a path to it) they
780 // match, but deliberately differ in the actual value they match.
781 llvm_unreachable("Trying to pop a condition from a condition-less group");
783 const PredicateMatcher &getFirstCondition() const override {
784 llvm_unreachable("Trying to pop a condition from a condition-less group");
786 bool hasFirstCondition() const override { return false; }
788 private:
789 /// See if the predicate type has a Switch-implementation for it.
790 static bool isSupportedPredicateType(const PredicateMatcher &Predicate);
792 bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
794 /// emit()-helper
795 static void emitPredicateSpecificOpcodes(const PredicateMatcher &P,
796 MatchTable &Table);
799 /// Generates code to check that a match rule matches.
800 class RuleMatcher : public Matcher {
801 public:
802 using ActionList = std::list<std::unique_ptr<MatchAction>>;
803 using action_iterator = ActionList::iterator;
805 protected:
806 /// A list of matchers that all need to succeed for the current rule to match.
807 /// FIXME: This currently supports a single match position but could be
808 /// extended to support multiple positions to support div/rem fusion or
809 /// load-multiple instructions.
810 using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ;
811 MatchersTy Matchers;
813 /// A list of actions that need to be taken when all predicates in this rule
814 /// have succeeded.
815 ActionList Actions;
817 using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>;
819 /// A map of instruction matchers to the local variables
820 DefinedInsnVariablesMap InsnVariableIDs;
822 using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>;
824 // The set of instruction matchers that have not yet been claimed for mutation
825 // by a BuildMI.
826 MutatableInsnSet MutatableInsns;
828 /// A map of named operands defined by the matchers that may be referenced by
829 /// the renderers.
830 StringMap<OperandMatcher *> DefinedOperands;
832 /// ID for the next instruction variable defined with implicitlyDefineInsnVar()
833 unsigned NextInsnVarID;
835 /// ID for the next output instruction allocated with allocateOutputInsnID()
836 unsigned NextOutputInsnID;
838 /// ID for the next temporary register ID allocated with allocateTempRegID()
839 unsigned NextTempRegID;
841 std::vector<Record *> RequiredFeatures;
842 std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers;
844 ArrayRef<SMLoc> SrcLoc;
846 typedef std::tuple<Record *, unsigned, unsigned>
847 DefinedComplexPatternSubOperand;
848 typedef StringMap<DefinedComplexPatternSubOperand>
849 DefinedComplexPatternSubOperandMap;
850 /// A map of Symbolic Names to ComplexPattern sub-operands.
851 DefinedComplexPatternSubOperandMap ComplexSubOperands;
853 uint64_t RuleID;
854 static uint64_t NextRuleID;
856 public:
857 RuleMatcher(ArrayRef<SMLoc> SrcLoc)
858 : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(),
859 DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0),
860 NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(),
861 RuleID(NextRuleID++) {}
862 RuleMatcher(RuleMatcher &&Other) = default;
863 RuleMatcher &operator=(RuleMatcher &&Other) = default;
865 uint64_t getRuleID() const { return RuleID; }
867 InstructionMatcher &addInstructionMatcher(StringRef SymbolicName);
868 void addRequiredFeature(Record *Feature);
869 const std::vector<Record *> &getRequiredFeatures() const;
871 template <class Kind, class... Args> Kind &addAction(Args &&... args);
872 template <class Kind, class... Args>
873 action_iterator insertAction(action_iterator InsertPt, Args &&... args);
875 /// Define an instruction without emitting any code to do so.
876 unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher);
878 unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const;
879 DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const {
880 return InsnVariableIDs.begin();
882 DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const {
883 return InsnVariableIDs.end();
885 iterator_range<typename DefinedInsnVariablesMap::const_iterator>
886 defined_insn_vars() const {
887 return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
890 MutatableInsnSet::const_iterator mutatable_insns_begin() const {
891 return MutatableInsns.begin();
893 MutatableInsnSet::const_iterator mutatable_insns_end() const {
894 return MutatableInsns.end();
896 iterator_range<typename MutatableInsnSet::const_iterator>
897 mutatable_insns() const {
898 return make_range(mutatable_insns_begin(), mutatable_insns_end());
900 void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) {
901 bool R = MutatableInsns.erase(InsnMatcher);
902 assert(R && "Reserving a mutatable insn that isn't available");
903 (void)R;
906 action_iterator actions_begin() { return Actions.begin(); }
907 action_iterator actions_end() { return Actions.end(); }
908 iterator_range<action_iterator> actions() {
909 return make_range(actions_begin(), actions_end());
912 void defineOperand(StringRef SymbolicName, OperandMatcher &OM);
914 Error defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern,
915 unsigned RendererID, unsigned SubOperandID) {
916 if (ComplexSubOperands.count(SymbolicName))
917 return failedImport(
918 "Complex suboperand referenced more than once (Operand: " +
919 SymbolicName + ")");
921 ComplexSubOperands[SymbolicName] =
922 std::make_tuple(ComplexPattern, RendererID, SubOperandID);
924 return Error::success();
927 Optional<DefinedComplexPatternSubOperand>
928 getComplexSubOperand(StringRef SymbolicName) const {
929 const auto &I = ComplexSubOperands.find(SymbolicName);
930 if (I == ComplexSubOperands.end())
931 return None;
932 return I->second;
935 InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const;
936 const OperandMatcher &getOperandMatcher(StringRef Name) const;
938 void optimize() override;
939 void emit(MatchTable &Table) override;
941 /// Compare the priority of this object and B.
943 /// Returns true if this object is more important than B.
944 bool isHigherPriorityThan(const RuleMatcher &B) const;
946 /// Report the maximum number of temporary operands needed by the rule
947 /// matcher.
948 unsigned countRendererFns() const;
950 std::unique_ptr<PredicateMatcher> popFirstCondition() override;
951 const PredicateMatcher &getFirstCondition() const override;
952 LLTCodeGen getFirstConditionAsRootType();
953 bool hasFirstCondition() const override;
954 unsigned getNumOperands() const;
955 StringRef getOpcode() const;
957 // FIXME: Remove this as soon as possible
958 InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); }
960 unsigned allocateOutputInsnID() { return NextOutputInsnID++; }
961 unsigned allocateTempRegID() { return NextTempRegID++; }
963 iterator_range<MatchersTy::iterator> insnmatchers() {
964 return make_range(Matchers.begin(), Matchers.end());
966 bool insnmatchers_empty() const { return Matchers.empty(); }
967 void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); }
970 uint64_t RuleMatcher::NextRuleID = 0;
972 using action_iterator = RuleMatcher::action_iterator;
974 template <class PredicateTy> class PredicateListMatcher {
975 private:
976 /// Template instantiations should specialize this to return a string to use
977 /// for the comment emitted when there are no predicates.
978 std::string getNoPredicateComment() const;
980 protected:
981 using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>;
982 PredicatesTy Predicates;
984 /// Track if the list of predicates was manipulated by one of the optimization
985 /// methods.
986 bool Optimized = false;
988 public:
989 /// Construct a new predicate and add it to the matcher.
990 template <class Kind, class... Args>
991 Optional<Kind *> addPredicate(Args &&... args);
993 typename PredicatesTy::iterator predicates_begin() {
994 return Predicates.begin();
996 typename PredicatesTy::iterator predicates_end() {
997 return Predicates.end();
999 iterator_range<typename PredicatesTy::iterator> predicates() {
1000 return make_range(predicates_begin(), predicates_end());
1002 typename PredicatesTy::size_type predicates_size() const {
1003 return Predicates.size();
1005 bool predicates_empty() const { return Predicates.empty(); }
1007 std::unique_ptr<PredicateTy> predicates_pop_front() {
1008 std::unique_ptr<PredicateTy> Front = std::move(Predicates.front());
1009 Predicates.pop_front();
1010 Optimized = true;
1011 return Front;
1014 void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) {
1015 Predicates.push_front(std::move(Predicate));
1018 void eraseNullPredicates() {
1019 const auto NewEnd =
1020 std::stable_partition(Predicates.begin(), Predicates.end(),
1021 std::logical_not<std::unique_ptr<PredicateTy>>());
1022 if (NewEnd != Predicates.begin()) {
1023 Predicates.erase(Predicates.begin(), NewEnd);
1024 Optimized = true;
1028 /// Emit MatchTable opcodes that tests whether all the predicates are met.
1029 template <class... Args>
1030 void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) {
1031 if (Predicates.empty() && !Optimized) {
1032 Table << MatchTable::Comment(getNoPredicateComment())
1033 << MatchTable::LineBreak;
1034 return;
1037 for (const auto &Predicate : predicates())
1038 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
1042 class PredicateMatcher {
1043 public:
1044 /// This enum is used for RTTI and also defines the priority that is given to
1045 /// the predicate when generating the matcher code. Kinds with higher priority
1046 /// must be tested first.
1048 /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
1049 /// but OPM_Int must have priority over OPM_RegBank since constant integers
1050 /// are represented by a virtual register defined by a G_CONSTANT instruction.
1052 /// Note: The relative priority between IPM_ and OPM_ does not matter, they
1053 /// are currently not compared between each other.
1054 enum PredicateKind {
1055 IPM_Opcode,
1056 IPM_NumOperands,
1057 IPM_ImmPredicate,
1058 IPM_AtomicOrderingMMO,
1059 IPM_MemoryLLTSize,
1060 IPM_MemoryVsLLTSize,
1061 IPM_MemoryAddressSpace,
1062 IPM_MemoryAlignment,
1063 IPM_GenericPredicate,
1064 OPM_SameOperand,
1065 OPM_ComplexPattern,
1066 OPM_IntrinsicID,
1067 OPM_Instruction,
1068 OPM_Int,
1069 OPM_LiteralInt,
1070 OPM_LLT,
1071 OPM_PointerToAny,
1072 OPM_RegBank,
1073 OPM_MBB,
1076 protected:
1077 PredicateKind Kind;
1078 unsigned InsnVarID;
1079 unsigned OpIdx;
1081 public:
1082 PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0)
1083 : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {}
1085 unsigned getInsnVarID() const { return InsnVarID; }
1086 unsigned getOpIdx() const { return OpIdx; }
1088 virtual ~PredicateMatcher() = default;
1089 /// Emit MatchTable opcodes that check the predicate for the given operand.
1090 virtual void emitPredicateOpcodes(MatchTable &Table,
1091 RuleMatcher &Rule) const = 0;
1093 PredicateKind getKind() const { return Kind; }
1095 virtual bool isIdentical(const PredicateMatcher &B) const {
1096 return B.getKind() == getKind() && InsnVarID == B.InsnVarID &&
1097 OpIdx == B.OpIdx;
1100 virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const {
1101 return hasValue() && PredicateMatcher::isIdentical(B);
1104 virtual MatchTableRecord getValue() const {
1105 assert(hasValue() && "Can not get a value of a value-less predicate!");
1106 llvm_unreachable("Not implemented yet");
1108 virtual bool hasValue() const { return false; }
1110 /// Report the maximum number of temporary operands needed by the predicate
1111 /// matcher.
1112 virtual unsigned countRendererFns() const { return 0; }
1115 /// Generates code to check a predicate of an operand.
1117 /// Typical predicates include:
1118 /// * Operand is a particular register.
1119 /// * Operand is assigned a particular register bank.
1120 /// * Operand is an MBB.
1121 class OperandPredicateMatcher : public PredicateMatcher {
1122 public:
1123 OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID,
1124 unsigned OpIdx)
1125 : PredicateMatcher(Kind, InsnVarID, OpIdx) {}
1126 virtual ~OperandPredicateMatcher() {}
1128 /// Compare the priority of this object and B.
1130 /// Returns true if this object is more important than B.
1131 virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const;
1134 template <>
1135 std::string
1136 PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const {
1137 return "No operand predicates";
1140 /// Generates code to check that a register operand is defined by the same exact
1141 /// one as another.
1142 class SameOperandMatcher : public OperandPredicateMatcher {
1143 std::string MatchingName;
1145 public:
1146 SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName)
1147 : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx),
1148 MatchingName(MatchingName) {}
1150 static bool classof(const PredicateMatcher *P) {
1151 return P->getKind() == OPM_SameOperand;
1154 void emitPredicateOpcodes(MatchTable &Table,
1155 RuleMatcher &Rule) const override;
1157 bool isIdentical(const PredicateMatcher &B) const override {
1158 return OperandPredicateMatcher::isIdentical(B) &&
1159 MatchingName == cast<SameOperandMatcher>(&B)->MatchingName;
1163 /// Generates code to check that an operand is a particular LLT.
1164 class LLTOperandMatcher : public OperandPredicateMatcher {
1165 protected:
1166 LLTCodeGen Ty;
1168 public:
1169 static std::map<LLTCodeGen, unsigned> TypeIDValues;
1171 static void initTypeIDValuesMap() {
1172 TypeIDValues.clear();
1174 unsigned ID = 0;
1175 for (const LLTCodeGen LLTy : KnownTypes)
1176 TypeIDValues[LLTy] = ID++;
1179 LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty)
1180 : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) {
1181 KnownTypes.insert(Ty);
1184 static bool classof(const PredicateMatcher *P) {
1185 return P->getKind() == OPM_LLT;
1187 bool isIdentical(const PredicateMatcher &B) const override {
1188 return OperandPredicateMatcher::isIdentical(B) &&
1189 Ty == cast<LLTOperandMatcher>(&B)->Ty;
1191 MatchTableRecord getValue() const override {
1192 const auto VI = TypeIDValues.find(Ty);
1193 if (VI == TypeIDValues.end())
1194 return MatchTable::NamedValue(getTy().getCxxEnumValue());
1195 return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second);
1197 bool hasValue() const override {
1198 if (TypeIDValues.size() != KnownTypes.size())
1199 initTypeIDValuesMap();
1200 return TypeIDValues.count(Ty);
1203 LLTCodeGen getTy() const { return Ty; }
1205 void emitPredicateOpcodes(MatchTable &Table,
1206 RuleMatcher &Rule) const override {
1207 Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
1208 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1209 << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type")
1210 << getValue() << MatchTable::LineBreak;
1214 std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues;
1216 /// Generates code to check that an operand is a pointer to any address space.
1218 /// In SelectionDAG, the types did not describe pointers or address spaces. As a
1219 /// result, iN is used to describe a pointer of N bits to any address space and
1220 /// PatFrag predicates are typically used to constrain the address space. There's
1221 /// no reliable means to derive the missing type information from the pattern so
1222 /// imported rules must test the components of a pointer separately.
1224 /// If SizeInBits is zero, then the pointer size will be obtained from the
1225 /// subtarget.
1226 class PointerToAnyOperandMatcher : public OperandPredicateMatcher {
1227 protected:
1228 unsigned SizeInBits;
1230 public:
1231 PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1232 unsigned SizeInBits)
1233 : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx),
1234 SizeInBits(SizeInBits) {}
1236 static bool classof(const OperandPredicateMatcher *P) {
1237 return P->getKind() == OPM_PointerToAny;
1240 void emitPredicateOpcodes(MatchTable &Table,
1241 RuleMatcher &Rule) const override {
1242 Table << MatchTable::Opcode("GIM_CheckPointerToAny")
1243 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1244 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1245 << MatchTable::Comment("SizeInBits")
1246 << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak;
1250 /// Generates code to check that an operand is a particular target constant.
1251 class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
1252 protected:
1253 const OperandMatcher &Operand;
1254 const Record &TheDef;
1256 unsigned getAllocatedTemporariesBaseID() const;
1258 public:
1259 bool isIdentical(const PredicateMatcher &B) const override { return false; }
1261 ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1262 const OperandMatcher &Operand,
1263 const Record &TheDef)
1264 : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx),
1265 Operand(Operand), TheDef(TheDef) {}
1267 static bool classof(const PredicateMatcher *P) {
1268 return P->getKind() == OPM_ComplexPattern;
1271 void emitPredicateOpcodes(MatchTable &Table,
1272 RuleMatcher &Rule) const override {
1273 unsigned ID = getAllocatedTemporariesBaseID();
1274 Table << MatchTable::Opcode("GIM_CheckComplexPattern")
1275 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1276 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1277 << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID)
1278 << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str())
1279 << MatchTable::LineBreak;
1282 unsigned countRendererFns() const override {
1283 return 1;
1287 /// Generates code to check that an operand is in a particular register bank.
1288 class RegisterBankOperandMatcher : public OperandPredicateMatcher {
1289 protected:
1290 const CodeGenRegisterClass &RC;
1292 public:
1293 RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1294 const CodeGenRegisterClass &RC)
1295 : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {}
1297 bool isIdentical(const PredicateMatcher &B) const override {
1298 return OperandPredicateMatcher::isIdentical(B) &&
1299 RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef();
1302 static bool classof(const PredicateMatcher *P) {
1303 return P->getKind() == OPM_RegBank;
1306 void emitPredicateOpcodes(MatchTable &Table,
1307 RuleMatcher &Rule) const override {
1308 Table << MatchTable::Opcode("GIM_CheckRegBankForClass")
1309 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1310 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1311 << MatchTable::Comment("RC")
1312 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
1313 << MatchTable::LineBreak;
1317 /// Generates code to check that an operand is a basic block.
1318 class MBBOperandMatcher : public OperandPredicateMatcher {
1319 public:
1320 MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
1321 : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {}
1323 static bool classof(const PredicateMatcher *P) {
1324 return P->getKind() == OPM_MBB;
1327 void emitPredicateOpcodes(MatchTable &Table,
1328 RuleMatcher &Rule) const override {
1329 Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
1330 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1331 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
1335 /// Generates code to check that an operand is a G_CONSTANT with a particular
1336 /// int.
1337 class ConstantIntOperandMatcher : public OperandPredicateMatcher {
1338 protected:
1339 int64_t Value;
1341 public:
1342 ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
1343 : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {}
1345 bool isIdentical(const PredicateMatcher &B) const override {
1346 return OperandPredicateMatcher::isIdentical(B) &&
1347 Value == cast<ConstantIntOperandMatcher>(&B)->Value;
1350 static bool classof(const PredicateMatcher *P) {
1351 return P->getKind() == OPM_Int;
1354 void emitPredicateOpcodes(MatchTable &Table,
1355 RuleMatcher &Rule) const override {
1356 Table << MatchTable::Opcode("GIM_CheckConstantInt")
1357 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1358 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1359 << MatchTable::IntValue(Value) << MatchTable::LineBreak;
1363 /// Generates code to check that an operand is a raw int (where MO.isImm() or
1364 /// MO.isCImm() is true).
1365 class LiteralIntOperandMatcher : public OperandPredicateMatcher {
1366 protected:
1367 int64_t Value;
1369 public:
1370 LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
1371 : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx),
1372 Value(Value) {}
1374 bool isIdentical(const PredicateMatcher &B) const override {
1375 return OperandPredicateMatcher::isIdentical(B) &&
1376 Value == cast<LiteralIntOperandMatcher>(&B)->Value;
1379 static bool classof(const PredicateMatcher *P) {
1380 return P->getKind() == OPM_LiteralInt;
1383 void emitPredicateOpcodes(MatchTable &Table,
1384 RuleMatcher &Rule) const override {
1385 Table << MatchTable::Opcode("GIM_CheckLiteralInt")
1386 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1387 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1388 << MatchTable::IntValue(Value) << MatchTable::LineBreak;
1392 /// Generates code to check that an operand is an intrinsic ID.
1393 class IntrinsicIDOperandMatcher : public OperandPredicateMatcher {
1394 protected:
1395 const CodeGenIntrinsic *II;
1397 public:
1398 IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1399 const CodeGenIntrinsic *II)
1400 : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {}
1402 bool isIdentical(const PredicateMatcher &B) const override {
1403 return OperandPredicateMatcher::isIdentical(B) &&
1404 II == cast<IntrinsicIDOperandMatcher>(&B)->II;
1407 static bool classof(const PredicateMatcher *P) {
1408 return P->getKind() == OPM_IntrinsicID;
1411 void emitPredicateOpcodes(MatchTable &Table,
1412 RuleMatcher &Rule) const override {
1413 Table << MatchTable::Opcode("GIM_CheckIntrinsicID")
1414 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1415 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1416 << MatchTable::NamedValue("Intrinsic::" + II->EnumName)
1417 << MatchTable::LineBreak;
1421 /// Generates code to check that a set of predicates match for a particular
1422 /// operand.
1423 class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
1424 protected:
1425 InstructionMatcher &Insn;
1426 unsigned OpIdx;
1427 std::string SymbolicName;
1429 /// The index of the first temporary variable allocated to this operand. The
1430 /// number of allocated temporaries can be found with
1431 /// countRendererFns().
1432 unsigned AllocatedTemporariesBaseID;
1434 public:
1435 OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
1436 const std::string &SymbolicName,
1437 unsigned AllocatedTemporariesBaseID)
1438 : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
1439 AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
1441 bool hasSymbolicName() const { return !SymbolicName.empty(); }
1442 const StringRef getSymbolicName() const { return SymbolicName; }
1443 void setSymbolicName(StringRef Name) {
1444 assert(SymbolicName.empty() && "Operand already has a symbolic name");
1445 SymbolicName = Name;
1448 /// Construct a new operand predicate and add it to the matcher.
1449 template <class Kind, class... Args>
1450 Optional<Kind *> addPredicate(Args &&... args) {
1451 if (isSameAsAnotherOperand())
1452 return None;
1453 Predicates.emplace_back(llvm::make_unique<Kind>(
1454 getInsnVarID(), getOpIdx(), std::forward<Args>(args)...));
1455 return static_cast<Kind *>(Predicates.back().get());
1458 unsigned getOpIdx() const { return OpIdx; }
1459 unsigned getInsnVarID() const;
1461 std::string getOperandExpr(unsigned InsnVarID) const {
1462 return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" +
1463 llvm::to_string(OpIdx) + ")";
1466 InstructionMatcher &getInstructionMatcher() const { return Insn; }
1468 Error addTypeCheckPredicate(const TypeSetByHwMode &VTy,
1469 bool OperandIsAPointer);
1471 /// Emit MatchTable opcodes that test whether the instruction named in
1472 /// InsnVarID matches all the predicates and all the operands.
1473 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
1474 if (!Optimized) {
1475 std::string Comment;
1476 raw_string_ostream CommentOS(Comment);
1477 CommentOS << "MIs[" << getInsnVarID() << "] ";
1478 if (SymbolicName.empty())
1479 CommentOS << "Operand " << OpIdx;
1480 else
1481 CommentOS << SymbolicName;
1482 Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak;
1485 emitPredicateListOpcodes(Table, Rule);
1488 /// Compare the priority of this object and B.
1490 /// Returns true if this object is more important than B.
1491 bool isHigherPriorityThan(OperandMatcher &B) {
1492 // Operand matchers involving more predicates have higher priority.
1493 if (predicates_size() > B.predicates_size())
1494 return true;
1495 if (predicates_size() < B.predicates_size())
1496 return false;
1498 // This assumes that predicates are added in a consistent order.
1499 for (auto &&Predicate : zip(predicates(), B.predicates())) {
1500 if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
1501 return true;
1502 if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
1503 return false;
1506 return false;
1509 /// Report the maximum number of temporary operands needed by the operand
1510 /// matcher.
1511 unsigned countRendererFns() {
1512 return std::accumulate(
1513 predicates().begin(), predicates().end(), 0,
1514 [](unsigned A,
1515 const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
1516 return A + Predicate->countRendererFns();
1520 unsigned getAllocatedTemporariesBaseID() const {
1521 return AllocatedTemporariesBaseID;
1524 bool isSameAsAnotherOperand() {
1525 for (const auto &Predicate : predicates())
1526 if (isa<SameOperandMatcher>(Predicate))
1527 return true;
1528 return false;
1532 Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy,
1533 bool OperandIsAPointer) {
1534 if (!VTy.isMachineValueType())
1535 return failedImport("unsupported typeset");
1537 if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) {
1538 addPredicate<PointerToAnyOperandMatcher>(0);
1539 return Error::success();
1542 auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy);
1543 if (!OpTyOrNone)
1544 return failedImport("unsupported type");
1546 if (OperandIsAPointer)
1547 addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits());
1548 else if (VTy.isPointer())
1549 addPredicate<LLTOperandMatcher>(LLT::pointer(VTy.getPtrAddrSpace(),
1550 OpTyOrNone->get().getSizeInBits()));
1551 else
1552 addPredicate<LLTOperandMatcher>(*OpTyOrNone);
1553 return Error::success();
1556 unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
1557 return Operand.getAllocatedTemporariesBaseID();
1560 /// Generates code to check a predicate on an instruction.
1562 /// Typical predicates include:
1563 /// * The opcode of the instruction is a particular value.
1564 /// * The nsw/nuw flag is/isn't set.
1565 class InstructionPredicateMatcher : public PredicateMatcher {
1566 public:
1567 InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID)
1568 : PredicateMatcher(Kind, InsnVarID) {}
1569 virtual ~InstructionPredicateMatcher() {}
1571 /// Compare the priority of this object and B.
1573 /// Returns true if this object is more important than B.
1574 virtual bool
1575 isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
1576 return Kind < B.Kind;
1580 template <>
1581 std::string
1582 PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const {
1583 return "No instruction predicates";
1586 /// Generates code to check the opcode of an instruction.
1587 class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
1588 protected:
1589 const CodeGenInstruction *I;
1591 static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues;
1593 public:
1594 static void initOpcodeValuesMap(const CodeGenTarget &Target) {
1595 OpcodeValues.clear();
1597 unsigned OpcodeValue = 0;
1598 for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue())
1599 OpcodeValues[I] = OpcodeValue++;
1602 InstructionOpcodeMatcher(unsigned InsnVarID, const CodeGenInstruction *I)
1603 : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), I(I) {}
1605 static bool classof(const PredicateMatcher *P) {
1606 return P->getKind() == IPM_Opcode;
1609 bool isIdentical(const PredicateMatcher &B) const override {
1610 return InstructionPredicateMatcher::isIdentical(B) &&
1611 I == cast<InstructionOpcodeMatcher>(&B)->I;
1613 MatchTableRecord getValue() const override {
1614 const auto VI = OpcodeValues.find(I);
1615 if (VI != OpcodeValues.end())
1616 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
1617 VI->second);
1618 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
1620 bool hasValue() const override { return OpcodeValues.count(I); }
1622 void emitPredicateOpcodes(MatchTable &Table,
1623 RuleMatcher &Rule) const override {
1624 Table << MatchTable::Opcode("GIM_CheckOpcode") << MatchTable::Comment("MI")
1625 << MatchTable::IntValue(InsnVarID) << getValue()
1626 << MatchTable::LineBreak;
1629 /// Compare the priority of this object and B.
1631 /// Returns true if this object is more important than B.
1632 bool
1633 isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
1634 if (InstructionPredicateMatcher::isHigherPriorityThan(B))
1635 return true;
1636 if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
1637 return false;
1639 // Prioritize opcodes for cosmetic reasons in the generated source. Although
1640 // this is cosmetic at the moment, we may want to drive a similar ordering
1641 // using instruction frequency information to improve compile time.
1642 if (const InstructionOpcodeMatcher *BO =
1643 dyn_cast<InstructionOpcodeMatcher>(&B))
1644 return I->TheDef->getName() < BO->I->TheDef->getName();
1646 return false;
1649 bool isConstantInstruction() const {
1650 return I->TheDef->getName() == "G_CONSTANT";
1653 StringRef getOpcode() const { return I->TheDef->getName(); }
1654 unsigned getNumOperands() const { return I->Operands.size(); }
1656 StringRef getOperandType(unsigned OpIdx) const {
1657 return I->Operands[OpIdx].OperandType;
1661 DenseMap<const CodeGenInstruction *, unsigned>
1662 InstructionOpcodeMatcher::OpcodeValues;
1664 class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher {
1665 unsigned NumOperands = 0;
1667 public:
1668 InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands)
1669 : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID),
1670 NumOperands(NumOperands) {}
1672 static bool classof(const PredicateMatcher *P) {
1673 return P->getKind() == IPM_NumOperands;
1676 bool isIdentical(const PredicateMatcher &B) const override {
1677 return InstructionPredicateMatcher::isIdentical(B) &&
1678 NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands;
1681 void emitPredicateOpcodes(MatchTable &Table,
1682 RuleMatcher &Rule) const override {
1683 Table << MatchTable::Opcode("GIM_CheckNumOperands")
1684 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1685 << MatchTable::Comment("Expected")
1686 << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak;
1690 /// Generates code to check that this instruction is a constant whose value
1691 /// meets an immediate predicate.
1693 /// Immediates are slightly odd since they are typically used like an operand
1694 /// but are represented as an operator internally. We typically write simm8:$src
1695 /// in a tablegen pattern, but this is just syntactic sugar for
1696 /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes
1697 /// that will be matched and the predicate (which is attached to the imm
1698 /// operator) that will be tested. In SelectionDAG this describes a
1699 /// ConstantSDNode whose internal value will be tested using the simm8 predicate.
1701 /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In
1702 /// this representation, the immediate could be tested with an
1703 /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a
1704 /// OperandPredicateMatcher-subclass to check the Value meets the predicate but
1705 /// there are two implementation issues with producing that matcher
1706 /// configuration from the SelectionDAG pattern:
1707 /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that
1708 /// were we to sink the immediate predicate to the operand we would have to
1709 /// have two partial implementations of PatFrag support, one for immediates
1710 /// and one for non-immediates.
1711 /// * At the point we handle the predicate, the OperandMatcher hasn't been
1712 /// created yet. If we were to sink the predicate to the OperandMatcher we
1713 /// would also have to complicate (or duplicate) the code that descends and
1714 /// creates matchers for the subtree.
1715 /// Overall, it's simpler to handle it in the place it was found.
1716 class InstructionImmPredicateMatcher : public InstructionPredicateMatcher {
1717 protected:
1718 TreePredicateFn Predicate;
1720 public:
1721 InstructionImmPredicateMatcher(unsigned InsnVarID,
1722 const TreePredicateFn &Predicate)
1723 : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID),
1724 Predicate(Predicate) {}
1726 bool isIdentical(const PredicateMatcher &B) const override {
1727 return InstructionPredicateMatcher::isIdentical(B) &&
1728 Predicate.getOrigPatFragRecord() ==
1729 cast<InstructionImmPredicateMatcher>(&B)
1730 ->Predicate.getOrigPatFragRecord();
1733 static bool classof(const PredicateMatcher *P) {
1734 return P->getKind() == IPM_ImmPredicate;
1737 void emitPredicateOpcodes(MatchTable &Table,
1738 RuleMatcher &Rule) const override {
1739 Table << MatchTable::Opcode(getMatchOpcodeForPredicate(Predicate))
1740 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1741 << MatchTable::Comment("Predicate")
1742 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
1743 << MatchTable::LineBreak;
1747 /// Generates code to check that a memory instruction has a atomic ordering
1748 /// MachineMemoryOperand.
1749 class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher {
1750 public:
1751 enum AOComparator {
1752 AO_Exactly,
1753 AO_OrStronger,
1754 AO_WeakerThan,
1757 protected:
1758 StringRef Order;
1759 AOComparator Comparator;
1761 public:
1762 AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order,
1763 AOComparator Comparator = AO_Exactly)
1764 : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID),
1765 Order(Order), Comparator(Comparator) {}
1767 static bool classof(const PredicateMatcher *P) {
1768 return P->getKind() == IPM_AtomicOrderingMMO;
1771 bool isIdentical(const PredicateMatcher &B) const override {
1772 if (!InstructionPredicateMatcher::isIdentical(B))
1773 return false;
1774 const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B);
1775 return Order == R.Order && Comparator == R.Comparator;
1778 void emitPredicateOpcodes(MatchTable &Table,
1779 RuleMatcher &Rule) const override {
1780 StringRef Opcode = "GIM_CheckAtomicOrdering";
1782 if (Comparator == AO_OrStronger)
1783 Opcode = "GIM_CheckAtomicOrderingOrStrongerThan";
1784 if (Comparator == AO_WeakerThan)
1785 Opcode = "GIM_CheckAtomicOrderingWeakerThan";
1787 Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI")
1788 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order")
1789 << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str())
1790 << MatchTable::LineBreak;
1794 /// Generates code to check that the size of an MMO is exactly N bytes.
1795 class MemorySizePredicateMatcher : public InstructionPredicateMatcher {
1796 protected:
1797 unsigned MMOIdx;
1798 uint64_t Size;
1800 public:
1801 MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size)
1802 : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID),
1803 MMOIdx(MMOIdx), Size(Size) {}
1805 static bool classof(const PredicateMatcher *P) {
1806 return P->getKind() == IPM_MemoryLLTSize;
1808 bool isIdentical(const PredicateMatcher &B) const override {
1809 return InstructionPredicateMatcher::isIdentical(B) &&
1810 MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx &&
1811 Size == cast<MemorySizePredicateMatcher>(&B)->Size;
1814 void emitPredicateOpcodes(MatchTable &Table,
1815 RuleMatcher &Rule) const override {
1816 Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo")
1817 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1818 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
1819 << MatchTable::Comment("Size") << MatchTable::IntValue(Size)
1820 << MatchTable::LineBreak;
1824 class MemoryAddressSpacePredicateMatcher : public InstructionPredicateMatcher {
1825 protected:
1826 unsigned MMOIdx;
1827 SmallVector<unsigned, 4> AddrSpaces;
1829 public:
1830 MemoryAddressSpacePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
1831 ArrayRef<unsigned> AddrSpaces)
1832 : InstructionPredicateMatcher(IPM_MemoryAddressSpace, InsnVarID),
1833 MMOIdx(MMOIdx), AddrSpaces(AddrSpaces.begin(), AddrSpaces.end()) {}
1835 static bool classof(const PredicateMatcher *P) {
1836 return P->getKind() == IPM_MemoryAddressSpace;
1838 bool isIdentical(const PredicateMatcher &B) const override {
1839 if (!InstructionPredicateMatcher::isIdentical(B))
1840 return false;
1841 auto *Other = cast<MemoryAddressSpacePredicateMatcher>(&B);
1842 return MMOIdx == Other->MMOIdx && AddrSpaces == Other->AddrSpaces;
1845 void emitPredicateOpcodes(MatchTable &Table,
1846 RuleMatcher &Rule) const override {
1847 Table << MatchTable::Opcode("GIM_CheckMemoryAddressSpace")
1848 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1849 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
1850 // Encode number of address spaces to expect.
1851 << MatchTable::Comment("NumAddrSpace")
1852 << MatchTable::IntValue(AddrSpaces.size());
1853 for (unsigned AS : AddrSpaces)
1854 Table << MatchTable::Comment("AddrSpace") << MatchTable::IntValue(AS);
1856 Table << MatchTable::LineBreak;
1860 class MemoryAlignmentPredicateMatcher : public InstructionPredicateMatcher {
1861 protected:
1862 unsigned MMOIdx;
1863 int MinAlign;
1865 public:
1866 MemoryAlignmentPredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
1867 int MinAlign)
1868 : InstructionPredicateMatcher(IPM_MemoryAlignment, InsnVarID),
1869 MMOIdx(MMOIdx), MinAlign(MinAlign) {
1870 assert(MinAlign > 0);
1873 static bool classof(const PredicateMatcher *P) {
1874 return P->getKind() == IPM_MemoryAlignment;
1877 bool isIdentical(const PredicateMatcher &B) const override {
1878 if (!InstructionPredicateMatcher::isIdentical(B))
1879 return false;
1880 auto *Other = cast<MemoryAlignmentPredicateMatcher>(&B);
1881 return MMOIdx == Other->MMOIdx && MinAlign == Other->MinAlign;
1884 void emitPredicateOpcodes(MatchTable &Table,
1885 RuleMatcher &Rule) const override {
1886 Table << MatchTable::Opcode("GIM_CheckMemoryAlignment")
1887 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1888 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
1889 << MatchTable::Comment("MinAlign") << MatchTable::IntValue(MinAlign)
1890 << MatchTable::LineBreak;
1894 /// Generates code to check that the size of an MMO is less-than, equal-to, or
1895 /// greater than a given LLT.
1896 class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher {
1897 public:
1898 enum RelationKind {
1899 GreaterThan,
1900 EqualTo,
1901 LessThan,
1904 protected:
1905 unsigned MMOIdx;
1906 RelationKind Relation;
1907 unsigned OpIdx;
1909 public:
1910 MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
1911 enum RelationKind Relation,
1912 unsigned OpIdx)
1913 : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID),
1914 MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {}
1916 static bool classof(const PredicateMatcher *P) {
1917 return P->getKind() == IPM_MemoryVsLLTSize;
1919 bool isIdentical(const PredicateMatcher &B) const override {
1920 return InstructionPredicateMatcher::isIdentical(B) &&
1921 MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx &&
1922 Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation &&
1923 OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx;
1926 void emitPredicateOpcodes(MatchTable &Table,
1927 RuleMatcher &Rule) const override {
1928 Table << MatchTable::Opcode(Relation == EqualTo
1929 ? "GIM_CheckMemorySizeEqualToLLT"
1930 : Relation == GreaterThan
1931 ? "GIM_CheckMemorySizeGreaterThanLLT"
1932 : "GIM_CheckMemorySizeLessThanLLT")
1933 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1934 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
1935 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
1936 << MatchTable::LineBreak;
1940 /// Generates code to check an arbitrary C++ instruction predicate.
1941 class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher {
1942 protected:
1943 TreePredicateFn Predicate;
1945 public:
1946 GenericInstructionPredicateMatcher(unsigned InsnVarID,
1947 TreePredicateFn Predicate)
1948 : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID),
1949 Predicate(Predicate) {}
1951 static bool classof(const InstructionPredicateMatcher *P) {
1952 return P->getKind() == IPM_GenericPredicate;
1954 bool isIdentical(const PredicateMatcher &B) const override {
1955 return InstructionPredicateMatcher::isIdentical(B) &&
1956 Predicate ==
1957 static_cast<const GenericInstructionPredicateMatcher &>(B)
1958 .Predicate;
1960 void emitPredicateOpcodes(MatchTable &Table,
1961 RuleMatcher &Rule) const override {
1962 Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate")
1963 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1964 << MatchTable::Comment("FnId")
1965 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
1966 << MatchTable::LineBreak;
1970 /// Generates code to check that a set of predicates and operands match for a
1971 /// particular instruction.
1973 /// Typical predicates include:
1974 /// * Has a specific opcode.
1975 /// * Has an nsw/nuw flag or doesn't.
1976 class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> {
1977 protected:
1978 typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
1980 RuleMatcher &Rule;
1982 /// The operands to match. All rendered operands must be present even if the
1983 /// condition is always true.
1984 OperandVec Operands;
1985 bool NumOperandsCheck = true;
1987 std::string SymbolicName;
1988 unsigned InsnVarID;
1990 public:
1991 InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName)
1992 : Rule(Rule), SymbolicName(SymbolicName) {
1993 // We create a new instruction matcher.
1994 // Get a new ID for that instruction.
1995 InsnVarID = Rule.implicitlyDefineInsnVar(*this);
1998 /// Construct a new instruction predicate and add it to the matcher.
1999 template <class Kind, class... Args>
2000 Optional<Kind *> addPredicate(Args &&... args) {
2001 Predicates.emplace_back(
2002 llvm::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...));
2003 return static_cast<Kind *>(Predicates.back().get());
2006 RuleMatcher &getRuleMatcher() const { return Rule; }
2008 unsigned getInsnVarID() const { return InsnVarID; }
2010 /// Add an operand to the matcher.
2011 OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
2012 unsigned AllocatedTemporariesBaseID) {
2013 Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
2014 AllocatedTemporariesBaseID));
2015 if (!SymbolicName.empty())
2016 Rule.defineOperand(SymbolicName, *Operands.back());
2018 return *Operands.back();
2021 OperandMatcher &getOperand(unsigned OpIdx) {
2022 auto I = std::find_if(Operands.begin(), Operands.end(),
2023 [&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
2024 return X->getOpIdx() == OpIdx;
2026 if (I != Operands.end())
2027 return **I;
2028 llvm_unreachable("Failed to lookup operand");
2031 StringRef getSymbolicName() const { return SymbolicName; }
2032 unsigned getNumOperands() const { return Operands.size(); }
2033 OperandVec::iterator operands_begin() { return Operands.begin(); }
2034 OperandVec::iterator operands_end() { return Operands.end(); }
2035 iterator_range<OperandVec::iterator> operands() {
2036 return make_range(operands_begin(), operands_end());
2038 OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
2039 OperandVec::const_iterator operands_end() const { return Operands.end(); }
2040 iterator_range<OperandVec::const_iterator> operands() const {
2041 return make_range(operands_begin(), operands_end());
2043 bool operands_empty() const { return Operands.empty(); }
2045 void pop_front() { Operands.erase(Operands.begin()); }
2047 void optimize();
2049 /// Emit MatchTable opcodes that test whether the instruction named in
2050 /// InsnVarName matches all the predicates and all the operands.
2051 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
2052 if (NumOperandsCheck)
2053 InstructionNumOperandsMatcher(InsnVarID, getNumOperands())
2054 .emitPredicateOpcodes(Table, Rule);
2056 emitPredicateListOpcodes(Table, Rule);
2058 for (const auto &Operand : Operands)
2059 Operand->emitPredicateOpcodes(Table, Rule);
2062 /// Compare the priority of this object and B.
2064 /// Returns true if this object is more important than B.
2065 bool isHigherPriorityThan(InstructionMatcher &B) {
2066 // Instruction matchers involving more operands have higher priority.
2067 if (Operands.size() > B.Operands.size())
2068 return true;
2069 if (Operands.size() < B.Operands.size())
2070 return false;
2072 for (auto &&P : zip(predicates(), B.predicates())) {
2073 auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get());
2074 auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get());
2075 if (L->isHigherPriorityThan(*R))
2076 return true;
2077 if (R->isHigherPriorityThan(*L))
2078 return false;
2081 for (const auto &Operand : zip(Operands, B.Operands)) {
2082 if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
2083 return true;
2084 if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
2085 return false;
2088 return false;
2091 /// Report the maximum number of temporary operands needed by the instruction
2092 /// matcher.
2093 unsigned countRendererFns() {
2094 return std::accumulate(
2095 predicates().begin(), predicates().end(), 0,
2096 [](unsigned A,
2097 const std::unique_ptr<PredicateMatcher> &Predicate) {
2098 return A + Predicate->countRendererFns();
2099 }) +
2100 std::accumulate(
2101 Operands.begin(), Operands.end(), 0,
2102 [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
2103 return A + Operand->countRendererFns();
2107 InstructionOpcodeMatcher &getOpcodeMatcher() {
2108 for (auto &P : predicates())
2109 if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get()))
2110 return *OpMatcher;
2111 llvm_unreachable("Didn't find an opcode matcher");
2114 bool isConstantInstruction() {
2115 return getOpcodeMatcher().isConstantInstruction();
2118 StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); }
2121 StringRef RuleMatcher::getOpcode() const {
2122 return Matchers.front()->getOpcode();
2125 unsigned RuleMatcher::getNumOperands() const {
2126 return Matchers.front()->getNumOperands();
2129 LLTCodeGen RuleMatcher::getFirstConditionAsRootType() {
2130 InstructionMatcher &InsnMatcher = *Matchers.front();
2131 if (!InsnMatcher.predicates_empty())
2132 if (const auto *TM =
2133 dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin()))
2134 if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0)
2135 return TM->getTy();
2136 return {};
2139 /// Generates code to check that the operand is a register defined by an
2140 /// instruction that matches the given instruction matcher.
2142 /// For example, the pattern:
2143 /// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
2144 /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
2145 /// the:
2146 /// (G_ADD $src1, $src2)
2147 /// subpattern.
2148 class InstructionOperandMatcher : public OperandPredicateMatcher {
2149 protected:
2150 std::unique_ptr<InstructionMatcher> InsnMatcher;
2152 public:
2153 InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
2154 RuleMatcher &Rule, StringRef SymbolicName)
2155 : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx),
2156 InsnMatcher(new InstructionMatcher(Rule, SymbolicName)) {}
2158 static bool classof(const PredicateMatcher *P) {
2159 return P->getKind() == OPM_Instruction;
2162 InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
2164 void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
2165 const unsigned NewInsnVarID = InsnMatcher->getInsnVarID();
2166 Table << MatchTable::Opcode("GIM_RecordInsn")
2167 << MatchTable::Comment("DefineMI")
2168 << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI")
2169 << MatchTable::IntValue(getInsnVarID())
2170 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx())
2171 << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]")
2172 << MatchTable::LineBreak;
2175 void emitPredicateOpcodes(MatchTable &Table,
2176 RuleMatcher &Rule) const override {
2177 emitCaptureOpcodes(Table, Rule);
2178 InsnMatcher->emitPredicateOpcodes(Table, Rule);
2181 bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override {
2182 if (OperandPredicateMatcher::isHigherPriorityThan(B))
2183 return true;
2184 if (B.OperandPredicateMatcher::isHigherPriorityThan(*this))
2185 return false;
2187 if (const InstructionOperandMatcher *BP =
2188 dyn_cast<InstructionOperandMatcher>(&B))
2189 if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher))
2190 return true;
2191 return false;
2195 void InstructionMatcher::optimize() {
2196 SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash;
2197 const auto &OpcMatcher = getOpcodeMatcher();
2199 Stash.push_back(predicates_pop_front());
2200 if (Stash.back().get() == &OpcMatcher) {
2201 if (NumOperandsCheck && OpcMatcher.getNumOperands() < getNumOperands())
2202 Stash.emplace_back(
2203 new InstructionNumOperandsMatcher(InsnVarID, getNumOperands()));
2204 NumOperandsCheck = false;
2206 for (auto &OM : Operands)
2207 for (auto &OP : OM->predicates())
2208 if (isa<IntrinsicIDOperandMatcher>(OP)) {
2209 Stash.push_back(std::move(OP));
2210 OM->eraseNullPredicates();
2211 break;
2215 if (InsnVarID > 0) {
2216 assert(!Operands.empty() && "Nested instruction is expected to def a vreg");
2217 for (auto &OP : Operands[0]->predicates())
2218 OP.reset();
2219 Operands[0]->eraseNullPredicates();
2221 for (auto &OM : Operands) {
2222 for (auto &OP : OM->predicates())
2223 if (isa<LLTOperandMatcher>(OP))
2224 Stash.push_back(std::move(OP));
2225 OM->eraseNullPredicates();
2227 while (!Stash.empty())
2228 prependPredicate(Stash.pop_back_val());
2231 //===- Actions ------------------------------------------------------------===//
2232 class OperandRenderer {
2233 public:
2234 enum RendererKind {
2235 OR_Copy,
2236 OR_CopyOrAddZeroReg,
2237 OR_CopySubReg,
2238 OR_CopyConstantAsImm,
2239 OR_CopyFConstantAsFPImm,
2240 OR_Imm,
2241 OR_Register,
2242 OR_TempRegister,
2243 OR_ComplexPattern,
2244 OR_Custom
2247 protected:
2248 RendererKind Kind;
2250 public:
2251 OperandRenderer(RendererKind Kind) : Kind(Kind) {}
2252 virtual ~OperandRenderer() {}
2254 RendererKind getKind() const { return Kind; }
2256 virtual void emitRenderOpcodes(MatchTable &Table,
2257 RuleMatcher &Rule) const = 0;
2260 /// A CopyRenderer emits code to copy a single operand from an existing
2261 /// instruction to the one being built.
2262 class CopyRenderer : public OperandRenderer {
2263 protected:
2264 unsigned NewInsnID;
2265 /// The name of the operand.
2266 const StringRef SymbolicName;
2268 public:
2269 CopyRenderer(unsigned NewInsnID, StringRef SymbolicName)
2270 : OperandRenderer(OR_Copy), NewInsnID(NewInsnID),
2271 SymbolicName(SymbolicName) {
2272 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
2275 static bool classof(const OperandRenderer *R) {
2276 return R->getKind() == OR_Copy;
2279 const StringRef getSymbolicName() const { return SymbolicName; }
2281 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2282 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2283 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2284 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
2285 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
2286 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2287 << MatchTable::IntValue(Operand.getOpIdx())
2288 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2292 /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an
2293 /// existing instruction to the one being built. If the operand turns out to be
2294 /// a 'G_CONSTANT 0' then it replaces the operand with a zero register.
2295 class CopyOrAddZeroRegRenderer : public OperandRenderer {
2296 protected:
2297 unsigned NewInsnID;
2298 /// The name of the operand.
2299 const StringRef SymbolicName;
2300 const Record *ZeroRegisterDef;
2302 public:
2303 CopyOrAddZeroRegRenderer(unsigned NewInsnID,
2304 StringRef SymbolicName, Record *ZeroRegisterDef)
2305 : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID),
2306 SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) {
2307 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
2310 static bool classof(const OperandRenderer *R) {
2311 return R->getKind() == OR_CopyOrAddZeroReg;
2314 const StringRef getSymbolicName() const { return SymbolicName; }
2316 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2317 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2318 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2319 Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg")
2320 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2321 << MatchTable::Comment("OldInsnID")
2322 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2323 << MatchTable::IntValue(Operand.getOpIdx())
2324 << MatchTable::NamedValue(
2325 (ZeroRegisterDef->getValue("Namespace")
2326 ? ZeroRegisterDef->getValueAsString("Namespace")
2327 : ""),
2328 ZeroRegisterDef->getName())
2329 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2333 /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to
2334 /// an extended immediate operand.
2335 class CopyConstantAsImmRenderer : public OperandRenderer {
2336 protected:
2337 unsigned NewInsnID;
2338 /// The name of the operand.
2339 const std::string SymbolicName;
2340 bool Signed;
2342 public:
2343 CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
2344 : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID),
2345 SymbolicName(SymbolicName), Signed(true) {}
2347 static bool classof(const OperandRenderer *R) {
2348 return R->getKind() == OR_CopyConstantAsImm;
2351 const StringRef getSymbolicName() const { return SymbolicName; }
2353 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2354 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2355 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2356 Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm"
2357 : "GIR_CopyConstantAsUImm")
2358 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2359 << MatchTable::Comment("OldInsnID")
2360 << MatchTable::IntValue(OldInsnVarID)
2361 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2365 /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT
2366 /// instruction to an extended immediate operand.
2367 class CopyFConstantAsFPImmRenderer : public OperandRenderer {
2368 protected:
2369 unsigned NewInsnID;
2370 /// The name of the operand.
2371 const std::string SymbolicName;
2373 public:
2374 CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
2375 : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID),
2376 SymbolicName(SymbolicName) {}
2378 static bool classof(const OperandRenderer *R) {
2379 return R->getKind() == OR_CopyFConstantAsFPImm;
2382 const StringRef getSymbolicName() const { return SymbolicName; }
2384 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2385 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2386 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2387 Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
2388 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2389 << MatchTable::Comment("OldInsnID")
2390 << MatchTable::IntValue(OldInsnVarID)
2391 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2395 /// A CopySubRegRenderer emits code to copy a single register operand from an
2396 /// existing instruction to the one being built and indicate that only a
2397 /// subregister should be copied.
2398 class CopySubRegRenderer : public OperandRenderer {
2399 protected:
2400 unsigned NewInsnID;
2401 /// The name of the operand.
2402 const StringRef SymbolicName;
2403 /// The subregister to extract.
2404 const CodeGenSubRegIndex *SubReg;
2406 public:
2407 CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName,
2408 const CodeGenSubRegIndex *SubReg)
2409 : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID),
2410 SymbolicName(SymbolicName), SubReg(SubReg) {}
2412 static bool classof(const OperandRenderer *R) {
2413 return R->getKind() == OR_CopySubReg;
2416 const StringRef getSymbolicName() const { return SymbolicName; }
2418 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2419 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2420 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2421 Table << MatchTable::Opcode("GIR_CopySubReg")
2422 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2423 << MatchTable::Comment("OldInsnID")
2424 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2425 << MatchTable::IntValue(Operand.getOpIdx())
2426 << MatchTable::Comment("SubRegIdx")
2427 << MatchTable::IntValue(SubReg->EnumValue)
2428 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2432 /// Adds a specific physical register to the instruction being built.
2433 /// This is typically useful for WZR/XZR on AArch64.
2434 class AddRegisterRenderer : public OperandRenderer {
2435 protected:
2436 unsigned InsnID;
2437 const Record *RegisterDef;
2439 public:
2440 AddRegisterRenderer(unsigned InsnID, const Record *RegisterDef)
2441 : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef) {
2444 static bool classof(const OperandRenderer *R) {
2445 return R->getKind() == OR_Register;
2448 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2449 Table << MatchTable::Opcode("GIR_AddRegister")
2450 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2451 << MatchTable::NamedValue(
2452 (RegisterDef->getValue("Namespace")
2453 ? RegisterDef->getValueAsString("Namespace")
2454 : ""),
2455 RegisterDef->getName())
2456 << MatchTable::LineBreak;
2460 /// Adds a specific temporary virtual register to the instruction being built.
2461 /// This is used to chain instructions together when emitting multiple
2462 /// instructions.
2463 class TempRegRenderer : public OperandRenderer {
2464 protected:
2465 unsigned InsnID;
2466 unsigned TempRegID;
2467 bool IsDef;
2469 public:
2470 TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false)
2471 : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID),
2472 IsDef(IsDef) {}
2474 static bool classof(const OperandRenderer *R) {
2475 return R->getKind() == OR_TempRegister;
2478 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2479 Table << MatchTable::Opcode("GIR_AddTempRegister")
2480 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2481 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
2482 << MatchTable::Comment("TempRegFlags");
2483 if (IsDef)
2484 Table << MatchTable::NamedValue("RegState::Define");
2485 else
2486 Table << MatchTable::IntValue(0);
2487 Table << MatchTable::LineBreak;
2491 /// Adds a specific immediate to the instruction being built.
2492 class ImmRenderer : public OperandRenderer {
2493 protected:
2494 unsigned InsnID;
2495 int64_t Imm;
2497 public:
2498 ImmRenderer(unsigned InsnID, int64_t Imm)
2499 : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {}
2501 static bool classof(const OperandRenderer *R) {
2502 return R->getKind() == OR_Imm;
2505 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2506 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
2507 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm")
2508 << MatchTable::IntValue(Imm) << MatchTable::LineBreak;
2512 /// Adds operands by calling a renderer function supplied by the ComplexPattern
2513 /// matcher function.
2514 class RenderComplexPatternOperand : public OperandRenderer {
2515 private:
2516 unsigned InsnID;
2517 const Record &TheDef;
2518 /// The name of the operand.
2519 const StringRef SymbolicName;
2520 /// The renderer number. This must be unique within a rule since it's used to
2521 /// identify a temporary variable to hold the renderer function.
2522 unsigned RendererID;
2523 /// When provided, this is the suboperand of the ComplexPattern operand to
2524 /// render. Otherwise all the suboperands will be rendered.
2525 Optional<unsigned> SubOperand;
2527 unsigned getNumOperands() const {
2528 return TheDef.getValueAsDag("Operands")->getNumArgs();
2531 public:
2532 RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef,
2533 StringRef SymbolicName, unsigned RendererID,
2534 Optional<unsigned> SubOperand = None)
2535 : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef),
2536 SymbolicName(SymbolicName), RendererID(RendererID),
2537 SubOperand(SubOperand) {}
2539 static bool classof(const OperandRenderer *R) {
2540 return R->getKind() == OR_ComplexPattern;
2543 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2544 Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer"
2545 : "GIR_ComplexRenderer")
2546 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2547 << MatchTable::Comment("RendererID")
2548 << MatchTable::IntValue(RendererID);
2549 if (SubOperand.hasValue())
2550 Table << MatchTable::Comment("SubOperand")
2551 << MatchTable::IntValue(SubOperand.getValue());
2552 Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2556 class CustomRenderer : public OperandRenderer {
2557 protected:
2558 unsigned InsnID;
2559 const Record &Renderer;
2560 /// The name of the operand.
2561 const std::string SymbolicName;
2563 public:
2564 CustomRenderer(unsigned InsnID, const Record &Renderer,
2565 StringRef SymbolicName)
2566 : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer),
2567 SymbolicName(SymbolicName) {}
2569 static bool classof(const OperandRenderer *R) {
2570 return R->getKind() == OR_Custom;
2573 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2574 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2575 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2576 Table << MatchTable::Opcode("GIR_CustomRenderer")
2577 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2578 << MatchTable::Comment("OldInsnID")
2579 << MatchTable::IntValue(OldInsnVarID)
2580 << MatchTable::Comment("Renderer")
2581 << MatchTable::NamedValue(
2582 "GICR_" + Renderer.getValueAsString("RendererFn").str())
2583 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2587 /// An action taken when all Matcher predicates succeeded for a parent rule.
2589 /// Typical actions include:
2590 /// * Changing the opcode of an instruction.
2591 /// * Adding an operand to an instruction.
2592 class MatchAction {
2593 public:
2594 virtual ~MatchAction() {}
2596 /// Emit the MatchTable opcodes to implement the action.
2597 virtual void emitActionOpcodes(MatchTable &Table,
2598 RuleMatcher &Rule) const = 0;
2601 /// Generates a comment describing the matched rule being acted upon.
2602 class DebugCommentAction : public MatchAction {
2603 private:
2604 std::string S;
2606 public:
2607 DebugCommentAction(StringRef S) : S(S) {}
2609 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2610 Table << MatchTable::Comment(S) << MatchTable::LineBreak;
2614 /// Generates code to build an instruction or mutate an existing instruction
2615 /// into the desired instruction when this is possible.
2616 class BuildMIAction : public MatchAction {
2617 private:
2618 unsigned InsnID;
2619 const CodeGenInstruction *I;
2620 InstructionMatcher *Matched;
2621 std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
2623 /// True if the instruction can be built solely by mutating the opcode.
2624 bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const {
2625 if (!Insn)
2626 return false;
2628 if (OperandRenderers.size() != Insn->getNumOperands())
2629 return false;
2631 for (const auto &Renderer : enumerate(OperandRenderers)) {
2632 if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
2633 const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName());
2634 if (Insn != &OM.getInstructionMatcher() ||
2635 OM.getOpIdx() != Renderer.index())
2636 return false;
2637 } else
2638 return false;
2641 return true;
2644 public:
2645 BuildMIAction(unsigned InsnID, const CodeGenInstruction *I)
2646 : InsnID(InsnID), I(I), Matched(nullptr) {}
2648 unsigned getInsnID() const { return InsnID; }
2649 const CodeGenInstruction *getCGI() const { return I; }
2651 void chooseInsnToMutate(RuleMatcher &Rule) {
2652 for (auto *MutateCandidate : Rule.mutatable_insns()) {
2653 if (canMutate(Rule, MutateCandidate)) {
2654 // Take the first one we're offered that we're able to mutate.
2655 Rule.reserveInsnMatcherForMutation(MutateCandidate);
2656 Matched = MutateCandidate;
2657 return;
2662 template <class Kind, class... Args>
2663 Kind &addRenderer(Args&&... args) {
2664 OperandRenderers.emplace_back(
2665 llvm::make_unique<Kind>(InsnID, std::forward<Args>(args)...));
2666 return *static_cast<Kind *>(OperandRenderers.back().get());
2669 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2670 if (Matched) {
2671 assert(canMutate(Rule, Matched) &&
2672 "Arranged to mutate an insn that isn't mutatable");
2674 unsigned RecycleInsnID = Rule.getInsnVarID(*Matched);
2675 Table << MatchTable::Opcode("GIR_MutateOpcode")
2676 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2677 << MatchTable::Comment("RecycleInsnID")
2678 << MatchTable::IntValue(RecycleInsnID)
2679 << MatchTable::Comment("Opcode")
2680 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
2681 << MatchTable::LineBreak;
2683 if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
2684 for (auto Def : I->ImplicitDefs) {
2685 auto Namespace = Def->getValue("Namespace")
2686 ? Def->getValueAsString("Namespace")
2687 : "";
2688 Table << MatchTable::Opcode("GIR_AddImplicitDef")
2689 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2690 << MatchTable::NamedValue(Namespace, Def->getName())
2691 << MatchTable::LineBreak;
2693 for (auto Use : I->ImplicitUses) {
2694 auto Namespace = Use->getValue("Namespace")
2695 ? Use->getValueAsString("Namespace")
2696 : "";
2697 Table << MatchTable::Opcode("GIR_AddImplicitUse")
2698 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2699 << MatchTable::NamedValue(Namespace, Use->getName())
2700 << MatchTable::LineBreak;
2703 return;
2706 // TODO: Simple permutation looks like it could be almost as common as
2707 // mutation due to commutative operations.
2709 Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
2710 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode")
2711 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
2712 << MatchTable::LineBreak;
2713 for (const auto &Renderer : OperandRenderers)
2714 Renderer->emitRenderOpcodes(Table, Rule);
2716 if (I->mayLoad || I->mayStore) {
2717 Table << MatchTable::Opcode("GIR_MergeMemOperands")
2718 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2719 << MatchTable::Comment("MergeInsnID's");
2720 // Emit the ID's for all the instructions that are matched by this rule.
2721 // TODO: Limit this to matched instructions that mayLoad/mayStore or have
2722 // some other means of having a memoperand. Also limit this to
2723 // emitted instructions that expect to have a memoperand too. For
2724 // example, (G_SEXT (G_LOAD x)) that results in separate load and
2725 // sign-extend instructions shouldn't put the memoperand on the
2726 // sign-extend since it has no effect there.
2727 std::vector<unsigned> MergeInsnIDs;
2728 for (const auto &IDMatcherPair : Rule.defined_insn_vars())
2729 MergeInsnIDs.push_back(IDMatcherPair.second);
2730 llvm::sort(MergeInsnIDs);
2731 for (const auto &MergeInsnID : MergeInsnIDs)
2732 Table << MatchTable::IntValue(MergeInsnID);
2733 Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
2734 << MatchTable::LineBreak;
2737 // FIXME: This is a hack but it's sufficient for ISel. We'll need to do
2738 // better for combines. Particularly when there are multiple match
2739 // roots.
2740 if (InsnID == 0)
2741 Table << MatchTable::Opcode("GIR_EraseFromParent")
2742 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2743 << MatchTable::LineBreak;
2747 /// Generates code to constrain the operands of an output instruction to the
2748 /// register classes specified by the definition of that instruction.
2749 class ConstrainOperandsToDefinitionAction : public MatchAction {
2750 unsigned InsnID;
2752 public:
2753 ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {}
2755 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2756 Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
2757 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2758 << MatchTable::LineBreak;
2762 /// Generates code to constrain the specified operand of an output instruction
2763 /// to the specified register class.
2764 class ConstrainOperandToRegClassAction : public MatchAction {
2765 unsigned InsnID;
2766 unsigned OpIdx;
2767 const CodeGenRegisterClass &RC;
2769 public:
2770 ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx,
2771 const CodeGenRegisterClass &RC)
2772 : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {}
2774 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2775 Table << MatchTable::Opcode("GIR_ConstrainOperandRC")
2776 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2777 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
2778 << MatchTable::Comment("RC " + RC.getName())
2779 << MatchTable::IntValue(RC.EnumValue) << MatchTable::LineBreak;
2783 /// Generates code to create a temporary register which can be used to chain
2784 /// instructions together.
2785 class MakeTempRegisterAction : public MatchAction {
2786 private:
2787 LLTCodeGen Ty;
2788 unsigned TempRegID;
2790 public:
2791 MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID)
2792 : Ty(Ty), TempRegID(TempRegID) {}
2794 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2795 Table << MatchTable::Opcode("GIR_MakeTempReg")
2796 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
2797 << MatchTable::Comment("TypeID")
2798 << MatchTable::NamedValue(Ty.getCxxEnumValue())
2799 << MatchTable::LineBreak;
2803 InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) {
2804 Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName));
2805 MutatableInsns.insert(Matchers.back().get());
2806 return *Matchers.back();
2809 void RuleMatcher::addRequiredFeature(Record *Feature) {
2810 RequiredFeatures.push_back(Feature);
2813 const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const {
2814 return RequiredFeatures;
2817 // Emplaces an action of the specified Kind at the end of the action list.
2819 // Returns a reference to the newly created action.
2821 // Like std::vector::emplace_back(), may invalidate all iterators if the new
2822 // size exceeds the capacity. Otherwise, only invalidates the past-the-end
2823 // iterator.
2824 template <class Kind, class... Args>
2825 Kind &RuleMatcher::addAction(Args &&... args) {
2826 Actions.emplace_back(llvm::make_unique<Kind>(std::forward<Args>(args)...));
2827 return *static_cast<Kind *>(Actions.back().get());
2830 // Emplaces an action of the specified Kind before the given insertion point.
2832 // Returns an iterator pointing at the newly created instruction.
2834 // Like std::vector::insert(), may invalidate all iterators if the new size
2835 // exceeds the capacity. Otherwise, only invalidates the iterators from the
2836 // insertion point onwards.
2837 template <class Kind, class... Args>
2838 action_iterator RuleMatcher::insertAction(action_iterator InsertPt,
2839 Args &&... args) {
2840 return Actions.emplace(InsertPt,
2841 llvm::make_unique<Kind>(std::forward<Args>(args)...));
2844 unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) {
2845 unsigned NewInsnVarID = NextInsnVarID++;
2846 InsnVariableIDs[&Matcher] = NewInsnVarID;
2847 return NewInsnVarID;
2850 unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const {
2851 const auto &I = InsnVariableIDs.find(&InsnMatcher);
2852 if (I != InsnVariableIDs.end())
2853 return I->second;
2854 llvm_unreachable("Matched Insn was not captured in a local variable");
2857 void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) {
2858 if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) {
2859 DefinedOperands[SymbolicName] = &OM;
2860 return;
2863 // If the operand is already defined, then we must ensure both references in
2864 // the matcher have the exact same node.
2865 OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName());
2868 InstructionMatcher &
2869 RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const {
2870 for (const auto &I : InsnVariableIDs)
2871 if (I.first->getSymbolicName() == SymbolicName)
2872 return *I.first;
2873 llvm_unreachable(
2874 ("Failed to lookup instruction " + SymbolicName).str().c_str());
2877 const OperandMatcher &
2878 RuleMatcher::getOperandMatcher(StringRef Name) const {
2879 const auto &I = DefinedOperands.find(Name);
2881 if (I == DefinedOperands.end())
2882 PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher");
2884 return *I->second;
2887 void RuleMatcher::emit(MatchTable &Table) {
2888 if (Matchers.empty())
2889 llvm_unreachable("Unexpected empty matcher!");
2891 // The representation supports rules that require multiple roots such as:
2892 // %ptr(p0) = ...
2893 // %elt0(s32) = G_LOAD %ptr
2894 // %1(p0) = G_ADD %ptr, 4
2895 // %elt1(s32) = G_LOAD p0 %1
2896 // which could be usefully folded into:
2897 // %ptr(p0) = ...
2898 // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
2899 // on some targets but we don't need to make use of that yet.
2900 assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
2902 unsigned LabelID = Table.allocateLabelID();
2903 Table << MatchTable::Opcode("GIM_Try", +1)
2904 << MatchTable::Comment("On fail goto")
2905 << MatchTable::JumpTarget(LabelID)
2906 << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str())
2907 << MatchTable::LineBreak;
2909 if (!RequiredFeatures.empty()) {
2910 Table << MatchTable::Opcode("GIM_CheckFeatures")
2911 << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures))
2912 << MatchTable::LineBreak;
2915 Matchers.front()->emitPredicateOpcodes(Table, *this);
2917 // We must also check if it's safe to fold the matched instructions.
2918 if (InsnVariableIDs.size() >= 2) {
2919 // Invert the map to create stable ordering (by var names)
2920 SmallVector<unsigned, 2> InsnIDs;
2921 for (const auto &Pair : InsnVariableIDs) {
2922 // Skip the root node since it isn't moving anywhere. Everything else is
2923 // sinking to meet it.
2924 if (Pair.first == Matchers.front().get())
2925 continue;
2927 InsnIDs.push_back(Pair.second);
2929 llvm::sort(InsnIDs);
2931 for (const auto &InsnID : InsnIDs) {
2932 // Reject the difficult cases until we have a more accurate check.
2933 Table << MatchTable::Opcode("GIM_CheckIsSafeToFold")
2934 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2935 << MatchTable::LineBreak;
2937 // FIXME: Emit checks to determine it's _actually_ safe to fold and/or
2938 // account for unsafe cases.
2940 // Example:
2941 // MI1--> %0 = ...
2942 // %1 = ... %0
2943 // MI0--> %2 = ... %0
2944 // It's not safe to erase MI1. We currently handle this by not
2945 // erasing %0 (even when it's dead).
2947 // Example:
2948 // MI1--> %0 = load volatile @a
2949 // %1 = load volatile @a
2950 // MI0--> %2 = ... %0
2951 // It's not safe to sink %0's def past %1. We currently handle
2952 // this by rejecting all loads.
2954 // Example:
2955 // MI1--> %0 = load @a
2956 // %1 = store @a
2957 // MI0--> %2 = ... %0
2958 // It's not safe to sink %0's def past %1. We currently handle
2959 // this by rejecting all loads.
2961 // Example:
2962 // G_CONDBR %cond, @BB1
2963 // BB0:
2964 // MI1--> %0 = load @a
2965 // G_BR @BB1
2966 // BB1:
2967 // MI0--> %2 = ... %0
2968 // It's not always safe to sink %0 across control flow. In this
2969 // case it may introduce a memory fault. We currentl handle this
2970 // by rejecting all loads.
2974 for (const auto &PM : EpilogueMatchers)
2975 PM->emitPredicateOpcodes(Table, *this);
2977 for (const auto &MA : Actions)
2978 MA->emitActionOpcodes(Table, *this);
2980 if (Table.isWithCoverage())
2981 Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID)
2982 << MatchTable::LineBreak;
2983 else
2984 Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str())
2985 << MatchTable::LineBreak;
2987 Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
2988 << MatchTable::Label(LabelID);
2989 ++NumPatternEmitted;
2992 bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
2993 // Rules involving more match roots have higher priority.
2994 if (Matchers.size() > B.Matchers.size())
2995 return true;
2996 if (Matchers.size() < B.Matchers.size())
2997 return false;
2999 for (const auto &Matcher : zip(Matchers, B.Matchers)) {
3000 if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
3001 return true;
3002 if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
3003 return false;
3006 return false;
3009 unsigned RuleMatcher::countRendererFns() const {
3010 return std::accumulate(
3011 Matchers.begin(), Matchers.end(), 0,
3012 [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
3013 return A + Matcher->countRendererFns();
3017 bool OperandPredicateMatcher::isHigherPriorityThan(
3018 const OperandPredicateMatcher &B) const {
3019 // Generally speaking, an instruction is more important than an Int or a
3020 // LiteralInt because it can cover more nodes but theres an exception to
3021 // this. G_CONSTANT's are less important than either of those two because they
3022 // are more permissive.
3024 const InstructionOperandMatcher *AOM =
3025 dyn_cast<InstructionOperandMatcher>(this);
3026 const InstructionOperandMatcher *BOM =
3027 dyn_cast<InstructionOperandMatcher>(&B);
3028 bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction();
3029 bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction();
3031 if (AOM && BOM) {
3032 // The relative priorities between a G_CONSTANT and any other instruction
3033 // don't actually matter but this code is needed to ensure a strict weak
3034 // ordering. This is particularly important on Windows where the rules will
3035 // be incorrectly sorted without it.
3036 if (AIsConstantInsn != BIsConstantInsn)
3037 return AIsConstantInsn < BIsConstantInsn;
3038 return false;
3041 if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt))
3042 return false;
3043 if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt))
3044 return true;
3046 return Kind < B.Kind;
3049 void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table,
3050 RuleMatcher &Rule) const {
3051 const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName);
3052 unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher());
3053 assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID());
3055 Table << MatchTable::Opcode("GIM_CheckIsSameOperand")
3056 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
3057 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
3058 << MatchTable::Comment("OtherMI")
3059 << MatchTable::IntValue(OtherInsnVarID)
3060 << MatchTable::Comment("OtherOpIdx")
3061 << MatchTable::IntValue(OtherOM.getOpIdx())
3062 << MatchTable::LineBreak;
3065 //===- GlobalISelEmitter class --------------------------------------------===//
3067 class GlobalISelEmitter {
3068 public:
3069 explicit GlobalISelEmitter(RecordKeeper &RK);
3070 void run(raw_ostream &OS);
3072 private:
3073 const RecordKeeper &RK;
3074 const CodeGenDAGPatterns CGP;
3075 const CodeGenTarget &Target;
3076 CodeGenRegBank CGRegs;
3078 /// Keep track of the equivalence between SDNodes and Instruction by mapping
3079 /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to
3080 /// check for attributes on the relation such as CheckMMOIsNonAtomic.
3081 /// This is defined using 'GINodeEquiv' in the target description.
3082 DenseMap<Record *, Record *> NodeEquivs;
3084 /// Keep track of the equivalence between ComplexPattern's and
3085 /// GIComplexOperandMatcher. Map entries are specified by subclassing
3086 /// GIComplexPatternEquiv.
3087 DenseMap<const Record *, const Record *> ComplexPatternEquivs;
3089 /// Keep track of the equivalence between SDNodeXForm's and
3090 /// GICustomOperandRenderer. Map entries are specified by subclassing
3091 /// GISDNodeXFormEquiv.
3092 DenseMap<const Record *, const Record *> SDNodeXFormEquivs;
3094 /// Keep track of Scores of PatternsToMatch similar to how the DAG does.
3095 /// This adds compatibility for RuleMatchers to use this for ordering rules.
3096 DenseMap<uint64_t, int> RuleMatcherScores;
3098 // Map of predicates to their subtarget features.
3099 SubtargetFeatureInfoMap SubtargetFeatures;
3101 // Rule coverage information.
3102 Optional<CodeGenCoverage> RuleCoverage;
3104 void gatherOpcodeValues();
3105 void gatherTypeIDValues();
3106 void gatherNodeEquivs();
3108 Record *findNodeEquiv(Record *N) const;
3109 const CodeGenInstruction *getEquivNode(Record &Equiv,
3110 const TreePatternNode *N) const;
3112 Error importRulePredicates(RuleMatcher &M, ArrayRef<Predicate> Predicates);
3113 Expected<InstructionMatcher &>
3114 createAndImportSelDAGMatcher(RuleMatcher &Rule,
3115 InstructionMatcher &InsnMatcher,
3116 const TreePatternNode *Src, unsigned &TempOpIdx);
3117 Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R,
3118 unsigned &TempOpIdx) const;
3119 Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
3120 const TreePatternNode *SrcChild,
3121 bool OperandIsAPointer, unsigned OpIdx,
3122 unsigned &TempOpIdx);
3124 Expected<BuildMIAction &>
3125 createAndImportInstructionRenderer(RuleMatcher &M,
3126 const TreePatternNode *Dst);
3127 Expected<action_iterator> createAndImportSubInstructionRenderer(
3128 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
3129 unsigned TempReg);
3130 Expected<action_iterator>
3131 createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M,
3132 const TreePatternNode *Dst);
3133 void importExplicitDefRenderers(BuildMIAction &DstMIBuilder);
3134 Expected<action_iterator>
3135 importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M,
3136 BuildMIAction &DstMIBuilder,
3137 const llvm::TreePatternNode *Dst);
3138 Expected<action_iterator>
3139 importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule,
3140 BuildMIAction &DstMIBuilder,
3141 TreePatternNode *DstChild);
3142 Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M,
3143 BuildMIAction &DstMIBuilder,
3144 DagInit *DefaultOps) const;
3145 Error
3146 importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
3147 const std::vector<Record *> &ImplicitDefs) const;
3149 void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName,
3150 StringRef TypeIdentifier, StringRef ArgType,
3151 StringRef ArgName, StringRef AdditionalDeclarations,
3152 std::function<bool(const Record *R)> Filter);
3153 void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier,
3154 StringRef ArgType,
3155 std::function<bool(const Record *R)> Filter);
3156 void emitMIPredicateFns(raw_ostream &OS);
3158 /// Analyze pattern \p P, returning a matcher for it if possible.
3159 /// Otherwise, return an Error explaining why we don't support it.
3160 Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
3162 void declareSubtargetFeature(Record *Predicate);
3164 MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize,
3165 bool WithCoverage);
3167 public:
3168 /// Takes a sequence of \p Rules and group them based on the predicates
3169 /// they share. \p MatcherStorage is used as a memory container
3170 /// for the group that are created as part of this process.
3172 /// What this optimization does looks like if GroupT = GroupMatcher:
3173 /// Output without optimization:
3174 /// \verbatim
3175 /// # R1
3176 /// # predicate A
3177 /// # predicate B
3178 /// ...
3179 /// # R2
3180 /// # predicate A // <-- effectively this is going to be checked twice.
3181 /// // Once in R1 and once in R2.
3182 /// # predicate C
3183 /// \endverbatim
3184 /// Output with optimization:
3185 /// \verbatim
3186 /// # Group1_2
3187 /// # predicate A // <-- Check is now shared.
3188 /// # R1
3189 /// # predicate B
3190 /// # R2
3191 /// # predicate C
3192 /// \endverbatim
3193 template <class GroupT>
3194 static std::vector<Matcher *> optimizeRules(
3195 ArrayRef<Matcher *> Rules,
3196 std::vector<std::unique_ptr<Matcher>> &MatcherStorage);
3199 void GlobalISelEmitter::gatherOpcodeValues() {
3200 InstructionOpcodeMatcher::initOpcodeValuesMap(Target);
3203 void GlobalISelEmitter::gatherTypeIDValues() {
3204 LLTOperandMatcher::initTypeIDValuesMap();
3207 void GlobalISelEmitter::gatherNodeEquivs() {
3208 assert(NodeEquivs.empty());
3209 for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
3210 NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv;
3212 assert(ComplexPatternEquivs.empty());
3213 for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
3214 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
3215 if (!SelDAGEquiv)
3216 continue;
3217 ComplexPatternEquivs[SelDAGEquiv] = Equiv;
3220 assert(SDNodeXFormEquivs.empty());
3221 for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
3222 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
3223 if (!SelDAGEquiv)
3224 continue;
3225 SDNodeXFormEquivs[SelDAGEquiv] = Equiv;
3229 Record *GlobalISelEmitter::findNodeEquiv(Record *N) const {
3230 return NodeEquivs.lookup(N);
3233 const CodeGenInstruction *
3234 GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const {
3235 for (const TreePredicateCall &Call : N->getPredicateCalls()) {
3236 const TreePredicateFn &Predicate = Call.Fn;
3237 if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() &&
3238 Predicate.isSignExtLoad())
3239 return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend"));
3240 if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() &&
3241 Predicate.isZeroExtLoad())
3242 return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend"));
3244 return &Target.getInstruction(Equiv.getValueAsDef("I"));
3247 GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
3248 : RK(RK), CGP(RK), Target(CGP.getTargetInfo()),
3249 CGRegs(RK, Target.getHwModes()) {}
3251 //===- Emitter ------------------------------------------------------------===//
3253 Error
3254 GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
3255 ArrayRef<Predicate> Predicates) {
3256 for (const Predicate &P : Predicates) {
3257 if (!P.Def || P.getCondString().empty())
3258 continue;
3259 declareSubtargetFeature(P.Def);
3260 M.addRequiredFeature(P.Def);
3263 return Error::success();
3266 Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
3267 RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
3268 const TreePatternNode *Src, unsigned &TempOpIdx) {
3269 Record *SrcGIEquivOrNull = nullptr;
3270 const CodeGenInstruction *SrcGIOrNull = nullptr;
3272 // Start with the defined operands (i.e., the results of the root operator).
3273 if (Src->getExtTypes().size() > 1)
3274 return failedImport("Src pattern has multiple results");
3276 if (Src->isLeaf()) {
3277 Init *SrcInit = Src->getLeafValue();
3278 if (isa<IntInit>(SrcInit)) {
3279 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
3280 &Target.getInstruction(RK.getDef("G_CONSTANT")));
3281 } else
3282 return failedImport(
3283 "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
3284 } else {
3285 SrcGIEquivOrNull = findNodeEquiv(Src->getOperator());
3286 if (!SrcGIEquivOrNull)
3287 return failedImport("Pattern operator lacks an equivalent Instruction" +
3288 explainOperator(Src->getOperator()));
3289 SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src);
3291 // The operators look good: match the opcode
3292 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull);
3295 unsigned OpIdx = 0;
3296 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
3297 // Results don't have a name unless they are the root node. The caller will
3298 // set the name if appropriate.
3299 OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
3300 if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
3301 return failedImport(toString(std::move(Error)) +
3302 " for result of Src pattern operator");
3305 for (const TreePredicateCall &Call : Src->getPredicateCalls()) {
3306 const TreePredicateFn &Predicate = Call.Fn;
3307 if (Predicate.isAlwaysTrue())
3308 continue;
3310 if (Predicate.isImmediatePattern()) {
3311 InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate);
3312 continue;
3315 // An address space check is needed in all contexts if there is one.
3316 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
3317 if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) {
3318 SmallVector<unsigned, 4> ParsedAddrSpaces;
3320 for (Init *Val : AddrSpaces->getValues()) {
3321 IntInit *IntVal = dyn_cast<IntInit>(Val);
3322 if (!IntVal)
3323 return failedImport("Address space is not an integer");
3324 ParsedAddrSpaces.push_back(IntVal->getValue());
3327 if (!ParsedAddrSpaces.empty()) {
3328 InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>(
3329 0, ParsedAddrSpaces);
3333 int64_t MinAlign = Predicate.getMinAlignment();
3334 if (MinAlign > 0)
3335 InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(0, MinAlign);
3338 // G_LOAD is used for both non-extending and any-extending loads.
3339 if (Predicate.isLoad() && Predicate.isNonExtLoad()) {
3340 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3341 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
3342 continue;
3344 if (Predicate.isLoad() && Predicate.isAnyExtLoad()) {
3345 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3346 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
3347 continue;
3350 if (Predicate.isStore()) {
3351 if (Predicate.isTruncStore()) {
3352 // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size.
3353 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3354 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
3355 continue;
3357 if (Predicate.isNonTruncStore()) {
3358 // We need to check the sizes match here otherwise we could incorrectly
3359 // match truncating stores with non-truncating ones.
3360 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3361 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
3365 // No check required. We already did it by swapping the opcode.
3366 if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") &&
3367 Predicate.isSignExtLoad())
3368 continue;
3370 // No check required. We already did it by swapping the opcode.
3371 if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") &&
3372 Predicate.isZeroExtLoad())
3373 continue;
3375 // No check required. G_STORE by itself is a non-extending store.
3376 if (Predicate.isNonTruncStore())
3377 continue;
3379 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
3380 if (Predicate.getMemoryVT() != nullptr) {
3381 Optional<LLTCodeGen> MemTyOrNone =
3382 MVTToLLT(getValueType(Predicate.getMemoryVT()));
3384 if (!MemTyOrNone)
3385 return failedImport("MemVT could not be converted to LLT");
3387 // MMO's work in bytes so we must take care of unusual types like i1
3388 // don't round down.
3389 unsigned MemSizeInBits =
3390 llvm::alignTo(MemTyOrNone->get().getSizeInBits(), 8);
3392 InsnMatcher.addPredicate<MemorySizePredicateMatcher>(
3393 0, MemSizeInBits / 8);
3394 continue;
3398 if (Predicate.isLoad() || Predicate.isStore()) {
3399 // No check required. A G_LOAD/G_STORE is an unindexed load.
3400 if (Predicate.isUnindexed())
3401 continue;
3404 if (Predicate.isAtomic()) {
3405 if (Predicate.isAtomicOrderingMonotonic()) {
3406 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3407 "Monotonic");
3408 continue;
3410 if (Predicate.isAtomicOrderingAcquire()) {
3411 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire");
3412 continue;
3414 if (Predicate.isAtomicOrderingRelease()) {
3415 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release");
3416 continue;
3418 if (Predicate.isAtomicOrderingAcquireRelease()) {
3419 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3420 "AcquireRelease");
3421 continue;
3423 if (Predicate.isAtomicOrderingSequentiallyConsistent()) {
3424 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3425 "SequentiallyConsistent");
3426 continue;
3429 if (Predicate.isAtomicOrderingAcquireOrStronger()) {
3430 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3431 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
3432 continue;
3434 if (Predicate.isAtomicOrderingWeakerThanAcquire()) {
3435 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3436 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
3437 continue;
3440 if (Predicate.isAtomicOrderingReleaseOrStronger()) {
3441 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3442 "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
3443 continue;
3445 if (Predicate.isAtomicOrderingWeakerThanRelease()) {
3446 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3447 "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
3448 continue;
3452 if (Predicate.hasGISelPredicateCode()) {
3453 InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate);
3454 continue;
3457 return failedImport("Src pattern child has predicate (" +
3458 explainPredicates(Src) + ")");
3460 if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic"))
3461 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic");
3463 if (Src->isLeaf()) {
3464 Init *SrcInit = Src->getLeafValue();
3465 if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
3466 OperandMatcher &OM =
3467 InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx);
3468 OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
3469 } else
3470 return failedImport(
3471 "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
3472 } else {
3473 assert(SrcGIOrNull &&
3474 "Expected to have already found an equivalent Instruction");
3475 if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" ||
3476 SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") {
3477 // imm/fpimm still have operands but we don't need to do anything with it
3478 // here since we don't support ImmLeaf predicates yet. However, we still
3479 // need to note the hidden operand to get GIM_CheckNumOperands correct.
3480 InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
3481 return InsnMatcher;
3484 // Match the used operands (i.e. the children of the operator).
3485 for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) {
3486 TreePatternNode *SrcChild = Src->getChild(i);
3488 // SelectionDAG allows pointers to be represented with iN since it doesn't
3489 // distinguish between pointers and integers but they are different types in GlobalISel.
3490 // Coerce integers to pointers to address space 0 if the context indicates a pointer.
3491 bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i);
3493 // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately
3494 // following the defs is an intrinsic ID.
3495 if ((SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" ||
3496 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS") &&
3497 i == 0) {
3498 if (const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP)) {
3499 OperandMatcher &OM =
3500 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
3501 OM.addPredicate<IntrinsicIDOperandMatcher>(II);
3502 continue;
3505 return failedImport("Expected IntInit containing instrinsic ID)");
3508 if (auto Error =
3509 importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer,
3510 OpIdx++, TempOpIdx))
3511 return std::move(Error);
3515 return InsnMatcher;
3518 Error GlobalISelEmitter::importComplexPatternOperandMatcher(
3519 OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const {
3520 const auto &ComplexPattern = ComplexPatternEquivs.find(R);
3521 if (ComplexPattern == ComplexPatternEquivs.end())
3522 return failedImport("SelectionDAG ComplexPattern (" + R->getName() +
3523 ") not mapped to GlobalISel");
3525 OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second);
3526 TempOpIdx++;
3527 return Error::success();
3530 Error GlobalISelEmitter::importChildMatcher(RuleMatcher &Rule,
3531 InstructionMatcher &InsnMatcher,
3532 const TreePatternNode *SrcChild,
3533 bool OperandIsAPointer,
3534 unsigned OpIdx,
3535 unsigned &TempOpIdx) {
3536 OperandMatcher &OM =
3537 InsnMatcher.addOperand(OpIdx, SrcChild->getName(), TempOpIdx);
3538 if (OM.isSameAsAnotherOperand())
3539 return Error::success();
3541 ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes();
3542 if (ChildTypes.size() != 1)
3543 return failedImport("Src pattern child has multiple results");
3545 // Check MBB's before the type check since they are not a known type.
3546 if (!SrcChild->isLeaf()) {
3547 if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
3548 auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
3549 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
3550 OM.addPredicate<MBBOperandMatcher>();
3551 return Error::success();
3556 if (auto Error =
3557 OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer))
3558 return failedImport(toString(std::move(Error)) + " for Src operand (" +
3559 to_string(*SrcChild) + ")");
3561 // Check for nested instructions.
3562 if (!SrcChild->isLeaf()) {
3563 if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
3564 // When a ComplexPattern is used as an operator, it should do the same
3565 // thing as when used as a leaf. However, the children of the operator
3566 // name the sub-operands that make up the complex operand and we must
3567 // prepare to reference them in the renderer too.
3568 unsigned RendererID = TempOpIdx;
3569 if (auto Error = importComplexPatternOperandMatcher(
3570 OM, SrcChild->getOperator(), TempOpIdx))
3571 return Error;
3573 for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) {
3574 auto *SubOperand = SrcChild->getChild(i);
3575 if (!SubOperand->getName().empty()) {
3576 if (auto Error = Rule.defineComplexSubOperand(SubOperand->getName(),
3577 SrcChild->getOperator(),
3578 RendererID, i))
3579 return Error;
3583 return Error::success();
3586 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
3587 InsnMatcher.getRuleMatcher(), SrcChild->getName());
3588 if (!MaybeInsnOperand.hasValue()) {
3589 // This isn't strictly true. If the user were to provide exactly the same
3590 // matchers as the original operand then we could allow it. However, it's
3591 // simpler to not permit the redundant specification.
3592 return failedImport("Nested instruction cannot be the same as another operand");
3595 // Map the node to a gMIR instruction.
3596 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
3597 auto InsnMatcherOrError = createAndImportSelDAGMatcher(
3598 Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx);
3599 if (auto Error = InsnMatcherOrError.takeError())
3600 return Error;
3602 return Error::success();
3605 if (SrcChild->hasAnyPredicate())
3606 return failedImport("Src pattern child has unsupported predicate");
3608 // Check for constant immediates.
3609 if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
3610 OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
3611 return Error::success();
3614 // Check for def's like register classes or ComplexPattern's.
3615 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
3616 auto *ChildRec = ChildDefInit->getDef();
3618 // Check for register classes.
3619 if (ChildRec->isSubClassOf("RegisterClass") ||
3620 ChildRec->isSubClassOf("RegisterOperand")) {
3621 OM.addPredicate<RegisterBankOperandMatcher>(
3622 Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit)));
3623 return Error::success();
3626 // Check for ValueType.
3627 if (ChildRec->isSubClassOf("ValueType")) {
3628 // We already added a type check as standard practice so this doesn't need
3629 // to do anything.
3630 return Error::success();
3633 // Check for ComplexPattern's.
3634 if (ChildRec->isSubClassOf("ComplexPattern"))
3635 return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx);
3637 if (ChildRec->isSubClassOf("ImmLeaf")) {
3638 return failedImport(
3639 "Src pattern child def is an unsupported tablegen class (ImmLeaf)");
3642 return failedImport(
3643 "Src pattern child def is an unsupported tablegen class");
3646 return failedImport("Src pattern child is an unsupported kind");
3649 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer(
3650 action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder,
3651 TreePatternNode *DstChild) {
3653 const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName());
3654 if (SubOperand.hasValue()) {
3655 DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
3656 *std::get<0>(*SubOperand), DstChild->getName(),
3657 std::get<1>(*SubOperand), std::get<2>(*SubOperand));
3658 return InsertPt;
3661 if (!DstChild->isLeaf()) {
3663 if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) {
3664 auto Child = DstChild->getChild(0);
3665 auto I = SDNodeXFormEquivs.find(DstChild->getOperator());
3666 if (I != SDNodeXFormEquivs.end()) {
3667 DstMIBuilder.addRenderer<CustomRenderer>(*I->second, Child->getName());
3668 return InsertPt;
3670 return failedImport("SDNodeXForm " + Child->getName() +
3671 " has no custom renderer");
3674 // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't
3675 // inline, but in MI it's just another operand.
3676 if (DstChild->getOperator()->isSubClassOf("SDNode")) {
3677 auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
3678 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
3679 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
3680 return InsertPt;
3684 // Similarly, imm is an operator in TreePatternNode's view but must be
3685 // rendered as operands.
3686 // FIXME: The target should be able to choose sign-extended when appropriate
3687 // (e.g. on Mips).
3688 if (DstChild->getOperator()->getName() == "imm") {
3689 DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName());
3690 return InsertPt;
3691 } else if (DstChild->getOperator()->getName() == "fpimm") {
3692 DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(
3693 DstChild->getName());
3694 return InsertPt;
3697 if (DstChild->getOperator()->isSubClassOf("Instruction")) {
3698 ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
3699 if (ChildTypes.size() != 1)
3700 return failedImport("Dst pattern child has multiple results");
3702 Optional<LLTCodeGen> OpTyOrNone = None;
3703 if (ChildTypes.front().isMachineValueType())
3704 OpTyOrNone =
3705 MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
3706 if (!OpTyOrNone)
3707 return failedImport("Dst operand has an unsupported type");
3709 unsigned TempRegID = Rule.allocateTempRegID();
3710 InsertPt = Rule.insertAction<MakeTempRegisterAction>(
3711 InsertPt, OpTyOrNone.getValue(), TempRegID);
3712 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
3714 auto InsertPtOrError = createAndImportSubInstructionRenderer(
3715 ++InsertPt, Rule, DstChild, TempRegID);
3716 if (auto Error = InsertPtOrError.takeError())
3717 return std::move(Error);
3718 return InsertPtOrError.get();
3721 return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild));
3724 // It could be a specific immediate in which case we should just check for
3725 // that immediate.
3726 if (const IntInit *ChildIntInit =
3727 dyn_cast<IntInit>(DstChild->getLeafValue())) {
3728 DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue());
3729 return InsertPt;
3732 // Otherwise, we're looking for a bog-standard RegisterClass operand.
3733 if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
3734 auto *ChildRec = ChildDefInit->getDef();
3736 ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
3737 if (ChildTypes.size() != 1)
3738 return failedImport("Dst pattern child has multiple results");
3740 Optional<LLTCodeGen> OpTyOrNone = None;
3741 if (ChildTypes.front().isMachineValueType())
3742 OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
3743 if (!OpTyOrNone)
3744 return failedImport("Dst operand has an unsupported type");
3746 if (ChildRec->isSubClassOf("Register")) {
3747 DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec);
3748 return InsertPt;
3751 if (ChildRec->isSubClassOf("RegisterClass") ||
3752 ChildRec->isSubClassOf("RegisterOperand") ||
3753 ChildRec->isSubClassOf("ValueType")) {
3754 if (ChildRec->isSubClassOf("RegisterOperand") &&
3755 !ChildRec->isValueUnset("GIZeroRegister")) {
3756 DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>(
3757 DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister"));
3758 return InsertPt;
3761 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
3762 return InsertPt;
3765 if (ChildRec->isSubClassOf("ComplexPattern")) {
3766 const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
3767 if (ComplexPattern == ComplexPatternEquivs.end())
3768 return failedImport(
3769 "SelectionDAG ComplexPattern not mapped to GlobalISel");
3771 const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName());
3772 DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
3773 *ComplexPattern->second, DstChild->getName(),
3774 OM.getAllocatedTemporariesBaseID());
3775 return InsertPt;
3778 return failedImport(
3779 "Dst pattern child def is an unsupported tablegen class");
3782 return failedImport("Dst pattern child is an unsupported kind");
3785 Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
3786 RuleMatcher &M, const TreePatternNode *Dst) {
3787 auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst);
3788 if (auto Error = InsertPtOrError.takeError())
3789 return std::move(Error);
3791 action_iterator InsertPt = InsertPtOrError.get();
3792 BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get());
3794 importExplicitDefRenderers(DstMIBuilder);
3796 if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst)
3797 .takeError())
3798 return std::move(Error);
3800 return DstMIBuilder;
3803 Expected<action_iterator>
3804 GlobalISelEmitter::createAndImportSubInstructionRenderer(
3805 const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
3806 unsigned TempRegID) {
3807 auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst);
3809 // TODO: Assert there's exactly one result.
3811 if (auto Error = InsertPtOrError.takeError())
3812 return std::move(Error);
3814 BuildMIAction &DstMIBuilder =
3815 *static_cast<BuildMIAction *>(InsertPtOrError.get()->get());
3817 // Assign the result to TempReg.
3818 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true);
3820 InsertPtOrError =
3821 importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst);
3822 if (auto Error = InsertPtOrError.takeError())
3823 return std::move(Error);
3825 M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt,
3826 DstMIBuilder.getInsnID());
3827 return InsertPtOrError.get();
3830 Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer(
3831 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) {
3832 Record *DstOp = Dst->getOperator();
3833 if (!DstOp->isSubClassOf("Instruction")) {
3834 if (DstOp->isSubClassOf("ValueType"))
3835 return failedImport(
3836 "Pattern operator isn't an instruction (it's a ValueType)");
3837 return failedImport("Pattern operator isn't an instruction");
3839 CodeGenInstruction *DstI = &Target.getInstruction(DstOp);
3841 // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
3842 // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
3843 if (DstI->TheDef->getName() == "COPY_TO_REGCLASS")
3844 DstI = &Target.getInstruction(RK.getDef("COPY"));
3845 else if (DstI->TheDef->getName() == "EXTRACT_SUBREG")
3846 DstI = &Target.getInstruction(RK.getDef("COPY"));
3847 else if (DstI->TheDef->getName() == "REG_SEQUENCE")
3848 return failedImport("Unable to emit REG_SEQUENCE");
3850 return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(),
3851 DstI);
3854 void GlobalISelEmitter::importExplicitDefRenderers(
3855 BuildMIAction &DstMIBuilder) {
3856 const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
3857 for (unsigned I = 0; I < DstI->Operands.NumDefs; ++I) {
3858 const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[I];
3859 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
3863 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers(
3864 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
3865 const llvm::TreePatternNode *Dst) {
3866 const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
3867 CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator());
3869 // EXTRACT_SUBREG needs to use a subregister COPY.
3870 if (OrigDstI->TheDef->getName() == "EXTRACT_SUBREG") {
3871 if (!Dst->getChild(0)->isLeaf())
3872 return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
3874 if (DefInit *SubRegInit =
3875 dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue())) {
3876 Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
3877 if (!RCDef)
3878 return failedImport("EXTRACT_SUBREG child #0 could not "
3879 "be coerced to a register class");
3881 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef);
3882 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
3884 const auto &SrcRCDstRCPair =
3885 RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
3886 if (SrcRCDstRCPair.hasValue()) {
3887 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
3888 if (SrcRCDstRCPair->first != RC)
3889 return failedImport("EXTRACT_SUBREG requires an additional COPY");
3892 DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(),
3893 SubIdx);
3894 return InsertPt;
3897 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
3900 // Render the explicit uses.
3901 unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs;
3902 unsigned ExpectedDstINumUses = Dst->getNumChildren();
3903 if (OrigDstI->TheDef->getName() == "COPY_TO_REGCLASS") {
3904 DstINumUses--; // Ignore the class constraint.
3905 ExpectedDstINumUses--;
3908 unsigned Child = 0;
3909 unsigned NumDefaultOps = 0;
3910 for (unsigned I = 0; I != DstINumUses; ++I) {
3911 const CGIOperandList::OperandInfo &DstIOperand =
3912 DstI->Operands[DstI->Operands.NumDefs + I];
3914 // If the operand has default values, introduce them now.
3915 // FIXME: Until we have a decent test case that dictates we should do
3916 // otherwise, we're going to assume that operands with default values cannot
3917 // be specified in the patterns. Therefore, adding them will not cause us to
3918 // end up with too many rendered operands.
3919 if (DstIOperand.Rec->isSubClassOf("OperandWithDefaultOps")) {
3920 DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
3921 if (auto Error = importDefaultOperandRenderers(
3922 InsertPt, M, DstMIBuilder, DefaultOps))
3923 return std::move(Error);
3924 ++NumDefaultOps;
3925 continue;
3928 auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder,
3929 Dst->getChild(Child));
3930 if (auto Error = InsertPtOrError.takeError())
3931 return std::move(Error);
3932 InsertPt = InsertPtOrError.get();
3933 ++Child;
3936 if (NumDefaultOps + ExpectedDstINumUses != DstINumUses)
3937 return failedImport("Expected " + llvm::to_string(DstINumUses) +
3938 " used operands but found " +
3939 llvm::to_string(ExpectedDstINumUses) +
3940 " explicit ones and " + llvm::to_string(NumDefaultOps) +
3941 " default ones");
3943 return InsertPt;
3946 Error GlobalISelEmitter::importDefaultOperandRenderers(
3947 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
3948 DagInit *DefaultOps) const {
3949 for (const auto *DefaultOp : DefaultOps->getArgs()) {
3950 Optional<LLTCodeGen> OpTyOrNone = None;
3952 // Look through ValueType operators.
3953 if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
3954 if (const DefInit *DefaultDagOperator =
3955 dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
3956 if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) {
3957 OpTyOrNone = MVTToLLT(getValueType(
3958 DefaultDagOperator->getDef()));
3959 DefaultOp = DefaultDagOp->getArg(0);
3964 if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
3965 auto Def = DefaultDefOp->getDef();
3966 if (Def->getName() == "undef_tied_input") {
3967 unsigned TempRegID = M.allocateTempRegID();
3968 M.insertAction<MakeTempRegisterAction>(
3969 InsertPt, OpTyOrNone.getValue(), TempRegID);
3970 InsertPt = M.insertAction<BuildMIAction>(
3971 InsertPt, M.allocateOutputInsnID(),
3972 &Target.getInstruction(RK.getDef("IMPLICIT_DEF")));
3973 BuildMIAction &IDMIBuilder = *static_cast<BuildMIAction *>(
3974 InsertPt->get());
3975 IDMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
3976 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
3977 } else {
3978 DstMIBuilder.addRenderer<AddRegisterRenderer>(Def);
3980 continue;
3983 if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
3984 DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
3985 continue;
3988 return failedImport("Could not add default op");
3991 return Error::success();
3994 Error GlobalISelEmitter::importImplicitDefRenderers(
3995 BuildMIAction &DstMIBuilder,
3996 const std::vector<Record *> &ImplicitDefs) const {
3997 if (!ImplicitDefs.empty())
3998 return failedImport("Pattern defines a physical register");
3999 return Error::success();
4002 Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
4003 // Keep track of the matchers and actions to emit.
4004 int Score = P.getPatternComplexity(CGP);
4005 RuleMatcher M(P.getSrcRecord()->getLoc());
4006 RuleMatcherScores[M.getRuleID()] = Score;
4007 M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) +
4008 " => " +
4009 llvm::to_string(*P.getDstPattern()));
4011 if (auto Error = importRulePredicates(M, P.getPredicates()))
4012 return std::move(Error);
4014 // Next, analyze the pattern operators.
4015 TreePatternNode *Src = P.getSrcPattern();
4016 TreePatternNode *Dst = P.getDstPattern();
4018 // If the root of either pattern isn't a simple operator, ignore it.
4019 if (auto Err = isTrivialOperatorNode(Dst))
4020 return failedImport("Dst pattern root isn't a trivial operator (" +
4021 toString(std::move(Err)) + ")");
4022 if (auto Err = isTrivialOperatorNode(Src))
4023 return failedImport("Src pattern root isn't a trivial operator (" +
4024 toString(std::move(Err)) + ")");
4026 // The different predicates and matchers created during
4027 // addInstructionMatcher use the RuleMatcher M to set up their
4028 // instruction ID (InsnVarID) that are going to be used when
4029 // M is going to be emitted.
4030 // However, the code doing the emission still relies on the IDs
4031 // returned during that process by the RuleMatcher when issuing
4032 // the recordInsn opcodes.
4033 // Because of that:
4034 // 1. The order in which we created the predicates
4035 // and such must be the same as the order in which we emit them,
4036 // and
4037 // 2. We need to reset the generation of the IDs in M somewhere between
4038 // addInstructionMatcher and emit
4040 // FIXME: Long term, we don't want to have to rely on this implicit
4041 // naming being the same. One possible solution would be to have
4042 // explicit operator for operation capture and reference those.
4043 // The plus side is that it would expose opportunities to share
4044 // the capture accross rules. The downside is that it would
4045 // introduce a dependency between predicates (captures must happen
4046 // before their first use.)
4047 InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName());
4048 unsigned TempOpIdx = 0;
4049 auto InsnMatcherOrError =
4050 createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx);
4051 if (auto Error = InsnMatcherOrError.takeError())
4052 return std::move(Error);
4053 InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
4055 if (Dst->isLeaf()) {
4056 Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue());
4058 const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef);
4059 if (RCDef) {
4060 // We need to replace the def and all its uses with the specified
4061 // operand. However, we must also insert COPY's wherever needed.
4062 // For now, emit a copy and let the register allocator clean up.
4063 auto &DstI = Target.getInstruction(RK.getDef("COPY"));
4064 const auto &DstIOperand = DstI.Operands[0];
4066 OperandMatcher &OM0 = InsnMatcher.getOperand(0);
4067 OM0.setSymbolicName(DstIOperand.Name);
4068 M.defineOperand(OM0.getSymbolicName(), OM0);
4069 OM0.addPredicate<RegisterBankOperandMatcher>(RC);
4071 auto &DstMIBuilder =
4072 M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI);
4073 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
4074 DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName());
4075 M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC);
4077 // We're done with this pattern! It's eligible for GISel emission; return
4078 // it.
4079 ++NumPatternImported;
4080 return std::move(M);
4083 return failedImport("Dst pattern root isn't a known leaf");
4086 // Start with the defined operands (i.e., the results of the root operator).
4087 Record *DstOp = Dst->getOperator();
4088 if (!DstOp->isSubClassOf("Instruction"))
4089 return failedImport("Pattern operator isn't an instruction");
4091 auto &DstI = Target.getInstruction(DstOp);
4092 if (DstI.Operands.NumDefs != Src->getExtTypes().size())
4093 return failedImport("Src pattern results and dst MI defs are different (" +
4094 to_string(Src->getExtTypes().size()) + " def(s) vs " +
4095 to_string(DstI.Operands.NumDefs) + " def(s))");
4097 // The root of the match also has constraints on the register bank so that it
4098 // matches the result instruction.
4099 unsigned OpIdx = 0;
4100 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
4101 (void)VTy;
4103 const auto &DstIOperand = DstI.Operands[OpIdx];
4104 Record *DstIOpRec = DstIOperand.Rec;
4105 if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
4106 DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
4108 if (DstIOpRec == nullptr)
4109 return failedImport(
4110 "COPY_TO_REGCLASS operand #1 isn't a register class");
4111 } else if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
4112 if (!Dst->getChild(0)->isLeaf())
4113 return failedImport("EXTRACT_SUBREG operand #0 isn't a leaf");
4115 // We can assume that a subregister is in the same bank as it's super
4116 // register.
4117 DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
4119 if (DstIOpRec == nullptr)
4120 return failedImport(
4121 "EXTRACT_SUBREG operand #0 isn't a register class");
4122 } else if (DstIOpRec->isSubClassOf("RegisterOperand"))
4123 DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
4124 else if (!DstIOpRec->isSubClassOf("RegisterClass"))
4125 return failedImport("Dst MI def isn't a register class" +
4126 to_string(*Dst));
4128 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
4129 OM.setSymbolicName(DstIOperand.Name);
4130 M.defineOperand(OM.getSymbolicName(), OM);
4131 OM.addPredicate<RegisterBankOperandMatcher>(
4132 Target.getRegisterClass(DstIOpRec));
4133 ++OpIdx;
4136 auto DstMIBuilderOrError = createAndImportInstructionRenderer(M, Dst);
4137 if (auto Error = DstMIBuilderOrError.takeError())
4138 return std::move(Error);
4139 BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
4141 // Render the implicit defs.
4142 // These are only added to the root of the result.
4143 if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
4144 return std::move(Error);
4146 DstMIBuilder.chooseInsnToMutate(M);
4148 // Constrain the registers to classes. This is normally derived from the
4149 // emitted instruction but a few instructions require special handling.
4150 if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
4151 // COPY_TO_REGCLASS does not provide operand constraints itself but the
4152 // result is constrained to the class given by the second child.
4153 Record *DstIOpRec =
4154 getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
4156 if (DstIOpRec == nullptr)
4157 return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
4159 M.addAction<ConstrainOperandToRegClassAction>(
4160 0, 0, Target.getRegisterClass(DstIOpRec));
4162 // We're done with this pattern! It's eligible for GISel emission; return
4163 // it.
4164 ++NumPatternImported;
4165 return std::move(M);
4168 if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
4169 // EXTRACT_SUBREG selects into a subregister COPY but unlike most
4170 // instructions, the result register class is controlled by the
4171 // subregisters of the operand. As a result, we must constrain the result
4172 // class rather than check that it's already the right one.
4173 if (!Dst->getChild(0)->isLeaf())
4174 return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
4176 DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
4177 if (!SubRegInit)
4178 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
4180 // Constrain the result to the same register bank as the operand.
4181 Record *DstIOpRec =
4182 getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
4184 if (DstIOpRec == nullptr)
4185 return failedImport("EXTRACT_SUBREG operand #1 isn't a register class");
4187 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
4188 CodeGenRegisterClass *SrcRC = CGRegs.getRegClass(DstIOpRec);
4190 // It would be nice to leave this constraint implicit but we're required
4191 // to pick a register class so constrain the result to a register class
4192 // that can hold the correct MVT.
4194 // FIXME: This may introduce an extra copy if the chosen class doesn't
4195 // actually contain the subregisters.
4196 assert(Src->getExtTypes().size() == 1 &&
4197 "Expected Src of EXTRACT_SUBREG to have one result type");
4199 const auto &SrcRCDstRCPair =
4200 SrcRC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
4201 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
4202 M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second);
4203 M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first);
4205 // We're done with this pattern! It's eligible for GISel emission; return
4206 // it.
4207 ++NumPatternImported;
4208 return std::move(M);
4211 M.addAction<ConstrainOperandsToDefinitionAction>(0);
4213 // We're done with this pattern! It's eligible for GISel emission; return it.
4214 ++NumPatternImported;
4215 return std::move(M);
4218 // Emit imm predicate table and an enum to reference them with.
4219 // The 'Predicate_' part of the name is redundant but eliminating it is more
4220 // trouble than it's worth.
4221 void GlobalISelEmitter::emitCxxPredicateFns(
4222 raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier,
4223 StringRef ArgType, StringRef ArgName, StringRef AdditionalDeclarations,
4224 std::function<bool(const Record *R)> Filter) {
4225 std::vector<const Record *> MatchedRecords;
4226 const auto &Defs = RK.getAllDerivedDefinitions("PatFrag");
4227 std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords),
4228 [&](Record *Record) {
4229 return !Record->getValueAsString(CodeFieldName).empty() &&
4230 Filter(Record);
4233 if (!MatchedRecords.empty()) {
4234 OS << "// PatFrag predicates.\n"
4235 << "enum {\n";
4236 std::string EnumeratorSeparator =
4237 (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str();
4238 for (const auto *Record : MatchedRecords) {
4239 OS << " GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName()
4240 << EnumeratorSeparator;
4241 EnumeratorSeparator = ",\n";
4243 OS << "};\n";
4246 OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName
4247 << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " "
4248 << ArgName << ") const {\n"
4249 << AdditionalDeclarations;
4250 if (!AdditionalDeclarations.empty())
4251 OS << "\n";
4252 if (!MatchedRecords.empty())
4253 OS << " switch (PredicateID) {\n";
4254 for (const auto *Record : MatchedRecords) {
4255 OS << " case GIPFP_" << TypeIdentifier << "_Predicate_"
4256 << Record->getName() << ": {\n"
4257 << " " << Record->getValueAsString(CodeFieldName) << "\n"
4258 << " llvm_unreachable(\"" << CodeFieldName
4259 << " should have returned\");\n"
4260 << " return false;\n"
4261 << " }\n";
4263 if (!MatchedRecords.empty())
4264 OS << " }\n";
4265 OS << " llvm_unreachable(\"Unknown predicate\");\n"
4266 << " return false;\n"
4267 << "}\n";
4270 void GlobalISelEmitter::emitImmPredicateFns(
4271 raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType,
4272 std::function<bool(const Record *R)> Filter) {
4273 return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType,
4274 "Imm", "", Filter);
4277 void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) {
4278 return emitCxxPredicateFns(
4279 OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI",
4280 " const MachineFunction &MF = *MI.getParent()->getParent();\n"
4281 " const MachineRegisterInfo &MRI = MF.getRegInfo();\n"
4282 " (void)MRI;",
4283 [](const Record *R) { return true; });
4286 template <class GroupT>
4287 std::vector<Matcher *> GlobalISelEmitter::optimizeRules(
4288 ArrayRef<Matcher *> Rules,
4289 std::vector<std::unique_ptr<Matcher>> &MatcherStorage) {
4291 std::vector<Matcher *> OptRules;
4292 std::unique_ptr<GroupT> CurrentGroup = make_unique<GroupT>();
4293 assert(CurrentGroup->empty() && "Newly created group isn't empty!");
4294 unsigned NumGroups = 0;
4296 auto ProcessCurrentGroup = [&]() {
4297 if (CurrentGroup->empty())
4298 // An empty group is good to be reused:
4299 return;
4301 // If the group isn't large enough to provide any benefit, move all the
4302 // added rules out of it and make sure to re-create the group to properly
4303 // re-initialize it:
4304 if (CurrentGroup->size() < 2)
4305 for (Matcher *M : CurrentGroup->matchers())
4306 OptRules.push_back(M);
4307 else {
4308 CurrentGroup->finalize();
4309 OptRules.push_back(CurrentGroup.get());
4310 MatcherStorage.emplace_back(std::move(CurrentGroup));
4311 ++NumGroups;
4313 CurrentGroup = make_unique<GroupT>();
4315 for (Matcher *Rule : Rules) {
4316 // Greedily add as many matchers as possible to the current group:
4317 if (CurrentGroup->addMatcher(*Rule))
4318 continue;
4320 ProcessCurrentGroup();
4321 assert(CurrentGroup->empty() && "A group wasn't properly re-initialized");
4323 // Try to add the pending matcher to a newly created empty group:
4324 if (!CurrentGroup->addMatcher(*Rule))
4325 // If we couldn't add the matcher to an empty group, that group type
4326 // doesn't support that kind of matchers at all, so just skip it:
4327 OptRules.push_back(Rule);
4329 ProcessCurrentGroup();
4331 LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n");
4332 assert(CurrentGroup->empty() && "The last group wasn't properly processed");
4333 return OptRules;
4336 MatchTable
4337 GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules,
4338 bool Optimize, bool WithCoverage) {
4339 std::vector<Matcher *> InputRules;
4340 for (Matcher &Rule : Rules)
4341 InputRules.push_back(&Rule);
4343 if (!Optimize)
4344 return MatchTable::buildTable(InputRules, WithCoverage);
4346 unsigned CurrentOrdering = 0;
4347 StringMap<unsigned> OpcodeOrder;
4348 for (RuleMatcher &Rule : Rules) {
4349 const StringRef Opcode = Rule.getOpcode();
4350 assert(!Opcode.empty() && "Didn't expect an undefined opcode");
4351 if (OpcodeOrder.count(Opcode) == 0)
4352 OpcodeOrder[Opcode] = CurrentOrdering++;
4355 std::stable_sort(InputRules.begin(), InputRules.end(),
4356 [&OpcodeOrder](const Matcher *A, const Matcher *B) {
4357 auto *L = static_cast<const RuleMatcher *>(A);
4358 auto *R = static_cast<const RuleMatcher *>(B);
4359 return std::make_tuple(OpcodeOrder[L->getOpcode()],
4360 L->getNumOperands()) <
4361 std::make_tuple(OpcodeOrder[R->getOpcode()],
4362 R->getNumOperands());
4365 for (Matcher *Rule : InputRules)
4366 Rule->optimize();
4368 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
4369 std::vector<Matcher *> OptRules =
4370 optimizeRules<GroupMatcher>(InputRules, MatcherStorage);
4372 for (Matcher *Rule : OptRules)
4373 Rule->optimize();
4375 OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage);
4377 return MatchTable::buildTable(OptRules, WithCoverage);
4380 void GroupMatcher::optimize() {
4381 // Make sure we only sort by a specific predicate within a range of rules that
4382 // all have that predicate checked against a specific value (not a wildcard):
4383 auto F = Matchers.begin();
4384 auto T = F;
4385 auto E = Matchers.end();
4386 while (T != E) {
4387 while (T != E) {
4388 auto *R = static_cast<RuleMatcher *>(*T);
4389 if (!R->getFirstConditionAsRootType().get().isValid())
4390 break;
4391 ++T;
4393 std::stable_sort(F, T, [](Matcher *A, Matcher *B) {
4394 auto *L = static_cast<RuleMatcher *>(A);
4395 auto *R = static_cast<RuleMatcher *>(B);
4396 return L->getFirstConditionAsRootType() <
4397 R->getFirstConditionAsRootType();
4399 if (T != E)
4400 F = ++T;
4402 GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage)
4403 .swap(Matchers);
4404 GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage)
4405 .swap(Matchers);
4408 void GlobalISelEmitter::run(raw_ostream &OS) {
4409 if (!UseCoverageFile.empty()) {
4410 RuleCoverage = CodeGenCoverage();
4411 auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile);
4412 if (!RuleCoverageBufOrErr) {
4413 PrintWarning(SMLoc(), "Missing rule coverage data");
4414 RuleCoverage = None;
4415 } else {
4416 if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) {
4417 PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
4418 RuleCoverage = None;
4423 // Track the run-time opcode values
4424 gatherOpcodeValues();
4425 // Track the run-time LLT ID values
4426 gatherTypeIDValues();
4428 // Track the GINodeEquiv definitions.
4429 gatherNodeEquivs();
4431 emitSourceFileHeader(("Global Instruction Selector for the " +
4432 Target.getName() + " target").str(), OS);
4433 std::vector<RuleMatcher> Rules;
4434 // Look through the SelectionDAG patterns we found, possibly emitting some.
4435 for (const PatternToMatch &Pat : CGP.ptms()) {
4436 ++NumPatternTotal;
4438 auto MatcherOrErr = runOnPattern(Pat);
4440 // The pattern analysis can fail, indicating an unsupported pattern.
4441 // Report that if we've been asked to do so.
4442 if (auto Err = MatcherOrErr.takeError()) {
4443 if (WarnOnSkippedPatterns) {
4444 PrintWarning(Pat.getSrcRecord()->getLoc(),
4445 "Skipped pattern: " + toString(std::move(Err)));
4446 } else {
4447 consumeError(std::move(Err));
4449 ++NumPatternImportsSkipped;
4450 continue;
4453 if (RuleCoverage) {
4454 if (RuleCoverage->isCovered(MatcherOrErr->getRuleID()))
4455 ++NumPatternsTested;
4456 else
4457 PrintWarning(Pat.getSrcRecord()->getLoc(),
4458 "Pattern is not covered by a test");
4460 Rules.push_back(std::move(MatcherOrErr.get()));
4463 // Comparison function to order records by name.
4464 auto orderByName = [](const Record *A, const Record *B) {
4465 return A->getName() < B->getName();
4468 std::vector<Record *> ComplexPredicates =
4469 RK.getAllDerivedDefinitions("GIComplexOperandMatcher");
4470 llvm::sort(ComplexPredicates, orderByName);
4472 std::vector<Record *> CustomRendererFns =
4473 RK.getAllDerivedDefinitions("GICustomOperandRenderer");
4474 llvm::sort(CustomRendererFns, orderByName);
4476 unsigned MaxTemporaries = 0;
4477 for (const auto &Rule : Rules)
4478 MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
4480 OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
4481 << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
4482 << ";\n"
4483 << "using PredicateBitset = "
4484 "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
4485 << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
4487 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
4488 << " mutable MatcherState State;\n"
4489 << " typedef "
4490 "ComplexRendererFns("
4491 << Target.getName()
4492 << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
4494 << " typedef void(" << Target.getName()
4495 << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
4496 "MachineInstr&) "
4497 "const;\n"
4498 << " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
4499 "CustomRendererFn> "
4500 "ISelInfo;\n";
4501 OS << " static " << Target.getName()
4502 << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
4503 << " static " << Target.getName()
4504 << "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
4505 << " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
4506 "override;\n"
4507 << " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
4508 "const override;\n"
4509 << " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
4510 "&Imm) const override;\n"
4511 << " const int64_t *getMatchTable() const override;\n"
4512 << " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI) "
4513 "const override;\n"
4514 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
4516 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
4517 << ", State(" << MaxTemporaries << "),\n"
4518 << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets"
4519 << ", ComplexPredicateFns, CustomRenderers)\n"
4520 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
4522 OS << "#ifdef GET_GLOBALISEL_IMPL\n";
4523 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
4524 OS);
4526 // Separate subtarget features by how often they must be recomputed.
4527 SubtargetFeatureInfoMap ModuleFeatures;
4528 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
4529 std::inserter(ModuleFeatures, ModuleFeatures.end()),
4530 [](const SubtargetFeatureInfoMap::value_type &X) {
4531 return !X.second.mustRecomputePerFunction();
4533 SubtargetFeatureInfoMap FunctionFeatures;
4534 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
4535 std::inserter(FunctionFeatures, FunctionFeatures.end()),
4536 [](const SubtargetFeatureInfoMap::value_type &X) {
4537 return X.second.mustRecomputePerFunction();
4540 SubtargetFeatureInfo::emitComputeAvailableFeatures(
4541 Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
4542 ModuleFeatures, OS);
4543 SubtargetFeatureInfo::emitComputeAvailableFeatures(
4544 Target.getName(), "InstructionSelector",
4545 "computeAvailableFunctionFeatures", FunctionFeatures, OS,
4546 "const MachineFunction *MF");
4548 // Emit a table containing the LLT objects needed by the matcher and an enum
4549 // for the matcher to reference them with.
4550 std::vector<LLTCodeGen> TypeObjects;
4551 for (const auto &Ty : KnownTypes)
4552 TypeObjects.push_back(Ty);
4553 llvm::sort(TypeObjects);
4554 OS << "// LLT Objects.\n"
4555 << "enum {\n";
4556 for (const auto &TypeObject : TypeObjects) {
4557 OS << " ";
4558 TypeObject.emitCxxEnumValue(OS);
4559 OS << ",\n";
4561 OS << "};\n";
4562 OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n"
4563 << "const static LLT TypeObjects[] = {\n";
4564 for (const auto &TypeObject : TypeObjects) {
4565 OS << " ";
4566 TypeObject.emitCxxConstructorCall(OS);
4567 OS << ",\n";
4569 OS << "};\n\n";
4571 // Emit a table containing the PredicateBitsets objects needed by the matcher
4572 // and an enum for the matcher to reference them with.
4573 std::vector<std::vector<Record *>> FeatureBitsets;
4574 for (auto &Rule : Rules)
4575 FeatureBitsets.push_back(Rule.getRequiredFeatures());
4576 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
4577 const std::vector<Record *> &B) {
4578 if (A.size() < B.size())
4579 return true;
4580 if (A.size() > B.size())
4581 return false;
4582 for (const auto &Pair : zip(A, B)) {
4583 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
4584 return true;
4585 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
4586 return false;
4588 return false;
4590 FeatureBitsets.erase(
4591 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
4592 FeatureBitsets.end());
4593 OS << "// Feature bitsets.\n"
4594 << "enum {\n"
4595 << " GIFBS_Invalid,\n";
4596 for (const auto &FeatureBitset : FeatureBitsets) {
4597 if (FeatureBitset.empty())
4598 continue;
4599 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
4601 OS << "};\n"
4602 << "const static PredicateBitset FeatureBitsets[] {\n"
4603 << " {}, // GIFBS_Invalid\n";
4604 for (const auto &FeatureBitset : FeatureBitsets) {
4605 if (FeatureBitset.empty())
4606 continue;
4607 OS << " {";
4608 for (const auto &Feature : FeatureBitset) {
4609 const auto &I = SubtargetFeatures.find(Feature);
4610 assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
4611 OS << I->second.getEnumBitName() << ", ";
4613 OS << "},\n";
4615 OS << "};\n\n";
4617 // Emit complex predicate table and an enum to reference them with.
4618 OS << "// ComplexPattern predicates.\n"
4619 << "enum {\n"
4620 << " GICP_Invalid,\n";
4621 for (const auto &Record : ComplexPredicates)
4622 OS << " GICP_" << Record->getName() << ",\n";
4623 OS << "};\n"
4624 << "// See constructor for table contents\n\n";
4626 emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) {
4627 bool Unset;
4628 return !R->getValueAsBitOrUnset("IsAPFloat", Unset) &&
4629 !R->getValueAsBit("IsAPInt");
4631 emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) {
4632 bool Unset;
4633 return R->getValueAsBitOrUnset("IsAPFloat", Unset);
4635 emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) {
4636 return R->getValueAsBit("IsAPInt");
4638 emitMIPredicateFns(OS);
4639 OS << "\n";
4641 OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
4642 << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
4643 << " nullptr, // GICP_Invalid\n";
4644 for (const auto &Record : ComplexPredicates)
4645 OS << " &" << Target.getName()
4646 << "InstructionSelector::" << Record->getValueAsString("MatcherFn")
4647 << ", // " << Record->getName() << "\n";
4648 OS << "};\n\n";
4650 OS << "// Custom renderers.\n"
4651 << "enum {\n"
4652 << " GICR_Invalid,\n";
4653 for (const auto &Record : CustomRendererFns)
4654 OS << " GICR_" << Record->getValueAsString("RendererFn") << ", \n";
4655 OS << "};\n";
4657 OS << Target.getName() << "InstructionSelector::CustomRendererFn\n"
4658 << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n"
4659 << " nullptr, // GICP_Invalid\n";
4660 for (const auto &Record : CustomRendererFns)
4661 OS << " &" << Target.getName()
4662 << "InstructionSelector::" << Record->getValueAsString("RendererFn")
4663 << ", // " << Record->getName() << "\n";
4664 OS << "};\n\n";
4666 llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) {
4667 int ScoreA = RuleMatcherScores[A.getRuleID()];
4668 int ScoreB = RuleMatcherScores[B.getRuleID()];
4669 if (ScoreA > ScoreB)
4670 return true;
4671 if (ScoreB > ScoreA)
4672 return false;
4673 if (A.isHigherPriorityThan(B)) {
4674 assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
4675 "and less important at "
4676 "the same time");
4677 return true;
4679 return false;
4682 OS << "bool " << Target.getName()
4683 << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
4684 "&CoverageInfo) const {\n"
4685 << " MachineFunction &MF = *I.getParent()->getParent();\n"
4686 << " MachineRegisterInfo &MRI = MF.getRegInfo();\n"
4687 << " // FIXME: This should be computed on a per-function basis rather "
4688 "than per-insn.\n"
4689 << " AvailableFunctionFeatures = computeAvailableFunctionFeatures(&STI, "
4690 "&MF);\n"
4691 << " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
4692 << " NewMIVector OutMIs;\n"
4693 << " State.MIs.clear();\n"
4694 << " State.MIs.push_back(&I);\n\n"
4695 << " if (executeMatchTable(*this, OutMIs, State, ISelInfo"
4696 << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures"
4697 << ", CoverageInfo)) {\n"
4698 << " return true;\n"
4699 << " }\n\n"
4700 << " return false;\n"
4701 << "}\n\n";
4703 const MatchTable Table =
4704 buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage);
4705 OS << "const int64_t *" << Target.getName()
4706 << "InstructionSelector::getMatchTable() const {\n";
4707 Table.emitDeclaration(OS);
4708 OS << " return ";
4709 Table.emitUse(OS);
4710 OS << ";\n}\n";
4711 OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n";
4713 OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
4714 << "PredicateBitset AvailableModuleFeatures;\n"
4715 << "mutable PredicateBitset AvailableFunctionFeatures;\n"
4716 << "PredicateBitset getAvailableFeatures() const {\n"
4717 << " return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
4718 << "}\n"
4719 << "PredicateBitset\n"
4720 << "computeAvailableModuleFeatures(const " << Target.getName()
4721 << "Subtarget *Subtarget) const;\n"
4722 << "PredicateBitset\n"
4723 << "computeAvailableFunctionFeatures(const " << Target.getName()
4724 << "Subtarget *Subtarget,\n"
4725 << " const MachineFunction *MF) const;\n"
4726 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
4728 OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
4729 << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
4730 << "AvailableFunctionFeatures()\n"
4731 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
4734 void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
4735 if (SubtargetFeatures.count(Predicate) == 0)
4736 SubtargetFeatures.emplace(
4737 Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
4740 void RuleMatcher::optimize() {
4741 for (auto &Item : InsnVariableIDs) {
4742 InstructionMatcher &InsnMatcher = *Item.first;
4743 for (auto &OM : InsnMatcher.operands()) {
4744 // Complex Patterns are usually expensive and they relatively rarely fail
4745 // on their own: more often we end up throwing away all the work done by a
4746 // matching part of a complex pattern because some other part of the
4747 // enclosing pattern didn't match. All of this makes it beneficial to
4748 // delay complex patterns until the very end of the rule matching,
4749 // especially for targets having lots of complex patterns.
4750 for (auto &OP : OM->predicates())
4751 if (isa<ComplexPatternOperandMatcher>(OP))
4752 EpilogueMatchers.emplace_back(std::move(OP));
4753 OM->eraseNullPredicates();
4755 InsnMatcher.optimize();
4757 llvm::sort(EpilogueMatchers, [](const std::unique_ptr<PredicateMatcher> &L,
4758 const std::unique_ptr<PredicateMatcher> &R) {
4759 return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) <
4760 std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx());
4764 bool RuleMatcher::hasFirstCondition() const {
4765 if (insnmatchers_empty())
4766 return false;
4767 InstructionMatcher &Matcher = insnmatchers_front();
4768 if (!Matcher.predicates_empty())
4769 return true;
4770 for (auto &OM : Matcher.operands())
4771 for (auto &OP : OM->predicates())
4772 if (!isa<InstructionOperandMatcher>(OP))
4773 return true;
4774 return false;
4777 const PredicateMatcher &RuleMatcher::getFirstCondition() const {
4778 assert(!insnmatchers_empty() &&
4779 "Trying to get a condition from an empty RuleMatcher");
4781 InstructionMatcher &Matcher = insnmatchers_front();
4782 if (!Matcher.predicates_empty())
4783 return **Matcher.predicates_begin();
4784 // If there is no more predicate on the instruction itself, look at its
4785 // operands.
4786 for (auto &OM : Matcher.operands())
4787 for (auto &OP : OM->predicates())
4788 if (!isa<InstructionOperandMatcher>(OP))
4789 return *OP;
4791 llvm_unreachable("Trying to get a condition from an InstructionMatcher with "
4792 "no conditions");
4795 std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() {
4796 assert(!insnmatchers_empty() &&
4797 "Trying to pop a condition from an empty RuleMatcher");
4799 InstructionMatcher &Matcher = insnmatchers_front();
4800 if (!Matcher.predicates_empty())
4801 return Matcher.predicates_pop_front();
4802 // If there is no more predicate on the instruction itself, look at its
4803 // operands.
4804 for (auto &OM : Matcher.operands())
4805 for (auto &OP : OM->predicates())
4806 if (!isa<InstructionOperandMatcher>(OP)) {
4807 std::unique_ptr<PredicateMatcher> Result = std::move(OP);
4808 OM->eraseNullPredicates();
4809 return Result;
4812 llvm_unreachable("Trying to pop a condition from an InstructionMatcher with "
4813 "no conditions");
4816 bool GroupMatcher::candidateConditionMatches(
4817 const PredicateMatcher &Predicate) const {
4819 if (empty()) {
4820 // Sharing predicates for nested instructions is not supported yet as we
4821 // currently don't hoist the GIM_RecordInsn's properly, therefore we can
4822 // only work on the original root instruction (InsnVarID == 0):
4823 if (Predicate.getInsnVarID() != 0)
4824 return false;
4825 // ... otherwise an empty group can handle any predicate with no specific
4826 // requirements:
4827 return true;
4830 const Matcher &Representative = **Matchers.begin();
4831 const auto &RepresentativeCondition = Representative.getFirstCondition();
4832 // ... if not empty, the group can only accomodate matchers with the exact
4833 // same first condition:
4834 return Predicate.isIdentical(RepresentativeCondition);
4837 bool GroupMatcher::addMatcher(Matcher &Candidate) {
4838 if (!Candidate.hasFirstCondition())
4839 return false;
4841 const PredicateMatcher &Predicate = Candidate.getFirstCondition();
4842 if (!candidateConditionMatches(Predicate))
4843 return false;
4845 Matchers.push_back(&Candidate);
4846 return true;
4849 void GroupMatcher::finalize() {
4850 assert(Conditions.empty() && "Already finalized?");
4851 if (empty())
4852 return;
4854 Matcher &FirstRule = **Matchers.begin();
4855 for (;;) {
4856 // All the checks are expected to succeed during the first iteration:
4857 for (const auto &Rule : Matchers)
4858 if (!Rule->hasFirstCondition())
4859 return;
4860 const auto &FirstCondition = FirstRule.getFirstCondition();
4861 for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
4862 if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition))
4863 return;
4865 Conditions.push_back(FirstRule.popFirstCondition());
4866 for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
4867 Matchers[I]->popFirstCondition();
4871 void GroupMatcher::emit(MatchTable &Table) {
4872 unsigned LabelID = ~0U;
4873 if (!Conditions.empty()) {
4874 LabelID = Table.allocateLabelID();
4875 Table << MatchTable::Opcode("GIM_Try", +1)
4876 << MatchTable::Comment("On fail goto")
4877 << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak;
4879 for (auto &Condition : Conditions)
4880 Condition->emitPredicateOpcodes(
4881 Table, *static_cast<RuleMatcher *>(*Matchers.begin()));
4883 for (const auto &M : Matchers)
4884 M->emit(Table);
4886 // Exit the group
4887 if (!Conditions.empty())
4888 Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak
4889 << MatchTable::Label(LabelID);
4892 bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) {
4893 return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P);
4896 bool SwitchMatcher::candidateConditionMatches(
4897 const PredicateMatcher &Predicate) const {
4899 if (empty()) {
4900 // Sharing predicates for nested instructions is not supported yet as we
4901 // currently don't hoist the GIM_RecordInsn's properly, therefore we can
4902 // only work on the original root instruction (InsnVarID == 0):
4903 if (Predicate.getInsnVarID() != 0)
4904 return false;
4905 // ... while an attempt to add even a root matcher to an empty SwitchMatcher
4906 // could fail as not all the types of conditions are supported:
4907 if (!isSupportedPredicateType(Predicate))
4908 return false;
4909 // ... or the condition might not have a proper implementation of
4910 // getValue() / isIdenticalDownToValue() yet:
4911 if (!Predicate.hasValue())
4912 return false;
4913 // ... otherwise an empty Switch can accomodate the condition with no
4914 // further requirements:
4915 return true;
4918 const Matcher &CaseRepresentative = **Matchers.begin();
4919 const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition();
4920 // Switch-cases must share the same kind of condition and path to the value it
4921 // checks:
4922 if (!Predicate.isIdenticalDownToValue(RepresentativeCondition))
4923 return false;
4925 const auto Value = Predicate.getValue();
4926 // ... but be unique with respect to the actual value they check:
4927 return Values.count(Value) == 0;
4930 bool SwitchMatcher::addMatcher(Matcher &Candidate) {
4931 if (!Candidate.hasFirstCondition())
4932 return false;
4934 const PredicateMatcher &Predicate = Candidate.getFirstCondition();
4935 if (!candidateConditionMatches(Predicate))
4936 return false;
4937 const auto Value = Predicate.getValue();
4938 Values.insert(Value);
4940 Matchers.push_back(&Candidate);
4941 return true;
4944 void SwitchMatcher::finalize() {
4945 assert(Condition == nullptr && "Already finalized");
4946 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
4947 if (empty())
4948 return;
4950 std::stable_sort(Matchers.begin(), Matchers.end(),
4951 [](const Matcher *L, const Matcher *R) {
4952 return L->getFirstCondition().getValue() <
4953 R->getFirstCondition().getValue();
4955 Condition = Matchers[0]->popFirstCondition();
4956 for (unsigned I = 1, E = Values.size(); I < E; ++I)
4957 Matchers[I]->popFirstCondition();
4960 void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P,
4961 MatchTable &Table) {
4962 assert(isSupportedPredicateType(P) && "Predicate type is not supported");
4964 if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) {
4965 Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI")
4966 << MatchTable::IntValue(Condition->getInsnVarID());
4967 return;
4969 if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) {
4970 Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI")
4971 << MatchTable::IntValue(Condition->getInsnVarID())
4972 << MatchTable::Comment("Op")
4973 << MatchTable::IntValue(Condition->getOpIdx());
4974 return;
4977 llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a "
4978 "predicate type that is claimed to be supported");
4981 void SwitchMatcher::emit(MatchTable &Table) {
4982 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
4983 if (empty())
4984 return;
4985 assert(Condition != nullptr &&
4986 "Broken SwitchMatcher, hasn't been finalized?");
4988 std::vector<unsigned> LabelIDs(Values.size());
4989 std::generate(LabelIDs.begin(), LabelIDs.end(),
4990 [&Table]() { return Table.allocateLabelID(); });
4991 const unsigned Default = Table.allocateLabelID();
4993 const int64_t LowerBound = Values.begin()->getRawValue();
4994 const int64_t UpperBound = Values.rbegin()->getRawValue() + 1;
4996 emitPredicateSpecificOpcodes(*Condition, Table);
4998 Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound)
4999 << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")")
5000 << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default);
5002 int64_t J = LowerBound;
5003 auto VI = Values.begin();
5004 for (unsigned I = 0, E = Values.size(); I < E; ++I) {
5005 auto V = *VI++;
5006 while (J++ < V.getRawValue())
5007 Table << MatchTable::IntValue(0);
5008 V.turnIntoComment();
5009 Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]);
5011 Table << MatchTable::LineBreak;
5013 for (unsigned I = 0, E = Values.size(); I < E; ++I) {
5014 Table << MatchTable::Label(LabelIDs[I]);
5015 Matchers[I]->emit(Table);
5016 Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
5018 Table << MatchTable::Label(Default);
5021 unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); }
5023 } // end anonymous namespace
5025 //===----------------------------------------------------------------------===//
5027 namespace llvm {
5028 void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
5029 GlobalISelEmitter(RK).run(OS);
5031 } // End llvm namespace