1 (*===----------------------------------------------------------------------===
3 *===----------------------------------------------------------------------===*)
7 exception Error
of string
9 let context = global_context
()
10 let the_module = create_module
context "my cool jit"
11 let builder = builder context
12 let named_values:(string, llvalue
) Hashtbl.t
= Hashtbl.create
10
13 let double_type = double_type context
15 (* Create an alloca instruction in the entry block of the function. This
16 * is used for mutable variables etc. *)
17 let create_entry_block_alloca the_function var_name
=
18 let builder = builder_at
context (instr_begin
(entry_block the_function
)) in
19 build_alloca
double_type var_name
builder
21 let rec codegen_expr = function
22 | Ast.Number n
-> const_float
double_type n
23 | Ast.Variable name
->
24 let v = try Hashtbl.find
named_values name
with
25 | Not_found
-> raise
(Error
"unknown variable name")
28 build_load
v name
builder
29 | Ast.Unary
(op
, operand
) ->
30 let operand = codegen_expr operand in
31 let callee = "unary" ^
(String.make
1 op
) in
33 match lookup_function
callee the_module with
34 | Some
callee -> callee
35 | None
-> raise
(Error
"unknown unary operator")
37 build_call
callee [|operand|] "unop" builder
38 | Ast.Binary
(op
, lhs
, rhs
) ->
41 (* Special case '=' because we don't want to emit the LHS as an
45 | Ast.Variable
name -> name
46 | _
-> raise
(Error
"destination of '=' must be a variable")
49 (* Codegen the rhs. *)
50 let val_ = codegen_expr rhs
in
52 (* Lookup the name. *)
53 let variable = try Hashtbl.find
named_values name with
54 | Not_found
-> raise
(Error
"unknown variable name")
56 ignore
(build_store
val_ variable builder);
59 let lhs_val = codegen_expr lhs
in
60 let rhs_val = codegen_expr rhs
in
63 | '
+'
-> build_fadd
lhs_val rhs_val "addtmp" builder
64 | '
-'
-> build_fsub
lhs_val rhs_val "subtmp" builder
65 | '
*'
-> build_fmul
lhs_val rhs_val "multmp" builder
67 (* Convert bool 0/1 to double 0.0 or 1.0 *)
68 let i = build_fcmp
Fcmp.Ult
lhs_val rhs_val "cmptmp" builder in
69 build_uitofp
i double_type "booltmp" builder
71 (* If it wasn't a builtin binary operator, it must be a user defined
72 * one. Emit a call to it. *)
73 let callee = "binary" ^
(String.make
1 op
) in
75 match lookup_function
callee the_module with
76 | Some
callee -> callee
77 | None
-> raise
(Error
"binary operator not found!")
79 build_call
callee [|lhs_val; rhs_val|] "binop" builder
82 | Ast.Call
(callee, args
) ->
83 (* Look up the name in the module table. *)
85 match lookup_function
callee the_module with
86 | Some
callee -> callee
87 | None
-> raise
(Error
"unknown function referenced")
89 let params = params callee in
91 (* If argument mismatch error. *)
92 if Array.length
params == Array.length args
then () else
93 raise
(Error
"incorrect # arguments passed");
94 let args = Array.map
codegen_expr args in
95 build_call
callee args "calltmp" builder
96 | Ast.If
(cond
, then_
, else_
) ->
97 let cond = codegen_expr cond in
99 (* Convert condition to a bool by comparing equal to 0.0 *)
100 let zero = const_float
double_type 0.0 in
101 let cond_val = build_fcmp
Fcmp.One
cond zero "ifcond" builder in
103 (* Grab the first block so that we might later add the conditional branch
104 * to it at the end of the function. *)
105 let start_bb = insertion_block
builder in
106 let the_function = block_parent
start_bb in
108 let then_bb = append_block
context "then" the_function in
110 (* Emit 'then' value. *)
111 position_at_end
then_bb builder;
112 let then_val = codegen_expr then_
in
114 (* Codegen of 'then' can change the current block, update then_bb for the
115 * phi. We create a new name because one is used for the phi node, and the
116 * other is used for the conditional branch. *)
117 let new_then_bb = insertion_block
builder in
119 (* Emit 'else' value. *)
120 let else_bb = append_block
context "else" the_function in
121 position_at_end
else_bb builder;
122 let else_val = codegen_expr else_
in
124 (* Codegen of 'else' can change the current block, update else_bb for the
126 let new_else_bb = insertion_block
builder in
128 (* Emit merge block. *)
129 let merge_bb = append_block
context "ifcont" the_function in
130 position_at_end
merge_bb builder;
131 let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
132 let phi = build_phi
incoming "iftmp" builder in
134 (* Return to the start block to add the conditional branch. *)
135 position_at_end
start_bb builder;
136 ignore
(build_cond_br
cond_val then_bb else_bb builder);
138 (* Set a unconditional branch at the end of the 'then' block and the
139 * 'else' block to the 'merge' block. *)
140 position_at_end
new_then_bb builder; ignore
(build_br
merge_bb builder);
141 position_at_end
new_else_bb builder; ignore
(build_br
merge_bb builder);
143 (* Finally, set the builder to the end of the merge block. *)
144 position_at_end
merge_bb builder;
147 | Ast.For
(var_name
, start
, end_
, step
, body
) ->
149 * var = alloca double
163 * nextvar = curvar + step
164 * store nextvar -> var
165 * br endcond, loop, endloop
168 let the_function = block_parent
(insertion_block
builder) in
170 (* Create an alloca for the variable in the entry block. *)
171 let alloca = create_entry_block_alloca the_function var_name
in
173 (* Emit the start code first, without 'variable' in scope. *)
174 let start_val = codegen_expr start
in
176 (* Store the value into the alloca. *)
177 ignore
(build_store
start_val alloca builder);
179 (* Make the new basic block for the loop header, inserting after current
181 let loop_bb = append_block
context "loop" the_function in
183 (* Insert an explicit fall through from the current block to the
185 ignore
(build_br
loop_bb builder);
187 (* Start insertion in loop_bb. *)
188 position_at_end
loop_bb builder;
190 (* Within the loop, the variable is defined equal to the PHI node. If it
191 * shadows an existing variable, we have to restore it, so save it
194 try Some
(Hashtbl.find
named_values var_name
) with Not_found
-> None
196 Hashtbl.add
named_values var_name
alloca;
198 (* Emit the body of the loop. This, like any other expr, can change the
199 * current BB. Note that we ignore the value computed by the body, but
200 * don't allow an error *)
201 ignore
(codegen_expr body
);
203 (* Emit the step value. *)
206 | Some step
-> codegen_expr step
207 (* If not specified, use 1.0. *)
208 | None
-> const_float
double_type 1.0
211 (* Compute the end condition. *)
212 let end_cond = codegen_expr end_
in
214 (* Reload, increment, and restore the alloca. This handles the case where
215 * the body of the loop mutates the variable. *)
216 let cur_var = build_load
alloca var_name
builder in
217 let next_var = build_add
cur_var step_val "nextvar" builder in
218 ignore
(build_store
next_var alloca builder);
220 (* Convert condition to a bool by comparing equal to 0.0. *)
221 let zero = const_float
double_type 0.0 in
222 let end_cond = build_fcmp
Fcmp.One
end_cond zero "loopcond" builder in
224 (* Create the "after loop" block and insert it. *)
225 let after_bb = append_block
context "afterloop" the_function in
227 (* Insert the conditional branch into the end of loop_end_bb. *)
228 ignore
(build_cond_br
end_cond loop_bb after_bb builder);
230 (* Any new code will be inserted in after_bb. *)
231 position_at_end
after_bb builder;
233 (* Restore the unshadowed variable. *)
234 begin match old_val with
235 | Some
old_val -> Hashtbl.add
named_values var_name
old_val
239 (* for expr always returns 0.0. *)
240 const_null
double_type
241 | Ast.Var
(var_names
, body
) ->
242 let old_bindings = ref [] in
244 let the_function = block_parent
(insertion_block
builder) in
246 (* Register all variables and emit their initializer. *)
247 Array.iter
(fun (var_name
, init
) ->
248 (* Emit the initializer before adding the variable to scope, this
249 * prevents the initializer from referencing the variable itself, and
250 * permits stuff like this:
252 * var a = a in ... # refers to outer 'a'. *)
255 | Some init
-> codegen_expr init
256 (* If not specified, use 0.0. *)
257 | None
-> const_float
double_type 0.0
260 let alloca = create_entry_block_alloca the_function var_name
in
261 ignore
(build_store
init_val alloca builder);
263 (* Remember the old variable binding so that we can restore the binding
264 * when we unrecurse. *)
267 let old_value = Hashtbl.find
named_values var_name
in
268 old_bindings := (var_name
, old_value) :: !old_bindings;
272 (* Remember this binding. *)
273 Hashtbl.add
named_values var_name
alloca;
276 (* Codegen the body, now that all vars are in scope. *)
277 let body_val = codegen_expr body
in
279 (* Pop all our variables from scope. *)
280 List.iter
(fun (var_name
, old_value) ->
281 Hashtbl.add
named_values var_name
old_value
284 (* Return the body computation. *)
287 let codegen_proto = function
288 | Ast.Prototype
(name, args) | Ast.BinOpPrototype
(name, args, _
) ->
289 (* Make the function type: double(double,double) etc. *)
290 let doubles = Array.make
(Array.length
args) double_type in
291 let ft = function_type
double_type doubles in
293 match lookup_function
name the_module with
294 | None
-> declare_function
name ft the_module
296 (* If 'f' conflicted, there was already something named 'name'. If it
297 * has a body, don't allow redefinition or reextern. *)
299 (* If 'f' already has a body, reject this. *)
300 if block_begin
f <> At_end
f then
301 raise
(Error
"redefinition of function");
303 (* If 'f' took a different number of arguments, reject. *)
304 if element_type
(type_of
f) <> ft then
305 raise
(Error
"redefinition of function with different # args");
309 (* Set names for all arguments. *)
310 Array.iteri
(fun i a
->
313 Hashtbl.add
named_values n a
;
317 (* Create an alloca for each argument and register the argument in the symbol
318 * table so that references to it will succeed. *)
319 let create_argument_allocas the_function proto
=
320 let args = match proto
with
321 | Ast.Prototype
(_
, args) | Ast.BinOpPrototype
(_
, args, _
) -> args
323 Array.iteri
(fun i ai
->
324 let var_name = args.(i) in
325 (* Create an alloca for this variable. *)
326 let alloca = create_entry_block_alloca the_function var_name in
328 (* Store the initial value into the alloca. *)
329 ignore
(build_store ai
alloca builder);
331 (* Add arguments to variable symbol table. *)
332 Hashtbl.add
named_values var_name alloca;
333 ) (params the_function)
335 let codegen_func the_fpm
= function
336 | Ast.Function
(proto
, body
) ->
337 Hashtbl.clear
named_values;
338 let the_function = codegen_proto proto
in
340 (* If this is an operator, install it. *)
341 begin match proto
with
342 | Ast.BinOpPrototype
(name, args, prec
) ->
343 let op = name.[String.length
name - 1] in
344 Hashtbl.add
Parser.binop_precedence
op prec
;
348 (* Create a new basic block to start insertion into. *)
349 let bb = append_block
context "entry" the_function in
350 position_at_end
bb builder;
353 (* Add all arguments to the symbol table and create their allocas. *)
354 create_argument_allocas the_function proto
;
356 let ret_val = codegen_expr body
in
358 (* Finish off the function. *)
359 let _ = build_ret
ret_val builder in
361 (* Validate the generated code, checking for consistency. *)
362 Llvm_analysis.assert_valid_function
the_function;
364 (* Optimize the function. *)
365 let _ = PassManager.run_function
the_function the_fpm
in
369 delete_function
the_function;