[llvm-readobj] - Implement LLVM-style dumping for .stack_sizes sections.
[llvm-complete.git] / examples / OCaml-Kaleidoscope / Chapter7 / codegen.ml
blobe66396eb6ac5e696b55c6a085469c6d497c36738
1 (*===----------------------------------------------------------------------===
2 * Code Generation
3 *===----------------------------------------------------------------------===*)
5 open Llvm
7 exception Error of string
9 let context = global_context ()
10 let the_module = create_module context "my cool jit"
11 let builder = builder context
12 let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
13 let double_type = double_type context
15 (* Create an alloca instruction in the entry block of the function. This
16 * is used for mutable variables etc. *)
17 let create_entry_block_alloca the_function var_name =
18 let builder = builder_at context (instr_begin (entry_block the_function)) in
19 build_alloca double_type var_name builder
21 let rec codegen_expr = function
22 | Ast.Number n -> const_float double_type n
23 | Ast.Variable name ->
24 let v = try Hashtbl.find named_values name with
25 | Not_found -> raise (Error "unknown variable name")
27 (* Load the value. *)
28 build_load v name builder
29 | Ast.Unary (op, operand) ->
30 let operand = codegen_expr operand in
31 let callee = "unary" ^ (String.make 1 op) in
32 let callee =
33 match lookup_function callee the_module with
34 | Some callee -> callee
35 | None -> raise (Error "unknown unary operator")
37 build_call callee [|operand|] "unop" builder
38 | Ast.Binary (op, lhs, rhs) ->
39 begin match op with
40 | '=' ->
41 (* Special case '=' because we don't want to emit the LHS as an
42 * expression. *)
43 let name =
44 match lhs with
45 | Ast.Variable name -> name
46 | _ -> raise (Error "destination of '=' must be a variable")
49 (* Codegen the rhs. *)
50 let val_ = codegen_expr rhs in
52 (* Lookup the name. *)
53 let variable = try Hashtbl.find named_values name with
54 | Not_found -> raise (Error "unknown variable name")
56 ignore(build_store val_ variable builder);
57 val_
58 | _ ->
59 let lhs_val = codegen_expr lhs in
60 let rhs_val = codegen_expr rhs in
61 begin
62 match op with
63 | '+' -> build_fadd lhs_val rhs_val "addtmp" builder
64 | '-' -> build_fsub lhs_val rhs_val "subtmp" builder
65 | '*' -> build_fmul lhs_val rhs_val "multmp" builder
66 | '<' ->
67 (* Convert bool 0/1 to double 0.0 or 1.0 *)
68 let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
69 build_uitofp i double_type "booltmp" builder
70 | _ ->
71 (* If it wasn't a builtin binary operator, it must be a user defined
72 * one. Emit a call to it. *)
73 let callee = "binary" ^ (String.make 1 op) in
74 let callee =
75 match lookup_function callee the_module with
76 | Some callee -> callee
77 | None -> raise (Error "binary operator not found!")
79 build_call callee [|lhs_val; rhs_val|] "binop" builder
80 end
81 end
82 | Ast.Call (callee, args) ->
83 (* Look up the name in the module table. *)
84 let callee =
85 match lookup_function callee the_module with
86 | Some callee -> callee
87 | None -> raise (Error "unknown function referenced")
89 let params = params callee in
91 (* If argument mismatch error. *)
92 if Array.length params == Array.length args then () else
93 raise (Error "incorrect # arguments passed");
94 let args = Array.map codegen_expr args in
95 build_call callee args "calltmp" builder
96 | Ast.If (cond, then_, else_) ->
97 let cond = codegen_expr cond in
99 (* Convert condition to a bool by comparing equal to 0.0 *)
100 let zero = const_float double_type 0.0 in
101 let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
103 (* Grab the first block so that we might later add the conditional branch
104 * to it at the end of the function. *)
105 let start_bb = insertion_block builder in
106 let the_function = block_parent start_bb in
108 let then_bb = append_block context "then" the_function in
110 (* Emit 'then' value. *)
111 position_at_end then_bb builder;
112 let then_val = codegen_expr then_ in
114 (* Codegen of 'then' can change the current block, update then_bb for the
115 * phi. We create a new name because one is used for the phi node, and the
116 * other is used for the conditional branch. *)
117 let new_then_bb = insertion_block builder in
119 (* Emit 'else' value. *)
120 let else_bb = append_block context "else" the_function in
121 position_at_end else_bb builder;
122 let else_val = codegen_expr else_ in
124 (* Codegen of 'else' can change the current block, update else_bb for the
125 * phi. *)
126 let new_else_bb = insertion_block builder in
128 (* Emit merge block. *)
129 let merge_bb = append_block context "ifcont" the_function in
130 position_at_end merge_bb builder;
131 let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
132 let phi = build_phi incoming "iftmp" builder in
134 (* Return to the start block to add the conditional branch. *)
135 position_at_end start_bb builder;
136 ignore (build_cond_br cond_val then_bb else_bb builder);
138 (* Set a unconditional branch at the end of the 'then' block and the
139 * 'else' block to the 'merge' block. *)
140 position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
141 position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
143 (* Finally, set the builder to the end of the merge block. *)
144 position_at_end merge_bb builder;
147 | Ast.For (var_name, start, end_, step, body) ->
148 (* Output this as:
149 * var = alloca double
150 * ...
151 * start = startexpr
152 * store start -> var
153 * goto loop
154 * loop:
155 * ...
156 * bodyexpr
157 * ...
158 * loopend:
159 * step = stepexpr
160 * endcond = endexpr
162 * curvar = load var
163 * nextvar = curvar + step
164 * store nextvar -> var
165 * br endcond, loop, endloop
166 * outloop: *)
168 let the_function = block_parent (insertion_block builder) in
170 (* Create an alloca for the variable in the entry block. *)
171 let alloca = create_entry_block_alloca the_function var_name in
173 (* Emit the start code first, without 'variable' in scope. *)
174 let start_val = codegen_expr start in
176 (* Store the value into the alloca. *)
177 ignore(build_store start_val alloca builder);
179 (* Make the new basic block for the loop header, inserting after current
180 * block. *)
181 let loop_bb = append_block context "loop" the_function in
183 (* Insert an explicit fall through from the current block to the
184 * loop_bb. *)
185 ignore (build_br loop_bb builder);
187 (* Start insertion in loop_bb. *)
188 position_at_end loop_bb builder;
190 (* Within the loop, the variable is defined equal to the PHI node. If it
191 * shadows an existing variable, we have to restore it, so save it
192 * now. *)
193 let old_val =
194 try Some (Hashtbl.find named_values var_name) with Not_found -> None
196 Hashtbl.add named_values var_name alloca;
198 (* Emit the body of the loop. This, like any other expr, can change the
199 * current BB. Note that we ignore the value computed by the body, but
200 * don't allow an error *)
201 ignore (codegen_expr body);
203 (* Emit the step value. *)
204 let step_val =
205 match step with
206 | Some step -> codegen_expr step
207 (* If not specified, use 1.0. *)
208 | None -> const_float double_type 1.0
211 (* Compute the end condition. *)
212 let end_cond = codegen_expr end_ in
214 (* Reload, increment, and restore the alloca. This handles the case where
215 * the body of the loop mutates the variable. *)
216 let cur_var = build_load alloca var_name builder in
217 let next_var = build_add cur_var step_val "nextvar" builder in
218 ignore(build_store next_var alloca builder);
220 (* Convert condition to a bool by comparing equal to 0.0. *)
221 let zero = const_float double_type 0.0 in
222 let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
224 (* Create the "after loop" block and insert it. *)
225 let after_bb = append_block context "afterloop" the_function in
227 (* Insert the conditional branch into the end of loop_end_bb. *)
228 ignore (build_cond_br end_cond loop_bb after_bb builder);
230 (* Any new code will be inserted in after_bb. *)
231 position_at_end after_bb builder;
233 (* Restore the unshadowed variable. *)
234 begin match old_val with
235 | Some old_val -> Hashtbl.add named_values var_name old_val
236 | None -> ()
237 end;
239 (* for expr always returns 0.0. *)
240 const_null double_type
241 | Ast.Var (var_names, body) ->
242 let old_bindings = ref [] in
244 let the_function = block_parent (insertion_block builder) in
246 (* Register all variables and emit their initializer. *)
247 Array.iter (fun (var_name, init) ->
248 (* Emit the initializer before adding the variable to scope, this
249 * prevents the initializer from referencing the variable itself, and
250 * permits stuff like this:
251 * var a = 1 in
252 * var a = a in ... # refers to outer 'a'. *)
253 let init_val =
254 match init with
255 | Some init -> codegen_expr init
256 (* If not specified, use 0.0. *)
257 | None -> const_float double_type 0.0
260 let alloca = create_entry_block_alloca the_function var_name in
261 ignore(build_store init_val alloca builder);
263 (* Remember the old variable binding so that we can restore the binding
264 * when we unrecurse. *)
265 begin
267 let old_value = Hashtbl.find named_values var_name in
268 old_bindings := (var_name, old_value) :: !old_bindings;
269 with Not_found -> ()
270 end;
272 (* Remember this binding. *)
273 Hashtbl.add named_values var_name alloca;
274 ) var_names;
276 (* Codegen the body, now that all vars are in scope. *)
277 let body_val = codegen_expr body in
279 (* Pop all our variables from scope. *)
280 List.iter (fun (var_name, old_value) ->
281 Hashtbl.add named_values var_name old_value
282 ) !old_bindings;
284 (* Return the body computation. *)
285 body_val
287 let codegen_proto = function
288 | Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) ->
289 (* Make the function type: double(double,double) etc. *)
290 let doubles = Array.make (Array.length args) double_type in
291 let ft = function_type double_type doubles in
292 let f =
293 match lookup_function name the_module with
294 | None -> declare_function name ft the_module
296 (* If 'f' conflicted, there was already something named 'name'. If it
297 * has a body, don't allow redefinition or reextern. *)
298 | Some f ->
299 (* If 'f' already has a body, reject this. *)
300 if block_begin f <> At_end f then
301 raise (Error "redefinition of function");
303 (* If 'f' took a different number of arguments, reject. *)
304 if element_type (type_of f) <> ft then
305 raise (Error "redefinition of function with different # args");
309 (* Set names for all arguments. *)
310 Array.iteri (fun i a ->
311 let n = args.(i) in
312 set_value_name n a;
313 Hashtbl.add named_values n a;
314 ) (params f);
317 (* Create an alloca for each argument and register the argument in the symbol
318 * table so that references to it will succeed. *)
319 let create_argument_allocas the_function proto =
320 let args = match proto with
321 | Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -> args
323 Array.iteri (fun i ai ->
324 let var_name = args.(i) in
325 (* Create an alloca for this variable. *)
326 let alloca = create_entry_block_alloca the_function var_name in
328 (* Store the initial value into the alloca. *)
329 ignore(build_store ai alloca builder);
331 (* Add arguments to variable symbol table. *)
332 Hashtbl.add named_values var_name alloca;
333 ) (params the_function)
335 let codegen_func the_fpm = function
336 | Ast.Function (proto, body) ->
337 Hashtbl.clear named_values;
338 let the_function = codegen_proto proto in
340 (* If this is an operator, install it. *)
341 begin match proto with
342 | Ast.BinOpPrototype (name, args, prec) ->
343 let op = name.[String.length name - 1] in
344 Hashtbl.add Parser.binop_precedence op prec;
345 | _ -> ()
346 end;
348 (* Create a new basic block to start insertion into. *)
349 let bb = append_block context "entry" the_function in
350 position_at_end bb builder;
353 (* Add all arguments to the symbol table and create their allocas. *)
354 create_argument_allocas the_function proto;
356 let ret_val = codegen_expr body in
358 (* Finish off the function. *)
359 let _ = build_ret ret_val builder in
361 (* Validate the generated code, checking for consistency. *)
362 Llvm_analysis.assert_valid_function the_function;
364 (* Optimize the function. *)
365 let _ = PassManager.run_function the_function the_fpm in
367 the_function
368 with e ->
369 delete_function the_function;
370 raise e