[llvm-readobj] - Implement LLVM-style dumping for .stack_sizes sections.
[llvm-complete.git] / utils / TableGen / CodeEmitterGen.cpp
blobb021d08881fb4f6b7561045b534d7bee3fb26838
1 //===- CodeEmitterGen.cpp - Code Emitter Generator ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // CodeEmitterGen uses the descriptions of instructions and their fields to
10 // construct an automated code emitter: a function that, given a MachineInstr,
11 // returns the (currently, 32-bit unsigned) value of the instruction.
13 //===----------------------------------------------------------------------===//
15 #include "CodeGenInstruction.h"
16 #include "CodeGenTarget.h"
17 #include "SubtargetFeatureInfo.h"
18 #include "Types.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include "llvm/TableGen/Record.h"
25 #include "llvm/TableGen/TableGenBackend.h"
26 #include <cassert>
27 #include <cstdint>
28 #include <map>
29 #include <set>
30 #include <string>
31 #include <utility>
32 #include <vector>
34 using namespace llvm;
36 namespace {
38 class CodeEmitterGen {
39 RecordKeeper &Records;
41 public:
42 CodeEmitterGen(RecordKeeper &R) : Records(R) {}
44 void run(raw_ostream &o);
46 private:
47 int getVariableBit(const std::string &VarName, BitsInit *BI, int bit);
48 std::string getInstructionCase(Record *R, CodeGenTarget &Target);
49 std::string getInstructionCaseForEncoding(Record *R, Record *EncodingDef,
50 CodeGenTarget &Target);
51 void AddCodeToMergeInOperand(Record *R, BitsInit *BI,
52 const std::string &VarName,
53 unsigned &NumberedOp,
54 std::set<unsigned> &NamedOpIndices,
55 std::string &Case, CodeGenTarget &Target);
57 void emitInstructionBaseValues(
58 raw_ostream &o, ArrayRef<const CodeGenInstruction *> NumberedInstructions,
59 CodeGenTarget &Target, int HwMode = -1);
60 unsigned BitWidth;
61 bool UseAPInt;
64 // If the VarBitInit at position 'bit' matches the specified variable then
65 // return the variable bit position. Otherwise return -1.
66 int CodeEmitterGen::getVariableBit(const std::string &VarName,
67 BitsInit *BI, int bit) {
68 if (VarBitInit *VBI = dyn_cast<VarBitInit>(BI->getBit(bit))) {
69 if (VarInit *VI = dyn_cast<VarInit>(VBI->getBitVar()))
70 if (VI->getName() == VarName)
71 return VBI->getBitNum();
72 } else if (VarInit *VI = dyn_cast<VarInit>(BI->getBit(bit))) {
73 if (VI->getName() == VarName)
74 return 0;
77 return -1;
80 void CodeEmitterGen::
81 AddCodeToMergeInOperand(Record *R, BitsInit *BI, const std::string &VarName,
82 unsigned &NumberedOp,
83 std::set<unsigned> &NamedOpIndices,
84 std::string &Case, CodeGenTarget &Target) {
85 CodeGenInstruction &CGI = Target.getInstruction(R);
87 // Determine if VarName actually contributes to the Inst encoding.
88 int bit = BI->getNumBits()-1;
90 // Scan for a bit that this contributed to.
91 for (; bit >= 0; ) {
92 if (getVariableBit(VarName, BI, bit) != -1)
93 break;
95 --bit;
98 // If we found no bits, ignore this value, otherwise emit the call to get the
99 // operand encoding.
100 if (bit < 0) return;
102 // If the operand matches by name, reference according to that
103 // operand number. Non-matching operands are assumed to be in
104 // order.
105 unsigned OpIdx;
106 if (CGI.Operands.hasOperandNamed(VarName, OpIdx)) {
107 // Get the machine operand number for the indicated operand.
108 OpIdx = CGI.Operands[OpIdx].MIOperandNo;
109 assert(!CGI.Operands.isFlatOperandNotEmitted(OpIdx) &&
110 "Explicitly used operand also marked as not emitted!");
111 } else {
112 unsigned NumberOps = CGI.Operands.size();
113 /// If this operand is not supposed to be emitted by the
114 /// generated emitter, skip it.
115 while (NumberedOp < NumberOps &&
116 (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
117 (!NamedOpIndices.empty() && NamedOpIndices.count(
118 CGI.Operands.getSubOperandNumber(NumberedOp).first)))) {
119 ++NumberedOp;
121 if (NumberedOp >= CGI.Operands.back().MIOperandNo +
122 CGI.Operands.back().MINumOperands) {
123 errs() << "Too few operands in record " << R->getName() <<
124 " (no match for variable " << VarName << "):\n";
125 errs() << *R;
126 errs() << '\n';
128 return;
132 OpIdx = NumberedOp++;
135 std::pair<unsigned, unsigned> SO = CGI.Operands.getSubOperandNumber(OpIdx);
136 std::string &EncoderMethodName = CGI.Operands[SO.first].EncoderMethodName;
138 if (UseAPInt)
139 Case += " op.clearAllBits();\n";
141 // If the source operand has a custom encoder, use it. This will
142 // get the encoding for all of the suboperands.
143 if (!EncoderMethodName.empty()) {
144 // A custom encoder has all of the information for the
145 // sub-operands, if there are more than one, so only
146 // query the encoder once per source operand.
147 if (SO.second == 0) {
148 Case += " // op: " + VarName + "\n";
149 if (UseAPInt) {
150 Case += " " + EncoderMethodName + "(MI, " + utostr(OpIdx);
151 Case += ", op";
152 } else {
153 Case += " op = " + EncoderMethodName + "(MI, " + utostr(OpIdx);
155 Case += ", Fixups, STI);\n";
157 } else {
158 Case += " // op: " + VarName + "\n";
159 if (UseAPInt) {
160 Case += " getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")";
161 Case += ", op, Fixups, STI";
162 } else {
163 Case += " op = getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")";
164 Case += ", Fixups, STI";
166 Case += ");\n";
169 // Precalculate the number of lits this variable contributes to in the
170 // operand. If there is a single lit (consecutive range of bits) we can use a
171 // destructive sequence on APInt that reduces memory allocations.
172 int numOperandLits = 0;
173 for (int tmpBit = bit; tmpBit >= 0;) {
174 int varBit = getVariableBit(VarName, BI, tmpBit);
176 // If this bit isn't from a variable, skip it.
177 if (varBit == -1) {
178 --tmpBit;
179 continue;
182 // Figure out the consecutive range of bits covered by this operand, in
183 // order to generate better encoding code.
184 int beginVarBit = varBit;
185 int N = 1;
186 for (--tmpBit; tmpBit >= 0;) {
187 varBit = getVariableBit(VarName, BI, tmpBit);
188 if (varBit == -1 || varBit != (beginVarBit - N))
189 break;
190 ++N;
191 --tmpBit;
193 ++numOperandLits;
196 for (; bit >= 0; ) {
197 int varBit = getVariableBit(VarName, BI, bit);
199 // If this bit isn't from a variable, skip it.
200 if (varBit == -1) {
201 --bit;
202 continue;
205 // Figure out the consecutive range of bits covered by this operand, in
206 // order to generate better encoding code.
207 int beginInstBit = bit;
208 int beginVarBit = varBit;
209 int N = 1;
210 for (--bit; bit >= 0;) {
211 varBit = getVariableBit(VarName, BI, bit);
212 if (varBit == -1 || varBit != (beginVarBit - N)) break;
213 ++N;
214 --bit;
217 std::string maskStr;
218 int opShift;
220 unsigned loBit = beginVarBit - N + 1;
221 unsigned hiBit = loBit + N;
222 unsigned loInstBit = beginInstBit - N + 1;
223 if (UseAPInt) {
224 std::string extractStr;
225 if (N >= 64) {
226 extractStr = "op.extractBits(" + itostr(hiBit - loBit) + ", " +
227 itostr(loBit) + ")";
228 Case += " Value.insertBits(" + extractStr + ", " +
229 itostr(loInstBit) + ");\n";
230 } else {
231 extractStr = "op.extractBitsAsZExtValue(" + itostr(hiBit - loBit) +
232 ", " + itostr(loBit) + ")";
233 Case += " Value.insertBits(" + extractStr + ", " +
234 itostr(loInstBit) + ", " + itostr(hiBit - loBit) + ");\n";
236 } else {
237 uint64_t opMask = ~(uint64_t)0 >> (64 - N);
238 opShift = beginVarBit - N + 1;
239 opMask <<= opShift;
240 maskStr = "UINT64_C(" + utostr(opMask) + ")";
241 opShift = beginInstBit - beginVarBit;
243 if (numOperandLits == 1) {
244 Case += " op &= " + maskStr + ";\n";
245 if (opShift > 0) {
246 Case += " op <<= " + itostr(opShift) + ";\n";
247 } else if (opShift < 0) {
248 Case += " op >>= " + itostr(-opShift) + ";\n";
250 Case += " Value |= op;\n";
251 } else {
252 if (opShift > 0) {
253 Case += " Value |= (op & " + maskStr + ") << " +
254 itostr(opShift) + ";\n";
255 } else if (opShift < 0) {
256 Case += " Value |= (op & " + maskStr + ") >> " +
257 itostr(-opShift) + ";\n";
258 } else {
259 Case += " Value |= (op & " + maskStr + ");\n";
266 std::string CodeEmitterGen::getInstructionCase(Record *R,
267 CodeGenTarget &Target) {
268 std::string Case;
269 if (const RecordVal *RV = R->getValue("EncodingInfos")) {
270 if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
271 const CodeGenHwModes &HWM = Target.getHwModes();
272 EncodingInfoByHwMode EBM(DI->getDef(), HWM);
273 Case += " switch (HwMode) {\n";
274 Case += " default: llvm_unreachable(\"Unhandled HwMode\");\n";
275 for (auto &KV : EBM.Map) {
276 Case += " case " + itostr(KV.first) + ": {\n";
277 Case += getInstructionCaseForEncoding(R, KV.second, Target);
278 Case += " break;\n";
279 Case += " }\n";
281 Case += " }\n";
282 return Case;
285 return getInstructionCaseForEncoding(R, R, Target);
288 std::string CodeEmitterGen::getInstructionCaseForEncoding(Record *R, Record *EncodingDef,
289 CodeGenTarget &Target) {
290 std::string Case;
291 BitsInit *BI = EncodingDef->getValueAsBitsInit("Inst");
292 unsigned NumberedOp = 0;
293 std::set<unsigned> NamedOpIndices;
295 // Collect the set of operand indices that might correspond to named
296 // operand, and skip these when assigning operands based on position.
297 if (Target.getInstructionSet()->
298 getValueAsBit("noNamedPositionallyEncodedOperands")) {
299 CodeGenInstruction &CGI = Target.getInstruction(R);
300 for (const RecordVal &RV : R->getValues()) {
301 unsigned OpIdx;
302 if (!CGI.Operands.hasOperandNamed(RV.getName(), OpIdx))
303 continue;
305 NamedOpIndices.insert(OpIdx);
309 // Loop over all of the fields in the instruction, determining which are the
310 // operands to the instruction.
311 for (const RecordVal &RV : EncodingDef->getValues()) {
312 // Ignore fixed fields in the record, we're looking for values like:
313 // bits<5> RST = { ?, ?, ?, ?, ? };
314 if (RV.getPrefix() || RV.getValue()->isComplete())
315 continue;
317 AddCodeToMergeInOperand(R, BI, RV.getName(), NumberedOp,
318 NamedOpIndices, Case, Target);
321 StringRef PostEmitter = R->getValueAsString("PostEncoderMethod");
322 if (!PostEmitter.empty()) {
323 Case += " Value = ";
324 Case += PostEmitter;
325 Case += "(MI, Value";
326 Case += ", STI";
327 Case += ");\n";
330 return Case;
333 static std::string
334 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
335 std::string Name = "CEFBS";
336 for (const auto &Feature : FeatureBitset)
337 Name += ("_" + Feature->getName()).str();
338 return Name;
341 static void emitInstBits(raw_ostream &OS, const APInt &Bits) {
342 for (unsigned I = 0; I < Bits.getNumWords(); ++I)
343 OS << ((I > 0) ? ", " : "") << "UINT64_C(" << utostr(Bits.getRawData()[I])
344 << ")";
347 void CodeEmitterGen::emitInstructionBaseValues(
348 raw_ostream &o, ArrayRef<const CodeGenInstruction *> NumberedInstructions,
349 CodeGenTarget &Target, int HwMode) {
350 const CodeGenHwModes &HWM = Target.getHwModes();
351 if (HwMode == -1)
352 o << " static const uint64_t InstBits[] = {\n";
353 else
354 o << " static const uint64_t InstBits_" << HWM.getMode(HwMode).Name
355 << "[] = {\n";
357 for (const CodeGenInstruction *CGI : NumberedInstructions) {
358 Record *R = CGI->TheDef;
360 if (R->getValueAsString("Namespace") == "TargetOpcode" ||
361 R->getValueAsBit("isPseudo")) {
362 o << " "; emitInstBits(o, APInt(BitWidth, 0)); o << ",\n";
363 continue;
366 Record *EncodingDef = R;
367 if (const RecordVal *RV = R->getValue("EncodingInfos")) {
368 if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
369 EncodingInfoByHwMode EBM(DI->getDef(), HWM);
370 EncodingDef = EBM.get(HwMode);
373 BitsInit *BI = EncodingDef->getValueAsBitsInit("Inst");
375 // Start by filling in fixed values.
376 APInt Value(BitWidth, 0);
377 for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) {
378 if (BitInit *B = dyn_cast<BitInit>(BI->getBit(e - i - 1)))
379 Value |= APInt(BitWidth, (uint64_t)B->getValue()) << (e - i - 1);
381 o << " ";
382 emitInstBits(o, Value);
383 o << "," << '\t' << "// " << R->getName() << "\n";
385 o << " UINT64_C(0)\n };\n";
388 void CodeEmitterGen::run(raw_ostream &o) {
389 CodeGenTarget Target(Records);
390 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
392 // For little-endian instruction bit encodings, reverse the bit order
393 Target.reverseBitsForLittleEndianEncoding();
395 ArrayRef<const CodeGenInstruction*> NumberedInstructions =
396 Target.getInstructionsByEnumValue();
398 const CodeGenHwModes &HWM = Target.getHwModes();
399 // The set of HwModes used by instruction encodings.
400 std::set<unsigned> HwModes;
401 BitWidth = 0;
402 for (const CodeGenInstruction *CGI : NumberedInstructions) {
403 Record *R = CGI->TheDef;
404 if (R->getValueAsString("Namespace") == "TargetOpcode" ||
405 R->getValueAsBit("isPseudo"))
406 continue;
408 if (const RecordVal *RV = R->getValue("EncodingInfos")) {
409 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
410 EncodingInfoByHwMode EBM(DI->getDef(), HWM);
411 for (auto &KV : EBM.Map) {
412 BitsInit *BI = KV.second->getValueAsBitsInit("Inst");
413 BitWidth = std::max(BitWidth, BI->getNumBits());
414 HwModes.insert(KV.first);
416 continue;
419 BitsInit *BI = R->getValueAsBitsInit("Inst");
420 BitWidth = std::max(BitWidth, BI->getNumBits());
422 UseAPInt = BitWidth > 64;
424 // Emit function declaration
425 if (UseAPInt) {
426 o << "void " << Target.getName()
427 << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n"
428 << " SmallVectorImpl<MCFixup> &Fixups,\n"
429 << " APInt &Inst,\n"
430 << " APInt &Scratch,\n"
431 << " const MCSubtargetInfo &STI) const {\n";
432 } else {
433 o << "uint64_t " << Target.getName();
434 o << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n"
435 << " SmallVectorImpl<MCFixup> &Fixups,\n"
436 << " const MCSubtargetInfo &STI) const {\n";
439 // Emit instruction base values
440 if (HwModes.empty()) {
441 emitInstructionBaseValues(o, NumberedInstructions, Target, -1);
442 } else {
443 for (unsigned HwMode : HwModes)
444 emitInstructionBaseValues(o, NumberedInstructions, Target, (int)HwMode);
447 if (!HwModes.empty()) {
448 o << " const uint64_t *InstBits;\n";
449 o << " unsigned HwMode = STI.getHwMode();\n";
450 o << " switch (HwMode) {\n";
451 o << " default: llvm_unreachable(\"Unknown hardware mode!\"); break;\n";
452 for (unsigned I : HwModes) {
453 o << " case " << I << ": InstBits = InstBits_" << HWM.getMode(I).Name
454 << "; break;\n";
456 o << " };\n";
459 // Map to accumulate all the cases.
460 std::map<std::string, std::vector<std::string>> CaseMap;
462 // Construct all cases statement for each opcode
463 for (std::vector<Record*>::iterator IC = Insts.begin(), EC = Insts.end();
464 IC != EC; ++IC) {
465 Record *R = *IC;
466 if (R->getValueAsString("Namespace") == "TargetOpcode" ||
467 R->getValueAsBit("isPseudo"))
468 continue;
469 std::string InstName =
470 (R->getValueAsString("Namespace") + "::" + R->getName()).str();
471 std::string Case = getInstructionCase(R, Target);
473 CaseMap[Case].push_back(std::move(InstName));
476 // Emit initial function code
477 if (UseAPInt) {
478 int NumWords = APInt::getNumWords(BitWidth);
479 int NumBytes = (BitWidth + 7) / 8;
480 o << " const unsigned opcode = MI.getOpcode();\n"
481 << " if (Inst.getBitWidth() != " << BitWidth << ")\n"
482 << " Inst = Inst.zext(" << BitWidth << ");\n"
483 << " if (Scratch.getBitWidth() != " << BitWidth << ")\n"
484 << " Scratch = Scratch.zext(" << BitWidth << ");\n"
485 << " LoadIntFromMemory(Inst, (uint8_t*)&InstBits[opcode * " << NumWords
486 << "], " << NumBytes << ");\n"
487 << " APInt &Value = Inst;\n"
488 << " APInt &op = Scratch;\n"
489 << " switch (opcode) {\n";
490 } else {
491 o << " const unsigned opcode = MI.getOpcode();\n"
492 << " uint64_t Value = InstBits[opcode];\n"
493 << " uint64_t op = 0;\n"
494 << " (void)op; // suppress warning\n"
495 << " switch (opcode) {\n";
498 // Emit each case statement
499 std::map<std::string, std::vector<std::string>>::iterator IE, EE;
500 for (IE = CaseMap.begin(), EE = CaseMap.end(); IE != EE; ++IE) {
501 const std::string &Case = IE->first;
502 std::vector<std::string> &InstList = IE->second;
504 for (int i = 0, N = InstList.size(); i < N; i++) {
505 if (i) o << "\n";
506 o << " case " << InstList[i] << ":";
508 o << " {\n";
509 o << Case;
510 o << " break;\n"
511 << " }\n";
514 // Default case: unhandled opcode
515 o << " default:\n"
516 << " std::string msg;\n"
517 << " raw_string_ostream Msg(msg);\n"
518 << " Msg << \"Not supported instr: \" << MI;\n"
519 << " report_fatal_error(Msg.str());\n"
520 << " }\n";
521 if (UseAPInt)
522 o << " Inst = Value;\n";
523 else
524 o << " return Value;\n";
525 o << "}\n\n";
527 const auto &All = SubtargetFeatureInfo::getAll(Records);
528 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
529 SubtargetFeatures.insert(All.begin(), All.end());
531 o << "#ifdef ENABLE_INSTR_PREDICATE_VERIFIER\n"
532 << "#undef ENABLE_INSTR_PREDICATE_VERIFIER\n"
533 << "#include <sstream>\n\n";
535 // Emit the subtarget feature enumeration.
536 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
539 // Emit the name table for error messages.
540 o << "#ifndef NDEBUG\n";
541 SubtargetFeatureInfo::emitNameTable(SubtargetFeatures, o);
542 o << "#endif // NDEBUG\n";
544 // Emit the available features compute function.
545 SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
546 Target.getName(), "MCCodeEmitter", "computeAvailableFeatures",
547 SubtargetFeatures, o);
549 std::vector<std::vector<Record *>> FeatureBitsets;
550 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
551 FeatureBitsets.emplace_back();
552 for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) {
553 const auto &I = SubtargetFeatures.find(Predicate);
554 if (I != SubtargetFeatures.end())
555 FeatureBitsets.back().push_back(I->second.TheDef);
559 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
560 const std::vector<Record *> &B) {
561 if (A.size() < B.size())
562 return true;
563 if (A.size() > B.size())
564 return false;
565 for (const auto &Pair : zip(A, B)) {
566 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
567 return true;
568 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
569 return false;
571 return false;
573 FeatureBitsets.erase(
574 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
575 FeatureBitsets.end());
576 o << "#ifndef NDEBUG\n"
577 << "// Feature bitsets.\n"
578 << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n"
579 << " CEFBS_None,\n";
580 for (const auto &FeatureBitset : FeatureBitsets) {
581 if (FeatureBitset.empty())
582 continue;
583 o << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
585 o << "};\n\n"
586 << "static constexpr FeatureBitset FeatureBitsets[] = {\n"
587 << " {}, // CEFBS_None\n";
588 for (const auto &FeatureBitset : FeatureBitsets) {
589 if (FeatureBitset.empty())
590 continue;
591 o << " {";
592 for (const auto &Feature : FeatureBitset) {
593 const auto &I = SubtargetFeatures.find(Feature);
594 assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
595 o << I->second.getEnumBitName() << ", ";
597 o << "},\n";
599 o << "};\n"
600 << "#endif // NDEBUG\n\n";
603 // Emit the predicate verifier.
604 o << "void " << Target.getName()
605 << "MCCodeEmitter::verifyInstructionPredicates(\n"
606 << " const MCInst &Inst, const FeatureBitset &AvailableFeatures) const {\n"
607 << "#ifndef NDEBUG\n"
608 << " static " << getMinimalTypeForRange(FeatureBitsets.size())
609 << " RequiredFeaturesRefs[] = {\n";
610 unsigned InstIdx = 0;
611 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
612 o << " CEFBS";
613 unsigned NumPredicates = 0;
614 for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) {
615 const auto &I = SubtargetFeatures.find(Predicate);
616 if (I != SubtargetFeatures.end()) {
617 o << '_' << I->second.TheDef->getName();
618 NumPredicates++;
621 if (!NumPredicates)
622 o << "_None";
623 o << ", // " << Inst->TheDef->getName() << " = " << InstIdx << "\n";
624 InstIdx++;
626 o << " };\n\n";
627 o << " assert(Inst.getOpcode() < " << InstIdx << ");\n";
628 o << " const FeatureBitset &RequiredFeatures = "
629 "FeatureBitsets[RequiredFeaturesRefs[Inst.getOpcode()]];\n";
630 o << " FeatureBitset MissingFeatures =\n"
631 << " (AvailableFeatures & RequiredFeatures) ^\n"
632 << " RequiredFeatures;\n"
633 << " if (MissingFeatures.any()) {\n"
634 << " std::ostringstream Msg;\n"
635 << " Msg << \"Attempting to emit \" << "
636 "MCII.getName(Inst.getOpcode()).str()\n"
637 << " << \" instruction but the \";\n"
638 << " for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)\n"
639 << " if (MissingFeatures.test(i))\n"
640 << " Msg << SubtargetFeatureNames[i] << \" \";\n"
641 << " Msg << \"predicate(s) are not met\";\n"
642 << " report_fatal_error(Msg.str());\n"
643 << " }\n"
644 << "#else\n"
645 << "// Silence unused variable warning on targets that don't use MCII for "
646 "other purposes (e.g. BPF).\n"
647 << "(void)MCII;\n"
648 << "#endif // NDEBUG\n";
649 o << "}\n";
650 o << "#endif\n";
653 } // end anonymous namespace
655 namespace llvm {
657 void EmitCodeEmitter(RecordKeeper &RK, raw_ostream &OS) {
658 emitSourceFileHeader("Machine Code Emitter", OS);
659 CodeEmitterGen(RK).run(OS);
662 } // end namespace llvm