[ARM] Remove declaration of unimplemented function. NFC.
[llvm-complete.git] / lib / IR / Instructions.cpp
blob18d7719ecb3c8b39d51c7ee47d1ce70140f6d951
1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/AtomicOrdering.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
46 using namespace llvm;
48 static cl::opt<bool> SwitchInstProfUpdateWrapperStrict(
49 "switch-inst-prof-update-wrapper-strict", cl::Hidden,
50 cl::desc("Assert that prof branch_weights metadata is valid when creating "
51 "an instance of SwitchInstProfUpdateWrapper"),
52 cl::init(true));
54 //===----------------------------------------------------------------------===//
55 // AllocaInst Class
56 //===----------------------------------------------------------------------===//
58 Optional<uint64_t>
59 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
60 uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType());
61 if (isArrayAllocation()) {
62 auto C = dyn_cast<ConstantInt>(getArraySize());
63 if (!C)
64 return None;
65 Size *= C->getZExtValue();
67 return Size;
70 //===----------------------------------------------------------------------===//
71 // CallSite Class
72 //===----------------------------------------------------------------------===//
74 User::op_iterator CallSite::getCallee() const {
75 return cast<CallBase>(getInstruction())->op_end() - 1;
78 //===----------------------------------------------------------------------===//
79 // SelectInst Class
80 //===----------------------------------------------------------------------===//
82 /// areInvalidOperands - Return a string if the specified operands are invalid
83 /// for a select operation, otherwise return null.
84 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
85 if (Op1->getType() != Op2->getType())
86 return "both values to select must have same type";
88 if (Op1->getType()->isTokenTy())
89 return "select values cannot have token type";
91 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
92 // Vector select.
93 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
94 return "vector select condition element type must be i1";
95 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
96 if (!ET)
97 return "selected values for vector select must be vectors";
98 if (ET->getNumElements() != VT->getNumElements())
99 return "vector select requires selected vectors to have "
100 "the same vector length as select condition";
101 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
102 return "select condition must be i1 or <n x i1>";
104 return nullptr;
107 //===----------------------------------------------------------------------===//
108 // PHINode Class
109 //===----------------------------------------------------------------------===//
111 PHINode::PHINode(const PHINode &PN)
112 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
113 ReservedSpace(PN.getNumOperands()) {
114 allocHungoffUses(PN.getNumOperands());
115 std::copy(PN.op_begin(), PN.op_end(), op_begin());
116 std::copy(PN.block_begin(), PN.block_end(), block_begin());
117 SubclassOptionalData = PN.SubclassOptionalData;
120 // removeIncomingValue - Remove an incoming value. This is useful if a
121 // predecessor basic block is deleted.
122 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
123 Value *Removed = getIncomingValue(Idx);
125 // Move everything after this operand down.
127 // FIXME: we could just swap with the end of the list, then erase. However,
128 // clients might not expect this to happen. The code as it is thrashes the
129 // use/def lists, which is kinda lame.
130 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
131 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
133 // Nuke the last value.
134 Op<-1>().set(nullptr);
135 setNumHungOffUseOperands(getNumOperands() - 1);
137 // If the PHI node is dead, because it has zero entries, nuke it now.
138 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
139 // If anyone is using this PHI, make them use a dummy value instead...
140 replaceAllUsesWith(UndefValue::get(getType()));
141 eraseFromParent();
143 return Removed;
146 /// growOperands - grow operands - This grows the operand list in response
147 /// to a push_back style of operation. This grows the number of ops by 1.5
148 /// times.
150 void PHINode::growOperands() {
151 unsigned e = getNumOperands();
152 unsigned NumOps = e + e / 2;
153 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
155 ReservedSpace = NumOps;
156 growHungoffUses(ReservedSpace, /* IsPhi */ true);
159 /// hasConstantValue - If the specified PHI node always merges together the same
160 /// value, return the value, otherwise return null.
161 Value *PHINode::hasConstantValue() const {
162 // Exploit the fact that phi nodes always have at least one entry.
163 Value *ConstantValue = getIncomingValue(0);
164 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
165 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
166 if (ConstantValue != this)
167 return nullptr; // Incoming values not all the same.
168 // The case where the first value is this PHI.
169 ConstantValue = getIncomingValue(i);
171 if (ConstantValue == this)
172 return UndefValue::get(getType());
173 return ConstantValue;
176 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
177 /// together the same value, assuming that undefs result in the same value as
178 /// non-undefs.
179 /// Unlike \ref hasConstantValue, this does not return a value because the
180 /// unique non-undef incoming value need not dominate the PHI node.
181 bool PHINode::hasConstantOrUndefValue() const {
182 Value *ConstantValue = nullptr;
183 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
184 Value *Incoming = getIncomingValue(i);
185 if (Incoming != this && !isa<UndefValue>(Incoming)) {
186 if (ConstantValue && ConstantValue != Incoming)
187 return false;
188 ConstantValue = Incoming;
191 return true;
194 //===----------------------------------------------------------------------===//
195 // LandingPadInst Implementation
196 //===----------------------------------------------------------------------===//
198 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
199 const Twine &NameStr, Instruction *InsertBefore)
200 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
201 init(NumReservedValues, NameStr);
204 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
205 const Twine &NameStr, BasicBlock *InsertAtEnd)
206 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
207 init(NumReservedValues, NameStr);
210 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
211 : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
212 LP.getNumOperands()),
213 ReservedSpace(LP.getNumOperands()) {
214 allocHungoffUses(LP.getNumOperands());
215 Use *OL = getOperandList();
216 const Use *InOL = LP.getOperandList();
217 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
218 OL[I] = InOL[I];
220 setCleanup(LP.isCleanup());
223 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
224 const Twine &NameStr,
225 Instruction *InsertBefore) {
226 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
229 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
230 const Twine &NameStr,
231 BasicBlock *InsertAtEnd) {
232 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
235 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
236 ReservedSpace = NumReservedValues;
237 setNumHungOffUseOperands(0);
238 allocHungoffUses(ReservedSpace);
239 setName(NameStr);
240 setCleanup(false);
243 /// growOperands - grow operands - This grows the operand list in response to a
244 /// push_back style of operation. This grows the number of ops by 2 times.
245 void LandingPadInst::growOperands(unsigned Size) {
246 unsigned e = getNumOperands();
247 if (ReservedSpace >= e + Size) return;
248 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
249 growHungoffUses(ReservedSpace);
252 void LandingPadInst::addClause(Constant *Val) {
253 unsigned OpNo = getNumOperands();
254 growOperands(1);
255 assert(OpNo < ReservedSpace && "Growing didn't work!");
256 setNumHungOffUseOperands(getNumOperands() + 1);
257 getOperandList()[OpNo] = Val;
260 //===----------------------------------------------------------------------===//
261 // CallBase Implementation
262 //===----------------------------------------------------------------------===//
264 Function *CallBase::getCaller() { return getParent()->getParent(); }
266 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
267 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
268 return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
271 bool CallBase::isIndirectCall() const {
272 const Value *V = getCalledValue();
273 if (isa<Function>(V) || isa<Constant>(V))
274 return false;
275 if (const CallInst *CI = dyn_cast<CallInst>(this))
276 if (CI->isInlineAsm())
277 return false;
278 return true;
281 /// Tests if this call site must be tail call optimized. Only a CallInst can
282 /// be tail call optimized.
283 bool CallBase::isMustTailCall() const {
284 if (auto *CI = dyn_cast<CallInst>(this))
285 return CI->isMustTailCall();
286 return false;
289 /// Tests if this call site is marked as a tail call.
290 bool CallBase::isTailCall() const {
291 if (auto *CI = dyn_cast<CallInst>(this))
292 return CI->isTailCall();
293 return false;
296 Intrinsic::ID CallBase::getIntrinsicID() const {
297 if (auto *F = getCalledFunction())
298 return F->getIntrinsicID();
299 return Intrinsic::not_intrinsic;
302 bool CallBase::isReturnNonNull() const {
303 if (hasRetAttr(Attribute::NonNull))
304 return true;
306 if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
307 !NullPointerIsDefined(getCaller(),
308 getType()->getPointerAddressSpace()))
309 return true;
311 return false;
314 Value *CallBase::getReturnedArgOperand() const {
315 unsigned Index;
317 if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
318 return getArgOperand(Index - AttributeList::FirstArgIndex);
319 if (const Function *F = getCalledFunction())
320 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
321 Index)
322 return getArgOperand(Index - AttributeList::FirstArgIndex);
324 return nullptr;
327 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const {
328 if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
329 return true;
331 // Look at the callee, if available.
332 if (const Function *F = getCalledFunction())
333 return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
334 return false;
337 /// Determine whether the argument or parameter has the given attribute.
338 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
339 assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
341 if (Attrs.hasParamAttribute(ArgNo, Kind))
342 return true;
343 if (const Function *F = getCalledFunction())
344 return F->getAttributes().hasParamAttribute(ArgNo, Kind);
345 return false;
348 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
349 if (const Function *F = getCalledFunction())
350 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
351 return false;
354 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
355 if (const Function *F = getCalledFunction())
356 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
357 return false;
360 CallBase::op_iterator
361 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
362 const unsigned BeginIndex) {
363 auto It = op_begin() + BeginIndex;
364 for (auto &B : Bundles)
365 It = std::copy(B.input_begin(), B.input_end(), It);
367 auto *ContextImpl = getContext().pImpl;
368 auto BI = Bundles.begin();
369 unsigned CurrentIndex = BeginIndex;
371 for (auto &BOI : bundle_op_infos()) {
372 assert(BI != Bundles.end() && "Incorrect allocation?");
374 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
375 BOI.Begin = CurrentIndex;
376 BOI.End = CurrentIndex + BI->input_size();
377 CurrentIndex = BOI.End;
378 BI++;
381 assert(BI == Bundles.end() && "Incorrect allocation?");
383 return It;
386 //===----------------------------------------------------------------------===//
387 // CallInst Implementation
388 //===----------------------------------------------------------------------===//
390 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
391 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
392 this->FTy = FTy;
393 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
394 "NumOperands not set up?");
395 setCalledOperand(Func);
397 #ifndef NDEBUG
398 assert((Args.size() == FTy->getNumParams() ||
399 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
400 "Calling a function with bad signature!");
402 for (unsigned i = 0; i != Args.size(); ++i)
403 assert((i >= FTy->getNumParams() ||
404 FTy->getParamType(i) == Args[i]->getType()) &&
405 "Calling a function with a bad signature!");
406 #endif
408 llvm::copy(Args, op_begin());
410 auto It = populateBundleOperandInfos(Bundles, Args.size());
411 (void)It;
412 assert(It + 1 == op_end() && "Should add up!");
414 setName(NameStr);
417 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
418 this->FTy = FTy;
419 assert(getNumOperands() == 1 && "NumOperands not set up?");
420 setCalledOperand(Func);
422 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
424 setName(NameStr);
427 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
428 Instruction *InsertBefore)
429 : CallBase(Ty->getReturnType(), Instruction::Call,
430 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
431 init(Ty, Func, Name);
434 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
435 BasicBlock *InsertAtEnd)
436 : CallBase(Ty->getReturnType(), Instruction::Call,
437 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
438 init(Ty, Func, Name);
441 CallInst::CallInst(const CallInst &CI)
442 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
443 OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
444 CI.getNumOperands()) {
445 setTailCallKind(CI.getTailCallKind());
446 setCallingConv(CI.getCallingConv());
448 std::copy(CI.op_begin(), CI.op_end(), op_begin());
449 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
450 bundle_op_info_begin());
451 SubclassOptionalData = CI.SubclassOptionalData;
454 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
455 Instruction *InsertPt) {
456 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
458 auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledValue(),
459 Args, OpB, CI->getName(), InsertPt);
460 NewCI->setTailCallKind(CI->getTailCallKind());
461 NewCI->setCallingConv(CI->getCallingConv());
462 NewCI->SubclassOptionalData = CI->SubclassOptionalData;
463 NewCI->setAttributes(CI->getAttributes());
464 NewCI->setDebugLoc(CI->getDebugLoc());
465 return NewCI;
468 // Update profile weight for call instruction by scaling it using the ratio
469 // of S/T. The meaning of "branch_weights" meta data for call instruction is
470 // transfered to represent call count.
471 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
472 auto *ProfileData = getMetadata(LLVMContext::MD_prof);
473 if (ProfileData == nullptr)
474 return;
476 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
477 if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
478 !ProfDataName->getString().equals("VP")))
479 return;
481 if (T == 0) {
482 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
483 "div by 0. Ignoring. Likely the function "
484 << getParent()->getParent()->getName()
485 << " has 0 entry count, and contains call instructions "
486 "with non-zero prof info.");
487 return;
490 MDBuilder MDB(getContext());
491 SmallVector<Metadata *, 3> Vals;
492 Vals.push_back(ProfileData->getOperand(0));
493 APInt APS(128, S), APT(128, T);
494 if (ProfDataName->getString().equals("branch_weights") &&
495 ProfileData->getNumOperands() > 0) {
496 // Using APInt::div may be expensive, but most cases should fit 64 bits.
497 APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
498 ->getValue()
499 .getZExtValue());
500 Val *= APS;
501 Vals.push_back(MDB.createConstant(ConstantInt::get(
502 Type::getInt64Ty(getContext()), Val.udiv(APT).getLimitedValue())));
503 } else if (ProfDataName->getString().equals("VP"))
504 for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
505 // The first value is the key of the value profile, which will not change.
506 Vals.push_back(ProfileData->getOperand(i));
507 // Using APInt::div may be expensive, but most cases should fit 64 bits.
508 APInt Val(128,
509 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
510 ->getValue()
511 .getZExtValue());
512 Val *= APS;
513 Vals.push_back(MDB.createConstant(
514 ConstantInt::get(Type::getInt64Ty(getContext()),
515 Val.udiv(APT).getLimitedValue())));
517 setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
520 /// IsConstantOne - Return true only if val is constant int 1
521 static bool IsConstantOne(Value *val) {
522 assert(val && "IsConstantOne does not work with nullptr val");
523 const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
524 return CVal && CVal->isOne();
527 static Instruction *createMalloc(Instruction *InsertBefore,
528 BasicBlock *InsertAtEnd, Type *IntPtrTy,
529 Type *AllocTy, Value *AllocSize,
530 Value *ArraySize,
531 ArrayRef<OperandBundleDef> OpB,
532 Function *MallocF, const Twine &Name) {
533 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
534 "createMalloc needs either InsertBefore or InsertAtEnd");
536 // malloc(type) becomes:
537 // bitcast (i8* malloc(typeSize)) to type*
538 // malloc(type, arraySize) becomes:
539 // bitcast (i8* malloc(typeSize*arraySize)) to type*
540 if (!ArraySize)
541 ArraySize = ConstantInt::get(IntPtrTy, 1);
542 else if (ArraySize->getType() != IntPtrTy) {
543 if (InsertBefore)
544 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
545 "", InsertBefore);
546 else
547 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
548 "", InsertAtEnd);
551 if (!IsConstantOne(ArraySize)) {
552 if (IsConstantOne(AllocSize)) {
553 AllocSize = ArraySize; // Operand * 1 = Operand
554 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
555 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
556 false /*ZExt*/);
557 // Malloc arg is constant product of type size and array size
558 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
559 } else {
560 // Multiply type size by the array size...
561 if (InsertBefore)
562 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
563 "mallocsize", InsertBefore);
564 else
565 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
566 "mallocsize", InsertAtEnd);
570 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
571 // Create the call to Malloc.
572 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
573 Module *M = BB->getParent()->getParent();
574 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
575 FunctionCallee MallocFunc = MallocF;
576 if (!MallocFunc)
577 // prototype malloc as "void *malloc(size_t)"
578 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
579 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
580 CallInst *MCall = nullptr;
581 Instruction *Result = nullptr;
582 if (InsertBefore) {
583 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
584 InsertBefore);
585 Result = MCall;
586 if (Result->getType() != AllocPtrType)
587 // Create a cast instruction to convert to the right type...
588 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
589 } else {
590 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
591 Result = MCall;
592 if (Result->getType() != AllocPtrType) {
593 InsertAtEnd->getInstList().push_back(MCall);
594 // Create a cast instruction to convert to the right type...
595 Result = new BitCastInst(MCall, AllocPtrType, Name);
598 MCall->setTailCall();
599 if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
600 MCall->setCallingConv(F->getCallingConv());
601 if (!F->returnDoesNotAlias())
602 F->setReturnDoesNotAlias();
604 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
606 return Result;
609 /// CreateMalloc - Generate the IR for a call to malloc:
610 /// 1. Compute the malloc call's argument as the specified type's size,
611 /// possibly multiplied by the array size if the array size is not
612 /// constant 1.
613 /// 2. Call malloc with that argument.
614 /// 3. Bitcast the result of the malloc call to the specified type.
615 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
616 Type *IntPtrTy, Type *AllocTy,
617 Value *AllocSize, Value *ArraySize,
618 Function *MallocF,
619 const Twine &Name) {
620 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
621 ArraySize, None, MallocF, Name);
623 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
624 Type *IntPtrTy, Type *AllocTy,
625 Value *AllocSize, Value *ArraySize,
626 ArrayRef<OperandBundleDef> OpB,
627 Function *MallocF,
628 const Twine &Name) {
629 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
630 ArraySize, OpB, MallocF, Name);
633 /// CreateMalloc - Generate the IR for a call to malloc:
634 /// 1. Compute the malloc call's argument as the specified type's size,
635 /// possibly multiplied by the array size if the array size is not
636 /// constant 1.
637 /// 2. Call malloc with that argument.
638 /// 3. Bitcast the result of the malloc call to the specified type.
639 /// Note: This function does not add the bitcast to the basic block, that is the
640 /// responsibility of the caller.
641 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
642 Type *IntPtrTy, Type *AllocTy,
643 Value *AllocSize, Value *ArraySize,
644 Function *MallocF, const Twine &Name) {
645 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
646 ArraySize, None, MallocF, Name);
648 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
649 Type *IntPtrTy, Type *AllocTy,
650 Value *AllocSize, Value *ArraySize,
651 ArrayRef<OperandBundleDef> OpB,
652 Function *MallocF, const Twine &Name) {
653 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
654 ArraySize, OpB, MallocF, Name);
657 static Instruction *createFree(Value *Source,
658 ArrayRef<OperandBundleDef> Bundles,
659 Instruction *InsertBefore,
660 BasicBlock *InsertAtEnd) {
661 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
662 "createFree needs either InsertBefore or InsertAtEnd");
663 assert(Source->getType()->isPointerTy() &&
664 "Can not free something of nonpointer type!");
666 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
667 Module *M = BB->getParent()->getParent();
669 Type *VoidTy = Type::getVoidTy(M->getContext());
670 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
671 // prototype free as "void free(void*)"
672 FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
673 CallInst *Result = nullptr;
674 Value *PtrCast = Source;
675 if (InsertBefore) {
676 if (Source->getType() != IntPtrTy)
677 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
678 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
679 } else {
680 if (Source->getType() != IntPtrTy)
681 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
682 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
684 Result->setTailCall();
685 if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
686 Result->setCallingConv(F->getCallingConv());
688 return Result;
691 /// CreateFree - Generate the IR for a call to the builtin free function.
692 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
693 return createFree(Source, None, InsertBefore, nullptr);
695 Instruction *CallInst::CreateFree(Value *Source,
696 ArrayRef<OperandBundleDef> Bundles,
697 Instruction *InsertBefore) {
698 return createFree(Source, Bundles, InsertBefore, nullptr);
701 /// CreateFree - Generate the IR for a call to the builtin free function.
702 /// Note: This function does not add the call to the basic block, that is the
703 /// responsibility of the caller.
704 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
705 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
706 assert(FreeCall && "CreateFree did not create a CallInst");
707 return FreeCall;
709 Instruction *CallInst::CreateFree(Value *Source,
710 ArrayRef<OperandBundleDef> Bundles,
711 BasicBlock *InsertAtEnd) {
712 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
713 assert(FreeCall && "CreateFree did not create a CallInst");
714 return FreeCall;
717 //===----------------------------------------------------------------------===//
718 // InvokeInst Implementation
719 //===----------------------------------------------------------------------===//
721 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
722 BasicBlock *IfException, ArrayRef<Value *> Args,
723 ArrayRef<OperandBundleDef> Bundles,
724 const Twine &NameStr) {
725 this->FTy = FTy;
727 assert((int)getNumOperands() ==
728 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
729 "NumOperands not set up?");
730 setNormalDest(IfNormal);
731 setUnwindDest(IfException);
732 setCalledOperand(Fn);
734 #ifndef NDEBUG
735 assert(((Args.size() == FTy->getNumParams()) ||
736 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
737 "Invoking a function with bad signature");
739 for (unsigned i = 0, e = Args.size(); i != e; i++)
740 assert((i >= FTy->getNumParams() ||
741 FTy->getParamType(i) == Args[i]->getType()) &&
742 "Invoking a function with a bad signature!");
743 #endif
745 llvm::copy(Args, op_begin());
747 auto It = populateBundleOperandInfos(Bundles, Args.size());
748 (void)It;
749 assert(It + 3 == op_end() && "Should add up!");
751 setName(NameStr);
754 InvokeInst::InvokeInst(const InvokeInst &II)
755 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
756 OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
757 II.getNumOperands()) {
758 setCallingConv(II.getCallingConv());
759 std::copy(II.op_begin(), II.op_end(), op_begin());
760 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
761 bundle_op_info_begin());
762 SubclassOptionalData = II.SubclassOptionalData;
765 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
766 Instruction *InsertPt) {
767 std::vector<Value *> Args(II->arg_begin(), II->arg_end());
769 auto *NewII = InvokeInst::Create(II->getFunctionType(), II->getCalledValue(),
770 II->getNormalDest(), II->getUnwindDest(),
771 Args, OpB, II->getName(), InsertPt);
772 NewII->setCallingConv(II->getCallingConv());
773 NewII->SubclassOptionalData = II->SubclassOptionalData;
774 NewII->setAttributes(II->getAttributes());
775 NewII->setDebugLoc(II->getDebugLoc());
776 return NewII;
780 LandingPadInst *InvokeInst::getLandingPadInst() const {
781 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
784 //===----------------------------------------------------------------------===//
785 // CallBrInst Implementation
786 //===----------------------------------------------------------------------===//
788 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
789 ArrayRef<BasicBlock *> IndirectDests,
790 ArrayRef<Value *> Args,
791 ArrayRef<OperandBundleDef> Bundles,
792 const Twine &NameStr) {
793 this->FTy = FTy;
795 assert((int)getNumOperands() ==
796 ComputeNumOperands(Args.size(), IndirectDests.size(),
797 CountBundleInputs(Bundles)) &&
798 "NumOperands not set up?");
799 NumIndirectDests = IndirectDests.size();
800 setDefaultDest(Fallthrough);
801 for (unsigned i = 0; i != NumIndirectDests; ++i)
802 setIndirectDest(i, IndirectDests[i]);
803 setCalledOperand(Fn);
805 #ifndef NDEBUG
806 assert(((Args.size() == FTy->getNumParams()) ||
807 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
808 "Calling a function with bad signature");
810 for (unsigned i = 0, e = Args.size(); i != e; i++)
811 assert((i >= FTy->getNumParams() ||
812 FTy->getParamType(i) == Args[i]->getType()) &&
813 "Calling a function with a bad signature!");
814 #endif
816 std::copy(Args.begin(), Args.end(), op_begin());
818 auto It = populateBundleOperandInfos(Bundles, Args.size());
819 (void)It;
820 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
822 setName(NameStr);
825 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
826 assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
827 if (BasicBlock *OldBB = getIndirectDest(i)) {
828 BlockAddress *Old = BlockAddress::get(OldBB);
829 BlockAddress *New = BlockAddress::get(B);
830 for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo)
831 if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
832 setArgOperand(ArgNo, New);
836 CallBrInst::CallBrInst(const CallBrInst &CBI)
837 : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
838 OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
839 CBI.getNumOperands()) {
840 setCallingConv(CBI.getCallingConv());
841 std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
842 std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
843 bundle_op_info_begin());
844 SubclassOptionalData = CBI.SubclassOptionalData;
845 NumIndirectDests = CBI.NumIndirectDests;
848 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
849 Instruction *InsertPt) {
850 std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
852 auto *NewCBI = CallBrInst::Create(CBI->getFunctionType(),
853 CBI->getCalledValue(),
854 CBI->getDefaultDest(),
855 CBI->getIndirectDests(),
856 Args, OpB, CBI->getName(), InsertPt);
857 NewCBI->setCallingConv(CBI->getCallingConv());
858 NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
859 NewCBI->setAttributes(CBI->getAttributes());
860 NewCBI->setDebugLoc(CBI->getDebugLoc());
861 NewCBI->NumIndirectDests = CBI->NumIndirectDests;
862 return NewCBI;
865 //===----------------------------------------------------------------------===//
866 // ReturnInst Implementation
867 //===----------------------------------------------------------------------===//
869 ReturnInst::ReturnInst(const ReturnInst &RI)
870 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
871 OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
872 RI.getNumOperands()) {
873 if (RI.getNumOperands())
874 Op<0>() = RI.Op<0>();
875 SubclassOptionalData = RI.SubclassOptionalData;
878 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
879 : Instruction(Type::getVoidTy(C), Instruction::Ret,
880 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
881 InsertBefore) {
882 if (retVal)
883 Op<0>() = retVal;
886 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
887 : Instruction(Type::getVoidTy(C), Instruction::Ret,
888 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
889 InsertAtEnd) {
890 if (retVal)
891 Op<0>() = retVal;
894 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
895 : Instruction(Type::getVoidTy(Context), Instruction::Ret,
896 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
898 //===----------------------------------------------------------------------===//
899 // ResumeInst Implementation
900 //===----------------------------------------------------------------------===//
902 ResumeInst::ResumeInst(const ResumeInst &RI)
903 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
904 OperandTraits<ResumeInst>::op_begin(this), 1) {
905 Op<0>() = RI.Op<0>();
908 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
909 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
910 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
911 Op<0>() = Exn;
914 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
915 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
916 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
917 Op<0>() = Exn;
920 //===----------------------------------------------------------------------===//
921 // CleanupReturnInst Implementation
922 //===----------------------------------------------------------------------===//
924 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
925 : Instruction(CRI.getType(), Instruction::CleanupRet,
926 OperandTraits<CleanupReturnInst>::op_end(this) -
927 CRI.getNumOperands(),
928 CRI.getNumOperands()) {
929 setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
930 Op<0>() = CRI.Op<0>();
931 if (CRI.hasUnwindDest())
932 Op<1>() = CRI.Op<1>();
935 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
936 if (UnwindBB)
937 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
939 Op<0>() = CleanupPad;
940 if (UnwindBB)
941 Op<1>() = UnwindBB;
944 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
945 unsigned Values, Instruction *InsertBefore)
946 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
947 Instruction::CleanupRet,
948 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
949 Values, InsertBefore) {
950 init(CleanupPad, UnwindBB);
953 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
954 unsigned Values, BasicBlock *InsertAtEnd)
955 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
956 Instruction::CleanupRet,
957 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
958 Values, InsertAtEnd) {
959 init(CleanupPad, UnwindBB);
962 //===----------------------------------------------------------------------===//
963 // CatchReturnInst Implementation
964 //===----------------------------------------------------------------------===//
965 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
966 Op<0>() = CatchPad;
967 Op<1>() = BB;
970 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
971 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
972 OperandTraits<CatchReturnInst>::op_begin(this), 2) {
973 Op<0>() = CRI.Op<0>();
974 Op<1>() = CRI.Op<1>();
977 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
978 Instruction *InsertBefore)
979 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
980 OperandTraits<CatchReturnInst>::op_begin(this), 2,
981 InsertBefore) {
982 init(CatchPad, BB);
985 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
986 BasicBlock *InsertAtEnd)
987 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
988 OperandTraits<CatchReturnInst>::op_begin(this), 2,
989 InsertAtEnd) {
990 init(CatchPad, BB);
993 //===----------------------------------------------------------------------===//
994 // CatchSwitchInst Implementation
995 //===----------------------------------------------------------------------===//
997 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
998 unsigned NumReservedValues,
999 const Twine &NameStr,
1000 Instruction *InsertBefore)
1001 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1002 InsertBefore) {
1003 if (UnwindDest)
1004 ++NumReservedValues;
1005 init(ParentPad, UnwindDest, NumReservedValues + 1);
1006 setName(NameStr);
1009 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1010 unsigned NumReservedValues,
1011 const Twine &NameStr, BasicBlock *InsertAtEnd)
1012 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1013 InsertAtEnd) {
1014 if (UnwindDest)
1015 ++NumReservedValues;
1016 init(ParentPad, UnwindDest, NumReservedValues + 1);
1017 setName(NameStr);
1020 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1021 : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1022 CSI.getNumOperands()) {
1023 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1024 setNumHungOffUseOperands(ReservedSpace);
1025 Use *OL = getOperandList();
1026 const Use *InOL = CSI.getOperandList();
1027 for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1028 OL[I] = InOL[I];
1031 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1032 unsigned NumReservedValues) {
1033 assert(ParentPad && NumReservedValues);
1035 ReservedSpace = NumReservedValues;
1036 setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1037 allocHungoffUses(ReservedSpace);
1039 Op<0>() = ParentPad;
1040 if (UnwindDest) {
1041 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
1042 setUnwindDest(UnwindDest);
1046 /// growOperands - grow operands - This grows the operand list in response to a
1047 /// push_back style of operation. This grows the number of ops by 2 times.
1048 void CatchSwitchInst::growOperands(unsigned Size) {
1049 unsigned NumOperands = getNumOperands();
1050 assert(NumOperands >= 1);
1051 if (ReservedSpace >= NumOperands + Size)
1052 return;
1053 ReservedSpace = (NumOperands + Size / 2) * 2;
1054 growHungoffUses(ReservedSpace);
1057 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1058 unsigned OpNo = getNumOperands();
1059 growOperands(1);
1060 assert(OpNo < ReservedSpace && "Growing didn't work!");
1061 setNumHungOffUseOperands(getNumOperands() + 1);
1062 getOperandList()[OpNo] = Handler;
1065 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1066 // Move all subsequent handlers up one.
1067 Use *EndDst = op_end() - 1;
1068 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1069 *CurDst = *(CurDst + 1);
1070 // Null out the last handler use.
1071 *EndDst = nullptr;
1073 setNumHungOffUseOperands(getNumOperands() - 1);
1076 //===----------------------------------------------------------------------===//
1077 // FuncletPadInst Implementation
1078 //===----------------------------------------------------------------------===//
1079 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1080 const Twine &NameStr) {
1081 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1082 llvm::copy(Args, op_begin());
1083 setParentPad(ParentPad);
1084 setName(NameStr);
1087 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1088 : Instruction(FPI.getType(), FPI.getOpcode(),
1089 OperandTraits<FuncletPadInst>::op_end(this) -
1090 FPI.getNumOperands(),
1091 FPI.getNumOperands()) {
1092 std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1093 setParentPad(FPI.getParentPad());
1096 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1097 ArrayRef<Value *> Args, unsigned Values,
1098 const Twine &NameStr, Instruction *InsertBefore)
1099 : Instruction(ParentPad->getType(), Op,
1100 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1101 InsertBefore) {
1102 init(ParentPad, Args, NameStr);
1105 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1106 ArrayRef<Value *> Args, unsigned Values,
1107 const Twine &NameStr, BasicBlock *InsertAtEnd)
1108 : Instruction(ParentPad->getType(), Op,
1109 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1110 InsertAtEnd) {
1111 init(ParentPad, Args, NameStr);
1114 //===----------------------------------------------------------------------===//
1115 // UnreachableInst Implementation
1116 //===----------------------------------------------------------------------===//
1118 UnreachableInst::UnreachableInst(LLVMContext &Context,
1119 Instruction *InsertBefore)
1120 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1121 0, InsertBefore) {}
1122 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1123 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1124 0, InsertAtEnd) {}
1126 //===----------------------------------------------------------------------===//
1127 // BranchInst Implementation
1128 //===----------------------------------------------------------------------===//
1130 void BranchInst::AssertOK() {
1131 if (isConditional())
1132 assert(getCondition()->getType()->isIntegerTy(1) &&
1133 "May only branch on boolean predicates!");
1136 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1137 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1138 OperandTraits<BranchInst>::op_end(this) - 1, 1,
1139 InsertBefore) {
1140 assert(IfTrue && "Branch destination may not be null!");
1141 Op<-1>() = IfTrue;
1144 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1145 Instruction *InsertBefore)
1146 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1147 OperandTraits<BranchInst>::op_end(this) - 3, 3,
1148 InsertBefore) {
1149 Op<-1>() = IfTrue;
1150 Op<-2>() = IfFalse;
1151 Op<-3>() = Cond;
1152 #ifndef NDEBUG
1153 AssertOK();
1154 #endif
1157 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1158 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1159 OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1160 assert(IfTrue && "Branch destination may not be null!");
1161 Op<-1>() = IfTrue;
1164 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1165 BasicBlock *InsertAtEnd)
1166 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1167 OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1168 Op<-1>() = IfTrue;
1169 Op<-2>() = IfFalse;
1170 Op<-3>() = Cond;
1171 #ifndef NDEBUG
1172 AssertOK();
1173 #endif
1176 BranchInst::BranchInst(const BranchInst &BI)
1177 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1178 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1179 BI.getNumOperands()) {
1180 Op<-1>() = BI.Op<-1>();
1181 if (BI.getNumOperands() != 1) {
1182 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1183 Op<-3>() = BI.Op<-3>();
1184 Op<-2>() = BI.Op<-2>();
1186 SubclassOptionalData = BI.SubclassOptionalData;
1189 void BranchInst::swapSuccessors() {
1190 assert(isConditional() &&
1191 "Cannot swap successors of an unconditional branch");
1192 Op<-1>().swap(Op<-2>());
1194 // Update profile metadata if present and it matches our structural
1195 // expectations.
1196 swapProfMetadata();
1199 //===----------------------------------------------------------------------===//
1200 // AllocaInst Implementation
1201 //===----------------------------------------------------------------------===//
1203 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1204 if (!Amt)
1205 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1206 else {
1207 assert(!isa<BasicBlock>(Amt) &&
1208 "Passed basic block into allocation size parameter! Use other ctor");
1209 assert(Amt->getType()->isIntegerTy() &&
1210 "Allocation array size is not an integer!");
1212 return Amt;
1215 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1216 Instruction *InsertBefore)
1217 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1219 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1220 BasicBlock *InsertAtEnd)
1221 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1223 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1224 const Twine &Name, Instruction *InsertBefore)
1225 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1227 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1228 const Twine &Name, BasicBlock *InsertAtEnd)
1229 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1231 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1232 unsigned Align, const Twine &Name,
1233 Instruction *InsertBefore)
1234 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1235 getAISize(Ty->getContext(), ArraySize), InsertBefore),
1236 AllocatedType(Ty) {
1237 setAlignment(Align);
1238 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1239 setName(Name);
1242 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1243 unsigned Align, const Twine &Name,
1244 BasicBlock *InsertAtEnd)
1245 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1246 getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1247 AllocatedType(Ty) {
1248 setAlignment(Align);
1249 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1250 setName(Name);
1253 void AllocaInst::setAlignment(unsigned Align) {
1254 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1255 assert(Align <= MaximumAlignment &&
1256 "Alignment is greater than MaximumAlignment!");
1257 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1258 (Log2_32(Align) + 1));
1259 assert(getAlignment() == Align && "Alignment representation error!");
1262 bool AllocaInst::isArrayAllocation() const {
1263 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1264 return !CI->isOne();
1265 return true;
1268 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1269 /// function and is a constant size. If so, the code generator will fold it
1270 /// into the prolog/epilog code, so it is basically free.
1271 bool AllocaInst::isStaticAlloca() const {
1272 // Must be constant size.
1273 if (!isa<ConstantInt>(getArraySize())) return false;
1275 // Must be in the entry block.
1276 const BasicBlock *Parent = getParent();
1277 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1280 //===----------------------------------------------------------------------===//
1281 // LoadInst Implementation
1282 //===----------------------------------------------------------------------===//
1284 void LoadInst::AssertOK() {
1285 assert(getOperand(0)->getType()->isPointerTy() &&
1286 "Ptr must have pointer type.");
1287 assert(!(isAtomic() && getAlignment() == 0) &&
1288 "Alignment required for atomic load");
1291 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1292 Instruction *InsertBef)
1293 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1295 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1296 BasicBlock *InsertAE)
1297 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1299 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1300 Instruction *InsertBef)
1301 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1303 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1304 BasicBlock *InsertAE)
1305 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1307 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1308 unsigned Align, Instruction *InsertBef)
1309 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1310 SyncScope::System, InsertBef) {}
1312 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1313 unsigned Align, BasicBlock *InsertAE)
1314 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1315 SyncScope::System, InsertAE) {}
1317 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1318 unsigned Align, AtomicOrdering Order,
1319 SyncScope::ID SSID, Instruction *InsertBef)
1320 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1321 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1322 setVolatile(isVolatile);
1323 setAlignment(Align);
1324 setAtomic(Order, SSID);
1325 AssertOK();
1326 setName(Name);
1329 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1330 unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
1331 BasicBlock *InsertAE)
1332 : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1333 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1334 setVolatile(isVolatile);
1335 setAlignment(Align);
1336 setAtomic(Order, SSID);
1337 AssertOK();
1338 setName(Name);
1341 void LoadInst::setAlignment(unsigned Align) {
1342 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1343 assert(Align <= MaximumAlignment &&
1344 "Alignment is greater than MaximumAlignment!");
1345 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1346 ((Log2_32(Align)+1)<<1));
1347 assert(getAlignment() == Align && "Alignment representation error!");
1350 //===----------------------------------------------------------------------===//
1351 // StoreInst Implementation
1352 //===----------------------------------------------------------------------===//
1354 void StoreInst::AssertOK() {
1355 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1356 assert(getOperand(1)->getType()->isPointerTy() &&
1357 "Ptr must have pointer type!");
1358 assert(getOperand(0)->getType() ==
1359 cast<PointerType>(getOperand(1)->getType())->getElementType()
1360 && "Ptr must be a pointer to Val type!");
1361 assert(!(isAtomic() && getAlignment() == 0) &&
1362 "Alignment required for atomic store");
1365 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1366 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1368 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1369 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1371 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1372 Instruction *InsertBefore)
1373 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1375 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1376 BasicBlock *InsertAtEnd)
1377 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1379 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1380 Instruction *InsertBefore)
1381 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1382 SyncScope::System, InsertBefore) {}
1384 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1385 BasicBlock *InsertAtEnd)
1386 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1387 SyncScope::System, InsertAtEnd) {}
1389 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1390 unsigned Align, AtomicOrdering Order,
1391 SyncScope::ID SSID,
1392 Instruction *InsertBefore)
1393 : Instruction(Type::getVoidTy(val->getContext()), Store,
1394 OperandTraits<StoreInst>::op_begin(this),
1395 OperandTraits<StoreInst>::operands(this),
1396 InsertBefore) {
1397 Op<0>() = val;
1398 Op<1>() = addr;
1399 setVolatile(isVolatile);
1400 setAlignment(Align);
1401 setAtomic(Order, SSID);
1402 AssertOK();
1405 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1406 unsigned Align, AtomicOrdering Order,
1407 SyncScope::ID SSID,
1408 BasicBlock *InsertAtEnd)
1409 : Instruction(Type::getVoidTy(val->getContext()), Store,
1410 OperandTraits<StoreInst>::op_begin(this),
1411 OperandTraits<StoreInst>::operands(this),
1412 InsertAtEnd) {
1413 Op<0>() = val;
1414 Op<1>() = addr;
1415 setVolatile(isVolatile);
1416 setAlignment(Align);
1417 setAtomic(Order, SSID);
1418 AssertOK();
1421 void StoreInst::setAlignment(unsigned Align) {
1422 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1423 assert(Align <= MaximumAlignment &&
1424 "Alignment is greater than MaximumAlignment!");
1425 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1426 ((Log2_32(Align)+1) << 1));
1427 assert(getAlignment() == Align && "Alignment representation error!");
1430 //===----------------------------------------------------------------------===//
1431 // AtomicCmpXchgInst Implementation
1432 //===----------------------------------------------------------------------===//
1434 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1435 AtomicOrdering SuccessOrdering,
1436 AtomicOrdering FailureOrdering,
1437 SyncScope::ID SSID) {
1438 Op<0>() = Ptr;
1439 Op<1>() = Cmp;
1440 Op<2>() = NewVal;
1441 setSuccessOrdering(SuccessOrdering);
1442 setFailureOrdering(FailureOrdering);
1443 setSyncScopeID(SSID);
1445 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1446 "All operands must be non-null!");
1447 assert(getOperand(0)->getType()->isPointerTy() &&
1448 "Ptr must have pointer type!");
1449 assert(getOperand(1)->getType() ==
1450 cast<PointerType>(getOperand(0)->getType())->getElementType()
1451 && "Ptr must be a pointer to Cmp type!");
1452 assert(getOperand(2)->getType() ==
1453 cast<PointerType>(getOperand(0)->getType())->getElementType()
1454 && "Ptr must be a pointer to NewVal type!");
1455 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1456 "AtomicCmpXchg instructions must be atomic!");
1457 assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1458 "AtomicCmpXchg instructions must be atomic!");
1459 assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1460 "AtomicCmpXchg failure argument shall be no stronger than the success "
1461 "argument");
1462 assert(FailureOrdering != AtomicOrdering::Release &&
1463 FailureOrdering != AtomicOrdering::AcquireRelease &&
1464 "AtomicCmpXchg failure ordering cannot include release semantics");
1467 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1468 AtomicOrdering SuccessOrdering,
1469 AtomicOrdering FailureOrdering,
1470 SyncScope::ID SSID,
1471 Instruction *InsertBefore)
1472 : Instruction(
1473 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1474 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1475 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1476 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1479 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1480 AtomicOrdering SuccessOrdering,
1481 AtomicOrdering FailureOrdering,
1482 SyncScope::ID SSID,
1483 BasicBlock *InsertAtEnd)
1484 : Instruction(
1485 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1486 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1487 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1488 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1491 //===----------------------------------------------------------------------===//
1492 // AtomicRMWInst Implementation
1493 //===----------------------------------------------------------------------===//
1495 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1496 AtomicOrdering Ordering,
1497 SyncScope::ID SSID) {
1498 Op<0>() = Ptr;
1499 Op<1>() = Val;
1500 setOperation(Operation);
1501 setOrdering(Ordering);
1502 setSyncScopeID(SSID);
1504 assert(getOperand(0) && getOperand(1) &&
1505 "All operands must be non-null!");
1506 assert(getOperand(0)->getType()->isPointerTy() &&
1507 "Ptr must have pointer type!");
1508 assert(getOperand(1)->getType() ==
1509 cast<PointerType>(getOperand(0)->getType())->getElementType()
1510 && "Ptr must be a pointer to Val type!");
1511 assert(Ordering != AtomicOrdering::NotAtomic &&
1512 "AtomicRMW instructions must be atomic!");
1515 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1516 AtomicOrdering Ordering,
1517 SyncScope::ID SSID,
1518 Instruction *InsertBefore)
1519 : Instruction(Val->getType(), AtomicRMW,
1520 OperandTraits<AtomicRMWInst>::op_begin(this),
1521 OperandTraits<AtomicRMWInst>::operands(this),
1522 InsertBefore) {
1523 Init(Operation, Ptr, Val, Ordering, SSID);
1526 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1527 AtomicOrdering Ordering,
1528 SyncScope::ID SSID,
1529 BasicBlock *InsertAtEnd)
1530 : Instruction(Val->getType(), AtomicRMW,
1531 OperandTraits<AtomicRMWInst>::op_begin(this),
1532 OperandTraits<AtomicRMWInst>::operands(this),
1533 InsertAtEnd) {
1534 Init(Operation, Ptr, Val, Ordering, SSID);
1537 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1538 switch (Op) {
1539 case AtomicRMWInst::Xchg:
1540 return "xchg";
1541 case AtomicRMWInst::Add:
1542 return "add";
1543 case AtomicRMWInst::Sub:
1544 return "sub";
1545 case AtomicRMWInst::And:
1546 return "and";
1547 case AtomicRMWInst::Nand:
1548 return "nand";
1549 case AtomicRMWInst::Or:
1550 return "or";
1551 case AtomicRMWInst::Xor:
1552 return "xor";
1553 case AtomicRMWInst::Max:
1554 return "max";
1555 case AtomicRMWInst::Min:
1556 return "min";
1557 case AtomicRMWInst::UMax:
1558 return "umax";
1559 case AtomicRMWInst::UMin:
1560 return "umin";
1561 case AtomicRMWInst::FAdd:
1562 return "fadd";
1563 case AtomicRMWInst::FSub:
1564 return "fsub";
1565 case AtomicRMWInst::BAD_BINOP:
1566 return "<invalid operation>";
1569 llvm_unreachable("invalid atomicrmw operation");
1572 //===----------------------------------------------------------------------===//
1573 // FenceInst Implementation
1574 //===----------------------------------------------------------------------===//
1576 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1577 SyncScope::ID SSID,
1578 Instruction *InsertBefore)
1579 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1580 setOrdering(Ordering);
1581 setSyncScopeID(SSID);
1584 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1585 SyncScope::ID SSID,
1586 BasicBlock *InsertAtEnd)
1587 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1588 setOrdering(Ordering);
1589 setSyncScopeID(SSID);
1592 //===----------------------------------------------------------------------===//
1593 // GetElementPtrInst Implementation
1594 //===----------------------------------------------------------------------===//
1596 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1597 const Twine &Name) {
1598 assert(getNumOperands() == 1 + IdxList.size() &&
1599 "NumOperands not initialized?");
1600 Op<0>() = Ptr;
1601 llvm::copy(IdxList, op_begin() + 1);
1602 setName(Name);
1605 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1606 : Instruction(GEPI.getType(), GetElementPtr,
1607 OperandTraits<GetElementPtrInst>::op_end(this) -
1608 GEPI.getNumOperands(),
1609 GEPI.getNumOperands()),
1610 SourceElementType(GEPI.SourceElementType),
1611 ResultElementType(GEPI.ResultElementType) {
1612 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1613 SubclassOptionalData = GEPI.SubclassOptionalData;
1616 /// getIndexedType - Returns the type of the element that would be accessed with
1617 /// a gep instruction with the specified parameters.
1619 /// The Idxs pointer should point to a continuous piece of memory containing the
1620 /// indices, either as Value* or uint64_t.
1622 /// A null type is returned if the indices are invalid for the specified
1623 /// pointer type.
1625 template <typename IndexTy>
1626 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1627 // Handle the special case of the empty set index set, which is always valid.
1628 if (IdxList.empty())
1629 return Agg;
1631 // If there is at least one index, the top level type must be sized, otherwise
1632 // it cannot be 'stepped over'.
1633 if (!Agg->isSized())
1634 return nullptr;
1636 unsigned CurIdx = 1;
1637 for (; CurIdx != IdxList.size(); ++CurIdx) {
1638 CompositeType *CT = dyn_cast<CompositeType>(Agg);
1639 if (!CT || CT->isPointerTy()) return nullptr;
1640 IndexTy Index = IdxList[CurIdx];
1641 if (!CT->indexValid(Index)) return nullptr;
1642 Agg = CT->getTypeAtIndex(Index);
1644 return CurIdx == IdxList.size() ? Agg : nullptr;
1647 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1648 return getIndexedTypeInternal(Ty, IdxList);
1651 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1652 ArrayRef<Constant *> IdxList) {
1653 return getIndexedTypeInternal(Ty, IdxList);
1656 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1657 return getIndexedTypeInternal(Ty, IdxList);
1660 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1661 /// zeros. If so, the result pointer and the first operand have the same
1662 /// value, just potentially different types.
1663 bool GetElementPtrInst::hasAllZeroIndices() const {
1664 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1665 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1666 if (!CI->isZero()) return false;
1667 } else {
1668 return false;
1671 return true;
1674 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1675 /// constant integers. If so, the result pointer and the first operand have
1676 /// a constant offset between them.
1677 bool GetElementPtrInst::hasAllConstantIndices() const {
1678 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1679 if (!isa<ConstantInt>(getOperand(i)))
1680 return false;
1682 return true;
1685 void GetElementPtrInst::setIsInBounds(bool B) {
1686 cast<GEPOperator>(this)->setIsInBounds(B);
1689 bool GetElementPtrInst::isInBounds() const {
1690 return cast<GEPOperator>(this)->isInBounds();
1693 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1694 APInt &Offset) const {
1695 // Delegate to the generic GEPOperator implementation.
1696 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1699 //===----------------------------------------------------------------------===//
1700 // ExtractElementInst Implementation
1701 //===----------------------------------------------------------------------===//
1703 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1704 const Twine &Name,
1705 Instruction *InsertBef)
1706 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1707 ExtractElement,
1708 OperandTraits<ExtractElementInst>::op_begin(this),
1709 2, InsertBef) {
1710 assert(isValidOperands(Val, Index) &&
1711 "Invalid extractelement instruction operands!");
1712 Op<0>() = Val;
1713 Op<1>() = Index;
1714 setName(Name);
1717 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1718 const Twine &Name,
1719 BasicBlock *InsertAE)
1720 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1721 ExtractElement,
1722 OperandTraits<ExtractElementInst>::op_begin(this),
1723 2, InsertAE) {
1724 assert(isValidOperands(Val, Index) &&
1725 "Invalid extractelement instruction operands!");
1727 Op<0>() = Val;
1728 Op<1>() = Index;
1729 setName(Name);
1732 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1733 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1734 return false;
1735 return true;
1738 //===----------------------------------------------------------------------===//
1739 // InsertElementInst Implementation
1740 //===----------------------------------------------------------------------===//
1742 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1743 const Twine &Name,
1744 Instruction *InsertBef)
1745 : Instruction(Vec->getType(), InsertElement,
1746 OperandTraits<InsertElementInst>::op_begin(this),
1747 3, InsertBef) {
1748 assert(isValidOperands(Vec, Elt, Index) &&
1749 "Invalid insertelement instruction operands!");
1750 Op<0>() = Vec;
1751 Op<1>() = Elt;
1752 Op<2>() = Index;
1753 setName(Name);
1756 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1757 const Twine &Name,
1758 BasicBlock *InsertAE)
1759 : Instruction(Vec->getType(), InsertElement,
1760 OperandTraits<InsertElementInst>::op_begin(this),
1761 3, InsertAE) {
1762 assert(isValidOperands(Vec, Elt, Index) &&
1763 "Invalid insertelement instruction operands!");
1765 Op<0>() = Vec;
1766 Op<1>() = Elt;
1767 Op<2>() = Index;
1768 setName(Name);
1771 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1772 const Value *Index) {
1773 if (!Vec->getType()->isVectorTy())
1774 return false; // First operand of insertelement must be vector type.
1776 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1777 return false;// Second operand of insertelement must be vector element type.
1779 if (!Index->getType()->isIntegerTy())
1780 return false; // Third operand of insertelement must be i32.
1781 return true;
1784 //===----------------------------------------------------------------------===//
1785 // ShuffleVectorInst Implementation
1786 //===----------------------------------------------------------------------===//
1788 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1789 const Twine &Name,
1790 Instruction *InsertBefore)
1791 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1792 cast<VectorType>(Mask->getType())->getNumElements()),
1793 ShuffleVector,
1794 OperandTraits<ShuffleVectorInst>::op_begin(this),
1795 OperandTraits<ShuffleVectorInst>::operands(this),
1796 InsertBefore) {
1797 assert(isValidOperands(V1, V2, Mask) &&
1798 "Invalid shuffle vector instruction operands!");
1799 Op<0>() = V1;
1800 Op<1>() = V2;
1801 Op<2>() = Mask;
1802 setName(Name);
1805 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1806 const Twine &Name,
1807 BasicBlock *InsertAtEnd)
1808 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1809 cast<VectorType>(Mask->getType())->getNumElements()),
1810 ShuffleVector,
1811 OperandTraits<ShuffleVectorInst>::op_begin(this),
1812 OperandTraits<ShuffleVectorInst>::operands(this),
1813 InsertAtEnd) {
1814 assert(isValidOperands(V1, V2, Mask) &&
1815 "Invalid shuffle vector instruction operands!");
1817 Op<0>() = V1;
1818 Op<1>() = V2;
1819 Op<2>() = Mask;
1820 setName(Name);
1823 void ShuffleVectorInst::commute() {
1824 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1825 int NumMaskElts = getMask()->getType()->getVectorNumElements();
1826 SmallVector<Constant*, 16> NewMask(NumMaskElts);
1827 Type *Int32Ty = Type::getInt32Ty(getContext());
1828 for (int i = 0; i != NumMaskElts; ++i) {
1829 int MaskElt = getMaskValue(i);
1830 if (MaskElt == -1) {
1831 NewMask[i] = UndefValue::get(Int32Ty);
1832 continue;
1834 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1835 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1836 NewMask[i] = ConstantInt::get(Int32Ty, MaskElt);
1838 Op<2>() = ConstantVector::get(NewMask);
1839 Op<0>().swap(Op<1>());
1842 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1843 const Value *Mask) {
1844 // V1 and V2 must be vectors of the same type.
1845 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1846 return false;
1848 // Mask must be vector of i32.
1849 auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1850 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1851 return false;
1853 // Check to see if Mask is valid.
1854 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1855 return true;
1857 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1858 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1859 for (Value *Op : MV->operands()) {
1860 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1861 if (CI->uge(V1Size*2))
1862 return false;
1863 } else if (!isa<UndefValue>(Op)) {
1864 return false;
1867 return true;
1870 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1871 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1872 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1873 if (CDS->getElementAsInteger(i) >= V1Size*2)
1874 return false;
1875 return true;
1878 // The bitcode reader can create a place holder for a forward reference
1879 // used as the shuffle mask. When this occurs, the shuffle mask will
1880 // fall into this case and fail. To avoid this error, do this bit of
1881 // ugliness to allow such a mask pass.
1882 if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
1883 if (CE->getOpcode() == Instruction::UserOp1)
1884 return true;
1886 return false;
1889 int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) {
1890 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1891 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
1892 return CDS->getElementAsInteger(i);
1893 Constant *C = Mask->getAggregateElement(i);
1894 if (isa<UndefValue>(C))
1895 return -1;
1896 return cast<ConstantInt>(C)->getZExtValue();
1899 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1900 SmallVectorImpl<int> &Result) {
1901 unsigned NumElts = Mask->getType()->getVectorNumElements();
1903 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1904 for (unsigned i = 0; i != NumElts; ++i)
1905 Result.push_back(CDS->getElementAsInteger(i));
1906 return;
1908 for (unsigned i = 0; i != NumElts; ++i) {
1909 Constant *C = Mask->getAggregateElement(i);
1910 Result.push_back(isa<UndefValue>(C) ? -1 :
1911 cast<ConstantInt>(C)->getZExtValue());
1915 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1916 assert(!Mask.empty() && "Shuffle mask must contain elements");
1917 bool UsesLHS = false;
1918 bool UsesRHS = false;
1919 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1920 if (Mask[i] == -1)
1921 continue;
1922 assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
1923 "Out-of-bounds shuffle mask element");
1924 UsesLHS |= (Mask[i] < NumOpElts);
1925 UsesRHS |= (Mask[i] >= NumOpElts);
1926 if (UsesLHS && UsesRHS)
1927 return false;
1929 assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source");
1930 return true;
1933 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
1934 // We don't have vector operand size information, so assume operands are the
1935 // same size as the mask.
1936 return isSingleSourceMaskImpl(Mask, Mask.size());
1939 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1940 if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1941 return false;
1942 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1943 if (Mask[i] == -1)
1944 continue;
1945 if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1946 return false;
1948 return true;
1951 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
1952 // We don't have vector operand size information, so assume operands are the
1953 // same size as the mask.
1954 return isIdentityMaskImpl(Mask, Mask.size());
1957 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
1958 if (!isSingleSourceMask(Mask))
1959 return false;
1960 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1961 if (Mask[i] == -1)
1962 continue;
1963 if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
1964 return false;
1966 return true;
1969 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
1970 if (!isSingleSourceMask(Mask))
1971 return false;
1972 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1973 if (Mask[i] == -1)
1974 continue;
1975 if (Mask[i] != 0 && Mask[i] != NumElts)
1976 return false;
1978 return true;
1981 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
1982 // Select is differentiated from identity. It requires using both sources.
1983 if (isSingleSourceMask(Mask))
1984 return false;
1985 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1986 if (Mask[i] == -1)
1987 continue;
1988 if (Mask[i] != i && Mask[i] != (NumElts + i))
1989 return false;
1991 return true;
1994 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
1995 // Example masks that will return true:
1996 // v1 = <a, b, c, d>
1997 // v2 = <e, f, g, h>
1998 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1999 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2001 // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2002 int NumElts = Mask.size();
2003 if (NumElts < 2 || !isPowerOf2_32(NumElts))
2004 return false;
2006 // 2. The first element of the mask must be either a 0 or a 1.
2007 if (Mask[0] != 0 && Mask[0] != 1)
2008 return false;
2010 // 3. The difference between the first 2 elements must be equal to the
2011 // number of elements in the mask.
2012 if ((Mask[1] - Mask[0]) != NumElts)
2013 return false;
2015 // 4. The difference between consecutive even-numbered and odd-numbered
2016 // elements must be equal to 2.
2017 for (int i = 2; i < NumElts; ++i) {
2018 int MaskEltVal = Mask[i];
2019 if (MaskEltVal == -1)
2020 return false;
2021 int MaskEltPrevVal = Mask[i - 2];
2022 if (MaskEltVal - MaskEltPrevVal != 2)
2023 return false;
2025 return true;
2028 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2029 int NumSrcElts, int &Index) {
2030 // Must extract from a single source.
2031 if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2032 return false;
2034 // Must be smaller (else this is an Identity shuffle).
2035 if (NumSrcElts <= (int)Mask.size())
2036 return false;
2038 // Find start of extraction, accounting that we may start with an UNDEF.
2039 int SubIndex = -1;
2040 for (int i = 0, e = Mask.size(); i != e; ++i) {
2041 int M = Mask[i];
2042 if (M < 0)
2043 continue;
2044 int Offset = (M % NumSrcElts) - i;
2045 if (0 <= SubIndex && SubIndex != Offset)
2046 return false;
2047 SubIndex = Offset;
2050 if (0 <= SubIndex) {
2051 Index = SubIndex;
2052 return true;
2054 return false;
2057 bool ShuffleVectorInst::isIdentityWithPadding() const {
2058 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2059 int NumMaskElts = getType()->getVectorNumElements();
2060 if (NumMaskElts <= NumOpElts)
2061 return false;
2063 // The first part of the mask must choose elements from exactly 1 source op.
2064 SmallVector<int, 16> Mask = getShuffleMask();
2065 if (!isIdentityMaskImpl(Mask, NumOpElts))
2066 return false;
2068 // All extending must be with undef elements.
2069 for (int i = NumOpElts; i < NumMaskElts; ++i)
2070 if (Mask[i] != -1)
2071 return false;
2073 return true;
2076 bool ShuffleVectorInst::isIdentityWithExtract() const {
2077 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2078 int NumMaskElts = getType()->getVectorNumElements();
2079 if (NumMaskElts >= NumOpElts)
2080 return false;
2082 return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2085 bool ShuffleVectorInst::isConcat() const {
2086 // Vector concatenation is differentiated from identity with padding.
2087 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
2088 return false;
2090 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2091 int NumMaskElts = getType()->getVectorNumElements();
2092 if (NumMaskElts != NumOpElts * 2)
2093 return false;
2095 // Use the mask length rather than the operands' vector lengths here. We
2096 // already know that the shuffle returns a vector twice as long as the inputs,
2097 // and neither of the inputs are undef vectors. If the mask picks consecutive
2098 // elements from both inputs, then this is a concatenation of the inputs.
2099 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2102 //===----------------------------------------------------------------------===//
2103 // InsertValueInst Class
2104 //===----------------------------------------------------------------------===//
2106 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2107 const Twine &Name) {
2108 assert(getNumOperands() == 2 && "NumOperands not initialized?");
2110 // There's no fundamental reason why we require at least one index
2111 // (other than weirdness with &*IdxBegin being invalid; see
2112 // getelementptr's init routine for example). But there's no
2113 // present need to support it.
2114 assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2116 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2117 Val->getType() && "Inserted value must match indexed type!");
2118 Op<0>() = Agg;
2119 Op<1>() = Val;
2121 Indices.append(Idxs.begin(), Idxs.end());
2122 setName(Name);
2125 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2126 : Instruction(IVI.getType(), InsertValue,
2127 OperandTraits<InsertValueInst>::op_begin(this), 2),
2128 Indices(IVI.Indices) {
2129 Op<0>() = IVI.getOperand(0);
2130 Op<1>() = IVI.getOperand(1);
2131 SubclassOptionalData = IVI.SubclassOptionalData;
2134 //===----------------------------------------------------------------------===//
2135 // ExtractValueInst Class
2136 //===----------------------------------------------------------------------===//
2138 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2139 assert(getNumOperands() == 1 && "NumOperands not initialized?");
2141 // There's no fundamental reason why we require at least one index.
2142 // But there's no present need to support it.
2143 assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2145 Indices.append(Idxs.begin(), Idxs.end());
2146 setName(Name);
2149 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2150 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2151 Indices(EVI.Indices) {
2152 SubclassOptionalData = EVI.SubclassOptionalData;
2155 // getIndexedType - Returns the type of the element that would be extracted
2156 // with an extractvalue instruction with the specified parameters.
2158 // A null type is returned if the indices are invalid for the specified
2159 // pointer type.
2161 Type *ExtractValueInst::getIndexedType(Type *Agg,
2162 ArrayRef<unsigned> Idxs) {
2163 for (unsigned Index : Idxs) {
2164 // We can't use CompositeType::indexValid(Index) here.
2165 // indexValid() always returns true for arrays because getelementptr allows
2166 // out-of-bounds indices. Since we don't allow those for extractvalue and
2167 // insertvalue we need to check array indexing manually.
2168 // Since the only other types we can index into are struct types it's just
2169 // as easy to check those manually as well.
2170 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2171 if (Index >= AT->getNumElements())
2172 return nullptr;
2173 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2174 if (Index >= ST->getNumElements())
2175 return nullptr;
2176 } else {
2177 // Not a valid type to index into.
2178 return nullptr;
2181 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
2183 return const_cast<Type*>(Agg);
2186 //===----------------------------------------------------------------------===//
2187 // UnaryOperator Class
2188 //===----------------------------------------------------------------------===//
2190 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2191 Type *Ty, const Twine &Name,
2192 Instruction *InsertBefore)
2193 : UnaryInstruction(Ty, iType, S, InsertBefore) {
2194 Op<0>() = S;
2195 setName(Name);
2196 AssertOK();
2199 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2200 Type *Ty, const Twine &Name,
2201 BasicBlock *InsertAtEnd)
2202 : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2203 Op<0>() = S;
2204 setName(Name);
2205 AssertOK();
2208 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2209 const Twine &Name,
2210 Instruction *InsertBefore) {
2211 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2214 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2215 const Twine &Name,
2216 BasicBlock *InsertAtEnd) {
2217 UnaryOperator *Res = Create(Op, S, Name);
2218 InsertAtEnd->getInstList().push_back(Res);
2219 return Res;
2222 void UnaryOperator::AssertOK() {
2223 Value *LHS = getOperand(0);
2224 (void)LHS; // Silence warnings.
2225 #ifndef NDEBUG
2226 switch (getOpcode()) {
2227 case FNeg:
2228 assert(getType() == LHS->getType() &&
2229 "Unary operation should return same type as operand!");
2230 assert(getType()->isFPOrFPVectorTy() &&
2231 "Tried to create a floating-point operation on a "
2232 "non-floating-point type!");
2233 break;
2234 default: llvm_unreachable("Invalid opcode provided");
2236 #endif
2239 //===----------------------------------------------------------------------===//
2240 // BinaryOperator Class
2241 //===----------------------------------------------------------------------===//
2243 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2244 Type *Ty, const Twine &Name,
2245 Instruction *InsertBefore)
2246 : Instruction(Ty, iType,
2247 OperandTraits<BinaryOperator>::op_begin(this),
2248 OperandTraits<BinaryOperator>::operands(this),
2249 InsertBefore) {
2250 Op<0>() = S1;
2251 Op<1>() = S2;
2252 setName(Name);
2253 AssertOK();
2256 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2257 Type *Ty, const Twine &Name,
2258 BasicBlock *InsertAtEnd)
2259 : Instruction(Ty, iType,
2260 OperandTraits<BinaryOperator>::op_begin(this),
2261 OperandTraits<BinaryOperator>::operands(this),
2262 InsertAtEnd) {
2263 Op<0>() = S1;
2264 Op<1>() = S2;
2265 setName(Name);
2266 AssertOK();
2269 void BinaryOperator::AssertOK() {
2270 Value *LHS = getOperand(0), *RHS = getOperand(1);
2271 (void)LHS; (void)RHS; // Silence warnings.
2272 assert(LHS->getType() == RHS->getType() &&
2273 "Binary operator operand types must match!");
2274 #ifndef NDEBUG
2275 switch (getOpcode()) {
2276 case Add: case Sub:
2277 case Mul:
2278 assert(getType() == LHS->getType() &&
2279 "Arithmetic operation should return same type as operands!");
2280 assert(getType()->isIntOrIntVectorTy() &&
2281 "Tried to create an integer operation on a non-integer type!");
2282 break;
2283 case FAdd: case FSub:
2284 case FMul:
2285 assert(getType() == LHS->getType() &&
2286 "Arithmetic operation should return same type as operands!");
2287 assert(getType()->isFPOrFPVectorTy() &&
2288 "Tried to create a floating-point operation on a "
2289 "non-floating-point type!");
2290 break;
2291 case UDiv:
2292 case SDiv:
2293 assert(getType() == LHS->getType() &&
2294 "Arithmetic operation should return same type as operands!");
2295 assert(getType()->isIntOrIntVectorTy() &&
2296 "Incorrect operand type (not integer) for S/UDIV");
2297 break;
2298 case FDiv:
2299 assert(getType() == LHS->getType() &&
2300 "Arithmetic operation should return same type as operands!");
2301 assert(getType()->isFPOrFPVectorTy() &&
2302 "Incorrect operand type (not floating point) for FDIV");
2303 break;
2304 case URem:
2305 case SRem:
2306 assert(getType() == LHS->getType() &&
2307 "Arithmetic operation should return same type as operands!");
2308 assert(getType()->isIntOrIntVectorTy() &&
2309 "Incorrect operand type (not integer) for S/UREM");
2310 break;
2311 case FRem:
2312 assert(getType() == LHS->getType() &&
2313 "Arithmetic operation should return same type as operands!");
2314 assert(getType()->isFPOrFPVectorTy() &&
2315 "Incorrect operand type (not floating point) for FREM");
2316 break;
2317 case Shl:
2318 case LShr:
2319 case AShr:
2320 assert(getType() == LHS->getType() &&
2321 "Shift operation should return same type as operands!");
2322 assert(getType()->isIntOrIntVectorTy() &&
2323 "Tried to create a shift operation on a non-integral type!");
2324 break;
2325 case And: case Or:
2326 case Xor:
2327 assert(getType() == LHS->getType() &&
2328 "Logical operation should return same type as operands!");
2329 assert(getType()->isIntOrIntVectorTy() &&
2330 "Tried to create a logical operation on a non-integral type!");
2331 break;
2332 default: llvm_unreachable("Invalid opcode provided");
2334 #endif
2337 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2338 const Twine &Name,
2339 Instruction *InsertBefore) {
2340 assert(S1->getType() == S2->getType() &&
2341 "Cannot create binary operator with two operands of differing type!");
2342 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2345 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2346 const Twine &Name,
2347 BasicBlock *InsertAtEnd) {
2348 BinaryOperator *Res = Create(Op, S1, S2, Name);
2349 InsertAtEnd->getInstList().push_back(Res);
2350 return Res;
2353 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2354 Instruction *InsertBefore) {
2355 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2356 return new BinaryOperator(Instruction::Sub,
2357 zero, Op,
2358 Op->getType(), Name, InsertBefore);
2361 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2362 BasicBlock *InsertAtEnd) {
2363 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2364 return new BinaryOperator(Instruction::Sub,
2365 zero, Op,
2366 Op->getType(), Name, InsertAtEnd);
2369 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2370 Instruction *InsertBefore) {
2371 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2372 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2375 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2376 BasicBlock *InsertAtEnd) {
2377 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2378 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2381 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2382 Instruction *InsertBefore) {
2383 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2384 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2387 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2388 BasicBlock *InsertAtEnd) {
2389 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2390 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2393 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2394 Instruction *InsertBefore) {
2395 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2396 return new BinaryOperator(Instruction::FSub, zero, Op,
2397 Op->getType(), Name, InsertBefore);
2400 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2401 BasicBlock *InsertAtEnd) {
2402 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2403 return new BinaryOperator(Instruction::FSub, zero, Op,
2404 Op->getType(), Name, InsertAtEnd);
2407 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2408 Instruction *InsertBefore) {
2409 Constant *C = Constant::getAllOnesValue(Op->getType());
2410 return new BinaryOperator(Instruction::Xor, Op, C,
2411 Op->getType(), Name, InsertBefore);
2414 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2415 BasicBlock *InsertAtEnd) {
2416 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2417 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2418 Op->getType(), Name, InsertAtEnd);
2421 // Exchange the two operands to this instruction. This instruction is safe to
2422 // use on any binary instruction and does not modify the semantics of the
2423 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2424 // is changed.
2425 bool BinaryOperator::swapOperands() {
2426 if (!isCommutative())
2427 return true; // Can't commute operands
2428 Op<0>().swap(Op<1>());
2429 return false;
2432 //===----------------------------------------------------------------------===//
2433 // FPMathOperator Class
2434 //===----------------------------------------------------------------------===//
2436 float FPMathOperator::getFPAccuracy() const {
2437 const MDNode *MD =
2438 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2439 if (!MD)
2440 return 0.0;
2441 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2442 return Accuracy->getValueAPF().convertToFloat();
2445 //===----------------------------------------------------------------------===//
2446 // CastInst Class
2447 //===----------------------------------------------------------------------===//
2449 // Just determine if this cast only deals with integral->integral conversion.
2450 bool CastInst::isIntegerCast() const {
2451 switch (getOpcode()) {
2452 default: return false;
2453 case Instruction::ZExt:
2454 case Instruction::SExt:
2455 case Instruction::Trunc:
2456 return true;
2457 case Instruction::BitCast:
2458 return getOperand(0)->getType()->isIntegerTy() &&
2459 getType()->isIntegerTy();
2463 bool CastInst::isLosslessCast() const {
2464 // Only BitCast can be lossless, exit fast if we're not BitCast
2465 if (getOpcode() != Instruction::BitCast)
2466 return false;
2468 // Identity cast is always lossless
2469 Type *SrcTy = getOperand(0)->getType();
2470 Type *DstTy = getType();
2471 if (SrcTy == DstTy)
2472 return true;
2474 // Pointer to pointer is always lossless.
2475 if (SrcTy->isPointerTy())
2476 return DstTy->isPointerTy();
2477 return false; // Other types have no identity values
2480 /// This function determines if the CastInst does not require any bits to be
2481 /// changed in order to effect the cast. Essentially, it identifies cases where
2482 /// no code gen is necessary for the cast, hence the name no-op cast. For
2483 /// example, the following are all no-op casts:
2484 /// # bitcast i32* %x to i8*
2485 /// # bitcast <2 x i32> %x to <4 x i16>
2486 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2487 /// Determine if the described cast is a no-op.
2488 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2489 Type *SrcTy,
2490 Type *DestTy,
2491 const DataLayout &DL) {
2492 switch (Opcode) {
2493 default: llvm_unreachable("Invalid CastOp");
2494 case Instruction::Trunc:
2495 case Instruction::ZExt:
2496 case Instruction::SExt:
2497 case Instruction::FPTrunc:
2498 case Instruction::FPExt:
2499 case Instruction::UIToFP:
2500 case Instruction::SIToFP:
2501 case Instruction::FPToUI:
2502 case Instruction::FPToSI:
2503 case Instruction::AddrSpaceCast:
2504 // TODO: Target informations may give a more accurate answer here.
2505 return false;
2506 case Instruction::BitCast:
2507 return true; // BitCast never modifies bits.
2508 case Instruction::PtrToInt:
2509 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2510 DestTy->getScalarSizeInBits();
2511 case Instruction::IntToPtr:
2512 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2513 SrcTy->getScalarSizeInBits();
2517 bool CastInst::isNoopCast(const DataLayout &DL) const {
2518 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2521 /// This function determines if a pair of casts can be eliminated and what
2522 /// opcode should be used in the elimination. This assumes that there are two
2523 /// instructions like this:
2524 /// * %F = firstOpcode SrcTy %x to MidTy
2525 /// * %S = secondOpcode MidTy %F to DstTy
2526 /// The function returns a resultOpcode so these two casts can be replaced with:
2527 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2528 /// If no such cast is permitted, the function returns 0.
2529 unsigned CastInst::isEliminableCastPair(
2530 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2531 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2532 Type *DstIntPtrTy) {
2533 // Define the 144 possibilities for these two cast instructions. The values
2534 // in this matrix determine what to do in a given situation and select the
2535 // case in the switch below. The rows correspond to firstOp, the columns
2536 // correspond to secondOp. In looking at the table below, keep in mind
2537 // the following cast properties:
2539 // Size Compare Source Destination
2540 // Operator Src ? Size Type Sign Type Sign
2541 // -------- ------------ ------------------- ---------------------
2542 // TRUNC > Integer Any Integral Any
2543 // ZEXT < Integral Unsigned Integer Any
2544 // SEXT < Integral Signed Integer Any
2545 // FPTOUI n/a FloatPt n/a Integral Unsigned
2546 // FPTOSI n/a FloatPt n/a Integral Signed
2547 // UITOFP n/a Integral Unsigned FloatPt n/a
2548 // SITOFP n/a Integral Signed FloatPt n/a
2549 // FPTRUNC > FloatPt n/a FloatPt n/a
2550 // FPEXT < FloatPt n/a FloatPt n/a
2551 // PTRTOINT n/a Pointer n/a Integral Unsigned
2552 // INTTOPTR n/a Integral Unsigned Pointer n/a
2553 // BITCAST = FirstClass n/a FirstClass n/a
2554 // ADDRSPCST n/a Pointer n/a Pointer n/a
2556 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2557 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2558 // into "fptoui double to i64", but this loses information about the range
2559 // of the produced value (we no longer know the top-part is all zeros).
2560 // Further this conversion is often much more expensive for typical hardware,
2561 // and causes issues when building libgcc. We disallow fptosi+sext for the
2562 // same reason.
2563 const unsigned numCastOps =
2564 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2565 static const uint8_t CastResults[numCastOps][numCastOps] = {
2566 // T F F U S F F P I B A -+
2567 // R Z S P P I I T P 2 N T S |
2568 // U E E 2 2 2 2 R E I T C C +- secondOp
2569 // N X X U S F F N X N 2 V V |
2570 // C T T I I P P C T T P T T -+
2571 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2572 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2573 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2574 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2575 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2576 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2577 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2578 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2579 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
2580 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2581 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2582 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2583 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2586 // TODO: This logic could be encoded into the table above and handled in the
2587 // switch below.
2588 // If either of the casts are a bitcast from scalar to vector, disallow the
2589 // merging. However, any pair of bitcasts are allowed.
2590 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2591 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2592 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2594 // Check if any of the casts convert scalars <-> vectors.
2595 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2596 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2597 if (!AreBothBitcasts)
2598 return 0;
2600 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2601 [secondOp-Instruction::CastOpsBegin];
2602 switch (ElimCase) {
2603 case 0:
2604 // Categorically disallowed.
2605 return 0;
2606 case 1:
2607 // Allowed, use first cast's opcode.
2608 return firstOp;
2609 case 2:
2610 // Allowed, use second cast's opcode.
2611 return secondOp;
2612 case 3:
2613 // No-op cast in second op implies firstOp as long as the DestTy
2614 // is integer and we are not converting between a vector and a
2615 // non-vector type.
2616 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2617 return firstOp;
2618 return 0;
2619 case 4:
2620 // No-op cast in second op implies firstOp as long as the DestTy
2621 // is floating point.
2622 if (DstTy->isFloatingPointTy())
2623 return firstOp;
2624 return 0;
2625 case 5:
2626 // No-op cast in first op implies secondOp as long as the SrcTy
2627 // is an integer.
2628 if (SrcTy->isIntegerTy())
2629 return secondOp;
2630 return 0;
2631 case 6:
2632 // No-op cast in first op implies secondOp as long as the SrcTy
2633 // is a floating point.
2634 if (SrcTy->isFloatingPointTy())
2635 return secondOp;
2636 return 0;
2637 case 7: {
2638 // Cannot simplify if address spaces are different!
2639 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2640 return 0;
2642 unsigned MidSize = MidTy->getScalarSizeInBits();
2643 // We can still fold this without knowing the actual sizes as long we
2644 // know that the intermediate pointer is the largest possible
2645 // pointer size.
2646 // FIXME: Is this always true?
2647 if (MidSize == 64)
2648 return Instruction::BitCast;
2650 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2651 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2652 return 0;
2653 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2654 if (MidSize >= PtrSize)
2655 return Instruction::BitCast;
2656 return 0;
2658 case 8: {
2659 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2660 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2661 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2662 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2663 unsigned DstSize = DstTy->getScalarSizeInBits();
2664 if (SrcSize == DstSize)
2665 return Instruction::BitCast;
2666 else if (SrcSize < DstSize)
2667 return firstOp;
2668 return secondOp;
2670 case 9:
2671 // zext, sext -> zext, because sext can't sign extend after zext
2672 return Instruction::ZExt;
2673 case 11: {
2674 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2675 if (!MidIntPtrTy)
2676 return 0;
2677 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2678 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2679 unsigned DstSize = DstTy->getScalarSizeInBits();
2680 if (SrcSize <= PtrSize && SrcSize == DstSize)
2681 return Instruction::BitCast;
2682 return 0;
2684 case 12:
2685 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2686 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2687 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2688 return Instruction::AddrSpaceCast;
2689 return Instruction::BitCast;
2690 case 13:
2691 // FIXME: this state can be merged with (1), but the following assert
2692 // is useful to check the correcteness of the sequence due to semantic
2693 // change of bitcast.
2694 assert(
2695 SrcTy->isPtrOrPtrVectorTy() &&
2696 MidTy->isPtrOrPtrVectorTy() &&
2697 DstTy->isPtrOrPtrVectorTy() &&
2698 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2699 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2700 "Illegal addrspacecast, bitcast sequence!");
2701 // Allowed, use first cast's opcode
2702 return firstOp;
2703 case 14:
2704 // bitcast, addrspacecast -> addrspacecast if the element type of
2705 // bitcast's source is the same as that of addrspacecast's destination.
2706 if (SrcTy->getScalarType()->getPointerElementType() ==
2707 DstTy->getScalarType()->getPointerElementType())
2708 return Instruction::AddrSpaceCast;
2709 return 0;
2710 case 15:
2711 // FIXME: this state can be merged with (1), but the following assert
2712 // is useful to check the correcteness of the sequence due to semantic
2713 // change of bitcast.
2714 assert(
2715 SrcTy->isIntOrIntVectorTy() &&
2716 MidTy->isPtrOrPtrVectorTy() &&
2717 DstTy->isPtrOrPtrVectorTy() &&
2718 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2719 "Illegal inttoptr, bitcast sequence!");
2720 // Allowed, use first cast's opcode
2721 return firstOp;
2722 case 16:
2723 // FIXME: this state can be merged with (2), but the following assert
2724 // is useful to check the correcteness of the sequence due to semantic
2725 // change of bitcast.
2726 assert(
2727 SrcTy->isPtrOrPtrVectorTy() &&
2728 MidTy->isPtrOrPtrVectorTy() &&
2729 DstTy->isIntOrIntVectorTy() &&
2730 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2731 "Illegal bitcast, ptrtoint sequence!");
2732 // Allowed, use second cast's opcode
2733 return secondOp;
2734 case 17:
2735 // (sitofp (zext x)) -> (uitofp x)
2736 return Instruction::UIToFP;
2737 case 99:
2738 // Cast combination can't happen (error in input). This is for all cases
2739 // where the MidTy is not the same for the two cast instructions.
2740 llvm_unreachable("Invalid Cast Combination");
2741 default:
2742 llvm_unreachable("Error in CastResults table!!!");
2746 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2747 const Twine &Name, Instruction *InsertBefore) {
2748 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2749 // Construct and return the appropriate CastInst subclass
2750 switch (op) {
2751 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2752 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2753 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2754 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2755 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2756 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2757 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2758 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2759 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2760 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2761 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2762 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2763 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2764 default: llvm_unreachable("Invalid opcode provided");
2768 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2769 const Twine &Name, BasicBlock *InsertAtEnd) {
2770 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2771 // Construct and return the appropriate CastInst subclass
2772 switch (op) {
2773 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2774 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2775 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2776 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2777 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2778 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2779 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2780 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2781 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2782 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2783 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2784 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2785 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2786 default: llvm_unreachable("Invalid opcode provided");
2790 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2791 const Twine &Name,
2792 Instruction *InsertBefore) {
2793 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2794 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2795 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2798 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2799 const Twine &Name,
2800 BasicBlock *InsertAtEnd) {
2801 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2802 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2803 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2806 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2807 const Twine &Name,
2808 Instruction *InsertBefore) {
2809 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2810 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2811 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2814 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2815 const Twine &Name,
2816 BasicBlock *InsertAtEnd) {
2817 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2818 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2819 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2822 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2823 const Twine &Name,
2824 Instruction *InsertBefore) {
2825 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2826 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2827 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2830 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2831 const Twine &Name,
2832 BasicBlock *InsertAtEnd) {
2833 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2834 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2835 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2838 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2839 const Twine &Name,
2840 BasicBlock *InsertAtEnd) {
2841 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2842 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2843 "Invalid cast");
2844 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2845 assert((!Ty->isVectorTy() ||
2846 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2847 "Invalid cast");
2849 if (Ty->isIntOrIntVectorTy())
2850 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2852 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2855 /// Create a BitCast or a PtrToInt cast instruction
2856 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2857 const Twine &Name,
2858 Instruction *InsertBefore) {
2859 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2860 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2861 "Invalid cast");
2862 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2863 assert((!Ty->isVectorTy() ||
2864 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2865 "Invalid cast");
2867 if (Ty->isIntOrIntVectorTy())
2868 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2870 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2873 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2874 Value *S, Type *Ty,
2875 const Twine &Name,
2876 BasicBlock *InsertAtEnd) {
2877 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2878 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2880 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2881 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2883 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2886 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2887 Value *S, Type *Ty,
2888 const Twine &Name,
2889 Instruction *InsertBefore) {
2890 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2891 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2893 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2894 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2896 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2899 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2900 const Twine &Name,
2901 Instruction *InsertBefore) {
2902 if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2903 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2904 if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2905 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2907 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2910 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2911 bool isSigned, const Twine &Name,
2912 Instruction *InsertBefore) {
2913 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2914 "Invalid integer cast");
2915 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2916 unsigned DstBits = Ty->getScalarSizeInBits();
2917 Instruction::CastOps opcode =
2918 (SrcBits == DstBits ? Instruction::BitCast :
2919 (SrcBits > DstBits ? Instruction::Trunc :
2920 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2921 return Create(opcode, C, Ty, Name, InsertBefore);
2924 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2925 bool isSigned, const Twine &Name,
2926 BasicBlock *InsertAtEnd) {
2927 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2928 "Invalid cast");
2929 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2930 unsigned DstBits = Ty->getScalarSizeInBits();
2931 Instruction::CastOps opcode =
2932 (SrcBits == DstBits ? Instruction::BitCast :
2933 (SrcBits > DstBits ? Instruction::Trunc :
2934 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2935 return Create(opcode, C, Ty, Name, InsertAtEnd);
2938 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2939 const Twine &Name,
2940 Instruction *InsertBefore) {
2941 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2942 "Invalid cast");
2943 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2944 unsigned DstBits = Ty->getScalarSizeInBits();
2945 Instruction::CastOps opcode =
2946 (SrcBits == DstBits ? Instruction::BitCast :
2947 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2948 return Create(opcode, C, Ty, Name, InsertBefore);
2951 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2952 const Twine &Name,
2953 BasicBlock *InsertAtEnd) {
2954 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2955 "Invalid cast");
2956 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2957 unsigned DstBits = Ty->getScalarSizeInBits();
2958 Instruction::CastOps opcode =
2959 (SrcBits == DstBits ? Instruction::BitCast :
2960 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2961 return Create(opcode, C, Ty, Name, InsertAtEnd);
2964 // Check whether it is valid to call getCastOpcode for these types.
2965 // This routine must be kept in sync with getCastOpcode.
2966 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2967 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2968 return false;
2970 if (SrcTy == DestTy)
2971 return true;
2973 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2974 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2975 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2976 // An element by element cast. Valid if casting the elements is valid.
2977 SrcTy = SrcVecTy->getElementType();
2978 DestTy = DestVecTy->getElementType();
2981 // Get the bit sizes, we'll need these
2982 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2983 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2985 // Run through the possibilities ...
2986 if (DestTy->isIntegerTy()) { // Casting to integral
2987 if (SrcTy->isIntegerTy()) // Casting from integral
2988 return true;
2989 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2990 return true;
2991 if (SrcTy->isVectorTy()) // Casting from vector
2992 return DestBits == SrcBits;
2993 // Casting from something else
2994 return SrcTy->isPointerTy();
2996 if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2997 if (SrcTy->isIntegerTy()) // Casting from integral
2998 return true;
2999 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
3000 return true;
3001 if (SrcTy->isVectorTy()) // Casting from vector
3002 return DestBits == SrcBits;
3003 // Casting from something else
3004 return false;
3006 if (DestTy->isVectorTy()) // Casting to vector
3007 return DestBits == SrcBits;
3008 if (DestTy->isPointerTy()) { // Casting to pointer
3009 if (SrcTy->isPointerTy()) // Casting from pointer
3010 return true;
3011 return SrcTy->isIntegerTy(); // Casting from integral
3013 if (DestTy->isX86_MMXTy()) {
3014 if (SrcTy->isVectorTy())
3015 return DestBits == SrcBits; // 64-bit vector to MMX
3016 return false;
3017 } // Casting to something else
3018 return false;
3021 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3022 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3023 return false;
3025 if (SrcTy == DestTy)
3026 return true;
3028 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3029 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3030 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3031 // An element by element cast. Valid if casting the elements is valid.
3032 SrcTy = SrcVecTy->getElementType();
3033 DestTy = DestVecTy->getElementType();
3038 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3039 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3040 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3044 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3045 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3047 // Could still have vectors of pointers if the number of elements doesn't
3048 // match
3049 if (SrcBits == 0 || DestBits == 0)
3050 return false;
3052 if (SrcBits != DestBits)
3053 return false;
3055 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3056 return false;
3058 return true;
3061 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3062 const DataLayout &DL) {
3063 // ptrtoint and inttoptr are not allowed on non-integral pointers
3064 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3065 if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3066 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3067 !DL.isNonIntegralPointerType(PtrTy));
3068 if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3069 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3070 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3071 !DL.isNonIntegralPointerType(PtrTy));
3073 return isBitCastable(SrcTy, DestTy);
3076 // Provide a way to get a "cast" where the cast opcode is inferred from the
3077 // types and size of the operand. This, basically, is a parallel of the
3078 // logic in the castIsValid function below. This axiom should hold:
3079 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3080 // should not assert in castIsValid. In other words, this produces a "correct"
3081 // casting opcode for the arguments passed to it.
3082 // This routine must be kept in sync with isCastable.
3083 Instruction::CastOps
3084 CastInst::getCastOpcode(
3085 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3086 Type *SrcTy = Src->getType();
3088 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3089 "Only first class types are castable!");
3091 if (SrcTy == DestTy)
3092 return BitCast;
3094 // FIXME: Check address space sizes here
3095 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3096 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3097 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3098 // An element by element cast. Find the appropriate opcode based on the
3099 // element types.
3100 SrcTy = SrcVecTy->getElementType();
3101 DestTy = DestVecTy->getElementType();
3104 // Get the bit sizes, we'll need these
3105 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3106 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3108 // Run through the possibilities ...
3109 if (DestTy->isIntegerTy()) { // Casting to integral
3110 if (SrcTy->isIntegerTy()) { // Casting from integral
3111 if (DestBits < SrcBits)
3112 return Trunc; // int -> smaller int
3113 else if (DestBits > SrcBits) { // its an extension
3114 if (SrcIsSigned)
3115 return SExt; // signed -> SEXT
3116 else
3117 return ZExt; // unsigned -> ZEXT
3118 } else {
3119 return BitCast; // Same size, No-op cast
3121 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3122 if (DestIsSigned)
3123 return FPToSI; // FP -> sint
3124 else
3125 return FPToUI; // FP -> uint
3126 } else if (SrcTy->isVectorTy()) {
3127 assert(DestBits == SrcBits &&
3128 "Casting vector to integer of different width");
3129 return BitCast; // Same size, no-op cast
3130 } else {
3131 assert(SrcTy->isPointerTy() &&
3132 "Casting from a value that is not first-class type");
3133 return PtrToInt; // ptr -> int
3135 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
3136 if (SrcTy->isIntegerTy()) { // Casting from integral
3137 if (SrcIsSigned)
3138 return SIToFP; // sint -> FP
3139 else
3140 return UIToFP; // uint -> FP
3141 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3142 if (DestBits < SrcBits) {
3143 return FPTrunc; // FP -> smaller FP
3144 } else if (DestBits > SrcBits) {
3145 return FPExt; // FP -> larger FP
3146 } else {
3147 return BitCast; // same size, no-op cast
3149 } else if (SrcTy->isVectorTy()) {
3150 assert(DestBits == SrcBits &&
3151 "Casting vector to floating point of different width");
3152 return BitCast; // same size, no-op cast
3154 llvm_unreachable("Casting pointer or non-first class to float");
3155 } else if (DestTy->isVectorTy()) {
3156 assert(DestBits == SrcBits &&
3157 "Illegal cast to vector (wrong type or size)");
3158 return BitCast;
3159 } else if (DestTy->isPointerTy()) {
3160 if (SrcTy->isPointerTy()) {
3161 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3162 return AddrSpaceCast;
3163 return BitCast; // ptr -> ptr
3164 } else if (SrcTy->isIntegerTy()) {
3165 return IntToPtr; // int -> ptr
3167 llvm_unreachable("Casting pointer to other than pointer or int");
3168 } else if (DestTy->isX86_MMXTy()) {
3169 if (SrcTy->isVectorTy()) {
3170 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3171 return BitCast; // 64-bit vector to MMX
3173 llvm_unreachable("Illegal cast to X86_MMX");
3175 llvm_unreachable("Casting to type that is not first-class");
3178 //===----------------------------------------------------------------------===//
3179 // CastInst SubClass Constructors
3180 //===----------------------------------------------------------------------===//
3182 /// Check that the construction parameters for a CastInst are correct. This
3183 /// could be broken out into the separate constructors but it is useful to have
3184 /// it in one place and to eliminate the redundant code for getting the sizes
3185 /// of the types involved.
3186 bool
3187 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3188 // Check for type sanity on the arguments
3189 Type *SrcTy = S->getType();
3191 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3192 SrcTy->isAggregateType() || DstTy->isAggregateType())
3193 return false;
3195 // Get the size of the types in bits, we'll need this later
3196 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3197 unsigned DstBitSize = DstTy->getScalarSizeInBits();
3199 // If these are vector types, get the lengths of the vectors (using zero for
3200 // scalar types means that checking that vector lengths match also checks that
3201 // scalars are not being converted to vectors or vectors to scalars).
3202 unsigned SrcLength = SrcTy->isVectorTy() ?
3203 cast<VectorType>(SrcTy)->getNumElements() : 0;
3204 unsigned DstLength = DstTy->isVectorTy() ?
3205 cast<VectorType>(DstTy)->getNumElements() : 0;
3207 // Switch on the opcode provided
3208 switch (op) {
3209 default: return false; // This is an input error
3210 case Instruction::Trunc:
3211 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3212 SrcLength == DstLength && SrcBitSize > DstBitSize;
3213 case Instruction::ZExt:
3214 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3215 SrcLength == DstLength && SrcBitSize < DstBitSize;
3216 case Instruction::SExt:
3217 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3218 SrcLength == DstLength && SrcBitSize < DstBitSize;
3219 case Instruction::FPTrunc:
3220 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3221 SrcLength == DstLength && SrcBitSize > DstBitSize;
3222 case Instruction::FPExt:
3223 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3224 SrcLength == DstLength && SrcBitSize < DstBitSize;
3225 case Instruction::UIToFP:
3226 case Instruction::SIToFP:
3227 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3228 SrcLength == DstLength;
3229 case Instruction::FPToUI:
3230 case Instruction::FPToSI:
3231 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3232 SrcLength == DstLength;
3233 case Instruction::PtrToInt:
3234 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3235 return false;
3236 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3237 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3238 return false;
3239 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3240 case Instruction::IntToPtr:
3241 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3242 return false;
3243 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3244 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3245 return false;
3246 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3247 case Instruction::BitCast: {
3248 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3249 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3251 // BitCast implies a no-op cast of type only. No bits change.
3252 // However, you can't cast pointers to anything but pointers.
3253 if (!SrcPtrTy != !DstPtrTy)
3254 return false;
3256 // For non-pointer cases, the cast is okay if the source and destination bit
3257 // widths are identical.
3258 if (!SrcPtrTy)
3259 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3261 // If both are pointers then the address spaces must match.
3262 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3263 return false;
3265 // A vector of pointers must have the same number of elements.
3266 VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy);
3267 VectorType *DstVecTy = dyn_cast<VectorType>(DstTy);
3268 if (SrcVecTy && DstVecTy)
3269 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3270 if (SrcVecTy)
3271 return SrcVecTy->getNumElements() == 1;
3272 if (DstVecTy)
3273 return DstVecTy->getNumElements() == 1;
3275 return true;
3277 case Instruction::AddrSpaceCast: {
3278 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3279 if (!SrcPtrTy)
3280 return false;
3282 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3283 if (!DstPtrTy)
3284 return false;
3286 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3287 return false;
3289 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3290 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3291 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3293 return false;
3296 return true;
3301 TruncInst::TruncInst(
3302 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3303 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3304 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3307 TruncInst::TruncInst(
3308 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3309 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3310 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3313 ZExtInst::ZExtInst(
3314 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3315 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3316 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3319 ZExtInst::ZExtInst(
3320 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3321 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3322 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3324 SExtInst::SExtInst(
3325 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3326 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3327 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3330 SExtInst::SExtInst(
3331 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3332 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3333 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3336 FPTruncInst::FPTruncInst(
3337 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3338 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3339 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3342 FPTruncInst::FPTruncInst(
3343 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3344 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3345 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3348 FPExtInst::FPExtInst(
3349 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3350 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3351 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3354 FPExtInst::FPExtInst(
3355 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3356 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3357 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3360 UIToFPInst::UIToFPInst(
3361 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3362 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3363 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3366 UIToFPInst::UIToFPInst(
3367 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3368 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3369 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3372 SIToFPInst::SIToFPInst(
3373 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3374 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3375 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3378 SIToFPInst::SIToFPInst(
3379 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3380 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3381 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3384 FPToUIInst::FPToUIInst(
3385 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3386 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3387 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3390 FPToUIInst::FPToUIInst(
3391 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3392 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3393 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3396 FPToSIInst::FPToSIInst(
3397 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3398 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3399 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3402 FPToSIInst::FPToSIInst(
3403 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3404 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3405 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3408 PtrToIntInst::PtrToIntInst(
3409 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3410 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3411 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3414 PtrToIntInst::PtrToIntInst(
3415 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3416 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3417 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3420 IntToPtrInst::IntToPtrInst(
3421 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3422 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3423 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3426 IntToPtrInst::IntToPtrInst(
3427 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3428 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3429 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3432 BitCastInst::BitCastInst(
3433 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3434 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3435 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3438 BitCastInst::BitCastInst(
3439 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3440 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3441 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3444 AddrSpaceCastInst::AddrSpaceCastInst(
3445 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3446 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3447 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3450 AddrSpaceCastInst::AddrSpaceCastInst(
3451 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3452 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3453 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3456 //===----------------------------------------------------------------------===//
3457 // CmpInst Classes
3458 //===----------------------------------------------------------------------===//
3460 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3461 Value *RHS, const Twine &Name, Instruction *InsertBefore,
3462 Instruction *FlagsSource)
3463 : Instruction(ty, op,
3464 OperandTraits<CmpInst>::op_begin(this),
3465 OperandTraits<CmpInst>::operands(this),
3466 InsertBefore) {
3467 Op<0>() = LHS;
3468 Op<1>() = RHS;
3469 setPredicate((Predicate)predicate);
3470 setName(Name);
3471 if (FlagsSource)
3472 copyIRFlags(FlagsSource);
3475 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3476 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3477 : Instruction(ty, op,
3478 OperandTraits<CmpInst>::op_begin(this),
3479 OperandTraits<CmpInst>::operands(this),
3480 InsertAtEnd) {
3481 Op<0>() = LHS;
3482 Op<1>() = RHS;
3483 setPredicate((Predicate)predicate);
3484 setName(Name);
3487 CmpInst *
3488 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3489 const Twine &Name, Instruction *InsertBefore) {
3490 if (Op == Instruction::ICmp) {
3491 if (InsertBefore)
3492 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3493 S1, S2, Name);
3494 else
3495 return new ICmpInst(CmpInst::Predicate(predicate),
3496 S1, S2, Name);
3499 if (InsertBefore)
3500 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3501 S1, S2, Name);
3502 else
3503 return new FCmpInst(CmpInst::Predicate(predicate),
3504 S1, S2, Name);
3507 CmpInst *
3508 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3509 const Twine &Name, BasicBlock *InsertAtEnd) {
3510 if (Op == Instruction::ICmp) {
3511 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3512 S1, S2, Name);
3514 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3515 S1, S2, Name);
3518 void CmpInst::swapOperands() {
3519 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3520 IC->swapOperands();
3521 else
3522 cast<FCmpInst>(this)->swapOperands();
3525 bool CmpInst::isCommutative() const {
3526 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3527 return IC->isCommutative();
3528 return cast<FCmpInst>(this)->isCommutative();
3531 bool CmpInst::isEquality() const {
3532 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3533 return IC->isEquality();
3534 return cast<FCmpInst>(this)->isEquality();
3537 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3538 switch (pred) {
3539 default: llvm_unreachable("Unknown cmp predicate!");
3540 case ICMP_EQ: return ICMP_NE;
3541 case ICMP_NE: return ICMP_EQ;
3542 case ICMP_UGT: return ICMP_ULE;
3543 case ICMP_ULT: return ICMP_UGE;
3544 case ICMP_UGE: return ICMP_ULT;
3545 case ICMP_ULE: return ICMP_UGT;
3546 case ICMP_SGT: return ICMP_SLE;
3547 case ICMP_SLT: return ICMP_SGE;
3548 case ICMP_SGE: return ICMP_SLT;
3549 case ICMP_SLE: return ICMP_SGT;
3551 case FCMP_OEQ: return FCMP_UNE;
3552 case FCMP_ONE: return FCMP_UEQ;
3553 case FCMP_OGT: return FCMP_ULE;
3554 case FCMP_OLT: return FCMP_UGE;
3555 case FCMP_OGE: return FCMP_ULT;
3556 case FCMP_OLE: return FCMP_UGT;
3557 case FCMP_UEQ: return FCMP_ONE;
3558 case FCMP_UNE: return FCMP_OEQ;
3559 case FCMP_UGT: return FCMP_OLE;
3560 case FCMP_ULT: return FCMP_OGE;
3561 case FCMP_UGE: return FCMP_OLT;
3562 case FCMP_ULE: return FCMP_OGT;
3563 case FCMP_ORD: return FCMP_UNO;
3564 case FCMP_UNO: return FCMP_ORD;
3565 case FCMP_TRUE: return FCMP_FALSE;
3566 case FCMP_FALSE: return FCMP_TRUE;
3570 StringRef CmpInst::getPredicateName(Predicate Pred) {
3571 switch (Pred) {
3572 default: return "unknown";
3573 case FCmpInst::FCMP_FALSE: return "false";
3574 case FCmpInst::FCMP_OEQ: return "oeq";
3575 case FCmpInst::FCMP_OGT: return "ogt";
3576 case FCmpInst::FCMP_OGE: return "oge";
3577 case FCmpInst::FCMP_OLT: return "olt";
3578 case FCmpInst::FCMP_OLE: return "ole";
3579 case FCmpInst::FCMP_ONE: return "one";
3580 case FCmpInst::FCMP_ORD: return "ord";
3581 case FCmpInst::FCMP_UNO: return "uno";
3582 case FCmpInst::FCMP_UEQ: return "ueq";
3583 case FCmpInst::FCMP_UGT: return "ugt";
3584 case FCmpInst::FCMP_UGE: return "uge";
3585 case FCmpInst::FCMP_ULT: return "ult";
3586 case FCmpInst::FCMP_ULE: return "ule";
3587 case FCmpInst::FCMP_UNE: return "une";
3588 case FCmpInst::FCMP_TRUE: return "true";
3589 case ICmpInst::ICMP_EQ: return "eq";
3590 case ICmpInst::ICMP_NE: return "ne";
3591 case ICmpInst::ICMP_SGT: return "sgt";
3592 case ICmpInst::ICMP_SGE: return "sge";
3593 case ICmpInst::ICMP_SLT: return "slt";
3594 case ICmpInst::ICMP_SLE: return "sle";
3595 case ICmpInst::ICMP_UGT: return "ugt";
3596 case ICmpInst::ICMP_UGE: return "uge";
3597 case ICmpInst::ICMP_ULT: return "ult";
3598 case ICmpInst::ICMP_ULE: return "ule";
3602 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3603 switch (pred) {
3604 default: llvm_unreachable("Unknown icmp predicate!");
3605 case ICMP_EQ: case ICMP_NE:
3606 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3607 return pred;
3608 case ICMP_UGT: return ICMP_SGT;
3609 case ICMP_ULT: return ICMP_SLT;
3610 case ICMP_UGE: return ICMP_SGE;
3611 case ICMP_ULE: return ICMP_SLE;
3615 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3616 switch (pred) {
3617 default: llvm_unreachable("Unknown icmp predicate!");
3618 case ICMP_EQ: case ICMP_NE:
3619 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3620 return pred;
3621 case ICMP_SGT: return ICMP_UGT;
3622 case ICMP_SLT: return ICMP_ULT;
3623 case ICMP_SGE: return ICMP_UGE;
3624 case ICMP_SLE: return ICMP_ULE;
3628 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3629 switch (pred) {
3630 default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3631 case ICMP_SGT: return ICMP_SGE;
3632 case ICMP_SLT: return ICMP_SLE;
3633 case ICMP_SGE: return ICMP_SGT;
3634 case ICMP_SLE: return ICMP_SLT;
3635 case ICMP_UGT: return ICMP_UGE;
3636 case ICMP_ULT: return ICMP_ULE;
3637 case ICMP_UGE: return ICMP_UGT;
3638 case ICMP_ULE: return ICMP_ULT;
3640 case FCMP_OGT: return FCMP_OGE;
3641 case FCMP_OLT: return FCMP_OLE;
3642 case FCMP_OGE: return FCMP_OGT;
3643 case FCMP_OLE: return FCMP_OLT;
3644 case FCMP_UGT: return FCMP_UGE;
3645 case FCMP_ULT: return FCMP_ULE;
3646 case FCMP_UGE: return FCMP_UGT;
3647 case FCMP_ULE: return FCMP_ULT;
3651 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3652 switch (pred) {
3653 default: llvm_unreachable("Unknown cmp predicate!");
3654 case ICMP_EQ: case ICMP_NE:
3655 return pred;
3656 case ICMP_SGT: return ICMP_SLT;
3657 case ICMP_SLT: return ICMP_SGT;
3658 case ICMP_SGE: return ICMP_SLE;
3659 case ICMP_SLE: return ICMP_SGE;
3660 case ICMP_UGT: return ICMP_ULT;
3661 case ICMP_ULT: return ICMP_UGT;
3662 case ICMP_UGE: return ICMP_ULE;
3663 case ICMP_ULE: return ICMP_UGE;
3665 case FCMP_FALSE: case FCMP_TRUE:
3666 case FCMP_OEQ: case FCMP_ONE:
3667 case FCMP_UEQ: case FCMP_UNE:
3668 case FCMP_ORD: case FCMP_UNO:
3669 return pred;
3670 case FCMP_OGT: return FCMP_OLT;
3671 case FCMP_OLT: return FCMP_OGT;
3672 case FCMP_OGE: return FCMP_OLE;
3673 case FCMP_OLE: return FCMP_OGE;
3674 case FCMP_UGT: return FCMP_ULT;
3675 case FCMP_ULT: return FCMP_UGT;
3676 case FCMP_UGE: return FCMP_ULE;
3677 case FCMP_ULE: return FCMP_UGE;
3681 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3682 switch (pred) {
3683 case ICMP_SGT: return ICMP_SGE;
3684 case ICMP_SLT: return ICMP_SLE;
3685 case ICMP_UGT: return ICMP_UGE;
3686 case ICMP_ULT: return ICMP_ULE;
3687 case FCMP_OGT: return FCMP_OGE;
3688 case FCMP_OLT: return FCMP_OLE;
3689 case FCMP_UGT: return FCMP_UGE;
3690 case FCMP_ULT: return FCMP_ULE;
3691 default: return pred;
3695 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3696 assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3698 switch (pred) {
3699 default:
3700 llvm_unreachable("Unknown predicate!");
3701 case CmpInst::ICMP_ULT:
3702 return CmpInst::ICMP_SLT;
3703 case CmpInst::ICMP_ULE:
3704 return CmpInst::ICMP_SLE;
3705 case CmpInst::ICMP_UGT:
3706 return CmpInst::ICMP_SGT;
3707 case CmpInst::ICMP_UGE:
3708 return CmpInst::ICMP_SGE;
3712 bool CmpInst::isUnsigned(Predicate predicate) {
3713 switch (predicate) {
3714 default: return false;
3715 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3716 case ICmpInst::ICMP_UGE: return true;
3720 bool CmpInst::isSigned(Predicate predicate) {
3721 switch (predicate) {
3722 default: return false;
3723 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3724 case ICmpInst::ICMP_SGE: return true;
3728 bool CmpInst::isOrdered(Predicate predicate) {
3729 switch (predicate) {
3730 default: return false;
3731 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3732 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3733 case FCmpInst::FCMP_ORD: return true;
3737 bool CmpInst::isUnordered(Predicate predicate) {
3738 switch (predicate) {
3739 default: return false;
3740 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3741 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3742 case FCmpInst::FCMP_UNO: return true;
3746 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3747 switch(predicate) {
3748 default: return false;
3749 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3750 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3754 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3755 switch(predicate) {
3756 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3757 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3758 default: return false;
3762 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3763 // If the predicates match, then we know the first condition implies the
3764 // second is true.
3765 if (Pred1 == Pred2)
3766 return true;
3768 switch (Pred1) {
3769 default:
3770 break;
3771 case ICMP_EQ:
3772 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3773 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3774 Pred2 == ICMP_SLE;
3775 case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3776 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3777 case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3778 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3779 case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3780 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3781 case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3782 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3784 return false;
3787 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3788 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3791 //===----------------------------------------------------------------------===//
3792 // SwitchInst Implementation
3793 //===----------------------------------------------------------------------===//
3795 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3796 assert(Value && Default && NumReserved);
3797 ReservedSpace = NumReserved;
3798 setNumHungOffUseOperands(2);
3799 allocHungoffUses(ReservedSpace);
3801 Op<0>() = Value;
3802 Op<1>() = Default;
3805 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3806 /// switch on and a default destination. The number of additional cases can
3807 /// be specified here to make memory allocation more efficient. This
3808 /// constructor can also autoinsert before another instruction.
3809 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3810 Instruction *InsertBefore)
3811 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3812 nullptr, 0, InsertBefore) {
3813 init(Value, Default, 2+NumCases*2);
3816 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3817 /// switch on and a default destination. The number of additional cases can
3818 /// be specified here to make memory allocation more efficient. This
3819 /// constructor also autoinserts at the end of the specified BasicBlock.
3820 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3821 BasicBlock *InsertAtEnd)
3822 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3823 nullptr, 0, InsertAtEnd) {
3824 init(Value, Default, 2+NumCases*2);
3827 SwitchInst::SwitchInst(const SwitchInst &SI)
3828 : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
3829 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3830 setNumHungOffUseOperands(SI.getNumOperands());
3831 Use *OL = getOperandList();
3832 const Use *InOL = SI.getOperandList();
3833 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3834 OL[i] = InOL[i];
3835 OL[i+1] = InOL[i+1];
3837 SubclassOptionalData = SI.SubclassOptionalData;
3840 /// addCase - Add an entry to the switch instruction...
3842 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3843 unsigned NewCaseIdx = getNumCases();
3844 unsigned OpNo = getNumOperands();
3845 if (OpNo+2 > ReservedSpace)
3846 growOperands(); // Get more space!
3847 // Initialize some new operands.
3848 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3849 setNumHungOffUseOperands(OpNo+2);
3850 CaseHandle Case(this, NewCaseIdx);
3851 Case.setValue(OnVal);
3852 Case.setSuccessor(Dest);
3855 /// removeCase - This method removes the specified case and its successor
3856 /// from the switch instruction.
3857 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3858 unsigned idx = I->getCaseIndex();
3860 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3862 unsigned NumOps = getNumOperands();
3863 Use *OL = getOperandList();
3865 // Overwrite this case with the end of the list.
3866 if (2 + (idx + 1) * 2 != NumOps) {
3867 OL[2 + idx * 2] = OL[NumOps - 2];
3868 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3871 // Nuke the last value.
3872 OL[NumOps-2].set(nullptr);
3873 OL[NumOps-2+1].set(nullptr);
3874 setNumHungOffUseOperands(NumOps-2);
3876 return CaseIt(this, idx);
3879 /// growOperands - grow operands - This grows the operand list in response
3880 /// to a push_back style of operation. This grows the number of ops by 3 times.
3882 void SwitchInst::growOperands() {
3883 unsigned e = getNumOperands();
3884 unsigned NumOps = e*3;
3886 ReservedSpace = NumOps;
3887 growHungoffUses(ReservedSpace);
3890 MDNode *
3891 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
3892 if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
3893 if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
3894 if (MDName->getString() == "branch_weights")
3895 return ProfileData;
3896 return nullptr;
3899 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
3900 assert(State == Changed && "called only if metadata has changed");
3902 if (!Weights)
3903 return nullptr;
3905 assert(SI.getNumSuccessors() == Weights->size() &&
3906 "num of prof branch_weights must accord with num of successors");
3908 bool AllZeroes =
3909 all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
3911 if (AllZeroes || Weights.getValue().size() < 2)
3912 return nullptr;
3914 return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
3917 void SwitchInstProfUpdateWrapper::init() {
3918 MDNode *ProfileData = getProfBranchWeightsMD(SI);
3919 if (!ProfileData) {
3920 State = Initialized;
3921 return;
3924 if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
3925 State = Invalid;
3926 if (SwitchInstProfUpdateWrapperStrict)
3927 llvm_unreachable("number of prof branch_weights metadata operands does "
3928 "not correspond to number of succesors");
3929 return;
3932 SmallVector<uint32_t, 8> Weights;
3933 for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
3934 ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
3935 uint32_t CW = C->getValue().getZExtValue();
3936 Weights.push_back(CW);
3938 State = Initialized;
3939 this->Weights = std::move(Weights);
3942 SwitchInst::CaseIt
3943 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
3944 if (Weights) {
3945 assert(SI.getNumSuccessors() == Weights->size() &&
3946 "num of prof branch_weights must accord with num of successors");
3947 State = Changed;
3948 // Copy the last case to the place of the removed one and shrink.
3949 // This is tightly coupled with the way SwitchInst::removeCase() removes
3950 // the cases in SwitchInst::removeCase(CaseIt).
3951 Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
3952 Weights.getValue().pop_back();
3954 return SI.removeCase(I);
3957 void SwitchInstProfUpdateWrapper::addCase(
3958 ConstantInt *OnVal, BasicBlock *Dest,
3959 SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
3960 SI.addCase(OnVal, Dest);
3962 if (State == Invalid)
3963 return;
3965 if (!Weights && W && *W) {
3966 State = Changed;
3967 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
3968 Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
3969 } else if (Weights) {
3970 State = Changed;
3971 Weights.getValue().push_back(W ? *W : 0);
3973 if (Weights)
3974 assert(SI.getNumSuccessors() == Weights->size() &&
3975 "num of prof branch_weights must accord with num of successors");
3978 SymbolTableList<Instruction>::iterator
3979 SwitchInstProfUpdateWrapper::eraseFromParent() {
3980 // Instruction is erased. Mark as unchanged to not touch it in the destructor.
3981 if (State != Invalid) {
3982 State = Initialized;
3983 if (Weights)
3984 Weights->resize(0);
3986 return SI.eraseFromParent();
3989 SwitchInstProfUpdateWrapper::CaseWeightOpt
3990 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
3991 if (!Weights)
3992 return None;
3993 return Weights.getValue()[idx];
3996 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
3997 unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
3998 if (!W || State == Invalid)
3999 return;
4001 if (!Weights && *W)
4002 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4004 if (Weights) {
4005 auto &OldW = Weights.getValue()[idx];
4006 if (*W != OldW) {
4007 State = Changed;
4008 OldW = *W;
4013 SwitchInstProfUpdateWrapper::CaseWeightOpt
4014 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4015 unsigned idx) {
4016 if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4017 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4018 return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4019 ->getValue()
4020 .getZExtValue();
4022 return None;
4025 //===----------------------------------------------------------------------===//
4026 // IndirectBrInst Implementation
4027 //===----------------------------------------------------------------------===//
4029 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4030 assert(Address && Address->getType()->isPointerTy() &&
4031 "Address of indirectbr must be a pointer");
4032 ReservedSpace = 1+NumDests;
4033 setNumHungOffUseOperands(1);
4034 allocHungoffUses(ReservedSpace);
4036 Op<0>() = Address;
4040 /// growOperands - grow operands - This grows the operand list in response
4041 /// to a push_back style of operation. This grows the number of ops by 2 times.
4043 void IndirectBrInst::growOperands() {
4044 unsigned e = getNumOperands();
4045 unsigned NumOps = e*2;
4047 ReservedSpace = NumOps;
4048 growHungoffUses(ReservedSpace);
4051 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4052 Instruction *InsertBefore)
4053 : Instruction(Type::getVoidTy(Address->getContext()),
4054 Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4055 init(Address, NumCases);
4058 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4059 BasicBlock *InsertAtEnd)
4060 : Instruction(Type::getVoidTy(Address->getContext()),
4061 Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4062 init(Address, NumCases);
4065 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4066 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4067 nullptr, IBI.getNumOperands()) {
4068 allocHungoffUses(IBI.getNumOperands());
4069 Use *OL = getOperandList();
4070 const Use *InOL = IBI.getOperandList();
4071 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4072 OL[i] = InOL[i];
4073 SubclassOptionalData = IBI.SubclassOptionalData;
4076 /// addDestination - Add a destination.
4078 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4079 unsigned OpNo = getNumOperands();
4080 if (OpNo+1 > ReservedSpace)
4081 growOperands(); // Get more space!
4082 // Initialize some new operands.
4083 assert(OpNo < ReservedSpace && "Growing didn't work!");
4084 setNumHungOffUseOperands(OpNo+1);
4085 getOperandList()[OpNo] = DestBB;
4088 /// removeDestination - This method removes the specified successor from the
4089 /// indirectbr instruction.
4090 void IndirectBrInst::removeDestination(unsigned idx) {
4091 assert(idx < getNumOperands()-1 && "Successor index out of range!");
4093 unsigned NumOps = getNumOperands();
4094 Use *OL = getOperandList();
4096 // Replace this value with the last one.
4097 OL[idx+1] = OL[NumOps-1];
4099 // Nuke the last value.
4100 OL[NumOps-1].set(nullptr);
4101 setNumHungOffUseOperands(NumOps-1);
4104 //===----------------------------------------------------------------------===//
4105 // cloneImpl() implementations
4106 //===----------------------------------------------------------------------===//
4108 // Define these methods here so vtables don't get emitted into every translation
4109 // unit that uses these classes.
4111 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4112 return new (getNumOperands()) GetElementPtrInst(*this);
4115 UnaryOperator *UnaryOperator::cloneImpl() const {
4116 return Create(getOpcode(), Op<0>());
4119 BinaryOperator *BinaryOperator::cloneImpl() const {
4120 return Create(getOpcode(), Op<0>(), Op<1>());
4123 FCmpInst *FCmpInst::cloneImpl() const {
4124 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4127 ICmpInst *ICmpInst::cloneImpl() const {
4128 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4131 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4132 return new ExtractValueInst(*this);
4135 InsertValueInst *InsertValueInst::cloneImpl() const {
4136 return new InsertValueInst(*this);
4139 AllocaInst *AllocaInst::cloneImpl() const {
4140 AllocaInst *Result = new AllocaInst(getAllocatedType(),
4141 getType()->getAddressSpace(),
4142 (Value *)getOperand(0), getAlignment());
4143 Result->setUsedWithInAlloca(isUsedWithInAlloca());
4144 Result->setSwiftError(isSwiftError());
4145 return Result;
4148 LoadInst *LoadInst::cloneImpl() const {
4149 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4150 getAlignment(), getOrdering(), getSyncScopeID());
4153 StoreInst *StoreInst::cloneImpl() const {
4154 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
4155 getAlignment(), getOrdering(), getSyncScopeID());
4159 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4160 AtomicCmpXchgInst *Result =
4161 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
4162 getSuccessOrdering(), getFailureOrdering(),
4163 getSyncScopeID());
4164 Result->setVolatile(isVolatile());
4165 Result->setWeak(isWeak());
4166 return Result;
4169 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4170 AtomicRMWInst *Result =
4171 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4172 getOrdering(), getSyncScopeID());
4173 Result->setVolatile(isVolatile());
4174 return Result;
4177 FenceInst *FenceInst::cloneImpl() const {
4178 return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4181 TruncInst *TruncInst::cloneImpl() const {
4182 return new TruncInst(getOperand(0), getType());
4185 ZExtInst *ZExtInst::cloneImpl() const {
4186 return new ZExtInst(getOperand(0), getType());
4189 SExtInst *SExtInst::cloneImpl() const {
4190 return new SExtInst(getOperand(0), getType());
4193 FPTruncInst *FPTruncInst::cloneImpl() const {
4194 return new FPTruncInst(getOperand(0), getType());
4197 FPExtInst *FPExtInst::cloneImpl() const {
4198 return new FPExtInst(getOperand(0), getType());
4201 UIToFPInst *UIToFPInst::cloneImpl() const {
4202 return new UIToFPInst(getOperand(0), getType());
4205 SIToFPInst *SIToFPInst::cloneImpl() const {
4206 return new SIToFPInst(getOperand(0), getType());
4209 FPToUIInst *FPToUIInst::cloneImpl() const {
4210 return new FPToUIInst(getOperand(0), getType());
4213 FPToSIInst *FPToSIInst::cloneImpl() const {
4214 return new FPToSIInst(getOperand(0), getType());
4217 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4218 return new PtrToIntInst(getOperand(0), getType());
4221 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4222 return new IntToPtrInst(getOperand(0), getType());
4225 BitCastInst *BitCastInst::cloneImpl() const {
4226 return new BitCastInst(getOperand(0), getType());
4229 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4230 return new AddrSpaceCastInst(getOperand(0), getType());
4233 CallInst *CallInst::cloneImpl() const {
4234 if (hasOperandBundles()) {
4235 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4236 return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4238 return new(getNumOperands()) CallInst(*this);
4241 SelectInst *SelectInst::cloneImpl() const {
4242 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4245 VAArgInst *VAArgInst::cloneImpl() const {
4246 return new VAArgInst(getOperand(0), getType());
4249 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4250 return ExtractElementInst::Create(getOperand(0), getOperand(1));
4253 InsertElementInst *InsertElementInst::cloneImpl() const {
4254 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4257 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4258 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
4261 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4263 LandingPadInst *LandingPadInst::cloneImpl() const {
4264 return new LandingPadInst(*this);
4267 ReturnInst *ReturnInst::cloneImpl() const {
4268 return new(getNumOperands()) ReturnInst(*this);
4271 BranchInst *BranchInst::cloneImpl() const {
4272 return new(getNumOperands()) BranchInst(*this);
4275 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4277 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4278 return new IndirectBrInst(*this);
4281 InvokeInst *InvokeInst::cloneImpl() const {
4282 if (hasOperandBundles()) {
4283 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4284 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4286 return new(getNumOperands()) InvokeInst(*this);
4289 CallBrInst *CallBrInst::cloneImpl() const {
4290 if (hasOperandBundles()) {
4291 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4292 return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4294 return new (getNumOperands()) CallBrInst(*this);
4297 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4299 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4300 return new (getNumOperands()) CleanupReturnInst(*this);
4303 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4304 return new (getNumOperands()) CatchReturnInst(*this);
4307 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4308 return new CatchSwitchInst(*this);
4311 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4312 return new (getNumOperands()) FuncletPadInst(*this);
4315 UnreachableInst *UnreachableInst::cloneImpl() const {
4316 LLVMContext &Context = getContext();
4317 return new UnreachableInst(Context);