1 //===--- AArch64CallLowering.cpp - Call lowering --------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements the lowering of LLVM calls to machine code calls for
13 //===----------------------------------------------------------------------===//
15 #include "AArch64CallLowering.h"
16 #include "AArch64ISelLowering.h"
17 #include "AArch64MachineFunctionInfo.h"
18 #include "AArch64Subtarget.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/CodeGen/GlobalISel/Utils.h"
25 #include "llvm/CodeGen/LowLevelType.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Support/MachineValueType.h"
47 #define DEBUG_TYPE "aarch64-call-lowering"
51 AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering
&TLI
)
52 : CallLowering(&TLI
) {}
55 struct IncomingArgHandler
: public CallLowering::ValueHandler
{
56 IncomingArgHandler(MachineIRBuilder
&MIRBuilder
, MachineRegisterInfo
&MRI
,
58 : ValueHandler(MIRBuilder
, MRI
, AssignFn
), StackUsed(0) {}
60 Register
getStackAddress(uint64_t Size
, int64_t Offset
,
61 MachinePointerInfo
&MPO
) override
{
62 auto &MFI
= MIRBuilder
.getMF().getFrameInfo();
63 int FI
= MFI
.CreateFixedObject(Size
, Offset
, true);
64 MPO
= MachinePointerInfo::getFixedStack(MIRBuilder
.getMF(), FI
);
65 Register AddrReg
= MRI
.createGenericVirtualRegister(LLT::pointer(0, 64));
66 MIRBuilder
.buildFrameIndex(AddrReg
, FI
);
67 StackUsed
= std::max(StackUsed
, Size
+ Offset
);
71 void assignValueToReg(Register ValVReg
, Register PhysReg
,
72 CCValAssign
&VA
) override
{
73 markPhysRegUsed(PhysReg
);
74 switch (VA
.getLocInfo()) {
76 MIRBuilder
.buildCopy(ValVReg
, PhysReg
);
78 case CCValAssign::LocInfo::SExt
:
79 case CCValAssign::LocInfo::ZExt
:
80 case CCValAssign::LocInfo::AExt
: {
81 auto Copy
= MIRBuilder
.buildCopy(LLT
{VA
.getLocVT()}, PhysReg
);
82 MIRBuilder
.buildTrunc(ValVReg
, Copy
);
88 void assignValueToAddress(Register ValVReg
, Register Addr
, uint64_t Size
,
89 MachinePointerInfo
&MPO
, CCValAssign
&VA
) override
{
90 // FIXME: Get alignment
91 auto MMO
= MIRBuilder
.getMF().getMachineMemOperand(
92 MPO
, MachineMemOperand::MOLoad
| MachineMemOperand::MOInvariant
, Size
,
94 MIRBuilder
.buildLoad(ValVReg
, Addr
, *MMO
);
97 /// How the physical register gets marked varies between formal
98 /// parameters (it's a basic-block live-in), and a call instruction
99 /// (it's an implicit-def of the BL).
100 virtual void markPhysRegUsed(unsigned PhysReg
) = 0;
102 bool isIncomingArgumentHandler() const override
{ return true; }
107 struct FormalArgHandler
: public IncomingArgHandler
{
108 FormalArgHandler(MachineIRBuilder
&MIRBuilder
, MachineRegisterInfo
&MRI
,
109 CCAssignFn
*AssignFn
)
110 : IncomingArgHandler(MIRBuilder
, MRI
, AssignFn
) {}
112 void markPhysRegUsed(unsigned PhysReg
) override
{
113 MIRBuilder
.getMRI()->addLiveIn(PhysReg
);
114 MIRBuilder
.getMBB().addLiveIn(PhysReg
);
118 struct CallReturnHandler
: public IncomingArgHandler
{
119 CallReturnHandler(MachineIRBuilder
&MIRBuilder
, MachineRegisterInfo
&MRI
,
120 MachineInstrBuilder MIB
, CCAssignFn
*AssignFn
)
121 : IncomingArgHandler(MIRBuilder
, MRI
, AssignFn
), MIB(MIB
) {}
123 void markPhysRegUsed(unsigned PhysReg
) override
{
124 MIB
.addDef(PhysReg
, RegState::Implicit
);
127 MachineInstrBuilder MIB
;
130 struct OutgoingArgHandler
: public CallLowering::ValueHandler
{
131 OutgoingArgHandler(MachineIRBuilder
&MIRBuilder
, MachineRegisterInfo
&MRI
,
132 MachineInstrBuilder MIB
, CCAssignFn
*AssignFn
,
133 CCAssignFn
*AssignFnVarArg
)
134 : ValueHandler(MIRBuilder
, MRI
, AssignFn
), MIB(MIB
),
135 AssignFnVarArg(AssignFnVarArg
), StackSize(0) {}
137 Register
getStackAddress(uint64_t Size
, int64_t Offset
,
138 MachinePointerInfo
&MPO
) override
{
139 LLT p0
= LLT::pointer(0, 64);
140 LLT s64
= LLT::scalar(64);
141 Register SPReg
= MRI
.createGenericVirtualRegister(p0
);
142 MIRBuilder
.buildCopy(SPReg
, Register(AArch64::SP
));
144 Register OffsetReg
= MRI
.createGenericVirtualRegister(s64
);
145 MIRBuilder
.buildConstant(OffsetReg
, Offset
);
147 Register AddrReg
= MRI
.createGenericVirtualRegister(p0
);
148 MIRBuilder
.buildGEP(AddrReg
, SPReg
, OffsetReg
);
150 MPO
= MachinePointerInfo::getStack(MIRBuilder
.getMF(), Offset
);
154 void assignValueToReg(Register ValVReg
, Register PhysReg
,
155 CCValAssign
&VA
) override
{
156 MIB
.addUse(PhysReg
, RegState::Implicit
);
157 Register ExtReg
= extendRegister(ValVReg
, VA
);
158 MIRBuilder
.buildCopy(PhysReg
, ExtReg
);
161 void assignValueToAddress(Register ValVReg
, Register Addr
, uint64_t Size
,
162 MachinePointerInfo
&MPO
, CCValAssign
&VA
) override
{
163 if (VA
.getLocInfo() == CCValAssign::LocInfo::AExt
) {
164 Size
= VA
.getLocVT().getSizeInBits() / 8;
165 ValVReg
= MIRBuilder
.buildAnyExt(LLT::scalar(Size
* 8), ValVReg
)
169 auto MMO
= MIRBuilder
.getMF().getMachineMemOperand(
170 MPO
, MachineMemOperand::MOStore
, Size
, 1);
171 MIRBuilder
.buildStore(ValVReg
, Addr
, *MMO
);
174 bool assignArg(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
175 CCValAssign::LocInfo LocInfo
,
176 const CallLowering::ArgInfo
&Info
,
177 ISD::ArgFlagsTy Flags
,
178 CCState
&State
) override
{
181 Res
= AssignFn(ValNo
, ValVT
, LocVT
, LocInfo
, Flags
, State
);
183 Res
= AssignFnVarArg(ValNo
, ValVT
, LocVT
, LocInfo
, Flags
, State
);
185 StackSize
= State
.getNextStackOffset();
189 MachineInstrBuilder MIB
;
190 CCAssignFn
*AssignFnVarArg
;
195 void AArch64CallLowering::splitToValueTypes(
196 const ArgInfo
&OrigArg
, SmallVectorImpl
<ArgInfo
> &SplitArgs
,
197 const DataLayout
&DL
, MachineRegisterInfo
&MRI
, CallingConv::ID CallConv
) const {
198 const AArch64TargetLowering
&TLI
= *getTLI
<AArch64TargetLowering
>();
199 LLVMContext
&Ctx
= OrigArg
.Ty
->getContext();
201 if (OrigArg
.Ty
->isVoidTy())
204 SmallVector
<EVT
, 4> SplitVTs
;
205 SmallVector
<uint64_t, 4> Offsets
;
206 ComputeValueVTs(TLI
, DL
, OrigArg
.Ty
, SplitVTs
, &Offsets
, 0);
208 if (SplitVTs
.size() == 1) {
209 // No splitting to do, but we want to replace the original type (e.g. [1 x
210 // double] -> double).
211 SplitArgs
.emplace_back(OrigArg
.Regs
[0], SplitVTs
[0].getTypeForEVT(Ctx
),
212 OrigArg
.Flags
[0], OrigArg
.IsFixed
);
216 // Create one ArgInfo for each virtual register in the original ArgInfo.
217 assert(OrigArg
.Regs
.size() == SplitVTs
.size() && "Regs / types mismatch");
219 bool NeedsRegBlock
= TLI
.functionArgumentNeedsConsecutiveRegisters(
220 OrigArg
.Ty
, CallConv
, false);
221 for (unsigned i
= 0, e
= SplitVTs
.size(); i
< e
; ++i
) {
222 Type
*SplitTy
= SplitVTs
[i
].getTypeForEVT(Ctx
);
223 SplitArgs
.emplace_back(OrigArg
.Regs
[i
], SplitTy
, OrigArg
.Flags
[0],
226 SplitArgs
.back().Flags
[0].setInConsecutiveRegs();
229 SplitArgs
.back().Flags
[0].setInConsecutiveRegsLast();
232 bool AArch64CallLowering::lowerReturn(MachineIRBuilder
&MIRBuilder
,
234 ArrayRef
<Register
> VRegs
,
235 Register SwiftErrorVReg
) const {
237 // Check if a tail call was lowered in this block. If so, we already handled
239 MachineFunction
&MF
= MIRBuilder
.getMF();
240 if (MF
.getFrameInfo().hasTailCall()) {
241 MachineBasicBlock
&MBB
= MIRBuilder
.getMBB();
242 auto FirstTerm
= MBB
.getFirstTerminator();
243 if (FirstTerm
!= MBB
.end() && FirstTerm
->isCall())
247 auto MIB
= MIRBuilder
.buildInstrNoInsert(AArch64::RET_ReallyLR
);
248 assert(((Val
&& !VRegs
.empty()) || (!Val
&& VRegs
.empty())) &&
249 "Return value without a vreg");
252 if (!VRegs
.empty()) {
253 MachineFunction
&MF
= MIRBuilder
.getMF();
254 const Function
&F
= MF
.getFunction();
256 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
257 const AArch64TargetLowering
&TLI
= *getTLI
<AArch64TargetLowering
>();
258 CCAssignFn
*AssignFn
= TLI
.CCAssignFnForReturn(F
.getCallingConv());
259 auto &DL
= F
.getParent()->getDataLayout();
260 LLVMContext
&Ctx
= Val
->getType()->getContext();
262 SmallVector
<EVT
, 4> SplitEVTs
;
263 ComputeValueVTs(TLI
, DL
, Val
->getType(), SplitEVTs
);
264 assert(VRegs
.size() == SplitEVTs
.size() &&
265 "For each split Type there should be exactly one VReg.");
267 SmallVector
<ArgInfo
, 8> SplitArgs
;
268 CallingConv::ID CC
= F
.getCallingConv();
270 for (unsigned i
= 0; i
< SplitEVTs
.size(); ++i
) {
271 if (TLI
.getNumRegistersForCallingConv(Ctx
, CC
, SplitEVTs
[i
]) > 1) {
272 LLVM_DEBUG(dbgs() << "Can't handle extended arg types which need split");
276 Register CurVReg
= VRegs
[i
];
277 ArgInfo CurArgInfo
= ArgInfo
{CurVReg
, SplitEVTs
[i
].getTypeForEVT(Ctx
)};
278 setArgFlags(CurArgInfo
, AttributeList::ReturnIndex
, DL
, F
);
280 // i1 is a special case because SDAG i1 true is naturally zero extended
281 // when widened using ANYEXT. We need to do it explicitly here.
282 if (MRI
.getType(CurVReg
).getSizeInBits() == 1) {
283 CurVReg
= MIRBuilder
.buildZExt(LLT::scalar(8), CurVReg
).getReg(0);
285 // Some types will need extending as specified by the CC.
286 MVT NewVT
= TLI
.getRegisterTypeForCallingConv(Ctx
, CC
, SplitEVTs
[i
]);
287 if (EVT(NewVT
) != SplitEVTs
[i
]) {
288 unsigned ExtendOp
= TargetOpcode::G_ANYEXT
;
289 if (F
.getAttributes().hasAttribute(AttributeList::ReturnIndex
,
291 ExtendOp
= TargetOpcode::G_SEXT
;
292 else if (F
.getAttributes().hasAttribute(AttributeList::ReturnIndex
,
294 ExtendOp
= TargetOpcode::G_ZEXT
;
297 LLT
OldLLT(MVT::getVT(CurArgInfo
.Ty
));
298 CurArgInfo
.Ty
= EVT(NewVT
).getTypeForEVT(Ctx
);
299 // Instead of an extend, we might have a vector type which needs
300 // padding with more elements, e.g. <2 x half> -> <4 x half>.
301 if (NewVT
.isVector()) {
302 if (OldLLT
.isVector()) {
303 if (NewLLT
.getNumElements() > OldLLT
.getNumElements()) {
304 // We don't handle VA types which are not exactly twice the
305 // size, but can easily be done in future.
306 if (NewLLT
.getNumElements() != OldLLT
.getNumElements() * 2) {
307 LLVM_DEBUG(dbgs() << "Outgoing vector ret has too many elts");
310 auto Undef
= MIRBuilder
.buildUndef({OldLLT
});
312 MIRBuilder
.buildMerge({NewLLT
}, {CurVReg
, Undef
.getReg(0)})
315 // Just do a vector extend.
316 CurVReg
= MIRBuilder
.buildInstr(ExtendOp
, {NewLLT
}, {CurVReg
})
319 } else if (NewLLT
.getNumElements() == 2) {
320 // We need to pad a <1 x S> type to <2 x S>. Since we don't have
321 // <1 x S> vector types in GISel we use a build_vector instead
322 // of a vector merge/concat.
323 auto Undef
= MIRBuilder
.buildUndef({OldLLT
});
326 .buildBuildVector({NewLLT
}, {CurVReg
, Undef
.getReg(0)})
329 LLVM_DEBUG(dbgs() << "Could not handle ret ty");
335 MIRBuilder
.buildInstr(ExtendOp
, {NewLLT
}, {CurVReg
}).getReg(0);
339 if (CurVReg
!= CurArgInfo
.Regs
[0]) {
340 CurArgInfo
.Regs
[0] = CurVReg
;
341 // Reset the arg flags after modifying CurVReg.
342 setArgFlags(CurArgInfo
, AttributeList::ReturnIndex
, DL
, F
);
344 splitToValueTypes(CurArgInfo
, SplitArgs
, DL
, MRI
, CC
);
347 OutgoingArgHandler
Handler(MIRBuilder
, MRI
, MIB
, AssignFn
, AssignFn
);
348 Success
= handleAssignments(MIRBuilder
, SplitArgs
, Handler
);
351 if (SwiftErrorVReg
) {
352 MIB
.addUse(AArch64::X21
, RegState::Implicit
);
353 MIRBuilder
.buildCopy(AArch64::X21
, SwiftErrorVReg
);
356 MIRBuilder
.insertInstr(MIB
);
360 bool AArch64CallLowering::lowerFormalArguments(
361 MachineIRBuilder
&MIRBuilder
, const Function
&F
,
362 ArrayRef
<ArrayRef
<Register
>> VRegs
) const {
363 MachineFunction
&MF
= MIRBuilder
.getMF();
364 MachineBasicBlock
&MBB
= MIRBuilder
.getMBB();
365 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
366 auto &DL
= F
.getParent()->getDataLayout();
368 SmallVector
<ArgInfo
, 8> SplitArgs
;
370 for (auto &Arg
: F
.args()) {
371 if (DL
.getTypeStoreSize(Arg
.getType()) == 0)
374 ArgInfo OrigArg
{VRegs
[i
], Arg
.getType()};
375 setArgFlags(OrigArg
, i
+ AttributeList::FirstArgIndex
, DL
, F
);
377 splitToValueTypes(OrigArg
, SplitArgs
, DL
, MRI
, F
.getCallingConv());
382 MIRBuilder
.setInstr(*MBB
.begin());
384 const AArch64TargetLowering
&TLI
= *getTLI
<AArch64TargetLowering
>();
385 CCAssignFn
*AssignFn
=
386 TLI
.CCAssignFnForCall(F
.getCallingConv(), /*IsVarArg=*/false);
388 FormalArgHandler
Handler(MIRBuilder
, MRI
, AssignFn
);
389 if (!handleAssignments(MIRBuilder
, SplitArgs
, Handler
))
393 if (!MF
.getSubtarget
<AArch64Subtarget
>().isTargetDarwin()) {
394 // FIXME: we need to reimplement saveVarArgsRegisters from
395 // AArch64ISelLowering.
399 // We currently pass all varargs at 8-byte alignment.
400 uint64_t StackOffset
= alignTo(Handler
.StackUsed
, 8);
402 auto &MFI
= MIRBuilder
.getMF().getFrameInfo();
403 AArch64FunctionInfo
*FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
404 FuncInfo
->setVarArgsStackIndex(MFI
.CreateFixedObject(4, StackOffset
, true));
407 auto &Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
408 if (Subtarget
.hasCustomCallingConv())
409 Subtarget
.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF
);
411 // Move back to the end of the basic block.
412 MIRBuilder
.setMBB(MBB
);
417 /// Return true if the calling convention is one that we can guarantee TCO for.
418 static bool canGuaranteeTCO(CallingConv::ID CC
) {
419 return CC
== CallingConv::Fast
;
422 /// Return true if we might ever do TCO for calls with this calling convention.
423 static bool mayTailCallThisCC(CallingConv::ID CC
) {
426 case CallingConv::PreserveMost
:
427 case CallingConv::Swift
:
430 return canGuaranteeTCO(CC
);
434 bool AArch64CallLowering::isEligibleForTailCallOptimization(
435 MachineIRBuilder
&MIRBuilder
, CallLoweringInfo
&Info
) const {
436 CallingConv::ID CalleeCC
= Info
.CallConv
;
437 MachineFunction
&MF
= MIRBuilder
.getMF();
438 const Function
&CallerF
= MF
.getFunction();
439 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
440 bool CCMatch
= CallerCC
== CalleeCC
;
442 LLVM_DEBUG(dbgs() << "Attempting to lower call as tail call\n");
444 if (Info
.SwiftErrorVReg
) {
445 // TODO: We should handle this.
446 // Note that this is also handled by the check for no outgoing arguments.
447 // Proactively disabling this though, because the swifterror handling in
448 // lowerCall inserts a COPY *after* the location of the call.
449 LLVM_DEBUG(dbgs() << "... Cannot handle tail calls with swifterror yet.\n");
453 if (!Info
.OrigRet
.Ty
->isVoidTy()) {
454 // TODO: lowerCall will insert COPYs to handle the call's return value.
455 // This needs some refactoring to avoid this with tail call returns. For
456 // now, just don't handle that case.
457 LLVM_DEBUG(dbgs() << "... Cannot handle non-void return types yet.\n");
461 if (!mayTailCallThisCC(CalleeCC
)) {
462 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
467 LLVM_DEBUG(dbgs() << "... Tail calling varargs not supported yet.\n");
471 // Byval parameters hand the function a pointer directly into the stack area
472 // we want to reuse during a tail call. Working around this *is* possible (see
475 // FIXME: In AArch64ISelLowering, this isn't worked around. Can/should we try
478 // On Windows, "inreg" attributes signify non-aggregate indirect returns.
479 // In this case, it is necessary to save/restore X0 in the callee. Tail
480 // call opt interferes with this. So we disable tail call opt when the
481 // caller has an argument with "inreg" attribute.
483 // FIXME: Check whether the callee also has an "inreg" argument.
484 if (any_of(CallerF
.args(), [](const Argument
&A
) {
485 return A
.hasByValAttr() || A
.hasInRegAttr();
487 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval or "
488 "inreg arguments.\n");
492 // Externally-defined functions with weak linkage should not be
493 // tail-called on AArch64 when the OS does not support dynamic
494 // pre-emption of symbols, as the AAELF spec requires normal calls
495 // to undefined weak functions to be replaced with a NOP or jump to the
496 // next instruction. The behaviour of branch instructions in this
497 // situation (as used for tail calls) is implementation-defined, so we
498 // cannot rely on the linker replacing the tail call with a return.
499 if (Info
.Callee
.isGlobal()) {
500 const GlobalValue
*GV
= Info
.Callee
.getGlobal();
501 const Triple
&TT
= MF
.getTarget().getTargetTriple();
502 if (GV
->hasExternalWeakLinkage() &&
503 (!TT
.isOSWindows() || TT
.isOSBinFormatELF() ||
504 TT
.isOSBinFormatMachO())) {
505 LLVM_DEBUG(dbgs() << "... Cannot tail call externally-defined function "
506 "with weak linkage for this OS.\n");
511 // If we have -tailcallopt and matching CCs, at this point, we could return
512 // true. However, we don't have full tail call support yet. So, continue
513 // checking. We want to emit a sibling call.
515 // I want anyone implementing a new calling convention to think long and hard
516 // about this assert.
517 assert((!Info
.IsVarArg
|| CalleeCC
== CallingConv::C
) &&
518 "Unexpected variadic calling convention");
520 // For now, only support the case where the calling conventions match.
524 << "... Cannot tail call with mismatched calling conventions yet.\n");
528 // For now, only handle callees that take no arguments.
529 if (!Info
.OrigArgs
.empty()) {
532 << "... Cannot tail call callees with outgoing arguments yet.\n");
537 dbgs() << "... Call is eligible for tail call optimization.\n");
541 static unsigned getCallOpcode(const Function
&CallerF
, bool IsIndirect
,
544 return IsIndirect
? AArch64::BLR
: AArch64::BL
;
547 return AArch64::TCRETURNdi
;
549 // When BTI is enabled, we need to use TCRETURNriBTI to make sure that we use
551 if (CallerF
.hasFnAttribute("branch-target-enforcement"))
552 return AArch64::TCRETURNriBTI
;
554 return AArch64::TCRETURNri
;
557 bool AArch64CallLowering::lowerCall(MachineIRBuilder
&MIRBuilder
,
558 CallLoweringInfo
&Info
) const {
559 MachineFunction
&MF
= MIRBuilder
.getMF();
560 const Function
&F
= MF
.getFunction();
561 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
562 auto &DL
= F
.getParent()->getDataLayout();
564 if (Info
.IsMustTailCall
) {
565 // TODO: Until we lower all tail calls, we should fall back on this.
566 LLVM_DEBUG(dbgs() << "Cannot lower musttail calls yet.\n");
570 if (Info
.IsTailCall
&& MF
.getTarget().Options
.GuaranteedTailCallOpt
) {
571 // TODO: Until we lower all tail calls, we should fall back on this.
572 LLVM_DEBUG(dbgs() << "Cannot handle -tailcallopt yet.\n");
576 SmallVector
<ArgInfo
, 8> SplitArgs
;
577 for (auto &OrigArg
: Info
.OrigArgs
) {
578 splitToValueTypes(OrigArg
, SplitArgs
, DL
, MRI
, Info
.CallConv
);
579 // AAPCS requires that we zero-extend i1 to 8 bits by the caller.
580 if (OrigArg
.Ty
->isIntegerTy(1))
581 SplitArgs
.back().Flags
[0].setZExt();
585 Info
.IsTailCall
&& isEligibleForTailCallOptimization(MIRBuilder
, Info
);
587 MF
.getFrameInfo().setHasTailCall();
589 // Find out which ABI gets to decide where things go.
590 const AArch64TargetLowering
&TLI
= *getTLI
<AArch64TargetLowering
>();
591 CCAssignFn
*AssignFnFixed
=
592 TLI
.CCAssignFnForCall(Info
.CallConv
, /*IsVarArg=*/false);
593 CCAssignFn
*AssignFnVarArg
=
594 TLI
.CCAssignFnForCall(Info
.CallConv
, /*IsVarArg=*/true);
596 // If we have a sibling call, then we don't have to adjust the stack.
597 // Otherwise, we need to adjust it.
598 MachineInstrBuilder CallSeqStart
;
600 CallSeqStart
= MIRBuilder
.buildInstr(AArch64::ADJCALLSTACKDOWN
);
602 // Create a temporarily-floating call instruction so we can add the implicit
603 // uses of arg registers.
604 unsigned Opc
= getCallOpcode(F
, Info
.Callee
.isReg(), IsSibCall
);
606 // TODO: Right now, regbankselect doesn't know how to handle the rtcGPR64
607 // register class. Until we can do that, we should fall back here.
608 if (Opc
== AArch64::TCRETURNriBTI
) {
610 dbgs() << "Cannot lower indirect tail calls with BTI enabled yet.\n");
614 auto MIB
= MIRBuilder
.buildInstrNoInsert(Opc
);
615 MIB
.add(Info
.Callee
);
617 // Add the byte offset for the tail call. We only have sibling calls, so this
619 // TODO: Handle tail calls where we will have a different value here.
623 // Tell the call which registers are clobbered.
624 auto TRI
= MF
.getSubtarget
<AArch64Subtarget
>().getRegisterInfo();
625 const uint32_t *Mask
= TRI
->getCallPreservedMask(MF
, F
.getCallingConv());
626 if (MF
.getSubtarget
<AArch64Subtarget
>().hasCustomCallingConv())
627 TRI
->UpdateCustomCallPreservedMask(MF
, &Mask
);
628 MIB
.addRegMask(Mask
);
630 if (TRI
->isAnyArgRegReserved(MF
))
631 TRI
->emitReservedArgRegCallError(MF
);
633 // Do the actual argument marshalling.
634 SmallVector
<unsigned, 8> PhysRegs
;
635 OutgoingArgHandler
Handler(MIRBuilder
, MRI
, MIB
, AssignFnFixed
,
637 if (!handleAssignments(MIRBuilder
, SplitArgs
, Handler
))
640 // Now we can add the actual call instruction to the correct basic block.
641 MIRBuilder
.insertInstr(MIB
);
643 // If Callee is a reg, since it is used by a target specific
644 // instruction, it must have a register class matching the
645 // constraint of that instruction.
646 if (Info
.Callee
.isReg())
647 MIB
->getOperand(0).setReg(constrainOperandRegClass(
648 MF
, *TRI
, MRI
, *MF
.getSubtarget().getInstrInfo(),
649 *MF
.getSubtarget().getRegBankInfo(), *MIB
, MIB
->getDesc(), Info
.Callee
,
652 // Finally we can copy the returned value back into its virtual-register. In
653 // symmetry with the arugments, the physical register must be an
654 // implicit-define of the call instruction.
655 CCAssignFn
*RetAssignFn
= TLI
.CCAssignFnForReturn(F
.getCallingConv());
656 if (!Info
.OrigRet
.Ty
->isVoidTy()) {
659 splitToValueTypes(Info
.OrigRet
, SplitArgs
, DL
, MRI
, F
.getCallingConv());
661 CallReturnHandler
Handler(MIRBuilder
, MRI
, MIB
, RetAssignFn
);
662 if (!handleAssignments(MIRBuilder
, SplitArgs
, Handler
))
666 if (Info
.SwiftErrorVReg
) {
667 MIB
.addDef(AArch64::X21
, RegState::Implicit
);
668 MIRBuilder
.buildCopy(Info
.SwiftErrorVReg
, Register(AArch64::X21
));
672 // If we aren't sibcalling, we need to move the stack.
673 CallSeqStart
.addImm(Handler
.StackSize
).addImm(0);
674 MIRBuilder
.buildInstr(AArch64::ADJCALLSTACKUP
)
675 .addImm(Handler
.StackSize
)