1 //===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines an instruction selector for the AArch64 target.
11 //===----------------------------------------------------------------------===//
13 #include "AArch64TargetMachine.h"
14 #include "MCTargetDesc/AArch64AddressingModes.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/IR/Function.h" // To access function attributes.
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/Intrinsics.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/KnownBits.h"
23 #include "llvm/Support/MathExtras.h"
24 #include "llvm/Support/raw_ostream.h"
28 #define DEBUG_TYPE "aarch64-isel"
30 //===--------------------------------------------------------------------===//
31 /// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
32 /// instructions for SelectionDAG operations.
36 class AArch64DAGToDAGISel
: public SelectionDAGISel
{
38 /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
39 /// make the right decision when generating code for different targets.
40 const AArch64Subtarget
*Subtarget
;
45 explicit AArch64DAGToDAGISel(AArch64TargetMachine
&tm
,
46 CodeGenOpt::Level OptLevel
)
47 : SelectionDAGISel(tm
, OptLevel
), Subtarget(nullptr),
50 StringRef
getPassName() const override
{
51 return "AArch64 Instruction Selection";
54 bool runOnMachineFunction(MachineFunction
&MF
) override
{
55 ForCodeSize
= MF
.getFunction().hasOptSize();
56 Subtarget
= &MF
.getSubtarget
<AArch64Subtarget
>();
57 return SelectionDAGISel::runOnMachineFunction(MF
);
60 void Select(SDNode
*Node
) override
;
62 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
63 /// inline asm expressions.
64 bool SelectInlineAsmMemoryOperand(const SDValue
&Op
,
65 unsigned ConstraintID
,
66 std::vector
<SDValue
> &OutOps
) override
;
68 bool tryMLAV64LaneV128(SDNode
*N
);
69 bool tryMULLV64LaneV128(unsigned IntNo
, SDNode
*N
);
70 bool SelectArithExtendedRegister(SDValue N
, SDValue
&Reg
, SDValue
&Shift
);
71 bool SelectArithImmed(SDValue N
, SDValue
&Val
, SDValue
&Shift
);
72 bool SelectNegArithImmed(SDValue N
, SDValue
&Val
, SDValue
&Shift
);
73 bool SelectArithShiftedRegister(SDValue N
, SDValue
&Reg
, SDValue
&Shift
) {
74 return SelectShiftedRegister(N
, false, Reg
, Shift
);
76 bool SelectLogicalShiftedRegister(SDValue N
, SDValue
&Reg
, SDValue
&Shift
) {
77 return SelectShiftedRegister(N
, true, Reg
, Shift
);
79 bool SelectAddrModeIndexed7S8(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
80 return SelectAddrModeIndexed7S(N
, 1, Base
, OffImm
);
82 bool SelectAddrModeIndexed7S16(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
83 return SelectAddrModeIndexed7S(N
, 2, Base
, OffImm
);
85 bool SelectAddrModeIndexed7S32(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
86 return SelectAddrModeIndexed7S(N
, 4, Base
, OffImm
);
88 bool SelectAddrModeIndexed7S64(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
89 return SelectAddrModeIndexed7S(N
, 8, Base
, OffImm
);
91 bool SelectAddrModeIndexed7S128(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
92 return SelectAddrModeIndexed7S(N
, 16, Base
, OffImm
);
94 bool SelectAddrModeIndexedS9S128(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
95 return SelectAddrModeIndexedBitWidth(N
, true, 9, 16, Base
, OffImm
);
97 bool SelectAddrModeIndexedU6S128(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
98 return SelectAddrModeIndexedBitWidth(N
, false, 6, 16, Base
, OffImm
);
100 bool SelectAddrModeIndexed8(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
101 return SelectAddrModeIndexed(N
, 1, Base
, OffImm
);
103 bool SelectAddrModeIndexed16(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
104 return SelectAddrModeIndexed(N
, 2, Base
, OffImm
);
106 bool SelectAddrModeIndexed32(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
107 return SelectAddrModeIndexed(N
, 4, Base
, OffImm
);
109 bool SelectAddrModeIndexed64(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
110 return SelectAddrModeIndexed(N
, 8, Base
, OffImm
);
112 bool SelectAddrModeIndexed128(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
113 return SelectAddrModeIndexed(N
, 16, Base
, OffImm
);
115 bool SelectAddrModeUnscaled8(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
116 return SelectAddrModeUnscaled(N
, 1, Base
, OffImm
);
118 bool SelectAddrModeUnscaled16(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
119 return SelectAddrModeUnscaled(N
, 2, Base
, OffImm
);
121 bool SelectAddrModeUnscaled32(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
122 return SelectAddrModeUnscaled(N
, 4, Base
, OffImm
);
124 bool SelectAddrModeUnscaled64(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
125 return SelectAddrModeUnscaled(N
, 8, Base
, OffImm
);
127 bool SelectAddrModeUnscaled128(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
128 return SelectAddrModeUnscaled(N
, 16, Base
, OffImm
);
132 bool SelectAddrModeWRO(SDValue N
, SDValue
&Base
, SDValue
&Offset
,
133 SDValue
&SignExtend
, SDValue
&DoShift
) {
134 return SelectAddrModeWRO(N
, Width
/ 8, Base
, Offset
, SignExtend
, DoShift
);
138 bool SelectAddrModeXRO(SDValue N
, SDValue
&Base
, SDValue
&Offset
,
139 SDValue
&SignExtend
, SDValue
&DoShift
) {
140 return SelectAddrModeXRO(N
, Width
/ 8, Base
, Offset
, SignExtend
, DoShift
);
144 /// Form sequences of consecutive 64/128-bit registers for use in NEON
145 /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
146 /// between 1 and 4 elements. If it contains a single element that is returned
147 /// unchanged; otherwise a REG_SEQUENCE value is returned.
148 SDValue
createDTuple(ArrayRef
<SDValue
> Vecs
);
149 SDValue
createQTuple(ArrayRef
<SDValue
> Vecs
);
151 /// Generic helper for the createDTuple/createQTuple
152 /// functions. Those should almost always be called instead.
153 SDValue
createTuple(ArrayRef
<SDValue
> Vecs
, const unsigned RegClassIDs
[],
154 const unsigned SubRegs
[]);
156 void SelectTable(SDNode
*N
, unsigned NumVecs
, unsigned Opc
, bool isExt
);
158 bool tryIndexedLoad(SDNode
*N
);
160 bool trySelectStackSlotTagP(SDNode
*N
);
161 void SelectTagP(SDNode
*N
);
163 void SelectLoad(SDNode
*N
, unsigned NumVecs
, unsigned Opc
,
165 void SelectPostLoad(SDNode
*N
, unsigned NumVecs
, unsigned Opc
,
167 void SelectLoadLane(SDNode
*N
, unsigned NumVecs
, unsigned Opc
);
168 void SelectPostLoadLane(SDNode
*N
, unsigned NumVecs
, unsigned Opc
);
170 void SelectStore(SDNode
*N
, unsigned NumVecs
, unsigned Opc
);
171 void SelectPostStore(SDNode
*N
, unsigned NumVecs
, unsigned Opc
);
172 void SelectStoreLane(SDNode
*N
, unsigned NumVecs
, unsigned Opc
);
173 void SelectPostStoreLane(SDNode
*N
, unsigned NumVecs
, unsigned Opc
);
175 bool tryBitfieldExtractOp(SDNode
*N
);
176 bool tryBitfieldExtractOpFromSExt(SDNode
*N
);
177 bool tryBitfieldInsertOp(SDNode
*N
);
178 bool tryBitfieldInsertInZeroOp(SDNode
*N
);
179 bool tryShiftAmountMod(SDNode
*N
);
181 bool tryReadRegister(SDNode
*N
);
182 bool tryWriteRegister(SDNode
*N
);
184 // Include the pieces autogenerated from the target description.
185 #include "AArch64GenDAGISel.inc"
188 bool SelectShiftedRegister(SDValue N
, bool AllowROR
, SDValue
&Reg
,
190 bool SelectAddrModeIndexed7S(SDValue N
, unsigned Size
, SDValue
&Base
,
192 return SelectAddrModeIndexedBitWidth(N
, true, 7, Size
, Base
, OffImm
);
194 bool SelectAddrModeIndexedBitWidth(SDValue N
, bool IsSignedImm
, unsigned BW
,
195 unsigned Size
, SDValue
&Base
,
197 bool SelectAddrModeIndexed(SDValue N
, unsigned Size
, SDValue
&Base
,
199 bool SelectAddrModeUnscaled(SDValue N
, unsigned Size
, SDValue
&Base
,
201 bool SelectAddrModeWRO(SDValue N
, unsigned Size
, SDValue
&Base
,
202 SDValue
&Offset
, SDValue
&SignExtend
,
204 bool SelectAddrModeXRO(SDValue N
, unsigned Size
, SDValue
&Base
,
205 SDValue
&Offset
, SDValue
&SignExtend
,
207 bool isWorthFolding(SDValue V
) const;
208 bool SelectExtendedSHL(SDValue N
, unsigned Size
, bool WantExtend
,
209 SDValue
&Offset
, SDValue
&SignExtend
);
211 template<unsigned RegWidth
>
212 bool SelectCVTFixedPosOperand(SDValue N
, SDValue
&FixedPos
) {
213 return SelectCVTFixedPosOperand(N
, FixedPos
, RegWidth
);
216 bool SelectCVTFixedPosOperand(SDValue N
, SDValue
&FixedPos
, unsigned Width
);
218 bool SelectCMP_SWAP(SDNode
*N
);
221 } // end anonymous namespace
223 /// isIntImmediate - This method tests to see if the node is a constant
224 /// operand. If so Imm will receive the 32-bit value.
225 static bool isIntImmediate(const SDNode
*N
, uint64_t &Imm
) {
226 if (const ConstantSDNode
*C
= dyn_cast
<const ConstantSDNode
>(N
)) {
227 Imm
= C
->getZExtValue();
233 // isIntImmediate - This method tests to see if a constant operand.
234 // If so Imm will receive the value.
235 static bool isIntImmediate(SDValue N
, uint64_t &Imm
) {
236 return isIntImmediate(N
.getNode(), Imm
);
239 // isOpcWithIntImmediate - This method tests to see if the node is a specific
240 // opcode and that it has a immediate integer right operand.
241 // If so Imm will receive the 32 bit value.
242 static bool isOpcWithIntImmediate(const SDNode
*N
, unsigned Opc
,
244 return N
->getOpcode() == Opc
&&
245 isIntImmediate(N
->getOperand(1).getNode(), Imm
);
248 bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
249 const SDValue
&Op
, unsigned ConstraintID
, std::vector
<SDValue
> &OutOps
) {
250 switch(ConstraintID
) {
252 llvm_unreachable("Unexpected asm memory constraint");
253 case InlineAsm::Constraint_i
:
254 case InlineAsm::Constraint_m
:
255 case InlineAsm::Constraint_Q
:
256 // We need to make sure that this one operand does not end up in XZR, thus
257 // require the address to be in a PointerRegClass register.
258 const TargetRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
259 const TargetRegisterClass
*TRC
= TRI
->getPointerRegClass(*MF
);
261 SDValue RC
= CurDAG
->getTargetConstant(TRC
->getID(), dl
, MVT::i64
);
263 SDValue(CurDAG
->getMachineNode(TargetOpcode::COPY_TO_REGCLASS
,
264 dl
, Op
.getValueType(),
266 OutOps
.push_back(NewOp
);
272 /// SelectArithImmed - Select an immediate value that can be represented as
273 /// a 12-bit value shifted left by either 0 or 12. If so, return true with
274 /// Val set to the 12-bit value and Shift set to the shifter operand.
275 bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N
, SDValue
&Val
,
277 // This function is called from the addsub_shifted_imm ComplexPattern,
278 // which lists [imm] as the list of opcode it's interested in, however
279 // we still need to check whether the operand is actually an immediate
280 // here because the ComplexPattern opcode list is only used in
281 // root-level opcode matching.
282 if (!isa
<ConstantSDNode
>(N
.getNode()))
285 uint64_t Immed
= cast
<ConstantSDNode
>(N
.getNode())->getZExtValue();
288 if (Immed
>> 12 == 0) {
290 } else if ((Immed
& 0xfff) == 0 && Immed
>> 24 == 0) {
296 unsigned ShVal
= AArch64_AM::getShifterImm(AArch64_AM::LSL
, ShiftAmt
);
298 Val
= CurDAG
->getTargetConstant(Immed
, dl
, MVT::i32
);
299 Shift
= CurDAG
->getTargetConstant(ShVal
, dl
, MVT::i32
);
303 /// SelectNegArithImmed - As above, but negates the value before trying to
305 bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N
, SDValue
&Val
,
307 // This function is called from the addsub_shifted_imm ComplexPattern,
308 // which lists [imm] as the list of opcode it's interested in, however
309 // we still need to check whether the operand is actually an immediate
310 // here because the ComplexPattern opcode list is only used in
311 // root-level opcode matching.
312 if (!isa
<ConstantSDNode
>(N
.getNode()))
315 // The immediate operand must be a 24-bit zero-extended immediate.
316 uint64_t Immed
= cast
<ConstantSDNode
>(N
.getNode())->getZExtValue();
318 // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
319 // have the opposite effect on the C flag, so this pattern mustn't match under
320 // those circumstances.
324 if (N
.getValueType() == MVT::i32
)
325 Immed
= ~((uint32_t)Immed
) + 1;
327 Immed
= ~Immed
+ 1ULL;
328 if (Immed
& 0xFFFFFFFFFF000000ULL
)
331 Immed
&= 0xFFFFFFULL
;
332 return SelectArithImmed(CurDAG
->getConstant(Immed
, SDLoc(N
), MVT::i32
), Val
,
336 /// getShiftTypeForNode - Translate a shift node to the corresponding
338 static AArch64_AM::ShiftExtendType
getShiftTypeForNode(SDValue N
) {
339 switch (N
.getOpcode()) {
341 return AArch64_AM::InvalidShiftExtend
;
343 return AArch64_AM::LSL
;
345 return AArch64_AM::LSR
;
347 return AArch64_AM::ASR
;
349 return AArch64_AM::ROR
;
353 /// Determine whether it is worth it to fold SHL into the addressing
355 static bool isWorthFoldingSHL(SDValue V
) {
356 assert(V
.getOpcode() == ISD::SHL
&& "invalid opcode");
357 // It is worth folding logical shift of up to three places.
358 auto *CSD
= dyn_cast
<ConstantSDNode
>(V
.getOperand(1));
361 unsigned ShiftVal
= CSD
->getZExtValue();
365 // Check if this particular node is reused in any non-memory related
366 // operation. If yes, do not try to fold this node into the address
367 // computation, since the computation will be kept.
368 const SDNode
*Node
= V
.getNode();
369 for (SDNode
*UI
: Node
->uses())
370 if (!isa
<MemSDNode
>(*UI
))
371 for (SDNode
*UII
: UI
->uses())
372 if (!isa
<MemSDNode
>(*UII
))
377 /// Determine whether it is worth to fold V into an extended register.
378 bool AArch64DAGToDAGISel::isWorthFolding(SDValue V
) const {
379 // Trivial if we are optimizing for code size or if there is only
380 // one use of the value.
381 if (ForCodeSize
|| V
.hasOneUse())
383 // If a subtarget has a fastpath LSL we can fold a logical shift into
384 // the addressing mode and save a cycle.
385 if (Subtarget
->hasLSLFast() && V
.getOpcode() == ISD::SHL
&&
386 isWorthFoldingSHL(V
))
388 if (Subtarget
->hasLSLFast() && V
.getOpcode() == ISD::ADD
) {
389 const SDValue LHS
= V
.getOperand(0);
390 const SDValue RHS
= V
.getOperand(1);
391 if (LHS
.getOpcode() == ISD::SHL
&& isWorthFoldingSHL(LHS
))
393 if (RHS
.getOpcode() == ISD::SHL
&& isWorthFoldingSHL(RHS
))
397 // It hurts otherwise, since the value will be reused.
401 /// SelectShiftedRegister - Select a "shifted register" operand. If the value
402 /// is not shifted, set the Shift operand to default of "LSL 0". The logical
403 /// instructions allow the shifted register to be rotated, but the arithmetic
404 /// instructions do not. The AllowROR parameter specifies whether ROR is
406 bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N
, bool AllowROR
,
407 SDValue
&Reg
, SDValue
&Shift
) {
408 AArch64_AM::ShiftExtendType ShType
= getShiftTypeForNode(N
);
409 if (ShType
== AArch64_AM::InvalidShiftExtend
)
411 if (!AllowROR
&& ShType
== AArch64_AM::ROR
)
414 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
415 unsigned BitSize
= N
.getValueSizeInBits();
416 unsigned Val
= RHS
->getZExtValue() & (BitSize
- 1);
417 unsigned ShVal
= AArch64_AM::getShifterImm(ShType
, Val
);
419 Reg
= N
.getOperand(0);
420 Shift
= CurDAG
->getTargetConstant(ShVal
, SDLoc(N
), MVT::i32
);
421 return isWorthFolding(N
);
427 /// getExtendTypeForNode - Translate an extend node to the corresponding
428 /// ExtendType value.
429 static AArch64_AM::ShiftExtendType
430 getExtendTypeForNode(SDValue N
, bool IsLoadStore
= false) {
431 if (N
.getOpcode() == ISD::SIGN_EXTEND
||
432 N
.getOpcode() == ISD::SIGN_EXTEND_INREG
) {
434 if (N
.getOpcode() == ISD::SIGN_EXTEND_INREG
)
435 SrcVT
= cast
<VTSDNode
>(N
.getOperand(1))->getVT();
437 SrcVT
= N
.getOperand(0).getValueType();
439 if (!IsLoadStore
&& SrcVT
== MVT::i8
)
440 return AArch64_AM::SXTB
;
441 else if (!IsLoadStore
&& SrcVT
== MVT::i16
)
442 return AArch64_AM::SXTH
;
443 else if (SrcVT
== MVT::i32
)
444 return AArch64_AM::SXTW
;
445 assert(SrcVT
!= MVT::i64
&& "extend from 64-bits?");
447 return AArch64_AM::InvalidShiftExtend
;
448 } else if (N
.getOpcode() == ISD::ZERO_EXTEND
||
449 N
.getOpcode() == ISD::ANY_EXTEND
) {
450 EVT SrcVT
= N
.getOperand(0).getValueType();
451 if (!IsLoadStore
&& SrcVT
== MVT::i8
)
452 return AArch64_AM::UXTB
;
453 else if (!IsLoadStore
&& SrcVT
== MVT::i16
)
454 return AArch64_AM::UXTH
;
455 else if (SrcVT
== MVT::i32
)
456 return AArch64_AM::UXTW
;
457 assert(SrcVT
!= MVT::i64
&& "extend from 64-bits?");
459 return AArch64_AM::InvalidShiftExtend
;
460 } else if (N
.getOpcode() == ISD::AND
) {
461 ConstantSDNode
*CSD
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
463 return AArch64_AM::InvalidShiftExtend
;
464 uint64_t AndMask
= CSD
->getZExtValue();
468 return AArch64_AM::InvalidShiftExtend
;
470 return !IsLoadStore
? AArch64_AM::UXTB
: AArch64_AM::InvalidShiftExtend
;
472 return !IsLoadStore
? AArch64_AM::UXTH
: AArch64_AM::InvalidShiftExtend
;
474 return AArch64_AM::UXTW
;
478 return AArch64_AM::InvalidShiftExtend
;
481 // Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
482 static bool checkHighLaneIndex(SDNode
*DL
, SDValue
&LaneOp
, int &LaneIdx
) {
483 if (DL
->getOpcode() != AArch64ISD::DUPLANE16
&&
484 DL
->getOpcode() != AArch64ISD::DUPLANE32
)
487 SDValue SV
= DL
->getOperand(0);
488 if (SV
.getOpcode() != ISD::INSERT_SUBVECTOR
)
491 SDValue EV
= SV
.getOperand(1);
492 if (EV
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
495 ConstantSDNode
*DLidx
= cast
<ConstantSDNode
>(DL
->getOperand(1).getNode());
496 ConstantSDNode
*EVidx
= cast
<ConstantSDNode
>(EV
.getOperand(1).getNode());
497 LaneIdx
= DLidx
->getSExtValue() + EVidx
->getSExtValue();
498 LaneOp
= EV
.getOperand(0);
503 // Helper for SelectOpcV64LaneV128 - Recognize operations where one operand is a
504 // high lane extract.
505 static bool checkV64LaneV128(SDValue Op0
, SDValue Op1
, SDValue
&StdOp
,
506 SDValue
&LaneOp
, int &LaneIdx
) {
508 if (!checkHighLaneIndex(Op0
.getNode(), LaneOp
, LaneIdx
)) {
510 if (!checkHighLaneIndex(Op0
.getNode(), LaneOp
, LaneIdx
))
517 /// SelectMLAV64LaneV128 - AArch64 supports vector MLAs where one multiplicand
518 /// is a lane in the upper half of a 128-bit vector. Recognize and select this
519 /// so that we don't emit unnecessary lane extracts.
520 bool AArch64DAGToDAGISel::tryMLAV64LaneV128(SDNode
*N
) {
522 SDValue Op0
= N
->getOperand(0);
523 SDValue Op1
= N
->getOperand(1);
524 SDValue MLAOp1
; // Will hold ordinary multiplicand for MLA.
525 SDValue MLAOp2
; // Will hold lane-accessed multiplicand for MLA.
526 int LaneIdx
= -1; // Will hold the lane index.
528 if (Op1
.getOpcode() != ISD::MUL
||
529 !checkV64LaneV128(Op1
.getOperand(0), Op1
.getOperand(1), MLAOp1
, MLAOp2
,
532 if (Op1
.getOpcode() != ISD::MUL
||
533 !checkV64LaneV128(Op1
.getOperand(0), Op1
.getOperand(1), MLAOp1
, MLAOp2
,
538 SDValue LaneIdxVal
= CurDAG
->getTargetConstant(LaneIdx
, dl
, MVT::i64
);
540 SDValue Ops
[] = { Op0
, MLAOp1
, MLAOp2
, LaneIdxVal
};
542 unsigned MLAOpc
= ~0U;
544 switch (N
->getSimpleValueType(0).SimpleTy
) {
546 llvm_unreachable("Unrecognized MLA.");
548 MLAOpc
= AArch64::MLAv4i16_indexed
;
551 MLAOpc
= AArch64::MLAv8i16_indexed
;
554 MLAOpc
= AArch64::MLAv2i32_indexed
;
557 MLAOpc
= AArch64::MLAv4i32_indexed
;
561 ReplaceNode(N
, CurDAG
->getMachineNode(MLAOpc
, dl
, N
->getValueType(0), Ops
));
565 bool AArch64DAGToDAGISel::tryMULLV64LaneV128(unsigned IntNo
, SDNode
*N
) {
571 if (!checkV64LaneV128(N
->getOperand(1), N
->getOperand(2), SMULLOp0
, SMULLOp1
,
575 SDValue LaneIdxVal
= CurDAG
->getTargetConstant(LaneIdx
, dl
, MVT::i64
);
577 SDValue Ops
[] = { SMULLOp0
, SMULLOp1
, LaneIdxVal
};
579 unsigned SMULLOpc
= ~0U;
581 if (IntNo
== Intrinsic::aarch64_neon_smull
) {
582 switch (N
->getSimpleValueType(0).SimpleTy
) {
584 llvm_unreachable("Unrecognized SMULL.");
586 SMULLOpc
= AArch64::SMULLv4i16_indexed
;
589 SMULLOpc
= AArch64::SMULLv2i32_indexed
;
592 } else if (IntNo
== Intrinsic::aarch64_neon_umull
) {
593 switch (N
->getSimpleValueType(0).SimpleTy
) {
595 llvm_unreachable("Unrecognized SMULL.");
597 SMULLOpc
= AArch64::UMULLv4i16_indexed
;
600 SMULLOpc
= AArch64::UMULLv2i32_indexed
;
604 llvm_unreachable("Unrecognized intrinsic.");
606 ReplaceNode(N
, CurDAG
->getMachineNode(SMULLOpc
, dl
, N
->getValueType(0), Ops
));
610 /// Instructions that accept extend modifiers like UXTW expect the register
611 /// being extended to be a GPR32, but the incoming DAG might be acting on a
612 /// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
613 /// this is the case.
614 static SDValue
narrowIfNeeded(SelectionDAG
*CurDAG
, SDValue N
) {
615 if (N
.getValueType() == MVT::i32
)
619 SDValue SubReg
= CurDAG
->getTargetConstant(AArch64::sub_32
, dl
, MVT::i32
);
620 MachineSDNode
*Node
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
621 dl
, MVT::i32
, N
, SubReg
);
622 return SDValue(Node
, 0);
626 /// SelectArithExtendedRegister - Select a "extended register" operand. This
627 /// operand folds in an extend followed by an optional left shift.
628 bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N
, SDValue
&Reg
,
630 unsigned ShiftVal
= 0;
631 AArch64_AM::ShiftExtendType Ext
;
633 if (N
.getOpcode() == ISD::SHL
) {
634 ConstantSDNode
*CSD
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
637 ShiftVal
= CSD
->getZExtValue();
641 Ext
= getExtendTypeForNode(N
.getOperand(0));
642 if (Ext
== AArch64_AM::InvalidShiftExtend
)
645 Reg
= N
.getOperand(0).getOperand(0);
647 Ext
= getExtendTypeForNode(N
);
648 if (Ext
== AArch64_AM::InvalidShiftExtend
)
651 Reg
= N
.getOperand(0);
653 // Don't match if free 32-bit -> 64-bit zext can be used instead.
654 if (Ext
== AArch64_AM::UXTW
&&
655 Reg
->getValueType(0).getSizeInBits() == 32 && isDef32(*Reg
.getNode()))
659 // AArch64 mandates that the RHS of the operation must use the smallest
660 // register class that could contain the size being extended from. Thus,
661 // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
662 // there might not be an actual 32-bit value in the program. We can
663 // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
664 assert(Ext
!= AArch64_AM::UXTX
&& Ext
!= AArch64_AM::SXTX
);
665 Reg
= narrowIfNeeded(CurDAG
, Reg
);
666 Shift
= CurDAG
->getTargetConstant(getArithExtendImm(Ext
, ShiftVal
), SDLoc(N
),
668 return isWorthFolding(N
);
671 /// If there's a use of this ADDlow that's not itself a load/store then we'll
672 /// need to create a real ADD instruction from it anyway and there's no point in
673 /// folding it into the mem op. Theoretically, it shouldn't matter, but there's
674 /// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding
675 /// leads to duplicated ADRP instructions.
676 static bool isWorthFoldingADDlow(SDValue N
) {
677 for (auto Use
: N
->uses()) {
678 if (Use
->getOpcode() != ISD::LOAD
&& Use
->getOpcode() != ISD::STORE
&&
679 Use
->getOpcode() != ISD::ATOMIC_LOAD
&&
680 Use
->getOpcode() != ISD::ATOMIC_STORE
)
683 // ldar and stlr have much more restrictive addressing modes (just a
685 if (isStrongerThanMonotonic(cast
<MemSDNode
>(Use
)->getOrdering()))
692 /// SelectAddrModeIndexedBitWidth - Select a "register plus scaled (un)signed BW-bit
693 /// immediate" address. The "Size" argument is the size in bytes of the memory
694 /// reference, which determines the scale.
695 bool AArch64DAGToDAGISel::SelectAddrModeIndexedBitWidth(SDValue N
, bool IsSignedImm
,
696 unsigned BW
, unsigned Size
,
700 const DataLayout
&DL
= CurDAG
->getDataLayout();
701 const TargetLowering
*TLI
= getTargetLowering();
702 if (N
.getOpcode() == ISD::FrameIndex
) {
703 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
704 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
->getPointerTy(DL
));
705 OffImm
= CurDAG
->getTargetConstant(0, dl
, MVT::i64
);
709 // As opposed to the (12-bit) Indexed addressing mode below, the 7/9-bit signed
710 // selected here doesn't support labels/immediates, only base+offset.
711 if (CurDAG
->isBaseWithConstantOffset(N
)) {
712 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
714 int64_t RHSC
= RHS
->getSExtValue();
715 unsigned Scale
= Log2_32(Size
);
716 int64_t Range
= 0x1LL
<< (BW
- 1);
718 if ((RHSC
& (Size
- 1)) == 0 && RHSC
>= -(Range
<< Scale
) &&
719 RHSC
< (Range
<< Scale
)) {
720 Base
= N
.getOperand(0);
721 if (Base
.getOpcode() == ISD::FrameIndex
) {
722 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
723 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
->getPointerTy(DL
));
725 OffImm
= CurDAG
->getTargetConstant(RHSC
>> Scale
, dl
, MVT::i64
);
729 // unsigned Immediate
730 uint64_t RHSC
= RHS
->getZExtValue();
731 unsigned Scale
= Log2_32(Size
);
732 uint64_t Range
= 0x1ULL
<< BW
;
734 if ((RHSC
& (Size
- 1)) == 0 && RHSC
< (Range
<< Scale
)) {
735 Base
= N
.getOperand(0);
736 if (Base
.getOpcode() == ISD::FrameIndex
) {
737 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
738 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
->getPointerTy(DL
));
740 OffImm
= CurDAG
->getTargetConstant(RHSC
>> Scale
, dl
, MVT::i64
);
746 // Base only. The address will be materialized into a register before
747 // the memory is accessed.
748 // add x0, Xbase, #offset
751 OffImm
= CurDAG
->getTargetConstant(0, dl
, MVT::i64
);
755 /// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
756 /// immediate" address. The "Size" argument is the size in bytes of the memory
757 /// reference, which determines the scale.
758 bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N
, unsigned Size
,
759 SDValue
&Base
, SDValue
&OffImm
) {
761 const DataLayout
&DL
= CurDAG
->getDataLayout();
762 const TargetLowering
*TLI
= getTargetLowering();
763 if (N
.getOpcode() == ISD::FrameIndex
) {
764 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
765 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
->getPointerTy(DL
));
766 OffImm
= CurDAG
->getTargetConstant(0, dl
, MVT::i64
);
770 if (N
.getOpcode() == AArch64ISD::ADDlow
&& isWorthFoldingADDlow(N
)) {
771 GlobalAddressSDNode
*GAN
=
772 dyn_cast
<GlobalAddressSDNode
>(N
.getOperand(1).getNode());
773 Base
= N
.getOperand(0);
774 OffImm
= N
.getOperand(1);
778 if (GAN
->getOffset() % Size
== 0) {
779 const GlobalValue
*GV
= GAN
->getGlobal();
780 unsigned Alignment
= GV
->getAlignment();
781 Type
*Ty
= GV
->getValueType();
782 if (Alignment
== 0 && Ty
->isSized())
783 Alignment
= DL
.getABITypeAlignment(Ty
);
785 if (Alignment
>= Size
)
790 if (CurDAG
->isBaseWithConstantOffset(N
)) {
791 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
792 int64_t RHSC
= (int64_t)RHS
->getZExtValue();
793 unsigned Scale
= Log2_32(Size
);
794 if ((RHSC
& (Size
- 1)) == 0 && RHSC
>= 0 && RHSC
< (0x1000 << Scale
)) {
795 Base
= N
.getOperand(0);
796 if (Base
.getOpcode() == ISD::FrameIndex
) {
797 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
798 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
->getPointerTy(DL
));
800 OffImm
= CurDAG
->getTargetConstant(RHSC
>> Scale
, dl
, MVT::i64
);
806 // Before falling back to our general case, check if the unscaled
807 // instructions can handle this. If so, that's preferable.
808 if (SelectAddrModeUnscaled(N
, Size
, Base
, OffImm
))
811 // Base only. The address will be materialized into a register before
812 // the memory is accessed.
813 // add x0, Xbase, #offset
816 OffImm
= CurDAG
->getTargetConstant(0, dl
, MVT::i64
);
820 /// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
821 /// immediate" address. This should only match when there is an offset that
822 /// is not valid for a scaled immediate addressing mode. The "Size" argument
823 /// is the size in bytes of the memory reference, which is needed here to know
824 /// what is valid for a scaled immediate.
825 bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N
, unsigned Size
,
828 if (!CurDAG
->isBaseWithConstantOffset(N
))
830 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
831 int64_t RHSC
= RHS
->getSExtValue();
832 // If the offset is valid as a scaled immediate, don't match here.
833 if ((RHSC
& (Size
- 1)) == 0 && RHSC
>= 0 &&
834 RHSC
< (0x1000 << Log2_32(Size
)))
836 if (RHSC
>= -256 && RHSC
< 256) {
837 Base
= N
.getOperand(0);
838 if (Base
.getOpcode() == ISD::FrameIndex
) {
839 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
840 const TargetLowering
*TLI
= getTargetLowering();
841 Base
= CurDAG
->getTargetFrameIndex(
842 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
844 OffImm
= CurDAG
->getTargetConstant(RHSC
, SDLoc(N
), MVT::i64
);
851 static SDValue
Widen(SelectionDAG
*CurDAG
, SDValue N
) {
853 SDValue SubReg
= CurDAG
->getTargetConstant(AArch64::sub_32
, dl
, MVT::i32
);
854 SDValue ImpDef
= SDValue(
855 CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, dl
, MVT::i64
), 0);
856 MachineSDNode
*Node
= CurDAG
->getMachineNode(
857 TargetOpcode::INSERT_SUBREG
, dl
, MVT::i64
, ImpDef
, N
, SubReg
);
858 return SDValue(Node
, 0);
861 /// Check if the given SHL node (\p N), can be used to form an
862 /// extended register for an addressing mode.
863 bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N
, unsigned Size
,
864 bool WantExtend
, SDValue
&Offset
,
865 SDValue
&SignExtend
) {
866 assert(N
.getOpcode() == ISD::SHL
&& "Invalid opcode.");
867 ConstantSDNode
*CSD
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
868 if (!CSD
|| (CSD
->getZExtValue() & 0x7) != CSD
->getZExtValue())
873 AArch64_AM::ShiftExtendType Ext
=
874 getExtendTypeForNode(N
.getOperand(0), true);
875 if (Ext
== AArch64_AM::InvalidShiftExtend
)
878 Offset
= narrowIfNeeded(CurDAG
, N
.getOperand(0).getOperand(0));
879 SignExtend
= CurDAG
->getTargetConstant(Ext
== AArch64_AM::SXTW
, dl
,
882 Offset
= N
.getOperand(0);
883 SignExtend
= CurDAG
->getTargetConstant(0, dl
, MVT::i32
);
886 unsigned LegalShiftVal
= Log2_32(Size
);
887 unsigned ShiftVal
= CSD
->getZExtValue();
889 if (ShiftVal
!= 0 && ShiftVal
!= LegalShiftVal
)
892 return isWorthFolding(N
);
895 bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N
, unsigned Size
,
896 SDValue
&Base
, SDValue
&Offset
,
899 if (N
.getOpcode() != ISD::ADD
)
901 SDValue LHS
= N
.getOperand(0);
902 SDValue RHS
= N
.getOperand(1);
905 // We don't want to match immediate adds here, because they are better lowered
906 // to the register-immediate addressing modes.
907 if (isa
<ConstantSDNode
>(LHS
) || isa
<ConstantSDNode
>(RHS
))
910 // Check if this particular node is reused in any non-memory related
911 // operation. If yes, do not try to fold this node into the address
912 // computation, since the computation will be kept.
913 const SDNode
*Node
= N
.getNode();
914 for (SDNode
*UI
: Node
->uses()) {
915 if (!isa
<MemSDNode
>(*UI
))
919 // Remember if it is worth folding N when it produces extended register.
920 bool IsExtendedRegisterWorthFolding
= isWorthFolding(N
);
922 // Try to match a shifted extend on the RHS.
923 if (IsExtendedRegisterWorthFolding
&& RHS
.getOpcode() == ISD::SHL
&&
924 SelectExtendedSHL(RHS
, Size
, true, Offset
, SignExtend
)) {
926 DoShift
= CurDAG
->getTargetConstant(true, dl
, MVT::i32
);
930 // Try to match a shifted extend on the LHS.
931 if (IsExtendedRegisterWorthFolding
&& LHS
.getOpcode() == ISD::SHL
&&
932 SelectExtendedSHL(LHS
, Size
, true, Offset
, SignExtend
)) {
934 DoShift
= CurDAG
->getTargetConstant(true, dl
, MVT::i32
);
938 // There was no shift, whatever else we find.
939 DoShift
= CurDAG
->getTargetConstant(false, dl
, MVT::i32
);
941 AArch64_AM::ShiftExtendType Ext
= AArch64_AM::InvalidShiftExtend
;
942 // Try to match an unshifted extend on the LHS.
943 if (IsExtendedRegisterWorthFolding
&&
944 (Ext
= getExtendTypeForNode(LHS
, true)) !=
945 AArch64_AM::InvalidShiftExtend
) {
947 Offset
= narrowIfNeeded(CurDAG
, LHS
.getOperand(0));
948 SignExtend
= CurDAG
->getTargetConstant(Ext
== AArch64_AM::SXTW
, dl
,
950 if (isWorthFolding(LHS
))
954 // Try to match an unshifted extend on the RHS.
955 if (IsExtendedRegisterWorthFolding
&&
956 (Ext
= getExtendTypeForNode(RHS
, true)) !=
957 AArch64_AM::InvalidShiftExtend
) {
959 Offset
= narrowIfNeeded(CurDAG
, RHS
.getOperand(0));
960 SignExtend
= CurDAG
->getTargetConstant(Ext
== AArch64_AM::SXTW
, dl
,
962 if (isWorthFolding(RHS
))
969 // Check if the given immediate is preferred by ADD. If an immediate can be
970 // encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be
971 // encoded by one MOVZ, return true.
972 static bool isPreferredADD(int64_t ImmOff
) {
973 // Constant in [0x0, 0xfff] can be encoded in ADD.
974 if ((ImmOff
& 0xfffffffffffff000LL
) == 0x0LL
)
976 // Check if it can be encoded in an "ADD LSL #12".
977 if ((ImmOff
& 0xffffffffff000fffLL
) == 0x0LL
)
978 // As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant.
979 return (ImmOff
& 0xffffffffff00ffffLL
) != 0x0LL
&&
980 (ImmOff
& 0xffffffffffff0fffLL
) != 0x0LL
;
984 bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N
, unsigned Size
,
985 SDValue
&Base
, SDValue
&Offset
,
988 if (N
.getOpcode() != ISD::ADD
)
990 SDValue LHS
= N
.getOperand(0);
991 SDValue RHS
= N
.getOperand(1);
994 // Check if this particular node is reused in any non-memory related
995 // operation. If yes, do not try to fold this node into the address
996 // computation, since the computation will be kept.
997 const SDNode
*Node
= N
.getNode();
998 for (SDNode
*UI
: Node
->uses()) {
999 if (!isa
<MemSDNode
>(*UI
))
1003 // Watch out if RHS is a wide immediate, it can not be selected into
1004 // [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into
1005 // ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate
1006 // instructions like:
1007 // MOV X0, WideImmediate
1008 // ADD X1, BaseReg, X0
1010 // For such situation, using [BaseReg, XReg] addressing mode can save one
1012 // MOV X0, WideImmediate
1013 // LDR X2, [BaseReg, X0]
1014 if (isa
<ConstantSDNode
>(RHS
)) {
1015 int64_t ImmOff
= (int64_t)cast
<ConstantSDNode
>(RHS
)->getZExtValue();
1016 unsigned Scale
= Log2_32(Size
);
1017 // Skip the immediate can be selected by load/store addressing mode.
1018 // Also skip the immediate can be encoded by a single ADD (SUB is also
1019 // checked by using -ImmOff).
1020 if ((ImmOff
% Size
== 0 && ImmOff
>= 0 && ImmOff
< (0x1000 << Scale
)) ||
1021 isPreferredADD(ImmOff
) || isPreferredADD(-ImmOff
))
1024 SDValue Ops
[] = { RHS
};
1026 CurDAG
->getMachineNode(AArch64::MOVi64imm
, DL
, MVT::i64
, Ops
);
1027 SDValue MOVIV
= SDValue(MOVI
, 0);
1028 // This ADD of two X register will be selected into [Reg+Reg] mode.
1029 N
= CurDAG
->getNode(ISD::ADD
, DL
, MVT::i64
, LHS
, MOVIV
);
1032 // Remember if it is worth folding N when it produces extended register.
1033 bool IsExtendedRegisterWorthFolding
= isWorthFolding(N
);
1035 // Try to match a shifted extend on the RHS.
1036 if (IsExtendedRegisterWorthFolding
&& RHS
.getOpcode() == ISD::SHL
&&
1037 SelectExtendedSHL(RHS
, Size
, false, Offset
, SignExtend
)) {
1039 DoShift
= CurDAG
->getTargetConstant(true, DL
, MVT::i32
);
1043 // Try to match a shifted extend on the LHS.
1044 if (IsExtendedRegisterWorthFolding
&& LHS
.getOpcode() == ISD::SHL
&&
1045 SelectExtendedSHL(LHS
, Size
, false, Offset
, SignExtend
)) {
1047 DoShift
= CurDAG
->getTargetConstant(true, DL
, MVT::i32
);
1051 // Match any non-shifted, non-extend, non-immediate add expression.
1054 SignExtend
= CurDAG
->getTargetConstant(false, DL
, MVT::i32
);
1055 DoShift
= CurDAG
->getTargetConstant(false, DL
, MVT::i32
);
1056 // Reg1 + Reg2 is free: no check needed.
1060 SDValue
AArch64DAGToDAGISel::createDTuple(ArrayRef
<SDValue
> Regs
) {
1061 static const unsigned RegClassIDs
[] = {
1062 AArch64::DDRegClassID
, AArch64::DDDRegClassID
, AArch64::DDDDRegClassID
};
1063 static const unsigned SubRegs
[] = {AArch64::dsub0
, AArch64::dsub1
,
1064 AArch64::dsub2
, AArch64::dsub3
};
1066 return createTuple(Regs
, RegClassIDs
, SubRegs
);
1069 SDValue
AArch64DAGToDAGISel::createQTuple(ArrayRef
<SDValue
> Regs
) {
1070 static const unsigned RegClassIDs
[] = {
1071 AArch64::QQRegClassID
, AArch64::QQQRegClassID
, AArch64::QQQQRegClassID
};
1072 static const unsigned SubRegs
[] = {AArch64::qsub0
, AArch64::qsub1
,
1073 AArch64::qsub2
, AArch64::qsub3
};
1075 return createTuple(Regs
, RegClassIDs
, SubRegs
);
1078 SDValue
AArch64DAGToDAGISel::createTuple(ArrayRef
<SDValue
> Regs
,
1079 const unsigned RegClassIDs
[],
1080 const unsigned SubRegs
[]) {
1081 // There's no special register-class for a vector-list of 1 element: it's just
1083 if (Regs
.size() == 1)
1086 assert(Regs
.size() >= 2 && Regs
.size() <= 4);
1090 SmallVector
<SDValue
, 4> Ops
;
1092 // First operand of REG_SEQUENCE is the desired RegClass.
1094 CurDAG
->getTargetConstant(RegClassIDs
[Regs
.size() - 2], DL
, MVT::i32
));
1096 // Then we get pairs of source & subregister-position for the components.
1097 for (unsigned i
= 0; i
< Regs
.size(); ++i
) {
1098 Ops
.push_back(Regs
[i
]);
1099 Ops
.push_back(CurDAG
->getTargetConstant(SubRegs
[i
], DL
, MVT::i32
));
1103 CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, DL
, MVT::Untyped
, Ops
);
1104 return SDValue(N
, 0);
1107 void AArch64DAGToDAGISel::SelectTable(SDNode
*N
, unsigned NumVecs
, unsigned Opc
,
1110 EVT VT
= N
->getValueType(0);
1112 unsigned ExtOff
= isExt
;
1114 // Form a REG_SEQUENCE to force register allocation.
1115 unsigned Vec0Off
= ExtOff
+ 1;
1116 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + Vec0Off
,
1117 N
->op_begin() + Vec0Off
+ NumVecs
);
1118 SDValue RegSeq
= createQTuple(Regs
);
1120 SmallVector
<SDValue
, 6> Ops
;
1122 Ops
.push_back(N
->getOperand(1));
1123 Ops
.push_back(RegSeq
);
1124 Ops
.push_back(N
->getOperand(NumVecs
+ ExtOff
+ 1));
1125 ReplaceNode(N
, CurDAG
->getMachineNode(Opc
, dl
, VT
, Ops
));
1128 bool AArch64DAGToDAGISel::tryIndexedLoad(SDNode
*N
) {
1129 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1130 if (LD
->isUnindexed())
1132 EVT VT
= LD
->getMemoryVT();
1133 EVT DstVT
= N
->getValueType(0);
1134 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
1135 bool IsPre
= AM
== ISD::PRE_INC
|| AM
== ISD::PRE_DEC
;
1137 // We're not doing validity checking here. That was done when checking
1138 // if we should mark the load as indexed or not. We're just selecting
1139 // the right instruction.
1140 unsigned Opcode
= 0;
1142 ISD::LoadExtType ExtType
= LD
->getExtensionType();
1143 bool InsertTo64
= false;
1145 Opcode
= IsPre
? AArch64::LDRXpre
: AArch64::LDRXpost
;
1146 else if (VT
== MVT::i32
) {
1147 if (ExtType
== ISD::NON_EXTLOAD
)
1148 Opcode
= IsPre
? AArch64::LDRWpre
: AArch64::LDRWpost
;
1149 else if (ExtType
== ISD::SEXTLOAD
)
1150 Opcode
= IsPre
? AArch64::LDRSWpre
: AArch64::LDRSWpost
;
1152 Opcode
= IsPre
? AArch64::LDRWpre
: AArch64::LDRWpost
;
1154 // The result of the load is only i32. It's the subreg_to_reg that makes
1158 } else if (VT
== MVT::i16
) {
1159 if (ExtType
== ISD::SEXTLOAD
) {
1160 if (DstVT
== MVT::i64
)
1161 Opcode
= IsPre
? AArch64::LDRSHXpre
: AArch64::LDRSHXpost
;
1163 Opcode
= IsPre
? AArch64::LDRSHWpre
: AArch64::LDRSHWpost
;
1165 Opcode
= IsPre
? AArch64::LDRHHpre
: AArch64::LDRHHpost
;
1166 InsertTo64
= DstVT
== MVT::i64
;
1167 // The result of the load is only i32. It's the subreg_to_reg that makes
1171 } else if (VT
== MVT::i8
) {
1172 if (ExtType
== ISD::SEXTLOAD
) {
1173 if (DstVT
== MVT::i64
)
1174 Opcode
= IsPre
? AArch64::LDRSBXpre
: AArch64::LDRSBXpost
;
1176 Opcode
= IsPre
? AArch64::LDRSBWpre
: AArch64::LDRSBWpost
;
1178 Opcode
= IsPre
? AArch64::LDRBBpre
: AArch64::LDRBBpost
;
1179 InsertTo64
= DstVT
== MVT::i64
;
1180 // The result of the load is only i32. It's the subreg_to_reg that makes
1184 } else if (VT
== MVT::f16
) {
1185 Opcode
= IsPre
? AArch64::LDRHpre
: AArch64::LDRHpost
;
1186 } else if (VT
== MVT::f32
) {
1187 Opcode
= IsPre
? AArch64::LDRSpre
: AArch64::LDRSpost
;
1188 } else if (VT
== MVT::f64
|| VT
.is64BitVector()) {
1189 Opcode
= IsPre
? AArch64::LDRDpre
: AArch64::LDRDpost
;
1190 } else if (VT
.is128BitVector()) {
1191 Opcode
= IsPre
? AArch64::LDRQpre
: AArch64::LDRQpost
;
1194 SDValue Chain
= LD
->getChain();
1195 SDValue Base
= LD
->getBasePtr();
1196 ConstantSDNode
*OffsetOp
= cast
<ConstantSDNode
>(LD
->getOffset());
1197 int OffsetVal
= (int)OffsetOp
->getZExtValue();
1199 SDValue Offset
= CurDAG
->getTargetConstant(OffsetVal
, dl
, MVT::i64
);
1200 SDValue Ops
[] = { Base
, Offset
, Chain
};
1201 SDNode
*Res
= CurDAG
->getMachineNode(Opcode
, dl
, MVT::i64
, DstVT
,
1203 // Either way, we're replacing the node, so tell the caller that.
1204 SDValue LoadedVal
= SDValue(Res
, 1);
1206 SDValue SubReg
= CurDAG
->getTargetConstant(AArch64::sub_32
, dl
, MVT::i32
);
1208 SDValue(CurDAG
->getMachineNode(
1209 AArch64::SUBREG_TO_REG
, dl
, MVT::i64
,
1210 CurDAG
->getTargetConstant(0, dl
, MVT::i64
), LoadedVal
,
1215 ReplaceUses(SDValue(N
, 0), LoadedVal
);
1216 ReplaceUses(SDValue(N
, 1), SDValue(Res
, 0));
1217 ReplaceUses(SDValue(N
, 2), SDValue(Res
, 2));
1218 CurDAG
->RemoveDeadNode(N
);
1222 void AArch64DAGToDAGISel::SelectLoad(SDNode
*N
, unsigned NumVecs
, unsigned Opc
,
1223 unsigned SubRegIdx
) {
1225 EVT VT
= N
->getValueType(0);
1226 SDValue Chain
= N
->getOperand(0);
1228 SDValue Ops
[] = {N
->getOperand(2), // Mem operand;
1231 const EVT ResTys
[] = {MVT::Untyped
, MVT::Other
};
1233 SDNode
*Ld
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1234 SDValue SuperReg
= SDValue(Ld
, 0);
1235 for (unsigned i
= 0; i
< NumVecs
; ++i
)
1236 ReplaceUses(SDValue(N
, i
),
1237 CurDAG
->getTargetExtractSubreg(SubRegIdx
+ i
, dl
, VT
, SuperReg
));
1239 ReplaceUses(SDValue(N
, NumVecs
), SDValue(Ld
, 1));
1241 // Transfer memoperands.
1242 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
1243 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(Ld
), {MemOp
});
1245 CurDAG
->RemoveDeadNode(N
);
1248 void AArch64DAGToDAGISel::SelectPostLoad(SDNode
*N
, unsigned NumVecs
,
1249 unsigned Opc
, unsigned SubRegIdx
) {
1251 EVT VT
= N
->getValueType(0);
1252 SDValue Chain
= N
->getOperand(0);
1254 SDValue Ops
[] = {N
->getOperand(1), // Mem operand
1255 N
->getOperand(2), // Incremental
1258 const EVT ResTys
[] = {MVT::i64
, // Type of the write back register
1259 MVT::Untyped
, MVT::Other
};
1261 SDNode
*Ld
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1263 // Update uses of write back register
1264 ReplaceUses(SDValue(N
, NumVecs
), SDValue(Ld
, 0));
1266 // Update uses of vector list
1267 SDValue SuperReg
= SDValue(Ld
, 1);
1269 ReplaceUses(SDValue(N
, 0), SuperReg
);
1271 for (unsigned i
= 0; i
< NumVecs
; ++i
)
1272 ReplaceUses(SDValue(N
, i
),
1273 CurDAG
->getTargetExtractSubreg(SubRegIdx
+ i
, dl
, VT
, SuperReg
));
1276 ReplaceUses(SDValue(N
, NumVecs
+ 1), SDValue(Ld
, 2));
1277 CurDAG
->RemoveDeadNode(N
);
1280 void AArch64DAGToDAGISel::SelectStore(SDNode
*N
, unsigned NumVecs
,
1283 EVT VT
= N
->getOperand(2)->getValueType(0);
1285 // Form a REG_SEQUENCE to force register allocation.
1286 bool Is128Bit
= VT
.getSizeInBits() == 128;
1287 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 2, N
->op_begin() + 2 + NumVecs
);
1288 SDValue RegSeq
= Is128Bit
? createQTuple(Regs
) : createDTuple(Regs
);
1290 SDValue Ops
[] = {RegSeq
, N
->getOperand(NumVecs
+ 2), N
->getOperand(0)};
1291 SDNode
*St
= CurDAG
->getMachineNode(Opc
, dl
, N
->getValueType(0), Ops
);
1293 // Transfer memoperands.
1294 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
1295 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(St
), {MemOp
});
1300 void AArch64DAGToDAGISel::SelectPostStore(SDNode
*N
, unsigned NumVecs
,
1303 EVT VT
= N
->getOperand(2)->getValueType(0);
1304 const EVT ResTys
[] = {MVT::i64
, // Type of the write back register
1305 MVT::Other
}; // Type for the Chain
1307 // Form a REG_SEQUENCE to force register allocation.
1308 bool Is128Bit
= VT
.getSizeInBits() == 128;
1309 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 1, N
->op_begin() + 1 + NumVecs
);
1310 SDValue RegSeq
= Is128Bit
? createQTuple(Regs
) : createDTuple(Regs
);
1312 SDValue Ops
[] = {RegSeq
,
1313 N
->getOperand(NumVecs
+ 1), // base register
1314 N
->getOperand(NumVecs
+ 2), // Incremental
1315 N
->getOperand(0)}; // Chain
1316 SDNode
*St
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1322 /// WidenVector - Given a value in the V64 register class, produce the
1323 /// equivalent value in the V128 register class.
1328 WidenVector(SelectionDAG
&DAG
) : DAG(DAG
) {}
1330 SDValue
operator()(SDValue V64Reg
) {
1331 EVT VT
= V64Reg
.getValueType();
1332 unsigned NarrowSize
= VT
.getVectorNumElements();
1333 MVT EltTy
= VT
.getVectorElementType().getSimpleVT();
1334 MVT WideTy
= MVT::getVectorVT(EltTy
, 2 * NarrowSize
);
1338 SDValue(DAG
.getMachineNode(TargetOpcode::IMPLICIT_DEF
, DL
, WideTy
), 0);
1339 return DAG
.getTargetInsertSubreg(AArch64::dsub
, DL
, WideTy
, Undef
, V64Reg
);
1344 /// NarrowVector - Given a value in the V128 register class, produce the
1345 /// equivalent value in the V64 register class.
1346 static SDValue
NarrowVector(SDValue V128Reg
, SelectionDAG
&DAG
) {
1347 EVT VT
= V128Reg
.getValueType();
1348 unsigned WideSize
= VT
.getVectorNumElements();
1349 MVT EltTy
= VT
.getVectorElementType().getSimpleVT();
1350 MVT NarrowTy
= MVT::getVectorVT(EltTy
, WideSize
/ 2);
1352 return DAG
.getTargetExtractSubreg(AArch64::dsub
, SDLoc(V128Reg
), NarrowTy
,
1356 void AArch64DAGToDAGISel::SelectLoadLane(SDNode
*N
, unsigned NumVecs
,
1359 EVT VT
= N
->getValueType(0);
1360 bool Narrow
= VT
.getSizeInBits() == 64;
1362 // Form a REG_SEQUENCE to force register allocation.
1363 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 2, N
->op_begin() + 2 + NumVecs
);
1366 transform(Regs
, Regs
.begin(),
1367 WidenVector(*CurDAG
));
1369 SDValue RegSeq
= createQTuple(Regs
);
1371 const EVT ResTys
[] = {MVT::Untyped
, MVT::Other
};
1374 cast
<ConstantSDNode
>(N
->getOperand(NumVecs
+ 2))->getZExtValue();
1376 SDValue Ops
[] = {RegSeq
, CurDAG
->getTargetConstant(LaneNo
, dl
, MVT::i64
),
1377 N
->getOperand(NumVecs
+ 3), N
->getOperand(0)};
1378 SDNode
*Ld
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1379 SDValue SuperReg
= SDValue(Ld
, 0);
1381 EVT WideVT
= RegSeq
.getOperand(1)->getValueType(0);
1382 static const unsigned QSubs
[] = { AArch64::qsub0
, AArch64::qsub1
,
1383 AArch64::qsub2
, AArch64::qsub3
};
1384 for (unsigned i
= 0; i
< NumVecs
; ++i
) {
1385 SDValue NV
= CurDAG
->getTargetExtractSubreg(QSubs
[i
], dl
, WideVT
, SuperReg
);
1387 NV
= NarrowVector(NV
, *CurDAG
);
1388 ReplaceUses(SDValue(N
, i
), NV
);
1391 ReplaceUses(SDValue(N
, NumVecs
), SDValue(Ld
, 1));
1392 CurDAG
->RemoveDeadNode(N
);
1395 void AArch64DAGToDAGISel::SelectPostLoadLane(SDNode
*N
, unsigned NumVecs
,
1398 EVT VT
= N
->getValueType(0);
1399 bool Narrow
= VT
.getSizeInBits() == 64;
1401 // Form a REG_SEQUENCE to force register allocation.
1402 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 1, N
->op_begin() + 1 + NumVecs
);
1405 transform(Regs
, Regs
.begin(),
1406 WidenVector(*CurDAG
));
1408 SDValue RegSeq
= createQTuple(Regs
);
1410 const EVT ResTys
[] = {MVT::i64
, // Type of the write back register
1411 RegSeq
->getValueType(0), MVT::Other
};
1414 cast
<ConstantSDNode
>(N
->getOperand(NumVecs
+ 1))->getZExtValue();
1416 SDValue Ops
[] = {RegSeq
,
1417 CurDAG
->getTargetConstant(LaneNo
, dl
,
1418 MVT::i64
), // Lane Number
1419 N
->getOperand(NumVecs
+ 2), // Base register
1420 N
->getOperand(NumVecs
+ 3), // Incremental
1422 SDNode
*Ld
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1424 // Update uses of the write back register
1425 ReplaceUses(SDValue(N
, NumVecs
), SDValue(Ld
, 0));
1427 // Update uses of the vector list
1428 SDValue SuperReg
= SDValue(Ld
, 1);
1430 ReplaceUses(SDValue(N
, 0),
1431 Narrow
? NarrowVector(SuperReg
, *CurDAG
) : SuperReg
);
1433 EVT WideVT
= RegSeq
.getOperand(1)->getValueType(0);
1434 static const unsigned QSubs
[] = { AArch64::qsub0
, AArch64::qsub1
,
1435 AArch64::qsub2
, AArch64::qsub3
};
1436 for (unsigned i
= 0; i
< NumVecs
; ++i
) {
1437 SDValue NV
= CurDAG
->getTargetExtractSubreg(QSubs
[i
], dl
, WideVT
,
1440 NV
= NarrowVector(NV
, *CurDAG
);
1441 ReplaceUses(SDValue(N
, i
), NV
);
1446 ReplaceUses(SDValue(N
, NumVecs
+ 1), SDValue(Ld
, 2));
1447 CurDAG
->RemoveDeadNode(N
);
1450 void AArch64DAGToDAGISel::SelectStoreLane(SDNode
*N
, unsigned NumVecs
,
1453 EVT VT
= N
->getOperand(2)->getValueType(0);
1454 bool Narrow
= VT
.getSizeInBits() == 64;
1456 // Form a REG_SEQUENCE to force register allocation.
1457 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 2, N
->op_begin() + 2 + NumVecs
);
1460 transform(Regs
, Regs
.begin(),
1461 WidenVector(*CurDAG
));
1463 SDValue RegSeq
= createQTuple(Regs
);
1466 cast
<ConstantSDNode
>(N
->getOperand(NumVecs
+ 2))->getZExtValue();
1468 SDValue Ops
[] = {RegSeq
, CurDAG
->getTargetConstant(LaneNo
, dl
, MVT::i64
),
1469 N
->getOperand(NumVecs
+ 3), N
->getOperand(0)};
1470 SDNode
*St
= CurDAG
->getMachineNode(Opc
, dl
, MVT::Other
, Ops
);
1472 // Transfer memoperands.
1473 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
1474 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(St
), {MemOp
});
1479 void AArch64DAGToDAGISel::SelectPostStoreLane(SDNode
*N
, unsigned NumVecs
,
1482 EVT VT
= N
->getOperand(2)->getValueType(0);
1483 bool Narrow
= VT
.getSizeInBits() == 64;
1485 // Form a REG_SEQUENCE to force register allocation.
1486 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 1, N
->op_begin() + 1 + NumVecs
);
1489 transform(Regs
, Regs
.begin(),
1490 WidenVector(*CurDAG
));
1492 SDValue RegSeq
= createQTuple(Regs
);
1494 const EVT ResTys
[] = {MVT::i64
, // Type of the write back register
1498 cast
<ConstantSDNode
>(N
->getOperand(NumVecs
+ 1))->getZExtValue();
1500 SDValue Ops
[] = {RegSeq
, CurDAG
->getTargetConstant(LaneNo
, dl
, MVT::i64
),
1501 N
->getOperand(NumVecs
+ 2), // Base Register
1502 N
->getOperand(NumVecs
+ 3), // Incremental
1504 SDNode
*St
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1506 // Transfer memoperands.
1507 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
1508 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(St
), {MemOp
});
1513 static bool isBitfieldExtractOpFromAnd(SelectionDAG
*CurDAG
, SDNode
*N
,
1514 unsigned &Opc
, SDValue
&Opd0
,
1515 unsigned &LSB
, unsigned &MSB
,
1516 unsigned NumberOfIgnoredLowBits
,
1517 bool BiggerPattern
) {
1518 assert(N
->getOpcode() == ISD::AND
&&
1519 "N must be a AND operation to call this function");
1521 EVT VT
= N
->getValueType(0);
1523 // Here we can test the type of VT and return false when the type does not
1524 // match, but since it is done prior to that call in the current context
1525 // we turned that into an assert to avoid redundant code.
1526 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
1527 "Type checking must have been done before calling this function");
1529 // FIXME: simplify-demanded-bits in DAGCombine will probably have
1530 // changed the AND node to a 32-bit mask operation. We'll have to
1531 // undo that as part of the transform here if we want to catch all
1532 // the opportunities.
1533 // Currently the NumberOfIgnoredLowBits argument helps to recover
1534 // form these situations when matching bigger pattern (bitfield insert).
1536 // For unsigned extracts, check for a shift right and mask
1537 uint64_t AndImm
= 0;
1538 if (!isOpcWithIntImmediate(N
, ISD::AND
, AndImm
))
1541 const SDNode
*Op0
= N
->getOperand(0).getNode();
1543 // Because of simplify-demanded-bits in DAGCombine, the mask may have been
1544 // simplified. Try to undo that
1545 AndImm
|= maskTrailingOnes
<uint64_t>(NumberOfIgnoredLowBits
);
1547 // The immediate is a mask of the low bits iff imm & (imm+1) == 0
1548 if (AndImm
& (AndImm
+ 1))
1551 bool ClampMSB
= false;
1552 uint64_t SrlImm
= 0;
1553 // Handle the SRL + ANY_EXTEND case.
1554 if (VT
== MVT::i64
&& Op0
->getOpcode() == ISD::ANY_EXTEND
&&
1555 isOpcWithIntImmediate(Op0
->getOperand(0).getNode(), ISD::SRL
, SrlImm
)) {
1556 // Extend the incoming operand of the SRL to 64-bit.
1557 Opd0
= Widen(CurDAG
, Op0
->getOperand(0).getOperand(0));
1558 // Make sure to clamp the MSB so that we preserve the semantics of the
1559 // original operations.
1561 } else if (VT
== MVT::i32
&& Op0
->getOpcode() == ISD::TRUNCATE
&&
1562 isOpcWithIntImmediate(Op0
->getOperand(0).getNode(), ISD::SRL
,
1564 // If the shift result was truncated, we can still combine them.
1565 Opd0
= Op0
->getOperand(0).getOperand(0);
1567 // Use the type of SRL node.
1568 VT
= Opd0
->getValueType(0);
1569 } else if (isOpcWithIntImmediate(Op0
, ISD::SRL
, SrlImm
)) {
1570 Opd0
= Op0
->getOperand(0);
1571 } else if (BiggerPattern
) {
1572 // Let's pretend a 0 shift right has been performed.
1573 // The resulting code will be at least as good as the original one
1574 // plus it may expose more opportunities for bitfield insert pattern.
1575 // FIXME: Currently we limit this to the bigger pattern, because
1576 // some optimizations expect AND and not UBFM.
1577 Opd0
= N
->getOperand(0);
1581 // Bail out on large immediates. This happens when no proper
1582 // combining/constant folding was performed.
1583 if (!BiggerPattern
&& (SrlImm
<= 0 || SrlImm
>= VT
.getSizeInBits())) {
1586 << ": Found large shift immediate, this should not happen\n"));
1591 MSB
= SrlImm
+ (VT
== MVT::i32
? countTrailingOnes
<uint32_t>(AndImm
)
1592 : countTrailingOnes
<uint64_t>(AndImm
)) -
1595 // Since we're moving the extend before the right shift operation, we need
1596 // to clamp the MSB to make sure we don't shift in undefined bits instead of
1597 // the zeros which would get shifted in with the original right shift
1599 MSB
= MSB
> 31 ? 31 : MSB
;
1601 Opc
= VT
== MVT::i32
? AArch64::UBFMWri
: AArch64::UBFMXri
;
1605 static bool isBitfieldExtractOpFromSExtInReg(SDNode
*N
, unsigned &Opc
,
1606 SDValue
&Opd0
, unsigned &Immr
,
1608 assert(N
->getOpcode() == ISD::SIGN_EXTEND_INREG
);
1610 EVT VT
= N
->getValueType(0);
1611 unsigned BitWidth
= VT
.getSizeInBits();
1612 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
1613 "Type checking must have been done before calling this function");
1615 SDValue Op
= N
->getOperand(0);
1616 if (Op
->getOpcode() == ISD::TRUNCATE
) {
1617 Op
= Op
->getOperand(0);
1618 VT
= Op
->getValueType(0);
1619 BitWidth
= VT
.getSizeInBits();
1623 if (!isOpcWithIntImmediate(Op
.getNode(), ISD::SRL
, ShiftImm
) &&
1624 !isOpcWithIntImmediate(Op
.getNode(), ISD::SRA
, ShiftImm
))
1627 unsigned Width
= cast
<VTSDNode
>(N
->getOperand(1))->getVT().getSizeInBits();
1628 if (ShiftImm
+ Width
> BitWidth
)
1631 Opc
= (VT
== MVT::i32
) ? AArch64::SBFMWri
: AArch64::SBFMXri
;
1632 Opd0
= Op
.getOperand(0);
1634 Imms
= ShiftImm
+ Width
- 1;
1638 static bool isSeveralBitsExtractOpFromShr(SDNode
*N
, unsigned &Opc
,
1639 SDValue
&Opd0
, unsigned &LSB
,
1641 // We are looking for the following pattern which basically extracts several
1642 // continuous bits from the source value and places it from the LSB of the
1643 // destination value, all other bits of the destination value or set to zero:
1645 // Value2 = AND Value, MaskImm
1646 // SRL Value2, ShiftImm
1648 // with MaskImm >> ShiftImm to search for the bit width.
1650 // This gets selected into a single UBFM:
1652 // UBFM Value, ShiftImm, BitWide + SrlImm -1
1655 if (N
->getOpcode() != ISD::SRL
)
1658 uint64_t AndMask
= 0;
1659 if (!isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::AND
, AndMask
))
1662 Opd0
= N
->getOperand(0).getOperand(0);
1664 uint64_t SrlImm
= 0;
1665 if (!isIntImmediate(N
->getOperand(1), SrlImm
))
1668 // Check whether we really have several bits extract here.
1669 unsigned BitWide
= 64 - countLeadingOnes(~(AndMask
>> SrlImm
));
1670 if (BitWide
&& isMask_64(AndMask
>> SrlImm
)) {
1671 if (N
->getValueType(0) == MVT::i32
)
1672 Opc
= AArch64::UBFMWri
;
1674 Opc
= AArch64::UBFMXri
;
1677 MSB
= BitWide
+ SrlImm
- 1;
1684 static bool isBitfieldExtractOpFromShr(SDNode
*N
, unsigned &Opc
, SDValue
&Opd0
,
1685 unsigned &Immr
, unsigned &Imms
,
1686 bool BiggerPattern
) {
1687 assert((N
->getOpcode() == ISD::SRA
|| N
->getOpcode() == ISD::SRL
) &&
1688 "N must be a SHR/SRA operation to call this function");
1690 EVT VT
= N
->getValueType(0);
1692 // Here we can test the type of VT and return false when the type does not
1693 // match, but since it is done prior to that call in the current context
1694 // we turned that into an assert to avoid redundant code.
1695 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
1696 "Type checking must have been done before calling this function");
1698 // Check for AND + SRL doing several bits extract.
1699 if (isSeveralBitsExtractOpFromShr(N
, Opc
, Opd0
, Immr
, Imms
))
1702 // We're looking for a shift of a shift.
1703 uint64_t ShlImm
= 0;
1704 uint64_t TruncBits
= 0;
1705 if (isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::SHL
, ShlImm
)) {
1706 Opd0
= N
->getOperand(0).getOperand(0);
1707 } else if (VT
== MVT::i32
&& N
->getOpcode() == ISD::SRL
&&
1708 N
->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE
) {
1709 // We are looking for a shift of truncate. Truncate from i64 to i32 could
1710 // be considered as setting high 32 bits as zero. Our strategy here is to
1711 // always generate 64bit UBFM. This consistency will help the CSE pass
1712 // later find more redundancy.
1713 Opd0
= N
->getOperand(0).getOperand(0);
1714 TruncBits
= Opd0
->getValueType(0).getSizeInBits() - VT
.getSizeInBits();
1715 VT
= Opd0
.getValueType();
1716 assert(VT
== MVT::i64
&& "the promoted type should be i64");
1717 } else if (BiggerPattern
) {
1718 // Let's pretend a 0 shift left has been performed.
1719 // FIXME: Currently we limit this to the bigger pattern case,
1720 // because some optimizations expect AND and not UBFM
1721 Opd0
= N
->getOperand(0);
1725 // Missing combines/constant folding may have left us with strange
1727 if (ShlImm
>= VT
.getSizeInBits()) {
1730 << ": Found large shift immediate, this should not happen\n"));
1734 uint64_t SrlImm
= 0;
1735 if (!isIntImmediate(N
->getOperand(1), SrlImm
))
1738 assert(SrlImm
> 0 && SrlImm
< VT
.getSizeInBits() &&
1739 "bad amount in shift node!");
1740 int immr
= SrlImm
- ShlImm
;
1741 Immr
= immr
< 0 ? immr
+ VT
.getSizeInBits() : immr
;
1742 Imms
= VT
.getSizeInBits() - ShlImm
- TruncBits
- 1;
1743 // SRA requires a signed extraction
1745 Opc
= N
->getOpcode() == ISD::SRA
? AArch64::SBFMWri
: AArch64::UBFMWri
;
1747 Opc
= N
->getOpcode() == ISD::SRA
? AArch64::SBFMXri
: AArch64::UBFMXri
;
1751 bool AArch64DAGToDAGISel::tryBitfieldExtractOpFromSExt(SDNode
*N
) {
1752 assert(N
->getOpcode() == ISD::SIGN_EXTEND
);
1754 EVT VT
= N
->getValueType(0);
1755 EVT NarrowVT
= N
->getOperand(0)->getValueType(0);
1756 if (VT
!= MVT::i64
|| NarrowVT
!= MVT::i32
)
1760 SDValue Op
= N
->getOperand(0);
1761 if (!isOpcWithIntImmediate(Op
.getNode(), ISD::SRA
, ShiftImm
))
1765 // Extend the incoming operand of the shift to 64-bits.
1766 SDValue Opd0
= Widen(CurDAG
, Op
.getOperand(0));
1767 unsigned Immr
= ShiftImm
;
1768 unsigned Imms
= NarrowVT
.getSizeInBits() - 1;
1769 SDValue Ops
[] = {Opd0
, CurDAG
->getTargetConstant(Immr
, dl
, VT
),
1770 CurDAG
->getTargetConstant(Imms
, dl
, VT
)};
1771 CurDAG
->SelectNodeTo(N
, AArch64::SBFMXri
, VT
, Ops
);
1775 static bool isBitfieldExtractOp(SelectionDAG
*CurDAG
, SDNode
*N
, unsigned &Opc
,
1776 SDValue
&Opd0
, unsigned &Immr
, unsigned &Imms
,
1777 unsigned NumberOfIgnoredLowBits
= 0,
1778 bool BiggerPattern
= false) {
1779 if (N
->getValueType(0) != MVT::i32
&& N
->getValueType(0) != MVT::i64
)
1782 switch (N
->getOpcode()) {
1784 if (!N
->isMachineOpcode())
1788 return isBitfieldExtractOpFromAnd(CurDAG
, N
, Opc
, Opd0
, Immr
, Imms
,
1789 NumberOfIgnoredLowBits
, BiggerPattern
);
1792 return isBitfieldExtractOpFromShr(N
, Opc
, Opd0
, Immr
, Imms
, BiggerPattern
);
1794 case ISD::SIGN_EXTEND_INREG
:
1795 return isBitfieldExtractOpFromSExtInReg(N
, Opc
, Opd0
, Immr
, Imms
);
1798 unsigned NOpc
= N
->getMachineOpcode();
1802 case AArch64::SBFMWri
:
1803 case AArch64::UBFMWri
:
1804 case AArch64::SBFMXri
:
1805 case AArch64::UBFMXri
:
1807 Opd0
= N
->getOperand(0);
1808 Immr
= cast
<ConstantSDNode
>(N
->getOperand(1).getNode())->getZExtValue();
1809 Imms
= cast
<ConstantSDNode
>(N
->getOperand(2).getNode())->getZExtValue();
1816 bool AArch64DAGToDAGISel::tryBitfieldExtractOp(SDNode
*N
) {
1817 unsigned Opc
, Immr
, Imms
;
1819 if (!isBitfieldExtractOp(CurDAG
, N
, Opc
, Opd0
, Immr
, Imms
))
1822 EVT VT
= N
->getValueType(0);
1825 // If the bit extract operation is 64bit but the original type is 32bit, we
1826 // need to add one EXTRACT_SUBREG.
1827 if ((Opc
== AArch64::SBFMXri
|| Opc
== AArch64::UBFMXri
) && VT
== MVT::i32
) {
1828 SDValue Ops64
[] = {Opd0
, CurDAG
->getTargetConstant(Immr
, dl
, MVT::i64
),
1829 CurDAG
->getTargetConstant(Imms
, dl
, MVT::i64
)};
1831 SDNode
*BFM
= CurDAG
->getMachineNode(Opc
, dl
, MVT::i64
, Ops64
);
1832 SDValue SubReg
= CurDAG
->getTargetConstant(AArch64::sub_32
, dl
, MVT::i32
);
1833 ReplaceNode(N
, CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
, dl
,
1834 MVT::i32
, SDValue(BFM
, 0), SubReg
));
1838 SDValue Ops
[] = {Opd0
, CurDAG
->getTargetConstant(Immr
, dl
, VT
),
1839 CurDAG
->getTargetConstant(Imms
, dl
, VT
)};
1840 CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
);
1844 /// Does DstMask form a complementary pair with the mask provided by
1845 /// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
1846 /// this asks whether DstMask zeroes precisely those bits that will be set by
1848 static bool isBitfieldDstMask(uint64_t DstMask
, const APInt
&BitsToBeInserted
,
1849 unsigned NumberOfIgnoredHighBits
, EVT VT
) {
1850 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
1851 "i32 or i64 mask type expected!");
1852 unsigned BitWidth
= VT
.getSizeInBits() - NumberOfIgnoredHighBits
;
1854 APInt SignificantDstMask
= APInt(BitWidth
, DstMask
);
1855 APInt SignificantBitsToBeInserted
= BitsToBeInserted
.zextOrTrunc(BitWidth
);
1857 return (SignificantDstMask
& SignificantBitsToBeInserted
) == 0 &&
1858 (SignificantDstMask
| SignificantBitsToBeInserted
).isAllOnesValue();
1861 // Look for bits that will be useful for later uses.
1862 // A bit is consider useless as soon as it is dropped and never used
1863 // before it as been dropped.
1864 // E.g., looking for useful bit of x
1867 // After #1, x useful bits are 0x7, then the useful bits of x, live through
1869 // After #2, the useful bits of x are 0x4.
1870 // However, if x is used on an unpredicatable instruction, then all its bits
1876 static void getUsefulBits(SDValue Op
, APInt
&UsefulBits
, unsigned Depth
= 0);
1878 static void getUsefulBitsFromAndWithImmediate(SDValue Op
, APInt
&UsefulBits
,
1881 cast
<const ConstantSDNode
>(Op
.getOperand(1).getNode())->getZExtValue();
1882 Imm
= AArch64_AM::decodeLogicalImmediate(Imm
, UsefulBits
.getBitWidth());
1883 UsefulBits
&= APInt(UsefulBits
.getBitWidth(), Imm
);
1884 getUsefulBits(Op
, UsefulBits
, Depth
+ 1);
1887 static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op
, APInt
&UsefulBits
,
1888 uint64_t Imm
, uint64_t MSB
,
1890 // inherit the bitwidth value
1891 APInt
OpUsefulBits(UsefulBits
);
1895 OpUsefulBits
<<= MSB
- Imm
+ 1;
1897 // The interesting part will be in the lower part of the result
1898 getUsefulBits(Op
, OpUsefulBits
, Depth
+ 1);
1899 // The interesting part was starting at Imm in the argument
1900 OpUsefulBits
<<= Imm
;
1902 OpUsefulBits
<<= MSB
+ 1;
1904 // The interesting part will be shifted in the result
1905 OpUsefulBits
<<= OpUsefulBits
.getBitWidth() - Imm
;
1906 getUsefulBits(Op
, OpUsefulBits
, Depth
+ 1);
1907 // The interesting part was at zero in the argument
1908 OpUsefulBits
.lshrInPlace(OpUsefulBits
.getBitWidth() - Imm
);
1911 UsefulBits
&= OpUsefulBits
;
1914 static void getUsefulBitsFromUBFM(SDValue Op
, APInt
&UsefulBits
,
1917 cast
<const ConstantSDNode
>(Op
.getOperand(1).getNode())->getZExtValue();
1919 cast
<const ConstantSDNode
>(Op
.getOperand(2).getNode())->getZExtValue();
1921 getUsefulBitsFromBitfieldMoveOpd(Op
, UsefulBits
, Imm
, MSB
, Depth
);
1924 static void getUsefulBitsFromOrWithShiftedReg(SDValue Op
, APInt
&UsefulBits
,
1926 uint64_t ShiftTypeAndValue
=
1927 cast
<const ConstantSDNode
>(Op
.getOperand(2).getNode())->getZExtValue();
1928 APInt
Mask(UsefulBits
);
1929 Mask
.clearAllBits();
1932 if (AArch64_AM::getShiftType(ShiftTypeAndValue
) == AArch64_AM::LSL
) {
1934 uint64_t ShiftAmt
= AArch64_AM::getShiftValue(ShiftTypeAndValue
);
1936 getUsefulBits(Op
, Mask
, Depth
+ 1);
1937 Mask
.lshrInPlace(ShiftAmt
);
1938 } else if (AArch64_AM::getShiftType(ShiftTypeAndValue
) == AArch64_AM::LSR
) {
1940 // We do not handle AArch64_AM::ASR, because the sign will change the
1941 // number of useful bits
1942 uint64_t ShiftAmt
= AArch64_AM::getShiftValue(ShiftTypeAndValue
);
1943 Mask
.lshrInPlace(ShiftAmt
);
1944 getUsefulBits(Op
, Mask
, Depth
+ 1);
1952 static void getUsefulBitsFromBFM(SDValue Op
, SDValue Orig
, APInt
&UsefulBits
,
1955 cast
<const ConstantSDNode
>(Op
.getOperand(2).getNode())->getZExtValue();
1957 cast
<const ConstantSDNode
>(Op
.getOperand(3).getNode())->getZExtValue();
1959 APInt
OpUsefulBits(UsefulBits
);
1962 APInt
ResultUsefulBits(UsefulBits
.getBitWidth(), 0);
1963 ResultUsefulBits
.flipAllBits();
1964 APInt
Mask(UsefulBits
.getBitWidth(), 0);
1966 getUsefulBits(Op
, ResultUsefulBits
, Depth
+ 1);
1969 // The instruction is a BFXIL.
1970 uint64_t Width
= MSB
- Imm
+ 1;
1973 OpUsefulBits
<<= Width
;
1976 if (Op
.getOperand(1) == Orig
) {
1977 // Copy the low bits from the result to bits starting from LSB.
1978 Mask
= ResultUsefulBits
& OpUsefulBits
;
1982 if (Op
.getOperand(0) == Orig
)
1983 // Bits starting from LSB in the input contribute to the result.
1984 Mask
|= (ResultUsefulBits
& ~OpUsefulBits
);
1986 // The instruction is a BFI.
1987 uint64_t Width
= MSB
+ 1;
1988 uint64_t LSB
= UsefulBits
.getBitWidth() - Imm
;
1990 OpUsefulBits
<<= Width
;
1992 OpUsefulBits
<<= LSB
;
1994 if (Op
.getOperand(1) == Orig
) {
1995 // Copy the bits from the result to the zero bits.
1996 Mask
= ResultUsefulBits
& OpUsefulBits
;
1997 Mask
.lshrInPlace(LSB
);
2000 if (Op
.getOperand(0) == Orig
)
2001 Mask
|= (ResultUsefulBits
& ~OpUsefulBits
);
2007 static void getUsefulBitsForUse(SDNode
*UserNode
, APInt
&UsefulBits
,
2008 SDValue Orig
, unsigned Depth
) {
2010 // Users of this node should have already been instruction selected
2011 // FIXME: Can we turn that into an assert?
2012 if (!UserNode
->isMachineOpcode())
2015 switch (UserNode
->getMachineOpcode()) {
2018 case AArch64::ANDSWri
:
2019 case AArch64::ANDSXri
:
2020 case AArch64::ANDWri
:
2021 case AArch64::ANDXri
:
2022 // We increment Depth only when we call the getUsefulBits
2023 return getUsefulBitsFromAndWithImmediate(SDValue(UserNode
, 0), UsefulBits
,
2025 case AArch64::UBFMWri
:
2026 case AArch64::UBFMXri
:
2027 return getUsefulBitsFromUBFM(SDValue(UserNode
, 0), UsefulBits
, Depth
);
2029 case AArch64::ORRWrs
:
2030 case AArch64::ORRXrs
:
2031 if (UserNode
->getOperand(1) != Orig
)
2033 return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode
, 0), UsefulBits
,
2035 case AArch64::BFMWri
:
2036 case AArch64::BFMXri
:
2037 return getUsefulBitsFromBFM(SDValue(UserNode
, 0), Orig
, UsefulBits
, Depth
);
2039 case AArch64::STRBBui
:
2040 case AArch64::STURBBi
:
2041 if (UserNode
->getOperand(0) != Orig
)
2043 UsefulBits
&= APInt(UsefulBits
.getBitWidth(), 0xff);
2046 case AArch64::STRHHui
:
2047 case AArch64::STURHHi
:
2048 if (UserNode
->getOperand(0) != Orig
)
2050 UsefulBits
&= APInt(UsefulBits
.getBitWidth(), 0xffff);
2055 static void getUsefulBits(SDValue Op
, APInt
&UsefulBits
, unsigned Depth
) {
2058 // Initialize UsefulBits
2060 unsigned Bitwidth
= Op
.getScalarValueSizeInBits();
2061 // At the beginning, assume every produced bits is useful
2062 UsefulBits
= APInt(Bitwidth
, 0);
2063 UsefulBits
.flipAllBits();
2065 APInt
UsersUsefulBits(UsefulBits
.getBitWidth(), 0);
2067 for (SDNode
*Node
: Op
.getNode()->uses()) {
2068 // A use cannot produce useful bits
2069 APInt UsefulBitsForUse
= APInt(UsefulBits
);
2070 getUsefulBitsForUse(Node
, UsefulBitsForUse
, Op
, Depth
);
2071 UsersUsefulBits
|= UsefulBitsForUse
;
2073 // UsefulBits contains the produced bits that are meaningful for the
2074 // current definition, thus a user cannot make a bit meaningful at
2076 UsefulBits
&= UsersUsefulBits
;
2079 /// Create a machine node performing a notional SHL of Op by ShlAmount. If
2080 /// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
2081 /// 0, return Op unchanged.
2082 static SDValue
getLeftShift(SelectionDAG
*CurDAG
, SDValue Op
, int ShlAmount
) {
2086 EVT VT
= Op
.getValueType();
2088 unsigned BitWidth
= VT
.getSizeInBits();
2089 unsigned UBFMOpc
= BitWidth
== 32 ? AArch64::UBFMWri
: AArch64::UBFMXri
;
2092 if (ShlAmount
> 0) {
2093 // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
2094 ShiftNode
= CurDAG
->getMachineNode(
2095 UBFMOpc
, dl
, VT
, Op
,
2096 CurDAG
->getTargetConstant(BitWidth
- ShlAmount
, dl
, VT
),
2097 CurDAG
->getTargetConstant(BitWidth
- 1 - ShlAmount
, dl
, VT
));
2099 // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
2100 assert(ShlAmount
< 0 && "expected right shift");
2101 int ShrAmount
= -ShlAmount
;
2102 ShiftNode
= CurDAG
->getMachineNode(
2103 UBFMOpc
, dl
, VT
, Op
, CurDAG
->getTargetConstant(ShrAmount
, dl
, VT
),
2104 CurDAG
->getTargetConstant(BitWidth
- 1, dl
, VT
));
2107 return SDValue(ShiftNode
, 0);
2110 /// Does this tree qualify as an attempt to move a bitfield into position,
2111 /// essentially "(and (shl VAL, N), Mask)".
2112 static bool isBitfieldPositioningOp(SelectionDAG
*CurDAG
, SDValue Op
,
2114 SDValue
&Src
, int &ShiftAmount
,
2116 EVT VT
= Op
.getValueType();
2117 unsigned BitWidth
= VT
.getSizeInBits();
2119 assert(BitWidth
== 32 || BitWidth
== 64);
2121 KnownBits Known
= CurDAG
->computeKnownBits(Op
);
2123 // Non-zero in the sense that they're not provably zero, which is the key
2124 // point if we want to use this value
2125 uint64_t NonZeroBits
= (~Known
.Zero
).getZExtValue();
2127 // Discard a constant AND mask if present. It's safe because the node will
2128 // already have been factored into the computeKnownBits calculation above.
2130 if (isOpcWithIntImmediate(Op
.getNode(), ISD::AND
, AndImm
)) {
2131 assert((~APInt(BitWidth
, AndImm
) & ~Known
.Zero
) == 0);
2132 Op
= Op
.getOperand(0);
2135 // Don't match if the SHL has more than one use, since then we'll end up
2136 // generating SHL+UBFIZ instead of just keeping SHL+AND.
2137 if (!BiggerPattern
&& !Op
.hasOneUse())
2141 if (!isOpcWithIntImmediate(Op
.getNode(), ISD::SHL
, ShlImm
))
2143 Op
= Op
.getOperand(0);
2145 if (!isShiftedMask_64(NonZeroBits
))
2148 ShiftAmount
= countTrailingZeros(NonZeroBits
);
2149 MaskWidth
= countTrailingOnes(NonZeroBits
>> ShiftAmount
);
2151 // BFI encompasses sufficiently many nodes that it's worth inserting an extra
2152 // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
2153 // amount. BiggerPattern is true when this pattern is being matched for BFI,
2154 // BiggerPattern is false when this pattern is being matched for UBFIZ, in
2155 // which case it is not profitable to insert an extra shift.
2156 if (ShlImm
- ShiftAmount
!= 0 && !BiggerPattern
)
2158 Src
= getLeftShift(CurDAG
, Op
, ShlImm
- ShiftAmount
);
2163 static bool isShiftedMask(uint64_t Mask
, EVT VT
) {
2164 assert(VT
== MVT::i32
|| VT
== MVT::i64
);
2166 return isShiftedMask_32(Mask
);
2167 return isShiftedMask_64(Mask
);
2170 // Generate a BFI/BFXIL from 'or (and X, MaskImm), OrImm' iff the value being
2171 // inserted only sets known zero bits.
2172 static bool tryBitfieldInsertOpFromOrAndImm(SDNode
*N
, SelectionDAG
*CurDAG
) {
2173 assert(N
->getOpcode() == ISD::OR
&& "Expect a OR operation");
2175 EVT VT
= N
->getValueType(0);
2176 if (VT
!= MVT::i32
&& VT
!= MVT::i64
)
2179 unsigned BitWidth
= VT
.getSizeInBits();
2182 if (!isOpcWithIntImmediate(N
, ISD::OR
, OrImm
))
2185 // Skip this transformation if the ORR immediate can be encoded in the ORR.
2186 // Otherwise, we'll trade an AND+ORR for ORR+BFI/BFXIL, which is most likely
2187 // performance neutral.
2188 if (AArch64_AM::isLogicalImmediate(OrImm
, BitWidth
))
2192 SDValue And
= N
->getOperand(0);
2193 // Must be a single use AND with an immediate operand.
2194 if (!And
.hasOneUse() ||
2195 !isOpcWithIntImmediate(And
.getNode(), ISD::AND
, MaskImm
))
2198 // Compute the Known Zero for the AND as this allows us to catch more general
2199 // cases than just looking for AND with imm.
2200 KnownBits Known
= CurDAG
->computeKnownBits(And
);
2202 // Non-zero in the sense that they're not provably zero, which is the key
2203 // point if we want to use this value.
2204 uint64_t NotKnownZero
= (~Known
.Zero
).getZExtValue();
2206 // The KnownZero mask must be a shifted mask (e.g., 1110..011, 11100..00).
2207 if (!isShiftedMask(Known
.Zero
.getZExtValue(), VT
))
2210 // The bits being inserted must only set those bits that are known to be zero.
2211 if ((OrImm
& NotKnownZero
) != 0) {
2212 // FIXME: It's okay if the OrImm sets NotKnownZero bits to 1, but we don't
2213 // currently handle this case.
2217 // BFI/BFXIL dst, src, #lsb, #width.
2218 int LSB
= countTrailingOnes(NotKnownZero
);
2219 int Width
= BitWidth
- APInt(BitWidth
, NotKnownZero
).countPopulation();
2221 // BFI/BFXIL is an alias of BFM, so translate to BFM operands.
2222 unsigned ImmR
= (BitWidth
- LSB
) % BitWidth
;
2223 unsigned ImmS
= Width
- 1;
2225 // If we're creating a BFI instruction avoid cases where we need more
2226 // instructions to materialize the BFI constant as compared to the original
2227 // ORR. A BFXIL will use the same constant as the original ORR, so the code
2228 // should be no worse in this case.
2229 bool IsBFI
= LSB
!= 0;
2230 uint64_t BFIImm
= OrImm
>> LSB
;
2231 if (IsBFI
&& !AArch64_AM::isLogicalImmediate(BFIImm
, BitWidth
)) {
2232 // We have a BFI instruction and we know the constant can't be materialized
2233 // with a ORR-immediate with the zero register.
2234 unsigned OrChunks
= 0, BFIChunks
= 0;
2235 for (unsigned Shift
= 0; Shift
< BitWidth
; Shift
+= 16) {
2236 if (((OrImm
>> Shift
) & 0xFFFF) != 0)
2238 if (((BFIImm
>> Shift
) & 0xFFFF) != 0)
2241 if (BFIChunks
> OrChunks
)
2245 // Materialize the constant to be inserted.
2247 unsigned MOVIOpc
= VT
== MVT::i32
? AArch64::MOVi32imm
: AArch64::MOVi64imm
;
2248 SDNode
*MOVI
= CurDAG
->getMachineNode(
2249 MOVIOpc
, DL
, VT
, CurDAG
->getTargetConstant(BFIImm
, DL
, VT
));
2251 // Create the BFI/BFXIL instruction.
2252 SDValue Ops
[] = {And
.getOperand(0), SDValue(MOVI
, 0),
2253 CurDAG
->getTargetConstant(ImmR
, DL
, VT
),
2254 CurDAG
->getTargetConstant(ImmS
, DL
, VT
)};
2255 unsigned Opc
= (VT
== MVT::i32
) ? AArch64::BFMWri
: AArch64::BFMXri
;
2256 CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
);
2260 static bool tryBitfieldInsertOpFromOr(SDNode
*N
, const APInt
&UsefulBits
,
2261 SelectionDAG
*CurDAG
) {
2262 assert(N
->getOpcode() == ISD::OR
&& "Expect a OR operation");
2264 EVT VT
= N
->getValueType(0);
2265 if (VT
!= MVT::i32
&& VT
!= MVT::i64
)
2268 unsigned BitWidth
= VT
.getSizeInBits();
2270 // Because of simplify-demanded-bits in DAGCombine, involved masks may not
2271 // have the expected shape. Try to undo that.
2273 unsigned NumberOfIgnoredLowBits
= UsefulBits
.countTrailingZeros();
2274 unsigned NumberOfIgnoredHighBits
= UsefulBits
.countLeadingZeros();
2276 // Given a OR operation, check if we have the following pattern
2277 // ubfm c, b, imm, imm2 (or something that does the same jobs, see
2278 // isBitfieldExtractOp)
2279 // d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
2280 // countTrailingZeros(mask2) == imm2 - imm + 1
2282 // if yes, replace the OR instruction with:
2283 // f = BFM Opd0, Opd1, LSB, MSB ; where LSB = imm, and MSB = imm2
2285 // OR is commutative, check all combinations of operand order and values of
2286 // BiggerPattern, i.e.
2287 // Opd0, Opd1, BiggerPattern=false
2288 // Opd1, Opd0, BiggerPattern=false
2289 // Opd0, Opd1, BiggerPattern=true
2290 // Opd1, Opd0, BiggerPattern=true
2291 // Several of these combinations may match, so check with BiggerPattern=false
2292 // first since that will produce better results by matching more instructions
2293 // and/or inserting fewer extra instructions.
2294 for (int I
= 0; I
< 4; ++I
) {
2297 unsigned ImmR
, ImmS
;
2298 bool BiggerPattern
= I
/ 2;
2299 SDValue OrOpd0Val
= N
->getOperand(I
% 2);
2300 SDNode
*OrOpd0
= OrOpd0Val
.getNode();
2301 SDValue OrOpd1Val
= N
->getOperand((I
+ 1) % 2);
2302 SDNode
*OrOpd1
= OrOpd1Val
.getNode();
2306 if (isBitfieldExtractOp(CurDAG
, OrOpd0
, BFXOpc
, Src
, ImmR
, ImmS
,
2307 NumberOfIgnoredLowBits
, BiggerPattern
)) {
2308 // Check that the returned opcode is compatible with the pattern,
2309 // i.e., same type and zero extended (U and not S)
2310 if ((BFXOpc
!= AArch64::UBFMXri
&& VT
== MVT::i64
) ||
2311 (BFXOpc
!= AArch64::UBFMWri
&& VT
== MVT::i32
))
2314 // Compute the width of the bitfield insertion
2316 Width
= ImmS
- ImmR
+ 1;
2317 // FIXME: This constraint is to catch bitfield insertion we may
2318 // want to widen the pattern if we want to grab general bitfied
2323 // If the mask on the insertee is correct, we have a BFXIL operation. We
2324 // can share the ImmR and ImmS values from the already-computed UBFM.
2325 } else if (isBitfieldPositioningOp(CurDAG
, OrOpd0Val
,
2327 Src
, DstLSB
, Width
)) {
2328 ImmR
= (BitWidth
- DstLSB
) % BitWidth
;
2333 // Check the second part of the pattern
2334 EVT VT
= OrOpd1Val
.getValueType();
2335 assert((VT
== MVT::i32
|| VT
== MVT::i64
) && "unexpected OR operand");
2337 // Compute the Known Zero for the candidate of the first operand.
2338 // This allows to catch more general case than just looking for
2339 // AND with imm. Indeed, simplify-demanded-bits may have removed
2340 // the AND instruction because it proves it was useless.
2341 KnownBits Known
= CurDAG
->computeKnownBits(OrOpd1Val
);
2343 // Check if there is enough room for the second operand to appear
2345 APInt BitsToBeInserted
=
2346 APInt::getBitsSet(Known
.getBitWidth(), DstLSB
, DstLSB
+ Width
);
2348 if ((BitsToBeInserted
& ~Known
.Zero
) != 0)
2351 // Set the first operand
2353 if (isOpcWithIntImmediate(OrOpd1
, ISD::AND
, Imm
) &&
2354 isBitfieldDstMask(Imm
, BitsToBeInserted
, NumberOfIgnoredHighBits
, VT
))
2355 // In that case, we can eliminate the AND
2356 Dst
= OrOpd1
->getOperand(0);
2358 // Maybe the AND has been removed by simplify-demanded-bits
2359 // or is useful because it discards more bits
2364 SDValue Ops
[] = {Dst
, Src
, CurDAG
->getTargetConstant(ImmR
, DL
, VT
),
2365 CurDAG
->getTargetConstant(ImmS
, DL
, VT
)};
2366 unsigned Opc
= (VT
== MVT::i32
) ? AArch64::BFMWri
: AArch64::BFMXri
;
2367 CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
);
2371 // Generate a BFXIL from 'or (and X, Mask0Imm), (and Y, Mask1Imm)' iff
2372 // Mask0Imm and ~Mask1Imm are equivalent and one of the MaskImms is a shifted
2373 // mask (e.g., 0x000ffff0).
2374 uint64_t Mask0Imm
, Mask1Imm
;
2375 SDValue And0
= N
->getOperand(0);
2376 SDValue And1
= N
->getOperand(1);
2377 if (And0
.hasOneUse() && And1
.hasOneUse() &&
2378 isOpcWithIntImmediate(And0
.getNode(), ISD::AND
, Mask0Imm
) &&
2379 isOpcWithIntImmediate(And1
.getNode(), ISD::AND
, Mask1Imm
) &&
2380 APInt(BitWidth
, Mask0Imm
) == ~APInt(BitWidth
, Mask1Imm
) &&
2381 (isShiftedMask(Mask0Imm
, VT
) || isShiftedMask(Mask1Imm
, VT
))) {
2383 // ORR is commutative, so canonicalize to the form 'or (and X, Mask0Imm),
2384 // (and Y, Mask1Imm)' where Mask1Imm is the shifted mask masking off the
2385 // bits to be inserted.
2386 if (isShiftedMask(Mask0Imm
, VT
)) {
2387 std::swap(And0
, And1
);
2388 std::swap(Mask0Imm
, Mask1Imm
);
2391 SDValue Src
= And1
->getOperand(0);
2392 SDValue Dst
= And0
->getOperand(0);
2393 unsigned LSB
= countTrailingZeros(Mask1Imm
);
2394 int Width
= BitWidth
- APInt(BitWidth
, Mask0Imm
).countPopulation();
2396 // The BFXIL inserts the low-order bits from a source register, so right
2397 // shift the needed bits into place.
2399 unsigned ShiftOpc
= (VT
== MVT::i32
) ? AArch64::UBFMWri
: AArch64::UBFMXri
;
2400 SDNode
*LSR
= CurDAG
->getMachineNode(
2401 ShiftOpc
, DL
, VT
, Src
, CurDAG
->getTargetConstant(LSB
, DL
, VT
),
2402 CurDAG
->getTargetConstant(BitWidth
- 1, DL
, VT
));
2404 // BFXIL is an alias of BFM, so translate to BFM operands.
2405 unsigned ImmR
= (BitWidth
- LSB
) % BitWidth
;
2406 unsigned ImmS
= Width
- 1;
2408 // Create the BFXIL instruction.
2409 SDValue Ops
[] = {Dst
, SDValue(LSR
, 0),
2410 CurDAG
->getTargetConstant(ImmR
, DL
, VT
),
2411 CurDAG
->getTargetConstant(ImmS
, DL
, VT
)};
2412 unsigned Opc
= (VT
== MVT::i32
) ? AArch64::BFMWri
: AArch64::BFMXri
;
2413 CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
);
2420 bool AArch64DAGToDAGISel::tryBitfieldInsertOp(SDNode
*N
) {
2421 if (N
->getOpcode() != ISD::OR
)
2425 getUsefulBits(SDValue(N
, 0), NUsefulBits
);
2427 // If all bits are not useful, just return UNDEF.
2429 CurDAG
->SelectNodeTo(N
, TargetOpcode::IMPLICIT_DEF
, N
->getValueType(0));
2433 if (tryBitfieldInsertOpFromOr(N
, NUsefulBits
, CurDAG
))
2436 return tryBitfieldInsertOpFromOrAndImm(N
, CurDAG
);
2439 /// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the
2440 /// equivalent of a left shift by a constant amount followed by an and masking
2441 /// out a contiguous set of bits.
2442 bool AArch64DAGToDAGISel::tryBitfieldInsertInZeroOp(SDNode
*N
) {
2443 if (N
->getOpcode() != ISD::AND
)
2446 EVT VT
= N
->getValueType(0);
2447 if (VT
!= MVT::i32
&& VT
!= MVT::i64
)
2452 if (!isBitfieldPositioningOp(CurDAG
, SDValue(N
, 0), /*BiggerPattern=*/false,
2453 Op0
, DstLSB
, Width
))
2456 // ImmR is the rotate right amount.
2457 unsigned ImmR
= (VT
.getSizeInBits() - DstLSB
) % VT
.getSizeInBits();
2458 // ImmS is the most significant bit of the source to be moved.
2459 unsigned ImmS
= Width
- 1;
2462 SDValue Ops
[] = {Op0
, CurDAG
->getTargetConstant(ImmR
, DL
, VT
),
2463 CurDAG
->getTargetConstant(ImmS
, DL
, VT
)};
2464 unsigned Opc
= (VT
== MVT::i32
) ? AArch64::UBFMWri
: AArch64::UBFMXri
;
2465 CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
);
2469 /// tryShiftAmountMod - Take advantage of built-in mod of shift amount in
2470 /// variable shift/rotate instructions.
2471 bool AArch64DAGToDAGISel::tryShiftAmountMod(SDNode
*N
) {
2472 EVT VT
= N
->getValueType(0);
2475 switch (N
->getOpcode()) {
2477 Opc
= (VT
== MVT::i32
) ? AArch64::RORVWr
: AArch64::RORVXr
;
2480 Opc
= (VT
== MVT::i32
) ? AArch64::LSLVWr
: AArch64::LSLVXr
;
2483 Opc
= (VT
== MVT::i32
) ? AArch64::LSRVWr
: AArch64::LSRVXr
;
2486 Opc
= (VT
== MVT::i32
) ? AArch64::ASRVWr
: AArch64::ASRVXr
;
2494 if (VT
== MVT::i32
) {
2497 } else if (VT
== MVT::i64
) {
2503 SDValue ShiftAmt
= N
->getOperand(1);
2505 SDValue NewShiftAmt
;
2507 // Skip over an extend of the shift amount.
2508 if (ShiftAmt
->getOpcode() == ISD::ZERO_EXTEND
||
2509 ShiftAmt
->getOpcode() == ISD::ANY_EXTEND
)
2510 ShiftAmt
= ShiftAmt
->getOperand(0);
2512 if (ShiftAmt
->getOpcode() == ISD::ADD
|| ShiftAmt
->getOpcode() == ISD::SUB
) {
2513 SDValue Add0
= ShiftAmt
->getOperand(0);
2514 SDValue Add1
= ShiftAmt
->getOperand(1);
2517 // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
2518 // to avoid the ADD/SUB.
2519 if (isIntImmediate(Add1
, Add1Imm
) && (Add1Imm
% Size
== 0))
2521 // If we are shifting by N-X where N == 0 mod Size, then just shift by -X to
2522 // generate a NEG instead of a SUB of a constant.
2523 else if (ShiftAmt
->getOpcode() == ISD::SUB
&&
2524 isIntImmediate(Add0
, Add0Imm
) && Add0Imm
!= 0 &&
2525 (Add0Imm
% Size
== 0)) {
2528 EVT SubVT
= ShiftAmt
->getValueType(0);
2529 if (SubVT
== MVT::i32
) {
2530 NegOpc
= AArch64::SUBWrr
;
2531 ZeroReg
= AArch64::WZR
;
2533 assert(SubVT
== MVT::i64
);
2534 NegOpc
= AArch64::SUBXrr
;
2535 ZeroReg
= AArch64::XZR
;
2538 CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), DL
, ZeroReg
, SubVT
);
2539 MachineSDNode
*Neg
=
2540 CurDAG
->getMachineNode(NegOpc
, DL
, SubVT
, Zero
, Add1
);
2541 NewShiftAmt
= SDValue(Neg
, 0);
2545 // If the shift amount is masked with an AND, check that the mask covers the
2546 // bits that are implicitly ANDed off by the above opcodes and if so, skip
2549 if (!isOpcWithIntImmediate(ShiftAmt
.getNode(), ISD::AND
, MaskImm
))
2552 if (countTrailingOnes(MaskImm
) < Bits
)
2555 NewShiftAmt
= ShiftAmt
->getOperand(0);
2558 // Narrow/widen the shift amount to match the size of the shift operation.
2560 NewShiftAmt
= narrowIfNeeded(CurDAG
, NewShiftAmt
);
2561 else if (VT
== MVT::i64
&& NewShiftAmt
->getValueType(0) == MVT::i32
) {
2562 SDValue SubReg
= CurDAG
->getTargetConstant(AArch64::sub_32
, DL
, MVT::i32
);
2563 MachineSDNode
*Ext
= CurDAG
->getMachineNode(
2564 AArch64::SUBREG_TO_REG
, DL
, VT
,
2565 CurDAG
->getTargetConstant(0, DL
, MVT::i64
), NewShiftAmt
, SubReg
);
2566 NewShiftAmt
= SDValue(Ext
, 0);
2569 SDValue Ops
[] = {N
->getOperand(0), NewShiftAmt
};
2570 CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
);
2575 AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N
, SDValue
&FixedPos
,
2576 unsigned RegWidth
) {
2578 if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(N
))
2579 FVal
= CN
->getValueAPF();
2580 else if (LoadSDNode
*LN
= dyn_cast
<LoadSDNode
>(N
)) {
2581 // Some otherwise illegal constants are allowed in this case.
2582 if (LN
->getOperand(1).getOpcode() != AArch64ISD::ADDlow
||
2583 !isa
<ConstantPoolSDNode
>(LN
->getOperand(1)->getOperand(1)))
2586 ConstantPoolSDNode
*CN
=
2587 dyn_cast
<ConstantPoolSDNode
>(LN
->getOperand(1)->getOperand(1));
2588 FVal
= cast
<ConstantFP
>(CN
->getConstVal())->getValueAPF();
2592 // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
2593 // is between 1 and 32 for a destination w-register, or 1 and 64 for an
2596 // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
2597 // want THIS_NODE to be 2^fbits. This is much easier to deal with using
2601 // fbits is between 1 and 64 in the worst-case, which means the fmul
2602 // could have 2^64 as an actual operand. Need 65 bits of precision.
2603 APSInt
IntVal(65, true);
2604 FVal
.convertToInteger(IntVal
, APFloat::rmTowardZero
, &IsExact
);
2606 // N.b. isPowerOf2 also checks for > 0.
2607 if (!IsExact
|| !IntVal
.isPowerOf2()) return false;
2608 unsigned FBits
= IntVal
.logBase2();
2610 // Checks above should have guaranteed that we haven't lost information in
2611 // finding FBits, but it must still be in range.
2612 if (FBits
== 0 || FBits
> RegWidth
) return false;
2614 FixedPos
= CurDAG
->getTargetConstant(FBits
, SDLoc(N
), MVT::i32
);
2618 // Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields
2619 // of the string and obtains the integer values from them and combines these
2620 // into a single value to be used in the MRS/MSR instruction.
2621 static int getIntOperandFromRegisterString(StringRef RegString
) {
2622 SmallVector
<StringRef
, 5> Fields
;
2623 RegString
.split(Fields
, ':');
2625 if (Fields
.size() == 1)
2628 assert(Fields
.size() == 5
2629 && "Invalid number of fields in read register string");
2631 SmallVector
<int, 5> Ops
;
2632 bool AllIntFields
= true;
2634 for (StringRef Field
: Fields
) {
2636 AllIntFields
&= !Field
.getAsInteger(10, IntField
);
2637 Ops
.push_back(IntField
);
2640 assert(AllIntFields
&&
2641 "Unexpected non-integer value in special register string.");
2643 // Need to combine the integer fields of the string into a single value
2644 // based on the bit encoding of MRS/MSR instruction.
2645 return (Ops
[0] << 14) | (Ops
[1] << 11) | (Ops
[2] << 7) |
2646 (Ops
[3] << 3) | (Ops
[4]);
2649 // Lower the read_register intrinsic to an MRS instruction node if the special
2650 // register string argument is either of the form detailed in the ALCE (the
2651 // form described in getIntOperandsFromRegsterString) or is a named register
2652 // known by the MRS SysReg mapper.
2653 bool AArch64DAGToDAGISel::tryReadRegister(SDNode
*N
) {
2654 const MDNodeSDNode
*MD
= dyn_cast
<MDNodeSDNode
>(N
->getOperand(1));
2655 const MDString
*RegString
= dyn_cast
<MDString
>(MD
->getMD()->getOperand(0));
2658 int Reg
= getIntOperandFromRegisterString(RegString
->getString());
2660 ReplaceNode(N
, CurDAG
->getMachineNode(
2661 AArch64::MRS
, DL
, N
->getSimpleValueType(0), MVT::Other
,
2662 CurDAG
->getTargetConstant(Reg
, DL
, MVT::i32
),
2667 // Use the sysreg mapper to map the remaining possible strings to the
2668 // value for the register to be used for the instruction operand.
2669 auto TheReg
= AArch64SysReg::lookupSysRegByName(RegString
->getString());
2670 if (TheReg
&& TheReg
->Readable
&&
2671 TheReg
->haveFeatures(Subtarget
->getFeatureBits()))
2672 Reg
= TheReg
->Encoding
;
2674 Reg
= AArch64SysReg::parseGenericRegister(RegString
->getString());
2677 ReplaceNode(N
, CurDAG
->getMachineNode(
2678 AArch64::MRS
, DL
, N
->getSimpleValueType(0), MVT::Other
,
2679 CurDAG
->getTargetConstant(Reg
, DL
, MVT::i32
),
2684 if (RegString
->getString() == "pc") {
2685 ReplaceNode(N
, CurDAG
->getMachineNode(
2686 AArch64::ADR
, DL
, N
->getSimpleValueType(0), MVT::Other
,
2687 CurDAG
->getTargetConstant(0, DL
, MVT::i32
),
2695 // Lower the write_register intrinsic to an MSR instruction node if the special
2696 // register string argument is either of the form detailed in the ALCE (the
2697 // form described in getIntOperandsFromRegsterString) or is a named register
2698 // known by the MSR SysReg mapper.
2699 bool AArch64DAGToDAGISel::tryWriteRegister(SDNode
*N
) {
2700 const MDNodeSDNode
*MD
= dyn_cast
<MDNodeSDNode
>(N
->getOperand(1));
2701 const MDString
*RegString
= dyn_cast
<MDString
>(MD
->getMD()->getOperand(0));
2704 int Reg
= getIntOperandFromRegisterString(RegString
->getString());
2707 N
, CurDAG
->getMachineNode(AArch64::MSR
, DL
, MVT::Other
,
2708 CurDAG
->getTargetConstant(Reg
, DL
, MVT::i32
),
2709 N
->getOperand(2), N
->getOperand(0)));
2713 // Check if the register was one of those allowed as the pstatefield value in
2714 // the MSR (immediate) instruction. To accept the values allowed in the
2715 // pstatefield for the MSR (immediate) instruction, we also require that an
2716 // immediate value has been provided as an argument, we know that this is
2717 // the case as it has been ensured by semantic checking.
2718 auto PMapper
= AArch64PState::lookupPStateByName(RegString
->getString());
2720 assert (isa
<ConstantSDNode
>(N
->getOperand(2))
2721 && "Expected a constant integer expression.");
2722 unsigned Reg
= PMapper
->Encoding
;
2723 uint64_t Immed
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
2725 if (Reg
== AArch64PState::PAN
|| Reg
== AArch64PState::UAO
|| Reg
== AArch64PState::SSBS
) {
2726 assert(Immed
< 2 && "Bad imm");
2727 State
= AArch64::MSRpstateImm1
;
2729 assert(Immed
< 16 && "Bad imm");
2730 State
= AArch64::MSRpstateImm4
;
2732 ReplaceNode(N
, CurDAG
->getMachineNode(
2733 State
, DL
, MVT::Other
,
2734 CurDAG
->getTargetConstant(Reg
, DL
, MVT::i32
),
2735 CurDAG
->getTargetConstant(Immed
, DL
, MVT::i16
),
2740 // Use the sysreg mapper to attempt to map the remaining possible strings
2741 // to the value for the register to be used for the MSR (register)
2742 // instruction operand.
2743 auto TheReg
= AArch64SysReg::lookupSysRegByName(RegString
->getString());
2744 if (TheReg
&& TheReg
->Writeable
&&
2745 TheReg
->haveFeatures(Subtarget
->getFeatureBits()))
2746 Reg
= TheReg
->Encoding
;
2748 Reg
= AArch64SysReg::parseGenericRegister(RegString
->getString());
2750 ReplaceNode(N
, CurDAG
->getMachineNode(
2751 AArch64::MSR
, DL
, MVT::Other
,
2752 CurDAG
->getTargetConstant(Reg
, DL
, MVT::i32
),
2753 N
->getOperand(2), N
->getOperand(0)));
2760 /// We've got special pseudo-instructions for these
2761 bool AArch64DAGToDAGISel::SelectCMP_SWAP(SDNode
*N
) {
2763 EVT MemTy
= cast
<MemSDNode
>(N
)->getMemoryVT();
2765 // Leave IR for LSE if subtarget supports it.
2766 if (Subtarget
->hasLSE()) return false;
2768 if (MemTy
== MVT::i8
)
2769 Opcode
= AArch64::CMP_SWAP_8
;
2770 else if (MemTy
== MVT::i16
)
2771 Opcode
= AArch64::CMP_SWAP_16
;
2772 else if (MemTy
== MVT::i32
)
2773 Opcode
= AArch64::CMP_SWAP_32
;
2774 else if (MemTy
== MVT::i64
)
2775 Opcode
= AArch64::CMP_SWAP_64
;
2777 llvm_unreachable("Unknown AtomicCmpSwap type");
2779 MVT RegTy
= MemTy
== MVT::i64
? MVT::i64
: MVT::i32
;
2780 SDValue Ops
[] = {N
->getOperand(1), N
->getOperand(2), N
->getOperand(3),
2782 SDNode
*CmpSwap
= CurDAG
->getMachineNode(
2784 CurDAG
->getVTList(RegTy
, MVT::i32
, MVT::Other
), Ops
);
2786 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
2787 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
2789 ReplaceUses(SDValue(N
, 0), SDValue(CmpSwap
, 0));
2790 ReplaceUses(SDValue(N
, 1), SDValue(CmpSwap
, 2));
2791 CurDAG
->RemoveDeadNode(N
);
2796 bool AArch64DAGToDAGISel::trySelectStackSlotTagP(SDNode
*N
) {
2797 // tagp(FrameIndex, IRGstack, tag_offset):
2798 // since the offset between FrameIndex and IRGstack is a compile-time
2799 // constant, this can be lowered to a single ADDG instruction.
2800 if (!(isa
<FrameIndexSDNode
>(N
->getOperand(1)))) {
2804 SDValue IRG_SP
= N
->getOperand(2);
2805 if (IRG_SP
->getOpcode() != ISD::INTRINSIC_W_CHAIN
||
2806 cast
<ConstantSDNode
>(IRG_SP
->getOperand(1))->getZExtValue() !=
2807 Intrinsic::aarch64_irg_sp
) {
2811 const TargetLowering
*TLI
= getTargetLowering();
2813 int FI
= cast
<FrameIndexSDNode
>(N
->getOperand(1))->getIndex();
2814 SDValue FiOp
= CurDAG
->getTargetFrameIndex(
2815 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
2816 int TagOffset
= cast
<ConstantSDNode
>(N
->getOperand(3))->getZExtValue();
2818 SDNode
*Out
= CurDAG
->getMachineNode(
2819 AArch64::TAGPstack
, DL
, MVT::i64
,
2820 {FiOp
, CurDAG
->getTargetConstant(0, DL
, MVT::i64
), N
->getOperand(2),
2821 CurDAG
->getTargetConstant(TagOffset
, DL
, MVT::i64
)});
2822 ReplaceNode(N
, Out
);
2826 void AArch64DAGToDAGISel::SelectTagP(SDNode
*N
) {
2827 assert(isa
<ConstantSDNode
>(N
->getOperand(3)) &&
2828 "llvm.aarch64.tagp third argument must be an immediate");
2829 if (trySelectStackSlotTagP(N
))
2831 // FIXME: above applies in any case when offset between Op1 and Op2 is a
2832 // compile-time constant, not just for stack allocations.
2834 // General case for unrelated pointers in Op1 and Op2.
2836 int TagOffset
= cast
<ConstantSDNode
>(N
->getOperand(3))->getZExtValue();
2837 SDNode
*N1
= CurDAG
->getMachineNode(AArch64::SUBP
, DL
, MVT::i64
,
2838 {N
->getOperand(1), N
->getOperand(2)});
2839 SDNode
*N2
= CurDAG
->getMachineNode(AArch64::ADDXrr
, DL
, MVT::i64
,
2840 {SDValue(N1
, 0), N
->getOperand(2)});
2841 SDNode
*N3
= CurDAG
->getMachineNode(
2842 AArch64::ADDG
, DL
, MVT::i64
,
2843 {SDValue(N2
, 0), CurDAG
->getTargetConstant(0, DL
, MVT::i64
),
2844 CurDAG
->getTargetConstant(TagOffset
, DL
, MVT::i64
)});
2848 void AArch64DAGToDAGISel::Select(SDNode
*Node
) {
2849 // If we have a custom node, we already have selected!
2850 if (Node
->isMachineOpcode()) {
2851 LLVM_DEBUG(errs() << "== "; Node
->dump(CurDAG
); errs() << "\n");
2852 Node
->setNodeId(-1);
2856 // Few custom selection stuff.
2857 EVT VT
= Node
->getValueType(0);
2859 switch (Node
->getOpcode()) {
2863 case ISD::ATOMIC_CMP_SWAP
:
2864 if (SelectCMP_SWAP(Node
))
2868 case ISD::READ_REGISTER
:
2869 if (tryReadRegister(Node
))
2873 case ISD::WRITE_REGISTER
:
2874 if (tryWriteRegister(Node
))
2879 if (tryMLAV64LaneV128(Node
))
2884 // Try to select as an indexed load. Fall through to normal processing
2886 if (tryIndexedLoad(Node
))
2894 case ISD::SIGN_EXTEND_INREG
:
2895 if (tryBitfieldExtractOp(Node
))
2897 if (tryBitfieldInsertInZeroOp(Node
))
2902 if (tryShiftAmountMod(Node
))
2906 case ISD::SIGN_EXTEND
:
2907 if (tryBitfieldExtractOpFromSExt(Node
))
2912 if (tryBitfieldInsertOp(Node
))
2916 case ISD::EXTRACT_VECTOR_ELT
: {
2917 // Extracting lane zero is a special case where we can just use a plain
2918 // EXTRACT_SUBREG instruction, which will become FMOV. This is easier for
2919 // the rest of the compiler, especially the register allocator and copyi
2920 // propagation, to reason about, so is preferred when it's possible to
2922 ConstantSDNode
*LaneNode
= cast
<ConstantSDNode
>(Node
->getOperand(1));
2923 // Bail and use the default Select() for non-zero lanes.
2924 if (LaneNode
->getZExtValue() != 0)
2926 // If the element type is not the same as the result type, likewise
2927 // bail and use the default Select(), as there's more to do than just
2928 // a cross-class COPY. This catches extracts of i8 and i16 elements
2929 // since they will need an explicit zext.
2930 if (VT
!= Node
->getOperand(0).getValueType().getVectorElementType())
2933 switch (Node
->getOperand(0)
2935 .getVectorElementType()
2938 llvm_unreachable("Unexpected vector element type!");
2940 SubReg
= AArch64::dsub
;
2943 SubReg
= AArch64::ssub
;
2946 SubReg
= AArch64::hsub
;
2949 llvm_unreachable("unexpected zext-requiring extract element!");
2951 SDValue Extract
= CurDAG
->getTargetExtractSubreg(SubReg
, SDLoc(Node
), VT
,
2952 Node
->getOperand(0));
2953 LLVM_DEBUG(dbgs() << "ISEL: Custom selection!\n=> ");
2954 LLVM_DEBUG(Extract
->dumpr(CurDAG
));
2955 LLVM_DEBUG(dbgs() << "\n");
2956 ReplaceNode(Node
, Extract
.getNode());
2959 case ISD::Constant
: {
2960 // Materialize zero constants as copies from WZR/XZR. This allows
2961 // the coalescer to propagate these into other instructions.
2962 ConstantSDNode
*ConstNode
= cast
<ConstantSDNode
>(Node
);
2963 if (ConstNode
->isNullValue()) {
2964 if (VT
== MVT::i32
) {
2965 SDValue New
= CurDAG
->getCopyFromReg(
2966 CurDAG
->getEntryNode(), SDLoc(Node
), AArch64::WZR
, MVT::i32
);
2967 ReplaceNode(Node
, New
.getNode());
2969 } else if (VT
== MVT::i64
) {
2970 SDValue New
= CurDAG
->getCopyFromReg(
2971 CurDAG
->getEntryNode(), SDLoc(Node
), AArch64::XZR
, MVT::i64
);
2972 ReplaceNode(Node
, New
.getNode());
2979 case ISD::FrameIndex
: {
2980 // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
2981 int FI
= cast
<FrameIndexSDNode
>(Node
)->getIndex();
2982 unsigned Shifter
= AArch64_AM::getShifterImm(AArch64_AM::LSL
, 0);
2983 const TargetLowering
*TLI
= getTargetLowering();
2984 SDValue TFI
= CurDAG
->getTargetFrameIndex(
2985 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
2987 SDValue Ops
[] = { TFI
, CurDAG
->getTargetConstant(0, DL
, MVT::i32
),
2988 CurDAG
->getTargetConstant(Shifter
, DL
, MVT::i32
) };
2989 CurDAG
->SelectNodeTo(Node
, AArch64::ADDXri
, MVT::i64
, Ops
);
2992 case ISD::INTRINSIC_W_CHAIN
: {
2993 unsigned IntNo
= cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue();
2997 case Intrinsic::aarch64_ldaxp
:
2998 case Intrinsic::aarch64_ldxp
: {
3000 IntNo
== Intrinsic::aarch64_ldaxp
? AArch64::LDAXPX
: AArch64::LDXPX
;
3001 SDValue MemAddr
= Node
->getOperand(2);
3003 SDValue Chain
= Node
->getOperand(0);
3005 SDNode
*Ld
= CurDAG
->getMachineNode(Op
, DL
, MVT::i64
, MVT::i64
,
3006 MVT::Other
, MemAddr
, Chain
);
3008 // Transfer memoperands.
3009 MachineMemOperand
*MemOp
=
3010 cast
<MemIntrinsicSDNode
>(Node
)->getMemOperand();
3011 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(Ld
), {MemOp
});
3012 ReplaceNode(Node
, Ld
);
3015 case Intrinsic::aarch64_stlxp
:
3016 case Intrinsic::aarch64_stxp
: {
3018 IntNo
== Intrinsic::aarch64_stlxp
? AArch64::STLXPX
: AArch64::STXPX
;
3020 SDValue Chain
= Node
->getOperand(0);
3021 SDValue ValLo
= Node
->getOperand(2);
3022 SDValue ValHi
= Node
->getOperand(3);
3023 SDValue MemAddr
= Node
->getOperand(4);
3025 // Place arguments in the right order.
3026 SDValue Ops
[] = {ValLo
, ValHi
, MemAddr
, Chain
};
3028 SDNode
*St
= CurDAG
->getMachineNode(Op
, DL
, MVT::i32
, MVT::Other
, Ops
);
3029 // Transfer memoperands.
3030 MachineMemOperand
*MemOp
=
3031 cast
<MemIntrinsicSDNode
>(Node
)->getMemOperand();
3032 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(St
), {MemOp
});
3034 ReplaceNode(Node
, St
);
3037 case Intrinsic::aarch64_neon_ld1x2
:
3038 if (VT
== MVT::v8i8
) {
3039 SelectLoad(Node
, 2, AArch64::LD1Twov8b
, AArch64::dsub0
);
3041 } else if (VT
== MVT::v16i8
) {
3042 SelectLoad(Node
, 2, AArch64::LD1Twov16b
, AArch64::qsub0
);
3044 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3045 SelectLoad(Node
, 2, AArch64::LD1Twov4h
, AArch64::dsub0
);
3047 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3048 SelectLoad(Node
, 2, AArch64::LD1Twov8h
, AArch64::qsub0
);
3050 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3051 SelectLoad(Node
, 2, AArch64::LD1Twov2s
, AArch64::dsub0
);
3053 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3054 SelectLoad(Node
, 2, AArch64::LD1Twov4s
, AArch64::qsub0
);
3056 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3057 SelectLoad(Node
, 2, AArch64::LD1Twov1d
, AArch64::dsub0
);
3059 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3060 SelectLoad(Node
, 2, AArch64::LD1Twov2d
, AArch64::qsub0
);
3064 case Intrinsic::aarch64_neon_ld1x3
:
3065 if (VT
== MVT::v8i8
) {
3066 SelectLoad(Node
, 3, AArch64::LD1Threev8b
, AArch64::dsub0
);
3068 } else if (VT
== MVT::v16i8
) {
3069 SelectLoad(Node
, 3, AArch64::LD1Threev16b
, AArch64::qsub0
);
3071 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3072 SelectLoad(Node
, 3, AArch64::LD1Threev4h
, AArch64::dsub0
);
3074 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3075 SelectLoad(Node
, 3, AArch64::LD1Threev8h
, AArch64::qsub0
);
3077 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3078 SelectLoad(Node
, 3, AArch64::LD1Threev2s
, AArch64::dsub0
);
3080 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3081 SelectLoad(Node
, 3, AArch64::LD1Threev4s
, AArch64::qsub0
);
3083 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3084 SelectLoad(Node
, 3, AArch64::LD1Threev1d
, AArch64::dsub0
);
3086 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3087 SelectLoad(Node
, 3, AArch64::LD1Threev2d
, AArch64::qsub0
);
3091 case Intrinsic::aarch64_neon_ld1x4
:
3092 if (VT
== MVT::v8i8
) {
3093 SelectLoad(Node
, 4, AArch64::LD1Fourv8b
, AArch64::dsub0
);
3095 } else if (VT
== MVT::v16i8
) {
3096 SelectLoad(Node
, 4, AArch64::LD1Fourv16b
, AArch64::qsub0
);
3098 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3099 SelectLoad(Node
, 4, AArch64::LD1Fourv4h
, AArch64::dsub0
);
3101 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3102 SelectLoad(Node
, 4, AArch64::LD1Fourv8h
, AArch64::qsub0
);
3104 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3105 SelectLoad(Node
, 4, AArch64::LD1Fourv2s
, AArch64::dsub0
);
3107 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3108 SelectLoad(Node
, 4, AArch64::LD1Fourv4s
, AArch64::qsub0
);
3110 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3111 SelectLoad(Node
, 4, AArch64::LD1Fourv1d
, AArch64::dsub0
);
3113 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3114 SelectLoad(Node
, 4, AArch64::LD1Fourv2d
, AArch64::qsub0
);
3118 case Intrinsic::aarch64_neon_ld2
:
3119 if (VT
== MVT::v8i8
) {
3120 SelectLoad(Node
, 2, AArch64::LD2Twov8b
, AArch64::dsub0
);
3122 } else if (VT
== MVT::v16i8
) {
3123 SelectLoad(Node
, 2, AArch64::LD2Twov16b
, AArch64::qsub0
);
3125 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3126 SelectLoad(Node
, 2, AArch64::LD2Twov4h
, AArch64::dsub0
);
3128 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3129 SelectLoad(Node
, 2, AArch64::LD2Twov8h
, AArch64::qsub0
);
3131 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3132 SelectLoad(Node
, 2, AArch64::LD2Twov2s
, AArch64::dsub0
);
3134 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3135 SelectLoad(Node
, 2, AArch64::LD2Twov4s
, AArch64::qsub0
);
3137 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3138 SelectLoad(Node
, 2, AArch64::LD1Twov1d
, AArch64::dsub0
);
3140 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3141 SelectLoad(Node
, 2, AArch64::LD2Twov2d
, AArch64::qsub0
);
3145 case Intrinsic::aarch64_neon_ld3
:
3146 if (VT
== MVT::v8i8
) {
3147 SelectLoad(Node
, 3, AArch64::LD3Threev8b
, AArch64::dsub0
);
3149 } else if (VT
== MVT::v16i8
) {
3150 SelectLoad(Node
, 3, AArch64::LD3Threev16b
, AArch64::qsub0
);
3152 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3153 SelectLoad(Node
, 3, AArch64::LD3Threev4h
, AArch64::dsub0
);
3155 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3156 SelectLoad(Node
, 3, AArch64::LD3Threev8h
, AArch64::qsub0
);
3158 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3159 SelectLoad(Node
, 3, AArch64::LD3Threev2s
, AArch64::dsub0
);
3161 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3162 SelectLoad(Node
, 3, AArch64::LD3Threev4s
, AArch64::qsub0
);
3164 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3165 SelectLoad(Node
, 3, AArch64::LD1Threev1d
, AArch64::dsub0
);
3167 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3168 SelectLoad(Node
, 3, AArch64::LD3Threev2d
, AArch64::qsub0
);
3172 case Intrinsic::aarch64_neon_ld4
:
3173 if (VT
== MVT::v8i8
) {
3174 SelectLoad(Node
, 4, AArch64::LD4Fourv8b
, AArch64::dsub0
);
3176 } else if (VT
== MVT::v16i8
) {
3177 SelectLoad(Node
, 4, AArch64::LD4Fourv16b
, AArch64::qsub0
);
3179 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3180 SelectLoad(Node
, 4, AArch64::LD4Fourv4h
, AArch64::dsub0
);
3182 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3183 SelectLoad(Node
, 4, AArch64::LD4Fourv8h
, AArch64::qsub0
);
3185 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3186 SelectLoad(Node
, 4, AArch64::LD4Fourv2s
, AArch64::dsub0
);
3188 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3189 SelectLoad(Node
, 4, AArch64::LD4Fourv4s
, AArch64::qsub0
);
3191 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3192 SelectLoad(Node
, 4, AArch64::LD1Fourv1d
, AArch64::dsub0
);
3194 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3195 SelectLoad(Node
, 4, AArch64::LD4Fourv2d
, AArch64::qsub0
);
3199 case Intrinsic::aarch64_neon_ld2r
:
3200 if (VT
== MVT::v8i8
) {
3201 SelectLoad(Node
, 2, AArch64::LD2Rv8b
, AArch64::dsub0
);
3203 } else if (VT
== MVT::v16i8
) {
3204 SelectLoad(Node
, 2, AArch64::LD2Rv16b
, AArch64::qsub0
);
3206 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3207 SelectLoad(Node
, 2, AArch64::LD2Rv4h
, AArch64::dsub0
);
3209 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3210 SelectLoad(Node
, 2, AArch64::LD2Rv8h
, AArch64::qsub0
);
3212 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3213 SelectLoad(Node
, 2, AArch64::LD2Rv2s
, AArch64::dsub0
);
3215 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3216 SelectLoad(Node
, 2, AArch64::LD2Rv4s
, AArch64::qsub0
);
3218 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3219 SelectLoad(Node
, 2, AArch64::LD2Rv1d
, AArch64::dsub0
);
3221 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3222 SelectLoad(Node
, 2, AArch64::LD2Rv2d
, AArch64::qsub0
);
3226 case Intrinsic::aarch64_neon_ld3r
:
3227 if (VT
== MVT::v8i8
) {
3228 SelectLoad(Node
, 3, AArch64::LD3Rv8b
, AArch64::dsub0
);
3230 } else if (VT
== MVT::v16i8
) {
3231 SelectLoad(Node
, 3, AArch64::LD3Rv16b
, AArch64::qsub0
);
3233 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3234 SelectLoad(Node
, 3, AArch64::LD3Rv4h
, AArch64::dsub0
);
3236 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3237 SelectLoad(Node
, 3, AArch64::LD3Rv8h
, AArch64::qsub0
);
3239 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3240 SelectLoad(Node
, 3, AArch64::LD3Rv2s
, AArch64::dsub0
);
3242 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3243 SelectLoad(Node
, 3, AArch64::LD3Rv4s
, AArch64::qsub0
);
3245 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3246 SelectLoad(Node
, 3, AArch64::LD3Rv1d
, AArch64::dsub0
);
3248 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3249 SelectLoad(Node
, 3, AArch64::LD3Rv2d
, AArch64::qsub0
);
3253 case Intrinsic::aarch64_neon_ld4r
:
3254 if (VT
== MVT::v8i8
) {
3255 SelectLoad(Node
, 4, AArch64::LD4Rv8b
, AArch64::dsub0
);
3257 } else if (VT
== MVT::v16i8
) {
3258 SelectLoad(Node
, 4, AArch64::LD4Rv16b
, AArch64::qsub0
);
3260 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3261 SelectLoad(Node
, 4, AArch64::LD4Rv4h
, AArch64::dsub0
);
3263 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3264 SelectLoad(Node
, 4, AArch64::LD4Rv8h
, AArch64::qsub0
);
3266 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3267 SelectLoad(Node
, 4, AArch64::LD4Rv2s
, AArch64::dsub0
);
3269 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3270 SelectLoad(Node
, 4, AArch64::LD4Rv4s
, AArch64::qsub0
);
3272 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3273 SelectLoad(Node
, 4, AArch64::LD4Rv1d
, AArch64::dsub0
);
3275 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3276 SelectLoad(Node
, 4, AArch64::LD4Rv2d
, AArch64::qsub0
);
3280 case Intrinsic::aarch64_neon_ld2lane
:
3281 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3282 SelectLoadLane(Node
, 2, AArch64::LD2i8
);
3284 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3286 SelectLoadLane(Node
, 2, AArch64::LD2i16
);
3288 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3290 SelectLoadLane(Node
, 2, AArch64::LD2i32
);
3292 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3294 SelectLoadLane(Node
, 2, AArch64::LD2i64
);
3298 case Intrinsic::aarch64_neon_ld3lane
:
3299 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3300 SelectLoadLane(Node
, 3, AArch64::LD3i8
);
3302 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3304 SelectLoadLane(Node
, 3, AArch64::LD3i16
);
3306 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3308 SelectLoadLane(Node
, 3, AArch64::LD3i32
);
3310 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3312 SelectLoadLane(Node
, 3, AArch64::LD3i64
);
3316 case Intrinsic::aarch64_neon_ld4lane
:
3317 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3318 SelectLoadLane(Node
, 4, AArch64::LD4i8
);
3320 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3322 SelectLoadLane(Node
, 4, AArch64::LD4i16
);
3324 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3326 SelectLoadLane(Node
, 4, AArch64::LD4i32
);
3328 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3330 SelectLoadLane(Node
, 4, AArch64::LD4i64
);
3336 case ISD::INTRINSIC_WO_CHAIN
: {
3337 unsigned IntNo
= cast
<ConstantSDNode
>(Node
->getOperand(0))->getZExtValue();
3341 case Intrinsic::aarch64_tagp
:
3344 case Intrinsic::aarch64_neon_tbl2
:
3345 SelectTable(Node
, 2,
3346 VT
== MVT::v8i8
? AArch64::TBLv8i8Two
: AArch64::TBLv16i8Two
,
3349 case Intrinsic::aarch64_neon_tbl3
:
3350 SelectTable(Node
, 3, VT
== MVT::v8i8
? AArch64::TBLv8i8Three
3351 : AArch64::TBLv16i8Three
,
3354 case Intrinsic::aarch64_neon_tbl4
:
3355 SelectTable(Node
, 4, VT
== MVT::v8i8
? AArch64::TBLv8i8Four
3356 : AArch64::TBLv16i8Four
,
3359 case Intrinsic::aarch64_neon_tbx2
:
3360 SelectTable(Node
, 2,
3361 VT
== MVT::v8i8
? AArch64::TBXv8i8Two
: AArch64::TBXv16i8Two
,
3364 case Intrinsic::aarch64_neon_tbx3
:
3365 SelectTable(Node
, 3, VT
== MVT::v8i8
? AArch64::TBXv8i8Three
3366 : AArch64::TBXv16i8Three
,
3369 case Intrinsic::aarch64_neon_tbx4
:
3370 SelectTable(Node
, 4, VT
== MVT::v8i8
? AArch64::TBXv8i8Four
3371 : AArch64::TBXv16i8Four
,
3374 case Intrinsic::aarch64_neon_smull
:
3375 case Intrinsic::aarch64_neon_umull
:
3376 if (tryMULLV64LaneV128(IntNo
, Node
))
3382 case ISD::INTRINSIC_VOID
: {
3383 unsigned IntNo
= cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue();
3384 if (Node
->getNumOperands() >= 3)
3385 VT
= Node
->getOperand(2)->getValueType(0);
3389 case Intrinsic::aarch64_neon_st1x2
: {
3390 if (VT
== MVT::v8i8
) {
3391 SelectStore(Node
, 2, AArch64::ST1Twov8b
);
3393 } else if (VT
== MVT::v16i8
) {
3394 SelectStore(Node
, 2, AArch64::ST1Twov16b
);
3396 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3397 SelectStore(Node
, 2, AArch64::ST1Twov4h
);
3399 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3400 SelectStore(Node
, 2, AArch64::ST1Twov8h
);
3402 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3403 SelectStore(Node
, 2, AArch64::ST1Twov2s
);
3405 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3406 SelectStore(Node
, 2, AArch64::ST1Twov4s
);
3408 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3409 SelectStore(Node
, 2, AArch64::ST1Twov2d
);
3411 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3412 SelectStore(Node
, 2, AArch64::ST1Twov1d
);
3417 case Intrinsic::aarch64_neon_st1x3
: {
3418 if (VT
== MVT::v8i8
) {
3419 SelectStore(Node
, 3, AArch64::ST1Threev8b
);
3421 } else if (VT
== MVT::v16i8
) {
3422 SelectStore(Node
, 3, AArch64::ST1Threev16b
);
3424 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3425 SelectStore(Node
, 3, AArch64::ST1Threev4h
);
3427 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3428 SelectStore(Node
, 3, AArch64::ST1Threev8h
);
3430 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3431 SelectStore(Node
, 3, AArch64::ST1Threev2s
);
3433 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3434 SelectStore(Node
, 3, AArch64::ST1Threev4s
);
3436 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3437 SelectStore(Node
, 3, AArch64::ST1Threev2d
);
3439 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3440 SelectStore(Node
, 3, AArch64::ST1Threev1d
);
3445 case Intrinsic::aarch64_neon_st1x4
: {
3446 if (VT
== MVT::v8i8
) {
3447 SelectStore(Node
, 4, AArch64::ST1Fourv8b
);
3449 } else if (VT
== MVT::v16i8
) {
3450 SelectStore(Node
, 4, AArch64::ST1Fourv16b
);
3452 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3453 SelectStore(Node
, 4, AArch64::ST1Fourv4h
);
3455 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3456 SelectStore(Node
, 4, AArch64::ST1Fourv8h
);
3458 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3459 SelectStore(Node
, 4, AArch64::ST1Fourv2s
);
3461 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3462 SelectStore(Node
, 4, AArch64::ST1Fourv4s
);
3464 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3465 SelectStore(Node
, 4, AArch64::ST1Fourv2d
);
3467 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3468 SelectStore(Node
, 4, AArch64::ST1Fourv1d
);
3473 case Intrinsic::aarch64_neon_st2
: {
3474 if (VT
== MVT::v8i8
) {
3475 SelectStore(Node
, 2, AArch64::ST2Twov8b
);
3477 } else if (VT
== MVT::v16i8
) {
3478 SelectStore(Node
, 2, AArch64::ST2Twov16b
);
3480 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3481 SelectStore(Node
, 2, AArch64::ST2Twov4h
);
3483 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3484 SelectStore(Node
, 2, AArch64::ST2Twov8h
);
3486 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3487 SelectStore(Node
, 2, AArch64::ST2Twov2s
);
3489 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3490 SelectStore(Node
, 2, AArch64::ST2Twov4s
);
3492 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3493 SelectStore(Node
, 2, AArch64::ST2Twov2d
);
3495 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3496 SelectStore(Node
, 2, AArch64::ST1Twov1d
);
3501 case Intrinsic::aarch64_neon_st3
: {
3502 if (VT
== MVT::v8i8
) {
3503 SelectStore(Node
, 3, AArch64::ST3Threev8b
);
3505 } else if (VT
== MVT::v16i8
) {
3506 SelectStore(Node
, 3, AArch64::ST3Threev16b
);
3508 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3509 SelectStore(Node
, 3, AArch64::ST3Threev4h
);
3511 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3512 SelectStore(Node
, 3, AArch64::ST3Threev8h
);
3514 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3515 SelectStore(Node
, 3, AArch64::ST3Threev2s
);
3517 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3518 SelectStore(Node
, 3, AArch64::ST3Threev4s
);
3520 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3521 SelectStore(Node
, 3, AArch64::ST3Threev2d
);
3523 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3524 SelectStore(Node
, 3, AArch64::ST1Threev1d
);
3529 case Intrinsic::aarch64_neon_st4
: {
3530 if (VT
== MVT::v8i8
) {
3531 SelectStore(Node
, 4, AArch64::ST4Fourv8b
);
3533 } else if (VT
== MVT::v16i8
) {
3534 SelectStore(Node
, 4, AArch64::ST4Fourv16b
);
3536 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3537 SelectStore(Node
, 4, AArch64::ST4Fourv4h
);
3539 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3540 SelectStore(Node
, 4, AArch64::ST4Fourv8h
);
3542 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3543 SelectStore(Node
, 4, AArch64::ST4Fourv2s
);
3545 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3546 SelectStore(Node
, 4, AArch64::ST4Fourv4s
);
3548 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3549 SelectStore(Node
, 4, AArch64::ST4Fourv2d
);
3551 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3552 SelectStore(Node
, 4, AArch64::ST1Fourv1d
);
3557 case Intrinsic::aarch64_neon_st2lane
: {
3558 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3559 SelectStoreLane(Node
, 2, AArch64::ST2i8
);
3561 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3563 SelectStoreLane(Node
, 2, AArch64::ST2i16
);
3565 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3567 SelectStoreLane(Node
, 2, AArch64::ST2i32
);
3569 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3571 SelectStoreLane(Node
, 2, AArch64::ST2i64
);
3576 case Intrinsic::aarch64_neon_st3lane
: {
3577 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3578 SelectStoreLane(Node
, 3, AArch64::ST3i8
);
3580 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3582 SelectStoreLane(Node
, 3, AArch64::ST3i16
);
3584 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3586 SelectStoreLane(Node
, 3, AArch64::ST3i32
);
3588 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3590 SelectStoreLane(Node
, 3, AArch64::ST3i64
);
3595 case Intrinsic::aarch64_neon_st4lane
: {
3596 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3597 SelectStoreLane(Node
, 4, AArch64::ST4i8
);
3599 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3601 SelectStoreLane(Node
, 4, AArch64::ST4i16
);
3603 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3605 SelectStoreLane(Node
, 4, AArch64::ST4i32
);
3607 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3609 SelectStoreLane(Node
, 4, AArch64::ST4i64
);
3617 case AArch64ISD::LD2post
: {
3618 if (VT
== MVT::v8i8
) {
3619 SelectPostLoad(Node
, 2, AArch64::LD2Twov8b_POST
, AArch64::dsub0
);
3621 } else if (VT
== MVT::v16i8
) {
3622 SelectPostLoad(Node
, 2, AArch64::LD2Twov16b_POST
, AArch64::qsub0
);
3624 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3625 SelectPostLoad(Node
, 2, AArch64::LD2Twov4h_POST
, AArch64::dsub0
);
3627 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3628 SelectPostLoad(Node
, 2, AArch64::LD2Twov8h_POST
, AArch64::qsub0
);
3630 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3631 SelectPostLoad(Node
, 2, AArch64::LD2Twov2s_POST
, AArch64::dsub0
);
3633 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3634 SelectPostLoad(Node
, 2, AArch64::LD2Twov4s_POST
, AArch64::qsub0
);
3636 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3637 SelectPostLoad(Node
, 2, AArch64::LD1Twov1d_POST
, AArch64::dsub0
);
3639 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3640 SelectPostLoad(Node
, 2, AArch64::LD2Twov2d_POST
, AArch64::qsub0
);
3645 case AArch64ISD::LD3post
: {
3646 if (VT
== MVT::v8i8
) {
3647 SelectPostLoad(Node
, 3, AArch64::LD3Threev8b_POST
, AArch64::dsub0
);
3649 } else if (VT
== MVT::v16i8
) {
3650 SelectPostLoad(Node
, 3, AArch64::LD3Threev16b_POST
, AArch64::qsub0
);
3652 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3653 SelectPostLoad(Node
, 3, AArch64::LD3Threev4h_POST
, AArch64::dsub0
);
3655 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3656 SelectPostLoad(Node
, 3, AArch64::LD3Threev8h_POST
, AArch64::qsub0
);
3658 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3659 SelectPostLoad(Node
, 3, AArch64::LD3Threev2s_POST
, AArch64::dsub0
);
3661 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3662 SelectPostLoad(Node
, 3, AArch64::LD3Threev4s_POST
, AArch64::qsub0
);
3664 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3665 SelectPostLoad(Node
, 3, AArch64::LD1Threev1d_POST
, AArch64::dsub0
);
3667 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3668 SelectPostLoad(Node
, 3, AArch64::LD3Threev2d_POST
, AArch64::qsub0
);
3673 case AArch64ISD::LD4post
: {
3674 if (VT
== MVT::v8i8
) {
3675 SelectPostLoad(Node
, 4, AArch64::LD4Fourv8b_POST
, AArch64::dsub0
);
3677 } else if (VT
== MVT::v16i8
) {
3678 SelectPostLoad(Node
, 4, AArch64::LD4Fourv16b_POST
, AArch64::qsub0
);
3680 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3681 SelectPostLoad(Node
, 4, AArch64::LD4Fourv4h_POST
, AArch64::dsub0
);
3683 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3684 SelectPostLoad(Node
, 4, AArch64::LD4Fourv8h_POST
, AArch64::qsub0
);
3686 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3687 SelectPostLoad(Node
, 4, AArch64::LD4Fourv2s_POST
, AArch64::dsub0
);
3689 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3690 SelectPostLoad(Node
, 4, AArch64::LD4Fourv4s_POST
, AArch64::qsub0
);
3692 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3693 SelectPostLoad(Node
, 4, AArch64::LD1Fourv1d_POST
, AArch64::dsub0
);
3695 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3696 SelectPostLoad(Node
, 4, AArch64::LD4Fourv2d_POST
, AArch64::qsub0
);
3701 case AArch64ISD::LD1x2post
: {
3702 if (VT
== MVT::v8i8
) {
3703 SelectPostLoad(Node
, 2, AArch64::LD1Twov8b_POST
, AArch64::dsub0
);
3705 } else if (VT
== MVT::v16i8
) {
3706 SelectPostLoad(Node
, 2, AArch64::LD1Twov16b_POST
, AArch64::qsub0
);
3708 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3709 SelectPostLoad(Node
, 2, AArch64::LD1Twov4h_POST
, AArch64::dsub0
);
3711 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3712 SelectPostLoad(Node
, 2, AArch64::LD1Twov8h_POST
, AArch64::qsub0
);
3714 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3715 SelectPostLoad(Node
, 2, AArch64::LD1Twov2s_POST
, AArch64::dsub0
);
3717 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3718 SelectPostLoad(Node
, 2, AArch64::LD1Twov4s_POST
, AArch64::qsub0
);
3720 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3721 SelectPostLoad(Node
, 2, AArch64::LD1Twov1d_POST
, AArch64::dsub0
);
3723 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3724 SelectPostLoad(Node
, 2, AArch64::LD1Twov2d_POST
, AArch64::qsub0
);
3729 case AArch64ISD::LD1x3post
: {
3730 if (VT
== MVT::v8i8
) {
3731 SelectPostLoad(Node
, 3, AArch64::LD1Threev8b_POST
, AArch64::dsub0
);
3733 } else if (VT
== MVT::v16i8
) {
3734 SelectPostLoad(Node
, 3, AArch64::LD1Threev16b_POST
, AArch64::qsub0
);
3736 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3737 SelectPostLoad(Node
, 3, AArch64::LD1Threev4h_POST
, AArch64::dsub0
);
3739 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3740 SelectPostLoad(Node
, 3, AArch64::LD1Threev8h_POST
, AArch64::qsub0
);
3742 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3743 SelectPostLoad(Node
, 3, AArch64::LD1Threev2s_POST
, AArch64::dsub0
);
3745 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3746 SelectPostLoad(Node
, 3, AArch64::LD1Threev4s_POST
, AArch64::qsub0
);
3748 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3749 SelectPostLoad(Node
, 3, AArch64::LD1Threev1d_POST
, AArch64::dsub0
);
3751 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3752 SelectPostLoad(Node
, 3, AArch64::LD1Threev2d_POST
, AArch64::qsub0
);
3757 case AArch64ISD::LD1x4post
: {
3758 if (VT
== MVT::v8i8
) {
3759 SelectPostLoad(Node
, 4, AArch64::LD1Fourv8b_POST
, AArch64::dsub0
);
3761 } else if (VT
== MVT::v16i8
) {
3762 SelectPostLoad(Node
, 4, AArch64::LD1Fourv16b_POST
, AArch64::qsub0
);
3764 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3765 SelectPostLoad(Node
, 4, AArch64::LD1Fourv4h_POST
, AArch64::dsub0
);
3767 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3768 SelectPostLoad(Node
, 4, AArch64::LD1Fourv8h_POST
, AArch64::qsub0
);
3770 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3771 SelectPostLoad(Node
, 4, AArch64::LD1Fourv2s_POST
, AArch64::dsub0
);
3773 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3774 SelectPostLoad(Node
, 4, AArch64::LD1Fourv4s_POST
, AArch64::qsub0
);
3776 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3777 SelectPostLoad(Node
, 4, AArch64::LD1Fourv1d_POST
, AArch64::dsub0
);
3779 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3780 SelectPostLoad(Node
, 4, AArch64::LD1Fourv2d_POST
, AArch64::qsub0
);
3785 case AArch64ISD::LD1DUPpost
: {
3786 if (VT
== MVT::v8i8
) {
3787 SelectPostLoad(Node
, 1, AArch64::LD1Rv8b_POST
, AArch64::dsub0
);
3789 } else if (VT
== MVT::v16i8
) {
3790 SelectPostLoad(Node
, 1, AArch64::LD1Rv16b_POST
, AArch64::qsub0
);
3792 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3793 SelectPostLoad(Node
, 1, AArch64::LD1Rv4h_POST
, AArch64::dsub0
);
3795 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3796 SelectPostLoad(Node
, 1, AArch64::LD1Rv8h_POST
, AArch64::qsub0
);
3798 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3799 SelectPostLoad(Node
, 1, AArch64::LD1Rv2s_POST
, AArch64::dsub0
);
3801 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3802 SelectPostLoad(Node
, 1, AArch64::LD1Rv4s_POST
, AArch64::qsub0
);
3804 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3805 SelectPostLoad(Node
, 1, AArch64::LD1Rv1d_POST
, AArch64::dsub0
);
3807 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3808 SelectPostLoad(Node
, 1, AArch64::LD1Rv2d_POST
, AArch64::qsub0
);
3813 case AArch64ISD::LD2DUPpost
: {
3814 if (VT
== MVT::v8i8
) {
3815 SelectPostLoad(Node
, 2, AArch64::LD2Rv8b_POST
, AArch64::dsub0
);
3817 } else if (VT
== MVT::v16i8
) {
3818 SelectPostLoad(Node
, 2, AArch64::LD2Rv16b_POST
, AArch64::qsub0
);
3820 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3821 SelectPostLoad(Node
, 2, AArch64::LD2Rv4h_POST
, AArch64::dsub0
);
3823 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3824 SelectPostLoad(Node
, 2, AArch64::LD2Rv8h_POST
, AArch64::qsub0
);
3826 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3827 SelectPostLoad(Node
, 2, AArch64::LD2Rv2s_POST
, AArch64::dsub0
);
3829 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3830 SelectPostLoad(Node
, 2, AArch64::LD2Rv4s_POST
, AArch64::qsub0
);
3832 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3833 SelectPostLoad(Node
, 2, AArch64::LD2Rv1d_POST
, AArch64::dsub0
);
3835 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3836 SelectPostLoad(Node
, 2, AArch64::LD2Rv2d_POST
, AArch64::qsub0
);
3841 case AArch64ISD::LD3DUPpost
: {
3842 if (VT
== MVT::v8i8
) {
3843 SelectPostLoad(Node
, 3, AArch64::LD3Rv8b_POST
, AArch64::dsub0
);
3845 } else if (VT
== MVT::v16i8
) {
3846 SelectPostLoad(Node
, 3, AArch64::LD3Rv16b_POST
, AArch64::qsub0
);
3848 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3849 SelectPostLoad(Node
, 3, AArch64::LD3Rv4h_POST
, AArch64::dsub0
);
3851 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3852 SelectPostLoad(Node
, 3, AArch64::LD3Rv8h_POST
, AArch64::qsub0
);
3854 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3855 SelectPostLoad(Node
, 3, AArch64::LD3Rv2s_POST
, AArch64::dsub0
);
3857 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3858 SelectPostLoad(Node
, 3, AArch64::LD3Rv4s_POST
, AArch64::qsub0
);
3860 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3861 SelectPostLoad(Node
, 3, AArch64::LD3Rv1d_POST
, AArch64::dsub0
);
3863 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3864 SelectPostLoad(Node
, 3, AArch64::LD3Rv2d_POST
, AArch64::qsub0
);
3869 case AArch64ISD::LD4DUPpost
: {
3870 if (VT
== MVT::v8i8
) {
3871 SelectPostLoad(Node
, 4, AArch64::LD4Rv8b_POST
, AArch64::dsub0
);
3873 } else if (VT
== MVT::v16i8
) {
3874 SelectPostLoad(Node
, 4, AArch64::LD4Rv16b_POST
, AArch64::qsub0
);
3876 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3877 SelectPostLoad(Node
, 4, AArch64::LD4Rv4h_POST
, AArch64::dsub0
);
3879 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3880 SelectPostLoad(Node
, 4, AArch64::LD4Rv8h_POST
, AArch64::qsub0
);
3882 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3883 SelectPostLoad(Node
, 4, AArch64::LD4Rv2s_POST
, AArch64::dsub0
);
3885 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3886 SelectPostLoad(Node
, 4, AArch64::LD4Rv4s_POST
, AArch64::qsub0
);
3888 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3889 SelectPostLoad(Node
, 4, AArch64::LD4Rv1d_POST
, AArch64::dsub0
);
3891 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3892 SelectPostLoad(Node
, 4, AArch64::LD4Rv2d_POST
, AArch64::qsub0
);
3897 case AArch64ISD::LD1LANEpost
: {
3898 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3899 SelectPostLoadLane(Node
, 1, AArch64::LD1i8_POST
);
3901 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3903 SelectPostLoadLane(Node
, 1, AArch64::LD1i16_POST
);
3905 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3907 SelectPostLoadLane(Node
, 1, AArch64::LD1i32_POST
);
3909 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3911 SelectPostLoadLane(Node
, 1, AArch64::LD1i64_POST
);
3916 case AArch64ISD::LD2LANEpost
: {
3917 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3918 SelectPostLoadLane(Node
, 2, AArch64::LD2i8_POST
);
3920 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3922 SelectPostLoadLane(Node
, 2, AArch64::LD2i16_POST
);
3924 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3926 SelectPostLoadLane(Node
, 2, AArch64::LD2i32_POST
);
3928 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3930 SelectPostLoadLane(Node
, 2, AArch64::LD2i64_POST
);
3935 case AArch64ISD::LD3LANEpost
: {
3936 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3937 SelectPostLoadLane(Node
, 3, AArch64::LD3i8_POST
);
3939 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3941 SelectPostLoadLane(Node
, 3, AArch64::LD3i16_POST
);
3943 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3945 SelectPostLoadLane(Node
, 3, AArch64::LD3i32_POST
);
3947 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3949 SelectPostLoadLane(Node
, 3, AArch64::LD3i64_POST
);
3954 case AArch64ISD::LD4LANEpost
: {
3955 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3956 SelectPostLoadLane(Node
, 4, AArch64::LD4i8_POST
);
3958 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3960 SelectPostLoadLane(Node
, 4, AArch64::LD4i16_POST
);
3962 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3964 SelectPostLoadLane(Node
, 4, AArch64::LD4i32_POST
);
3966 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3968 SelectPostLoadLane(Node
, 4, AArch64::LD4i64_POST
);
3973 case AArch64ISD::ST2post
: {
3974 VT
= Node
->getOperand(1).getValueType();
3975 if (VT
== MVT::v8i8
) {
3976 SelectPostStore(Node
, 2, AArch64::ST2Twov8b_POST
);
3978 } else if (VT
== MVT::v16i8
) {
3979 SelectPostStore(Node
, 2, AArch64::ST2Twov16b_POST
);
3981 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
3982 SelectPostStore(Node
, 2, AArch64::ST2Twov4h_POST
);
3984 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
3985 SelectPostStore(Node
, 2, AArch64::ST2Twov8h_POST
);
3987 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3988 SelectPostStore(Node
, 2, AArch64::ST2Twov2s_POST
);
3990 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3991 SelectPostStore(Node
, 2, AArch64::ST2Twov4s_POST
);
3993 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3994 SelectPostStore(Node
, 2, AArch64::ST2Twov2d_POST
);
3996 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3997 SelectPostStore(Node
, 2, AArch64::ST1Twov1d_POST
);
4002 case AArch64ISD::ST3post
: {
4003 VT
= Node
->getOperand(1).getValueType();
4004 if (VT
== MVT::v8i8
) {
4005 SelectPostStore(Node
, 3, AArch64::ST3Threev8b_POST
);
4007 } else if (VT
== MVT::v16i8
) {
4008 SelectPostStore(Node
, 3, AArch64::ST3Threev16b_POST
);
4010 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
4011 SelectPostStore(Node
, 3, AArch64::ST3Threev4h_POST
);
4013 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
4014 SelectPostStore(Node
, 3, AArch64::ST3Threev8h_POST
);
4016 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4017 SelectPostStore(Node
, 3, AArch64::ST3Threev2s_POST
);
4019 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4020 SelectPostStore(Node
, 3, AArch64::ST3Threev4s_POST
);
4022 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4023 SelectPostStore(Node
, 3, AArch64::ST3Threev2d_POST
);
4025 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4026 SelectPostStore(Node
, 3, AArch64::ST1Threev1d_POST
);
4031 case AArch64ISD::ST4post
: {
4032 VT
= Node
->getOperand(1).getValueType();
4033 if (VT
== MVT::v8i8
) {
4034 SelectPostStore(Node
, 4, AArch64::ST4Fourv8b_POST
);
4036 } else if (VT
== MVT::v16i8
) {
4037 SelectPostStore(Node
, 4, AArch64::ST4Fourv16b_POST
);
4039 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
4040 SelectPostStore(Node
, 4, AArch64::ST4Fourv4h_POST
);
4042 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
4043 SelectPostStore(Node
, 4, AArch64::ST4Fourv8h_POST
);
4045 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4046 SelectPostStore(Node
, 4, AArch64::ST4Fourv2s_POST
);
4048 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4049 SelectPostStore(Node
, 4, AArch64::ST4Fourv4s_POST
);
4051 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4052 SelectPostStore(Node
, 4, AArch64::ST4Fourv2d_POST
);
4054 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4055 SelectPostStore(Node
, 4, AArch64::ST1Fourv1d_POST
);
4060 case AArch64ISD::ST1x2post
: {
4061 VT
= Node
->getOperand(1).getValueType();
4062 if (VT
== MVT::v8i8
) {
4063 SelectPostStore(Node
, 2, AArch64::ST1Twov8b_POST
);
4065 } else if (VT
== MVT::v16i8
) {
4066 SelectPostStore(Node
, 2, AArch64::ST1Twov16b_POST
);
4068 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
4069 SelectPostStore(Node
, 2, AArch64::ST1Twov4h_POST
);
4071 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
4072 SelectPostStore(Node
, 2, AArch64::ST1Twov8h_POST
);
4074 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4075 SelectPostStore(Node
, 2, AArch64::ST1Twov2s_POST
);
4077 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4078 SelectPostStore(Node
, 2, AArch64::ST1Twov4s_POST
);
4080 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4081 SelectPostStore(Node
, 2, AArch64::ST1Twov1d_POST
);
4083 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4084 SelectPostStore(Node
, 2, AArch64::ST1Twov2d_POST
);
4089 case AArch64ISD::ST1x3post
: {
4090 VT
= Node
->getOperand(1).getValueType();
4091 if (VT
== MVT::v8i8
) {
4092 SelectPostStore(Node
, 3, AArch64::ST1Threev8b_POST
);
4094 } else if (VT
== MVT::v16i8
) {
4095 SelectPostStore(Node
, 3, AArch64::ST1Threev16b_POST
);
4097 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
4098 SelectPostStore(Node
, 3, AArch64::ST1Threev4h_POST
);
4100 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
4101 SelectPostStore(Node
, 3, AArch64::ST1Threev8h_POST
);
4103 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4104 SelectPostStore(Node
, 3, AArch64::ST1Threev2s_POST
);
4106 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4107 SelectPostStore(Node
, 3, AArch64::ST1Threev4s_POST
);
4109 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4110 SelectPostStore(Node
, 3, AArch64::ST1Threev1d_POST
);
4112 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4113 SelectPostStore(Node
, 3, AArch64::ST1Threev2d_POST
);
4118 case AArch64ISD::ST1x4post
: {
4119 VT
= Node
->getOperand(1).getValueType();
4120 if (VT
== MVT::v8i8
) {
4121 SelectPostStore(Node
, 4, AArch64::ST1Fourv8b_POST
);
4123 } else if (VT
== MVT::v16i8
) {
4124 SelectPostStore(Node
, 4, AArch64::ST1Fourv16b_POST
);
4126 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
) {
4127 SelectPostStore(Node
, 4, AArch64::ST1Fourv4h_POST
);
4129 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
) {
4130 SelectPostStore(Node
, 4, AArch64::ST1Fourv8h_POST
);
4132 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4133 SelectPostStore(Node
, 4, AArch64::ST1Fourv2s_POST
);
4135 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4136 SelectPostStore(Node
, 4, AArch64::ST1Fourv4s_POST
);
4138 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4139 SelectPostStore(Node
, 4, AArch64::ST1Fourv1d_POST
);
4141 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4142 SelectPostStore(Node
, 4, AArch64::ST1Fourv2d_POST
);
4147 case AArch64ISD::ST2LANEpost
: {
4148 VT
= Node
->getOperand(1).getValueType();
4149 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
4150 SelectPostStoreLane(Node
, 2, AArch64::ST2i8_POST
);
4152 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4154 SelectPostStoreLane(Node
, 2, AArch64::ST2i16_POST
);
4156 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
4158 SelectPostStoreLane(Node
, 2, AArch64::ST2i32_POST
);
4160 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
4162 SelectPostStoreLane(Node
, 2, AArch64::ST2i64_POST
);
4167 case AArch64ISD::ST3LANEpost
: {
4168 VT
= Node
->getOperand(1).getValueType();
4169 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
4170 SelectPostStoreLane(Node
, 3, AArch64::ST3i8_POST
);
4172 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4174 SelectPostStoreLane(Node
, 3, AArch64::ST3i16_POST
);
4176 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
4178 SelectPostStoreLane(Node
, 3, AArch64::ST3i32_POST
);
4180 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
4182 SelectPostStoreLane(Node
, 3, AArch64::ST3i64_POST
);
4187 case AArch64ISD::ST4LANEpost
: {
4188 VT
= Node
->getOperand(1).getValueType();
4189 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
4190 SelectPostStoreLane(Node
, 4, AArch64::ST4i8_POST
);
4192 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4194 SelectPostStoreLane(Node
, 4, AArch64::ST4i16_POST
);
4196 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
4198 SelectPostStoreLane(Node
, 4, AArch64::ST4i32_POST
);
4200 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
4202 SelectPostStoreLane(Node
, 4, AArch64::ST4i64_POST
);
4209 // Select the default instruction
4213 /// createAArch64ISelDag - This pass converts a legalized DAG into a
4214 /// AArch64-specific DAG, ready for instruction scheduling.
4215 FunctionPass
*llvm::createAArch64ISelDag(AArch64TargetMachine
&TM
,
4216 CodeGenOpt::Level OptLevel
) {
4217 return new AArch64DAGToDAGISel(TM
, OptLevel
);