1 //===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the AArch64 implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "AArch64InstrInfo.h"
14 #include "AArch64MachineFunctionInfo.h"
15 #include "AArch64Subtarget.h"
16 #include "MCTargetDesc/AArch64AddressingModes.h"
17 #include "Utils/AArch64BaseInfo.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/MachineModuleInfo.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCInst.h"
37 #include "llvm/MC/MCInstrDesc.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CodeGen.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Target/TargetMachine.h"
45 #include "llvm/Target/TargetOptions.h"
53 #define GET_INSTRINFO_CTOR_DTOR
54 #include "AArch64GenInstrInfo.inc"
56 static cl::opt
<unsigned> TBZDisplacementBits(
57 "aarch64-tbz-offset-bits", cl::Hidden
, cl::init(14),
58 cl::desc("Restrict range of TB[N]Z instructions (DEBUG)"));
60 static cl::opt
<unsigned> CBZDisplacementBits(
61 "aarch64-cbz-offset-bits", cl::Hidden
, cl::init(19),
62 cl::desc("Restrict range of CB[N]Z instructions (DEBUG)"));
64 static cl::opt
<unsigned>
65 BCCDisplacementBits("aarch64-bcc-offset-bits", cl::Hidden
, cl::init(19),
66 cl::desc("Restrict range of Bcc instructions (DEBUG)"));
68 AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget
&STI
)
69 : AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN
, AArch64::ADJCALLSTACKUP
,
71 RI(STI
.getTargetTriple()), Subtarget(STI
) {}
73 /// GetInstSize - Return the number of bytes of code the specified
74 /// instruction may be. This returns the maximum number of bytes.
75 unsigned AArch64InstrInfo::getInstSizeInBytes(const MachineInstr
&MI
) const {
76 const MachineBasicBlock
&MBB
= *MI
.getParent();
77 const MachineFunction
*MF
= MBB
.getParent();
78 const MCAsmInfo
*MAI
= MF
->getTarget().getMCAsmInfo();
81 auto Op
= MI
.getOpcode();
82 if (Op
== AArch64::INLINEASM
|| Op
== AArch64::INLINEASM_BR
)
83 return getInlineAsmLength(MI
.getOperand(0).getSymbolName(), *MAI
);
86 // Meta-instructions emit no code.
87 if (MI
.isMetaInstruction())
90 // FIXME: We currently only handle pseudoinstructions that don't get expanded
91 // before the assembly printer.
92 unsigned NumBytes
= 0;
93 const MCInstrDesc
&Desc
= MI
.getDesc();
94 switch (Desc
.getOpcode()) {
96 // Anything not explicitly designated otherwise is a normal 4-byte insn.
99 case TargetOpcode::STACKMAP
:
100 // The upper bound for a stackmap intrinsic is the full length of its shadow
101 NumBytes
= StackMapOpers(&MI
).getNumPatchBytes();
102 assert(NumBytes
% 4 == 0 && "Invalid number of NOP bytes requested!");
104 case TargetOpcode::PATCHPOINT
:
105 // The size of the patchpoint intrinsic is the number of bytes requested
106 NumBytes
= PatchPointOpers(&MI
).getNumPatchBytes();
107 assert(NumBytes
% 4 == 0 && "Invalid number of NOP bytes requested!");
109 case AArch64::TLSDESC_CALLSEQ
:
110 // This gets lowered to an instruction sequence which takes 16 bytes
113 case AArch64::JumpTableDest32
:
114 case AArch64::JumpTableDest16
:
115 case AArch64::JumpTableDest8
:
119 NumBytes
= MI
.getOperand(1).getImm();
126 static void parseCondBranch(MachineInstr
*LastInst
, MachineBasicBlock
*&Target
,
127 SmallVectorImpl
<MachineOperand
> &Cond
) {
128 // Block ends with fall-through condbranch.
129 switch (LastInst
->getOpcode()) {
131 llvm_unreachable("Unknown branch instruction?");
133 Target
= LastInst
->getOperand(1).getMBB();
134 Cond
.push_back(LastInst
->getOperand(0));
140 Target
= LastInst
->getOperand(1).getMBB();
141 Cond
.push_back(MachineOperand::CreateImm(-1));
142 Cond
.push_back(MachineOperand::CreateImm(LastInst
->getOpcode()));
143 Cond
.push_back(LastInst
->getOperand(0));
149 Target
= LastInst
->getOperand(2).getMBB();
150 Cond
.push_back(MachineOperand::CreateImm(-1));
151 Cond
.push_back(MachineOperand::CreateImm(LastInst
->getOpcode()));
152 Cond
.push_back(LastInst
->getOperand(0));
153 Cond
.push_back(LastInst
->getOperand(1));
157 static unsigned getBranchDisplacementBits(unsigned Opc
) {
160 llvm_unreachable("unexpected opcode!");
167 return TBZDisplacementBits
;
172 return CBZDisplacementBits
;
174 return BCCDisplacementBits
;
178 bool AArch64InstrInfo::isBranchOffsetInRange(unsigned BranchOp
,
179 int64_t BrOffset
) const {
180 unsigned Bits
= getBranchDisplacementBits(BranchOp
);
181 assert(Bits
>= 3 && "max branch displacement must be enough to jump"
182 "over conditional branch expansion");
183 return isIntN(Bits
, BrOffset
/ 4);
187 AArch64InstrInfo::getBranchDestBlock(const MachineInstr
&MI
) const {
188 switch (MI
.getOpcode()) {
190 llvm_unreachable("unexpected opcode!");
192 return MI
.getOperand(0).getMBB();
197 return MI
.getOperand(2).getMBB();
203 return MI
.getOperand(1).getMBB();
208 bool AArch64InstrInfo::analyzeBranch(MachineBasicBlock
&MBB
,
209 MachineBasicBlock
*&TBB
,
210 MachineBasicBlock
*&FBB
,
211 SmallVectorImpl
<MachineOperand
> &Cond
,
212 bool AllowModify
) const {
213 // If the block has no terminators, it just falls into the block after it.
214 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
218 if (!isUnpredicatedTerminator(*I
))
221 // Get the last instruction in the block.
222 MachineInstr
*LastInst
= &*I
;
224 // If there is only one terminator instruction, process it.
225 unsigned LastOpc
= LastInst
->getOpcode();
226 if (I
== MBB
.begin() || !isUnpredicatedTerminator(*--I
)) {
227 if (isUncondBranchOpcode(LastOpc
)) {
228 TBB
= LastInst
->getOperand(0).getMBB();
231 if (isCondBranchOpcode(LastOpc
)) {
232 // Block ends with fall-through condbranch.
233 parseCondBranch(LastInst
, TBB
, Cond
);
236 return true; // Can't handle indirect branch.
239 // Get the instruction before it if it is a terminator.
240 MachineInstr
*SecondLastInst
= &*I
;
241 unsigned SecondLastOpc
= SecondLastInst
->getOpcode();
243 // If AllowModify is true and the block ends with two or more unconditional
244 // branches, delete all but the first unconditional branch.
245 if (AllowModify
&& isUncondBranchOpcode(LastOpc
)) {
246 while (isUncondBranchOpcode(SecondLastOpc
)) {
247 LastInst
->eraseFromParent();
248 LastInst
= SecondLastInst
;
249 LastOpc
= LastInst
->getOpcode();
250 if (I
== MBB
.begin() || !isUnpredicatedTerminator(*--I
)) {
251 // Return now the only terminator is an unconditional branch.
252 TBB
= LastInst
->getOperand(0).getMBB();
255 SecondLastInst
= &*I
;
256 SecondLastOpc
= SecondLastInst
->getOpcode();
261 // If there are three terminators, we don't know what sort of block this is.
262 if (SecondLastInst
&& I
!= MBB
.begin() && isUnpredicatedTerminator(*--I
))
265 // If the block ends with a B and a Bcc, handle it.
266 if (isCondBranchOpcode(SecondLastOpc
) && isUncondBranchOpcode(LastOpc
)) {
267 parseCondBranch(SecondLastInst
, TBB
, Cond
);
268 FBB
= LastInst
->getOperand(0).getMBB();
272 // If the block ends with two unconditional branches, handle it. The second
273 // one is not executed, so remove it.
274 if (isUncondBranchOpcode(SecondLastOpc
) && isUncondBranchOpcode(LastOpc
)) {
275 TBB
= SecondLastInst
->getOperand(0).getMBB();
278 I
->eraseFromParent();
282 // ...likewise if it ends with an indirect branch followed by an unconditional
284 if (isIndirectBranchOpcode(SecondLastOpc
) && isUncondBranchOpcode(LastOpc
)) {
287 I
->eraseFromParent();
291 // Otherwise, can't handle this.
295 bool AArch64InstrInfo::reverseBranchCondition(
296 SmallVectorImpl
<MachineOperand
> &Cond
) const {
297 if (Cond
[0].getImm() != -1) {
299 AArch64CC::CondCode CC
= (AArch64CC::CondCode
)(int)Cond
[0].getImm();
300 Cond
[0].setImm(AArch64CC::getInvertedCondCode(CC
));
302 // Folded compare-and-branch
303 switch (Cond
[1].getImm()) {
305 llvm_unreachable("Unknown conditional branch!");
307 Cond
[1].setImm(AArch64::CBNZW
);
310 Cond
[1].setImm(AArch64::CBZW
);
313 Cond
[1].setImm(AArch64::CBNZX
);
316 Cond
[1].setImm(AArch64::CBZX
);
319 Cond
[1].setImm(AArch64::TBNZW
);
322 Cond
[1].setImm(AArch64::TBZW
);
325 Cond
[1].setImm(AArch64::TBNZX
);
328 Cond
[1].setImm(AArch64::TBZX
);
336 unsigned AArch64InstrInfo::removeBranch(MachineBasicBlock
&MBB
,
337 int *BytesRemoved
) const {
338 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
342 if (!isUncondBranchOpcode(I
->getOpcode()) &&
343 !isCondBranchOpcode(I
->getOpcode()))
346 // Remove the branch.
347 I
->eraseFromParent();
351 if (I
== MBB
.begin()) {
357 if (!isCondBranchOpcode(I
->getOpcode())) {
363 // Remove the branch.
364 I
->eraseFromParent();
371 void AArch64InstrInfo::instantiateCondBranch(
372 MachineBasicBlock
&MBB
, const DebugLoc
&DL
, MachineBasicBlock
*TBB
,
373 ArrayRef
<MachineOperand
> Cond
) const {
374 if (Cond
[0].getImm() != -1) {
376 BuildMI(&MBB
, DL
, get(AArch64::Bcc
)).addImm(Cond
[0].getImm()).addMBB(TBB
);
378 // Folded compare-and-branch
379 // Note that we use addOperand instead of addReg to keep the flags.
380 const MachineInstrBuilder MIB
=
381 BuildMI(&MBB
, DL
, get(Cond
[1].getImm())).add(Cond
[2]);
383 MIB
.addImm(Cond
[3].getImm());
388 unsigned AArch64InstrInfo::insertBranch(
389 MachineBasicBlock
&MBB
, MachineBasicBlock
*TBB
, MachineBasicBlock
*FBB
,
390 ArrayRef
<MachineOperand
> Cond
, const DebugLoc
&DL
, int *BytesAdded
) const {
391 // Shouldn't be a fall through.
392 assert(TBB
&& "insertBranch must not be told to insert a fallthrough");
395 if (Cond
.empty()) // Unconditional branch?
396 BuildMI(&MBB
, DL
, get(AArch64::B
)).addMBB(TBB
);
398 instantiateCondBranch(MBB
, DL
, TBB
, Cond
);
406 // Two-way conditional branch.
407 instantiateCondBranch(MBB
, DL
, TBB
, Cond
);
408 BuildMI(&MBB
, DL
, get(AArch64::B
)).addMBB(FBB
);
416 // Find the original register that VReg is copied from.
417 static unsigned removeCopies(const MachineRegisterInfo
&MRI
, unsigned VReg
) {
418 while (Register::isVirtualRegister(VReg
)) {
419 const MachineInstr
*DefMI
= MRI
.getVRegDef(VReg
);
420 if (!DefMI
->isFullCopy())
422 VReg
= DefMI
->getOperand(1).getReg();
427 // Determine if VReg is defined by an instruction that can be folded into a
428 // csel instruction. If so, return the folded opcode, and the replacement
430 static unsigned canFoldIntoCSel(const MachineRegisterInfo
&MRI
, unsigned VReg
,
431 unsigned *NewVReg
= nullptr) {
432 VReg
= removeCopies(MRI
, VReg
);
433 if (!Register::isVirtualRegister(VReg
))
436 bool Is64Bit
= AArch64::GPR64allRegClass
.hasSubClassEq(MRI
.getRegClass(VReg
));
437 const MachineInstr
*DefMI
= MRI
.getVRegDef(VReg
);
439 unsigned SrcOpNum
= 0;
440 switch (DefMI
->getOpcode()) {
441 case AArch64::ADDSXri
:
442 case AArch64::ADDSWri
:
443 // if NZCV is used, do not fold.
444 if (DefMI
->findRegisterDefOperandIdx(AArch64::NZCV
, true) == -1)
446 // fall-through to ADDXri and ADDWri.
448 case AArch64::ADDXri
:
449 case AArch64::ADDWri
:
450 // add x, 1 -> csinc.
451 if (!DefMI
->getOperand(2).isImm() || DefMI
->getOperand(2).getImm() != 1 ||
452 DefMI
->getOperand(3).getImm() != 0)
455 Opc
= Is64Bit
? AArch64::CSINCXr
: AArch64::CSINCWr
;
458 case AArch64::ORNXrr
:
459 case AArch64::ORNWrr
: {
460 // not x -> csinv, represented as orn dst, xzr, src.
461 unsigned ZReg
= removeCopies(MRI
, DefMI
->getOperand(1).getReg());
462 if (ZReg
!= AArch64::XZR
&& ZReg
!= AArch64::WZR
)
465 Opc
= Is64Bit
? AArch64::CSINVXr
: AArch64::CSINVWr
;
469 case AArch64::SUBSXrr
:
470 case AArch64::SUBSWrr
:
471 // if NZCV is used, do not fold.
472 if (DefMI
->findRegisterDefOperandIdx(AArch64::NZCV
, true) == -1)
474 // fall-through to SUBXrr and SUBWrr.
476 case AArch64::SUBXrr
:
477 case AArch64::SUBWrr
: {
478 // neg x -> csneg, represented as sub dst, xzr, src.
479 unsigned ZReg
= removeCopies(MRI
, DefMI
->getOperand(1).getReg());
480 if (ZReg
!= AArch64::XZR
&& ZReg
!= AArch64::WZR
)
483 Opc
= Is64Bit
? AArch64::CSNEGXr
: AArch64::CSNEGWr
;
489 assert(Opc
&& SrcOpNum
&& "Missing parameters");
492 *NewVReg
= DefMI
->getOperand(SrcOpNum
).getReg();
496 bool AArch64InstrInfo::canInsertSelect(const MachineBasicBlock
&MBB
,
497 ArrayRef
<MachineOperand
> Cond
,
498 unsigned TrueReg
, unsigned FalseReg
,
499 int &CondCycles
, int &TrueCycles
,
500 int &FalseCycles
) const {
501 // Check register classes.
502 const MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
503 const TargetRegisterClass
*RC
=
504 RI
.getCommonSubClass(MRI
.getRegClass(TrueReg
), MRI
.getRegClass(FalseReg
));
508 // Expanding cbz/tbz requires an extra cycle of latency on the condition.
509 unsigned ExtraCondLat
= Cond
.size() != 1;
511 // GPRs are handled by csel.
512 // FIXME: Fold in x+1, -x, and ~x when applicable.
513 if (AArch64::GPR64allRegClass
.hasSubClassEq(RC
) ||
514 AArch64::GPR32allRegClass
.hasSubClassEq(RC
)) {
515 // Single-cycle csel, csinc, csinv, and csneg.
516 CondCycles
= 1 + ExtraCondLat
;
517 TrueCycles
= FalseCycles
= 1;
518 if (canFoldIntoCSel(MRI
, TrueReg
))
520 else if (canFoldIntoCSel(MRI
, FalseReg
))
525 // Scalar floating point is handled by fcsel.
526 // FIXME: Form fabs, fmin, and fmax when applicable.
527 if (AArch64::FPR64RegClass
.hasSubClassEq(RC
) ||
528 AArch64::FPR32RegClass
.hasSubClassEq(RC
)) {
529 CondCycles
= 5 + ExtraCondLat
;
530 TrueCycles
= FalseCycles
= 2;
538 void AArch64InstrInfo::insertSelect(MachineBasicBlock
&MBB
,
539 MachineBasicBlock::iterator I
,
540 const DebugLoc
&DL
, unsigned DstReg
,
541 ArrayRef
<MachineOperand
> Cond
,
542 unsigned TrueReg
, unsigned FalseReg
) const {
543 MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
545 // Parse the condition code, see parseCondBranch() above.
546 AArch64CC::CondCode CC
;
547 switch (Cond
.size()) {
549 llvm_unreachable("Unknown condition opcode in Cond");
551 CC
= AArch64CC::CondCode(Cond
[0].getImm());
553 case 3: { // cbz/cbnz
554 // We must insert a compare against 0.
556 switch (Cond
[1].getImm()) {
558 llvm_unreachable("Unknown branch opcode in Cond");
576 Register SrcReg
= Cond
[2].getReg();
578 // cmp reg, #0 is actually subs xzr, reg, #0.
579 MRI
.constrainRegClass(SrcReg
, &AArch64::GPR64spRegClass
);
580 BuildMI(MBB
, I
, DL
, get(AArch64::SUBSXri
), AArch64::XZR
)
585 MRI
.constrainRegClass(SrcReg
, &AArch64::GPR32spRegClass
);
586 BuildMI(MBB
, I
, DL
, get(AArch64::SUBSWri
), AArch64::WZR
)
593 case 4: { // tbz/tbnz
594 // We must insert a tst instruction.
595 switch (Cond
[1].getImm()) {
597 llvm_unreachable("Unknown branch opcode in Cond");
607 // cmp reg, #foo is actually ands xzr, reg, #1<<foo.
608 if (Cond
[1].getImm() == AArch64::TBZW
|| Cond
[1].getImm() == AArch64::TBNZW
)
609 BuildMI(MBB
, I
, DL
, get(AArch64::ANDSWri
), AArch64::WZR
)
610 .addReg(Cond
[2].getReg())
612 AArch64_AM::encodeLogicalImmediate(1ull << Cond
[3].getImm(), 32));
614 BuildMI(MBB
, I
, DL
, get(AArch64::ANDSXri
), AArch64::XZR
)
615 .addReg(Cond
[2].getReg())
617 AArch64_AM::encodeLogicalImmediate(1ull << Cond
[3].getImm(), 64));
623 const TargetRegisterClass
*RC
= nullptr;
624 bool TryFold
= false;
625 if (MRI
.constrainRegClass(DstReg
, &AArch64::GPR64RegClass
)) {
626 RC
= &AArch64::GPR64RegClass
;
627 Opc
= AArch64::CSELXr
;
629 } else if (MRI
.constrainRegClass(DstReg
, &AArch64::GPR32RegClass
)) {
630 RC
= &AArch64::GPR32RegClass
;
631 Opc
= AArch64::CSELWr
;
633 } else if (MRI
.constrainRegClass(DstReg
, &AArch64::FPR64RegClass
)) {
634 RC
= &AArch64::FPR64RegClass
;
635 Opc
= AArch64::FCSELDrrr
;
636 } else if (MRI
.constrainRegClass(DstReg
, &AArch64::FPR32RegClass
)) {
637 RC
= &AArch64::FPR32RegClass
;
638 Opc
= AArch64::FCSELSrrr
;
640 assert(RC
&& "Unsupported regclass");
642 // Try folding simple instructions into the csel.
644 unsigned NewVReg
= 0;
645 unsigned FoldedOpc
= canFoldIntoCSel(MRI
, TrueReg
, &NewVReg
);
647 // The folded opcodes csinc, csinc and csneg apply the operation to
648 // FalseReg, so we need to invert the condition.
649 CC
= AArch64CC::getInvertedCondCode(CC
);
652 FoldedOpc
= canFoldIntoCSel(MRI
, FalseReg
, &NewVReg
);
654 // Fold the operation. Leave any dead instructions for DCE to clean up.
658 // The extends the live range of NewVReg.
659 MRI
.clearKillFlags(NewVReg
);
663 // Pull all virtual register into the appropriate class.
664 MRI
.constrainRegClass(TrueReg
, RC
);
665 MRI
.constrainRegClass(FalseReg
, RC
);
668 BuildMI(MBB
, I
, DL
, get(Opc
), DstReg
)
674 /// Returns true if a MOVi32imm or MOVi64imm can be expanded to an ORRxx.
675 static bool canBeExpandedToORR(const MachineInstr
&MI
, unsigned BitSize
) {
676 uint64_t Imm
= MI
.getOperand(1).getImm();
677 uint64_t UImm
= Imm
<< (64 - BitSize
) >> (64 - BitSize
);
679 return AArch64_AM::processLogicalImmediate(UImm
, BitSize
, Encoding
);
682 // FIXME: this implementation should be micro-architecture dependent, so a
683 // micro-architecture target hook should be introduced here in future.
684 bool AArch64InstrInfo::isAsCheapAsAMove(const MachineInstr
&MI
) const {
685 if (!Subtarget
.hasCustomCheapAsMoveHandling())
686 return MI
.isAsCheapAsAMove();
688 const unsigned Opcode
= MI
.getOpcode();
690 // Firstly, check cases gated by features.
692 if (Subtarget
.hasZeroCycleZeroingFP()) {
693 if (Opcode
== AArch64::FMOVH0
||
694 Opcode
== AArch64::FMOVS0
||
695 Opcode
== AArch64::FMOVD0
)
699 if (Subtarget
.hasZeroCycleZeroingGP()) {
700 if (Opcode
== TargetOpcode::COPY
&&
701 (MI
.getOperand(1).getReg() == AArch64::WZR
||
702 MI
.getOperand(1).getReg() == AArch64::XZR
))
706 // Secondly, check cases specific to sub-targets.
708 if (Subtarget
.hasExynosCheapAsMoveHandling()) {
709 if (isExynosCheapAsMove(MI
))
712 return MI
.isAsCheapAsAMove();
715 // Finally, check generic cases.
721 // add/sub on register without shift
722 case AArch64::ADDWri
:
723 case AArch64::ADDXri
:
724 case AArch64::SUBWri
:
725 case AArch64::SUBXri
:
726 return (MI
.getOperand(3).getImm() == 0);
728 // logical ops on immediate
729 case AArch64::ANDWri
:
730 case AArch64::ANDXri
:
731 case AArch64::EORWri
:
732 case AArch64::EORXri
:
733 case AArch64::ORRWri
:
734 case AArch64::ORRXri
:
737 // logical ops on register without shift
738 case AArch64::ANDWrr
:
739 case AArch64::ANDXrr
:
740 case AArch64::BICWrr
:
741 case AArch64::BICXrr
:
742 case AArch64::EONWrr
:
743 case AArch64::EONXrr
:
744 case AArch64::EORWrr
:
745 case AArch64::EORXrr
:
746 case AArch64::ORNWrr
:
747 case AArch64::ORNXrr
:
748 case AArch64::ORRWrr
:
749 case AArch64::ORRXrr
:
752 // If MOVi32imm or MOVi64imm can be expanded into ORRWri or
753 // ORRXri, it is as cheap as MOV
754 case AArch64::MOVi32imm
:
755 return canBeExpandedToORR(MI
, 32);
756 case AArch64::MOVi64imm
:
757 return canBeExpandedToORR(MI
, 64);
760 llvm_unreachable("Unknown opcode to check as cheap as a move!");
763 bool AArch64InstrInfo::isFalkorShiftExtFast(const MachineInstr
&MI
) {
764 switch (MI
.getOpcode()) {
768 case AArch64::ADDWrs
:
769 case AArch64::ADDXrs
:
770 case AArch64::ADDSWrs
:
771 case AArch64::ADDSXrs
: {
772 unsigned Imm
= MI
.getOperand(3).getImm();
773 unsigned ShiftVal
= AArch64_AM::getShiftValue(Imm
);
776 return AArch64_AM::getShiftType(Imm
) == AArch64_AM::LSL
&& ShiftVal
<= 5;
779 case AArch64::ADDWrx
:
780 case AArch64::ADDXrx
:
781 case AArch64::ADDXrx64
:
782 case AArch64::ADDSWrx
:
783 case AArch64::ADDSXrx
:
784 case AArch64::ADDSXrx64
: {
785 unsigned Imm
= MI
.getOperand(3).getImm();
786 switch (AArch64_AM::getArithExtendType(Imm
)) {
789 case AArch64_AM::UXTB
:
790 case AArch64_AM::UXTH
:
791 case AArch64_AM::UXTW
:
792 case AArch64_AM::UXTX
:
793 return AArch64_AM::getArithShiftValue(Imm
) <= 4;
797 case AArch64::SUBWrs
:
798 case AArch64::SUBSWrs
: {
799 unsigned Imm
= MI
.getOperand(3).getImm();
800 unsigned ShiftVal
= AArch64_AM::getShiftValue(Imm
);
801 return ShiftVal
== 0 ||
802 (AArch64_AM::getShiftType(Imm
) == AArch64_AM::ASR
&& ShiftVal
== 31);
805 case AArch64::SUBXrs
:
806 case AArch64::SUBSXrs
: {
807 unsigned Imm
= MI
.getOperand(3).getImm();
808 unsigned ShiftVal
= AArch64_AM::getShiftValue(Imm
);
809 return ShiftVal
== 0 ||
810 (AArch64_AM::getShiftType(Imm
) == AArch64_AM::ASR
&& ShiftVal
== 63);
813 case AArch64::SUBWrx
:
814 case AArch64::SUBXrx
:
815 case AArch64::SUBXrx64
:
816 case AArch64::SUBSWrx
:
817 case AArch64::SUBSXrx
:
818 case AArch64::SUBSXrx64
: {
819 unsigned Imm
= MI
.getOperand(3).getImm();
820 switch (AArch64_AM::getArithExtendType(Imm
)) {
823 case AArch64_AM::UXTB
:
824 case AArch64_AM::UXTH
:
825 case AArch64_AM::UXTW
:
826 case AArch64_AM::UXTX
:
827 return AArch64_AM::getArithShiftValue(Imm
) == 0;
831 case AArch64::LDRBBroW
:
832 case AArch64::LDRBBroX
:
833 case AArch64::LDRBroW
:
834 case AArch64::LDRBroX
:
835 case AArch64::LDRDroW
:
836 case AArch64::LDRDroX
:
837 case AArch64::LDRHHroW
:
838 case AArch64::LDRHHroX
:
839 case AArch64::LDRHroW
:
840 case AArch64::LDRHroX
:
841 case AArch64::LDRQroW
:
842 case AArch64::LDRQroX
:
843 case AArch64::LDRSBWroW
:
844 case AArch64::LDRSBWroX
:
845 case AArch64::LDRSBXroW
:
846 case AArch64::LDRSBXroX
:
847 case AArch64::LDRSHWroW
:
848 case AArch64::LDRSHWroX
:
849 case AArch64::LDRSHXroW
:
850 case AArch64::LDRSHXroX
:
851 case AArch64::LDRSWroW
:
852 case AArch64::LDRSWroX
:
853 case AArch64::LDRSroW
:
854 case AArch64::LDRSroX
:
855 case AArch64::LDRWroW
:
856 case AArch64::LDRWroX
:
857 case AArch64::LDRXroW
:
858 case AArch64::LDRXroX
:
859 case AArch64::PRFMroW
:
860 case AArch64::PRFMroX
:
861 case AArch64::STRBBroW
:
862 case AArch64::STRBBroX
:
863 case AArch64::STRBroW
:
864 case AArch64::STRBroX
:
865 case AArch64::STRDroW
:
866 case AArch64::STRDroX
:
867 case AArch64::STRHHroW
:
868 case AArch64::STRHHroX
:
869 case AArch64::STRHroW
:
870 case AArch64::STRHroX
:
871 case AArch64::STRQroW
:
872 case AArch64::STRQroX
:
873 case AArch64::STRSroW
:
874 case AArch64::STRSroX
:
875 case AArch64::STRWroW
:
876 case AArch64::STRWroX
:
877 case AArch64::STRXroW
:
878 case AArch64::STRXroX
: {
879 unsigned IsSigned
= MI
.getOperand(3).getImm();
885 bool AArch64InstrInfo::isSEHInstruction(const MachineInstr
&MI
) {
886 unsigned Opc
= MI
.getOpcode();
890 case AArch64::SEH_StackAlloc
:
891 case AArch64::SEH_SaveFPLR
:
892 case AArch64::SEH_SaveFPLR_X
:
893 case AArch64::SEH_SaveReg
:
894 case AArch64::SEH_SaveReg_X
:
895 case AArch64::SEH_SaveRegP
:
896 case AArch64::SEH_SaveRegP_X
:
897 case AArch64::SEH_SaveFReg
:
898 case AArch64::SEH_SaveFReg_X
:
899 case AArch64::SEH_SaveFRegP
:
900 case AArch64::SEH_SaveFRegP_X
:
901 case AArch64::SEH_SetFP
:
902 case AArch64::SEH_AddFP
:
903 case AArch64::SEH_Nop
:
904 case AArch64::SEH_PrologEnd
:
905 case AArch64::SEH_EpilogStart
:
906 case AArch64::SEH_EpilogEnd
:
911 bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr
&MI
,
912 unsigned &SrcReg
, unsigned &DstReg
,
913 unsigned &SubIdx
) const {
914 switch (MI
.getOpcode()) {
917 case AArch64::SBFMXri
: // aka sxtw
918 case AArch64::UBFMXri
: // aka uxtw
919 // Check for the 32 -> 64 bit extension case, these instructions can do
921 if (MI
.getOperand(2).getImm() != 0 || MI
.getOperand(3).getImm() != 31)
923 // This is a signed or unsigned 32 -> 64 bit extension.
924 SrcReg
= MI
.getOperand(1).getReg();
925 DstReg
= MI
.getOperand(0).getReg();
926 SubIdx
= AArch64::sub_32
;
931 bool AArch64InstrInfo::areMemAccessesTriviallyDisjoint(
932 const MachineInstr
&MIa
, const MachineInstr
&MIb
, AliasAnalysis
*AA
) const {
933 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
934 const MachineOperand
*BaseOpA
= nullptr, *BaseOpB
= nullptr;
935 int64_t OffsetA
= 0, OffsetB
= 0;
936 unsigned WidthA
= 0, WidthB
= 0;
938 assert(MIa
.mayLoadOrStore() && "MIa must be a load or store.");
939 assert(MIb
.mayLoadOrStore() && "MIb must be a load or store.");
941 if (MIa
.hasUnmodeledSideEffects() || MIb
.hasUnmodeledSideEffects() ||
942 MIa
.hasOrderedMemoryRef() || MIb
.hasOrderedMemoryRef())
945 // Retrieve the base, offset from the base and width. Width
946 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4, 8). If
947 // base are identical, and the offset of a lower memory access +
948 // the width doesn't overlap the offset of a higher memory access,
949 // then the memory accesses are different.
950 if (getMemOperandWithOffsetWidth(MIa
, BaseOpA
, OffsetA
, WidthA
, TRI
) &&
951 getMemOperandWithOffsetWidth(MIb
, BaseOpB
, OffsetB
, WidthB
, TRI
)) {
952 if (BaseOpA
->isIdenticalTo(*BaseOpB
)) {
953 int LowOffset
= OffsetA
< OffsetB
? OffsetA
: OffsetB
;
954 int HighOffset
= OffsetA
< OffsetB
? OffsetB
: OffsetA
;
955 int LowWidth
= (LowOffset
== OffsetA
) ? WidthA
: WidthB
;
956 if (LowOffset
+ LowWidth
<= HighOffset
)
963 bool AArch64InstrInfo::isSchedulingBoundary(const MachineInstr
&MI
,
964 const MachineBasicBlock
*MBB
,
965 const MachineFunction
&MF
) const {
966 if (TargetInstrInfo::isSchedulingBoundary(MI
, MBB
, MF
))
968 switch (MI
.getOpcode()) {
970 // CSDB hints are scheduling barriers.
971 if (MI
.getOperand(0).getImm() == 0x14)
976 // DSB and ISB also are scheduling barriers.
980 return isSEHInstruction(MI
);
983 /// analyzeCompare - For a comparison instruction, return the source registers
984 /// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
985 /// Return true if the comparison instruction can be analyzed.
986 bool AArch64InstrInfo::analyzeCompare(const MachineInstr
&MI
, unsigned &SrcReg
,
987 unsigned &SrcReg2
, int &CmpMask
,
988 int &CmpValue
) const {
989 // The first operand can be a frame index where we'd normally expect a
991 assert(MI
.getNumOperands() >= 2 && "All AArch64 cmps should have 2 operands");
992 if (!MI
.getOperand(1).isReg())
995 switch (MI
.getOpcode()) {
998 case AArch64::SUBSWrr
:
999 case AArch64::SUBSWrs
:
1000 case AArch64::SUBSWrx
:
1001 case AArch64::SUBSXrr
:
1002 case AArch64::SUBSXrs
:
1003 case AArch64::SUBSXrx
:
1004 case AArch64::ADDSWrr
:
1005 case AArch64::ADDSWrs
:
1006 case AArch64::ADDSWrx
:
1007 case AArch64::ADDSXrr
:
1008 case AArch64::ADDSXrs
:
1009 case AArch64::ADDSXrx
:
1010 // Replace SUBSWrr with SUBWrr if NZCV is not used.
1011 SrcReg
= MI
.getOperand(1).getReg();
1012 SrcReg2
= MI
.getOperand(2).getReg();
1016 case AArch64::SUBSWri
:
1017 case AArch64::ADDSWri
:
1018 case AArch64::SUBSXri
:
1019 case AArch64::ADDSXri
:
1020 SrcReg
= MI
.getOperand(1).getReg();
1023 // FIXME: In order to convert CmpValue to 0 or 1
1024 CmpValue
= MI
.getOperand(2).getImm() != 0;
1026 case AArch64::ANDSWri
:
1027 case AArch64::ANDSXri
:
1028 // ANDS does not use the same encoding scheme as the others xxxS
1030 SrcReg
= MI
.getOperand(1).getReg();
1033 // FIXME:The return val type of decodeLogicalImmediate is uint64_t,
1034 // while the type of CmpValue is int. When converting uint64_t to int,
1035 // the high 32 bits of uint64_t will be lost.
1036 // In fact it causes a bug in spec2006-483.xalancbmk
1037 // CmpValue is only used to compare with zero in OptimizeCompareInstr
1038 CmpValue
= AArch64_AM::decodeLogicalImmediate(
1039 MI
.getOperand(2).getImm(),
1040 MI
.getOpcode() == AArch64::ANDSWri
? 32 : 64) != 0;
1047 static bool UpdateOperandRegClass(MachineInstr
&Instr
) {
1048 MachineBasicBlock
*MBB
= Instr
.getParent();
1049 assert(MBB
&& "Can't get MachineBasicBlock here");
1050 MachineFunction
*MF
= MBB
->getParent();
1051 assert(MF
&& "Can't get MachineFunction here");
1052 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
1053 const TargetRegisterInfo
*TRI
= MF
->getSubtarget().getRegisterInfo();
1054 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
1056 for (unsigned OpIdx
= 0, EndIdx
= Instr
.getNumOperands(); OpIdx
< EndIdx
;
1058 MachineOperand
&MO
= Instr
.getOperand(OpIdx
);
1059 const TargetRegisterClass
*OpRegCstraints
=
1060 Instr
.getRegClassConstraint(OpIdx
, TII
, TRI
);
1062 // If there's no constraint, there's nothing to do.
1063 if (!OpRegCstraints
)
1065 // If the operand is a frame index, there's nothing to do here.
1066 // A frame index operand will resolve correctly during PEI.
1070 assert(MO
.isReg() &&
1071 "Operand has register constraints without being a register!");
1073 Register Reg
= MO
.getReg();
1074 if (Register::isPhysicalRegister(Reg
)) {
1075 if (!OpRegCstraints
->contains(Reg
))
1077 } else if (!OpRegCstraints
->hasSubClassEq(MRI
->getRegClass(Reg
)) &&
1078 !MRI
->constrainRegClass(Reg
, OpRegCstraints
))
1085 /// Return the opcode that does not set flags when possible - otherwise
1086 /// return the original opcode. The caller is responsible to do the actual
1087 /// substitution and legality checking.
1088 static unsigned convertToNonFlagSettingOpc(const MachineInstr
&MI
) {
1089 // Don't convert all compare instructions, because for some the zero register
1090 // encoding becomes the sp register.
1091 bool MIDefinesZeroReg
= false;
1092 if (MI
.definesRegister(AArch64::WZR
) || MI
.definesRegister(AArch64::XZR
))
1093 MIDefinesZeroReg
= true;
1095 switch (MI
.getOpcode()) {
1097 return MI
.getOpcode();
1098 case AArch64::ADDSWrr
:
1099 return AArch64::ADDWrr
;
1100 case AArch64::ADDSWri
:
1101 return MIDefinesZeroReg
? AArch64::ADDSWri
: AArch64::ADDWri
;
1102 case AArch64::ADDSWrs
:
1103 return MIDefinesZeroReg
? AArch64::ADDSWrs
: AArch64::ADDWrs
;
1104 case AArch64::ADDSWrx
:
1105 return AArch64::ADDWrx
;
1106 case AArch64::ADDSXrr
:
1107 return AArch64::ADDXrr
;
1108 case AArch64::ADDSXri
:
1109 return MIDefinesZeroReg
? AArch64::ADDSXri
: AArch64::ADDXri
;
1110 case AArch64::ADDSXrs
:
1111 return MIDefinesZeroReg
? AArch64::ADDSXrs
: AArch64::ADDXrs
;
1112 case AArch64::ADDSXrx
:
1113 return AArch64::ADDXrx
;
1114 case AArch64::SUBSWrr
:
1115 return AArch64::SUBWrr
;
1116 case AArch64::SUBSWri
:
1117 return MIDefinesZeroReg
? AArch64::SUBSWri
: AArch64::SUBWri
;
1118 case AArch64::SUBSWrs
:
1119 return MIDefinesZeroReg
? AArch64::SUBSWrs
: AArch64::SUBWrs
;
1120 case AArch64::SUBSWrx
:
1121 return AArch64::SUBWrx
;
1122 case AArch64::SUBSXrr
:
1123 return AArch64::SUBXrr
;
1124 case AArch64::SUBSXri
:
1125 return MIDefinesZeroReg
? AArch64::SUBSXri
: AArch64::SUBXri
;
1126 case AArch64::SUBSXrs
:
1127 return MIDefinesZeroReg
? AArch64::SUBSXrs
: AArch64::SUBXrs
;
1128 case AArch64::SUBSXrx
:
1129 return AArch64::SUBXrx
;
1133 enum AccessKind
{ AK_Write
= 0x01, AK_Read
= 0x10, AK_All
= 0x11 };
1135 /// True when condition flags are accessed (either by writing or reading)
1136 /// on the instruction trace starting at From and ending at To.
1138 /// Note: If From and To are from different blocks it's assumed CC are accessed
1140 static bool areCFlagsAccessedBetweenInstrs(
1141 MachineBasicBlock::iterator From
, MachineBasicBlock::iterator To
,
1142 const TargetRegisterInfo
*TRI
, const AccessKind AccessToCheck
= AK_All
) {
1143 // Early exit if To is at the beginning of the BB.
1144 if (To
== To
->getParent()->begin())
1147 // Check whether the instructions are in the same basic block
1148 // If not, assume the condition flags might get modified somewhere.
1149 if (To
->getParent() != From
->getParent())
1152 // From must be above To.
1153 assert(std::find_if(++To
.getReverse(), To
->getParent()->rend(),
1154 [From
](MachineInstr
&MI
) {
1155 return MI
.getIterator() == From
;
1156 }) != To
->getParent()->rend());
1158 // We iterate backward starting \p To until we hit \p From.
1159 for (--To
; To
!= From
; --To
) {
1160 const MachineInstr
&Instr
= *To
;
1162 if (((AccessToCheck
& AK_Write
) &&
1163 Instr
.modifiesRegister(AArch64::NZCV
, TRI
)) ||
1164 ((AccessToCheck
& AK_Read
) && Instr
.readsRegister(AArch64::NZCV
, TRI
)))
1170 /// Try to optimize a compare instruction. A compare instruction is an
1171 /// instruction which produces AArch64::NZCV. It can be truly compare
1173 /// when there are no uses of its destination register.
1175 /// The following steps are tried in order:
1176 /// 1. Convert CmpInstr into an unconditional version.
1177 /// 2. Remove CmpInstr if above there is an instruction producing a needed
1178 /// condition code or an instruction which can be converted into such an
1180 /// Only comparison with zero is supported.
1181 bool AArch64InstrInfo::optimizeCompareInstr(
1182 MachineInstr
&CmpInstr
, unsigned SrcReg
, unsigned SrcReg2
, int CmpMask
,
1183 int CmpValue
, const MachineRegisterInfo
*MRI
) const {
1184 assert(CmpInstr
.getParent());
1187 // Replace SUBSWrr with SUBWrr if NZCV is not used.
1188 int DeadNZCVIdx
= CmpInstr
.findRegisterDefOperandIdx(AArch64::NZCV
, true);
1189 if (DeadNZCVIdx
!= -1) {
1190 if (CmpInstr
.definesRegister(AArch64::WZR
) ||
1191 CmpInstr
.definesRegister(AArch64::XZR
)) {
1192 CmpInstr
.eraseFromParent();
1195 unsigned Opc
= CmpInstr
.getOpcode();
1196 unsigned NewOpc
= convertToNonFlagSettingOpc(CmpInstr
);
1199 const MCInstrDesc
&MCID
= get(NewOpc
);
1200 CmpInstr
.setDesc(MCID
);
1201 CmpInstr
.RemoveOperand(DeadNZCVIdx
);
1202 bool succeeded
= UpdateOperandRegClass(CmpInstr
);
1204 assert(succeeded
&& "Some operands reg class are incompatible!");
1208 // Continue only if we have a "ri" where immediate is zero.
1209 // FIXME:CmpValue has already been converted to 0 or 1 in analyzeCompare
1211 assert((CmpValue
== 0 || CmpValue
== 1) && "CmpValue must be 0 or 1!");
1212 if (CmpValue
!= 0 || SrcReg2
!= 0)
1215 // CmpInstr is a Compare instruction if destination register is not used.
1216 if (!MRI
->use_nodbg_empty(CmpInstr
.getOperand(0).getReg()))
1219 return substituteCmpToZero(CmpInstr
, SrcReg
, MRI
);
1222 /// Get opcode of S version of Instr.
1223 /// If Instr is S version its opcode is returned.
1224 /// AArch64::INSTRUCTION_LIST_END is returned if Instr does not have S version
1225 /// or we are not interested in it.
1226 static unsigned sForm(MachineInstr
&Instr
) {
1227 switch (Instr
.getOpcode()) {
1229 return AArch64::INSTRUCTION_LIST_END
;
1231 case AArch64::ADDSWrr
:
1232 case AArch64::ADDSWri
:
1233 case AArch64::ADDSXrr
:
1234 case AArch64::ADDSXri
:
1235 case AArch64::SUBSWrr
:
1236 case AArch64::SUBSWri
:
1237 case AArch64::SUBSXrr
:
1238 case AArch64::SUBSXri
:
1239 return Instr
.getOpcode();
1241 case AArch64::ADDWrr
:
1242 return AArch64::ADDSWrr
;
1243 case AArch64::ADDWri
:
1244 return AArch64::ADDSWri
;
1245 case AArch64::ADDXrr
:
1246 return AArch64::ADDSXrr
;
1247 case AArch64::ADDXri
:
1248 return AArch64::ADDSXri
;
1249 case AArch64::ADCWr
:
1250 return AArch64::ADCSWr
;
1251 case AArch64::ADCXr
:
1252 return AArch64::ADCSXr
;
1253 case AArch64::SUBWrr
:
1254 return AArch64::SUBSWrr
;
1255 case AArch64::SUBWri
:
1256 return AArch64::SUBSWri
;
1257 case AArch64::SUBXrr
:
1258 return AArch64::SUBSXrr
;
1259 case AArch64::SUBXri
:
1260 return AArch64::SUBSXri
;
1261 case AArch64::SBCWr
:
1262 return AArch64::SBCSWr
;
1263 case AArch64::SBCXr
:
1264 return AArch64::SBCSXr
;
1265 case AArch64::ANDWri
:
1266 return AArch64::ANDSWri
;
1267 case AArch64::ANDXri
:
1268 return AArch64::ANDSXri
;
1272 /// Check if AArch64::NZCV should be alive in successors of MBB.
1273 static bool areCFlagsAliveInSuccessors(MachineBasicBlock
*MBB
) {
1274 for (auto *BB
: MBB
->successors())
1275 if (BB
->isLiveIn(AArch64::NZCV
))
1288 UsedNZCV() = default;
1290 UsedNZCV
&operator|=(const UsedNZCV
&UsedFlags
) {
1291 this->N
|= UsedFlags
.N
;
1292 this->Z
|= UsedFlags
.Z
;
1293 this->C
|= UsedFlags
.C
;
1294 this->V
|= UsedFlags
.V
;
1299 } // end anonymous namespace
1301 /// Find a condition code used by the instruction.
1302 /// Returns AArch64CC::Invalid if either the instruction does not use condition
1303 /// codes or we don't optimize CmpInstr in the presence of such instructions.
1304 static AArch64CC::CondCode
findCondCodeUsedByInstr(const MachineInstr
&Instr
) {
1305 switch (Instr
.getOpcode()) {
1307 return AArch64CC::Invalid
;
1309 case AArch64::Bcc
: {
1310 int Idx
= Instr
.findRegisterUseOperandIdx(AArch64::NZCV
);
1312 return static_cast<AArch64CC::CondCode
>(Instr
.getOperand(Idx
- 2).getImm());
1315 case AArch64::CSINVWr
:
1316 case AArch64::CSINVXr
:
1317 case AArch64::CSINCWr
:
1318 case AArch64::CSINCXr
:
1319 case AArch64::CSELWr
:
1320 case AArch64::CSELXr
:
1321 case AArch64::CSNEGWr
:
1322 case AArch64::CSNEGXr
:
1323 case AArch64::FCSELSrrr
:
1324 case AArch64::FCSELDrrr
: {
1325 int Idx
= Instr
.findRegisterUseOperandIdx(AArch64::NZCV
);
1327 return static_cast<AArch64CC::CondCode
>(Instr
.getOperand(Idx
- 1).getImm());
1332 static UsedNZCV
getUsedNZCV(AArch64CC::CondCode CC
) {
1333 assert(CC
!= AArch64CC::Invalid
);
1339 case AArch64CC::EQ
: // Z set
1340 case AArch64CC::NE
: // Z clear
1344 case AArch64CC::HI
: // Z clear and C set
1345 case AArch64CC::LS
: // Z set or C clear
1348 case AArch64CC::HS
: // C set
1349 case AArch64CC::LO
: // C clear
1353 case AArch64CC::MI
: // N set
1354 case AArch64CC::PL
: // N clear
1358 case AArch64CC::VS
: // V set
1359 case AArch64CC::VC
: // V clear
1363 case AArch64CC::GT
: // Z clear, N and V the same
1364 case AArch64CC::LE
: // Z set, N and V differ
1367 case AArch64CC::GE
: // N and V the same
1368 case AArch64CC::LT
: // N and V differ
1376 static bool isADDSRegImm(unsigned Opcode
) {
1377 return Opcode
== AArch64::ADDSWri
|| Opcode
== AArch64::ADDSXri
;
1380 static bool isSUBSRegImm(unsigned Opcode
) {
1381 return Opcode
== AArch64::SUBSWri
|| Opcode
== AArch64::SUBSXri
;
1384 /// Check if CmpInstr can be substituted by MI.
1386 /// CmpInstr can be substituted:
1387 /// - CmpInstr is either 'ADDS %vreg, 0' or 'SUBS %vreg, 0'
1388 /// - and, MI and CmpInstr are from the same MachineBB
1389 /// - and, condition flags are not alive in successors of the CmpInstr parent
1390 /// - and, if MI opcode is the S form there must be no defs of flags between
1392 /// or if MI opcode is not the S form there must be neither defs of flags
1393 /// nor uses of flags between MI and CmpInstr.
1394 /// - and C/V flags are not used after CmpInstr
1395 static bool canInstrSubstituteCmpInstr(MachineInstr
*MI
, MachineInstr
*CmpInstr
,
1396 const TargetRegisterInfo
*TRI
) {
1398 assert(sForm(*MI
) != AArch64::INSTRUCTION_LIST_END
);
1401 const unsigned CmpOpcode
= CmpInstr
->getOpcode();
1402 if (!isADDSRegImm(CmpOpcode
) && !isSUBSRegImm(CmpOpcode
))
1405 if (MI
->getParent() != CmpInstr
->getParent())
1408 if (areCFlagsAliveInSuccessors(CmpInstr
->getParent()))
1411 AccessKind AccessToCheck
= AK_Write
;
1412 if (sForm(*MI
) != MI
->getOpcode())
1413 AccessToCheck
= AK_All
;
1414 if (areCFlagsAccessedBetweenInstrs(MI
, CmpInstr
, TRI
, AccessToCheck
))
1417 UsedNZCV NZCVUsedAfterCmp
;
1418 for (auto I
= std::next(CmpInstr
->getIterator()),
1419 E
= CmpInstr
->getParent()->instr_end();
1421 const MachineInstr
&Instr
= *I
;
1422 if (Instr
.readsRegister(AArch64::NZCV
, TRI
)) {
1423 AArch64CC::CondCode CC
= findCondCodeUsedByInstr(Instr
);
1424 if (CC
== AArch64CC::Invalid
) // Unsupported conditional instruction
1426 NZCVUsedAfterCmp
|= getUsedNZCV(CC
);
1429 if (Instr
.modifiesRegister(AArch64::NZCV
, TRI
))
1433 return !NZCVUsedAfterCmp
.C
&& !NZCVUsedAfterCmp
.V
;
1436 /// Substitute an instruction comparing to zero with another instruction
1437 /// which produces needed condition flags.
1439 /// Return true on success.
1440 bool AArch64InstrInfo::substituteCmpToZero(
1441 MachineInstr
&CmpInstr
, unsigned SrcReg
,
1442 const MachineRegisterInfo
*MRI
) const {
1444 // Get the unique definition of SrcReg.
1445 MachineInstr
*MI
= MRI
->getUniqueVRegDef(SrcReg
);
1449 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
1451 unsigned NewOpc
= sForm(*MI
);
1452 if (NewOpc
== AArch64::INSTRUCTION_LIST_END
)
1455 if (!canInstrSubstituteCmpInstr(MI
, &CmpInstr
, TRI
))
1458 // Update the instruction to set NZCV.
1459 MI
->setDesc(get(NewOpc
));
1460 CmpInstr
.eraseFromParent();
1461 bool succeeded
= UpdateOperandRegClass(*MI
);
1463 assert(succeeded
&& "Some operands reg class are incompatible!");
1464 MI
->addRegisterDefined(AArch64::NZCV
, TRI
);
1468 bool AArch64InstrInfo::expandPostRAPseudo(MachineInstr
&MI
) const {
1469 if (MI
.getOpcode() != TargetOpcode::LOAD_STACK_GUARD
&&
1470 MI
.getOpcode() != AArch64::CATCHRET
)
1473 MachineBasicBlock
&MBB
= *MI
.getParent();
1474 DebugLoc DL
= MI
.getDebugLoc();
1476 if (MI
.getOpcode() == AArch64::CATCHRET
) {
1477 // Skip to the first instruction before the epilog.
1478 const TargetInstrInfo
*TII
=
1479 MBB
.getParent()->getSubtarget().getInstrInfo();
1480 MachineBasicBlock
*TargetMBB
= MI
.getOperand(0).getMBB();
1481 auto MBBI
= MachineBasicBlock::iterator(MI
);
1482 MachineBasicBlock::iterator FirstEpilogSEH
= std::prev(MBBI
);
1483 while (FirstEpilogSEH
->getFlag(MachineInstr::FrameDestroy
) &&
1484 FirstEpilogSEH
!= MBB
.begin())
1485 FirstEpilogSEH
= std::prev(FirstEpilogSEH
);
1486 if (FirstEpilogSEH
!= MBB
.begin())
1487 FirstEpilogSEH
= std::next(FirstEpilogSEH
);
1488 BuildMI(MBB
, FirstEpilogSEH
, DL
, TII
->get(AArch64::ADRP
))
1489 .addReg(AArch64::X0
, RegState::Define
)
1491 BuildMI(MBB
, FirstEpilogSEH
, DL
, TII
->get(AArch64::ADDXri
))
1492 .addReg(AArch64::X0
, RegState::Define
)
1493 .addReg(AArch64::X0
)
1499 Register Reg
= MI
.getOperand(0).getReg();
1500 const GlobalValue
*GV
=
1501 cast
<GlobalValue
>((*MI
.memoperands_begin())->getValue());
1502 const TargetMachine
&TM
= MBB
.getParent()->getTarget();
1503 unsigned OpFlags
= Subtarget
.ClassifyGlobalReference(GV
, TM
);
1504 const unsigned char MO_NC
= AArch64II::MO_NC
;
1506 if ((OpFlags
& AArch64II::MO_GOT
) != 0) {
1507 BuildMI(MBB
, MI
, DL
, get(AArch64::LOADgot
), Reg
)
1508 .addGlobalAddress(GV
, 0, OpFlags
);
1509 BuildMI(MBB
, MI
, DL
, get(AArch64::LDRXui
), Reg
)
1510 .addReg(Reg
, RegState::Kill
)
1512 .addMemOperand(*MI
.memoperands_begin());
1513 } else if (TM
.getCodeModel() == CodeModel::Large
) {
1514 BuildMI(MBB
, MI
, DL
, get(AArch64::MOVZXi
), Reg
)
1515 .addGlobalAddress(GV
, 0, AArch64II::MO_G0
| MO_NC
)
1517 BuildMI(MBB
, MI
, DL
, get(AArch64::MOVKXi
), Reg
)
1518 .addReg(Reg
, RegState::Kill
)
1519 .addGlobalAddress(GV
, 0, AArch64II::MO_G1
| MO_NC
)
1521 BuildMI(MBB
, MI
, DL
, get(AArch64::MOVKXi
), Reg
)
1522 .addReg(Reg
, RegState::Kill
)
1523 .addGlobalAddress(GV
, 0, AArch64II::MO_G2
| MO_NC
)
1525 BuildMI(MBB
, MI
, DL
, get(AArch64::MOVKXi
), Reg
)
1526 .addReg(Reg
, RegState::Kill
)
1527 .addGlobalAddress(GV
, 0, AArch64II::MO_G3
)
1529 BuildMI(MBB
, MI
, DL
, get(AArch64::LDRXui
), Reg
)
1530 .addReg(Reg
, RegState::Kill
)
1532 .addMemOperand(*MI
.memoperands_begin());
1533 } else if (TM
.getCodeModel() == CodeModel::Tiny
) {
1534 BuildMI(MBB
, MI
, DL
, get(AArch64::ADR
), Reg
)
1535 .addGlobalAddress(GV
, 0, OpFlags
);
1537 BuildMI(MBB
, MI
, DL
, get(AArch64::ADRP
), Reg
)
1538 .addGlobalAddress(GV
, 0, OpFlags
| AArch64II::MO_PAGE
);
1539 unsigned char LoFlags
= OpFlags
| AArch64II::MO_PAGEOFF
| MO_NC
;
1540 BuildMI(MBB
, MI
, DL
, get(AArch64::LDRXui
), Reg
)
1541 .addReg(Reg
, RegState::Kill
)
1542 .addGlobalAddress(GV
, 0, LoFlags
)
1543 .addMemOperand(*MI
.memoperands_begin());
1551 // Return true if this instruction simply sets its single destination register
1552 // to zero. This is equivalent to a register rename of the zero-register.
1553 bool AArch64InstrInfo::isGPRZero(const MachineInstr
&MI
) {
1554 switch (MI
.getOpcode()) {
1557 case AArch64::MOVZWi
:
1558 case AArch64::MOVZXi
: // movz Rd, #0 (LSL #0)
1559 if (MI
.getOperand(1).isImm() && MI
.getOperand(1).getImm() == 0) {
1560 assert(MI
.getDesc().getNumOperands() == 3 &&
1561 MI
.getOperand(2).getImm() == 0 && "invalid MOVZi operands");
1565 case AArch64::ANDWri
: // and Rd, Rzr, #imm
1566 return MI
.getOperand(1).getReg() == AArch64::WZR
;
1567 case AArch64::ANDXri
:
1568 return MI
.getOperand(1).getReg() == AArch64::XZR
;
1569 case TargetOpcode::COPY
:
1570 return MI
.getOperand(1).getReg() == AArch64::WZR
;
1575 // Return true if this instruction simply renames a general register without
1577 bool AArch64InstrInfo::isGPRCopy(const MachineInstr
&MI
) {
1578 switch (MI
.getOpcode()) {
1581 case TargetOpcode::COPY
: {
1582 // GPR32 copies will by lowered to ORRXrs
1583 Register DstReg
= MI
.getOperand(0).getReg();
1584 return (AArch64::GPR32RegClass
.contains(DstReg
) ||
1585 AArch64::GPR64RegClass
.contains(DstReg
));
1587 case AArch64::ORRXrs
: // orr Xd, Xzr, Xm (LSL #0)
1588 if (MI
.getOperand(1).getReg() == AArch64::XZR
) {
1589 assert(MI
.getDesc().getNumOperands() == 4 &&
1590 MI
.getOperand(3).getImm() == 0 && "invalid ORRrs operands");
1594 case AArch64::ADDXri
: // add Xd, Xn, #0 (LSL #0)
1595 if (MI
.getOperand(2).getImm() == 0) {
1596 assert(MI
.getDesc().getNumOperands() == 4 &&
1597 MI
.getOperand(3).getImm() == 0 && "invalid ADDXri operands");
1605 // Return true if this instruction simply renames a general register without
1607 bool AArch64InstrInfo::isFPRCopy(const MachineInstr
&MI
) {
1608 switch (MI
.getOpcode()) {
1611 case TargetOpcode::COPY
: {
1612 // FPR64 copies will by lowered to ORR.16b
1613 Register DstReg
= MI
.getOperand(0).getReg();
1614 return (AArch64::FPR64RegClass
.contains(DstReg
) ||
1615 AArch64::FPR128RegClass
.contains(DstReg
));
1617 case AArch64::ORRv16i8
:
1618 if (MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg()) {
1619 assert(MI
.getDesc().getNumOperands() == 3 && MI
.getOperand(0).isReg() &&
1620 "invalid ORRv16i8 operands");
1628 unsigned AArch64InstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
1629 int &FrameIndex
) const {
1630 switch (MI
.getOpcode()) {
1633 case AArch64::LDRWui
:
1634 case AArch64::LDRXui
:
1635 case AArch64::LDRBui
:
1636 case AArch64::LDRHui
:
1637 case AArch64::LDRSui
:
1638 case AArch64::LDRDui
:
1639 case AArch64::LDRQui
:
1640 if (MI
.getOperand(0).getSubReg() == 0 && MI
.getOperand(1).isFI() &&
1641 MI
.getOperand(2).isImm() && MI
.getOperand(2).getImm() == 0) {
1642 FrameIndex
= MI
.getOperand(1).getIndex();
1643 return MI
.getOperand(0).getReg();
1651 unsigned AArch64InstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
1652 int &FrameIndex
) const {
1653 switch (MI
.getOpcode()) {
1656 case AArch64::STRWui
:
1657 case AArch64::STRXui
:
1658 case AArch64::STRBui
:
1659 case AArch64::STRHui
:
1660 case AArch64::STRSui
:
1661 case AArch64::STRDui
:
1662 case AArch64::STRQui
:
1663 if (MI
.getOperand(0).getSubReg() == 0 && MI
.getOperand(1).isFI() &&
1664 MI
.getOperand(2).isImm() && MI
.getOperand(2).getImm() == 0) {
1665 FrameIndex
= MI
.getOperand(1).getIndex();
1666 return MI
.getOperand(0).getReg();
1673 /// Check all MachineMemOperands for a hint to suppress pairing.
1674 bool AArch64InstrInfo::isLdStPairSuppressed(const MachineInstr
&MI
) {
1675 return llvm::any_of(MI
.memoperands(), [](MachineMemOperand
*MMO
) {
1676 return MMO
->getFlags() & MOSuppressPair
;
1680 /// Set a flag on the first MachineMemOperand to suppress pairing.
1681 void AArch64InstrInfo::suppressLdStPair(MachineInstr
&MI
) {
1682 if (MI
.memoperands_empty())
1684 (*MI
.memoperands_begin())->setFlags(MOSuppressPair
);
1687 /// Check all MachineMemOperands for a hint that the load/store is strided.
1688 bool AArch64InstrInfo::isStridedAccess(const MachineInstr
&MI
) {
1689 return llvm::any_of(MI
.memoperands(), [](MachineMemOperand
*MMO
) {
1690 return MMO
->getFlags() & MOStridedAccess
;
1694 bool AArch64InstrInfo::isUnscaledLdSt(unsigned Opc
) {
1698 case AArch64::STURSi
:
1699 case AArch64::STURDi
:
1700 case AArch64::STURQi
:
1701 case AArch64::STURBBi
:
1702 case AArch64::STURHHi
:
1703 case AArch64::STURWi
:
1704 case AArch64::STURXi
:
1705 case AArch64::LDURSi
:
1706 case AArch64::LDURDi
:
1707 case AArch64::LDURQi
:
1708 case AArch64::LDURWi
:
1709 case AArch64::LDURXi
:
1710 case AArch64::LDURSWi
:
1711 case AArch64::LDURHHi
:
1712 case AArch64::LDURBBi
:
1713 case AArch64::LDURSBWi
:
1714 case AArch64::LDURSHWi
:
1719 Optional
<unsigned> AArch64InstrInfo::getUnscaledLdSt(unsigned Opc
) {
1722 case AArch64::PRFMui
: return AArch64::PRFUMi
;
1723 case AArch64::LDRXui
: return AArch64::LDURXi
;
1724 case AArch64::LDRWui
: return AArch64::LDURWi
;
1725 case AArch64::LDRBui
: return AArch64::LDURBi
;
1726 case AArch64::LDRHui
: return AArch64::LDURHi
;
1727 case AArch64::LDRSui
: return AArch64::LDURSi
;
1728 case AArch64::LDRDui
: return AArch64::LDURDi
;
1729 case AArch64::LDRQui
: return AArch64::LDURQi
;
1730 case AArch64::LDRBBui
: return AArch64::LDURBBi
;
1731 case AArch64::LDRHHui
: return AArch64::LDURHHi
;
1732 case AArch64::LDRSBXui
: return AArch64::LDURSBXi
;
1733 case AArch64::LDRSBWui
: return AArch64::LDURSBWi
;
1734 case AArch64::LDRSHXui
: return AArch64::LDURSHXi
;
1735 case AArch64::LDRSHWui
: return AArch64::LDURSHWi
;
1736 case AArch64::LDRSWui
: return AArch64::LDURSWi
;
1737 case AArch64::STRXui
: return AArch64::STURXi
;
1738 case AArch64::STRWui
: return AArch64::STURWi
;
1739 case AArch64::STRBui
: return AArch64::STURBi
;
1740 case AArch64::STRHui
: return AArch64::STURHi
;
1741 case AArch64::STRSui
: return AArch64::STURSi
;
1742 case AArch64::STRDui
: return AArch64::STURDi
;
1743 case AArch64::STRQui
: return AArch64::STURQi
;
1744 case AArch64::STRBBui
: return AArch64::STURBBi
;
1745 case AArch64::STRHHui
: return AArch64::STURHHi
;
1749 unsigned AArch64InstrInfo::getLoadStoreImmIdx(unsigned Opc
) {
1753 case AArch64::LDPXi
:
1754 case AArch64::LDPDi
:
1755 case AArch64::STPXi
:
1756 case AArch64::STPDi
:
1757 case AArch64::LDNPXi
:
1758 case AArch64::LDNPDi
:
1759 case AArch64::STNPXi
:
1760 case AArch64::STNPDi
:
1761 case AArch64::LDPQi
:
1762 case AArch64::STPQi
:
1763 case AArch64::LDNPQi
:
1764 case AArch64::STNPQi
:
1765 case AArch64::LDPWi
:
1766 case AArch64::LDPSi
:
1767 case AArch64::STPWi
:
1768 case AArch64::STPSi
:
1769 case AArch64::LDNPWi
:
1770 case AArch64::LDNPSi
:
1771 case AArch64::STNPWi
:
1772 case AArch64::STNPSi
:
1774 case AArch64::STGPi
:
1777 case AArch64::STGOffset
:
1782 bool AArch64InstrInfo::isPairableLdStInst(const MachineInstr
&MI
) {
1783 switch (MI
.getOpcode()) {
1786 // Scaled instructions.
1787 case AArch64::STRSui
:
1788 case AArch64::STRDui
:
1789 case AArch64::STRQui
:
1790 case AArch64::STRXui
:
1791 case AArch64::STRWui
:
1792 case AArch64::LDRSui
:
1793 case AArch64::LDRDui
:
1794 case AArch64::LDRQui
:
1795 case AArch64::LDRXui
:
1796 case AArch64::LDRWui
:
1797 case AArch64::LDRSWui
:
1798 // Unscaled instructions.
1799 case AArch64::STURSi
:
1800 case AArch64::STURDi
:
1801 case AArch64::STURQi
:
1802 case AArch64::STURWi
:
1803 case AArch64::STURXi
:
1804 case AArch64::LDURSi
:
1805 case AArch64::LDURDi
:
1806 case AArch64::LDURQi
:
1807 case AArch64::LDURWi
:
1808 case AArch64::LDURXi
:
1809 case AArch64::LDURSWi
:
1814 unsigned AArch64InstrInfo::convertToFlagSettingOpc(unsigned Opc
,
1818 llvm_unreachable("Opcode has no flag setting equivalent!");
1820 case AArch64::ADDWri
:
1822 return AArch64::ADDSWri
;
1823 case AArch64::ADDWrr
:
1825 return AArch64::ADDSWrr
;
1826 case AArch64::ADDWrs
:
1828 return AArch64::ADDSWrs
;
1829 case AArch64::ADDWrx
:
1831 return AArch64::ADDSWrx
;
1832 case AArch64::ANDWri
:
1834 return AArch64::ANDSWri
;
1835 case AArch64::ANDWrr
:
1837 return AArch64::ANDSWrr
;
1838 case AArch64::ANDWrs
:
1840 return AArch64::ANDSWrs
;
1841 case AArch64::BICWrr
:
1843 return AArch64::BICSWrr
;
1844 case AArch64::BICWrs
:
1846 return AArch64::BICSWrs
;
1847 case AArch64::SUBWri
:
1849 return AArch64::SUBSWri
;
1850 case AArch64::SUBWrr
:
1852 return AArch64::SUBSWrr
;
1853 case AArch64::SUBWrs
:
1855 return AArch64::SUBSWrs
;
1856 case AArch64::SUBWrx
:
1858 return AArch64::SUBSWrx
;
1860 case AArch64::ADDXri
:
1862 return AArch64::ADDSXri
;
1863 case AArch64::ADDXrr
:
1865 return AArch64::ADDSXrr
;
1866 case AArch64::ADDXrs
:
1868 return AArch64::ADDSXrs
;
1869 case AArch64::ADDXrx
:
1871 return AArch64::ADDSXrx
;
1872 case AArch64::ANDXri
:
1874 return AArch64::ANDSXri
;
1875 case AArch64::ANDXrr
:
1877 return AArch64::ANDSXrr
;
1878 case AArch64::ANDXrs
:
1880 return AArch64::ANDSXrs
;
1881 case AArch64::BICXrr
:
1883 return AArch64::BICSXrr
;
1884 case AArch64::BICXrs
:
1886 return AArch64::BICSXrs
;
1887 case AArch64::SUBXri
:
1889 return AArch64::SUBSXri
;
1890 case AArch64::SUBXrr
:
1892 return AArch64::SUBSXrr
;
1893 case AArch64::SUBXrs
:
1895 return AArch64::SUBSXrs
;
1896 case AArch64::SUBXrx
:
1898 return AArch64::SUBSXrx
;
1902 // Is this a candidate for ld/st merging or pairing? For example, we don't
1903 // touch volatiles or load/stores that have a hint to avoid pair formation.
1904 bool AArch64InstrInfo::isCandidateToMergeOrPair(const MachineInstr
&MI
) const {
1905 // If this is a volatile load/store, don't mess with it.
1906 if (MI
.hasOrderedMemoryRef())
1909 // Make sure this is a reg/fi+imm (as opposed to an address reloc).
1910 assert((MI
.getOperand(1).isReg() || MI
.getOperand(1).isFI()) &&
1911 "Expected a reg or frame index operand.");
1912 if (!MI
.getOperand(2).isImm())
1915 // Can't merge/pair if the instruction modifies the base register.
1916 // e.g., ldr x0, [x0]
1917 // This case will never occur with an FI base.
1918 if (MI
.getOperand(1).isReg()) {
1919 Register BaseReg
= MI
.getOperand(1).getReg();
1920 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
1921 if (MI
.modifiesRegister(BaseReg
, TRI
))
1925 // Check if this load/store has a hint to avoid pair formation.
1926 // MachineMemOperands hints are set by the AArch64StorePairSuppress pass.
1927 if (isLdStPairSuppressed(MI
))
1930 // Do not pair any callee-save store/reload instructions in the
1931 // prologue/epilogue if the CFI information encoded the operations as separate
1932 // instructions, as that will cause the size of the actual prologue to mismatch
1933 // with the prologue size recorded in the Windows CFI.
1934 const MCAsmInfo
*MAI
= MI
.getMF()->getTarget().getMCAsmInfo();
1935 bool NeedsWinCFI
= MAI
->usesWindowsCFI() &&
1936 MI
.getMF()->getFunction().needsUnwindTableEntry();
1937 if (NeedsWinCFI
&& (MI
.getFlag(MachineInstr::FrameSetup
) ||
1938 MI
.getFlag(MachineInstr::FrameDestroy
)))
1941 // On some CPUs quad load/store pairs are slower than two single load/stores.
1942 if (Subtarget
.isPaired128Slow()) {
1943 switch (MI
.getOpcode()) {
1946 case AArch64::LDURQi
:
1947 case AArch64::STURQi
:
1948 case AArch64::LDRQui
:
1949 case AArch64::STRQui
:
1957 bool AArch64InstrInfo::getMemOperandWithOffset(const MachineInstr
&LdSt
,
1958 const MachineOperand
*&BaseOp
,
1960 const TargetRegisterInfo
*TRI
) const {
1962 return getMemOperandWithOffsetWidth(LdSt
, BaseOp
, Offset
, Width
, TRI
);
1965 bool AArch64InstrInfo::getMemOperandWithOffsetWidth(
1966 const MachineInstr
&LdSt
, const MachineOperand
*&BaseOp
, int64_t &Offset
,
1967 unsigned &Width
, const TargetRegisterInfo
*TRI
) const {
1968 assert(LdSt
.mayLoadOrStore() && "Expected a memory operation.");
1969 // Handle only loads/stores with base register followed by immediate offset.
1970 if (LdSt
.getNumExplicitOperands() == 3) {
1971 // Non-paired instruction (e.g., ldr x1, [x0, #8]).
1972 if ((!LdSt
.getOperand(1).isReg() && !LdSt
.getOperand(1).isFI()) ||
1973 !LdSt
.getOperand(2).isImm())
1975 } else if (LdSt
.getNumExplicitOperands() == 4) {
1976 // Paired instruction (e.g., ldp x1, x2, [x0, #8]).
1977 if (!LdSt
.getOperand(1).isReg() ||
1978 (!LdSt
.getOperand(2).isReg() && !LdSt
.getOperand(2).isFI()) ||
1979 !LdSt
.getOperand(3).isImm())
1984 // Get the scaling factor for the instruction and set the width for the
1987 int64_t Dummy1
, Dummy2
;
1989 // If this returns false, then it's an instruction we don't want to handle.
1990 if (!getMemOpInfo(LdSt
.getOpcode(), Scale
, Width
, Dummy1
, Dummy2
))
1993 // Compute the offset. Offset is calculated as the immediate operand
1994 // multiplied by the scaling factor. Unscaled instructions have scaling factor
1996 if (LdSt
.getNumExplicitOperands() == 3) {
1997 BaseOp
= &LdSt
.getOperand(1);
1998 Offset
= LdSt
.getOperand(2).getImm() * Scale
;
2000 assert(LdSt
.getNumExplicitOperands() == 4 && "invalid number of operands");
2001 BaseOp
= &LdSt
.getOperand(2);
2002 Offset
= LdSt
.getOperand(3).getImm() * Scale
;
2005 assert((BaseOp
->isReg() || BaseOp
->isFI()) &&
2006 "getMemOperandWithOffset only supports base "
2007 "operands of type register or frame index.");
2013 AArch64InstrInfo::getMemOpBaseRegImmOfsOffsetOperand(MachineInstr
&LdSt
) const {
2014 assert(LdSt
.mayLoadOrStore() && "Expected a memory operation.");
2015 MachineOperand
&OfsOp
= LdSt
.getOperand(LdSt
.getNumExplicitOperands() - 1);
2016 assert(OfsOp
.isImm() && "Offset operand wasn't immediate.");
2020 bool AArch64InstrInfo::getMemOpInfo(unsigned Opcode
, unsigned &Scale
,
2021 unsigned &Width
, int64_t &MinOffset
,
2022 int64_t &MaxOffset
) {
2024 // Not a memory operation or something we want to handle.
2027 MinOffset
= MaxOffset
= 0;
2029 case AArch64::STRWpost
:
2030 case AArch64::LDRWpost
:
2036 case AArch64::LDURQi
:
2037 case AArch64::STURQi
:
2043 case AArch64::PRFUMi
:
2044 case AArch64::LDURXi
:
2045 case AArch64::LDURDi
:
2046 case AArch64::STURXi
:
2047 case AArch64::STURDi
:
2053 case AArch64::LDURWi
:
2054 case AArch64::LDURSi
:
2055 case AArch64::LDURSWi
:
2056 case AArch64::STURWi
:
2057 case AArch64::STURSi
:
2063 case AArch64::LDURHi
:
2064 case AArch64::LDURHHi
:
2065 case AArch64::LDURSHXi
:
2066 case AArch64::LDURSHWi
:
2067 case AArch64::STURHi
:
2068 case AArch64::STURHHi
:
2074 case AArch64::LDURBi
:
2075 case AArch64::LDURBBi
:
2076 case AArch64::LDURSBXi
:
2077 case AArch64::LDURSBWi
:
2078 case AArch64::STURBi
:
2079 case AArch64::STURBBi
:
2085 case AArch64::LDPQi
:
2086 case AArch64::LDNPQi
:
2087 case AArch64::STPQi
:
2088 case AArch64::STNPQi
:
2094 case AArch64::LDRQui
:
2095 case AArch64::STRQui
:
2100 case AArch64::LDPXi
:
2101 case AArch64::LDPDi
:
2102 case AArch64::LDNPXi
:
2103 case AArch64::LDNPDi
:
2104 case AArch64::STPXi
:
2105 case AArch64::STPDi
:
2106 case AArch64::STNPXi
:
2107 case AArch64::STNPDi
:
2113 case AArch64::PRFMui
:
2114 case AArch64::LDRXui
:
2115 case AArch64::LDRDui
:
2116 case AArch64::STRXui
:
2117 case AArch64::STRDui
:
2122 case AArch64::LDPWi
:
2123 case AArch64::LDPSi
:
2124 case AArch64::LDNPWi
:
2125 case AArch64::LDNPSi
:
2126 case AArch64::STPWi
:
2127 case AArch64::STPSi
:
2128 case AArch64::STNPWi
:
2129 case AArch64::STNPSi
:
2135 case AArch64::LDRWui
:
2136 case AArch64::LDRSui
:
2137 case AArch64::LDRSWui
:
2138 case AArch64::STRWui
:
2139 case AArch64::STRSui
:
2144 case AArch64::LDRHui
:
2145 case AArch64::LDRHHui
:
2146 case AArch64::LDRSHWui
:
2147 case AArch64::LDRSHXui
:
2148 case AArch64::STRHui
:
2149 case AArch64::STRHHui
:
2154 case AArch64::LDRBui
:
2155 case AArch64::LDRBBui
:
2156 case AArch64::LDRSBWui
:
2157 case AArch64::LDRSBXui
:
2158 case AArch64::STRBui
:
2159 case AArch64::STRBBui
:
2165 case AArch64::TAGPstack
:
2172 case AArch64::STGOffset
:
2173 case AArch64::STZGOffset
:
2178 case AArch64::ST2GOffset
:
2179 case AArch64::STZ2GOffset
:
2185 case AArch64::STGPi
:
2195 static unsigned getOffsetStride(unsigned Opc
) {
2199 case AArch64::LDURQi
:
2200 case AArch64::STURQi
:
2202 case AArch64::LDURXi
:
2203 case AArch64::LDURDi
:
2204 case AArch64::STURXi
:
2205 case AArch64::STURDi
:
2207 case AArch64::LDURWi
:
2208 case AArch64::LDURSi
:
2209 case AArch64::LDURSWi
:
2210 case AArch64::STURWi
:
2211 case AArch64::STURSi
:
2216 // Scale the unscaled offsets. Returns false if the unscaled offset can't be
2218 static bool scaleOffset(unsigned Opc
, int64_t &Offset
) {
2219 unsigned OffsetStride
= getOffsetStride(Opc
);
2220 if (OffsetStride
== 0)
2222 // If the byte-offset isn't a multiple of the stride, we can't scale this
2224 if (Offset
% OffsetStride
!= 0)
2227 // Convert the byte-offset used by unscaled into an "element" offset used
2228 // by the scaled pair load/store instructions.
2229 Offset
/= OffsetStride
;
2233 // Unscale the scaled offsets. Returns false if the scaled offset can't be
2235 static bool unscaleOffset(unsigned Opc
, int64_t &Offset
) {
2236 unsigned OffsetStride
= getOffsetStride(Opc
);
2237 if (OffsetStride
== 0)
2240 // Convert the "element" offset used by scaled pair load/store instructions
2241 // into the byte-offset used by unscaled.
2242 Offset
*= OffsetStride
;
2246 static bool canPairLdStOpc(unsigned FirstOpc
, unsigned SecondOpc
) {
2247 if (FirstOpc
== SecondOpc
)
2249 // We can also pair sign-ext and zero-ext instructions.
2253 case AArch64::LDRWui
:
2254 case AArch64::LDURWi
:
2255 return SecondOpc
== AArch64::LDRSWui
|| SecondOpc
== AArch64::LDURSWi
;
2256 case AArch64::LDRSWui
:
2257 case AArch64::LDURSWi
:
2258 return SecondOpc
== AArch64::LDRWui
|| SecondOpc
== AArch64::LDURWi
;
2260 // These instructions can't be paired based on their opcodes.
2264 static bool shouldClusterFI(const MachineFrameInfo
&MFI
, int FI1
,
2265 int64_t Offset1
, unsigned Opcode1
, int FI2
,
2266 int64_t Offset2
, unsigned Opcode2
) {
2267 // Accesses through fixed stack object frame indices may access a different
2268 // fixed stack slot. Check that the object offsets + offsets match.
2269 if (MFI
.isFixedObjectIndex(FI1
) && MFI
.isFixedObjectIndex(FI2
)) {
2270 int64_t ObjectOffset1
= MFI
.getObjectOffset(FI1
);
2271 int64_t ObjectOffset2
= MFI
.getObjectOffset(FI2
);
2272 assert(ObjectOffset1
<= ObjectOffset2
&& "Object offsets are not ordered.");
2273 // Get the byte-offset from the object offset.
2274 if (!unscaleOffset(Opcode1
, Offset1
) || !unscaleOffset(Opcode2
, Offset2
))
2276 ObjectOffset1
+= Offset1
;
2277 ObjectOffset2
+= Offset2
;
2278 // Get the "element" index in the object.
2279 if (!scaleOffset(Opcode1
, ObjectOffset1
) ||
2280 !scaleOffset(Opcode2
, ObjectOffset2
))
2282 return ObjectOffset1
+ 1 == ObjectOffset2
;
2288 /// Detect opportunities for ldp/stp formation.
2290 /// Only called for LdSt for which getMemOperandWithOffset returns true.
2291 bool AArch64InstrInfo::shouldClusterMemOps(const MachineOperand
&BaseOp1
,
2292 const MachineOperand
&BaseOp2
,
2293 unsigned NumLoads
) const {
2294 const MachineInstr
&FirstLdSt
= *BaseOp1
.getParent();
2295 const MachineInstr
&SecondLdSt
= *BaseOp2
.getParent();
2296 if (BaseOp1
.getType() != BaseOp2
.getType())
2299 assert((BaseOp1
.isReg() || BaseOp1
.isFI()) &&
2300 "Only base registers and frame indices are supported.");
2302 // Check for both base regs and base FI.
2303 if (BaseOp1
.isReg() && BaseOp1
.getReg() != BaseOp2
.getReg())
2306 // Only cluster up to a single pair.
2310 if (!isPairableLdStInst(FirstLdSt
) || !isPairableLdStInst(SecondLdSt
))
2313 // Can we pair these instructions based on their opcodes?
2314 unsigned FirstOpc
= FirstLdSt
.getOpcode();
2315 unsigned SecondOpc
= SecondLdSt
.getOpcode();
2316 if (!canPairLdStOpc(FirstOpc
, SecondOpc
))
2319 // Can't merge volatiles or load/stores that have a hint to avoid pair
2320 // formation, for example.
2321 if (!isCandidateToMergeOrPair(FirstLdSt
) ||
2322 !isCandidateToMergeOrPair(SecondLdSt
))
2325 // isCandidateToMergeOrPair guarantees that operand 2 is an immediate.
2326 int64_t Offset1
= FirstLdSt
.getOperand(2).getImm();
2327 if (isUnscaledLdSt(FirstOpc
) && !scaleOffset(FirstOpc
, Offset1
))
2330 int64_t Offset2
= SecondLdSt
.getOperand(2).getImm();
2331 if (isUnscaledLdSt(SecondOpc
) && !scaleOffset(SecondOpc
, Offset2
))
2334 // Pairwise instructions have a 7-bit signed offset field.
2335 if (Offset1
> 63 || Offset1
< -64)
2338 // The caller should already have ordered First/SecondLdSt by offset.
2339 // Note: except for non-equal frame index bases
2340 if (BaseOp1
.isFI()) {
2341 assert((!BaseOp1
.isIdenticalTo(BaseOp2
) || Offset1
>= Offset2
) &&
2342 "Caller should have ordered offsets.");
2344 const MachineFrameInfo
&MFI
=
2345 FirstLdSt
.getParent()->getParent()->getFrameInfo();
2346 return shouldClusterFI(MFI
, BaseOp1
.getIndex(), Offset1
, FirstOpc
,
2347 BaseOp2
.getIndex(), Offset2
, SecondOpc
);
2350 assert((!BaseOp1
.isIdenticalTo(BaseOp2
) || Offset1
<= Offset2
) &&
2351 "Caller should have ordered offsets.");
2353 return Offset1
+ 1 == Offset2
;
2356 static const MachineInstrBuilder
&AddSubReg(const MachineInstrBuilder
&MIB
,
2357 unsigned Reg
, unsigned SubIdx
,
2359 const TargetRegisterInfo
*TRI
) {
2361 return MIB
.addReg(Reg
, State
);
2363 if (Register::isPhysicalRegister(Reg
))
2364 return MIB
.addReg(TRI
->getSubReg(Reg
, SubIdx
), State
);
2365 return MIB
.addReg(Reg
, State
, SubIdx
);
2368 static bool forwardCopyWillClobberTuple(unsigned DestReg
, unsigned SrcReg
,
2370 // We really want the positive remainder mod 32 here, that happens to be
2371 // easily obtainable with a mask.
2372 return ((DestReg
- SrcReg
) & 0x1f) < NumRegs
;
2375 void AArch64InstrInfo::copyPhysRegTuple(MachineBasicBlock
&MBB
,
2376 MachineBasicBlock::iterator I
,
2377 const DebugLoc
&DL
, unsigned DestReg
,
2378 unsigned SrcReg
, bool KillSrc
,
2380 ArrayRef
<unsigned> Indices
) const {
2381 assert(Subtarget
.hasNEON() && "Unexpected register copy without NEON");
2382 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2383 uint16_t DestEncoding
= TRI
->getEncodingValue(DestReg
);
2384 uint16_t SrcEncoding
= TRI
->getEncodingValue(SrcReg
);
2385 unsigned NumRegs
= Indices
.size();
2387 int SubReg
= 0, End
= NumRegs
, Incr
= 1;
2388 if (forwardCopyWillClobberTuple(DestEncoding
, SrcEncoding
, NumRegs
)) {
2389 SubReg
= NumRegs
- 1;
2394 for (; SubReg
!= End
; SubReg
+= Incr
) {
2395 const MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DL
, get(Opcode
));
2396 AddSubReg(MIB
, DestReg
, Indices
[SubReg
], RegState::Define
, TRI
);
2397 AddSubReg(MIB
, SrcReg
, Indices
[SubReg
], 0, TRI
);
2398 AddSubReg(MIB
, SrcReg
, Indices
[SubReg
], getKillRegState(KillSrc
), TRI
);
2402 void AArch64InstrInfo::copyGPRRegTuple(MachineBasicBlock
&MBB
,
2403 MachineBasicBlock::iterator I
,
2404 DebugLoc DL
, unsigned DestReg
,
2405 unsigned SrcReg
, bool KillSrc
,
2406 unsigned Opcode
, unsigned ZeroReg
,
2407 llvm::ArrayRef
<unsigned> Indices
) const {
2408 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2409 unsigned NumRegs
= Indices
.size();
2412 uint16_t DestEncoding
= TRI
->getEncodingValue(DestReg
);
2413 uint16_t SrcEncoding
= TRI
->getEncodingValue(SrcReg
);
2414 assert(DestEncoding
% NumRegs
== 0 && SrcEncoding
% NumRegs
== 0 &&
2415 "GPR reg sequences should not be able to overlap");
2418 for (unsigned SubReg
= 0; SubReg
!= NumRegs
; ++SubReg
) {
2419 const MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DL
, get(Opcode
));
2420 AddSubReg(MIB
, DestReg
, Indices
[SubReg
], RegState::Define
, TRI
);
2421 MIB
.addReg(ZeroReg
);
2422 AddSubReg(MIB
, SrcReg
, Indices
[SubReg
], getKillRegState(KillSrc
), TRI
);
2427 void AArch64InstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
2428 MachineBasicBlock::iterator I
,
2429 const DebugLoc
&DL
, unsigned DestReg
,
2430 unsigned SrcReg
, bool KillSrc
) const {
2431 if (AArch64::GPR32spRegClass
.contains(DestReg
) &&
2432 (AArch64::GPR32spRegClass
.contains(SrcReg
) || SrcReg
== AArch64::WZR
)) {
2433 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2435 if (DestReg
== AArch64::WSP
|| SrcReg
== AArch64::WSP
) {
2436 // If either operand is WSP, expand to ADD #0.
2437 if (Subtarget
.hasZeroCycleRegMove()) {
2438 // Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move.
2439 unsigned DestRegX
= TRI
->getMatchingSuperReg(DestReg
, AArch64::sub_32
,
2440 &AArch64::GPR64spRegClass
);
2441 unsigned SrcRegX
= TRI
->getMatchingSuperReg(SrcReg
, AArch64::sub_32
,
2442 &AArch64::GPR64spRegClass
);
2443 // This instruction is reading and writing X registers. This may upset
2444 // the register scavenger and machine verifier, so we need to indicate
2445 // that we are reading an undefined value from SrcRegX, but a proper
2446 // value from SrcReg.
2447 BuildMI(MBB
, I
, DL
, get(AArch64::ADDXri
), DestRegX
)
2448 .addReg(SrcRegX
, RegState::Undef
)
2450 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL
, 0))
2451 .addReg(SrcReg
, RegState::Implicit
| getKillRegState(KillSrc
));
2453 BuildMI(MBB
, I
, DL
, get(AArch64::ADDWri
), DestReg
)
2454 .addReg(SrcReg
, getKillRegState(KillSrc
))
2456 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL
, 0));
2458 } else if (SrcReg
== AArch64::WZR
&& Subtarget
.hasZeroCycleZeroingGP()) {
2459 BuildMI(MBB
, I
, DL
, get(AArch64::MOVZWi
), DestReg
)
2461 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL
, 0));
2463 if (Subtarget
.hasZeroCycleRegMove()) {
2464 // Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move.
2465 unsigned DestRegX
= TRI
->getMatchingSuperReg(DestReg
, AArch64::sub_32
,
2466 &AArch64::GPR64spRegClass
);
2467 unsigned SrcRegX
= TRI
->getMatchingSuperReg(SrcReg
, AArch64::sub_32
,
2468 &AArch64::GPR64spRegClass
);
2469 // This instruction is reading and writing X registers. This may upset
2470 // the register scavenger and machine verifier, so we need to indicate
2471 // that we are reading an undefined value from SrcRegX, but a proper
2472 // value from SrcReg.
2473 BuildMI(MBB
, I
, DL
, get(AArch64::ORRXrr
), DestRegX
)
2474 .addReg(AArch64::XZR
)
2475 .addReg(SrcRegX
, RegState::Undef
)
2476 .addReg(SrcReg
, RegState::Implicit
| getKillRegState(KillSrc
));
2478 // Otherwise, expand to ORR WZR.
2479 BuildMI(MBB
, I
, DL
, get(AArch64::ORRWrr
), DestReg
)
2480 .addReg(AArch64::WZR
)
2481 .addReg(SrcReg
, getKillRegState(KillSrc
));
2487 // Copy a Z register by ORRing with itself.
2488 if (AArch64::ZPRRegClass
.contains(DestReg
) &&
2489 AArch64::ZPRRegClass
.contains(SrcReg
)) {
2490 assert(Subtarget
.hasSVE() && "Unexpected SVE register.");
2491 BuildMI(MBB
, I
, DL
, get(AArch64::ORR_ZZZ
), DestReg
)
2493 .addReg(SrcReg
, getKillRegState(KillSrc
));
2497 if (AArch64::GPR64spRegClass
.contains(DestReg
) &&
2498 (AArch64::GPR64spRegClass
.contains(SrcReg
) || SrcReg
== AArch64::XZR
)) {
2499 if (DestReg
== AArch64::SP
|| SrcReg
== AArch64::SP
) {
2500 // If either operand is SP, expand to ADD #0.
2501 BuildMI(MBB
, I
, DL
, get(AArch64::ADDXri
), DestReg
)
2502 .addReg(SrcReg
, getKillRegState(KillSrc
))
2504 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL
, 0));
2505 } else if (SrcReg
== AArch64::XZR
&& Subtarget
.hasZeroCycleZeroingGP()) {
2506 BuildMI(MBB
, I
, DL
, get(AArch64::MOVZXi
), DestReg
)
2508 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL
, 0));
2510 // Otherwise, expand to ORR XZR.
2511 BuildMI(MBB
, I
, DL
, get(AArch64::ORRXrr
), DestReg
)
2512 .addReg(AArch64::XZR
)
2513 .addReg(SrcReg
, getKillRegState(KillSrc
));
2518 // Copy a DDDD register quad by copying the individual sub-registers.
2519 if (AArch64::DDDDRegClass
.contains(DestReg
) &&
2520 AArch64::DDDDRegClass
.contains(SrcReg
)) {
2521 static const unsigned Indices
[] = {AArch64::dsub0
, AArch64::dsub1
,
2522 AArch64::dsub2
, AArch64::dsub3
};
2523 copyPhysRegTuple(MBB
, I
, DL
, DestReg
, SrcReg
, KillSrc
, AArch64::ORRv8i8
,
2528 // Copy a DDD register triple by copying the individual sub-registers.
2529 if (AArch64::DDDRegClass
.contains(DestReg
) &&
2530 AArch64::DDDRegClass
.contains(SrcReg
)) {
2531 static const unsigned Indices
[] = {AArch64::dsub0
, AArch64::dsub1
,
2533 copyPhysRegTuple(MBB
, I
, DL
, DestReg
, SrcReg
, KillSrc
, AArch64::ORRv8i8
,
2538 // Copy a DD register pair by copying the individual sub-registers.
2539 if (AArch64::DDRegClass
.contains(DestReg
) &&
2540 AArch64::DDRegClass
.contains(SrcReg
)) {
2541 static const unsigned Indices
[] = {AArch64::dsub0
, AArch64::dsub1
};
2542 copyPhysRegTuple(MBB
, I
, DL
, DestReg
, SrcReg
, KillSrc
, AArch64::ORRv8i8
,
2547 // Copy a QQQQ register quad by copying the individual sub-registers.
2548 if (AArch64::QQQQRegClass
.contains(DestReg
) &&
2549 AArch64::QQQQRegClass
.contains(SrcReg
)) {
2550 static const unsigned Indices
[] = {AArch64::qsub0
, AArch64::qsub1
,
2551 AArch64::qsub2
, AArch64::qsub3
};
2552 copyPhysRegTuple(MBB
, I
, DL
, DestReg
, SrcReg
, KillSrc
, AArch64::ORRv16i8
,
2557 // Copy a QQQ register triple by copying the individual sub-registers.
2558 if (AArch64::QQQRegClass
.contains(DestReg
) &&
2559 AArch64::QQQRegClass
.contains(SrcReg
)) {
2560 static const unsigned Indices
[] = {AArch64::qsub0
, AArch64::qsub1
,
2562 copyPhysRegTuple(MBB
, I
, DL
, DestReg
, SrcReg
, KillSrc
, AArch64::ORRv16i8
,
2567 // Copy a QQ register pair by copying the individual sub-registers.
2568 if (AArch64::QQRegClass
.contains(DestReg
) &&
2569 AArch64::QQRegClass
.contains(SrcReg
)) {
2570 static const unsigned Indices
[] = {AArch64::qsub0
, AArch64::qsub1
};
2571 copyPhysRegTuple(MBB
, I
, DL
, DestReg
, SrcReg
, KillSrc
, AArch64::ORRv16i8
,
2576 if (AArch64::XSeqPairsClassRegClass
.contains(DestReg
) &&
2577 AArch64::XSeqPairsClassRegClass
.contains(SrcReg
)) {
2578 static const unsigned Indices
[] = {AArch64::sube64
, AArch64::subo64
};
2579 copyGPRRegTuple(MBB
, I
, DL
, DestReg
, SrcReg
, KillSrc
, AArch64::ORRXrs
,
2580 AArch64::XZR
, Indices
);
2584 if (AArch64::WSeqPairsClassRegClass
.contains(DestReg
) &&
2585 AArch64::WSeqPairsClassRegClass
.contains(SrcReg
)) {
2586 static const unsigned Indices
[] = {AArch64::sube32
, AArch64::subo32
};
2587 copyGPRRegTuple(MBB
, I
, DL
, DestReg
, SrcReg
, KillSrc
, AArch64::ORRWrs
,
2588 AArch64::WZR
, Indices
);
2592 if (AArch64::FPR128RegClass
.contains(DestReg
) &&
2593 AArch64::FPR128RegClass
.contains(SrcReg
)) {
2594 if (Subtarget
.hasNEON()) {
2595 BuildMI(MBB
, I
, DL
, get(AArch64::ORRv16i8
), DestReg
)
2597 .addReg(SrcReg
, getKillRegState(KillSrc
));
2599 BuildMI(MBB
, I
, DL
, get(AArch64::STRQpre
))
2600 .addReg(AArch64::SP
, RegState::Define
)
2601 .addReg(SrcReg
, getKillRegState(KillSrc
))
2602 .addReg(AArch64::SP
)
2604 BuildMI(MBB
, I
, DL
, get(AArch64::LDRQpre
))
2605 .addReg(AArch64::SP
, RegState::Define
)
2606 .addReg(DestReg
, RegState::Define
)
2607 .addReg(AArch64::SP
)
2613 if (AArch64::FPR64RegClass
.contains(DestReg
) &&
2614 AArch64::FPR64RegClass
.contains(SrcReg
)) {
2615 if (Subtarget
.hasNEON()) {
2616 DestReg
= RI
.getMatchingSuperReg(DestReg
, AArch64::dsub
,
2617 &AArch64::FPR128RegClass
);
2618 SrcReg
= RI
.getMatchingSuperReg(SrcReg
, AArch64::dsub
,
2619 &AArch64::FPR128RegClass
);
2620 BuildMI(MBB
, I
, DL
, get(AArch64::ORRv16i8
), DestReg
)
2622 .addReg(SrcReg
, getKillRegState(KillSrc
));
2624 BuildMI(MBB
, I
, DL
, get(AArch64::FMOVDr
), DestReg
)
2625 .addReg(SrcReg
, getKillRegState(KillSrc
));
2630 if (AArch64::FPR32RegClass
.contains(DestReg
) &&
2631 AArch64::FPR32RegClass
.contains(SrcReg
)) {
2632 if (Subtarget
.hasNEON()) {
2633 DestReg
= RI
.getMatchingSuperReg(DestReg
, AArch64::ssub
,
2634 &AArch64::FPR128RegClass
);
2635 SrcReg
= RI
.getMatchingSuperReg(SrcReg
, AArch64::ssub
,
2636 &AArch64::FPR128RegClass
);
2637 BuildMI(MBB
, I
, DL
, get(AArch64::ORRv16i8
), DestReg
)
2639 .addReg(SrcReg
, getKillRegState(KillSrc
));
2641 BuildMI(MBB
, I
, DL
, get(AArch64::FMOVSr
), DestReg
)
2642 .addReg(SrcReg
, getKillRegState(KillSrc
));
2647 if (AArch64::FPR16RegClass
.contains(DestReg
) &&
2648 AArch64::FPR16RegClass
.contains(SrcReg
)) {
2649 if (Subtarget
.hasNEON()) {
2650 DestReg
= RI
.getMatchingSuperReg(DestReg
, AArch64::hsub
,
2651 &AArch64::FPR128RegClass
);
2652 SrcReg
= RI
.getMatchingSuperReg(SrcReg
, AArch64::hsub
,
2653 &AArch64::FPR128RegClass
);
2654 BuildMI(MBB
, I
, DL
, get(AArch64::ORRv16i8
), DestReg
)
2656 .addReg(SrcReg
, getKillRegState(KillSrc
));
2658 DestReg
= RI
.getMatchingSuperReg(DestReg
, AArch64::hsub
,
2659 &AArch64::FPR32RegClass
);
2660 SrcReg
= RI
.getMatchingSuperReg(SrcReg
, AArch64::hsub
,
2661 &AArch64::FPR32RegClass
);
2662 BuildMI(MBB
, I
, DL
, get(AArch64::FMOVSr
), DestReg
)
2663 .addReg(SrcReg
, getKillRegState(KillSrc
));
2668 if (AArch64::FPR8RegClass
.contains(DestReg
) &&
2669 AArch64::FPR8RegClass
.contains(SrcReg
)) {
2670 if (Subtarget
.hasNEON()) {
2671 DestReg
= RI
.getMatchingSuperReg(DestReg
, AArch64::bsub
,
2672 &AArch64::FPR128RegClass
);
2673 SrcReg
= RI
.getMatchingSuperReg(SrcReg
, AArch64::bsub
,
2674 &AArch64::FPR128RegClass
);
2675 BuildMI(MBB
, I
, DL
, get(AArch64::ORRv16i8
), DestReg
)
2677 .addReg(SrcReg
, getKillRegState(KillSrc
));
2679 DestReg
= RI
.getMatchingSuperReg(DestReg
, AArch64::bsub
,
2680 &AArch64::FPR32RegClass
);
2681 SrcReg
= RI
.getMatchingSuperReg(SrcReg
, AArch64::bsub
,
2682 &AArch64::FPR32RegClass
);
2683 BuildMI(MBB
, I
, DL
, get(AArch64::FMOVSr
), DestReg
)
2684 .addReg(SrcReg
, getKillRegState(KillSrc
));
2689 // Copies between GPR64 and FPR64.
2690 if (AArch64::FPR64RegClass
.contains(DestReg
) &&
2691 AArch64::GPR64RegClass
.contains(SrcReg
)) {
2692 BuildMI(MBB
, I
, DL
, get(AArch64::FMOVXDr
), DestReg
)
2693 .addReg(SrcReg
, getKillRegState(KillSrc
));
2696 if (AArch64::GPR64RegClass
.contains(DestReg
) &&
2697 AArch64::FPR64RegClass
.contains(SrcReg
)) {
2698 BuildMI(MBB
, I
, DL
, get(AArch64::FMOVDXr
), DestReg
)
2699 .addReg(SrcReg
, getKillRegState(KillSrc
));
2702 // Copies between GPR32 and FPR32.
2703 if (AArch64::FPR32RegClass
.contains(DestReg
) &&
2704 AArch64::GPR32RegClass
.contains(SrcReg
)) {
2705 BuildMI(MBB
, I
, DL
, get(AArch64::FMOVWSr
), DestReg
)
2706 .addReg(SrcReg
, getKillRegState(KillSrc
));
2709 if (AArch64::GPR32RegClass
.contains(DestReg
) &&
2710 AArch64::FPR32RegClass
.contains(SrcReg
)) {
2711 BuildMI(MBB
, I
, DL
, get(AArch64::FMOVSWr
), DestReg
)
2712 .addReg(SrcReg
, getKillRegState(KillSrc
));
2716 if (DestReg
== AArch64::NZCV
) {
2717 assert(AArch64::GPR64RegClass
.contains(SrcReg
) && "Invalid NZCV copy");
2718 BuildMI(MBB
, I
, DL
, get(AArch64::MSR
))
2719 .addImm(AArch64SysReg::NZCV
)
2720 .addReg(SrcReg
, getKillRegState(KillSrc
))
2721 .addReg(AArch64::NZCV
, RegState::Implicit
| RegState::Define
);
2725 if (SrcReg
== AArch64::NZCV
) {
2726 assert(AArch64::GPR64RegClass
.contains(DestReg
) && "Invalid NZCV copy");
2727 BuildMI(MBB
, I
, DL
, get(AArch64::MRS
), DestReg
)
2728 .addImm(AArch64SysReg::NZCV
)
2729 .addReg(AArch64::NZCV
, RegState::Implicit
| getKillRegState(KillSrc
));
2733 llvm_unreachable("unimplemented reg-to-reg copy");
2736 static void storeRegPairToStackSlot(const TargetRegisterInfo
&TRI
,
2737 MachineBasicBlock
&MBB
,
2738 MachineBasicBlock::iterator InsertBefore
,
2739 const MCInstrDesc
&MCID
,
2740 unsigned SrcReg
, bool IsKill
,
2741 unsigned SubIdx0
, unsigned SubIdx1
, int FI
,
2742 MachineMemOperand
*MMO
) {
2743 unsigned SrcReg0
= SrcReg
;
2744 unsigned SrcReg1
= SrcReg
;
2745 if (Register::isPhysicalRegister(SrcReg
)) {
2746 SrcReg0
= TRI
.getSubReg(SrcReg
, SubIdx0
);
2748 SrcReg1
= TRI
.getSubReg(SrcReg
, SubIdx1
);
2751 BuildMI(MBB
, InsertBefore
, DebugLoc(), MCID
)
2752 .addReg(SrcReg0
, getKillRegState(IsKill
), SubIdx0
)
2753 .addReg(SrcReg1
, getKillRegState(IsKill
), SubIdx1
)
2756 .addMemOperand(MMO
);
2759 void AArch64InstrInfo::storeRegToStackSlot(
2760 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
, unsigned SrcReg
,
2761 bool isKill
, int FI
, const TargetRegisterClass
*RC
,
2762 const TargetRegisterInfo
*TRI
) const {
2763 MachineFunction
&MF
= *MBB
.getParent();
2764 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2765 unsigned Align
= MFI
.getObjectAlignment(FI
);
2767 MachinePointerInfo PtrInfo
= MachinePointerInfo::getFixedStack(MF
, FI
);
2768 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
2769 PtrInfo
, MachineMemOperand::MOStore
, MFI
.getObjectSize(FI
), Align
);
2772 switch (TRI
->getSpillSize(*RC
)) {
2774 if (AArch64::FPR8RegClass
.hasSubClassEq(RC
))
2775 Opc
= AArch64::STRBui
;
2778 if (AArch64::FPR16RegClass
.hasSubClassEq(RC
))
2779 Opc
= AArch64::STRHui
;
2782 if (AArch64::GPR32allRegClass
.hasSubClassEq(RC
)) {
2783 Opc
= AArch64::STRWui
;
2784 if (Register::isVirtualRegister(SrcReg
))
2785 MF
.getRegInfo().constrainRegClass(SrcReg
, &AArch64::GPR32RegClass
);
2787 assert(SrcReg
!= AArch64::WSP
);
2788 } else if (AArch64::FPR32RegClass
.hasSubClassEq(RC
))
2789 Opc
= AArch64::STRSui
;
2792 if (AArch64::GPR64allRegClass
.hasSubClassEq(RC
)) {
2793 Opc
= AArch64::STRXui
;
2794 if (Register::isVirtualRegister(SrcReg
))
2795 MF
.getRegInfo().constrainRegClass(SrcReg
, &AArch64::GPR64RegClass
);
2797 assert(SrcReg
!= AArch64::SP
);
2798 } else if (AArch64::FPR64RegClass
.hasSubClassEq(RC
)) {
2799 Opc
= AArch64::STRDui
;
2800 } else if (AArch64::WSeqPairsClassRegClass
.hasSubClassEq(RC
)) {
2801 storeRegPairToStackSlot(getRegisterInfo(), MBB
, MBBI
,
2802 get(AArch64::STPWi
), SrcReg
, isKill
,
2803 AArch64::sube32
, AArch64::subo32
, FI
, MMO
);
2808 if (AArch64::FPR128RegClass
.hasSubClassEq(RC
))
2809 Opc
= AArch64::STRQui
;
2810 else if (AArch64::DDRegClass
.hasSubClassEq(RC
)) {
2811 assert(Subtarget
.hasNEON() && "Unexpected register store without NEON");
2812 Opc
= AArch64::ST1Twov1d
;
2814 } else if (AArch64::XSeqPairsClassRegClass
.hasSubClassEq(RC
)) {
2815 storeRegPairToStackSlot(getRegisterInfo(), MBB
, MBBI
,
2816 get(AArch64::STPXi
), SrcReg
, isKill
,
2817 AArch64::sube64
, AArch64::subo64
, FI
, MMO
);
2822 if (AArch64::DDDRegClass
.hasSubClassEq(RC
)) {
2823 assert(Subtarget
.hasNEON() && "Unexpected register store without NEON");
2824 Opc
= AArch64::ST1Threev1d
;
2829 if (AArch64::DDDDRegClass
.hasSubClassEq(RC
)) {
2830 assert(Subtarget
.hasNEON() && "Unexpected register store without NEON");
2831 Opc
= AArch64::ST1Fourv1d
;
2833 } else if (AArch64::QQRegClass
.hasSubClassEq(RC
)) {
2834 assert(Subtarget
.hasNEON() && "Unexpected register store without NEON");
2835 Opc
= AArch64::ST1Twov2d
;
2840 if (AArch64::QQQRegClass
.hasSubClassEq(RC
)) {
2841 assert(Subtarget
.hasNEON() && "Unexpected register store without NEON");
2842 Opc
= AArch64::ST1Threev2d
;
2847 if (AArch64::QQQQRegClass
.hasSubClassEq(RC
)) {
2848 assert(Subtarget
.hasNEON() && "Unexpected register store without NEON");
2849 Opc
= AArch64::ST1Fourv2d
;
2854 assert(Opc
&& "Unknown register class");
2856 const MachineInstrBuilder MI
= BuildMI(MBB
, MBBI
, DebugLoc(), get(Opc
))
2857 .addReg(SrcReg
, getKillRegState(isKill
))
2862 MI
.addMemOperand(MMO
);
2865 static void loadRegPairFromStackSlot(const TargetRegisterInfo
&TRI
,
2866 MachineBasicBlock
&MBB
,
2867 MachineBasicBlock::iterator InsertBefore
,
2868 const MCInstrDesc
&MCID
,
2869 unsigned DestReg
, unsigned SubIdx0
,
2870 unsigned SubIdx1
, int FI
,
2871 MachineMemOperand
*MMO
) {
2872 unsigned DestReg0
= DestReg
;
2873 unsigned DestReg1
= DestReg
;
2874 bool IsUndef
= true;
2875 if (Register::isPhysicalRegister(DestReg
)) {
2876 DestReg0
= TRI
.getSubReg(DestReg
, SubIdx0
);
2878 DestReg1
= TRI
.getSubReg(DestReg
, SubIdx1
);
2882 BuildMI(MBB
, InsertBefore
, DebugLoc(), MCID
)
2883 .addReg(DestReg0
, RegState::Define
| getUndefRegState(IsUndef
), SubIdx0
)
2884 .addReg(DestReg1
, RegState::Define
| getUndefRegState(IsUndef
), SubIdx1
)
2887 .addMemOperand(MMO
);
2890 void AArch64InstrInfo::loadRegFromStackSlot(
2891 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
, unsigned DestReg
,
2892 int FI
, const TargetRegisterClass
*RC
,
2893 const TargetRegisterInfo
*TRI
) const {
2894 MachineFunction
&MF
= *MBB
.getParent();
2895 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2896 unsigned Align
= MFI
.getObjectAlignment(FI
);
2897 MachinePointerInfo PtrInfo
= MachinePointerInfo::getFixedStack(MF
, FI
);
2898 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
2899 PtrInfo
, MachineMemOperand::MOLoad
, MFI
.getObjectSize(FI
), Align
);
2903 switch (TRI
->getSpillSize(*RC
)) {
2905 if (AArch64::FPR8RegClass
.hasSubClassEq(RC
))
2906 Opc
= AArch64::LDRBui
;
2909 if (AArch64::FPR16RegClass
.hasSubClassEq(RC
))
2910 Opc
= AArch64::LDRHui
;
2913 if (AArch64::GPR32allRegClass
.hasSubClassEq(RC
)) {
2914 Opc
= AArch64::LDRWui
;
2915 if (Register::isVirtualRegister(DestReg
))
2916 MF
.getRegInfo().constrainRegClass(DestReg
, &AArch64::GPR32RegClass
);
2918 assert(DestReg
!= AArch64::WSP
);
2919 } else if (AArch64::FPR32RegClass
.hasSubClassEq(RC
))
2920 Opc
= AArch64::LDRSui
;
2923 if (AArch64::GPR64allRegClass
.hasSubClassEq(RC
)) {
2924 Opc
= AArch64::LDRXui
;
2925 if (Register::isVirtualRegister(DestReg
))
2926 MF
.getRegInfo().constrainRegClass(DestReg
, &AArch64::GPR64RegClass
);
2928 assert(DestReg
!= AArch64::SP
);
2929 } else if (AArch64::FPR64RegClass
.hasSubClassEq(RC
)) {
2930 Opc
= AArch64::LDRDui
;
2931 } else if (AArch64::WSeqPairsClassRegClass
.hasSubClassEq(RC
)) {
2932 loadRegPairFromStackSlot(getRegisterInfo(), MBB
, MBBI
,
2933 get(AArch64::LDPWi
), DestReg
, AArch64::sube32
,
2934 AArch64::subo32
, FI
, MMO
);
2939 if (AArch64::FPR128RegClass
.hasSubClassEq(RC
))
2940 Opc
= AArch64::LDRQui
;
2941 else if (AArch64::DDRegClass
.hasSubClassEq(RC
)) {
2942 assert(Subtarget
.hasNEON() && "Unexpected register load without NEON");
2943 Opc
= AArch64::LD1Twov1d
;
2945 } else if (AArch64::XSeqPairsClassRegClass
.hasSubClassEq(RC
)) {
2946 loadRegPairFromStackSlot(getRegisterInfo(), MBB
, MBBI
,
2947 get(AArch64::LDPXi
), DestReg
, AArch64::sube64
,
2948 AArch64::subo64
, FI
, MMO
);
2953 if (AArch64::DDDRegClass
.hasSubClassEq(RC
)) {
2954 assert(Subtarget
.hasNEON() && "Unexpected register load without NEON");
2955 Opc
= AArch64::LD1Threev1d
;
2960 if (AArch64::DDDDRegClass
.hasSubClassEq(RC
)) {
2961 assert(Subtarget
.hasNEON() && "Unexpected register load without NEON");
2962 Opc
= AArch64::LD1Fourv1d
;
2964 } else if (AArch64::QQRegClass
.hasSubClassEq(RC
)) {
2965 assert(Subtarget
.hasNEON() && "Unexpected register load without NEON");
2966 Opc
= AArch64::LD1Twov2d
;
2971 if (AArch64::QQQRegClass
.hasSubClassEq(RC
)) {
2972 assert(Subtarget
.hasNEON() && "Unexpected register load without NEON");
2973 Opc
= AArch64::LD1Threev2d
;
2978 if (AArch64::QQQQRegClass
.hasSubClassEq(RC
)) {
2979 assert(Subtarget
.hasNEON() && "Unexpected register load without NEON");
2980 Opc
= AArch64::LD1Fourv2d
;
2985 assert(Opc
&& "Unknown register class");
2987 const MachineInstrBuilder MI
= BuildMI(MBB
, MBBI
, DebugLoc(), get(Opc
))
2988 .addReg(DestReg
, getDefRegState(true))
2992 MI
.addMemOperand(MMO
);
2995 // Helper function to emit a frame offset adjustment from a given
2996 // pointer (SrcReg), stored into DestReg. This function is explicit
2997 // in that it requires the opcode.
2998 static void emitFrameOffsetAdj(MachineBasicBlock
&MBB
,
2999 MachineBasicBlock::iterator MBBI
,
3000 const DebugLoc
&DL
, unsigned DestReg
,
3001 unsigned SrcReg
, int64_t Offset
, unsigned Opc
,
3002 const TargetInstrInfo
*TII
,
3003 MachineInstr::MIFlag Flag
, bool NeedsWinCFI
,
3006 unsigned MaxEncoding
, ShiftSize
;
3008 case AArch64::ADDXri
:
3009 case AArch64::ADDSXri
:
3010 case AArch64::SUBXri
:
3011 case AArch64::SUBSXri
:
3012 MaxEncoding
= 0xfff;
3016 llvm_unreachable("Unsupported opcode");
3019 // FIXME: If the offset won't fit in 24-bits, compute the offset into a
3020 // scratch register. If DestReg is a virtual register, use it as the
3021 // scratch register; otherwise, create a new virtual register (to be
3022 // replaced by the scavenger at the end of PEI). That case can be optimized
3023 // slightly if DestReg is SP which is always 16-byte aligned, so the scratch
3024 // register can be loaded with offset%8 and the add/sub can use an extending
3025 // instruction with LSL#3.
3026 // Currently the function handles any offsets but generates a poor sequence
3028 // assert(Offset < (1 << 24) && "unimplemented reg plus immediate");
3030 const unsigned MaxEncodableValue
= MaxEncoding
<< ShiftSize
;
3032 unsigned ThisVal
= std::min
<unsigned>(Offset
, MaxEncodableValue
);
3033 unsigned LocalShiftSize
= 0;
3034 if (ThisVal
> MaxEncoding
) {
3035 ThisVal
= ThisVal
>> ShiftSize
;
3036 LocalShiftSize
= ShiftSize
;
3038 assert((ThisVal
>> ShiftSize
) <= MaxEncoding
&&
3039 "Encoding cannot handle value that big");
3040 auto MBI
= BuildMI(MBB
, MBBI
, DL
, TII
->get(Opc
), DestReg
)
3042 .addImm(Sign
* (int)ThisVal
);
3045 AArch64_AM::getShifterImm(AArch64_AM::LSL
, LocalShiftSize
));
3046 MBI
= MBI
.setMIFlag(Flag
);
3049 assert(Sign
== 1 && "SEH directives should always have a positive sign");
3050 int Imm
= (int)(ThisVal
<< LocalShiftSize
);
3051 if ((DestReg
== AArch64::FP
&& SrcReg
== AArch64::SP
) ||
3052 (SrcReg
== AArch64::FP
&& DestReg
== AArch64::SP
)) {
3056 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_SetFP
)).setMIFlag(Flag
);
3058 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_AddFP
))
3061 assert((Offset
- Imm
) == 0 && "Expected remaining offset to be zero to "
3062 "emit a single SEH directive");
3063 } else if (DestReg
== AArch64::SP
) {
3066 assert(SrcReg
== AArch64::SP
&& "Unexpected SrcReg for SEH_StackAlloc");
3067 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_StackAlloc
))
3076 Offset
-= ThisVal
<< LocalShiftSize
;
3080 void llvm::emitFrameOffset(MachineBasicBlock
&MBB
,
3081 MachineBasicBlock::iterator MBBI
, const DebugLoc
&DL
,
3082 unsigned DestReg
, unsigned SrcReg
,
3083 StackOffset Offset
, const TargetInstrInfo
*TII
,
3084 MachineInstr::MIFlag Flag
, bool SetNZCV
,
3085 bool NeedsWinCFI
, bool *HasWinCFI
) {
3087 Offset
.getForFrameOffset(Bytes
);
3089 // First emit non-scalable frame offsets, or a simple 'mov'.
3090 if (Bytes
|| (!Offset
&& SrcReg
!= DestReg
)) {
3091 assert((DestReg
!= AArch64::SP
|| Bytes
% 16 == 0) &&
3092 "SP increment/decrement not 16-byte aligned");
3093 unsigned Opc
= SetNZCV
? AArch64::ADDSXri
: AArch64::ADDXri
;
3096 Opc
= SetNZCV
? AArch64::SUBSXri
: AArch64::SUBXri
;
3098 emitFrameOffsetAdj(MBB
, MBBI
, DL
, DestReg
, SrcReg
, Bytes
, Opc
, TII
, Flag
,
3099 NeedsWinCFI
, HasWinCFI
);
3104 MachineInstr
*AArch64InstrInfo::foldMemoryOperandImpl(
3105 MachineFunction
&MF
, MachineInstr
&MI
, ArrayRef
<unsigned> Ops
,
3106 MachineBasicBlock::iterator InsertPt
, int FrameIndex
,
3107 LiveIntervals
*LIS
, VirtRegMap
*VRM
) const {
3108 // This is a bit of a hack. Consider this instruction:
3110 // %0 = COPY %sp; GPR64all:%0
3112 // We explicitly chose GPR64all for the virtual register so such a copy might
3113 // be eliminated by RegisterCoalescer. However, that may not be possible, and
3114 // %0 may even spill. We can't spill %sp, and since it is in the GPR64all
3115 // register class, TargetInstrInfo::foldMemoryOperand() is going to try.
3117 // To prevent that, we are going to constrain the %0 register class here.
3119 // <rdar://problem/11522048>
3121 if (MI
.isFullCopy()) {
3122 Register DstReg
= MI
.getOperand(0).getReg();
3123 Register SrcReg
= MI
.getOperand(1).getReg();
3124 if (SrcReg
== AArch64::SP
&& Register::isVirtualRegister(DstReg
)) {
3125 MF
.getRegInfo().constrainRegClass(DstReg
, &AArch64::GPR64RegClass
);
3128 if (DstReg
== AArch64::SP
&& Register::isVirtualRegister(SrcReg
)) {
3129 MF
.getRegInfo().constrainRegClass(SrcReg
, &AArch64::GPR64RegClass
);
3134 // Handle the case where a copy is being spilled or filled but the source
3135 // and destination register class don't match. For example:
3137 // %0 = COPY %xzr; GPR64common:%0
3139 // In this case we can still safely fold away the COPY and generate the
3140 // following spill code:
3142 // STRXui %xzr, %stack.0
3144 // This also eliminates spilled cross register class COPYs (e.g. between x and
3145 // d regs) of the same size. For example:
3147 // %0 = COPY %1; GPR64:%0, FPR64:%1
3149 // will be filled as
3151 // LDRDui %0, fi<#0>
3155 // LDRXui %Temp, fi<#0>
3158 if (MI
.isCopy() && Ops
.size() == 1 &&
3159 // Make sure we're only folding the explicit COPY defs/uses.
3160 (Ops
[0] == 0 || Ops
[0] == 1)) {
3161 bool IsSpill
= Ops
[0] == 0;
3162 bool IsFill
= !IsSpill
;
3163 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
3164 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
3165 MachineBasicBlock
&MBB
= *MI
.getParent();
3166 const MachineOperand
&DstMO
= MI
.getOperand(0);
3167 const MachineOperand
&SrcMO
= MI
.getOperand(1);
3168 Register DstReg
= DstMO
.getReg();
3169 Register SrcReg
= SrcMO
.getReg();
3170 // This is slightly expensive to compute for physical regs since
3171 // getMinimalPhysRegClass is slow.
3172 auto getRegClass
= [&](unsigned Reg
) {
3173 return Register::isVirtualRegister(Reg
) ? MRI
.getRegClass(Reg
)
3174 : TRI
.getMinimalPhysRegClass(Reg
);
3177 if (DstMO
.getSubReg() == 0 && SrcMO
.getSubReg() == 0) {
3178 assert(TRI
.getRegSizeInBits(*getRegClass(DstReg
)) ==
3179 TRI
.getRegSizeInBits(*getRegClass(SrcReg
)) &&
3180 "Mismatched register size in non subreg COPY");
3182 storeRegToStackSlot(MBB
, InsertPt
, SrcReg
, SrcMO
.isKill(), FrameIndex
,
3183 getRegClass(SrcReg
), &TRI
);
3185 loadRegFromStackSlot(MBB
, InsertPt
, DstReg
, FrameIndex
,
3186 getRegClass(DstReg
), &TRI
);
3187 return &*--InsertPt
;
3190 // Handle cases like spilling def of:
3192 // %0:sub_32<def,read-undef> = COPY %wzr; GPR64common:%0
3194 // where the physical register source can be widened and stored to the full
3195 // virtual reg destination stack slot, in this case producing:
3197 // STRXui %xzr, %stack.0
3199 if (IsSpill
&& DstMO
.isUndef() && Register::isPhysicalRegister(SrcReg
)) {
3200 assert(SrcMO
.getSubReg() == 0 &&
3201 "Unexpected subreg on physical register");
3202 const TargetRegisterClass
*SpillRC
;
3203 unsigned SpillSubreg
;
3204 switch (DstMO
.getSubReg()) {
3208 case AArch64::sub_32
:
3210 if (AArch64::GPR32RegClass
.contains(SrcReg
)) {
3211 SpillRC
= &AArch64::GPR64RegClass
;
3212 SpillSubreg
= AArch64::sub_32
;
3213 } else if (AArch64::FPR32RegClass
.contains(SrcReg
)) {
3214 SpillRC
= &AArch64::FPR64RegClass
;
3215 SpillSubreg
= AArch64::ssub
;
3220 if (AArch64::FPR64RegClass
.contains(SrcReg
)) {
3221 SpillRC
= &AArch64::FPR128RegClass
;
3222 SpillSubreg
= AArch64::dsub
;
3229 if (unsigned WidenedSrcReg
=
3230 TRI
.getMatchingSuperReg(SrcReg
, SpillSubreg
, SpillRC
)) {
3231 storeRegToStackSlot(MBB
, InsertPt
, WidenedSrcReg
, SrcMO
.isKill(),
3232 FrameIndex
, SpillRC
, &TRI
);
3233 return &*--InsertPt
;
3237 // Handle cases like filling use of:
3239 // %0:sub_32<def,read-undef> = COPY %1; GPR64:%0, GPR32:%1
3241 // where we can load the full virtual reg source stack slot, into the subreg
3242 // destination, in this case producing:
3244 // LDRWui %0:sub_32<def,read-undef>, %stack.0
3246 if (IsFill
&& SrcMO
.getSubReg() == 0 && DstMO
.isUndef()) {
3247 const TargetRegisterClass
*FillRC
;
3248 switch (DstMO
.getSubReg()) {
3252 case AArch64::sub_32
:
3253 FillRC
= &AArch64::GPR32RegClass
;
3256 FillRC
= &AArch64::FPR32RegClass
;
3259 FillRC
= &AArch64::FPR64RegClass
;
3264 assert(TRI
.getRegSizeInBits(*getRegClass(SrcReg
)) ==
3265 TRI
.getRegSizeInBits(*FillRC
) &&
3266 "Mismatched regclass size on folded subreg COPY");
3267 loadRegFromStackSlot(MBB
, InsertPt
, DstReg
, FrameIndex
, FillRC
, &TRI
);
3268 MachineInstr
&LoadMI
= *--InsertPt
;
3269 MachineOperand
&LoadDst
= LoadMI
.getOperand(0);
3270 assert(LoadDst
.getSubReg() == 0 && "unexpected subreg on fill load");
3271 LoadDst
.setSubReg(DstMO
.getSubReg());
3272 LoadDst
.setIsUndef();
3282 int llvm::isAArch64FrameOffsetLegal(const MachineInstr
&MI
,
3283 StackOffset
&SOffset
,
3284 bool *OutUseUnscaledOp
,
3285 unsigned *OutUnscaledOp
,
3286 int *EmittableOffset
) {
3287 // Set output values in case of early exit.
3288 if (EmittableOffset
)
3289 *EmittableOffset
= 0;
3290 if (OutUseUnscaledOp
)
3291 *OutUseUnscaledOp
= false;
3295 // Exit early for structured vector spills/fills as they can't take an
3296 // immediate offset.
3297 switch (MI
.getOpcode()) {
3300 case AArch64::LD1Twov2d
:
3301 case AArch64::LD1Threev2d
:
3302 case AArch64::LD1Fourv2d
:
3303 case AArch64::LD1Twov1d
:
3304 case AArch64::LD1Threev1d
:
3305 case AArch64::LD1Fourv1d
:
3306 case AArch64::ST1Twov2d
:
3307 case AArch64::ST1Threev2d
:
3308 case AArch64::ST1Fourv2d
:
3309 case AArch64::ST1Twov1d
:
3310 case AArch64::ST1Threev1d
:
3311 case AArch64::ST1Fourv1d
:
3313 case AArch64::IRGstack
:
3314 return AArch64FrameOffsetCannotUpdate
;
3317 // Get the min/max offset and the scale.
3318 unsigned Scale
, Width
;
3319 int64_t MinOff
, MaxOff
;
3320 if (!AArch64InstrInfo::getMemOpInfo(MI
.getOpcode(), Scale
, Width
, MinOff
,
3322 llvm_unreachable("unhandled opcode in isAArch64FrameOffsetLegal");
3324 // Construct the complete offset.
3325 const MachineOperand
&ImmOpnd
=
3326 MI
.getOperand(AArch64InstrInfo::getLoadStoreImmIdx(MI
.getOpcode()));
3327 int Offset
= SOffset
.getBytes() + ImmOpnd
.getImm() * Scale
;
3329 // If the offset doesn't match the scale, we rewrite the instruction to
3330 // use the unscaled instruction instead. Likewise, if we have a negative
3331 // offset and there is an unscaled op to use.
3332 Optional
<unsigned> UnscaledOp
=
3333 AArch64InstrInfo::getUnscaledLdSt(MI
.getOpcode());
3334 bool useUnscaledOp
= UnscaledOp
&& (Offset
% Scale
|| Offset
< 0);
3335 if (useUnscaledOp
&&
3336 !AArch64InstrInfo::getMemOpInfo(*UnscaledOp
, Scale
, Width
, MinOff
, MaxOff
))
3337 llvm_unreachable("unhandled opcode in isAArch64FrameOffsetLegal");
3339 int64_t Remainder
= Offset
% Scale
;
3340 assert(!(Remainder
&& useUnscaledOp
) &&
3341 "Cannot have remainder when using unscaled op");
3343 assert(MinOff
< MaxOff
&& "Unexpected Min/Max offsets");
3344 int NewOffset
= Offset
/ Scale
;
3345 if (MinOff
<= NewOffset
&& NewOffset
<= MaxOff
)
3348 NewOffset
= NewOffset
< 0 ? MinOff
: MaxOff
;
3349 Offset
= Offset
- NewOffset
* Scale
+ Remainder
;
3352 if (EmittableOffset
)
3353 *EmittableOffset
= NewOffset
;
3354 if (OutUseUnscaledOp
)
3355 *OutUseUnscaledOp
= useUnscaledOp
;
3356 if (OutUnscaledOp
&& UnscaledOp
)
3357 *OutUnscaledOp
= *UnscaledOp
;
3359 SOffset
= StackOffset(Offset
, MVT::i8
);
3360 return AArch64FrameOffsetCanUpdate
|
3361 (Offset
== 0 ? AArch64FrameOffsetIsLegal
: 0);
3364 bool llvm::rewriteAArch64FrameIndex(MachineInstr
&MI
, unsigned FrameRegIdx
,
3365 unsigned FrameReg
, StackOffset
&Offset
,
3366 const AArch64InstrInfo
*TII
) {
3367 unsigned Opcode
= MI
.getOpcode();
3368 unsigned ImmIdx
= FrameRegIdx
+ 1;
3370 if (Opcode
== AArch64::ADDSXri
|| Opcode
== AArch64::ADDXri
) {
3371 Offset
+= StackOffset(MI
.getOperand(ImmIdx
).getImm(), MVT::i8
);
3372 emitFrameOffset(*MI
.getParent(), MI
, MI
.getDebugLoc(),
3373 MI
.getOperand(0).getReg(), FrameReg
, Offset
, TII
,
3374 MachineInstr::NoFlags
, (Opcode
== AArch64::ADDSXri
));
3375 MI
.eraseFromParent();
3376 Offset
= StackOffset();
3381 unsigned UnscaledOp
;
3383 int Status
= isAArch64FrameOffsetLegal(MI
, Offset
, &UseUnscaledOp
,
3384 &UnscaledOp
, &NewOffset
);
3385 if (Status
& AArch64FrameOffsetCanUpdate
) {
3386 if (Status
& AArch64FrameOffsetIsLegal
)
3387 // Replace the FrameIndex with FrameReg.
3388 MI
.getOperand(FrameRegIdx
).ChangeToRegister(FrameReg
, false);
3390 MI
.setDesc(TII
->get(UnscaledOp
));
3392 MI
.getOperand(ImmIdx
).ChangeToImmediate(NewOffset
);
3399 void AArch64InstrInfo::getNoop(MCInst
&NopInst
) const {
3400 NopInst
.setOpcode(AArch64::HINT
);
3401 NopInst
.addOperand(MCOperand::createImm(0));
3404 // AArch64 supports MachineCombiner.
3405 bool AArch64InstrInfo::useMachineCombiner() const { return true; }
3407 // True when Opc sets flag
3408 static bool isCombineInstrSettingFlag(unsigned Opc
) {
3410 case AArch64::ADDSWrr
:
3411 case AArch64::ADDSWri
:
3412 case AArch64::ADDSXrr
:
3413 case AArch64::ADDSXri
:
3414 case AArch64::SUBSWrr
:
3415 case AArch64::SUBSXrr
:
3416 // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
3417 case AArch64::SUBSWri
:
3418 case AArch64::SUBSXri
:
3426 // 32b Opcodes that can be combined with a MUL
3427 static bool isCombineInstrCandidate32(unsigned Opc
) {
3429 case AArch64::ADDWrr
:
3430 case AArch64::ADDWri
:
3431 case AArch64::SUBWrr
:
3432 case AArch64::ADDSWrr
:
3433 case AArch64::ADDSWri
:
3434 case AArch64::SUBSWrr
:
3435 // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
3436 case AArch64::SUBWri
:
3437 case AArch64::SUBSWri
:
3445 // 64b Opcodes that can be combined with a MUL
3446 static bool isCombineInstrCandidate64(unsigned Opc
) {
3448 case AArch64::ADDXrr
:
3449 case AArch64::ADDXri
:
3450 case AArch64::SUBXrr
:
3451 case AArch64::ADDSXrr
:
3452 case AArch64::ADDSXri
:
3453 case AArch64::SUBSXrr
:
3454 // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
3455 case AArch64::SUBXri
:
3456 case AArch64::SUBSXri
:
3464 // FP Opcodes that can be combined with a FMUL
3465 static bool isCombineInstrCandidateFP(const MachineInstr
&Inst
) {
3466 switch (Inst
.getOpcode()) {
3469 case AArch64::FADDHrr
:
3470 case AArch64::FADDSrr
:
3471 case AArch64::FADDDrr
:
3472 case AArch64::FADDv4f16
:
3473 case AArch64::FADDv8f16
:
3474 case AArch64::FADDv2f32
:
3475 case AArch64::FADDv2f64
:
3476 case AArch64::FADDv4f32
:
3477 case AArch64::FSUBHrr
:
3478 case AArch64::FSUBSrr
:
3479 case AArch64::FSUBDrr
:
3480 case AArch64::FSUBv4f16
:
3481 case AArch64::FSUBv8f16
:
3482 case AArch64::FSUBv2f32
:
3483 case AArch64::FSUBv2f64
:
3484 case AArch64::FSUBv4f32
:
3485 TargetOptions Options
= Inst
.getParent()->getParent()->getTarget().Options
;
3486 return (Options
.UnsafeFPMath
||
3487 Options
.AllowFPOpFusion
== FPOpFusion::Fast
);
3492 // Opcodes that can be combined with a MUL
3493 static bool isCombineInstrCandidate(unsigned Opc
) {
3494 return (isCombineInstrCandidate32(Opc
) || isCombineInstrCandidate64(Opc
));
3498 // Utility routine that checks if \param MO is defined by an
3499 // \param CombineOpc instruction in the basic block \param MBB
3500 static bool canCombine(MachineBasicBlock
&MBB
, MachineOperand
&MO
,
3501 unsigned CombineOpc
, unsigned ZeroReg
= 0,
3502 bool CheckZeroReg
= false) {
3503 MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
3504 MachineInstr
*MI
= nullptr;
3506 if (MO
.isReg() && Register::isVirtualRegister(MO
.getReg()))
3507 MI
= MRI
.getUniqueVRegDef(MO
.getReg());
3508 // And it needs to be in the trace (otherwise, it won't have a depth).
3509 if (!MI
|| MI
->getParent() != &MBB
|| (unsigned)MI
->getOpcode() != CombineOpc
)
3511 // Must only used by the user we combine with.
3512 if (!MRI
.hasOneNonDBGUse(MI
->getOperand(0).getReg()))
3516 assert(MI
->getNumOperands() >= 4 && MI
->getOperand(0).isReg() &&
3517 MI
->getOperand(1).isReg() && MI
->getOperand(2).isReg() &&
3518 MI
->getOperand(3).isReg() && "MAdd/MSub must have a least 4 regs");
3519 // The third input reg must be zero.
3520 if (MI
->getOperand(3).getReg() != ZeroReg
)
3528 // Is \param MO defined by an integer multiply and can be combined?
3529 static bool canCombineWithMUL(MachineBasicBlock
&MBB
, MachineOperand
&MO
,
3530 unsigned MulOpc
, unsigned ZeroReg
) {
3531 return canCombine(MBB
, MO
, MulOpc
, ZeroReg
, true);
3535 // Is \param MO defined by a floating-point multiply and can be combined?
3536 static bool canCombineWithFMUL(MachineBasicBlock
&MBB
, MachineOperand
&MO
,
3538 return canCombine(MBB
, MO
, MulOpc
);
3541 // TODO: There are many more machine instruction opcodes to match:
3542 // 1. Other data types (integer, vectors)
3543 // 2. Other math / logic operations (xor, or)
3544 // 3. Other forms of the same operation (intrinsics and other variants)
3545 bool AArch64InstrInfo::isAssociativeAndCommutative(
3546 const MachineInstr
&Inst
) const {
3547 switch (Inst
.getOpcode()) {
3548 case AArch64::FADDDrr
:
3549 case AArch64::FADDSrr
:
3550 case AArch64::FADDv2f32
:
3551 case AArch64::FADDv2f64
:
3552 case AArch64::FADDv4f32
:
3553 case AArch64::FMULDrr
:
3554 case AArch64::FMULSrr
:
3555 case AArch64::FMULX32
:
3556 case AArch64::FMULX64
:
3557 case AArch64::FMULXv2f32
:
3558 case AArch64::FMULXv2f64
:
3559 case AArch64::FMULXv4f32
:
3560 case AArch64::FMULv2f32
:
3561 case AArch64::FMULv2f64
:
3562 case AArch64::FMULv4f32
:
3563 return Inst
.getParent()->getParent()->getTarget().Options
.UnsafeFPMath
;
3569 /// Find instructions that can be turned into madd.
3570 static bool getMaddPatterns(MachineInstr
&Root
,
3571 SmallVectorImpl
<MachineCombinerPattern
> &Patterns
) {
3572 unsigned Opc
= Root
.getOpcode();
3573 MachineBasicBlock
&MBB
= *Root
.getParent();
3576 if (!isCombineInstrCandidate(Opc
))
3578 if (isCombineInstrSettingFlag(Opc
)) {
3579 int Cmp_NZCV
= Root
.findRegisterDefOperandIdx(AArch64::NZCV
, true);
3580 // When NZCV is live bail out.
3583 unsigned NewOpc
= convertToNonFlagSettingOpc(Root
);
3584 // When opcode can't change bail out.
3585 // CHECKME: do we miss any cases for opcode conversion?
3594 case AArch64::ADDWrr
:
3595 assert(Root
.getOperand(1).isReg() && Root
.getOperand(2).isReg() &&
3596 "ADDWrr does not have register operands");
3597 if (canCombineWithMUL(MBB
, Root
.getOperand(1), AArch64::MADDWrrr
,
3599 Patterns
.push_back(MachineCombinerPattern::MULADDW_OP1
);
3602 if (canCombineWithMUL(MBB
, Root
.getOperand(2), AArch64::MADDWrrr
,
3604 Patterns
.push_back(MachineCombinerPattern::MULADDW_OP2
);
3608 case AArch64::ADDXrr
:
3609 if (canCombineWithMUL(MBB
, Root
.getOperand(1), AArch64::MADDXrrr
,
3611 Patterns
.push_back(MachineCombinerPattern::MULADDX_OP1
);
3614 if (canCombineWithMUL(MBB
, Root
.getOperand(2), AArch64::MADDXrrr
,
3616 Patterns
.push_back(MachineCombinerPattern::MULADDX_OP2
);
3620 case AArch64::SUBWrr
:
3621 if (canCombineWithMUL(MBB
, Root
.getOperand(1), AArch64::MADDWrrr
,
3623 Patterns
.push_back(MachineCombinerPattern::MULSUBW_OP1
);
3626 if (canCombineWithMUL(MBB
, Root
.getOperand(2), AArch64::MADDWrrr
,
3628 Patterns
.push_back(MachineCombinerPattern::MULSUBW_OP2
);
3632 case AArch64::SUBXrr
:
3633 if (canCombineWithMUL(MBB
, Root
.getOperand(1), AArch64::MADDXrrr
,
3635 Patterns
.push_back(MachineCombinerPattern::MULSUBX_OP1
);
3638 if (canCombineWithMUL(MBB
, Root
.getOperand(2), AArch64::MADDXrrr
,
3640 Patterns
.push_back(MachineCombinerPattern::MULSUBX_OP2
);
3644 case AArch64::ADDWri
:
3645 if (canCombineWithMUL(MBB
, Root
.getOperand(1), AArch64::MADDWrrr
,
3647 Patterns
.push_back(MachineCombinerPattern::MULADDWI_OP1
);
3651 case AArch64::ADDXri
:
3652 if (canCombineWithMUL(MBB
, Root
.getOperand(1), AArch64::MADDXrrr
,
3654 Patterns
.push_back(MachineCombinerPattern::MULADDXI_OP1
);
3658 case AArch64::SUBWri
:
3659 if (canCombineWithMUL(MBB
, Root
.getOperand(1), AArch64::MADDWrrr
,
3661 Patterns
.push_back(MachineCombinerPattern::MULSUBWI_OP1
);
3665 case AArch64::SUBXri
:
3666 if (canCombineWithMUL(MBB
, Root
.getOperand(1), AArch64::MADDXrrr
,
3668 Patterns
.push_back(MachineCombinerPattern::MULSUBXI_OP1
);
3675 /// Floating-Point Support
3677 /// Find instructions that can be turned into madd.
3678 static bool getFMAPatterns(MachineInstr
&Root
,
3679 SmallVectorImpl
<MachineCombinerPattern
> &Patterns
) {
3681 if (!isCombineInstrCandidateFP(Root
))
3684 MachineBasicBlock
&MBB
= *Root
.getParent();
3687 switch (Root
.getOpcode()) {
3689 assert(false && "Unsupported FP instruction in combiner\n");
3691 case AArch64::FADDHrr
:
3692 assert(Root
.getOperand(1).isReg() && Root
.getOperand(2).isReg() &&
3693 "FADDHrr does not have register operands");
3694 if (canCombineWithFMUL(MBB
, Root
.getOperand(1), AArch64::FMULHrr
)) {
3695 Patterns
.push_back(MachineCombinerPattern::FMULADDH_OP1
);
3698 if (canCombineWithFMUL(MBB
, Root
.getOperand(2), AArch64::FMULHrr
)) {
3699 Patterns
.push_back(MachineCombinerPattern::FMULADDH_OP2
);
3703 case AArch64::FADDSrr
:
3704 assert(Root
.getOperand(1).isReg() && Root
.getOperand(2).isReg() &&
3705 "FADDSrr does not have register operands");
3706 if (canCombineWithFMUL(MBB
, Root
.getOperand(1), AArch64::FMULSrr
)) {
3707 Patterns
.push_back(MachineCombinerPattern::FMULADDS_OP1
);
3709 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3710 AArch64::FMULv1i32_indexed
)) {
3711 Patterns
.push_back(MachineCombinerPattern::FMLAv1i32_indexed_OP1
);
3714 if (canCombineWithFMUL(MBB
, Root
.getOperand(2), AArch64::FMULSrr
)) {
3715 Patterns
.push_back(MachineCombinerPattern::FMULADDS_OP2
);
3717 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3718 AArch64::FMULv1i32_indexed
)) {
3719 Patterns
.push_back(MachineCombinerPattern::FMLAv1i32_indexed_OP2
);
3723 case AArch64::FADDDrr
:
3724 if (canCombineWithFMUL(MBB
, Root
.getOperand(1), AArch64::FMULDrr
)) {
3725 Patterns
.push_back(MachineCombinerPattern::FMULADDD_OP1
);
3727 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3728 AArch64::FMULv1i64_indexed
)) {
3729 Patterns
.push_back(MachineCombinerPattern::FMLAv1i64_indexed_OP1
);
3732 if (canCombineWithFMUL(MBB
, Root
.getOperand(2), AArch64::FMULDrr
)) {
3733 Patterns
.push_back(MachineCombinerPattern::FMULADDD_OP2
);
3735 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3736 AArch64::FMULv1i64_indexed
)) {
3737 Patterns
.push_back(MachineCombinerPattern::FMLAv1i64_indexed_OP2
);
3741 case AArch64::FADDv4f16
:
3742 if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3743 AArch64::FMULv4i16_indexed
)) {
3744 Patterns
.push_back(MachineCombinerPattern::FMLAv4i16_indexed_OP1
);
3746 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3747 AArch64::FMULv4f16
)) {
3748 Patterns
.push_back(MachineCombinerPattern::FMLAv4f16_OP1
);
3751 if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3752 AArch64::FMULv4i16_indexed
)) {
3753 Patterns
.push_back(MachineCombinerPattern::FMLAv4i16_indexed_OP2
);
3755 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3756 AArch64::FMULv4f16
)) {
3757 Patterns
.push_back(MachineCombinerPattern::FMLAv4f16_OP2
);
3761 case AArch64::FADDv8f16
:
3762 if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3763 AArch64::FMULv8i16_indexed
)) {
3764 Patterns
.push_back(MachineCombinerPattern::FMLAv8i16_indexed_OP1
);
3766 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3767 AArch64::FMULv8f16
)) {
3768 Patterns
.push_back(MachineCombinerPattern::FMLAv8f16_OP1
);
3771 if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3772 AArch64::FMULv8i16_indexed
)) {
3773 Patterns
.push_back(MachineCombinerPattern::FMLAv8i16_indexed_OP2
);
3775 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3776 AArch64::FMULv8f16
)) {
3777 Patterns
.push_back(MachineCombinerPattern::FMLAv8f16_OP2
);
3781 case AArch64::FADDv2f32
:
3782 if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3783 AArch64::FMULv2i32_indexed
)) {
3784 Patterns
.push_back(MachineCombinerPattern::FMLAv2i32_indexed_OP1
);
3786 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3787 AArch64::FMULv2f32
)) {
3788 Patterns
.push_back(MachineCombinerPattern::FMLAv2f32_OP1
);
3791 if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3792 AArch64::FMULv2i32_indexed
)) {
3793 Patterns
.push_back(MachineCombinerPattern::FMLAv2i32_indexed_OP2
);
3795 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3796 AArch64::FMULv2f32
)) {
3797 Patterns
.push_back(MachineCombinerPattern::FMLAv2f32_OP2
);
3801 case AArch64::FADDv2f64
:
3802 if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3803 AArch64::FMULv2i64_indexed
)) {
3804 Patterns
.push_back(MachineCombinerPattern::FMLAv2i64_indexed_OP1
);
3806 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3807 AArch64::FMULv2f64
)) {
3808 Patterns
.push_back(MachineCombinerPattern::FMLAv2f64_OP1
);
3811 if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3812 AArch64::FMULv2i64_indexed
)) {
3813 Patterns
.push_back(MachineCombinerPattern::FMLAv2i64_indexed_OP2
);
3815 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3816 AArch64::FMULv2f64
)) {
3817 Patterns
.push_back(MachineCombinerPattern::FMLAv2f64_OP2
);
3821 case AArch64::FADDv4f32
:
3822 if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3823 AArch64::FMULv4i32_indexed
)) {
3824 Patterns
.push_back(MachineCombinerPattern::FMLAv4i32_indexed_OP1
);
3826 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3827 AArch64::FMULv4f32
)) {
3828 Patterns
.push_back(MachineCombinerPattern::FMLAv4f32_OP1
);
3831 if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3832 AArch64::FMULv4i32_indexed
)) {
3833 Patterns
.push_back(MachineCombinerPattern::FMLAv4i32_indexed_OP2
);
3835 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3836 AArch64::FMULv4f32
)) {
3837 Patterns
.push_back(MachineCombinerPattern::FMLAv4f32_OP2
);
3842 case AArch64::FSUBHrr
:
3843 if (canCombineWithFMUL(MBB
, Root
.getOperand(1), AArch64::FMULHrr
)) {
3844 Patterns
.push_back(MachineCombinerPattern::FMULSUBH_OP1
);
3847 if (canCombineWithFMUL(MBB
, Root
.getOperand(2), AArch64::FMULHrr
)) {
3848 Patterns
.push_back(MachineCombinerPattern::FMULSUBH_OP2
);
3851 if (canCombineWithFMUL(MBB
, Root
.getOperand(1), AArch64::FNMULHrr
)) {
3852 Patterns
.push_back(MachineCombinerPattern::FNMULSUBH_OP1
);
3856 case AArch64::FSUBSrr
:
3857 if (canCombineWithFMUL(MBB
, Root
.getOperand(1), AArch64::FMULSrr
)) {
3858 Patterns
.push_back(MachineCombinerPattern::FMULSUBS_OP1
);
3861 if (canCombineWithFMUL(MBB
, Root
.getOperand(2), AArch64::FMULSrr
)) {
3862 Patterns
.push_back(MachineCombinerPattern::FMULSUBS_OP2
);
3864 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3865 AArch64::FMULv1i32_indexed
)) {
3866 Patterns
.push_back(MachineCombinerPattern::FMLSv1i32_indexed_OP2
);
3869 if (canCombineWithFMUL(MBB
, Root
.getOperand(1), AArch64::FNMULSrr
)) {
3870 Patterns
.push_back(MachineCombinerPattern::FNMULSUBS_OP1
);
3874 case AArch64::FSUBDrr
:
3875 if (canCombineWithFMUL(MBB
, Root
.getOperand(1), AArch64::FMULDrr
)) {
3876 Patterns
.push_back(MachineCombinerPattern::FMULSUBD_OP1
);
3879 if (canCombineWithFMUL(MBB
, Root
.getOperand(2), AArch64::FMULDrr
)) {
3880 Patterns
.push_back(MachineCombinerPattern::FMULSUBD_OP2
);
3882 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3883 AArch64::FMULv1i64_indexed
)) {
3884 Patterns
.push_back(MachineCombinerPattern::FMLSv1i64_indexed_OP2
);
3887 if (canCombineWithFMUL(MBB
, Root
.getOperand(1), AArch64::FNMULDrr
)) {
3888 Patterns
.push_back(MachineCombinerPattern::FNMULSUBD_OP1
);
3892 case AArch64::FSUBv4f16
:
3893 if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3894 AArch64::FMULv4i16_indexed
)) {
3895 Patterns
.push_back(MachineCombinerPattern::FMLSv4i16_indexed_OP2
);
3897 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3898 AArch64::FMULv4f16
)) {
3899 Patterns
.push_back(MachineCombinerPattern::FMLSv4f16_OP2
);
3902 if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3903 AArch64::FMULv4i16_indexed
)) {
3904 Patterns
.push_back(MachineCombinerPattern::FMLSv2i32_indexed_OP1
);
3906 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3907 AArch64::FMULv4f16
)) {
3908 Patterns
.push_back(MachineCombinerPattern::FMLSv2f32_OP1
);
3912 case AArch64::FSUBv8f16
:
3913 if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3914 AArch64::FMULv8i16_indexed
)) {
3915 Patterns
.push_back(MachineCombinerPattern::FMLSv8i16_indexed_OP2
);
3917 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3918 AArch64::FMULv8f16
)) {
3919 Patterns
.push_back(MachineCombinerPattern::FMLSv8f16_OP2
);
3922 if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3923 AArch64::FMULv8i16_indexed
)) {
3924 Patterns
.push_back(MachineCombinerPattern::FMLSv8i16_indexed_OP1
);
3926 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3927 AArch64::FMULv8f16
)) {
3928 Patterns
.push_back(MachineCombinerPattern::FMLSv8f16_OP1
);
3932 case AArch64::FSUBv2f32
:
3933 if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3934 AArch64::FMULv2i32_indexed
)) {
3935 Patterns
.push_back(MachineCombinerPattern::FMLSv2i32_indexed_OP2
);
3937 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3938 AArch64::FMULv2f32
)) {
3939 Patterns
.push_back(MachineCombinerPattern::FMLSv2f32_OP2
);
3942 if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3943 AArch64::FMULv2i32_indexed
)) {
3944 Patterns
.push_back(MachineCombinerPattern::FMLSv2i32_indexed_OP1
);
3946 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3947 AArch64::FMULv2f32
)) {
3948 Patterns
.push_back(MachineCombinerPattern::FMLSv2f32_OP1
);
3952 case AArch64::FSUBv2f64
:
3953 if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3954 AArch64::FMULv2i64_indexed
)) {
3955 Patterns
.push_back(MachineCombinerPattern::FMLSv2i64_indexed_OP2
);
3957 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3958 AArch64::FMULv2f64
)) {
3959 Patterns
.push_back(MachineCombinerPattern::FMLSv2f64_OP2
);
3962 if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3963 AArch64::FMULv2i64_indexed
)) {
3964 Patterns
.push_back(MachineCombinerPattern::FMLSv2i64_indexed_OP1
);
3966 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3967 AArch64::FMULv2f64
)) {
3968 Patterns
.push_back(MachineCombinerPattern::FMLSv2f64_OP1
);
3972 case AArch64::FSUBv4f32
:
3973 if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3974 AArch64::FMULv4i32_indexed
)) {
3975 Patterns
.push_back(MachineCombinerPattern::FMLSv4i32_indexed_OP2
);
3977 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(2),
3978 AArch64::FMULv4f32
)) {
3979 Patterns
.push_back(MachineCombinerPattern::FMLSv4f32_OP2
);
3982 if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3983 AArch64::FMULv4i32_indexed
)) {
3984 Patterns
.push_back(MachineCombinerPattern::FMLSv4i32_indexed_OP1
);
3986 } else if (canCombineWithFMUL(MBB
, Root
.getOperand(1),
3987 AArch64::FMULv4f32
)) {
3988 Patterns
.push_back(MachineCombinerPattern::FMLSv4f32_OP1
);
3996 /// Return true when a code sequence can improve throughput. It
3997 /// should be called only for instructions in loops.
3998 /// \param Pattern - combiner pattern
3999 bool AArch64InstrInfo::isThroughputPattern(
4000 MachineCombinerPattern Pattern
) const {
4004 case MachineCombinerPattern::FMULADDH_OP1
:
4005 case MachineCombinerPattern::FMULADDH_OP2
:
4006 case MachineCombinerPattern::FMULSUBH_OP1
:
4007 case MachineCombinerPattern::FMULSUBH_OP2
:
4008 case MachineCombinerPattern::FMULADDS_OP1
:
4009 case MachineCombinerPattern::FMULADDS_OP2
:
4010 case MachineCombinerPattern::FMULSUBS_OP1
:
4011 case MachineCombinerPattern::FMULSUBS_OP2
:
4012 case MachineCombinerPattern::FMULADDD_OP1
:
4013 case MachineCombinerPattern::FMULADDD_OP2
:
4014 case MachineCombinerPattern::FMULSUBD_OP1
:
4015 case MachineCombinerPattern::FMULSUBD_OP2
:
4016 case MachineCombinerPattern::FNMULSUBH_OP1
:
4017 case MachineCombinerPattern::FNMULSUBS_OP1
:
4018 case MachineCombinerPattern::FNMULSUBD_OP1
:
4019 case MachineCombinerPattern::FMLAv4i16_indexed_OP1
:
4020 case MachineCombinerPattern::FMLAv4i16_indexed_OP2
:
4021 case MachineCombinerPattern::FMLAv8i16_indexed_OP1
:
4022 case MachineCombinerPattern::FMLAv8i16_indexed_OP2
:
4023 case MachineCombinerPattern::FMLAv1i32_indexed_OP1
:
4024 case MachineCombinerPattern::FMLAv1i32_indexed_OP2
:
4025 case MachineCombinerPattern::FMLAv1i64_indexed_OP1
:
4026 case MachineCombinerPattern::FMLAv1i64_indexed_OP2
:
4027 case MachineCombinerPattern::FMLAv4f16_OP2
:
4028 case MachineCombinerPattern::FMLAv4f16_OP1
:
4029 case MachineCombinerPattern::FMLAv8f16_OP1
:
4030 case MachineCombinerPattern::FMLAv8f16_OP2
:
4031 case MachineCombinerPattern::FMLAv2f32_OP2
:
4032 case MachineCombinerPattern::FMLAv2f32_OP1
:
4033 case MachineCombinerPattern::FMLAv2f64_OP1
:
4034 case MachineCombinerPattern::FMLAv2f64_OP2
:
4035 case MachineCombinerPattern::FMLAv2i32_indexed_OP1
:
4036 case MachineCombinerPattern::FMLAv2i32_indexed_OP2
:
4037 case MachineCombinerPattern::FMLAv2i64_indexed_OP1
:
4038 case MachineCombinerPattern::FMLAv2i64_indexed_OP2
:
4039 case MachineCombinerPattern::FMLAv4f32_OP1
:
4040 case MachineCombinerPattern::FMLAv4f32_OP2
:
4041 case MachineCombinerPattern::FMLAv4i32_indexed_OP1
:
4042 case MachineCombinerPattern::FMLAv4i32_indexed_OP2
:
4043 case MachineCombinerPattern::FMLSv4i16_indexed_OP2
:
4044 case MachineCombinerPattern::FMLSv8i16_indexed_OP1
:
4045 case MachineCombinerPattern::FMLSv8i16_indexed_OP2
:
4046 case MachineCombinerPattern::FMLSv1i32_indexed_OP2
:
4047 case MachineCombinerPattern::FMLSv1i64_indexed_OP2
:
4048 case MachineCombinerPattern::FMLSv2i32_indexed_OP2
:
4049 case MachineCombinerPattern::FMLSv2i64_indexed_OP2
:
4050 case MachineCombinerPattern::FMLSv4f16_OP2
:
4051 case MachineCombinerPattern::FMLSv8f16_OP1
:
4052 case MachineCombinerPattern::FMLSv8f16_OP2
:
4053 case MachineCombinerPattern::FMLSv2f32_OP2
:
4054 case MachineCombinerPattern::FMLSv2f64_OP2
:
4055 case MachineCombinerPattern::FMLSv4i32_indexed_OP2
:
4056 case MachineCombinerPattern::FMLSv4f32_OP2
:
4058 } // end switch (Pattern)
4061 /// Return true when there is potentially a faster code sequence for an
4062 /// instruction chain ending in \p Root. All potential patterns are listed in
4063 /// the \p Pattern vector. Pattern should be sorted in priority order since the
4064 /// pattern evaluator stops checking as soon as it finds a faster sequence.
4066 bool AArch64InstrInfo::getMachineCombinerPatterns(
4068 SmallVectorImpl
<MachineCombinerPattern
> &Patterns
) const {
4070 if (getMaddPatterns(Root
, Patterns
))
4072 // Floating point patterns
4073 if (getFMAPatterns(Root
, Patterns
))
4076 return TargetInstrInfo::getMachineCombinerPatterns(Root
, Patterns
);
4079 enum class FMAInstKind
{ Default
, Indexed
, Accumulator
};
4080 /// genFusedMultiply - Generate fused multiply instructions.
4081 /// This function supports both integer and floating point instructions.
4082 /// A typical example:
4085 /// ==> F|MADD R,A,B,C
4086 /// \param MF Containing MachineFunction
4087 /// \param MRI Register information
4088 /// \param TII Target information
4089 /// \param Root is the F|ADD instruction
4090 /// \param [out] InsInstrs is a vector of machine instructions and will
4091 /// contain the generated madd instruction
4092 /// \param IdxMulOpd is index of operand in Root that is the result of
4093 /// the F|MUL. In the example above IdxMulOpd is 1.
4094 /// \param MaddOpc the opcode fo the f|madd instruction
4095 /// \param RC Register class of operands
4096 /// \param kind of fma instruction (addressing mode) to be generated
4097 /// \param ReplacedAddend is the result register from the instruction
4098 /// replacing the non-combined operand, if any.
4099 static MachineInstr
*
4100 genFusedMultiply(MachineFunction
&MF
, MachineRegisterInfo
&MRI
,
4101 const TargetInstrInfo
*TII
, MachineInstr
&Root
,
4102 SmallVectorImpl
<MachineInstr
*> &InsInstrs
, unsigned IdxMulOpd
,
4103 unsigned MaddOpc
, const TargetRegisterClass
*RC
,
4104 FMAInstKind kind
= FMAInstKind::Default
,
4105 const Register
*ReplacedAddend
= nullptr) {
4106 assert(IdxMulOpd
== 1 || IdxMulOpd
== 2);
4108 unsigned IdxOtherOpd
= IdxMulOpd
== 1 ? 2 : 1;
4109 MachineInstr
*MUL
= MRI
.getUniqueVRegDef(Root
.getOperand(IdxMulOpd
).getReg());
4110 Register ResultReg
= Root
.getOperand(0).getReg();
4111 Register SrcReg0
= MUL
->getOperand(1).getReg();
4112 bool Src0IsKill
= MUL
->getOperand(1).isKill();
4113 Register SrcReg1
= MUL
->getOperand(2).getReg();
4114 bool Src1IsKill
= MUL
->getOperand(2).isKill();
4118 if (ReplacedAddend
) {
4119 // If we just generated a new addend, we must be it's only use.
4120 SrcReg2
= *ReplacedAddend
;
4123 SrcReg2
= Root
.getOperand(IdxOtherOpd
).getReg();
4124 Src2IsKill
= Root
.getOperand(IdxOtherOpd
).isKill();
4127 if (Register::isVirtualRegister(ResultReg
))
4128 MRI
.constrainRegClass(ResultReg
, RC
);
4129 if (Register::isVirtualRegister(SrcReg0
))
4130 MRI
.constrainRegClass(SrcReg0
, RC
);
4131 if (Register::isVirtualRegister(SrcReg1
))
4132 MRI
.constrainRegClass(SrcReg1
, RC
);
4133 if (Register::isVirtualRegister(SrcReg2
))
4134 MRI
.constrainRegClass(SrcReg2
, RC
);
4136 MachineInstrBuilder MIB
;
4137 if (kind
== FMAInstKind::Default
)
4138 MIB
= BuildMI(MF
, Root
.getDebugLoc(), TII
->get(MaddOpc
), ResultReg
)
4139 .addReg(SrcReg0
, getKillRegState(Src0IsKill
))
4140 .addReg(SrcReg1
, getKillRegState(Src1IsKill
))
4141 .addReg(SrcReg2
, getKillRegState(Src2IsKill
));
4142 else if (kind
== FMAInstKind::Indexed
)
4143 MIB
= BuildMI(MF
, Root
.getDebugLoc(), TII
->get(MaddOpc
), ResultReg
)
4144 .addReg(SrcReg2
, getKillRegState(Src2IsKill
))
4145 .addReg(SrcReg0
, getKillRegState(Src0IsKill
))
4146 .addReg(SrcReg1
, getKillRegState(Src1IsKill
))
4147 .addImm(MUL
->getOperand(3).getImm());
4148 else if (kind
== FMAInstKind::Accumulator
)
4149 MIB
= BuildMI(MF
, Root
.getDebugLoc(), TII
->get(MaddOpc
), ResultReg
)
4150 .addReg(SrcReg2
, getKillRegState(Src2IsKill
))
4151 .addReg(SrcReg0
, getKillRegState(Src0IsKill
))
4152 .addReg(SrcReg1
, getKillRegState(Src1IsKill
));
4154 assert(false && "Invalid FMA instruction kind \n");
4155 // Insert the MADD (MADD, FMA, FMS, FMLA, FMSL)
4156 InsInstrs
.push_back(MIB
);
4160 /// genMaddR - Generate madd instruction and combine mul and add using
4161 /// an extra virtual register
4162 /// Example - an ADD intermediate needs to be stored in a register:
4165 /// ==> ORR V, ZR, Imm
4166 /// ==> MADD R,A,B,V
4167 /// \param MF Containing MachineFunction
4168 /// \param MRI Register information
4169 /// \param TII Target information
4170 /// \param Root is the ADD instruction
4171 /// \param [out] InsInstrs is a vector of machine instructions and will
4172 /// contain the generated madd instruction
4173 /// \param IdxMulOpd is index of operand in Root that is the result of
4174 /// the MUL. In the example above IdxMulOpd is 1.
4175 /// \param MaddOpc the opcode fo the madd instruction
4176 /// \param VR is a virtual register that holds the value of an ADD operand
4177 /// (V in the example above).
4178 /// \param RC Register class of operands
4179 static MachineInstr
*genMaddR(MachineFunction
&MF
, MachineRegisterInfo
&MRI
,
4180 const TargetInstrInfo
*TII
, MachineInstr
&Root
,
4181 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
4182 unsigned IdxMulOpd
, unsigned MaddOpc
, unsigned VR
,
4183 const TargetRegisterClass
*RC
) {
4184 assert(IdxMulOpd
== 1 || IdxMulOpd
== 2);
4186 MachineInstr
*MUL
= MRI
.getUniqueVRegDef(Root
.getOperand(IdxMulOpd
).getReg());
4187 Register ResultReg
= Root
.getOperand(0).getReg();
4188 Register SrcReg0
= MUL
->getOperand(1).getReg();
4189 bool Src0IsKill
= MUL
->getOperand(1).isKill();
4190 Register SrcReg1
= MUL
->getOperand(2).getReg();
4191 bool Src1IsKill
= MUL
->getOperand(2).isKill();
4193 if (Register::isVirtualRegister(ResultReg
))
4194 MRI
.constrainRegClass(ResultReg
, RC
);
4195 if (Register::isVirtualRegister(SrcReg0
))
4196 MRI
.constrainRegClass(SrcReg0
, RC
);
4197 if (Register::isVirtualRegister(SrcReg1
))
4198 MRI
.constrainRegClass(SrcReg1
, RC
);
4199 if (Register::isVirtualRegister(VR
))
4200 MRI
.constrainRegClass(VR
, RC
);
4202 MachineInstrBuilder MIB
=
4203 BuildMI(MF
, Root
.getDebugLoc(), TII
->get(MaddOpc
), ResultReg
)
4204 .addReg(SrcReg0
, getKillRegState(Src0IsKill
))
4205 .addReg(SrcReg1
, getKillRegState(Src1IsKill
))
4208 InsInstrs
.push_back(MIB
);
4212 /// When getMachineCombinerPatterns() finds potential patterns,
4213 /// this function generates the instructions that could replace the
4214 /// original code sequence
4215 void AArch64InstrInfo::genAlternativeCodeSequence(
4216 MachineInstr
&Root
, MachineCombinerPattern Pattern
,
4217 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
4218 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
4219 DenseMap
<unsigned, unsigned> &InstrIdxForVirtReg
) const {
4220 MachineBasicBlock
&MBB
= *Root
.getParent();
4221 MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
4222 MachineFunction
&MF
= *MBB
.getParent();
4223 const TargetInstrInfo
*TII
= MF
.getSubtarget().getInstrInfo();
4226 const TargetRegisterClass
*RC
;
4230 // Reassociate instructions.
4231 TargetInstrInfo::genAlternativeCodeSequence(Root
, Pattern
, InsInstrs
,
4232 DelInstrs
, InstrIdxForVirtReg
);
4234 case MachineCombinerPattern::MULADDW_OP1
:
4235 case MachineCombinerPattern::MULADDX_OP1
:
4239 // --- Create(MADD);
4240 if (Pattern
== MachineCombinerPattern::MULADDW_OP1
) {
4241 Opc
= AArch64::MADDWrrr
;
4242 RC
= &AArch64::GPR32RegClass
;
4244 Opc
= AArch64::MADDXrrr
;
4245 RC
= &AArch64::GPR64RegClass
;
4247 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
);
4249 case MachineCombinerPattern::MULADDW_OP2
:
4250 case MachineCombinerPattern::MULADDX_OP2
:
4254 // --- Create(MADD);
4255 if (Pattern
== MachineCombinerPattern::MULADDW_OP2
) {
4256 Opc
= AArch64::MADDWrrr
;
4257 RC
= &AArch64::GPR32RegClass
;
4259 Opc
= AArch64::MADDXrrr
;
4260 RC
= &AArch64::GPR64RegClass
;
4262 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
);
4264 case MachineCombinerPattern::MULADDWI_OP1
:
4265 case MachineCombinerPattern::MULADDXI_OP1
: {
4268 // ==> ORR V, ZR, Imm
4270 // --- Create(MADD);
4271 const TargetRegisterClass
*OrrRC
;
4272 unsigned BitSize
, OrrOpc
, ZeroReg
;
4273 if (Pattern
== MachineCombinerPattern::MULADDWI_OP1
) {
4274 OrrOpc
= AArch64::ORRWri
;
4275 OrrRC
= &AArch64::GPR32spRegClass
;
4277 ZeroReg
= AArch64::WZR
;
4278 Opc
= AArch64::MADDWrrr
;
4279 RC
= &AArch64::GPR32RegClass
;
4281 OrrOpc
= AArch64::ORRXri
;
4282 OrrRC
= &AArch64::GPR64spRegClass
;
4284 ZeroReg
= AArch64::XZR
;
4285 Opc
= AArch64::MADDXrrr
;
4286 RC
= &AArch64::GPR64RegClass
;
4288 Register NewVR
= MRI
.createVirtualRegister(OrrRC
);
4289 uint64_t Imm
= Root
.getOperand(2).getImm();
4291 if (Root
.getOperand(3).isImm()) {
4292 unsigned Val
= Root
.getOperand(3).getImm();
4295 uint64_t UImm
= SignExtend64(Imm
, BitSize
);
4297 if (AArch64_AM::processLogicalImmediate(UImm
, BitSize
, Encoding
)) {
4298 MachineInstrBuilder MIB1
=
4299 BuildMI(MF
, Root
.getDebugLoc(), TII
->get(OrrOpc
), NewVR
)
4302 InsInstrs
.push_back(MIB1
);
4303 InstrIdxForVirtReg
.insert(std::make_pair(NewVR
, 0));
4304 MUL
= genMaddR(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, NewVR
, RC
);
4308 case MachineCombinerPattern::MULSUBW_OP1
:
4309 case MachineCombinerPattern::MULSUBX_OP1
: {
4313 // ==> MADD R,A,B,V // = -C + A*B
4314 // --- Create(MADD);
4315 const TargetRegisterClass
*SubRC
;
4316 unsigned SubOpc
, ZeroReg
;
4317 if (Pattern
== MachineCombinerPattern::MULSUBW_OP1
) {
4318 SubOpc
= AArch64::SUBWrr
;
4319 SubRC
= &AArch64::GPR32spRegClass
;
4320 ZeroReg
= AArch64::WZR
;
4321 Opc
= AArch64::MADDWrrr
;
4322 RC
= &AArch64::GPR32RegClass
;
4324 SubOpc
= AArch64::SUBXrr
;
4325 SubRC
= &AArch64::GPR64spRegClass
;
4326 ZeroReg
= AArch64::XZR
;
4327 Opc
= AArch64::MADDXrrr
;
4328 RC
= &AArch64::GPR64RegClass
;
4330 Register NewVR
= MRI
.createVirtualRegister(SubRC
);
4332 MachineInstrBuilder MIB1
=
4333 BuildMI(MF
, Root
.getDebugLoc(), TII
->get(SubOpc
), NewVR
)
4335 .add(Root
.getOperand(2));
4336 InsInstrs
.push_back(MIB1
);
4337 InstrIdxForVirtReg
.insert(std::make_pair(NewVR
, 0));
4338 MUL
= genMaddR(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, NewVR
, RC
);
4341 case MachineCombinerPattern::MULSUBW_OP2
:
4342 case MachineCombinerPattern::MULSUBX_OP2
:
4345 // ==> MSUB R,A,B,C (computes C - A*B)
4346 // --- Create(MSUB);
4347 if (Pattern
== MachineCombinerPattern::MULSUBW_OP2
) {
4348 Opc
= AArch64::MSUBWrrr
;
4349 RC
= &AArch64::GPR32RegClass
;
4351 Opc
= AArch64::MSUBXrrr
;
4352 RC
= &AArch64::GPR64RegClass
;
4354 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
);
4356 case MachineCombinerPattern::MULSUBWI_OP1
:
4357 case MachineCombinerPattern::MULSUBXI_OP1
: {
4360 // ==> ORR V, ZR, -Imm
4361 // ==> MADD R,A,B,V // = -Imm + A*B
4362 // --- Create(MADD);
4363 const TargetRegisterClass
*OrrRC
;
4364 unsigned BitSize
, OrrOpc
, ZeroReg
;
4365 if (Pattern
== MachineCombinerPattern::MULSUBWI_OP1
) {
4366 OrrOpc
= AArch64::ORRWri
;
4367 OrrRC
= &AArch64::GPR32spRegClass
;
4369 ZeroReg
= AArch64::WZR
;
4370 Opc
= AArch64::MADDWrrr
;
4371 RC
= &AArch64::GPR32RegClass
;
4373 OrrOpc
= AArch64::ORRXri
;
4374 OrrRC
= &AArch64::GPR64spRegClass
;
4376 ZeroReg
= AArch64::XZR
;
4377 Opc
= AArch64::MADDXrrr
;
4378 RC
= &AArch64::GPR64RegClass
;
4380 Register NewVR
= MRI
.createVirtualRegister(OrrRC
);
4381 uint64_t Imm
= Root
.getOperand(2).getImm();
4382 if (Root
.getOperand(3).isImm()) {
4383 unsigned Val
= Root
.getOperand(3).getImm();
4386 uint64_t UImm
= SignExtend64(-Imm
, BitSize
);
4388 if (AArch64_AM::processLogicalImmediate(UImm
, BitSize
, Encoding
)) {
4389 MachineInstrBuilder MIB1
=
4390 BuildMI(MF
, Root
.getDebugLoc(), TII
->get(OrrOpc
), NewVR
)
4393 InsInstrs
.push_back(MIB1
);
4394 InstrIdxForVirtReg
.insert(std::make_pair(NewVR
, 0));
4395 MUL
= genMaddR(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, NewVR
, RC
);
4399 // Floating Point Support
4400 case MachineCombinerPattern::FMULADDH_OP1
:
4401 Opc
= AArch64::FMADDHrrr
;
4402 RC
= &AArch64::FPR16RegClass
;
4403 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
);
4405 case MachineCombinerPattern::FMULADDS_OP1
:
4406 Opc
= AArch64::FMADDSrrr
;
4407 RC
= &AArch64::FPR32RegClass
;
4408 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
);
4410 case MachineCombinerPattern::FMULADDD_OP1
:
4411 Opc
= AArch64::FMADDDrrr
;
4412 RC
= &AArch64::FPR64RegClass
;
4413 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
);
4416 case MachineCombinerPattern::FMULADDH_OP2
:
4417 Opc
= AArch64::FMADDHrrr
;
4418 RC
= &AArch64::FPR16RegClass
;
4419 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
);
4421 case MachineCombinerPattern::FMULADDS_OP2
:
4422 Opc
= AArch64::FMADDSrrr
;
4423 RC
= &AArch64::FPR32RegClass
;
4424 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
);
4426 case MachineCombinerPattern::FMULADDD_OP2
:
4427 Opc
= AArch64::FMADDDrrr
;
4428 RC
= &AArch64::FPR64RegClass
;
4429 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
);
4432 case MachineCombinerPattern::FMLAv1i32_indexed_OP1
:
4433 Opc
= AArch64::FMLAv1i32_indexed
;
4434 RC
= &AArch64::FPR32RegClass
;
4435 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4436 FMAInstKind::Indexed
);
4438 case MachineCombinerPattern::FMLAv1i32_indexed_OP2
:
4439 Opc
= AArch64::FMLAv1i32_indexed
;
4440 RC
= &AArch64::FPR32RegClass
;
4441 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4442 FMAInstKind::Indexed
);
4445 case MachineCombinerPattern::FMLAv1i64_indexed_OP1
:
4446 Opc
= AArch64::FMLAv1i64_indexed
;
4447 RC
= &AArch64::FPR64RegClass
;
4448 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4449 FMAInstKind::Indexed
);
4451 case MachineCombinerPattern::FMLAv1i64_indexed_OP2
:
4452 Opc
= AArch64::FMLAv1i64_indexed
;
4453 RC
= &AArch64::FPR64RegClass
;
4454 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4455 FMAInstKind::Indexed
);
4458 case MachineCombinerPattern::FMLAv4i16_indexed_OP1
:
4459 RC
= &AArch64::FPR64RegClass
;
4460 Opc
= AArch64::FMLAv4i16_indexed
;
4461 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4462 FMAInstKind::Indexed
);
4464 case MachineCombinerPattern::FMLAv4f16_OP1
:
4465 RC
= &AArch64::FPR64RegClass
;
4466 Opc
= AArch64::FMLAv4f16
;
4467 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4468 FMAInstKind::Accumulator
);
4470 case MachineCombinerPattern::FMLAv4i16_indexed_OP2
:
4471 RC
= &AArch64::FPR64RegClass
;
4472 Opc
= AArch64::FMLAv4i16_indexed
;
4473 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4474 FMAInstKind::Indexed
);
4476 case MachineCombinerPattern::FMLAv4f16_OP2
:
4477 RC
= &AArch64::FPR64RegClass
;
4478 Opc
= AArch64::FMLAv4f16
;
4479 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4480 FMAInstKind::Accumulator
);
4483 case MachineCombinerPattern::FMLAv2i32_indexed_OP1
:
4484 case MachineCombinerPattern::FMLAv2f32_OP1
:
4485 RC
= &AArch64::FPR64RegClass
;
4486 if (Pattern
== MachineCombinerPattern::FMLAv2i32_indexed_OP1
) {
4487 Opc
= AArch64::FMLAv2i32_indexed
;
4488 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4489 FMAInstKind::Indexed
);
4491 Opc
= AArch64::FMLAv2f32
;
4492 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4493 FMAInstKind::Accumulator
);
4496 case MachineCombinerPattern::FMLAv2i32_indexed_OP2
:
4497 case MachineCombinerPattern::FMLAv2f32_OP2
:
4498 RC
= &AArch64::FPR64RegClass
;
4499 if (Pattern
== MachineCombinerPattern::FMLAv2i32_indexed_OP2
) {
4500 Opc
= AArch64::FMLAv2i32_indexed
;
4501 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4502 FMAInstKind::Indexed
);
4504 Opc
= AArch64::FMLAv2f32
;
4505 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4506 FMAInstKind::Accumulator
);
4510 case MachineCombinerPattern::FMLAv8i16_indexed_OP1
:
4511 RC
= &AArch64::FPR128RegClass
;
4512 Opc
= AArch64::FMLAv8i16_indexed
;
4513 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4514 FMAInstKind::Indexed
);
4516 case MachineCombinerPattern::FMLAv8f16_OP1
:
4517 RC
= &AArch64::FPR128RegClass
;
4518 Opc
= AArch64::FMLAv8f16
;
4519 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4520 FMAInstKind::Accumulator
);
4522 case MachineCombinerPattern::FMLAv8i16_indexed_OP2
:
4523 RC
= &AArch64::FPR128RegClass
;
4524 Opc
= AArch64::FMLAv8i16_indexed
;
4525 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4526 FMAInstKind::Indexed
);
4528 case MachineCombinerPattern::FMLAv8f16_OP2
:
4529 RC
= &AArch64::FPR128RegClass
;
4530 Opc
= AArch64::FMLAv8f16
;
4531 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4532 FMAInstKind::Accumulator
);
4535 case MachineCombinerPattern::FMLAv2i64_indexed_OP1
:
4536 case MachineCombinerPattern::FMLAv2f64_OP1
:
4537 RC
= &AArch64::FPR128RegClass
;
4538 if (Pattern
== MachineCombinerPattern::FMLAv2i64_indexed_OP1
) {
4539 Opc
= AArch64::FMLAv2i64_indexed
;
4540 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4541 FMAInstKind::Indexed
);
4543 Opc
= AArch64::FMLAv2f64
;
4544 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4545 FMAInstKind::Accumulator
);
4548 case MachineCombinerPattern::FMLAv2i64_indexed_OP2
:
4549 case MachineCombinerPattern::FMLAv2f64_OP2
:
4550 RC
= &AArch64::FPR128RegClass
;
4551 if (Pattern
== MachineCombinerPattern::FMLAv2i64_indexed_OP2
) {
4552 Opc
= AArch64::FMLAv2i64_indexed
;
4553 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4554 FMAInstKind::Indexed
);
4556 Opc
= AArch64::FMLAv2f64
;
4557 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4558 FMAInstKind::Accumulator
);
4562 case MachineCombinerPattern::FMLAv4i32_indexed_OP1
:
4563 case MachineCombinerPattern::FMLAv4f32_OP1
:
4564 RC
= &AArch64::FPR128RegClass
;
4565 if (Pattern
== MachineCombinerPattern::FMLAv4i32_indexed_OP1
) {
4566 Opc
= AArch64::FMLAv4i32_indexed
;
4567 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4568 FMAInstKind::Indexed
);
4570 Opc
= AArch64::FMLAv4f32
;
4571 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4572 FMAInstKind::Accumulator
);
4576 case MachineCombinerPattern::FMLAv4i32_indexed_OP2
:
4577 case MachineCombinerPattern::FMLAv4f32_OP2
:
4578 RC
= &AArch64::FPR128RegClass
;
4579 if (Pattern
== MachineCombinerPattern::FMLAv4i32_indexed_OP2
) {
4580 Opc
= AArch64::FMLAv4i32_indexed
;
4581 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4582 FMAInstKind::Indexed
);
4584 Opc
= AArch64::FMLAv4f32
;
4585 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4586 FMAInstKind::Accumulator
);
4590 case MachineCombinerPattern::FMULSUBH_OP1
:
4591 Opc
= AArch64::FNMSUBHrrr
;
4592 RC
= &AArch64::FPR16RegClass
;
4593 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
);
4595 case MachineCombinerPattern::FMULSUBS_OP1
:
4596 Opc
= AArch64::FNMSUBSrrr
;
4597 RC
= &AArch64::FPR32RegClass
;
4598 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
);
4600 case MachineCombinerPattern::FMULSUBD_OP1
:
4601 Opc
= AArch64::FNMSUBDrrr
;
4602 RC
= &AArch64::FPR64RegClass
;
4603 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
);
4606 case MachineCombinerPattern::FNMULSUBH_OP1
:
4607 Opc
= AArch64::FNMADDHrrr
;
4608 RC
= &AArch64::FPR16RegClass
;
4609 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
);
4611 case MachineCombinerPattern::FNMULSUBS_OP1
:
4612 Opc
= AArch64::FNMADDSrrr
;
4613 RC
= &AArch64::FPR32RegClass
;
4614 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
);
4616 case MachineCombinerPattern::FNMULSUBD_OP1
:
4617 Opc
= AArch64::FNMADDDrrr
;
4618 RC
= &AArch64::FPR64RegClass
;
4619 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
);
4622 case MachineCombinerPattern::FMULSUBH_OP2
:
4623 Opc
= AArch64::FMSUBHrrr
;
4624 RC
= &AArch64::FPR16RegClass
;
4625 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
);
4627 case MachineCombinerPattern::FMULSUBS_OP2
:
4628 Opc
= AArch64::FMSUBSrrr
;
4629 RC
= &AArch64::FPR32RegClass
;
4630 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
);
4632 case MachineCombinerPattern::FMULSUBD_OP2
:
4633 Opc
= AArch64::FMSUBDrrr
;
4634 RC
= &AArch64::FPR64RegClass
;
4635 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
);
4638 case MachineCombinerPattern::FMLSv1i32_indexed_OP2
:
4639 Opc
= AArch64::FMLSv1i32_indexed
;
4640 RC
= &AArch64::FPR32RegClass
;
4641 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4642 FMAInstKind::Indexed
);
4645 case MachineCombinerPattern::FMLSv1i64_indexed_OP2
:
4646 Opc
= AArch64::FMLSv1i64_indexed
;
4647 RC
= &AArch64::FPR64RegClass
;
4648 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4649 FMAInstKind::Indexed
);
4652 case MachineCombinerPattern::FMLSv4f16_OP2
:
4653 RC
= &AArch64::FPR64RegClass
;
4654 Opc
= AArch64::FMLSv4f16
;
4655 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4656 FMAInstKind::Accumulator
);
4658 case MachineCombinerPattern::FMLSv4i16_indexed_OP2
:
4659 RC
= &AArch64::FPR64RegClass
;
4660 Opc
= AArch64::FMLSv4i16_indexed
;
4661 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4662 FMAInstKind::Indexed
);
4665 case MachineCombinerPattern::FMLSv2f32_OP2
:
4666 case MachineCombinerPattern::FMLSv2i32_indexed_OP2
:
4667 RC
= &AArch64::FPR64RegClass
;
4668 if (Pattern
== MachineCombinerPattern::FMLSv2i32_indexed_OP2
) {
4669 Opc
= AArch64::FMLSv2i32_indexed
;
4670 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4671 FMAInstKind::Indexed
);
4673 Opc
= AArch64::FMLSv2f32
;
4674 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4675 FMAInstKind::Accumulator
);
4679 case MachineCombinerPattern::FMLSv8f16_OP1
:
4680 RC
= &AArch64::FPR128RegClass
;
4681 Opc
= AArch64::FMLSv8f16
;
4682 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4683 FMAInstKind::Accumulator
);
4685 case MachineCombinerPattern::FMLSv8i16_indexed_OP1
:
4686 RC
= &AArch64::FPR128RegClass
;
4687 Opc
= AArch64::FMLSv8i16_indexed
;
4688 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4689 FMAInstKind::Indexed
);
4692 case MachineCombinerPattern::FMLSv8f16_OP2
:
4693 RC
= &AArch64::FPR128RegClass
;
4694 Opc
= AArch64::FMLSv8f16
;
4695 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4696 FMAInstKind::Accumulator
);
4698 case MachineCombinerPattern::FMLSv8i16_indexed_OP2
:
4699 RC
= &AArch64::FPR128RegClass
;
4700 Opc
= AArch64::FMLSv8i16_indexed
;
4701 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4702 FMAInstKind::Indexed
);
4705 case MachineCombinerPattern::FMLSv2f64_OP2
:
4706 case MachineCombinerPattern::FMLSv2i64_indexed_OP2
:
4707 RC
= &AArch64::FPR128RegClass
;
4708 if (Pattern
== MachineCombinerPattern::FMLSv2i64_indexed_OP2
) {
4709 Opc
= AArch64::FMLSv2i64_indexed
;
4710 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4711 FMAInstKind::Indexed
);
4713 Opc
= AArch64::FMLSv2f64
;
4714 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4715 FMAInstKind::Accumulator
);
4719 case MachineCombinerPattern::FMLSv4f32_OP2
:
4720 case MachineCombinerPattern::FMLSv4i32_indexed_OP2
:
4721 RC
= &AArch64::FPR128RegClass
;
4722 if (Pattern
== MachineCombinerPattern::FMLSv4i32_indexed_OP2
) {
4723 Opc
= AArch64::FMLSv4i32_indexed
;
4724 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4725 FMAInstKind::Indexed
);
4727 Opc
= AArch64::FMLSv4f32
;
4728 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 2, Opc
, RC
,
4729 FMAInstKind::Accumulator
);
4732 case MachineCombinerPattern::FMLSv2f32_OP1
:
4733 case MachineCombinerPattern::FMLSv2i32_indexed_OP1
: {
4734 RC
= &AArch64::FPR64RegClass
;
4735 Register NewVR
= MRI
.createVirtualRegister(RC
);
4736 MachineInstrBuilder MIB1
=
4737 BuildMI(MF
, Root
.getDebugLoc(), TII
->get(AArch64::FNEGv2f32
), NewVR
)
4738 .add(Root
.getOperand(2));
4739 InsInstrs
.push_back(MIB1
);
4740 InstrIdxForVirtReg
.insert(std::make_pair(NewVR
, 0));
4741 if (Pattern
== MachineCombinerPattern::FMLSv2i32_indexed_OP1
) {
4742 Opc
= AArch64::FMLAv2i32_indexed
;
4743 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4744 FMAInstKind::Indexed
, &NewVR
);
4746 Opc
= AArch64::FMLAv2f32
;
4747 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4748 FMAInstKind::Accumulator
, &NewVR
);
4752 case MachineCombinerPattern::FMLSv4f32_OP1
:
4753 case MachineCombinerPattern::FMLSv4i32_indexed_OP1
: {
4754 RC
= &AArch64::FPR128RegClass
;
4755 Register NewVR
= MRI
.createVirtualRegister(RC
);
4756 MachineInstrBuilder MIB1
=
4757 BuildMI(MF
, Root
.getDebugLoc(), TII
->get(AArch64::FNEGv4f32
), NewVR
)
4758 .add(Root
.getOperand(2));
4759 InsInstrs
.push_back(MIB1
);
4760 InstrIdxForVirtReg
.insert(std::make_pair(NewVR
, 0));
4761 if (Pattern
== MachineCombinerPattern::FMLSv4i32_indexed_OP1
) {
4762 Opc
= AArch64::FMLAv4i32_indexed
;
4763 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4764 FMAInstKind::Indexed
, &NewVR
);
4766 Opc
= AArch64::FMLAv4f32
;
4767 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4768 FMAInstKind::Accumulator
, &NewVR
);
4772 case MachineCombinerPattern::FMLSv2f64_OP1
:
4773 case MachineCombinerPattern::FMLSv2i64_indexed_OP1
: {
4774 RC
= &AArch64::FPR128RegClass
;
4775 Register NewVR
= MRI
.createVirtualRegister(RC
);
4776 MachineInstrBuilder MIB1
=
4777 BuildMI(MF
, Root
.getDebugLoc(), TII
->get(AArch64::FNEGv2f64
), NewVR
)
4778 .add(Root
.getOperand(2));
4779 InsInstrs
.push_back(MIB1
);
4780 InstrIdxForVirtReg
.insert(std::make_pair(NewVR
, 0));
4781 if (Pattern
== MachineCombinerPattern::FMLSv2i64_indexed_OP1
) {
4782 Opc
= AArch64::FMLAv2i64_indexed
;
4783 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4784 FMAInstKind::Indexed
, &NewVR
);
4786 Opc
= AArch64::FMLAv2f64
;
4787 MUL
= genFusedMultiply(MF
, MRI
, TII
, Root
, InsInstrs
, 1, Opc
, RC
,
4788 FMAInstKind::Accumulator
, &NewVR
);
4792 } // end switch (Pattern)
4793 // Record MUL and ADD/SUB for deletion
4794 DelInstrs
.push_back(MUL
);
4795 DelInstrs
.push_back(&Root
);
4798 /// Replace csincr-branch sequence by simple conditional branch
4802 /// csinc w9, wzr, wzr, <condition code>
4803 /// tbnz w9, #0, 0x44
4807 /// b.<inverted condition code>
4811 /// csinc w9, wzr, wzr, <condition code>
4812 /// tbz w9, #0, 0x44
4816 /// b.<condition code>
4819 /// Replace compare and branch sequence by TBZ/TBNZ instruction when the
4820 /// compare's constant operand is power of 2.
4824 /// and w8, w8, #0x400
4829 /// tbnz w8, #10, L1
4832 /// \param MI Conditional Branch
4833 /// \return True when the simple conditional branch is generated
4835 bool AArch64InstrInfo::optimizeCondBranch(MachineInstr
&MI
) const {
4836 bool IsNegativeBranch
= false;
4837 bool IsTestAndBranch
= false;
4838 unsigned TargetBBInMI
= 0;
4839 switch (MI
.getOpcode()) {
4841 llvm_unreachable("Unknown branch instruction?");
4848 case AArch64::CBNZW
:
4849 case AArch64::CBNZX
:
4851 IsNegativeBranch
= true;
4856 IsTestAndBranch
= true;
4858 case AArch64::TBNZW
:
4859 case AArch64::TBNZX
:
4861 IsNegativeBranch
= true;
4862 IsTestAndBranch
= true;
4865 // So we increment a zero register and test for bits other
4866 // than bit 0? Conservatively bail out in case the verifier
4867 // missed this case.
4868 if (IsTestAndBranch
&& MI
.getOperand(1).getImm())
4872 assert(MI
.getParent() && "Incomplete machine instruciton\n");
4873 MachineBasicBlock
*MBB
= MI
.getParent();
4874 MachineFunction
*MF
= MBB
->getParent();
4875 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
4876 Register VReg
= MI
.getOperand(0).getReg();
4877 if (!Register::isVirtualRegister(VReg
))
4880 MachineInstr
*DefMI
= MRI
->getVRegDef(VReg
);
4882 // Look through COPY instructions to find definition.
4883 while (DefMI
->isCopy()) {
4884 Register CopyVReg
= DefMI
->getOperand(1).getReg();
4885 if (!MRI
->hasOneNonDBGUse(CopyVReg
))
4887 if (!MRI
->hasOneDef(CopyVReg
))
4889 DefMI
= MRI
->getVRegDef(CopyVReg
);
4892 switch (DefMI
->getOpcode()) {
4895 // Fold AND into a TBZ/TBNZ if constant operand is power of 2.
4896 case AArch64::ANDWri
:
4897 case AArch64::ANDXri
: {
4898 if (IsTestAndBranch
)
4900 if (DefMI
->getParent() != MBB
)
4902 if (!MRI
->hasOneNonDBGUse(VReg
))
4905 bool Is32Bit
= (DefMI
->getOpcode() == AArch64::ANDWri
);
4906 uint64_t Mask
= AArch64_AM::decodeLogicalImmediate(
4907 DefMI
->getOperand(2).getImm(), Is32Bit
? 32 : 64);
4908 if (!isPowerOf2_64(Mask
))
4911 MachineOperand
&MO
= DefMI
->getOperand(1);
4912 Register NewReg
= MO
.getReg();
4913 if (!Register::isVirtualRegister(NewReg
))
4916 assert(!MRI
->def_empty(NewReg
) && "Register must be defined.");
4918 MachineBasicBlock
&RefToMBB
= *MBB
;
4919 MachineBasicBlock
*TBB
= MI
.getOperand(1).getMBB();
4920 DebugLoc DL
= MI
.getDebugLoc();
4921 unsigned Imm
= Log2_64(Mask
);
4922 unsigned Opc
= (Imm
< 32)
4923 ? (IsNegativeBranch
? AArch64::TBNZW
: AArch64::TBZW
)
4924 : (IsNegativeBranch
? AArch64::TBNZX
: AArch64::TBZX
);
4925 MachineInstr
*NewMI
= BuildMI(RefToMBB
, MI
, DL
, get(Opc
))
4929 // Register lives on to the CBZ now.
4930 MO
.setIsKill(false);
4932 // For immediate smaller than 32, we need to use the 32-bit
4933 // variant (W) in all cases. Indeed the 64-bit variant does not
4934 // allow to encode them.
4935 // Therefore, if the input register is 64-bit, we need to take the
4937 if (!Is32Bit
&& Imm
< 32)
4938 NewMI
->getOperand(0).setSubReg(AArch64::sub_32
);
4939 MI
.eraseFromParent();
4943 case AArch64::CSINCWr
:
4944 case AArch64::CSINCXr
: {
4945 if (!(DefMI
->getOperand(1).getReg() == AArch64::WZR
&&
4946 DefMI
->getOperand(2).getReg() == AArch64::WZR
) &&
4947 !(DefMI
->getOperand(1).getReg() == AArch64::XZR
&&
4948 DefMI
->getOperand(2).getReg() == AArch64::XZR
))
4951 if (DefMI
->findRegisterDefOperandIdx(AArch64::NZCV
, true) != -1)
4954 AArch64CC::CondCode CC
= (AArch64CC::CondCode
)DefMI
->getOperand(3).getImm();
4955 // Convert only when the condition code is not modified between
4956 // the CSINC and the branch. The CC may be used by other
4957 // instructions in between.
4958 if (areCFlagsAccessedBetweenInstrs(DefMI
, MI
, &getRegisterInfo(), AK_Write
))
4960 MachineBasicBlock
&RefToMBB
= *MBB
;
4961 MachineBasicBlock
*TBB
= MI
.getOperand(TargetBBInMI
).getMBB();
4962 DebugLoc DL
= MI
.getDebugLoc();
4963 if (IsNegativeBranch
)
4964 CC
= AArch64CC::getInvertedCondCode(CC
);
4965 BuildMI(RefToMBB
, MI
, DL
, get(AArch64::Bcc
)).addImm(CC
).addMBB(TBB
);
4966 MI
.eraseFromParent();
4972 std::pair
<unsigned, unsigned>
4973 AArch64InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF
) const {
4974 const unsigned Mask
= AArch64II::MO_FRAGMENT
;
4975 return std::make_pair(TF
& Mask
, TF
& ~Mask
);
4978 ArrayRef
<std::pair
<unsigned, const char *>>
4979 AArch64InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
4980 using namespace AArch64II
;
4982 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
4983 {MO_PAGE
, "aarch64-page"}, {MO_PAGEOFF
, "aarch64-pageoff"},
4984 {MO_G3
, "aarch64-g3"}, {MO_G2
, "aarch64-g2"},
4985 {MO_G1
, "aarch64-g1"}, {MO_G0
, "aarch64-g0"},
4986 {MO_HI12
, "aarch64-hi12"}};
4987 return makeArrayRef(TargetFlags
);
4990 ArrayRef
<std::pair
<unsigned, const char *>>
4991 AArch64InstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
4992 using namespace AArch64II
;
4994 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
4995 {MO_COFFSTUB
, "aarch64-coffstub"},
4996 {MO_GOT
, "aarch64-got"},
4997 {MO_NC
, "aarch64-nc"},
4998 {MO_S
, "aarch64-s"},
4999 {MO_TLS
, "aarch64-tls"},
5000 {MO_DLLIMPORT
, "aarch64-dllimport"},
5001 {MO_PREL
, "aarch64-prel"},
5002 {MO_TAGGED
, "aarch64-tagged"}};
5003 return makeArrayRef(TargetFlags
);
5006 ArrayRef
<std::pair
<MachineMemOperand::Flags
, const char *>>
5007 AArch64InstrInfo::getSerializableMachineMemOperandTargetFlags() const {
5008 static const std::pair
<MachineMemOperand::Flags
, const char *> TargetFlags
[] =
5009 {{MOSuppressPair
, "aarch64-suppress-pair"},
5010 {MOStridedAccess
, "aarch64-strided-access"}};
5011 return makeArrayRef(TargetFlags
);
5014 /// Constants defining how certain sequences should be outlined.
5015 /// This encompasses how an outlined function should be called, and what kind of
5016 /// frame should be emitted for that outlined function.
5018 /// \p MachineOutlinerDefault implies that the function should be called with
5019 /// a save and restore of LR to the stack.
5023 /// I1 Save LR OUTLINED_FUNCTION:
5024 /// I2 --> BL OUTLINED_FUNCTION I1
5025 /// I3 Restore LR I2
5029 /// * Call construction overhead: 3 (save + BL + restore)
5030 /// * Frame construction overhead: 1 (ret)
5031 /// * Requires stack fixups? Yes
5033 /// \p MachineOutlinerTailCall implies that the function is being created from
5034 /// a sequence of instructions ending in a return.
5038 /// I1 OUTLINED_FUNCTION:
5039 /// I2 --> B OUTLINED_FUNCTION I1
5043 /// * Call construction overhead: 1 (B)
5044 /// * Frame construction overhead: 0 (Return included in sequence)
5045 /// * Requires stack fixups? No
5047 /// \p MachineOutlinerNoLRSave implies that the function should be called using
5048 /// a BL instruction, but doesn't require LR to be saved and restored. This
5049 /// happens when LR is known to be dead.
5053 /// I1 OUTLINED_FUNCTION:
5054 /// I2 --> BL OUTLINED_FUNCTION I1
5059 /// * Call construction overhead: 1 (BL)
5060 /// * Frame construction overhead: 1 (RET)
5061 /// * Requires stack fixups? No
5063 /// \p MachineOutlinerThunk implies that the function is being created from
5064 /// a sequence of instructions ending in a call. The outlined function is
5065 /// called with a BL instruction, and the outlined function tail-calls the
5066 /// original call destination.
5070 /// I1 OUTLINED_FUNCTION:
5071 /// I2 --> BL OUTLINED_FUNCTION I1
5074 /// * Call construction overhead: 1 (BL)
5075 /// * Frame construction overhead: 0
5076 /// * Requires stack fixups? No
5078 /// \p MachineOutlinerRegSave implies that the function should be called with a
5079 /// save and restore of LR to an available register. This allows us to avoid
5080 /// stack fixups. Note that this outlining variant is compatible with the
5085 /// I1 Save LR OUTLINED_FUNCTION:
5086 /// I2 --> BL OUTLINED_FUNCTION I1
5087 /// I3 Restore LR I2
5091 /// * Call construction overhead: 3 (save + BL + restore)
5092 /// * Frame construction overhead: 1 (ret)
5093 /// * Requires stack fixups? No
5094 enum MachineOutlinerClass
{
5095 MachineOutlinerDefault
, /// Emit a save, restore, call, and return.
5096 MachineOutlinerTailCall
, /// Only emit a branch.
5097 MachineOutlinerNoLRSave
, /// Emit a call and return.
5098 MachineOutlinerThunk
, /// Emit a call and tail-call.
5099 MachineOutlinerRegSave
/// Same as default, but save to a register.
5102 enum MachineOutlinerMBBFlags
{
5103 LRUnavailableSomewhere
= 0x2,
5105 UnsafeRegsDead
= 0x8
5109 AArch64InstrInfo::findRegisterToSaveLRTo(const outliner::Candidate
&C
) const {
5110 assert(C
.LRUWasSet
&& "LRU wasn't set?");
5111 MachineFunction
*MF
= C
.getMF();
5112 const AArch64RegisterInfo
*ARI
= static_cast<const AArch64RegisterInfo
*>(
5113 MF
->getSubtarget().getRegisterInfo());
5115 // Check if there is an available register across the sequence that we can
5117 for (unsigned Reg
: AArch64::GPR64RegClass
) {
5118 if (!ARI
->isReservedReg(*MF
, Reg
) &&
5119 Reg
!= AArch64::LR
&& // LR is not reserved, but don't use it.
5120 Reg
!= AArch64::X16
&& // X16 is not guaranteed to be preserved.
5121 Reg
!= AArch64::X17
&& // Ditto for X17.
5122 C
.LRU
.available(Reg
) && C
.UsedInSequence
.available(Reg
))
5126 // No suitable register. Return 0.
5130 outliner::OutlinedFunction
5131 AArch64InstrInfo::getOutliningCandidateInfo(
5132 std::vector
<outliner::Candidate
> &RepeatedSequenceLocs
) const {
5133 outliner::Candidate
&FirstCand
= RepeatedSequenceLocs
[0];
5134 unsigned SequenceSize
=
5135 std::accumulate(FirstCand
.front(), std::next(FirstCand
.back()), 0,
5136 [this](unsigned Sum
, const MachineInstr
&MI
) {
5137 return Sum
+ getInstSizeInBytes(MI
);
5140 // Properties about candidate MBBs that hold for all of them.
5141 unsigned FlagsSetInAll
= 0xF;
5143 // Compute liveness information for each candidate, and set FlagsSetInAll.
5144 const TargetRegisterInfo
&TRI
= getRegisterInfo();
5145 std::for_each(RepeatedSequenceLocs
.begin(), RepeatedSequenceLocs
.end(),
5146 [&FlagsSetInAll
](outliner::Candidate
&C
) {
5147 FlagsSetInAll
&= C
.Flags
;
5150 // According to the AArch64 Procedure Call Standard, the following are
5151 // undefined on entry/exit from a function call:
5153 // * Registers x16, x17, (and thus w16, w17)
5154 // * Condition codes (and thus the NZCV register)
5156 // Because if this, we can't outline any sequence of instructions where
5158 // of these registers is live into/across it. Thus, we need to delete
5161 auto CantGuaranteeValueAcrossCall
= [&TRI
](outliner::Candidate
&C
) {
5162 // If the unsafe registers in this block are all dead, then we don't need
5163 // to compute liveness here.
5164 if (C
.Flags
& UnsafeRegsDead
)
5167 LiveRegUnits LRU
= C
.LRU
;
5168 return (!LRU
.available(AArch64::W16
) || !LRU
.available(AArch64::W17
) ||
5169 !LRU
.available(AArch64::NZCV
));
5172 // Are there any candidates where those registers are live?
5173 if (!(FlagsSetInAll
& UnsafeRegsDead
)) {
5174 // Erase every candidate that violates the restrictions above. (It could be
5175 // true that we have viable candidates, so it's not worth bailing out in
5176 // the case that, say, 1 out of 20 candidates violate the restructions.)
5177 RepeatedSequenceLocs
.erase(std::remove_if(RepeatedSequenceLocs
.begin(),
5178 RepeatedSequenceLocs
.end(),
5179 CantGuaranteeValueAcrossCall
),
5180 RepeatedSequenceLocs
.end());
5182 // If the sequence doesn't have enough candidates left, then we're done.
5183 if (RepeatedSequenceLocs
.size() < 2)
5184 return outliner::OutlinedFunction();
5187 // At this point, we have only "safe" candidates to outline. Figure out
5188 // frame + call instruction information.
5190 unsigned LastInstrOpcode
= RepeatedSequenceLocs
[0].back()->getOpcode();
5192 // Helper lambda which sets call information for every candidate.
5193 auto SetCandidateCallInfo
=
5194 [&RepeatedSequenceLocs
](unsigned CallID
, unsigned NumBytesForCall
) {
5195 for (outliner::Candidate
&C
: RepeatedSequenceLocs
)
5196 C
.setCallInfo(CallID
, NumBytesForCall
);
5199 unsigned FrameID
= MachineOutlinerDefault
;
5200 unsigned NumBytesToCreateFrame
= 4;
5202 bool HasBTI
= any_of(RepeatedSequenceLocs
, [](outliner::Candidate
&C
) {
5203 return C
.getMF()->getFunction().hasFnAttribute("branch-target-enforcement");
5206 // Returns true if an instructions is safe to fix up, false otherwise.
5207 auto IsSafeToFixup
= [this, &TRI
](MachineInstr
&MI
) {
5211 if (!MI
.modifiesRegister(AArch64::SP
, &TRI
) &&
5212 !MI
.readsRegister(AArch64::SP
, &TRI
))
5215 // Any modification of SP will break our code to save/restore LR.
5216 // FIXME: We could handle some instructions which add a constant
5217 // offset to SP, with a bit more work.
5218 if (MI
.modifiesRegister(AArch64::SP
, &TRI
))
5221 // At this point, we have a stack instruction that we might need to
5222 // fix up. We'll handle it if it's a load or store.
5223 if (MI
.mayLoadOrStore()) {
5224 const MachineOperand
*Base
; // Filled with the base operand of MI.
5225 int64_t Offset
; // Filled with the offset of MI.
5227 // Does it allow us to offset the base operand and is the base the
5229 if (!getMemOperandWithOffset(MI
, Base
, Offset
, &TRI
) || !Base
->isReg() ||
5230 Base
->getReg() != AArch64::SP
)
5233 // Find the minimum/maximum offset for this instruction and check
5234 // if fixing it up would be in range.
5236 MaxOffset
; // Unscaled offsets for the instruction.
5237 unsigned Scale
; // The scale to multiply the offsets by.
5238 unsigned DummyWidth
;
5239 getMemOpInfo(MI
.getOpcode(), Scale
, DummyWidth
, MinOffset
, MaxOffset
);
5241 Offset
+= 16; // Update the offset to what it would be if we outlined.
5242 if (Offset
< MinOffset
* Scale
|| Offset
> MaxOffset
* Scale
)
5245 // It's in range, so we can outline it.
5249 // FIXME: Add handling for instructions like "add x0, sp, #8".
5251 // We can't fix it up, so don't outline it.
5255 // True if it's possible to fix up each stack instruction in this sequence.
5256 // Important for frames/call variants that modify the stack.
5257 bool AllStackInstrsSafe
= std::all_of(
5258 FirstCand
.front(), std::next(FirstCand
.back()), IsSafeToFixup
);
5260 // If the last instruction in any candidate is a terminator, then we should
5261 // tail call all of the candidates.
5262 if (RepeatedSequenceLocs
[0].back()->isTerminator()) {
5263 FrameID
= MachineOutlinerTailCall
;
5264 NumBytesToCreateFrame
= 0;
5265 SetCandidateCallInfo(MachineOutlinerTailCall
, 4);
5268 else if (LastInstrOpcode
== AArch64::BL
||
5269 (LastInstrOpcode
== AArch64::BLR
&& !HasBTI
)) {
5270 // FIXME: Do we need to check if the code after this uses the value of LR?
5271 FrameID
= MachineOutlinerThunk
;
5272 NumBytesToCreateFrame
= 0;
5273 SetCandidateCallInfo(MachineOutlinerThunk
, 4);
5277 // We need to decide how to emit calls + frames. We can always emit the same
5278 // frame if we don't need to save to the stack. If we have to save to the
5279 // stack, then we need a different frame.
5280 unsigned NumBytesNoStackCalls
= 0;
5281 std::vector
<outliner::Candidate
> CandidatesWithoutStackFixups
;
5283 for (outliner::Candidate
&C
: RepeatedSequenceLocs
) {
5286 // Is LR available? If so, we don't need a save.
5287 if (C
.LRU
.available(AArch64::LR
)) {
5288 NumBytesNoStackCalls
+= 4;
5289 C
.setCallInfo(MachineOutlinerNoLRSave
, 4);
5290 CandidatesWithoutStackFixups
.push_back(C
);
5293 // Is an unused register available? If so, we won't modify the stack, so
5294 // we can outline with the same frame type as those that don't save LR.
5295 else if (findRegisterToSaveLRTo(C
)) {
5296 NumBytesNoStackCalls
+= 12;
5297 C
.setCallInfo(MachineOutlinerRegSave
, 12);
5298 CandidatesWithoutStackFixups
.push_back(C
);
5301 // Is SP used in the sequence at all? If not, we don't have to modify
5302 // the stack, so we are guaranteed to get the same frame.
5303 else if (C
.UsedInSequence
.available(AArch64::SP
)) {
5304 NumBytesNoStackCalls
+= 12;
5305 C
.setCallInfo(MachineOutlinerDefault
, 12);
5306 CandidatesWithoutStackFixups
.push_back(C
);
5309 // If we outline this, we need to modify the stack. Pretend we don't
5310 // outline this by saving all of its bytes.
5312 NumBytesNoStackCalls
+= SequenceSize
;
5316 // If there are no places where we have to save LR, then note that we
5317 // don't have to update the stack. Otherwise, give every candidate the
5318 // default call type, as long as it's safe to do so.
5319 if (!AllStackInstrsSafe
||
5320 NumBytesNoStackCalls
<= RepeatedSequenceLocs
.size() * 12) {
5321 RepeatedSequenceLocs
= CandidatesWithoutStackFixups
;
5322 FrameID
= MachineOutlinerNoLRSave
;
5324 SetCandidateCallInfo(MachineOutlinerDefault
, 12);
5327 // If we dropped all of the candidates, bail out here.
5328 if (RepeatedSequenceLocs
.size() < 2) {
5329 RepeatedSequenceLocs
.clear();
5330 return outliner::OutlinedFunction();
5334 // Does every candidate's MBB contain a call? If so, then we might have a call
5336 if (FlagsSetInAll
& MachineOutlinerMBBFlags::HasCalls
) {
5337 // Check if the range contains a call. These require a save + restore of the
5339 bool ModStackToSaveLR
= false;
5340 if (std::any_of(FirstCand
.front(), FirstCand
.back(),
5341 [](const MachineInstr
&MI
) { return MI
.isCall(); }))
5342 ModStackToSaveLR
= true;
5344 // Handle the last instruction separately. If this is a tail call, then the
5345 // last instruction is a call. We don't want to save + restore in this case.
5346 // However, it could be possible that the last instruction is a call without
5347 // it being valid to tail call this sequence. We should consider this as
5349 else if (FrameID
!= MachineOutlinerThunk
&&
5350 FrameID
!= MachineOutlinerTailCall
&& FirstCand
.back()->isCall())
5351 ModStackToSaveLR
= true;
5353 if (ModStackToSaveLR
) {
5354 // We can't fix up the stack. Bail out.
5355 if (!AllStackInstrsSafe
) {
5356 RepeatedSequenceLocs
.clear();
5357 return outliner::OutlinedFunction();
5360 // Save + restore LR.
5361 NumBytesToCreateFrame
+= 8;
5365 return outliner::OutlinedFunction(RepeatedSequenceLocs
, SequenceSize
,
5366 NumBytesToCreateFrame
, FrameID
);
5369 bool AArch64InstrInfo::isFunctionSafeToOutlineFrom(
5370 MachineFunction
&MF
, bool OutlineFromLinkOnceODRs
) const {
5371 const Function
&F
= MF
.getFunction();
5373 // Can F be deduplicated by the linker? If it can, don't outline from it.
5374 if (!OutlineFromLinkOnceODRs
&& F
.hasLinkOnceODRLinkage())
5377 // Don't outline from functions with section markings; the program could
5378 // expect that all the code is in the named section.
5379 // FIXME: Allow outlining from multiple functions with the same section
5384 // Outlining from functions with redzones is unsafe since the outliner may
5385 // modify the stack. Check if hasRedZone is true or unknown; if yes, don't
5387 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
5388 if (!AFI
|| AFI
->hasRedZone().getValueOr(true))
5391 // It's safe to outline from MF.
5395 bool AArch64InstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock
&MBB
,
5396 unsigned &Flags
) const {
5397 // Check if LR is available through all of the MBB. If it's not, then set
5399 assert(MBB
.getParent()->getRegInfo().tracksLiveness() &&
5400 "Suitable Machine Function for outlining must track liveness");
5401 LiveRegUnits
LRU(getRegisterInfo());
5403 std::for_each(MBB
.rbegin(), MBB
.rend(),
5404 [&LRU
](MachineInstr
&MI
) { LRU
.accumulate(MI
); });
5406 // Check if each of the unsafe registers are available...
5407 bool W16AvailableInBlock
= LRU
.available(AArch64::W16
);
5408 bool W17AvailableInBlock
= LRU
.available(AArch64::W17
);
5409 bool NZCVAvailableInBlock
= LRU
.available(AArch64::NZCV
);
5411 // If all of these are dead (and not live out), we know we don't have to check
5413 if (W16AvailableInBlock
&& W17AvailableInBlock
&& NZCVAvailableInBlock
)
5414 Flags
|= MachineOutlinerMBBFlags::UnsafeRegsDead
;
5416 // Now, add the live outs to the set.
5417 LRU
.addLiveOuts(MBB
);
5419 // If any of these registers is available in the MBB, but also a live out of
5420 // the block, then we know outlining is unsafe.
5421 if (W16AvailableInBlock
&& !LRU
.available(AArch64::W16
))
5423 if (W17AvailableInBlock
&& !LRU
.available(AArch64::W17
))
5425 if (NZCVAvailableInBlock
&& !LRU
.available(AArch64::NZCV
))
5428 // Check if there's a call inside this MachineBasicBlock. If there is, then
5430 if (any_of(MBB
, [](MachineInstr
&MI
) { return MI
.isCall(); }))
5431 Flags
|= MachineOutlinerMBBFlags::HasCalls
;
5433 MachineFunction
*MF
= MBB
.getParent();
5435 // In the event that we outline, we may have to save LR. If there is an
5436 // available register in the MBB, then we'll always save LR there. Check if
5438 bool CanSaveLR
= false;
5439 const AArch64RegisterInfo
*ARI
= static_cast<const AArch64RegisterInfo
*>(
5440 MF
->getSubtarget().getRegisterInfo());
5442 // Check if there is an available register across the sequence that we can
5444 for (unsigned Reg
: AArch64::GPR64RegClass
) {
5445 if (!ARI
->isReservedReg(*MF
, Reg
) && Reg
!= AArch64::LR
&&
5446 Reg
!= AArch64::X16
&& Reg
!= AArch64::X17
&& LRU
.available(Reg
)) {
5452 // Check if we have a register we can save LR to, and if LR was used
5453 // somewhere. If both of those things are true, then we need to evaluate the
5454 // safety of outlining stack instructions later.
5455 if (!CanSaveLR
&& !LRU
.available(AArch64::LR
))
5456 Flags
|= MachineOutlinerMBBFlags::LRUnavailableSomewhere
;
5462 AArch64InstrInfo::getOutliningType(MachineBasicBlock::iterator
&MIT
,
5463 unsigned Flags
) const {
5464 MachineInstr
&MI
= *MIT
;
5465 MachineBasicBlock
*MBB
= MI
.getParent();
5466 MachineFunction
*MF
= MBB
->getParent();
5467 AArch64FunctionInfo
*FuncInfo
= MF
->getInfo
<AArch64FunctionInfo
>();
5469 // Don't outline LOHs.
5470 if (FuncInfo
->getLOHRelated().count(&MI
))
5471 return outliner::InstrType::Illegal
;
5473 // Don't allow debug values to impact outlining type.
5474 if (MI
.isDebugInstr() || MI
.isIndirectDebugValue())
5475 return outliner::InstrType::Invisible
;
5477 // At this point, KILL instructions don't really tell us much so we can go
5478 // ahead and skip over them.
5480 return outliner::InstrType::Invisible
;
5482 // Is this a terminator for a basic block?
5483 if (MI
.isTerminator()) {
5485 // Is this the end of a function?
5486 if (MI
.getParent()->succ_empty())
5487 return outliner::InstrType::Legal
;
5489 // It's not, so don't outline it.
5490 return outliner::InstrType::Illegal
;
5493 // Make sure none of the operands are un-outlinable.
5494 for (const MachineOperand
&MOP
: MI
.operands()) {
5495 if (MOP
.isCPI() || MOP
.isJTI() || MOP
.isCFIIndex() || MOP
.isFI() ||
5496 MOP
.isTargetIndex())
5497 return outliner::InstrType::Illegal
;
5499 // If it uses LR or W30 explicitly, then don't touch it.
5500 if (MOP
.isReg() && !MOP
.isImplicit() &&
5501 (MOP
.getReg() == AArch64::LR
|| MOP
.getReg() == AArch64::W30
))
5502 return outliner::InstrType::Illegal
;
5505 // Special cases for instructions that can always be outlined, but will fail
5506 // the later tests. e.g, ADRPs, which are PC-relative use LR, but can always
5507 // be outlined because they don't require a *specific* value to be in LR.
5508 if (MI
.getOpcode() == AArch64::ADRP
)
5509 return outliner::InstrType::Legal
;
5511 // If MI is a call we might be able to outline it. We don't want to outline
5512 // any calls that rely on the position of items on the stack. When we outline
5513 // something containing a call, we have to emit a save and restore of LR in
5514 // the outlined function. Currently, this always happens by saving LR to the
5515 // stack. Thus, if we outline, say, half the parameters for a function call
5516 // plus the call, then we'll break the callee's expectations for the layout
5519 // FIXME: Allow calls to functions which construct a stack frame, as long
5520 // as they don't access arguments on the stack.
5521 // FIXME: Figure out some way to analyze functions defined in other modules.
5522 // We should be able to compute the memory usage based on the IR calling
5523 // convention, even if we can't see the definition.
5525 // Get the function associated with the call. Look at each operand and find
5526 // the one that represents the callee and get its name.
5527 const Function
*Callee
= nullptr;
5528 for (const MachineOperand
&MOP
: MI
.operands()) {
5529 if (MOP
.isGlobal()) {
5530 Callee
= dyn_cast
<Function
>(MOP
.getGlobal());
5535 // Never outline calls to mcount. There isn't any rule that would require
5536 // this, but the Linux kernel's "ftrace" feature depends on it.
5537 if (Callee
&& Callee
->getName() == "\01_mcount")
5538 return outliner::InstrType::Illegal
;
5540 // If we don't know anything about the callee, assume it depends on the
5541 // stack layout of the caller. In that case, it's only legal to outline
5542 // as a tail-call. Whitelist the call instructions we know about so we
5543 // don't get unexpected results with call pseudo-instructions.
5544 auto UnknownCallOutlineType
= outliner::InstrType::Illegal
;
5545 if (MI
.getOpcode() == AArch64::BLR
|| MI
.getOpcode() == AArch64::BL
)
5546 UnknownCallOutlineType
= outliner::InstrType::LegalTerminator
;
5549 return UnknownCallOutlineType
;
5551 // We have a function we have information about. Check it if it's something
5552 // can safely outline.
5553 MachineFunction
*CalleeMF
= MF
->getMMI().getMachineFunction(*Callee
);
5555 // We don't know what's going on with the callee at all. Don't touch it.
5557 return UnknownCallOutlineType
;
5559 // Check if we know anything about the callee saves on the function. If we
5560 // don't, then don't touch it, since that implies that we haven't
5561 // computed anything about its stack frame yet.
5562 MachineFrameInfo
&MFI
= CalleeMF
->getFrameInfo();
5563 if (!MFI
.isCalleeSavedInfoValid() || MFI
.getStackSize() > 0 ||
5564 MFI
.getNumObjects() > 0)
5565 return UnknownCallOutlineType
;
5567 // At this point, we can say that CalleeMF ought to not pass anything on the
5568 // stack. Therefore, we can outline it.
5569 return outliner::InstrType::Legal
;
5572 // Don't outline positions.
5573 if (MI
.isPosition())
5574 return outliner::InstrType::Illegal
;
5576 // Don't touch the link register or W30.
5577 if (MI
.readsRegister(AArch64::W30
, &getRegisterInfo()) ||
5578 MI
.modifiesRegister(AArch64::W30
, &getRegisterInfo()))
5579 return outliner::InstrType::Illegal
;
5581 // Don't outline BTI instructions, because that will prevent the outlining
5582 // site from being indirectly callable.
5583 if (MI
.getOpcode() == AArch64::HINT
) {
5584 int64_t Imm
= MI
.getOperand(0).getImm();
5585 if (Imm
== 32 || Imm
== 34 || Imm
== 36 || Imm
== 38)
5586 return outliner::InstrType::Illegal
;
5589 return outliner::InstrType::Legal
;
5592 void AArch64InstrInfo::fixupPostOutline(MachineBasicBlock
&MBB
) const {
5593 for (MachineInstr
&MI
: MBB
) {
5594 const MachineOperand
*Base
;
5598 // Is this a load or store with an immediate offset with SP as the base?
5599 if (!MI
.mayLoadOrStore() ||
5600 !getMemOperandWithOffsetWidth(MI
, Base
, Offset
, Width
, &RI
) ||
5601 (Base
->isReg() && Base
->getReg() != AArch64::SP
))
5604 // It is, so we have to fix it up.
5606 int64_t Dummy1
, Dummy2
;
5608 MachineOperand
&StackOffsetOperand
= getMemOpBaseRegImmOfsOffsetOperand(MI
);
5609 assert(StackOffsetOperand
.isImm() && "Stack offset wasn't immediate!");
5610 getMemOpInfo(MI
.getOpcode(), Scale
, Width
, Dummy1
, Dummy2
);
5611 assert(Scale
!= 0 && "Unexpected opcode!");
5613 // We've pushed the return address to the stack, so add 16 to the offset.
5614 // This is safe, since we already checked if it would overflow when we
5615 // checked if this instruction was legal to outline.
5616 int64_t NewImm
= (Offset
+ 16) / Scale
;
5617 StackOffsetOperand
.setImm(NewImm
);
5621 void AArch64InstrInfo::buildOutlinedFrame(
5622 MachineBasicBlock
&MBB
, MachineFunction
&MF
,
5623 const outliner::OutlinedFunction
&OF
) const {
5624 // For thunk outlining, rewrite the last instruction from a call to a
5626 if (OF
.FrameConstructionID
== MachineOutlinerThunk
) {
5627 MachineInstr
*Call
= &*--MBB
.instr_end();
5628 unsigned TailOpcode
;
5629 if (Call
->getOpcode() == AArch64::BL
) {
5630 TailOpcode
= AArch64::TCRETURNdi
;
5632 assert(Call
->getOpcode() == AArch64::BLR
);
5633 TailOpcode
= AArch64::TCRETURNriALL
;
5635 MachineInstr
*TC
= BuildMI(MF
, DebugLoc(), get(TailOpcode
))
5636 .add(Call
->getOperand(0))
5638 MBB
.insert(MBB
.end(), TC
);
5639 Call
->eraseFromParent();
5642 // Is there a call in the outlined range?
5643 auto IsNonTailCall
= [](MachineInstr
&MI
) {
5644 return MI
.isCall() && !MI
.isReturn();
5646 if (std::any_of(MBB
.instr_begin(), MBB
.instr_end(), IsNonTailCall
)) {
5647 // Fix up the instructions in the range, since we're going to modify the
5649 assert(OF
.FrameConstructionID
!= MachineOutlinerDefault
&&
5650 "Can only fix up stack references once");
5651 fixupPostOutline(MBB
);
5653 // LR has to be a live in so that we can save it.
5654 MBB
.addLiveIn(AArch64::LR
);
5656 MachineBasicBlock::iterator It
= MBB
.begin();
5657 MachineBasicBlock::iterator Et
= MBB
.end();
5659 if (OF
.FrameConstructionID
== MachineOutlinerTailCall
||
5660 OF
.FrameConstructionID
== MachineOutlinerThunk
)
5661 Et
= std::prev(MBB
.end());
5663 // Insert a save before the outlined region
5664 MachineInstr
*STRXpre
= BuildMI(MF
, DebugLoc(), get(AArch64::STRXpre
))
5665 .addReg(AArch64::SP
, RegState::Define
)
5666 .addReg(AArch64::LR
)
5667 .addReg(AArch64::SP
)
5669 It
= MBB
.insert(It
, STRXpre
);
5671 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
5672 const MCRegisterInfo
*MRI
= STI
.getRegisterInfo();
5673 unsigned DwarfReg
= MRI
->getDwarfRegNum(AArch64::LR
, true);
5675 // Add a CFI saying the stack was moved 16 B down.
5676 int64_t StackPosEntry
=
5677 MF
.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 16));
5678 BuildMI(MBB
, It
, DebugLoc(), get(AArch64::CFI_INSTRUCTION
))
5679 .addCFIIndex(StackPosEntry
)
5680 .setMIFlags(MachineInstr::FrameSetup
);
5682 // Add a CFI saying that the LR that we want to find is now 16 B higher than
5684 int64_t LRPosEntry
=
5685 MF
.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfReg
, 16));
5686 BuildMI(MBB
, It
, DebugLoc(), get(AArch64::CFI_INSTRUCTION
))
5687 .addCFIIndex(LRPosEntry
)
5688 .setMIFlags(MachineInstr::FrameSetup
);
5690 // Insert a restore before the terminator for the function.
5691 MachineInstr
*LDRXpost
= BuildMI(MF
, DebugLoc(), get(AArch64::LDRXpost
))
5692 .addReg(AArch64::SP
, RegState::Define
)
5693 .addReg(AArch64::LR
, RegState::Define
)
5694 .addReg(AArch64::SP
)
5696 Et
= MBB
.insert(Et
, LDRXpost
);
5699 // If this is a tail call outlined function, then there's already a return.
5700 if (OF
.FrameConstructionID
== MachineOutlinerTailCall
||
5701 OF
.FrameConstructionID
== MachineOutlinerThunk
)
5704 // It's not a tail call, so we have to insert the return ourselves.
5705 MachineInstr
*ret
= BuildMI(MF
, DebugLoc(), get(AArch64::RET
))
5706 .addReg(AArch64::LR
, RegState::Undef
);
5707 MBB
.insert(MBB
.end(), ret
);
5709 // Did we have to modify the stack by saving the link register?
5710 if (OF
.FrameConstructionID
!= MachineOutlinerDefault
)
5713 // We modified the stack.
5714 // Walk over the basic block and fix up all the stack accesses.
5715 fixupPostOutline(MBB
);
5718 MachineBasicBlock::iterator
AArch64InstrInfo::insertOutlinedCall(
5719 Module
&M
, MachineBasicBlock
&MBB
, MachineBasicBlock::iterator
&It
,
5720 MachineFunction
&MF
, const outliner::Candidate
&C
) const {
5722 // Are we tail calling?
5723 if (C
.CallConstructionID
== MachineOutlinerTailCall
) {
5724 // If yes, then we can just branch to the label.
5725 It
= MBB
.insert(It
, BuildMI(MF
, DebugLoc(), get(AArch64::TCRETURNdi
))
5726 .addGlobalAddress(M
.getNamedValue(MF
.getName()))
5731 // Are we saving the link register?
5732 if (C
.CallConstructionID
== MachineOutlinerNoLRSave
||
5733 C
.CallConstructionID
== MachineOutlinerThunk
) {
5734 // No, so just insert the call.
5735 It
= MBB
.insert(It
, BuildMI(MF
, DebugLoc(), get(AArch64::BL
))
5736 .addGlobalAddress(M
.getNamedValue(MF
.getName())));
5740 // We want to return the spot where we inserted the call.
5741 MachineBasicBlock::iterator CallPt
;
5743 // Instructions for saving and restoring LR around the call instruction we're
5746 MachineInstr
*Restore
;
5747 // Can we save to a register?
5748 if (C
.CallConstructionID
== MachineOutlinerRegSave
) {
5749 // FIXME: This logic should be sunk into a target-specific interface so that
5750 // we don't have to recompute the register.
5751 unsigned Reg
= findRegisterToSaveLRTo(C
);
5752 assert(Reg
!= 0 && "No callee-saved register available?");
5754 // Save and restore LR from that register.
5755 Save
= BuildMI(MF
, DebugLoc(), get(AArch64::ORRXrs
), Reg
)
5756 .addReg(AArch64::XZR
)
5757 .addReg(AArch64::LR
)
5759 Restore
= BuildMI(MF
, DebugLoc(), get(AArch64::ORRXrs
), AArch64::LR
)
5760 .addReg(AArch64::XZR
)
5764 // We have the default case. Save and restore from SP.
5765 Save
= BuildMI(MF
, DebugLoc(), get(AArch64::STRXpre
))
5766 .addReg(AArch64::SP
, RegState::Define
)
5767 .addReg(AArch64::LR
)
5768 .addReg(AArch64::SP
)
5770 Restore
= BuildMI(MF
, DebugLoc(), get(AArch64::LDRXpost
))
5771 .addReg(AArch64::SP
, RegState::Define
)
5772 .addReg(AArch64::LR
, RegState::Define
)
5773 .addReg(AArch64::SP
)
5777 It
= MBB
.insert(It
, Save
);
5781 It
= MBB
.insert(It
, BuildMI(MF
, DebugLoc(), get(AArch64::BL
))
5782 .addGlobalAddress(M
.getNamedValue(MF
.getName())));
5786 It
= MBB
.insert(It
, Restore
);
5790 bool AArch64InstrInfo::shouldOutlineFromFunctionByDefault(
5791 MachineFunction
&MF
) const {
5792 return MF
.getFunction().hasMinSize();
5795 bool AArch64InstrInfo::isCopyInstrImpl(
5796 const MachineInstr
&MI
, const MachineOperand
*&Source
,
5797 const MachineOperand
*&Destination
) const {
5799 // AArch64::ORRWrs and AArch64::ORRXrs with WZR/XZR reg
5800 // and zero immediate operands used as an alias for mov instruction.
5801 if (MI
.getOpcode() == AArch64::ORRWrs
&&
5802 MI
.getOperand(1).getReg() == AArch64::WZR
&&
5803 MI
.getOperand(3).getImm() == 0x0) {
5804 Destination
= &MI
.getOperand(0);
5805 Source
= &MI
.getOperand(2);
5809 if (MI
.getOpcode() == AArch64::ORRXrs
&&
5810 MI
.getOperand(1).getReg() == AArch64::XZR
&&
5811 MI
.getOperand(3).getImm() == 0x0) {
5812 Destination
= &MI
.getOperand(0);
5813 Source
= &MI
.getOperand(2);
5820 #define GET_INSTRINFO_HELPERS
5821 #include "AArch64GenInstrInfo.inc"