1 //===- AArch64SpeculationHardening.cpp - Harden Against Missspeculation --===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains a pass to insert code to mitigate against side channel
10 // vulnerabilities that may happen under control flow miss-speculation.
12 // The pass implements tracking of control flow miss-speculation into a "taint"
13 // register. That taint register can then be used to mask off registers with
14 // sensitive data when executing under miss-speculation, a.k.a. "transient
16 // This pass is aimed at mitigating against SpectreV1-style vulnarabilities.
18 // It also implements speculative load hardening, i.e. using the taint register
19 // to automatically mask off loaded data.
21 // As a possible follow-on improvement, also an intrinsics-based approach as
22 // explained at https://lwn.net/Articles/759423/ could be implemented on top of
23 // the current design.
25 // For AArch64, the following implementation choices are made to implement the
26 // tracking of control flow miss-speculation into a taint register:
27 // Some of these are different than the implementation choices made in
28 // the similar pass implemented in X86SpeculativeLoadHardening.cpp, as
29 // the instruction set characteristics result in different trade-offs.
30 // - The speculation hardening is done after register allocation. With a
31 // relative abundance of registers, one register is reserved (X16) to be
32 // the taint register. X16 is expected to not clash with other register
33 // reservation mechanisms with very high probability because:
34 // . The AArch64 ABI doesn't guarantee X16 to be retained across any call.
35 // . The only way to request X16 to be used as a programmer is through
36 // inline assembly. In the rare case a function explicitly demands to
37 // use X16/W16, this pass falls back to hardening against speculation
38 // by inserting a DSB SYS/ISB barrier pair which will prevent control
40 // - It is easy to insert mask operations at this late stage as we have
41 // mask operations available that don't set flags.
42 // - The taint variable contains all-ones when no miss-speculation is detected,
43 // and contains all-zeros when miss-speculation is detected. Therefore, when
44 // masking, an AND instruction (which only changes the register to be masked,
45 // no other side effects) can easily be inserted anywhere that's needed.
46 // - The tracking of miss-speculation is done by using a data-flow conditional
47 // select instruction (CSEL) to evaluate the flags that were also used to
48 // make conditional branch direction decisions. Speculation of the CSEL
49 // instruction can be limited with a CSDB instruction - so the combination of
50 // CSEL + a later CSDB gives the guarantee that the flags as used in the CSEL
51 // aren't speculated. When conditional branch direction gets miss-speculated,
52 // the semantics of the inserted CSEL instruction is such that the taint
53 // register will contain all zero bits.
54 // One key requirement for this to work is that the conditional branch is
55 // followed by an execution of the CSEL instruction, where the CSEL
56 // instruction needs to use the same flags status as the conditional branch.
57 // This means that the conditional branches must not be implemented as one
58 // of the AArch64 conditional branches that do not use the flags as input
59 // (CB(N)Z and TB(N)Z). This is implemented by ensuring in the instruction
60 // selectors to not produce these instructions when speculation hardening
61 // is enabled. This pass will assert if it does encounter such an instruction.
62 // - On function call boundaries, the miss-speculation state is transferred from
63 // the taint register X16 to be encoded in the SP register as value 0.
65 // For the aspect of automatically hardening loads, using the taint register,
66 // (a.k.a. speculative load hardening, see
67 // https://llvm.org/docs/SpeculativeLoadHardening.html), the following
68 // implementation choices are made for AArch64:
69 // - Many of the optimizations described at
70 // https://llvm.org/docs/SpeculativeLoadHardening.html to harden fewer
71 // loads haven't been implemented yet - but for some of them there are
72 // FIXMEs in the code.
73 // - loads that load into general purpose (X or W) registers get hardened by
74 // masking the loaded data. For loads that load into other registers, the
75 // address loaded from gets hardened. It is expected that hardening the
76 // loaded data may be more efficient; but masking data in registers other
77 // than X or W is not easy and may result in being slower than just
78 // hardening the X address register loaded from.
79 // - On AArch64, CSDB instructions are inserted between the masking of the
80 // register and its first use, to ensure there's no non-control-flow
81 // speculation that might undermine the hardening mechanism.
83 // Future extensions/improvements could be:
84 // - Implement this functionality using full speculation barriers, akin to the
85 // x86-slh-lfence option. This may be more useful for the intrinsics-based
86 // approach than for the SLH approach to masking.
87 // Note that this pass already inserts the full speculation barriers if the
88 // function for some niche reason makes use of X16/W16.
89 // - no indirect branch misprediction gets protected/instrumented; but this
90 // could be done for some indirect branches, such as switch jump tables.
91 //===----------------------------------------------------------------------===//
93 #include "AArch64InstrInfo.h"
94 #include "AArch64Subtarget.h"
95 #include "Utils/AArch64BaseInfo.h"
96 #include "llvm/ADT/BitVector.h"
97 #include "llvm/ADT/SmallVector.h"
98 #include "llvm/CodeGen/MachineBasicBlock.h"
99 #include "llvm/CodeGen/MachineFunction.h"
100 #include "llvm/CodeGen/MachineFunctionPass.h"
101 #include "llvm/CodeGen/MachineInstr.h"
102 #include "llvm/CodeGen/MachineInstrBuilder.h"
103 #include "llvm/CodeGen/MachineOperand.h"
104 #include "llvm/CodeGen/MachineRegisterInfo.h"
105 #include "llvm/CodeGen/RegisterScavenging.h"
106 #include "llvm/IR/DebugLoc.h"
107 #include "llvm/Pass.h"
108 #include "llvm/Support/CodeGen.h"
109 #include "llvm/Target/TargetMachine.h"
112 using namespace llvm
;
114 #define DEBUG_TYPE "aarch64-speculation-hardening"
116 #define AARCH64_SPECULATION_HARDENING_NAME "AArch64 speculation hardening pass"
118 static cl::opt
<bool> HardenLoads("aarch64-slh-loads", cl::Hidden
,
119 cl::desc("Sanitize loads from memory."),
124 class AArch64SpeculationHardening
: public MachineFunctionPass
{
126 const TargetInstrInfo
*TII
;
127 const TargetRegisterInfo
*TRI
;
131 AArch64SpeculationHardening() : MachineFunctionPass(ID
) {
132 initializeAArch64SpeculationHardeningPass(*PassRegistry::getPassRegistry());
135 bool runOnMachineFunction(MachineFunction
&Fn
) override
;
137 StringRef
getPassName() const override
{
138 return AARCH64_SPECULATION_HARDENING_NAME
;
142 unsigned MisspeculatingTaintReg
;
143 unsigned MisspeculatingTaintReg32Bit
;
144 bool UseControlFlowSpeculationBarrier
;
145 BitVector RegsNeedingCSDBBeforeUse
;
146 BitVector RegsAlreadyMasked
;
148 bool functionUsesHardeningRegister(MachineFunction
&MF
) const;
149 bool instrumentControlFlow(MachineBasicBlock
&MBB
,
150 bool &UsesFullSpeculationBarrier
);
151 bool endsWithCondControlFlow(MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
,
152 MachineBasicBlock
*&FBB
,
153 AArch64CC::CondCode
&CondCode
) const;
154 void insertTrackingCode(MachineBasicBlock
&SplitEdgeBB
,
155 AArch64CC::CondCode
&CondCode
, DebugLoc DL
) const;
156 void insertSPToRegTaintPropagation(MachineBasicBlock
&MBB
,
157 MachineBasicBlock::iterator MBBI
) const;
158 void insertRegToSPTaintPropagation(MachineBasicBlock
&MBB
,
159 MachineBasicBlock::iterator MBBI
,
160 unsigned TmpReg
) const;
161 void insertFullSpeculationBarrier(MachineBasicBlock
&MBB
,
162 MachineBasicBlock::iterator MBBI
,
165 bool slhLoads(MachineBasicBlock
&MBB
);
166 bool makeGPRSpeculationSafe(MachineBasicBlock
&MBB
,
167 MachineBasicBlock::iterator MBBI
,
168 MachineInstr
&MI
, unsigned Reg
);
169 bool lowerSpeculationSafeValuePseudos(MachineBasicBlock
&MBB
,
170 bool UsesFullSpeculationBarrier
);
171 bool expandSpeculationSafeValue(MachineBasicBlock
&MBB
,
172 MachineBasicBlock::iterator MBBI
,
173 bool UsesFullSpeculationBarrier
);
174 bool insertCSDB(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
178 } // end anonymous namespace
180 char AArch64SpeculationHardening::ID
= 0;
182 INITIALIZE_PASS(AArch64SpeculationHardening
, "aarch64-speculation-hardening",
183 AARCH64_SPECULATION_HARDENING_NAME
, false, false)
185 bool AArch64SpeculationHardening::endsWithCondControlFlow(
186 MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
, MachineBasicBlock
*&FBB
,
187 AArch64CC::CondCode
&CondCode
) const {
188 SmallVector
<MachineOperand
, 1> analyzeBranchCondCode
;
189 if (TII
->analyzeBranch(MBB
, TBB
, FBB
, analyzeBranchCondCode
, false))
192 // Ignore if the BB ends in an unconditional branch/fall-through.
193 if (analyzeBranchCondCode
.empty())
196 // If the BB ends with a single conditional branch, FBB will be set to
197 // nullptr (see API docs for TII->analyzeBranch). For the rest of the
198 // analysis we want the FBB block to be set always.
199 assert(TBB
!= nullptr);
201 FBB
= MBB
.getFallThrough();
203 // If both the true and the false condition jump to the same basic block,
204 // there isn't need for any protection - whether the branch is speculated
205 // correctly or not, we end up executing the architecturally correct code.
209 assert(MBB
.succ_size() == 2);
210 // translate analyzeBranchCondCode to CondCode.
211 assert(analyzeBranchCondCode
.size() == 1 && "unknown Cond array format");
212 CondCode
= AArch64CC::CondCode(analyzeBranchCondCode
[0].getImm());
216 void AArch64SpeculationHardening::insertFullSpeculationBarrier(
217 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
219 // A full control flow speculation barrier consists of (DSB SYS + ISB)
220 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::DSB
)).addImm(0xf);
221 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::ISB
)).addImm(0xf);
224 void AArch64SpeculationHardening::insertTrackingCode(
225 MachineBasicBlock
&SplitEdgeBB
, AArch64CC::CondCode
&CondCode
,
227 if (UseControlFlowSpeculationBarrier
) {
228 insertFullSpeculationBarrier(SplitEdgeBB
, SplitEdgeBB
.begin(), DL
);
230 BuildMI(SplitEdgeBB
, SplitEdgeBB
.begin(), DL
, TII
->get(AArch64::CSELXr
))
231 .addDef(MisspeculatingTaintReg
)
232 .addUse(MisspeculatingTaintReg
)
233 .addUse(AArch64::XZR
)
235 SplitEdgeBB
.addLiveIn(AArch64::NZCV
);
239 bool AArch64SpeculationHardening::instrumentControlFlow(
240 MachineBasicBlock
&MBB
, bool &UsesFullSpeculationBarrier
) {
241 LLVM_DEBUG(dbgs() << "Instrument control flow tracking on MBB: " << MBB
);
243 bool Modified
= false;
244 MachineBasicBlock
*TBB
= nullptr;
245 MachineBasicBlock
*FBB
= nullptr;
246 AArch64CC::CondCode CondCode
;
248 if (!endsWithCondControlFlow(MBB
, TBB
, FBB
, CondCode
)) {
249 LLVM_DEBUG(dbgs() << "... doesn't end with CondControlFlow\n");
252 // "CSEL MisSpeculatingR, MisSpeculatingR, XZR, cond" on the True edge and
253 // "CSEL MisSpeculatingR, MisSpeculatingR, XZR, Invertcond" on the False
255 AArch64CC::CondCode InvCondCode
= AArch64CC::getInvertedCondCode(CondCode
);
257 MachineBasicBlock
*SplitEdgeTBB
= MBB
.SplitCriticalEdge(TBB
, *this);
258 MachineBasicBlock
*SplitEdgeFBB
= MBB
.SplitCriticalEdge(FBB
, *this);
260 assert(SplitEdgeTBB
!= nullptr);
261 assert(SplitEdgeFBB
!= nullptr);
264 if (MBB
.instr_end() != MBB
.instr_begin())
265 DL
= (--MBB
.instr_end())->getDebugLoc();
267 insertTrackingCode(*SplitEdgeTBB
, CondCode
, DL
);
268 insertTrackingCode(*SplitEdgeFBB
, InvCondCode
, DL
);
270 LLVM_DEBUG(dbgs() << "SplitEdgeTBB: " << *SplitEdgeTBB
<< "\n");
271 LLVM_DEBUG(dbgs() << "SplitEdgeFBB: " << *SplitEdgeFBB
<< "\n");
275 // Perform correct code generation around function calls and before returns.
276 // The below variables record the return/terminator instructions and the call
277 // instructions respectively; including which register is available as a
278 // temporary register just before the recorded instructions.
279 SmallVector
<std::pair
<MachineInstr
*, unsigned>, 4> ReturnInstructions
;
280 SmallVector
<std::pair
<MachineInstr
*, unsigned>, 4> CallInstructions
;
281 // if a temporary register is not available for at least one of the
282 // instructions for which we need to transfer taint to the stack pointer, we
283 // need to insert a full speculation barrier.
284 // TmpRegisterNotAvailableEverywhere tracks that condition.
285 bool TmpRegisterNotAvailableEverywhere
= false;
288 RS
.enterBasicBlock(MBB
);
290 for (MachineBasicBlock::iterator I
= MBB
.begin(); I
!= MBB
.end(); I
++) {
291 MachineInstr
&MI
= *I
;
292 if (!MI
.isReturn() && !MI
.isCall())
295 // The RegScavenger represents registers available *after* the MI
296 // instruction pointed to by RS.getCurrentPosition().
297 // We need to have a register that is available *before* the MI is executed.
298 if (I
!= MBB
.begin())
299 RS
.forward(std::prev(I
));
300 // FIXME: The below just finds *a* unused register. Maybe code could be
301 // optimized more if this looks for the register that isn't used for the
302 // longest time around this place, to enable more scheduling freedom. Not
303 // sure if that would actually result in a big performance difference
304 // though. Maybe RegisterScavenger::findSurvivorBackwards has some logic
305 // already to do this - but it's unclear if that could easily be used here.
306 unsigned TmpReg
= RS
.FindUnusedReg(&AArch64::GPR64commonRegClass
);
307 LLVM_DEBUG(dbgs() << "RS finds "
308 << ((TmpReg
== 0) ? "no register " : "register ");
309 if (TmpReg
!= 0) dbgs() << printReg(TmpReg
, TRI
) << " ";
310 dbgs() << "to be available at MI " << MI
);
312 TmpRegisterNotAvailableEverywhere
= true;
314 ReturnInstructions
.push_back({&MI
, TmpReg
});
315 else if (MI
.isCall())
316 CallInstructions
.push_back({&MI
, TmpReg
});
319 if (TmpRegisterNotAvailableEverywhere
) {
320 // When a temporary register is not available everywhere in this basic
321 // basic block where a propagate-taint-to-sp operation is needed, just
322 // emit a full speculation barrier at the start of this basic block, which
323 // renders the taint/speculation tracking in this basic block unnecessary.
324 insertFullSpeculationBarrier(MBB
, MBB
.begin(),
325 (MBB
.begin())->getDebugLoc());
326 UsesFullSpeculationBarrier
= true;
329 for (auto MI_Reg
: ReturnInstructions
) {
330 assert(MI_Reg
.second
!= 0);
333 << " About to insert Reg to SP taint propagation with temp register "
334 << printReg(MI_Reg
.second
, TRI
)
335 << " on instruction: " << *MI_Reg
.first
);
336 insertRegToSPTaintPropagation(MBB
, MI_Reg
.first
, MI_Reg
.second
);
340 for (auto MI_Reg
: CallInstructions
) {
341 assert(MI_Reg
.second
!= 0);
342 LLVM_DEBUG(dbgs() << " About to insert Reg to SP and back taint "
343 "propagation with temp register "
344 << printReg(MI_Reg
.second
, TRI
)
345 << " around instruction: " << *MI_Reg
.first
);
346 // Just after the call:
347 insertSPToRegTaintPropagation(
348 MBB
, std::next((MachineBasicBlock::iterator
)MI_Reg
.first
));
349 // Just before the call:
350 insertRegToSPTaintPropagation(MBB
, MI_Reg
.first
, MI_Reg
.second
);
357 void AArch64SpeculationHardening::insertSPToRegTaintPropagation(
358 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
) const {
359 // If full control flow speculation barriers are used, emit a control flow
360 // barrier to block potential miss-speculation in flight coming in to this
362 if (UseControlFlowSpeculationBarrier
) {
363 insertFullSpeculationBarrier(MBB
, MBBI
, DebugLoc());
367 // CMP SP, #0 === SUBS xzr, SP, #0
368 BuildMI(MBB
, MBBI
, DebugLoc(), TII
->get(AArch64::SUBSXri
))
369 .addDef(AArch64::XZR
)
372 .addImm(0); // no shift
373 // CSETM x16, NE === CSINV x16, xzr, xzr, EQ
374 BuildMI(MBB
, MBBI
, DebugLoc(), TII
->get(AArch64::CSINVXr
))
375 .addDef(MisspeculatingTaintReg
)
376 .addUse(AArch64::XZR
)
377 .addUse(AArch64::XZR
)
378 .addImm(AArch64CC::EQ
);
381 void AArch64SpeculationHardening::insertRegToSPTaintPropagation(
382 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
383 unsigned TmpReg
) const {
384 // If full control flow speculation barriers are used, there will not be
385 // miss-speculation when returning from this function, and therefore, also
386 // no need to encode potential miss-speculation into the stack pointer.
387 if (UseControlFlowSpeculationBarrier
)
390 // mov Xtmp, SP === ADD Xtmp, SP, #0
391 BuildMI(MBB
, MBBI
, DebugLoc(), TII
->get(AArch64::ADDXri
))
395 .addImm(0); // no shift
396 // and Xtmp, Xtmp, TaintReg === AND Xtmp, Xtmp, TaintReg, #0
397 BuildMI(MBB
, MBBI
, DebugLoc(), TII
->get(AArch64::ANDXrs
))
398 .addDef(TmpReg
, RegState::Renamable
)
399 .addUse(TmpReg
, RegState::Kill
| RegState::Renamable
)
400 .addUse(MisspeculatingTaintReg
, RegState::Kill
)
402 // mov SP, Xtmp === ADD SP, Xtmp, #0
403 BuildMI(MBB
, MBBI
, DebugLoc(), TII
->get(AArch64::ADDXri
))
405 .addUse(TmpReg
, RegState::Kill
)
407 .addImm(0); // no shift
410 bool AArch64SpeculationHardening::functionUsesHardeningRegister(
411 MachineFunction
&MF
) const {
412 for (MachineBasicBlock
&MBB
: MF
) {
413 for (MachineInstr
&MI
: MBB
) {
414 // treat function calls specially, as the hardening register does not
415 // need to remain live across function calls.
418 if (MI
.readsRegister(MisspeculatingTaintReg
, TRI
) ||
419 MI
.modifiesRegister(MisspeculatingTaintReg
, TRI
))
426 // Make GPR register Reg speculation-safe by putting it through the
427 // SpeculationSafeValue pseudo instruction, if we can't prove that
428 // the value in the register has already been hardened.
429 bool AArch64SpeculationHardening::makeGPRSpeculationSafe(
430 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
, MachineInstr
&MI
,
432 assert(AArch64::GPR32allRegClass
.contains(Reg
) ||
433 AArch64::GPR64allRegClass
.contains(Reg
));
435 // Loads cannot directly load a value into the SP (nor WSP).
436 // Therefore, if Reg is SP or WSP, it is because the instruction loads from
437 // the stack through the stack pointer.
439 // Since the stack pointer is never dynamically controllable, don't harden it.
440 if (Reg
== AArch64::SP
|| Reg
== AArch64::WSP
)
443 // Do not harden the register again if already hardened before.
444 if (RegsAlreadyMasked
[Reg
])
447 const bool Is64Bit
= AArch64::GPR64allRegClass
.contains(Reg
);
448 LLVM_DEBUG(dbgs() << "About to harden register : " << Reg
<< "\n");
449 BuildMI(MBB
, MBBI
, MI
.getDebugLoc(),
450 TII
->get(Is64Bit
? AArch64::SpeculationSafeValueX
451 : AArch64::SpeculationSafeValueW
))
454 RegsAlreadyMasked
.set(Reg
);
458 bool AArch64SpeculationHardening::slhLoads(MachineBasicBlock
&MBB
) {
459 bool Modified
= false;
461 LLVM_DEBUG(dbgs() << "slhLoads running on MBB: " << MBB
);
463 RegsAlreadyMasked
.reset();
465 MachineBasicBlock::iterator MBBI
= MBB
.begin(), E
= MBB
.end();
466 MachineBasicBlock::iterator NextMBBI
;
467 for (; MBBI
!= E
; MBBI
= NextMBBI
) {
468 MachineInstr
&MI
= *MBBI
;
469 NextMBBI
= std::next(MBBI
);
470 // Only harden loaded values or addresses used in loads.
474 LLVM_DEBUG(dbgs() << "About to harden: " << MI
);
476 // For general purpose register loads, harden the registers loaded into.
477 // For other loads, harden the address loaded from.
478 // Masking the loaded value is expected to result in less performance
479 // overhead, as the load can still execute speculatively in comparison to
480 // when the address loaded from gets masked. However, masking is only
481 // easy to do efficiently on GPR registers, so for loads into non-GPR
482 // registers (e.g. floating point loads), mask the address loaded from.
483 bool AllDefsAreGPR
= llvm::all_of(MI
.defs(), [&](MachineOperand
&Op
) {
484 return Op
.isReg() && (AArch64::GPR32allRegClass
.contains(Op
.getReg()) ||
485 AArch64::GPR64allRegClass
.contains(Op
.getReg()));
487 // FIXME: it might be a worthwhile optimization to not mask loaded
488 // values if all the registers involved in address calculation are already
489 // hardened, leading to this load not able to execute on a miss-speculated
491 bool HardenLoadedData
= AllDefsAreGPR
;
492 bool HardenAddressLoadedFrom
= !HardenLoadedData
;
494 // First remove registers from AlreadyMaskedRegisters if their value is
495 // updated by this instruction - it makes them contain a new value that is
496 // not guaranteed to already have been masked.
497 for (MachineOperand Op
: MI
.defs())
498 for (MCRegAliasIterator
AI(Op
.getReg(), TRI
, true); AI
.isValid(); ++AI
)
499 RegsAlreadyMasked
.reset(*AI
);
501 // FIXME: loads from the stack with an immediate offset from the stack
502 // pointer probably shouldn't be hardened, which could result in a
503 // significant optimization. See section "Don’t check loads from
504 // compile-time constant stack offsets", in
505 // https://llvm.org/docs/SpeculativeLoadHardening.html
507 if (HardenLoadedData
)
508 for (auto Def
: MI
.defs()) {
510 // Do not mask a register that is not used further.
512 // FIXME: For pre/post-increment addressing modes, the base register
513 // used in address calculation is also defined by this instruction.
514 // It might be a worthwhile optimization to not harden that
515 // base register increment/decrement when the increment/decrement is
517 Modified
|= makeGPRSpeculationSafe(MBB
, NextMBBI
, MI
, Def
.getReg());
520 if (HardenAddressLoadedFrom
)
521 for (auto Use
: MI
.uses()) {
524 Register Reg
= Use
.getReg();
525 // Some loads of floating point data have implicit defs/uses on a
526 // super register of that floating point data. Some examples:
527 // $s0 = LDRSui $sp, 22, implicit-def $q0
528 // $q0 = LD1i64 $q0, 1, renamable $x0
529 // We need to filter out these uses for non-GPR register which occur
530 // because the load partially fills a non-GPR register with the loaded
531 // data. Just skipping all non-GPR registers is safe (for now) as all
532 // AArch64 load instructions only use GPR registers to perform the
533 // address calculation. FIXME: However that might change once we can
534 // produce SVE gather instructions.
535 if (!(AArch64::GPR32allRegClass
.contains(Reg
) ||
536 AArch64::GPR64allRegClass
.contains(Reg
)))
538 Modified
|= makeGPRSpeculationSafe(MBB
, MBBI
, MI
, Reg
);
544 /// \brief If MBBI references a pseudo instruction that should be expanded
545 /// here, do the expansion and return true. Otherwise return false.
546 bool AArch64SpeculationHardening::expandSpeculationSafeValue(
547 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
548 bool UsesFullSpeculationBarrier
) {
549 MachineInstr
&MI
= *MBBI
;
550 unsigned Opcode
= MI
.getOpcode();
556 case AArch64::SpeculationSafeValueW
:
559 case AArch64::SpeculationSafeValueX
:
560 // Just remove the SpeculationSafe pseudo's if control flow
561 // miss-speculation isn't happening because we're already inserting barriers
562 // to guarantee that.
563 if (!UseControlFlowSpeculationBarrier
&& !UsesFullSpeculationBarrier
) {
564 Register DstReg
= MI
.getOperand(0).getReg();
565 Register SrcReg
= MI
.getOperand(1).getReg();
566 // Mark this register and all its aliasing registers as needing to be
567 // value speculation hardened before its next use, by using a CSDB
568 // barrier instruction.
569 for (MachineOperand Op
: MI
.defs())
570 for (MCRegAliasIterator
AI(Op
.getReg(), TRI
, true); AI
.isValid(); ++AI
)
571 RegsNeedingCSDBBeforeUse
.set(*AI
);
573 // Mask off with taint state.
574 BuildMI(MBB
, MBBI
, MI
.getDebugLoc(),
575 Is64Bit
? TII
->get(AArch64::ANDXrs
) : TII
->get(AArch64::ANDWrs
))
577 .addUse(SrcReg
, RegState::Kill
)
578 .addUse(Is64Bit
? MisspeculatingTaintReg
579 : MisspeculatingTaintReg32Bit
)
582 MI
.eraseFromParent();
588 bool AArch64SpeculationHardening::insertCSDB(MachineBasicBlock
&MBB
,
589 MachineBasicBlock::iterator MBBI
,
591 assert(!UseControlFlowSpeculationBarrier
&& "No need to insert CSDBs when "
592 "control flow miss-speculation "
593 "is already blocked");
594 // insert data value speculation barrier (CSDB)
595 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::HINT
)).addImm(0x14);
596 RegsNeedingCSDBBeforeUse
.reset();
600 bool AArch64SpeculationHardening::lowerSpeculationSafeValuePseudos(
601 MachineBasicBlock
&MBB
, bool UsesFullSpeculationBarrier
) {
602 bool Modified
= false;
604 RegsNeedingCSDBBeforeUse
.reset();
606 // The following loop iterates over all instructions in the basic block,
607 // and performs 2 operations:
608 // 1. Insert a CSDB at this location if needed.
609 // 2. Expand the SpeculationSafeValuePseudo if the current instruction is
612 // The insertion of the CSDB is done as late as possible (i.e. just before
613 // the use of a masked register), in the hope that that will reduce the
614 // total number of CSDBs in a block when there are multiple masked registers
616 MachineBasicBlock::iterator MBBI
= MBB
.begin(), E
= MBB
.end();
619 MachineInstr
&MI
= *MBBI
;
620 DL
= MI
.getDebugLoc();
621 MachineBasicBlock::iterator NMBBI
= std::next(MBBI
);
623 // First check if a CSDB needs to be inserted due to earlier registers
624 // that were masked and that are used by the next instruction.
625 // Also emit the barrier on any potential control flow changes.
626 bool NeedToEmitBarrier
= false;
627 if (RegsNeedingCSDBBeforeUse
.any() && (MI
.isCall() || MI
.isTerminator()))
628 NeedToEmitBarrier
= true;
629 if (!NeedToEmitBarrier
)
630 for (MachineOperand Op
: MI
.uses())
631 if (Op
.isReg() && RegsNeedingCSDBBeforeUse
[Op
.getReg()]) {
632 NeedToEmitBarrier
= true;
636 if (NeedToEmitBarrier
&& !UsesFullSpeculationBarrier
)
637 Modified
|= insertCSDB(MBB
, MBBI
, DL
);
640 expandSpeculationSafeValue(MBB
, MBBI
, UsesFullSpeculationBarrier
);
645 if (RegsNeedingCSDBBeforeUse
.any() && !UsesFullSpeculationBarrier
)
646 Modified
|= insertCSDB(MBB
, MBBI
, DL
);
651 bool AArch64SpeculationHardening::runOnMachineFunction(MachineFunction
&MF
) {
652 if (!MF
.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening
))
655 MisspeculatingTaintReg
= AArch64::X16
;
656 MisspeculatingTaintReg32Bit
= AArch64::W16
;
657 TII
= MF
.getSubtarget().getInstrInfo();
658 TRI
= MF
.getSubtarget().getRegisterInfo();
659 RegsNeedingCSDBBeforeUse
.resize(TRI
->getNumRegs());
660 RegsAlreadyMasked
.resize(TRI
->getNumRegs());
661 UseControlFlowSpeculationBarrier
= functionUsesHardeningRegister(MF
);
663 bool Modified
= false;
665 // Step 1: Enable automatic insertion of SpeculationSafeValue.
668 dbgs() << "***** AArch64SpeculationHardening - automatic insertion of "
669 "SpeculationSafeValue intrinsics *****\n");
671 Modified
|= slhLoads(MBB
);
674 // 2. Add instrumentation code to function entry and exits.
677 << "***** AArch64SpeculationHardening - track control flow *****\n");
679 SmallVector
<MachineBasicBlock
*, 2> EntryBlocks
;
680 EntryBlocks
.push_back(&MF
.front());
681 for (const LandingPadInfo
&LPI
: MF
.getLandingPads())
682 EntryBlocks
.push_back(LPI
.LandingPadBlock
);
683 for (auto Entry
: EntryBlocks
)
684 insertSPToRegTaintPropagation(
685 *Entry
, Entry
->SkipPHIsLabelsAndDebug(Entry
->begin()));
687 // 3. Add instrumentation code to every basic block.
688 for (auto &MBB
: MF
) {
689 bool UsesFullSpeculationBarrier
= false;
690 Modified
|= instrumentControlFlow(MBB
, UsesFullSpeculationBarrier
);
692 lowerSpeculationSafeValuePseudos(MBB
, UsesFullSpeculationBarrier
);
698 /// \brief Returns an instance of the pseudo instruction expansion pass.
699 FunctionPass
*llvm::createAArch64SpeculationHardeningPass() {
700 return new AArch64SpeculationHardening();