[ARM] Remove declaration of unimplemented function. NFC.
[llvm-complete.git] / lib / Target / Hexagon / HexagonLoopIdiomRecognition.cpp
blob18be03332f82d2113b1a8c00fdcedd688e7cf73f
1 //===- HexagonLoopIdiomRecognition.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #define DEBUG_TYPE "hexagon-lir"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/DenseMap.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/KnownBits.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include "llvm/Transforms/Utils.h"
60 #include <algorithm>
61 #include <array>
62 #include <cassert>
63 #include <cstdint>
64 #include <cstdlib>
65 #include <deque>
66 #include <functional>
67 #include <iterator>
68 #include <map>
69 #include <set>
70 #include <utility>
71 #include <vector>
73 using namespace llvm;
75 static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom",
76 cl::Hidden, cl::init(false),
77 cl::desc("Disable generation of memcpy in loop idiom recognition"));
79 static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom",
80 cl::Hidden, cl::init(false),
81 cl::desc("Disable generation of memmove in loop idiom recognition"));
83 static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold",
84 cl::Hidden, cl::init(0), cl::desc("Threshold (in bytes) for the runtime "
85 "check guarding the memmove."));
87 static cl::opt<unsigned> CompileTimeMemSizeThreshold(
88 "compile-time-mem-idiom-threshold", cl::Hidden, cl::init(64),
89 cl::desc("Threshold (in bytes) to perform the transformation, if the "
90 "runtime loop count (mem transfer size) is known at compile-time."));
92 static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom",
93 cl::Hidden, cl::init(true),
94 cl::desc("Only enable generating memmove in non-nested loops"));
96 static cl::opt<bool> HexagonVolatileMemcpy(
97 "disable-hexagon-volatile-memcpy", cl::Hidden, cl::init(false),
98 cl::desc("Enable Hexagon-specific memcpy for volatile destination."));
100 static cl::opt<unsigned> SimplifyLimit("hlir-simplify-limit", cl::init(10000),
101 cl::Hidden, cl::desc("Maximum number of simplification steps in HLIR"));
103 static const char *HexagonVolatileMemcpyName
104 = "hexagon_memcpy_forward_vp4cp4n2";
107 namespace llvm {
109 void initializeHexagonLoopIdiomRecognizePass(PassRegistry&);
110 Pass *createHexagonLoopIdiomPass();
112 } // end namespace llvm
114 namespace {
116 class HexagonLoopIdiomRecognize : public LoopPass {
117 public:
118 static char ID;
120 explicit HexagonLoopIdiomRecognize() : LoopPass(ID) {
121 initializeHexagonLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
124 StringRef getPassName() const override {
125 return "Recognize Hexagon-specific loop idioms";
128 void getAnalysisUsage(AnalysisUsage &AU) const override {
129 AU.addRequired<LoopInfoWrapperPass>();
130 AU.addRequiredID(LoopSimplifyID);
131 AU.addRequiredID(LCSSAID);
132 AU.addRequired<AAResultsWrapperPass>();
133 AU.addPreserved<AAResultsWrapperPass>();
134 AU.addRequired<ScalarEvolutionWrapperPass>();
135 AU.addRequired<DominatorTreeWrapperPass>();
136 AU.addRequired<TargetLibraryInfoWrapperPass>();
137 AU.addPreserved<TargetLibraryInfoWrapperPass>();
140 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
142 private:
143 int getSCEVStride(const SCEVAddRecExpr *StoreEv);
144 bool isLegalStore(Loop *CurLoop, StoreInst *SI);
145 void collectStores(Loop *CurLoop, BasicBlock *BB,
146 SmallVectorImpl<StoreInst*> &Stores);
147 bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount);
148 bool coverLoop(Loop *L, SmallVectorImpl<Instruction*> &Insts) const;
149 bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount,
150 SmallVectorImpl<BasicBlock*> &ExitBlocks);
151 bool runOnCountableLoop(Loop *L);
153 AliasAnalysis *AA;
154 const DataLayout *DL;
155 DominatorTree *DT;
156 LoopInfo *LF;
157 const TargetLibraryInfo *TLI;
158 ScalarEvolution *SE;
159 bool HasMemcpy, HasMemmove;
162 struct Simplifier {
163 struct Rule {
164 using FuncType = std::function<Value* (Instruction*, LLVMContext&)>;
165 Rule(StringRef N, FuncType F) : Name(N), Fn(F) {}
166 StringRef Name; // For debugging.
167 FuncType Fn;
170 void addRule(StringRef N, const Rule::FuncType &F) {
171 Rules.push_back(Rule(N, F));
174 private:
175 struct WorkListType {
176 WorkListType() = default;
178 void push_back(Value* V) {
179 // Do not push back duplicates.
180 if (!S.count(V)) { Q.push_back(V); S.insert(V); }
183 Value *pop_front_val() {
184 Value *V = Q.front(); Q.pop_front(); S.erase(V);
185 return V;
188 bool empty() const { return Q.empty(); }
190 private:
191 std::deque<Value*> Q;
192 std::set<Value*> S;
195 using ValueSetType = std::set<Value *>;
197 std::vector<Rule> Rules;
199 public:
200 struct Context {
201 using ValueMapType = DenseMap<Value *, Value *>;
203 Value *Root;
204 ValueSetType Used; // The set of all cloned values used by Root.
205 ValueSetType Clones; // The set of all cloned values.
206 LLVMContext &Ctx;
208 Context(Instruction *Exp)
209 : Ctx(Exp->getParent()->getParent()->getContext()) {
210 initialize(Exp);
213 ~Context() { cleanup(); }
215 void print(raw_ostream &OS, const Value *V) const;
216 Value *materialize(BasicBlock *B, BasicBlock::iterator At);
218 private:
219 friend struct Simplifier;
221 void initialize(Instruction *Exp);
222 void cleanup();
224 template <typename FuncT> void traverse(Value *V, FuncT F);
225 void record(Value *V);
226 void use(Value *V);
227 void unuse(Value *V);
229 bool equal(const Instruction *I, const Instruction *J) const;
230 Value *find(Value *Tree, Value *Sub) const;
231 Value *subst(Value *Tree, Value *OldV, Value *NewV);
232 void replace(Value *OldV, Value *NewV);
233 void link(Instruction *I, BasicBlock *B, BasicBlock::iterator At);
236 Value *simplify(Context &C);
239 struct PE {
240 PE(const Simplifier::Context &c, Value *v = nullptr) : C(c), V(v) {}
242 const Simplifier::Context &C;
243 const Value *V;
246 LLVM_ATTRIBUTE_USED
247 raw_ostream &operator<<(raw_ostream &OS, const PE &P) {
248 P.C.print(OS, P.V ? P.V : P.C.Root);
249 return OS;
252 } // end anonymous namespace
254 char HexagonLoopIdiomRecognize::ID = 0;
256 INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
257 "Recognize Hexagon-specific loop idioms", false, false)
258 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
259 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
260 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
261 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
262 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
263 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
264 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
265 INITIALIZE_PASS_END(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
266 "Recognize Hexagon-specific loop idioms", false, false)
268 template <typename FuncT>
269 void Simplifier::Context::traverse(Value *V, FuncT F) {
270 WorkListType Q;
271 Q.push_back(V);
273 while (!Q.empty()) {
274 Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
275 if (!U || U->getParent())
276 continue;
277 if (!F(U))
278 continue;
279 for (Value *Op : U->operands())
280 Q.push_back(Op);
284 void Simplifier::Context::print(raw_ostream &OS, const Value *V) const {
285 const auto *U = dyn_cast<const Instruction>(V);
286 if (!U) {
287 OS << V << '(' << *V << ')';
288 return;
291 if (U->getParent()) {
292 OS << U << '(';
293 U->printAsOperand(OS, true);
294 OS << ')';
295 return;
298 unsigned N = U->getNumOperands();
299 if (N != 0)
300 OS << U << '(';
301 OS << U->getOpcodeName();
302 for (const Value *Op : U->operands()) {
303 OS << ' ';
304 print(OS, Op);
306 if (N != 0)
307 OS << ')';
310 void Simplifier::Context::initialize(Instruction *Exp) {
311 // Perform a deep clone of the expression, set Root to the root
312 // of the clone, and build a map from the cloned values to the
313 // original ones.
314 ValueMapType M;
315 BasicBlock *Block = Exp->getParent();
316 WorkListType Q;
317 Q.push_back(Exp);
319 while (!Q.empty()) {
320 Value *V = Q.pop_front_val();
321 if (M.find(V) != M.end())
322 continue;
323 if (Instruction *U = dyn_cast<Instruction>(V)) {
324 if (isa<PHINode>(U) || U->getParent() != Block)
325 continue;
326 for (Value *Op : U->operands())
327 Q.push_back(Op);
328 M.insert({U, U->clone()});
332 for (std::pair<Value*,Value*> P : M) {
333 Instruction *U = cast<Instruction>(P.second);
334 for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
335 auto F = M.find(U->getOperand(i));
336 if (F != M.end())
337 U->setOperand(i, F->second);
341 auto R = M.find(Exp);
342 assert(R != M.end());
343 Root = R->second;
345 record(Root);
346 use(Root);
349 void Simplifier::Context::record(Value *V) {
350 auto Record = [this](Instruction *U) -> bool {
351 Clones.insert(U);
352 return true;
354 traverse(V, Record);
357 void Simplifier::Context::use(Value *V) {
358 auto Use = [this](Instruction *U) -> bool {
359 Used.insert(U);
360 return true;
362 traverse(V, Use);
365 void Simplifier::Context::unuse(Value *V) {
366 if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != nullptr)
367 return;
369 auto Unuse = [this](Instruction *U) -> bool {
370 if (!U->use_empty())
371 return false;
372 Used.erase(U);
373 return true;
375 traverse(V, Unuse);
378 Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value *NewV) {
379 if (Tree == OldV)
380 return NewV;
381 if (OldV == NewV)
382 return Tree;
384 WorkListType Q;
385 Q.push_back(Tree);
386 while (!Q.empty()) {
387 Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
388 // If U is not an instruction, or it's not a clone, skip it.
389 if (!U || U->getParent())
390 continue;
391 for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
392 Value *Op = U->getOperand(i);
393 if (Op == OldV) {
394 U->setOperand(i, NewV);
395 unuse(OldV);
396 } else {
397 Q.push_back(Op);
401 return Tree;
404 void Simplifier::Context::replace(Value *OldV, Value *NewV) {
405 if (Root == OldV) {
406 Root = NewV;
407 use(Root);
408 return;
411 // NewV may be a complex tree that has just been created by one of the
412 // transformation rules. We need to make sure that it is commoned with
413 // the existing Root to the maximum extent possible.
414 // Identify all subtrees of NewV (including NewV itself) that have
415 // equivalent counterparts in Root, and replace those subtrees with
416 // these counterparts.
417 WorkListType Q;
418 Q.push_back(NewV);
419 while (!Q.empty()) {
420 Value *V = Q.pop_front_val();
421 Instruction *U = dyn_cast<Instruction>(V);
422 if (!U || U->getParent())
423 continue;
424 if (Value *DupV = find(Root, V)) {
425 if (DupV != V)
426 NewV = subst(NewV, V, DupV);
427 } else {
428 for (Value *Op : U->operands())
429 Q.push_back(Op);
433 // Now, simply replace OldV with NewV in Root.
434 Root = subst(Root, OldV, NewV);
435 use(Root);
438 void Simplifier::Context::cleanup() {
439 for (Value *V : Clones) {
440 Instruction *U = cast<Instruction>(V);
441 if (!U->getParent())
442 U->dropAllReferences();
445 for (Value *V : Clones) {
446 Instruction *U = cast<Instruction>(V);
447 if (!U->getParent())
448 U->deleteValue();
452 bool Simplifier::Context::equal(const Instruction *I,
453 const Instruction *J) const {
454 if (I == J)
455 return true;
456 if (!I->isSameOperationAs(J))
457 return false;
458 if (isa<PHINode>(I))
459 return I->isIdenticalTo(J);
461 for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) {
462 Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i);
463 if (OpI == OpJ)
464 continue;
465 auto *InI = dyn_cast<const Instruction>(OpI);
466 auto *InJ = dyn_cast<const Instruction>(OpJ);
467 if (InI && InJ) {
468 if (!equal(InI, InJ))
469 return false;
470 } else if (InI != InJ || !InI)
471 return false;
473 return true;
476 Value *Simplifier::Context::find(Value *Tree, Value *Sub) const {
477 Instruction *SubI = dyn_cast<Instruction>(Sub);
478 WorkListType Q;
479 Q.push_back(Tree);
481 while (!Q.empty()) {
482 Value *V = Q.pop_front_val();
483 if (V == Sub)
484 return V;
485 Instruction *U = dyn_cast<Instruction>(V);
486 if (!U || U->getParent())
487 continue;
488 if (SubI && equal(SubI, U))
489 return U;
490 assert(!isa<PHINode>(U));
491 for (Value *Op : U->operands())
492 Q.push_back(Op);
494 return nullptr;
497 void Simplifier::Context::link(Instruction *I, BasicBlock *B,
498 BasicBlock::iterator At) {
499 if (I->getParent())
500 return;
502 for (Value *Op : I->operands()) {
503 if (Instruction *OpI = dyn_cast<Instruction>(Op))
504 link(OpI, B, At);
507 B->getInstList().insert(At, I);
510 Value *Simplifier::Context::materialize(BasicBlock *B,
511 BasicBlock::iterator At) {
512 if (Instruction *RootI = dyn_cast<Instruction>(Root))
513 link(RootI, B, At);
514 return Root;
517 Value *Simplifier::simplify(Context &C) {
518 WorkListType Q;
519 Q.push_back(C.Root);
520 unsigned Count = 0;
521 const unsigned Limit = SimplifyLimit;
523 while (!Q.empty()) {
524 if (Count++ >= Limit)
525 break;
526 Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
527 if (!U || U->getParent() || !C.Used.count(U))
528 continue;
529 bool Changed = false;
530 for (Rule &R : Rules) {
531 Value *W = R.Fn(U, C.Ctx);
532 if (!W)
533 continue;
534 Changed = true;
535 C.record(W);
536 C.replace(U, W);
537 Q.push_back(C.Root);
538 break;
540 if (!Changed) {
541 for (Value *Op : U->operands())
542 Q.push_back(Op);
545 return Count < Limit ? C.Root : nullptr;
548 //===----------------------------------------------------------------------===//
550 // Implementation of PolynomialMultiplyRecognize
552 //===----------------------------------------------------------------------===//
554 namespace {
556 class PolynomialMultiplyRecognize {
557 public:
558 explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl,
559 const DominatorTree &dt, const TargetLibraryInfo &tli,
560 ScalarEvolution &se)
561 : CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {}
563 bool recognize();
565 private:
566 using ValueSeq = SetVector<Value *>;
568 IntegerType *getPmpyType() const {
569 LLVMContext &Ctx = CurLoop->getHeader()->getParent()->getContext();
570 return IntegerType::get(Ctx, 32);
573 bool isPromotableTo(Value *V, IntegerType *Ty);
574 void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB);
575 bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB);
577 Value *getCountIV(BasicBlock *BB);
578 bool findCycle(Value *Out, Value *In, ValueSeq &Cycle);
579 void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early,
580 ValueSeq &Late);
581 bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late);
582 bool commutesWithShift(Instruction *I);
583 bool highBitsAreZero(Value *V, unsigned IterCount);
584 bool keepsHighBitsZero(Value *V, unsigned IterCount);
585 bool isOperandShifted(Instruction *I, Value *Op);
586 bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB,
587 unsigned IterCount);
588 void cleanupLoopBody(BasicBlock *LoopB);
590 struct ParsedValues {
591 ParsedValues() = default;
593 Value *M = nullptr;
594 Value *P = nullptr;
595 Value *Q = nullptr;
596 Value *R = nullptr;
597 Value *X = nullptr;
598 Instruction *Res = nullptr;
599 unsigned IterCount = 0;
600 bool Left = false;
601 bool Inv = false;
604 bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV);
605 bool matchRightShift(SelectInst *SelI, ParsedValues &PV);
606 bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB,
607 Value *CIV, ParsedValues &PV, bool PreScan);
608 unsigned getInverseMxN(unsigned QP);
609 Value *generate(BasicBlock::iterator At, ParsedValues &PV);
611 void setupPreSimplifier(Simplifier &S);
612 void setupPostSimplifier(Simplifier &S);
614 Loop *CurLoop;
615 const DataLayout &DL;
616 const DominatorTree &DT;
617 const TargetLibraryInfo &TLI;
618 ScalarEvolution &SE;
621 } // end anonymous namespace
623 Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) {
624 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
625 if (std::distance(PI, PE) != 2)
626 return nullptr;
627 BasicBlock *PB = (*PI == BB) ? *std::next(PI) : *PI;
629 for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) {
630 auto *PN = cast<PHINode>(I);
631 Value *InitV = PN->getIncomingValueForBlock(PB);
632 if (!isa<ConstantInt>(InitV) || !cast<ConstantInt>(InitV)->isZero())
633 continue;
634 Value *IterV = PN->getIncomingValueForBlock(BB);
635 if (!isa<BinaryOperator>(IterV))
636 continue;
637 auto *BO = dyn_cast<BinaryOperator>(IterV);
638 if (BO->getOpcode() != Instruction::Add)
639 continue;
640 Value *IncV = nullptr;
641 if (BO->getOperand(0) == PN)
642 IncV = BO->getOperand(1);
643 else if (BO->getOperand(1) == PN)
644 IncV = BO->getOperand(0);
645 if (IncV == nullptr)
646 continue;
648 if (auto *T = dyn_cast<ConstantInt>(IncV))
649 if (T->getZExtValue() == 1)
650 return PN;
652 return nullptr;
655 static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) {
656 for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) {
657 Use &TheUse = UI.getUse();
658 ++UI;
659 if (auto *II = dyn_cast<Instruction>(TheUse.getUser()))
660 if (BB == II->getParent())
661 II->replaceUsesOfWith(I, J);
665 bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI,
666 Value *CIV, ParsedValues &PV) {
667 // Match the following:
668 // select (X & (1 << i)) != 0 ? R ^ (Q << i) : R
669 // select (X & (1 << i)) == 0 ? R : R ^ (Q << i)
670 // The condition may also check for equality with the masked value, i.e
671 // select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R
672 // select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i);
674 Value *CondV = SelI->getCondition();
675 Value *TrueV = SelI->getTrueValue();
676 Value *FalseV = SelI->getFalseValue();
678 using namespace PatternMatch;
680 CmpInst::Predicate P;
681 Value *A = nullptr, *B = nullptr, *C = nullptr;
683 if (!match(CondV, m_ICmp(P, m_And(m_Value(A), m_Value(B)), m_Value(C))) &&
684 !match(CondV, m_ICmp(P, m_Value(C), m_And(m_Value(A), m_Value(B)))))
685 return false;
686 if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
687 return false;
688 // Matched: select (A & B) == C ? ... : ...
689 // select (A & B) != C ? ... : ...
691 Value *X = nullptr, *Sh1 = nullptr;
692 // Check (A & B) for (X & (1 << i)):
693 if (match(A, m_Shl(m_One(), m_Specific(CIV)))) {
694 Sh1 = A;
695 X = B;
696 } else if (match(B, m_Shl(m_One(), m_Specific(CIV)))) {
697 Sh1 = B;
698 X = A;
699 } else {
700 // TODO: Could also check for an induction variable containing single
701 // bit shifted left by 1 in each iteration.
702 return false;
705 bool TrueIfZero;
707 // Check C against the possible values for comparison: 0 and (1 << i):
708 if (match(C, m_Zero()))
709 TrueIfZero = (P == CmpInst::ICMP_EQ);
710 else if (C == Sh1)
711 TrueIfZero = (P == CmpInst::ICMP_NE);
712 else
713 return false;
715 // So far, matched:
716 // select (X & (1 << i)) ? ... : ...
717 // including variations of the check against zero/non-zero value.
719 Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr;
720 if (TrueIfZero) {
721 ShouldSameV = TrueV;
722 ShouldXoredV = FalseV;
723 } else {
724 ShouldSameV = FalseV;
725 ShouldXoredV = TrueV;
728 Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr;
729 Value *T = nullptr;
730 if (match(ShouldXoredV, m_Xor(m_Value(Y), m_Value(Z)))) {
731 // Matched: select +++ ? ... : Y ^ Z
732 // select +++ ? Y ^ Z : ...
733 // where +++ denotes previously checked matches.
734 if (ShouldSameV == Y)
735 T = Z;
736 else if (ShouldSameV == Z)
737 T = Y;
738 else
739 return false;
740 R = ShouldSameV;
741 // Matched: select +++ ? R : R ^ T
742 // select +++ ? R ^ T : R
743 // depending on TrueIfZero.
745 } else if (match(ShouldSameV, m_Zero())) {
746 // Matched: select +++ ? 0 : ...
747 // select +++ ? ... : 0
748 if (!SelI->hasOneUse())
749 return false;
750 T = ShouldXoredV;
751 // Matched: select +++ ? 0 : T
752 // select +++ ? T : 0
754 Value *U = *SelI->user_begin();
755 if (!match(U, m_Xor(m_Specific(SelI), m_Value(R))) &&
756 !match(U, m_Xor(m_Value(R), m_Specific(SelI))))
757 return false;
758 // Matched: xor (select +++ ? 0 : T), R
759 // xor (select +++ ? T : 0), R
760 } else
761 return false;
763 // The xor input value T is isolated into its own match so that it could
764 // be checked against an induction variable containing a shifted bit
765 // (todo).
766 // For now, check against (Q << i).
767 if (!match(T, m_Shl(m_Value(Q), m_Specific(CIV))) &&
768 !match(T, m_Shl(m_ZExt(m_Value(Q)), m_ZExt(m_Specific(CIV)))))
769 return false;
770 // Matched: select +++ ? R : R ^ (Q << i)
771 // select +++ ? R ^ (Q << i) : R
773 PV.X = X;
774 PV.Q = Q;
775 PV.R = R;
776 PV.Left = true;
777 return true;
780 bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI,
781 ParsedValues &PV) {
782 // Match the following:
783 // select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1)
784 // select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q
785 // The condition may also check for equality with the masked value, i.e
786 // select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1)
787 // select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q
789 Value *CondV = SelI->getCondition();
790 Value *TrueV = SelI->getTrueValue();
791 Value *FalseV = SelI->getFalseValue();
793 using namespace PatternMatch;
795 Value *C = nullptr;
796 CmpInst::Predicate P;
797 bool TrueIfZero;
799 if (match(CondV, m_ICmp(P, m_Value(C), m_Zero())) ||
800 match(CondV, m_ICmp(P, m_Zero(), m_Value(C)))) {
801 if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
802 return false;
803 // Matched: select C == 0 ? ... : ...
804 // select C != 0 ? ... : ...
805 TrueIfZero = (P == CmpInst::ICMP_EQ);
806 } else if (match(CondV, m_ICmp(P, m_Value(C), m_One())) ||
807 match(CondV, m_ICmp(P, m_One(), m_Value(C)))) {
808 if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
809 return false;
810 // Matched: select C == 1 ? ... : ...
811 // select C != 1 ? ... : ...
812 TrueIfZero = (P == CmpInst::ICMP_NE);
813 } else
814 return false;
816 Value *X = nullptr;
817 if (!match(C, m_And(m_Value(X), m_One())) &&
818 !match(C, m_And(m_One(), m_Value(X))))
819 return false;
820 // Matched: select (X & 1) == +++ ? ... : ...
821 // select (X & 1) != +++ ? ... : ...
823 Value *R = nullptr, *Q = nullptr;
824 if (TrueIfZero) {
825 // The select's condition is true if the tested bit is 0.
826 // TrueV must be the shift, FalseV must be the xor.
827 if (!match(TrueV, m_LShr(m_Value(R), m_One())))
828 return false;
829 // Matched: select +++ ? (R >> 1) : ...
830 if (!match(FalseV, m_Xor(m_Specific(TrueV), m_Value(Q))) &&
831 !match(FalseV, m_Xor(m_Value(Q), m_Specific(TrueV))))
832 return false;
833 // Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q
834 // with commuting ^.
835 } else {
836 // The select's condition is true if the tested bit is 1.
837 // TrueV must be the xor, FalseV must be the shift.
838 if (!match(FalseV, m_LShr(m_Value(R), m_One())))
839 return false;
840 // Matched: select +++ ? ... : (R >> 1)
841 if (!match(TrueV, m_Xor(m_Specific(FalseV), m_Value(Q))) &&
842 !match(TrueV, m_Xor(m_Value(Q), m_Specific(FalseV))))
843 return false;
844 // Matched: select +++ ? (R >> 1) ^ Q : (R >> 1)
845 // with commuting ^.
848 PV.X = X;
849 PV.Q = Q;
850 PV.R = R;
851 PV.Left = false;
852 return true;
855 bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI,
856 BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV,
857 bool PreScan) {
858 using namespace PatternMatch;
860 // The basic pattern for R = P.Q is:
861 // for i = 0..31
862 // R = phi (0, R')
863 // if (P & (1 << i)) ; test-bit(P, i)
864 // R' = R ^ (Q << i)
866 // Similarly, the basic pattern for R = (P/Q).Q - P
867 // for i = 0..31
868 // R = phi(P, R')
869 // if (R & (1 << i))
870 // R' = R ^ (Q << i)
872 // There exist idioms, where instead of Q being shifted left, P is shifted
873 // right. This produces a result that is shifted right by 32 bits (the
874 // non-shifted result is 64-bit).
876 // For R = P.Q, this would be:
877 // for i = 0..31
878 // R = phi (0, R')
879 // if ((P >> i) & 1)
880 // R' = (R >> 1) ^ Q ; R is cycled through the loop, so it must
881 // else ; be shifted by 1, not i.
882 // R' = R >> 1
884 // And for the inverse:
885 // for i = 0..31
886 // R = phi (P, R')
887 // if (R & 1)
888 // R' = (R >> 1) ^ Q
889 // else
890 // R' = R >> 1
892 // The left-shifting idioms share the same pattern:
893 // select (X & (1 << i)) ? R ^ (Q << i) : R
894 // Similarly for right-shifting idioms:
895 // select (X & 1) ? (R >> 1) ^ Q
897 if (matchLeftShift(SelI, CIV, PV)) {
898 // If this is a pre-scan, getting this far is sufficient.
899 if (PreScan)
900 return true;
902 // Need to make sure that the SelI goes back into R.
903 auto *RPhi = dyn_cast<PHINode>(PV.R);
904 if (!RPhi)
905 return false;
906 if (SelI != RPhi->getIncomingValueForBlock(LoopB))
907 return false;
908 PV.Res = SelI;
910 // If X is loop invariant, it must be the input polynomial, and the
911 // idiom is the basic polynomial multiply.
912 if (CurLoop->isLoopInvariant(PV.X)) {
913 PV.P = PV.X;
914 PV.Inv = false;
915 } else {
916 // X is not loop invariant. If X == R, this is the inverse pmpy.
917 // Otherwise, check for an xor with an invariant value. If the
918 // variable argument to the xor is R, then this is still a valid
919 // inverse pmpy.
920 PV.Inv = true;
921 if (PV.X != PV.R) {
922 Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr;
923 if (!match(PV.X, m_Xor(m_Value(X1), m_Value(X2))))
924 return false;
925 auto *I1 = dyn_cast<Instruction>(X1);
926 auto *I2 = dyn_cast<Instruction>(X2);
927 if (!I1 || I1->getParent() != LoopB) {
928 Var = X2;
929 Inv = X1;
930 } else if (!I2 || I2->getParent() != LoopB) {
931 Var = X1;
932 Inv = X2;
933 } else
934 return false;
935 if (Var != PV.R)
936 return false;
937 PV.M = Inv;
939 // The input polynomial P still needs to be determined. It will be
940 // the entry value of R.
941 Value *EntryP = RPhi->getIncomingValueForBlock(PrehB);
942 PV.P = EntryP;
945 return true;
948 if (matchRightShift(SelI, PV)) {
949 // If this is an inverse pattern, the Q polynomial must be known at
950 // compile time.
951 if (PV.Inv && !isa<ConstantInt>(PV.Q))
952 return false;
953 if (PreScan)
954 return true;
955 // There is no exact matching of right-shift pmpy.
956 return false;
959 return false;
962 bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val,
963 IntegerType *DestTy) {
964 IntegerType *T = dyn_cast<IntegerType>(Val->getType());
965 if (!T || T->getBitWidth() > DestTy->getBitWidth())
966 return false;
967 if (T->getBitWidth() == DestTy->getBitWidth())
968 return true;
969 // Non-instructions are promotable. The reason why an instruction may not
970 // be promotable is that it may produce a different result if its operands
971 // and the result are promoted, for example, it may produce more non-zero
972 // bits. While it would still be possible to represent the proper result
973 // in a wider type, it may require adding additional instructions (which
974 // we don't want to do).
975 Instruction *In = dyn_cast<Instruction>(Val);
976 if (!In)
977 return true;
978 // The bitwidth of the source type is smaller than the destination.
979 // Check if the individual operation can be promoted.
980 switch (In->getOpcode()) {
981 case Instruction::PHI:
982 case Instruction::ZExt:
983 case Instruction::And:
984 case Instruction::Or:
985 case Instruction::Xor:
986 case Instruction::LShr: // Shift right is ok.
987 case Instruction::Select:
988 case Instruction::Trunc:
989 return true;
990 case Instruction::ICmp:
991 if (CmpInst *CI = cast<CmpInst>(In))
992 return CI->isEquality() || CI->isUnsigned();
993 llvm_unreachable("Cast failed unexpectedly");
994 case Instruction::Add:
995 return In->hasNoSignedWrap() && In->hasNoUnsignedWrap();
997 return false;
1000 void PolynomialMultiplyRecognize::promoteTo(Instruction *In,
1001 IntegerType *DestTy, BasicBlock *LoopB) {
1002 Type *OrigTy = In->getType();
1003 assert(!OrigTy->isVoidTy() && "Invalid instruction to promote");
1005 // Leave boolean values alone.
1006 if (!In->getType()->isIntegerTy(1))
1007 In->mutateType(DestTy);
1008 unsigned DestBW = DestTy->getBitWidth();
1010 // Handle PHIs.
1011 if (PHINode *P = dyn_cast<PHINode>(In)) {
1012 unsigned N = P->getNumIncomingValues();
1013 for (unsigned i = 0; i != N; ++i) {
1014 BasicBlock *InB = P->getIncomingBlock(i);
1015 if (InB == LoopB)
1016 continue;
1017 Value *InV = P->getIncomingValue(i);
1018 IntegerType *Ty = cast<IntegerType>(InV->getType());
1019 // Do not promote values in PHI nodes of type i1.
1020 if (Ty != P->getType()) {
1021 // If the value type does not match the PHI type, the PHI type
1022 // must have been promoted.
1023 assert(Ty->getBitWidth() < DestBW);
1024 InV = IRBuilder<>(InB->getTerminator()).CreateZExt(InV, DestTy);
1025 P->setIncomingValue(i, InV);
1028 } else if (ZExtInst *Z = dyn_cast<ZExtInst>(In)) {
1029 Value *Op = Z->getOperand(0);
1030 if (Op->getType() == Z->getType())
1031 Z->replaceAllUsesWith(Op);
1032 Z->eraseFromParent();
1033 return;
1035 if (TruncInst *T = dyn_cast<TruncInst>(In)) {
1036 IntegerType *TruncTy = cast<IntegerType>(OrigTy);
1037 Value *Mask = ConstantInt::get(DestTy, (1u << TruncTy->getBitWidth()) - 1);
1038 Value *And = IRBuilder<>(In).CreateAnd(T->getOperand(0), Mask);
1039 T->replaceAllUsesWith(And);
1040 T->eraseFromParent();
1041 return;
1044 // Promote immediates.
1045 for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) {
1046 if (ConstantInt *CI = dyn_cast<ConstantInt>(In->getOperand(i)))
1047 if (CI->getType()->getBitWidth() < DestBW)
1048 In->setOperand(i, ConstantInt::get(DestTy, CI->getZExtValue()));
1052 bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB,
1053 BasicBlock *ExitB) {
1054 assert(LoopB);
1055 // Skip loops where the exit block has more than one predecessor. The values
1056 // coming from the loop block will be promoted to another type, and so the
1057 // values coming into the exit block from other predecessors would also have
1058 // to be promoted.
1059 if (!ExitB || (ExitB->getSinglePredecessor() != LoopB))
1060 return false;
1061 IntegerType *DestTy = getPmpyType();
1062 // Check if the exit values have types that are no wider than the type
1063 // that we want to promote to.
1064 unsigned DestBW = DestTy->getBitWidth();
1065 for (PHINode &P : ExitB->phis()) {
1066 if (P.getNumIncomingValues() != 1)
1067 return false;
1068 assert(P.getIncomingBlock(0) == LoopB);
1069 IntegerType *T = dyn_cast<IntegerType>(P.getType());
1070 if (!T || T->getBitWidth() > DestBW)
1071 return false;
1074 // Check all instructions in the loop.
1075 for (Instruction &In : *LoopB)
1076 if (!In.isTerminator() && !isPromotableTo(&In, DestTy))
1077 return false;
1079 // Perform the promotion.
1080 std::vector<Instruction*> LoopIns;
1081 std::transform(LoopB->begin(), LoopB->end(), std::back_inserter(LoopIns),
1082 [](Instruction &In) { return &In; });
1083 for (Instruction *In : LoopIns)
1084 if (!In->isTerminator())
1085 promoteTo(In, DestTy, LoopB);
1087 // Fix up the PHI nodes in the exit block.
1088 Instruction *EndI = ExitB->getFirstNonPHI();
1089 BasicBlock::iterator End = EndI ? EndI->getIterator() : ExitB->end();
1090 for (auto I = ExitB->begin(); I != End; ++I) {
1091 PHINode *P = dyn_cast<PHINode>(I);
1092 if (!P)
1093 break;
1094 Type *Ty0 = P->getIncomingValue(0)->getType();
1095 Type *PTy = P->getType();
1096 if (PTy != Ty0) {
1097 assert(Ty0 == DestTy);
1098 // In order to create the trunc, P must have the promoted type.
1099 P->mutateType(Ty0);
1100 Value *T = IRBuilder<>(ExitB, End).CreateTrunc(P, PTy);
1101 // In order for the RAUW to work, the types of P and T must match.
1102 P->mutateType(PTy);
1103 P->replaceAllUsesWith(T);
1104 // Final update of the P's type.
1105 P->mutateType(Ty0);
1106 cast<Instruction>(T)->setOperand(0, P);
1110 return true;
1113 bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In,
1114 ValueSeq &Cycle) {
1115 // Out = ..., In, ...
1116 if (Out == In)
1117 return true;
1119 auto *BB = cast<Instruction>(Out)->getParent();
1120 bool HadPhi = false;
1122 for (auto U : Out->users()) {
1123 auto *I = dyn_cast<Instruction>(&*U);
1124 if (I == nullptr || I->getParent() != BB)
1125 continue;
1126 // Make sure that there are no multi-iteration cycles, e.g.
1127 // p1 = phi(p2)
1128 // p2 = phi(p1)
1129 // The cycle p1->p2->p1 would span two loop iterations.
1130 // Check that there is only one phi in the cycle.
1131 bool IsPhi = isa<PHINode>(I);
1132 if (IsPhi && HadPhi)
1133 return false;
1134 HadPhi |= IsPhi;
1135 if (Cycle.count(I))
1136 return false;
1137 Cycle.insert(I);
1138 if (findCycle(I, In, Cycle))
1139 break;
1140 Cycle.remove(I);
1142 return !Cycle.empty();
1145 void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI,
1146 ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) {
1147 // All the values in the cycle that are between the phi node and the
1148 // divider instruction will be classified as "early", all other values
1149 // will be "late".
1151 bool IsE = true;
1152 unsigned I, N = Cycle.size();
1153 for (I = 0; I < N; ++I) {
1154 Value *V = Cycle[I];
1155 if (DivI == V)
1156 IsE = false;
1157 else if (!isa<PHINode>(V))
1158 continue;
1159 // Stop if found either.
1160 break;
1162 // "I" is the index of either DivI or the phi node, whichever was first.
1163 // "E" is "false" or "true" respectively.
1164 ValueSeq &First = !IsE ? Early : Late;
1165 for (unsigned J = 0; J < I; ++J)
1166 First.insert(Cycle[J]);
1168 ValueSeq &Second = IsE ? Early : Late;
1169 Second.insert(Cycle[I]);
1170 for (++I; I < N; ++I) {
1171 Value *V = Cycle[I];
1172 if (DivI == V || isa<PHINode>(V))
1173 break;
1174 Second.insert(V);
1177 for (; I < N; ++I)
1178 First.insert(Cycle[I]);
1181 bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI,
1182 ValueSeq &Early, ValueSeq &Late) {
1183 // Select is an exception, since the condition value does not have to be
1184 // classified in the same way as the true/false values. The true/false
1185 // values do have to be both early or both late.
1186 if (UseI->getOpcode() == Instruction::Select) {
1187 Value *TV = UseI->getOperand(1), *FV = UseI->getOperand(2);
1188 if (Early.count(TV) || Early.count(FV)) {
1189 if (Late.count(TV) || Late.count(FV))
1190 return false;
1191 Early.insert(UseI);
1192 } else if (Late.count(TV) || Late.count(FV)) {
1193 if (Early.count(TV) || Early.count(FV))
1194 return false;
1195 Late.insert(UseI);
1197 return true;
1200 // Not sure what would be the example of this, but the code below relies
1201 // on having at least one operand.
1202 if (UseI->getNumOperands() == 0)
1203 return true;
1205 bool AE = true, AL = true;
1206 for (auto &I : UseI->operands()) {
1207 if (Early.count(&*I))
1208 AL = false;
1209 else if (Late.count(&*I))
1210 AE = false;
1212 // If the operands appear "all early" and "all late" at the same time,
1213 // then it means that none of them are actually classified as either.
1214 // This is harmless.
1215 if (AE && AL)
1216 return true;
1217 // Conversely, if they are neither "all early" nor "all late", then
1218 // we have a mixture of early and late operands that is not a known
1219 // exception.
1220 if (!AE && !AL)
1221 return false;
1223 // Check that we have covered the two special cases.
1224 assert(AE != AL);
1226 if (AE)
1227 Early.insert(UseI);
1228 else
1229 Late.insert(UseI);
1230 return true;
1233 bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) {
1234 switch (I->getOpcode()) {
1235 case Instruction::And:
1236 case Instruction::Or:
1237 case Instruction::Xor:
1238 case Instruction::LShr:
1239 case Instruction::Shl:
1240 case Instruction::Select:
1241 case Instruction::ICmp:
1242 case Instruction::PHI:
1243 break;
1244 default:
1245 return false;
1247 return true;
1250 bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V,
1251 unsigned IterCount) {
1252 auto *T = dyn_cast<IntegerType>(V->getType());
1253 if (!T)
1254 return false;
1256 KnownBits Known(T->getBitWidth());
1257 computeKnownBits(V, Known, DL);
1258 return Known.countMinLeadingZeros() >= IterCount;
1261 bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V,
1262 unsigned IterCount) {
1263 // Assume that all inputs to the value have the high bits zero.
1264 // Check if the value itself preserves the zeros in the high bits.
1265 if (auto *C = dyn_cast<ConstantInt>(V))
1266 return C->getValue().countLeadingZeros() >= IterCount;
1268 if (auto *I = dyn_cast<Instruction>(V)) {
1269 switch (I->getOpcode()) {
1270 case Instruction::And:
1271 case Instruction::Or:
1272 case Instruction::Xor:
1273 case Instruction::LShr:
1274 case Instruction::Select:
1275 case Instruction::ICmp:
1276 case Instruction::PHI:
1277 case Instruction::ZExt:
1278 return true;
1282 return false;
1285 bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) {
1286 unsigned Opc = I->getOpcode();
1287 if (Opc == Instruction::Shl || Opc == Instruction::LShr)
1288 return Op != I->getOperand(1);
1289 return true;
1292 bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB,
1293 BasicBlock *ExitB, unsigned IterCount) {
1294 Value *CIV = getCountIV(LoopB);
1295 if (CIV == nullptr)
1296 return false;
1297 auto *CIVTy = dyn_cast<IntegerType>(CIV->getType());
1298 if (CIVTy == nullptr)
1299 return false;
1301 ValueSeq RShifts;
1302 ValueSeq Early, Late, Cycled;
1304 // Find all value cycles that contain logical right shifts by 1.
1305 for (Instruction &I : *LoopB) {
1306 using namespace PatternMatch;
1308 Value *V = nullptr;
1309 if (!match(&I, m_LShr(m_Value(V), m_One())))
1310 continue;
1311 ValueSeq C;
1312 if (!findCycle(&I, V, C))
1313 continue;
1315 // Found a cycle.
1316 C.insert(&I);
1317 classifyCycle(&I, C, Early, Late);
1318 Cycled.insert(C.begin(), C.end());
1319 RShifts.insert(&I);
1322 // Find the set of all values affected by the shift cycles, i.e. all
1323 // cycled values, and (recursively) all their users.
1324 ValueSeq Users(Cycled.begin(), Cycled.end());
1325 for (unsigned i = 0; i < Users.size(); ++i) {
1326 Value *V = Users[i];
1327 if (!isa<IntegerType>(V->getType()))
1328 return false;
1329 auto *R = cast<Instruction>(V);
1330 // If the instruction does not commute with shifts, the loop cannot
1331 // be unshifted.
1332 if (!commutesWithShift(R))
1333 return false;
1334 for (auto I = R->user_begin(), E = R->user_end(); I != E; ++I) {
1335 auto *T = cast<Instruction>(*I);
1336 // Skip users from outside of the loop. They will be handled later.
1337 // Also, skip the right-shifts and phi nodes, since they mix early
1338 // and late values.
1339 if (T->getParent() != LoopB || RShifts.count(T) || isa<PHINode>(T))
1340 continue;
1342 Users.insert(T);
1343 if (!classifyInst(T, Early, Late))
1344 return false;
1348 if (Users.empty())
1349 return false;
1351 // Verify that high bits remain zero.
1352 ValueSeq Internal(Users.begin(), Users.end());
1353 ValueSeq Inputs;
1354 for (unsigned i = 0; i < Internal.size(); ++i) {
1355 auto *R = dyn_cast<Instruction>(Internal[i]);
1356 if (!R)
1357 continue;
1358 for (Value *Op : R->operands()) {
1359 auto *T = dyn_cast<Instruction>(Op);
1360 if (T && T->getParent() != LoopB)
1361 Inputs.insert(Op);
1362 else
1363 Internal.insert(Op);
1366 for (Value *V : Inputs)
1367 if (!highBitsAreZero(V, IterCount))
1368 return false;
1369 for (Value *V : Internal)
1370 if (!keepsHighBitsZero(V, IterCount))
1371 return false;
1373 // Finally, the work can be done. Unshift each user.
1374 IRBuilder<> IRB(LoopB);
1375 std::map<Value*,Value*> ShiftMap;
1377 using CastMapType = std::map<std::pair<Value *, Type *>, Value *>;
1379 CastMapType CastMap;
1381 auto upcast = [] (CastMapType &CM, IRBuilder<> &IRB, Value *V,
1382 IntegerType *Ty) -> Value* {
1383 auto H = CM.find(std::make_pair(V, Ty));
1384 if (H != CM.end())
1385 return H->second;
1386 Value *CV = IRB.CreateIntCast(V, Ty, false);
1387 CM.insert(std::make_pair(std::make_pair(V, Ty), CV));
1388 return CV;
1391 for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) {
1392 using namespace PatternMatch;
1394 if (isa<PHINode>(I) || !Users.count(&*I))
1395 continue;
1397 // Match lshr x, 1.
1398 Value *V = nullptr;
1399 if (match(&*I, m_LShr(m_Value(V), m_One()))) {
1400 replaceAllUsesOfWithIn(&*I, V, LoopB);
1401 continue;
1403 // For each non-cycled operand, replace it with the corresponding
1404 // value shifted left.
1405 for (auto &J : I->operands()) {
1406 Value *Op = J.get();
1407 if (!isOperandShifted(&*I, Op))
1408 continue;
1409 if (Users.count(Op))
1410 continue;
1411 // Skip shifting zeros.
1412 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
1413 continue;
1414 // Check if we have already generated a shift for this value.
1415 auto F = ShiftMap.find(Op);
1416 Value *W = (F != ShiftMap.end()) ? F->second : nullptr;
1417 if (W == nullptr) {
1418 IRB.SetInsertPoint(&*I);
1419 // First, the shift amount will be CIV or CIV+1, depending on
1420 // whether the value is early or late. Instead of creating CIV+1,
1421 // do a single shift of the value.
1422 Value *ShAmt = CIV, *ShVal = Op;
1423 auto *VTy = cast<IntegerType>(ShVal->getType());
1424 auto *ATy = cast<IntegerType>(ShAmt->getType());
1425 if (Late.count(&*I))
1426 ShVal = IRB.CreateShl(Op, ConstantInt::get(VTy, 1));
1427 // Second, the types of the shifted value and the shift amount
1428 // must match.
1429 if (VTy != ATy) {
1430 if (VTy->getBitWidth() < ATy->getBitWidth())
1431 ShVal = upcast(CastMap, IRB, ShVal, ATy);
1432 else
1433 ShAmt = upcast(CastMap, IRB, ShAmt, VTy);
1435 // Ready to generate the shift and memoize it.
1436 W = IRB.CreateShl(ShVal, ShAmt);
1437 ShiftMap.insert(std::make_pair(Op, W));
1439 I->replaceUsesOfWith(Op, W);
1443 // Update the users outside of the loop to account for having left
1444 // shifts. They would normally be shifted right in the loop, so shift
1445 // them right after the loop exit.
1446 // Take advantage of the loop-closed SSA form, which has all the post-
1447 // loop values in phi nodes.
1448 IRB.SetInsertPoint(ExitB, ExitB->getFirstInsertionPt());
1449 for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) {
1450 if (!isa<PHINode>(P))
1451 break;
1452 auto *PN = cast<PHINode>(P);
1453 Value *U = PN->getIncomingValueForBlock(LoopB);
1454 if (!Users.count(U))
1455 continue;
1456 Value *S = IRB.CreateLShr(PN, ConstantInt::get(PN->getType(), IterCount));
1457 PN->replaceAllUsesWith(S);
1458 // The above RAUW will create
1459 // S = lshr S, IterCount
1460 // so we need to fix it back into
1461 // S = lshr PN, IterCount
1462 cast<User>(S)->replaceUsesOfWith(S, PN);
1465 return true;
1468 void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) {
1469 for (auto &I : *LoopB)
1470 if (Value *SV = SimplifyInstruction(&I, {DL, &TLI, &DT}))
1471 I.replaceAllUsesWith(SV);
1473 for (auto I = LoopB->begin(), N = I; I != LoopB->end(); I = N) {
1474 N = std::next(I);
1475 RecursivelyDeleteTriviallyDeadInstructions(&*I, &TLI);
1479 unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) {
1480 // Arrays of coefficients of Q and the inverse, C.
1481 // Q[i] = coefficient at x^i.
1482 std::array<char,32> Q, C;
1484 for (unsigned i = 0; i < 32; ++i) {
1485 Q[i] = QP & 1;
1486 QP >>= 1;
1488 assert(Q[0] == 1);
1490 // Find C, such that
1491 // (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1
1493 // For it to have a solution, Q[0] must be 1. Since this is Z2[x], the
1494 // operations * and + are & and ^ respectively.
1496 // Find C[i] recursively, by comparing i-th coefficient in the product
1497 // with 0 (or 1 for i=0).
1499 // C[0] = 1, since C[0] = Q[0], and Q[0] = 1.
1500 C[0] = 1;
1501 for (unsigned i = 1; i < 32; ++i) {
1502 // Solve for C[i] in:
1503 // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0
1504 // This is equivalent to
1505 // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0
1506 // which is
1507 // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i]
1508 unsigned T = 0;
1509 for (unsigned j = 0; j < i; ++j)
1510 T = T ^ (C[j] & Q[i-j]);
1511 C[i] = T;
1514 unsigned QV = 0;
1515 for (unsigned i = 0; i < 32; ++i)
1516 if (C[i])
1517 QV |= (1 << i);
1519 return QV;
1522 Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At,
1523 ParsedValues &PV) {
1524 IRBuilder<> B(&*At);
1525 Module *M = At->getParent()->getParent()->getParent();
1526 Function *PMF = Intrinsic::getDeclaration(M, Intrinsic::hexagon_M4_pmpyw);
1528 Value *P = PV.P, *Q = PV.Q, *P0 = P;
1529 unsigned IC = PV.IterCount;
1531 if (PV.M != nullptr)
1532 P0 = P = B.CreateXor(P, PV.M);
1534 // Create a bit mask to clear the high bits beyond IterCount.
1535 auto *BMI = ConstantInt::get(P->getType(), APInt::getLowBitsSet(32, IC));
1537 if (PV.IterCount != 32)
1538 P = B.CreateAnd(P, BMI);
1540 if (PV.Inv) {
1541 auto *QI = dyn_cast<ConstantInt>(PV.Q);
1542 assert(QI && QI->getBitWidth() <= 32);
1544 // Again, clearing bits beyond IterCount.
1545 unsigned M = (1 << PV.IterCount) - 1;
1546 unsigned Tmp = (QI->getZExtValue() | 1) & M;
1547 unsigned QV = getInverseMxN(Tmp) & M;
1548 auto *QVI = ConstantInt::get(QI->getType(), QV);
1549 P = B.CreateCall(PMF, {P, QVI});
1550 P = B.CreateTrunc(P, QI->getType());
1551 if (IC != 32)
1552 P = B.CreateAnd(P, BMI);
1555 Value *R = B.CreateCall(PMF, {P, Q});
1557 if (PV.M != nullptr)
1558 R = B.CreateXor(R, B.CreateIntCast(P0, R->getType(), false));
1560 return R;
1563 static bool hasZeroSignBit(const Value *V) {
1564 if (const auto *CI = dyn_cast<const ConstantInt>(V))
1565 return (CI->getType()->getSignBit() & CI->getSExtValue()) == 0;
1566 const Instruction *I = dyn_cast<const Instruction>(V);
1567 if (!I)
1568 return false;
1569 switch (I->getOpcode()) {
1570 case Instruction::LShr:
1571 if (const auto SI = dyn_cast<const ConstantInt>(I->getOperand(1)))
1572 return SI->getZExtValue() > 0;
1573 return false;
1574 case Instruction::Or:
1575 case Instruction::Xor:
1576 return hasZeroSignBit(I->getOperand(0)) &&
1577 hasZeroSignBit(I->getOperand(1));
1578 case Instruction::And:
1579 return hasZeroSignBit(I->getOperand(0)) ||
1580 hasZeroSignBit(I->getOperand(1));
1582 return false;
1585 void PolynomialMultiplyRecognize::setupPreSimplifier(Simplifier &S) {
1586 S.addRule("sink-zext",
1587 // Sink zext past bitwise operations.
1588 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1589 if (I->getOpcode() != Instruction::ZExt)
1590 return nullptr;
1591 Instruction *T = dyn_cast<Instruction>(I->getOperand(0));
1592 if (!T)
1593 return nullptr;
1594 switch (T->getOpcode()) {
1595 case Instruction::And:
1596 case Instruction::Or:
1597 case Instruction::Xor:
1598 break;
1599 default:
1600 return nullptr;
1602 IRBuilder<> B(Ctx);
1603 return B.CreateBinOp(cast<BinaryOperator>(T)->getOpcode(),
1604 B.CreateZExt(T->getOperand(0), I->getType()),
1605 B.CreateZExt(T->getOperand(1), I->getType()));
1607 S.addRule("xor/and -> and/xor",
1608 // (xor (and x a) (and y a)) -> (and (xor x y) a)
1609 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1610 if (I->getOpcode() != Instruction::Xor)
1611 return nullptr;
1612 Instruction *And0 = dyn_cast<Instruction>(I->getOperand(0));
1613 Instruction *And1 = dyn_cast<Instruction>(I->getOperand(1));
1614 if (!And0 || !And1)
1615 return nullptr;
1616 if (And0->getOpcode() != Instruction::And ||
1617 And1->getOpcode() != Instruction::And)
1618 return nullptr;
1619 if (And0->getOperand(1) != And1->getOperand(1))
1620 return nullptr;
1621 IRBuilder<> B(Ctx);
1622 return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1->getOperand(0)),
1623 And0->getOperand(1));
1625 S.addRule("sink binop into select",
1626 // (Op (select c x y) z) -> (select c (Op x z) (Op y z))
1627 // (Op x (select c y z)) -> (select c (Op x y) (Op x z))
1628 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1629 BinaryOperator *BO = dyn_cast<BinaryOperator>(I);
1630 if (!BO)
1631 return nullptr;
1632 Instruction::BinaryOps Op = BO->getOpcode();
1633 if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(0))) {
1634 IRBuilder<> B(Ctx);
1635 Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue();
1636 Value *Z = BO->getOperand(1);
1637 return B.CreateSelect(Sel->getCondition(),
1638 B.CreateBinOp(Op, X, Z),
1639 B.CreateBinOp(Op, Y, Z));
1641 if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(1))) {
1642 IRBuilder<> B(Ctx);
1643 Value *X = BO->getOperand(0);
1644 Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue();
1645 return B.CreateSelect(Sel->getCondition(),
1646 B.CreateBinOp(Op, X, Y),
1647 B.CreateBinOp(Op, X, Z));
1649 return nullptr;
1651 S.addRule("fold select-select",
1652 // (select c (select c x y) z) -> (select c x z)
1653 // (select c x (select c y z)) -> (select c x z)
1654 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1655 SelectInst *Sel = dyn_cast<SelectInst>(I);
1656 if (!Sel)
1657 return nullptr;
1658 IRBuilder<> B(Ctx);
1659 Value *C = Sel->getCondition();
1660 if (SelectInst *Sel0 = dyn_cast<SelectInst>(Sel->getTrueValue())) {
1661 if (Sel0->getCondition() == C)
1662 return B.CreateSelect(C, Sel0->getTrueValue(), Sel->getFalseValue());
1664 if (SelectInst *Sel1 = dyn_cast<SelectInst>(Sel->getFalseValue())) {
1665 if (Sel1->getCondition() == C)
1666 return B.CreateSelect(C, Sel->getTrueValue(), Sel1->getFalseValue());
1668 return nullptr;
1670 S.addRule("or-signbit -> xor-signbit",
1671 // (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0)
1672 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1673 if (I->getOpcode() != Instruction::Or)
1674 return nullptr;
1675 ConstantInt *Msb = dyn_cast<ConstantInt>(I->getOperand(1));
1676 if (!Msb || Msb->getZExtValue() != Msb->getType()->getSignBit())
1677 return nullptr;
1678 if (!hasZeroSignBit(I->getOperand(0)))
1679 return nullptr;
1680 return IRBuilder<>(Ctx).CreateXor(I->getOperand(0), Msb);
1682 S.addRule("sink lshr into binop",
1683 // (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c))
1684 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1685 if (I->getOpcode() != Instruction::LShr)
1686 return nullptr;
1687 BinaryOperator *BitOp = dyn_cast<BinaryOperator>(I->getOperand(0));
1688 if (!BitOp)
1689 return nullptr;
1690 switch (BitOp->getOpcode()) {
1691 case Instruction::And:
1692 case Instruction::Or:
1693 case Instruction::Xor:
1694 break;
1695 default:
1696 return nullptr;
1698 IRBuilder<> B(Ctx);
1699 Value *S = I->getOperand(1);
1700 return B.CreateBinOp(BitOp->getOpcode(),
1701 B.CreateLShr(BitOp->getOperand(0), S),
1702 B.CreateLShr(BitOp->getOperand(1), S));
1704 S.addRule("expose bitop-const",
1705 // (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b))
1706 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1707 auto IsBitOp = [](unsigned Op) -> bool {
1708 switch (Op) {
1709 case Instruction::And:
1710 case Instruction::Or:
1711 case Instruction::Xor:
1712 return true;
1714 return false;
1716 BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(I);
1717 if (!BitOp1 || !IsBitOp(BitOp1->getOpcode()))
1718 return nullptr;
1719 BinaryOperator *BitOp2 = dyn_cast<BinaryOperator>(BitOp1->getOperand(0));
1720 if (!BitOp2 || !IsBitOp(BitOp2->getOpcode()))
1721 return nullptr;
1722 ConstantInt *CA = dyn_cast<ConstantInt>(BitOp2->getOperand(1));
1723 ConstantInt *CB = dyn_cast<ConstantInt>(BitOp1->getOperand(1));
1724 if (!CA || !CB)
1725 return nullptr;
1726 IRBuilder<> B(Ctx);
1727 Value *X = BitOp2->getOperand(0);
1728 return B.CreateBinOp(BitOp2->getOpcode(), X,
1729 B.CreateBinOp(BitOp1->getOpcode(), CA, CB));
1733 void PolynomialMultiplyRecognize::setupPostSimplifier(Simplifier &S) {
1734 S.addRule("(and (xor (and x a) y) b) -> (and (xor x y) b), if b == b&a",
1735 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1736 if (I->getOpcode() != Instruction::And)
1737 return nullptr;
1738 Instruction *Xor = dyn_cast<Instruction>(I->getOperand(0));
1739 ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(1));
1740 if (!Xor || !C0)
1741 return nullptr;
1742 if (Xor->getOpcode() != Instruction::Xor)
1743 return nullptr;
1744 Instruction *And0 = dyn_cast<Instruction>(Xor->getOperand(0));
1745 Instruction *And1 = dyn_cast<Instruction>(Xor->getOperand(1));
1746 // Pick the first non-null and.
1747 if (!And0 || And0->getOpcode() != Instruction::And)
1748 std::swap(And0, And1);
1749 ConstantInt *C1 = dyn_cast<ConstantInt>(And0->getOperand(1));
1750 if (!C1)
1751 return nullptr;
1752 uint32_t V0 = C0->getZExtValue();
1753 uint32_t V1 = C1->getZExtValue();
1754 if (V0 != (V0 & V1))
1755 return nullptr;
1756 IRBuilder<> B(Ctx);
1757 return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1), C0);
1761 bool PolynomialMultiplyRecognize::recognize() {
1762 LLVM_DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n"
1763 << *CurLoop << '\n');
1764 // Restrictions:
1765 // - The loop must consist of a single block.
1766 // - The iteration count must be known at compile-time.
1767 // - The loop must have an induction variable starting from 0, and
1768 // incremented in each iteration of the loop.
1769 BasicBlock *LoopB = CurLoop->getHeader();
1770 LLVM_DEBUG(dbgs() << "Loop header:\n" << *LoopB);
1772 if (LoopB != CurLoop->getLoopLatch())
1773 return false;
1774 BasicBlock *ExitB = CurLoop->getExitBlock();
1775 if (ExitB == nullptr)
1776 return false;
1777 BasicBlock *EntryB = CurLoop->getLoopPreheader();
1778 if (EntryB == nullptr)
1779 return false;
1781 unsigned IterCount = 0;
1782 const SCEV *CT = SE.getBackedgeTakenCount(CurLoop);
1783 if (isa<SCEVCouldNotCompute>(CT))
1784 return false;
1785 if (auto *CV = dyn_cast<SCEVConstant>(CT))
1786 IterCount = CV->getValue()->getZExtValue() + 1;
1788 Value *CIV = getCountIV(LoopB);
1789 ParsedValues PV;
1790 Simplifier PreSimp;
1791 PV.IterCount = IterCount;
1792 LLVM_DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " << IterCount
1793 << '\n');
1795 setupPreSimplifier(PreSimp);
1797 // Perform a preliminary scan of select instructions to see if any of them
1798 // looks like a generator of the polynomial multiply steps. Assume that a
1799 // loop can only contain a single transformable operation, so stop the
1800 // traversal after the first reasonable candidate was found.
1801 // XXX: Currently this approach can modify the loop before being 100% sure
1802 // that the transformation can be carried out.
1803 bool FoundPreScan = false;
1804 auto FeedsPHI = [LoopB](const Value *V) -> bool {
1805 for (const Value *U : V->users()) {
1806 if (const auto *P = dyn_cast<const PHINode>(U))
1807 if (P->getParent() == LoopB)
1808 return true;
1810 return false;
1812 for (Instruction &In : *LoopB) {
1813 SelectInst *SI = dyn_cast<SelectInst>(&In);
1814 if (!SI || !FeedsPHI(SI))
1815 continue;
1817 Simplifier::Context C(SI);
1818 Value *T = PreSimp.simplify(C);
1819 SelectInst *SelI = (T && isa<SelectInst>(T)) ? cast<SelectInst>(T) : SI;
1820 LLVM_DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) << '\n');
1821 if (scanSelect(SelI, LoopB, EntryB, CIV, PV, true)) {
1822 FoundPreScan = true;
1823 if (SelI != SI) {
1824 Value *NewSel = C.materialize(LoopB, SI->getIterator());
1825 SI->replaceAllUsesWith(NewSel);
1826 RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
1828 break;
1832 if (!FoundPreScan) {
1833 LLVM_DEBUG(dbgs() << "Have not found candidates for pmpy\n");
1834 return false;
1837 if (!PV.Left) {
1838 // The right shift version actually only returns the higher bits of
1839 // the result (each iteration discards the LSB). If we want to convert it
1840 // to a left-shifting loop, the working data type must be at least as
1841 // wide as the target's pmpy instruction.
1842 if (!promoteTypes(LoopB, ExitB))
1843 return false;
1844 // Run post-promotion simplifications.
1845 Simplifier PostSimp;
1846 setupPostSimplifier(PostSimp);
1847 for (Instruction &In : *LoopB) {
1848 SelectInst *SI = dyn_cast<SelectInst>(&In);
1849 if (!SI || !FeedsPHI(SI))
1850 continue;
1851 Simplifier::Context C(SI);
1852 Value *T = PostSimp.simplify(C);
1853 SelectInst *SelI = dyn_cast_or_null<SelectInst>(T);
1854 if (SelI != SI) {
1855 Value *NewSel = C.materialize(LoopB, SI->getIterator());
1856 SI->replaceAllUsesWith(NewSel);
1857 RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
1859 break;
1862 if (!convertShiftsToLeft(LoopB, ExitB, IterCount))
1863 return false;
1864 cleanupLoopBody(LoopB);
1867 // Scan the loop again, find the generating select instruction.
1868 bool FoundScan = false;
1869 for (Instruction &In : *LoopB) {
1870 SelectInst *SelI = dyn_cast<SelectInst>(&In);
1871 if (!SelI)
1872 continue;
1873 LLVM_DEBUG(dbgs() << "scanSelect: " << *SelI << '\n');
1874 FoundScan = scanSelect(SelI, LoopB, EntryB, CIV, PV, false);
1875 if (FoundScan)
1876 break;
1878 assert(FoundScan);
1880 LLVM_DEBUG({
1881 StringRef PP = (PV.M ? "(P+M)" : "P");
1882 if (!PV.Inv)
1883 dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n";
1884 else
1885 dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + "
1886 << PP << "\n";
1887 dbgs() << " Res:" << *PV.Res << "\n P:" << *PV.P << "\n";
1888 if (PV.M)
1889 dbgs() << " M:" << *PV.M << "\n";
1890 dbgs() << " Q:" << *PV.Q << "\n";
1891 dbgs() << " Iteration count:" << PV.IterCount << "\n";
1894 BasicBlock::iterator At(EntryB->getTerminator());
1895 Value *PM = generate(At, PV);
1896 if (PM == nullptr)
1897 return false;
1899 if (PM->getType() != PV.Res->getType())
1900 PM = IRBuilder<>(&*At).CreateIntCast(PM, PV.Res->getType(), false);
1902 PV.Res->replaceAllUsesWith(PM);
1903 PV.Res->eraseFromParent();
1904 return true;
1907 int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) {
1908 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
1909 return SC->getAPInt().getSExtValue();
1910 return 0;
1913 bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) {
1914 // Allow volatile stores if HexagonVolatileMemcpy is enabled.
1915 if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple())
1916 return false;
1918 Value *StoredVal = SI->getValueOperand();
1919 Value *StorePtr = SI->getPointerOperand();
1921 // Reject stores that are so large that they overflow an unsigned.
1922 uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
1923 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
1924 return false;
1926 // See if the pointer expression is an AddRec like {base,+,1} on the current
1927 // loop, which indicates a strided store. If we have something else, it's a
1928 // random store we can't handle.
1929 auto *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1930 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
1931 return false;
1933 // Check to see if the stride matches the size of the store. If so, then we
1934 // know that every byte is touched in the loop.
1935 int Stride = getSCEVStride(StoreEv);
1936 if (Stride == 0)
1937 return false;
1938 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1939 if (StoreSize != unsigned(std::abs(Stride)))
1940 return false;
1942 // The store must be feeding a non-volatile load.
1943 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
1944 if (!LI || !LI->isSimple())
1945 return false;
1947 // See if the pointer expression is an AddRec like {base,+,1} on the current
1948 // loop, which indicates a strided load. If we have something else, it's a
1949 // random load we can't handle.
1950 Value *LoadPtr = LI->getPointerOperand();
1951 auto *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1952 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
1953 return false;
1955 // The store and load must share the same stride.
1956 if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
1957 return false;
1959 // Success. This store can be converted into a memcpy.
1960 return true;
1963 /// mayLoopAccessLocation - Return true if the specified loop might access the
1964 /// specified pointer location, which is a loop-strided access. The 'Access'
1965 /// argument specifies what the verboten forms of access are (read or write).
1966 static bool
1967 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
1968 const SCEV *BECount, unsigned StoreSize,
1969 AliasAnalysis &AA,
1970 SmallPtrSetImpl<Instruction *> &Ignored) {
1971 // Get the location that may be stored across the loop. Since the access
1972 // is strided positively through memory, we say that the modified location
1973 // starts at the pointer and has infinite size.
1974 LocationSize AccessSize = LocationSize::unknown();
1976 // If the loop iterates a fixed number of times, we can refine the access
1977 // size to be exactly the size of the memset, which is (BECount+1)*StoreSize
1978 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
1979 AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
1980 StoreSize);
1982 // TODO: For this to be really effective, we have to dive into the pointer
1983 // operand in the store. Store to &A[i] of 100 will always return may alias
1984 // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
1985 // which will then no-alias a store to &A[100].
1986 MemoryLocation StoreLoc(Ptr, AccessSize);
1988 for (auto *B : L->blocks())
1989 for (auto &I : *B)
1990 if (Ignored.count(&I) == 0 &&
1991 isModOrRefSet(
1992 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
1993 return true;
1995 return false;
1998 void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB,
1999 SmallVectorImpl<StoreInst*> &Stores) {
2000 Stores.clear();
2001 for (Instruction &I : *BB)
2002 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2003 if (isLegalStore(CurLoop, SI))
2004 Stores.push_back(SI);
2007 bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop,
2008 StoreInst *SI, const SCEV *BECount) {
2009 assert((SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy)) &&
2010 "Expected only non-volatile stores, or Hexagon-specific memcpy"
2011 "to volatile destination.");
2013 Value *StorePtr = SI->getPointerOperand();
2014 auto *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
2015 unsigned Stride = getSCEVStride(StoreEv);
2016 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
2017 if (Stride != StoreSize)
2018 return false;
2020 // See if the pointer expression is an AddRec like {base,+,1} on the current
2021 // loop, which indicates a strided load. If we have something else, it's a
2022 // random load we can't handle.
2023 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
2024 auto *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
2026 // The trip count of the loop and the base pointer of the addrec SCEV is
2027 // guaranteed to be loop invariant, which means that it should dominate the
2028 // header. This allows us to insert code for it in the preheader.
2029 BasicBlock *Preheader = CurLoop->getLoopPreheader();
2030 Instruction *ExpPt = Preheader->getTerminator();
2031 IRBuilder<> Builder(ExpPt);
2032 SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom");
2034 Type *IntPtrTy = Builder.getIntPtrTy(*DL, SI->getPointerAddressSpace());
2036 // Okay, we have a strided store "p[i]" of a loaded value. We can turn
2037 // this into a memcpy/memmove in the loop preheader now if we want. However,
2038 // this would be unsafe to do if there is anything else in the loop that may
2039 // read or write the memory region we're storing to. For memcpy, this
2040 // includes the load that feeds the stores. Check for an alias by generating
2041 // the base address and checking everything.
2042 Value *StoreBasePtr = Expander.expandCodeFor(StoreEv->getStart(),
2043 Builder.getInt8PtrTy(SI->getPointerAddressSpace()), ExpPt);
2044 Value *LoadBasePtr = nullptr;
2046 bool Overlap = false;
2047 bool DestVolatile = SI->isVolatile();
2048 Type *BECountTy = BECount->getType();
2050 if (DestVolatile) {
2051 // The trip count must fit in i32, since it is the type of the "num_words"
2052 // argument to hexagon_memcpy_forward_vp4cp4n2.
2053 if (StoreSize != 4 || DL->getTypeSizeInBits(BECountTy) > 32) {
2054 CleanupAndExit:
2055 // If we generated new code for the base pointer, clean up.
2056 Expander.clear();
2057 if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) {
2058 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
2059 StoreBasePtr = nullptr;
2061 if (LoadBasePtr) {
2062 RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
2063 LoadBasePtr = nullptr;
2065 return false;
2069 SmallPtrSet<Instruction*, 2> Ignore1;
2070 Ignore1.insert(SI);
2071 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
2072 StoreSize, *AA, Ignore1)) {
2073 // Check if the load is the offending instruction.
2074 Ignore1.insert(LI);
2075 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
2076 BECount, StoreSize, *AA, Ignore1)) {
2077 // Still bad. Nothing we can do.
2078 goto CleanupAndExit;
2080 // It worked with the load ignored.
2081 Overlap = true;
2084 if (!Overlap) {
2085 if (DisableMemcpyIdiom || !HasMemcpy)
2086 goto CleanupAndExit;
2087 } else {
2088 // Don't generate memmove if this function will be inlined. This is
2089 // because the caller will undergo this transformation after inlining.
2090 Function *Func = CurLoop->getHeader()->getParent();
2091 if (Func->hasFnAttribute(Attribute::AlwaysInline))
2092 goto CleanupAndExit;
2094 // In case of a memmove, the call to memmove will be executed instead
2095 // of the loop, so we need to make sure that there is nothing else in
2096 // the loop than the load, store and instructions that these two depend
2097 // on.
2098 SmallVector<Instruction*,2> Insts;
2099 Insts.push_back(SI);
2100 Insts.push_back(LI);
2101 if (!coverLoop(CurLoop, Insts))
2102 goto CleanupAndExit;
2104 if (DisableMemmoveIdiom || !HasMemmove)
2105 goto CleanupAndExit;
2106 bool IsNested = CurLoop->getParentLoop() != nullptr;
2107 if (IsNested && OnlyNonNestedMemmove)
2108 goto CleanupAndExit;
2111 // For a memcpy, we have to make sure that the input array is not being
2112 // mutated by the loop.
2113 LoadBasePtr = Expander.expandCodeFor(LoadEv->getStart(),
2114 Builder.getInt8PtrTy(LI->getPointerAddressSpace()), ExpPt);
2116 SmallPtrSet<Instruction*, 2> Ignore2;
2117 Ignore2.insert(SI);
2118 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
2119 StoreSize, *AA, Ignore2))
2120 goto CleanupAndExit;
2122 // Check the stride.
2123 bool StridePos = getSCEVStride(LoadEv) >= 0;
2125 // Currently, the volatile memcpy only emulates traversing memory forward.
2126 if (!StridePos && DestVolatile)
2127 goto CleanupAndExit;
2129 bool RuntimeCheck = (Overlap || DestVolatile);
2131 BasicBlock *ExitB;
2132 if (RuntimeCheck) {
2133 // The runtime check needs a single exit block.
2134 SmallVector<BasicBlock*, 8> ExitBlocks;
2135 CurLoop->getUniqueExitBlocks(ExitBlocks);
2136 if (ExitBlocks.size() != 1)
2137 goto CleanupAndExit;
2138 ExitB = ExitBlocks[0];
2141 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to
2142 // pointer size if it isn't already.
2143 LLVMContext &Ctx = SI->getContext();
2144 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
2145 DebugLoc DLoc = SI->getDebugLoc();
2147 const SCEV *NumBytesS =
2148 SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
2149 if (StoreSize != 1)
2150 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
2151 SCEV::FlagNUW);
2152 Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, ExpPt);
2153 if (Instruction *In = dyn_cast<Instruction>(NumBytes))
2154 if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
2155 NumBytes = Simp;
2157 CallInst *NewCall;
2159 if (RuntimeCheck) {
2160 unsigned Threshold = RuntimeMemSizeThreshold;
2161 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) {
2162 uint64_t C = CI->getZExtValue();
2163 if (Threshold != 0 && C < Threshold)
2164 goto CleanupAndExit;
2165 if (C < CompileTimeMemSizeThreshold)
2166 goto CleanupAndExit;
2169 BasicBlock *Header = CurLoop->getHeader();
2170 Function *Func = Header->getParent();
2171 Loop *ParentL = LF->getLoopFor(Preheader);
2172 StringRef HeaderName = Header->getName();
2174 // Create a new (empty) preheader, and update the PHI nodes in the
2175 // header to use the new preheader.
2176 BasicBlock *NewPreheader = BasicBlock::Create(Ctx, HeaderName+".rtli.ph",
2177 Func, Header);
2178 if (ParentL)
2179 ParentL->addBasicBlockToLoop(NewPreheader, *LF);
2180 IRBuilder<>(NewPreheader).CreateBr(Header);
2181 for (auto &In : *Header) {
2182 PHINode *PN = dyn_cast<PHINode>(&In);
2183 if (!PN)
2184 break;
2185 int bx = PN->getBasicBlockIndex(Preheader);
2186 if (bx >= 0)
2187 PN->setIncomingBlock(bx, NewPreheader);
2189 DT->addNewBlock(NewPreheader, Preheader);
2190 DT->changeImmediateDominator(Header, NewPreheader);
2192 // Check for safe conditions to execute memmove.
2193 // If stride is positive, copying things from higher to lower addresses
2194 // is equivalent to memmove. For negative stride, it's the other way
2195 // around. Copying forward in memory with positive stride may not be
2196 // same as memmove since we may be copying values that we just stored
2197 // in some previous iteration.
2198 Value *LA = Builder.CreatePtrToInt(LoadBasePtr, IntPtrTy);
2199 Value *SA = Builder.CreatePtrToInt(StoreBasePtr, IntPtrTy);
2200 Value *LowA = StridePos ? SA : LA;
2201 Value *HighA = StridePos ? LA : SA;
2202 Value *CmpA = Builder.CreateICmpULT(LowA, HighA);
2203 Value *Cond = CmpA;
2205 // Check for distance between pointers. Since the case LowA < HighA
2206 // is checked for above, assume LowA >= HighA.
2207 Value *Dist = Builder.CreateSub(LowA, HighA);
2208 Value *CmpD = Builder.CreateICmpSLE(NumBytes, Dist);
2209 Value *CmpEither = Builder.CreateOr(Cond, CmpD);
2210 Cond = CmpEither;
2212 if (Threshold != 0) {
2213 Type *Ty = NumBytes->getType();
2214 Value *Thr = ConstantInt::get(Ty, Threshold);
2215 Value *CmpB = Builder.CreateICmpULT(Thr, NumBytes);
2216 Value *CmpBoth = Builder.CreateAnd(Cond, CmpB);
2217 Cond = CmpBoth;
2219 BasicBlock *MemmoveB = BasicBlock::Create(Ctx, Header->getName()+".rtli",
2220 Func, NewPreheader);
2221 if (ParentL)
2222 ParentL->addBasicBlockToLoop(MemmoveB, *LF);
2223 Instruction *OldT = Preheader->getTerminator();
2224 Builder.CreateCondBr(Cond, MemmoveB, NewPreheader);
2225 OldT->eraseFromParent();
2226 Preheader->setName(Preheader->getName()+".old");
2227 DT->addNewBlock(MemmoveB, Preheader);
2228 // Find the new immediate dominator of the exit block.
2229 BasicBlock *ExitD = Preheader;
2230 for (auto PI = pred_begin(ExitB), PE = pred_end(ExitB); PI != PE; ++PI) {
2231 BasicBlock *PB = *PI;
2232 ExitD = DT->findNearestCommonDominator(ExitD, PB);
2233 if (!ExitD)
2234 break;
2236 // If the prior immediate dominator of ExitB was dominated by the
2237 // old preheader, then the old preheader becomes the new immediate
2238 // dominator. Otherwise don't change anything (because the newly
2239 // added blocks are dominated by the old preheader).
2240 if (ExitD && DT->dominates(Preheader, ExitD)) {
2241 DomTreeNode *BN = DT->getNode(ExitB);
2242 DomTreeNode *DN = DT->getNode(ExitD);
2243 BN->setIDom(DN);
2246 // Add a call to memmove to the conditional block.
2247 IRBuilder<> CondBuilder(MemmoveB);
2248 CondBuilder.CreateBr(ExitB);
2249 CondBuilder.SetInsertPoint(MemmoveB->getTerminator());
2251 if (DestVolatile) {
2252 Type *Int32Ty = Type::getInt32Ty(Ctx);
2253 Type *Int32PtrTy = Type::getInt32PtrTy(Ctx);
2254 Type *VoidTy = Type::getVoidTy(Ctx);
2255 Module *M = Func->getParent();
2256 FunctionCallee Fn = M->getOrInsertFunction(
2257 HexagonVolatileMemcpyName, VoidTy, Int32PtrTy, Int32PtrTy, Int32Ty);
2259 const SCEV *OneS = SE->getConstant(Int32Ty, 1);
2260 const SCEV *BECount32 = SE->getTruncateOrZeroExtend(BECount, Int32Ty);
2261 const SCEV *NumWordsS = SE->getAddExpr(BECount32, OneS, SCEV::FlagNUW);
2262 Value *NumWords = Expander.expandCodeFor(NumWordsS, Int32Ty,
2263 MemmoveB->getTerminator());
2264 if (Instruction *In = dyn_cast<Instruction>(NumWords))
2265 if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
2266 NumWords = Simp;
2268 Value *Op0 = (StoreBasePtr->getType() == Int32PtrTy)
2269 ? StoreBasePtr
2270 : CondBuilder.CreateBitCast(StoreBasePtr, Int32PtrTy);
2271 Value *Op1 = (LoadBasePtr->getType() == Int32PtrTy)
2272 ? LoadBasePtr
2273 : CondBuilder.CreateBitCast(LoadBasePtr, Int32PtrTy);
2274 NewCall = CondBuilder.CreateCall(Fn, {Op0, Op1, NumWords});
2275 } else {
2276 NewCall = CondBuilder.CreateMemMove(StoreBasePtr, SI->getAlignment(),
2277 LoadBasePtr, LI->getAlignment(),
2278 NumBytes);
2280 } else {
2281 NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(),
2282 LoadBasePtr, LI->getAlignment(),
2283 NumBytes);
2284 // Okay, the memcpy has been formed. Zap the original store and
2285 // anything that feeds into it.
2286 RecursivelyDeleteTriviallyDeadInstructions(SI, TLI);
2289 NewCall->setDebugLoc(DLoc);
2291 LLVM_DEBUG(dbgs() << " Formed " << (Overlap ? "memmove: " : "memcpy: ")
2292 << *NewCall << "\n"
2293 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n"
2294 << " from store ptr=" << *StoreEv << " at: " << *SI
2295 << "\n");
2297 return true;
2300 // Check if the instructions in Insts, together with their dependencies
2301 // cover the loop in the sense that the loop could be safely eliminated once
2302 // the instructions in Insts are removed.
2303 bool HexagonLoopIdiomRecognize::coverLoop(Loop *L,
2304 SmallVectorImpl<Instruction*> &Insts) const {
2305 SmallSet<BasicBlock*,8> LoopBlocks;
2306 for (auto *B : L->blocks())
2307 LoopBlocks.insert(B);
2309 SetVector<Instruction*> Worklist(Insts.begin(), Insts.end());
2311 // Collect all instructions from the loop that the instructions in Insts
2312 // depend on (plus their dependencies, etc.). These instructions will
2313 // constitute the expression trees that feed those in Insts, but the trees
2314 // will be limited only to instructions contained in the loop.
2315 for (unsigned i = 0; i < Worklist.size(); ++i) {
2316 Instruction *In = Worklist[i];
2317 for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) {
2318 Instruction *OpI = dyn_cast<Instruction>(I);
2319 if (!OpI)
2320 continue;
2321 BasicBlock *PB = OpI->getParent();
2322 if (!LoopBlocks.count(PB))
2323 continue;
2324 Worklist.insert(OpI);
2328 // Scan all instructions in the loop, if any of them have a user outside
2329 // of the loop, or outside of the expressions collected above, then either
2330 // the loop has a side-effect visible outside of it, or there are
2331 // instructions in it that are not involved in the original set Insts.
2332 for (auto *B : L->blocks()) {
2333 for (auto &In : *B) {
2334 if (isa<BranchInst>(In) || isa<DbgInfoIntrinsic>(In))
2335 continue;
2336 if (!Worklist.count(&In) && In.mayHaveSideEffects())
2337 return false;
2338 for (const auto &K : In.users()) {
2339 Instruction *UseI = dyn_cast<Instruction>(K);
2340 if (!UseI)
2341 continue;
2342 BasicBlock *UseB = UseI->getParent();
2343 if (LF->getLoopFor(UseB) != L)
2344 return false;
2349 return true;
2352 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
2353 /// with the specified backedge count. This block is known to be in the current
2354 /// loop and not in any subloops.
2355 bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB,
2356 const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) {
2357 // We can only promote stores in this block if they are unconditionally
2358 // executed in the loop. For a block to be unconditionally executed, it has
2359 // to dominate all the exit blocks of the loop. Verify this now.
2360 auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool {
2361 return DT->dominates(BB, EB);
2363 if (!all_of(ExitBlocks, DominatedByBB))
2364 return false;
2366 bool MadeChange = false;
2367 // Look for store instructions, which may be optimized to memset/memcpy.
2368 SmallVector<StoreInst*,8> Stores;
2369 collectStores(CurLoop, BB, Stores);
2371 // Optimize the store into a memcpy, if it feeds an similarly strided load.
2372 for (auto &SI : Stores)
2373 MadeChange |= processCopyingStore(CurLoop, SI, BECount);
2375 return MadeChange;
2378 bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) {
2379 PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE);
2380 if (PMR.recognize())
2381 return true;
2383 if (!HasMemcpy && !HasMemmove)
2384 return false;
2386 const SCEV *BECount = SE->getBackedgeTakenCount(L);
2387 assert(!isa<SCEVCouldNotCompute>(BECount) &&
2388 "runOnCountableLoop() called on a loop without a predictable"
2389 "backedge-taken count");
2391 SmallVector<BasicBlock *, 8> ExitBlocks;
2392 L->getUniqueExitBlocks(ExitBlocks);
2394 bool Changed = false;
2396 // Scan all the blocks in the loop that are not in subloops.
2397 for (auto *BB : L->getBlocks()) {
2398 // Ignore blocks in subloops.
2399 if (LF->getLoopFor(BB) != L)
2400 continue;
2401 Changed |= runOnLoopBlock(L, BB, BECount, ExitBlocks);
2404 return Changed;
2407 bool HexagonLoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
2408 const Module &M = *L->getHeader()->getParent()->getParent();
2409 if (Triple(M.getTargetTriple()).getArch() != Triple::hexagon)
2410 return false;
2412 if (skipLoop(L))
2413 return false;
2415 // If the loop could not be converted to canonical form, it must have an
2416 // indirectbr in it, just give up.
2417 if (!L->getLoopPreheader())
2418 return false;
2420 // Disable loop idiom recognition if the function's name is a common idiom.
2421 StringRef Name = L->getHeader()->getParent()->getName();
2422 if (Name == "memset" || Name == "memcpy" || Name == "memmove")
2423 return false;
2425 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2426 DL = &L->getHeader()->getModule()->getDataLayout();
2427 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2428 LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2429 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
2430 *L->getHeader()->getParent());
2431 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2433 HasMemcpy = TLI->has(LibFunc_memcpy);
2434 HasMemmove = TLI->has(LibFunc_memmove);
2436 if (SE->hasLoopInvariantBackedgeTakenCount(L))
2437 return runOnCountableLoop(L);
2438 return false;
2441 Pass *llvm::createHexagonLoopIdiomPass() {
2442 return new HexagonLoopIdiomRecognize();