1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass lowers LLVM IR exception handling into something closer to what the
10 // backend wants for functions using a personality function from a runtime
11 // provided by MSVC. Functions with other personality functions are left alone
12 // and may be prepared by other passes. In particular, all supported MSVC
13 // personality functions require cleanup code to be outlined, and the C++
14 // personality requires catch handler code to be outlined.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/EHPersonalities.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/WinEHFuncInfo.h"
27 #include "llvm/IR/Verifier.h"
28 #include "llvm/MC/MCSymbol.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 #include "llvm/Transforms/Utils/Cloning.h"
34 #include "llvm/Transforms/Utils/SSAUpdater.h"
38 #define DEBUG_TYPE "winehprepare"
40 static cl::opt
<bool> DisableDemotion(
41 "disable-demotion", cl::Hidden
,
43 "Clone multicolor basic blocks but do not demote cross scopes"),
46 static cl::opt
<bool> DisableCleanups(
47 "disable-cleanups", cl::Hidden
,
48 cl::desc("Do not remove implausible terminators or other similar cleanups"),
51 static cl::opt
<bool> DemoteCatchSwitchPHIOnlyOpt(
52 "demote-catchswitch-only", cl::Hidden
,
53 cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));
57 class WinEHPrepare
: public FunctionPass
{
59 static char ID
; // Pass identification, replacement for typeid.
60 WinEHPrepare(bool DemoteCatchSwitchPHIOnly
= false)
61 : FunctionPass(ID
), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly
) {}
63 bool runOnFunction(Function
&Fn
) override
;
65 bool doFinalization(Module
&M
) override
;
67 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
69 StringRef
getPassName() const override
{
70 return "Windows exception handling preparation";
74 void insertPHIStores(PHINode
*OriginalPHI
, AllocaInst
*SpillSlot
);
76 insertPHIStore(BasicBlock
*PredBlock
, Value
*PredVal
, AllocaInst
*SpillSlot
,
77 SmallVectorImpl
<std::pair
<BasicBlock
*, Value
*>> &Worklist
);
78 AllocaInst
*insertPHILoads(PHINode
*PN
, Function
&F
);
79 void replaceUseWithLoad(Value
*V
, Use
&U
, AllocaInst
*&SpillSlot
,
80 DenseMap
<BasicBlock
*, Value
*> &Loads
, Function
&F
);
81 bool prepareExplicitEH(Function
&F
);
82 void colorFunclets(Function
&F
);
84 void demotePHIsOnFunclets(Function
&F
, bool DemoteCatchSwitchPHIOnly
);
85 void cloneCommonBlocks(Function
&F
);
86 void removeImplausibleInstructions(Function
&F
);
87 void cleanupPreparedFunclets(Function
&F
);
88 void verifyPreparedFunclets(Function
&F
);
90 bool DemoteCatchSwitchPHIOnly
;
92 // All fields are reset by runOnFunction.
93 EHPersonality Personality
= EHPersonality::Unknown
;
95 const DataLayout
*DL
= nullptr;
96 DenseMap
<BasicBlock
*, ColorVector
> BlockColors
;
97 MapVector
<BasicBlock
*, std::vector
<BasicBlock
*>> FuncletBlocks
;
100 } // end anonymous namespace
102 char WinEHPrepare::ID
= 0;
103 INITIALIZE_PASS(WinEHPrepare
, DEBUG_TYPE
, "Prepare Windows exceptions",
106 FunctionPass
*llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly
) {
107 return new WinEHPrepare(DemoteCatchSwitchPHIOnly
);
110 bool WinEHPrepare::runOnFunction(Function
&Fn
) {
111 if (!Fn
.hasPersonalityFn())
114 // Classify the personality to see what kind of preparation we need.
115 Personality
= classifyEHPersonality(Fn
.getPersonalityFn());
117 // Do nothing if this is not a scope-based personality.
118 if (!isScopedEHPersonality(Personality
))
121 DL
= &Fn
.getParent()->getDataLayout();
122 return prepareExplicitEH(Fn
);
125 bool WinEHPrepare::doFinalization(Module
&M
) { return false; }
127 void WinEHPrepare::getAnalysisUsage(AnalysisUsage
&AU
) const {}
129 static int addUnwindMapEntry(WinEHFuncInfo
&FuncInfo
, int ToState
,
130 const BasicBlock
*BB
) {
131 CxxUnwindMapEntry UME
;
132 UME
.ToState
= ToState
;
134 FuncInfo
.CxxUnwindMap
.push_back(UME
);
135 return FuncInfo
.getLastStateNumber();
138 static void addTryBlockMapEntry(WinEHFuncInfo
&FuncInfo
, int TryLow
,
139 int TryHigh
, int CatchHigh
,
140 ArrayRef
<const CatchPadInst
*> Handlers
) {
141 WinEHTryBlockMapEntry TBME
;
142 TBME
.TryLow
= TryLow
;
143 TBME
.TryHigh
= TryHigh
;
144 TBME
.CatchHigh
= CatchHigh
;
145 assert(TBME
.TryLow
<= TBME
.TryHigh
);
146 for (const CatchPadInst
*CPI
: Handlers
) {
148 Constant
*TypeInfo
= cast
<Constant
>(CPI
->getArgOperand(0));
149 if (TypeInfo
->isNullValue())
150 HT
.TypeDescriptor
= nullptr;
152 HT
.TypeDescriptor
= cast
<GlobalVariable
>(TypeInfo
->stripPointerCasts());
153 HT
.Adjectives
= cast
<ConstantInt
>(CPI
->getArgOperand(1))->getZExtValue();
154 HT
.Handler
= CPI
->getParent();
156 dyn_cast
<AllocaInst
>(CPI
->getArgOperand(2)->stripPointerCasts()))
157 HT
.CatchObj
.Alloca
= AI
;
159 HT
.CatchObj
.Alloca
= nullptr;
160 TBME
.HandlerArray
.push_back(HT
);
162 FuncInfo
.TryBlockMap
.push_back(TBME
);
165 static BasicBlock
*getCleanupRetUnwindDest(const CleanupPadInst
*CleanupPad
) {
166 for (const User
*U
: CleanupPad
->users())
167 if (const auto *CRI
= dyn_cast
<CleanupReturnInst
>(U
))
168 return CRI
->getUnwindDest();
172 static void calculateStateNumbersForInvokes(const Function
*Fn
,
173 WinEHFuncInfo
&FuncInfo
) {
174 auto *F
= const_cast<Function
*>(Fn
);
175 DenseMap
<BasicBlock
*, ColorVector
> BlockColors
= colorEHFunclets(*F
);
176 for (BasicBlock
&BB
: *F
) {
177 auto *II
= dyn_cast
<InvokeInst
>(BB
.getTerminator());
181 auto &BBColors
= BlockColors
[&BB
];
182 assert(BBColors
.size() == 1 && "multi-color BB not removed by preparation");
183 BasicBlock
*FuncletEntryBB
= BBColors
.front();
185 BasicBlock
*FuncletUnwindDest
;
187 dyn_cast
<FuncletPadInst
>(FuncletEntryBB
->getFirstNonPHI());
188 assert(FuncletPad
|| FuncletEntryBB
== &Fn
->getEntryBlock());
190 FuncletUnwindDest
= nullptr;
191 else if (auto *CatchPad
= dyn_cast
<CatchPadInst
>(FuncletPad
))
192 FuncletUnwindDest
= CatchPad
->getCatchSwitch()->getUnwindDest();
193 else if (auto *CleanupPad
= dyn_cast
<CleanupPadInst
>(FuncletPad
))
194 FuncletUnwindDest
= getCleanupRetUnwindDest(CleanupPad
);
196 llvm_unreachable("unexpected funclet pad!");
198 BasicBlock
*InvokeUnwindDest
= II
->getUnwindDest();
200 if (FuncletUnwindDest
== InvokeUnwindDest
) {
201 auto BaseStateI
= FuncInfo
.FuncletBaseStateMap
.find(FuncletPad
);
202 if (BaseStateI
!= FuncInfo
.FuncletBaseStateMap
.end())
203 BaseState
= BaseStateI
->second
;
206 if (BaseState
!= -1) {
207 FuncInfo
.InvokeStateMap
[II
] = BaseState
;
209 Instruction
*PadInst
= InvokeUnwindDest
->getFirstNonPHI();
210 assert(FuncInfo
.EHPadStateMap
.count(PadInst
) && "EH Pad has no state!");
211 FuncInfo
.InvokeStateMap
[II
] = FuncInfo
.EHPadStateMap
[PadInst
];
216 // Given BB which ends in an unwind edge, return the EHPad that this BB belongs
217 // to. If the unwind edge came from an invoke, return null.
218 static const BasicBlock
*getEHPadFromPredecessor(const BasicBlock
*BB
,
220 const Instruction
*TI
= BB
->getTerminator();
221 if (isa
<InvokeInst
>(TI
))
223 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(TI
)) {
224 if (CatchSwitch
->getParentPad() != ParentPad
)
228 assert(!TI
->isEHPad() && "unexpected EHPad!");
229 auto *CleanupPad
= cast
<CleanupReturnInst
>(TI
)->getCleanupPad();
230 if (CleanupPad
->getParentPad() != ParentPad
)
232 return CleanupPad
->getParent();
235 static void calculateCXXStateNumbers(WinEHFuncInfo
&FuncInfo
,
236 const Instruction
*FirstNonPHI
,
238 const BasicBlock
*BB
= FirstNonPHI
->getParent();
239 assert(BB
->isEHPad() && "not a funclet!");
241 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(FirstNonPHI
)) {
242 assert(FuncInfo
.EHPadStateMap
.count(CatchSwitch
) == 0 &&
243 "shouldn't revist catch funclets!");
245 SmallVector
<const CatchPadInst
*, 2> Handlers
;
246 for (const BasicBlock
*CatchPadBB
: CatchSwitch
->handlers()) {
247 auto *CatchPad
= cast
<CatchPadInst
>(CatchPadBB
->getFirstNonPHI());
248 Handlers
.push_back(CatchPad
);
250 int TryLow
= addUnwindMapEntry(FuncInfo
, ParentState
, nullptr);
251 FuncInfo
.EHPadStateMap
[CatchSwitch
] = TryLow
;
252 for (const BasicBlock
*PredBlock
: predecessors(BB
))
253 if ((PredBlock
= getEHPadFromPredecessor(PredBlock
,
254 CatchSwitch
->getParentPad())))
255 calculateCXXStateNumbers(FuncInfo
, PredBlock
->getFirstNonPHI(),
257 int CatchLow
= addUnwindMapEntry(FuncInfo
, ParentState
, nullptr);
259 // catchpads are separate funclets in C++ EH due to the way rethrow works.
260 int TryHigh
= CatchLow
- 1;
261 for (const auto *CatchPad
: Handlers
) {
262 FuncInfo
.FuncletBaseStateMap
[CatchPad
] = CatchLow
;
263 for (const User
*U
: CatchPad
->users()) {
264 const auto *UserI
= cast
<Instruction
>(U
);
265 if (auto *InnerCatchSwitch
= dyn_cast
<CatchSwitchInst
>(UserI
)) {
266 BasicBlock
*UnwindDest
= InnerCatchSwitch
->getUnwindDest();
267 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
268 calculateCXXStateNumbers(FuncInfo
, UserI
, CatchLow
);
270 if (auto *InnerCleanupPad
= dyn_cast
<CleanupPadInst
>(UserI
)) {
271 BasicBlock
*UnwindDest
= getCleanupRetUnwindDest(InnerCleanupPad
);
272 // If a nested cleanup pad reports a null unwind destination and the
273 // enclosing catch pad doesn't it must be post-dominated by an
274 // unreachable instruction.
275 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
276 calculateCXXStateNumbers(FuncInfo
, UserI
, CatchLow
);
280 int CatchHigh
= FuncInfo
.getLastStateNumber();
281 addTryBlockMapEntry(FuncInfo
, TryLow
, TryHigh
, CatchHigh
, Handlers
);
282 LLVM_DEBUG(dbgs() << "TryLow[" << BB
->getName() << "]: " << TryLow
<< '\n');
283 LLVM_DEBUG(dbgs() << "TryHigh[" << BB
->getName() << "]: " << TryHigh
285 LLVM_DEBUG(dbgs() << "CatchHigh[" << BB
->getName() << "]: " << CatchHigh
288 auto *CleanupPad
= cast
<CleanupPadInst
>(FirstNonPHI
);
290 // It's possible for a cleanup to be visited twice: it might have multiple
291 // cleanupret instructions.
292 if (FuncInfo
.EHPadStateMap
.count(CleanupPad
))
295 int CleanupState
= addUnwindMapEntry(FuncInfo
, ParentState
, BB
);
296 FuncInfo
.EHPadStateMap
[CleanupPad
] = CleanupState
;
297 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState
<< " to BB "
298 << BB
->getName() << '\n');
299 for (const BasicBlock
*PredBlock
: predecessors(BB
)) {
300 if ((PredBlock
= getEHPadFromPredecessor(PredBlock
,
301 CleanupPad
->getParentPad()))) {
302 calculateCXXStateNumbers(FuncInfo
, PredBlock
->getFirstNonPHI(),
306 for (const User
*U
: CleanupPad
->users()) {
307 const auto *UserI
= cast
<Instruction
>(U
);
308 if (UserI
->isEHPad())
309 report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
310 "contain exceptional actions");
315 static int addSEHExcept(WinEHFuncInfo
&FuncInfo
, int ParentState
,
316 const Function
*Filter
, const BasicBlock
*Handler
) {
317 SEHUnwindMapEntry Entry
;
318 Entry
.ToState
= ParentState
;
319 Entry
.IsFinally
= false;
320 Entry
.Filter
= Filter
;
321 Entry
.Handler
= Handler
;
322 FuncInfo
.SEHUnwindMap
.push_back(Entry
);
323 return FuncInfo
.SEHUnwindMap
.size() - 1;
326 static int addSEHFinally(WinEHFuncInfo
&FuncInfo
, int ParentState
,
327 const BasicBlock
*Handler
) {
328 SEHUnwindMapEntry Entry
;
329 Entry
.ToState
= ParentState
;
330 Entry
.IsFinally
= true;
331 Entry
.Filter
= nullptr;
332 Entry
.Handler
= Handler
;
333 FuncInfo
.SEHUnwindMap
.push_back(Entry
);
334 return FuncInfo
.SEHUnwindMap
.size() - 1;
337 static void calculateSEHStateNumbers(WinEHFuncInfo
&FuncInfo
,
338 const Instruction
*FirstNonPHI
,
340 const BasicBlock
*BB
= FirstNonPHI
->getParent();
341 assert(BB
->isEHPad() && "no a funclet!");
343 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(FirstNonPHI
)) {
344 assert(FuncInfo
.EHPadStateMap
.count(CatchSwitch
) == 0 &&
345 "shouldn't revist catch funclets!");
347 // Extract the filter function and the __except basic block and create a
349 assert(CatchSwitch
->getNumHandlers() == 1 &&
350 "SEH doesn't have multiple handlers per __try");
351 const auto *CatchPad
=
352 cast
<CatchPadInst
>((*CatchSwitch
->handler_begin())->getFirstNonPHI());
353 const BasicBlock
*CatchPadBB
= CatchPad
->getParent();
354 const Constant
*FilterOrNull
=
355 cast
<Constant
>(CatchPad
->getArgOperand(0)->stripPointerCasts());
356 const Function
*Filter
= dyn_cast
<Function
>(FilterOrNull
);
357 assert((Filter
|| FilterOrNull
->isNullValue()) &&
358 "unexpected filter value");
359 int TryState
= addSEHExcept(FuncInfo
, ParentState
, Filter
, CatchPadBB
);
361 // Everything in the __try block uses TryState as its parent state.
362 FuncInfo
.EHPadStateMap
[CatchSwitch
] = TryState
;
363 LLVM_DEBUG(dbgs() << "Assigning state #" << TryState
<< " to BB "
364 << CatchPadBB
->getName() << '\n');
365 for (const BasicBlock
*PredBlock
: predecessors(BB
))
366 if ((PredBlock
= getEHPadFromPredecessor(PredBlock
,
367 CatchSwitch
->getParentPad())))
368 calculateSEHStateNumbers(FuncInfo
, PredBlock
->getFirstNonPHI(),
371 // Everything in the __except block unwinds to ParentState, just like code
372 // outside the __try.
373 for (const User
*U
: CatchPad
->users()) {
374 const auto *UserI
= cast
<Instruction
>(U
);
375 if (auto *InnerCatchSwitch
= dyn_cast
<CatchSwitchInst
>(UserI
)) {
376 BasicBlock
*UnwindDest
= InnerCatchSwitch
->getUnwindDest();
377 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
378 calculateSEHStateNumbers(FuncInfo
, UserI
, ParentState
);
380 if (auto *InnerCleanupPad
= dyn_cast
<CleanupPadInst
>(UserI
)) {
381 BasicBlock
*UnwindDest
= getCleanupRetUnwindDest(InnerCleanupPad
);
382 // If a nested cleanup pad reports a null unwind destination and the
383 // enclosing catch pad doesn't it must be post-dominated by an
384 // unreachable instruction.
385 if (!UnwindDest
|| UnwindDest
== CatchSwitch
->getUnwindDest())
386 calculateSEHStateNumbers(FuncInfo
, UserI
, ParentState
);
390 auto *CleanupPad
= cast
<CleanupPadInst
>(FirstNonPHI
);
392 // It's possible for a cleanup to be visited twice: it might have multiple
393 // cleanupret instructions.
394 if (FuncInfo
.EHPadStateMap
.count(CleanupPad
))
397 int CleanupState
= addSEHFinally(FuncInfo
, ParentState
, BB
);
398 FuncInfo
.EHPadStateMap
[CleanupPad
] = CleanupState
;
399 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState
<< " to BB "
400 << BB
->getName() << '\n');
401 for (const BasicBlock
*PredBlock
: predecessors(BB
))
403 getEHPadFromPredecessor(PredBlock
, CleanupPad
->getParentPad())))
404 calculateSEHStateNumbers(FuncInfo
, PredBlock
->getFirstNonPHI(),
406 for (const User
*U
: CleanupPad
->users()) {
407 const auto *UserI
= cast
<Instruction
>(U
);
408 if (UserI
->isEHPad())
409 report_fatal_error("Cleanup funclets for the SEH personality cannot "
410 "contain exceptional actions");
415 static bool isTopLevelPadForMSVC(const Instruction
*EHPad
) {
416 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(EHPad
))
417 return isa
<ConstantTokenNone
>(CatchSwitch
->getParentPad()) &&
418 CatchSwitch
->unwindsToCaller();
419 if (auto *CleanupPad
= dyn_cast
<CleanupPadInst
>(EHPad
))
420 return isa
<ConstantTokenNone
>(CleanupPad
->getParentPad()) &&
421 getCleanupRetUnwindDest(CleanupPad
) == nullptr;
422 if (isa
<CatchPadInst
>(EHPad
))
424 llvm_unreachable("unexpected EHPad!");
427 void llvm::calculateSEHStateNumbers(const Function
*Fn
,
428 WinEHFuncInfo
&FuncInfo
) {
429 // Don't compute state numbers twice.
430 if (!FuncInfo
.SEHUnwindMap
.empty())
433 for (const BasicBlock
&BB
: *Fn
) {
436 const Instruction
*FirstNonPHI
= BB
.getFirstNonPHI();
437 if (!isTopLevelPadForMSVC(FirstNonPHI
))
439 ::calculateSEHStateNumbers(FuncInfo
, FirstNonPHI
, -1);
442 calculateStateNumbersForInvokes(Fn
, FuncInfo
);
445 void llvm::calculateWinCXXEHStateNumbers(const Function
*Fn
,
446 WinEHFuncInfo
&FuncInfo
) {
447 // Return if it's already been done.
448 if (!FuncInfo
.EHPadStateMap
.empty())
451 for (const BasicBlock
&BB
: *Fn
) {
454 const Instruction
*FirstNonPHI
= BB
.getFirstNonPHI();
455 if (!isTopLevelPadForMSVC(FirstNonPHI
))
457 calculateCXXStateNumbers(FuncInfo
, FirstNonPHI
, -1);
460 calculateStateNumbersForInvokes(Fn
, FuncInfo
);
463 static int addClrEHHandler(WinEHFuncInfo
&FuncInfo
, int HandlerParentState
,
464 int TryParentState
, ClrHandlerType HandlerType
,
465 uint32_t TypeToken
, const BasicBlock
*Handler
) {
466 ClrEHUnwindMapEntry Entry
;
467 Entry
.HandlerParentState
= HandlerParentState
;
468 Entry
.TryParentState
= TryParentState
;
469 Entry
.Handler
= Handler
;
470 Entry
.HandlerType
= HandlerType
;
471 Entry
.TypeToken
= TypeToken
;
472 FuncInfo
.ClrEHUnwindMap
.push_back(Entry
);
473 return FuncInfo
.ClrEHUnwindMap
.size() - 1;
476 void llvm::calculateClrEHStateNumbers(const Function
*Fn
,
477 WinEHFuncInfo
&FuncInfo
) {
478 // Return if it's already been done.
479 if (!FuncInfo
.EHPadStateMap
.empty())
482 // This numbering assigns one state number to each catchpad and cleanuppad.
483 // It also computes two tree-like relations over states:
484 // 1) Each state has a "HandlerParentState", which is the state of the next
485 // outer handler enclosing this state's handler (same as nearest ancestor
486 // per the ParentPad linkage on EH pads, but skipping over catchswitches).
487 // 2) Each state has a "TryParentState", which:
488 // a) for a catchpad that's not the last handler on its catchswitch, is
489 // the state of the next catchpad on that catchswitch
490 // b) for all other pads, is the state of the pad whose try region is the
491 // next outer try region enclosing this state's try region. The "try
492 // regions are not present as such in the IR, but will be inferred
493 // based on the placement of invokes and pads which reach each other
494 // by exceptional exits
495 // Catchswitches do not get their own states, but each gets mapped to the
496 // state of its first catchpad.
498 // Step one: walk down from outermost to innermost funclets, assigning each
499 // catchpad and cleanuppad a state number. Add an entry to the
500 // ClrEHUnwindMap for each state, recording its HandlerParentState and
501 // handler attributes. Record the TryParentState as well for each catchpad
502 // that's not the last on its catchswitch, but initialize all other entries'
503 // TryParentStates to a sentinel -1 value that the next pass will update.
505 // Seed a worklist with pads that have no parent.
506 SmallVector
<std::pair
<const Instruction
*, int>, 8> Worklist
;
507 for (const BasicBlock
&BB
: *Fn
) {
508 const Instruction
*FirstNonPHI
= BB
.getFirstNonPHI();
509 const Value
*ParentPad
;
510 if (const auto *CPI
= dyn_cast
<CleanupPadInst
>(FirstNonPHI
))
511 ParentPad
= CPI
->getParentPad();
512 else if (const auto *CSI
= dyn_cast
<CatchSwitchInst
>(FirstNonPHI
))
513 ParentPad
= CSI
->getParentPad();
516 if (isa
<ConstantTokenNone
>(ParentPad
))
517 Worklist
.emplace_back(FirstNonPHI
, -1);
520 // Use the worklist to visit all pads, from outer to inner. Record
521 // HandlerParentState for all pads. Record TryParentState only for catchpads
522 // that aren't the last on their catchswitch (setting all other entries'
523 // TryParentStates to an initial value of -1). This loop is also responsible
524 // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
526 while (!Worklist
.empty()) {
527 const Instruction
*Pad
;
528 int HandlerParentState
;
529 std::tie(Pad
, HandlerParentState
) = Worklist
.pop_back_val();
531 if (const auto *Cleanup
= dyn_cast
<CleanupPadInst
>(Pad
)) {
532 // Create the entry for this cleanup with the appropriate handler
533 // properties. Finally and fault handlers are distinguished by arity.
534 ClrHandlerType HandlerType
=
535 (Cleanup
->getNumArgOperands() ? ClrHandlerType::Fault
536 : ClrHandlerType::Finally
);
537 int CleanupState
= addClrEHHandler(FuncInfo
, HandlerParentState
, -1,
538 HandlerType
, 0, Pad
->getParent());
539 // Queue any child EH pads on the worklist.
540 for (const User
*U
: Cleanup
->users())
541 if (const auto *I
= dyn_cast
<Instruction
>(U
))
543 Worklist
.emplace_back(I
, CleanupState
);
544 // Remember this pad's state.
545 FuncInfo
.EHPadStateMap
[Cleanup
] = CleanupState
;
547 // Walk the handlers of this catchswitch in reverse order since all but
548 // the last need to set the following one as its TryParentState.
549 const auto *CatchSwitch
= cast
<CatchSwitchInst
>(Pad
);
550 int CatchState
= -1, FollowerState
= -1;
551 SmallVector
<const BasicBlock
*, 4> CatchBlocks(CatchSwitch
->handlers());
552 for (auto CBI
= CatchBlocks
.rbegin(), CBE
= CatchBlocks
.rend();
553 CBI
!= CBE
; ++CBI
, FollowerState
= CatchState
) {
554 const BasicBlock
*CatchBlock
= *CBI
;
555 // Create the entry for this catch with the appropriate handler
557 const auto *Catch
= cast
<CatchPadInst
>(CatchBlock
->getFirstNonPHI());
558 uint32_t TypeToken
= static_cast<uint32_t>(
559 cast
<ConstantInt
>(Catch
->getArgOperand(0))->getZExtValue());
561 addClrEHHandler(FuncInfo
, HandlerParentState
, FollowerState
,
562 ClrHandlerType::Catch
, TypeToken
, CatchBlock
);
563 // Queue any child EH pads on the worklist.
564 for (const User
*U
: Catch
->users())
565 if (const auto *I
= dyn_cast
<Instruction
>(U
))
567 Worklist
.emplace_back(I
, CatchState
);
568 // Remember this catch's state.
569 FuncInfo
.EHPadStateMap
[Catch
] = CatchState
;
571 // Associate the catchswitch with the state of its first catch.
572 assert(CatchSwitch
->getNumHandlers());
573 FuncInfo
.EHPadStateMap
[CatchSwitch
] = CatchState
;
577 // Step two: record the TryParentState of each state. For cleanuppads that
578 // don't have cleanuprets, we may need to infer this from their child pads,
579 // so visit pads in descendant-most to ancestor-most order.
580 for (auto Entry
= FuncInfo
.ClrEHUnwindMap
.rbegin(),
581 End
= FuncInfo
.ClrEHUnwindMap
.rend();
582 Entry
!= End
; ++Entry
) {
583 const Instruction
*Pad
=
584 Entry
->Handler
.get
<const BasicBlock
*>()->getFirstNonPHI();
585 // For most pads, the TryParentState is the state associated with the
586 // unwind dest of exceptional exits from it.
587 const BasicBlock
*UnwindDest
;
588 if (const auto *Catch
= dyn_cast
<CatchPadInst
>(Pad
)) {
589 // If a catch is not the last in its catchswitch, its TryParentState is
590 // the state associated with the next catch in the switch, even though
591 // that's not the unwind dest of exceptions escaping the catch. Those
592 // cases were already assigned a TryParentState in the first pass, so
594 if (Entry
->TryParentState
!= -1)
596 // Otherwise, get the unwind dest from the catchswitch.
597 UnwindDest
= Catch
->getCatchSwitch()->getUnwindDest();
599 const auto *Cleanup
= cast
<CleanupPadInst
>(Pad
);
600 UnwindDest
= nullptr;
601 for (const User
*U
: Cleanup
->users()) {
602 if (auto *CleanupRet
= dyn_cast
<CleanupReturnInst
>(U
)) {
603 // Common and unambiguous case -- cleanupret indicates cleanup's
605 UnwindDest
= CleanupRet
->getUnwindDest();
609 // Get an unwind dest for the user
610 const BasicBlock
*UserUnwindDest
= nullptr;
611 if (auto *Invoke
= dyn_cast
<InvokeInst
>(U
)) {
612 UserUnwindDest
= Invoke
->getUnwindDest();
613 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(U
)) {
614 UserUnwindDest
= CatchSwitch
->getUnwindDest();
615 } else if (auto *ChildCleanup
= dyn_cast
<CleanupPadInst
>(U
)) {
616 int UserState
= FuncInfo
.EHPadStateMap
[ChildCleanup
];
617 int UserUnwindState
=
618 FuncInfo
.ClrEHUnwindMap
[UserState
].TryParentState
;
619 if (UserUnwindState
!= -1)
620 UserUnwindDest
= FuncInfo
.ClrEHUnwindMap
[UserUnwindState
]
621 .Handler
.get
<const BasicBlock
*>();
624 // Not having an unwind dest for this user might indicate that it
625 // doesn't unwind, so can't be taken as proof that the cleanup itself
626 // may unwind to caller (see e.g. SimplifyUnreachable and
627 // RemoveUnwindEdge).
631 // Now we have an unwind dest for the user, but we need to see if it
632 // unwinds all the way out of the cleanup or if it stays within it.
633 const Instruction
*UserUnwindPad
= UserUnwindDest
->getFirstNonPHI();
634 const Value
*UserUnwindParent
;
635 if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(UserUnwindPad
))
636 UserUnwindParent
= CSI
->getParentPad();
639 cast
<CleanupPadInst
>(UserUnwindPad
)->getParentPad();
641 // The unwind stays within the cleanup iff it targets a child of the
643 if (UserUnwindParent
== Cleanup
)
646 // This unwind exits the cleanup, so its dest is the cleanup's dest.
647 UnwindDest
= UserUnwindDest
;
652 // Record the state of the unwind dest as the TryParentState.
655 // If UnwindDest is null at this point, either the pad in question can
656 // be exited by unwind to caller, or it cannot be exited by unwind. In
657 // either case, reporting such cases as unwinding to caller is correct.
658 // This can lead to EH tables that "look strange" -- if this pad's is in
659 // a parent funclet which has other children that do unwind to an enclosing
660 // pad, the try region for this pad will be missing the "duplicate" EH
661 // clause entries that you'd expect to see covering the whole parent. That
662 // should be benign, since the unwind never actually happens. If it were
663 // an issue, we could add a subsequent pass that pushes unwind dests down
664 // from parents that have them to children that appear to unwind to caller.
666 UnwindDestState
= -1;
668 UnwindDestState
= FuncInfo
.EHPadStateMap
[UnwindDest
->getFirstNonPHI()];
671 Entry
->TryParentState
= UnwindDestState
;
674 // Step three: transfer information from pads to invokes.
675 calculateStateNumbersForInvokes(Fn
, FuncInfo
);
678 void WinEHPrepare::colorFunclets(Function
&F
) {
679 BlockColors
= colorEHFunclets(F
);
681 // Invert the map from BB to colors to color to BBs.
682 for (BasicBlock
&BB
: F
) {
683 ColorVector
&Colors
= BlockColors
[&BB
];
684 for (BasicBlock
*Color
: Colors
)
685 FuncletBlocks
[Color
].push_back(&BB
);
689 void WinEHPrepare::demotePHIsOnFunclets(Function
&F
,
690 bool DemoteCatchSwitchPHIOnly
) {
691 // Strip PHI nodes off of EH pads.
692 SmallVector
<PHINode
*, 16> PHINodes
;
693 for (Function::iterator FI
= F
.begin(), FE
= F
.end(); FI
!= FE
;) {
694 BasicBlock
*BB
= &*FI
++;
697 if (DemoteCatchSwitchPHIOnly
&& !isa
<CatchSwitchInst
>(BB
->getFirstNonPHI()))
700 for (BasicBlock::iterator BI
= BB
->begin(), BE
= BB
->end(); BI
!= BE
;) {
701 Instruction
*I
= &*BI
++;
702 auto *PN
= dyn_cast
<PHINode
>(I
);
703 // Stop at the first non-PHI.
707 AllocaInst
*SpillSlot
= insertPHILoads(PN
, F
);
709 insertPHIStores(PN
, SpillSlot
);
711 PHINodes
.push_back(PN
);
715 for (auto *PN
: PHINodes
) {
716 // There may be lingering uses on other EH PHIs being removed
717 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
718 PN
->eraseFromParent();
722 void WinEHPrepare::cloneCommonBlocks(Function
&F
) {
723 // We need to clone all blocks which belong to multiple funclets. Values are
724 // remapped throughout the funclet to propagate both the new instructions
725 // *and* the new basic blocks themselves.
726 for (auto &Funclets
: FuncletBlocks
) {
727 BasicBlock
*FuncletPadBB
= Funclets
.first
;
728 std::vector
<BasicBlock
*> &BlocksInFunclet
= Funclets
.second
;
730 if (FuncletPadBB
== &F
.getEntryBlock())
731 FuncletToken
= ConstantTokenNone::get(F
.getContext());
733 FuncletToken
= FuncletPadBB
->getFirstNonPHI();
735 std::vector
<std::pair
<BasicBlock
*, BasicBlock
*>> Orig2Clone
;
736 ValueToValueMapTy VMap
;
737 for (BasicBlock
*BB
: BlocksInFunclet
) {
738 ColorVector
&ColorsForBB
= BlockColors
[BB
];
739 // We don't need to do anything if the block is monochromatic.
740 size_t NumColorsForBB
= ColorsForBB
.size();
741 if (NumColorsForBB
== 1)
744 DEBUG_WITH_TYPE("winehprepare-coloring",
745 dbgs() << " Cloning block \'" << BB
->getName()
746 << "\' for funclet \'" << FuncletPadBB
->getName()
749 // Create a new basic block and copy instructions into it!
751 CloneBasicBlock(BB
, VMap
, Twine(".for.", FuncletPadBB
->getName()));
752 // Insert the clone immediately after the original to ensure determinism
753 // and to keep the same relative ordering of any funclet's blocks.
754 CBB
->insertInto(&F
, BB
->getNextNode());
756 // Add basic block mapping.
759 // Record delta operations that we need to perform to our color mappings.
760 Orig2Clone
.emplace_back(BB
, CBB
);
763 // If nothing was cloned, we're done cloning in this funclet.
764 if (Orig2Clone
.empty())
767 // Update our color mappings to reflect that one block has lost a color and
768 // another has gained a color.
769 for (auto &BBMapping
: Orig2Clone
) {
770 BasicBlock
*OldBlock
= BBMapping
.first
;
771 BasicBlock
*NewBlock
= BBMapping
.second
;
773 BlocksInFunclet
.push_back(NewBlock
);
774 ColorVector
&NewColors
= BlockColors
[NewBlock
];
775 assert(NewColors
.empty() && "A new block should only have one color!");
776 NewColors
.push_back(FuncletPadBB
);
778 DEBUG_WITH_TYPE("winehprepare-coloring",
779 dbgs() << " Assigned color \'" << FuncletPadBB
->getName()
780 << "\' to block \'" << NewBlock
->getName()
783 BlocksInFunclet
.erase(
784 std::remove(BlocksInFunclet
.begin(), BlocksInFunclet
.end(), OldBlock
),
785 BlocksInFunclet
.end());
786 ColorVector
&OldColors
= BlockColors
[OldBlock
];
788 std::remove(OldColors
.begin(), OldColors
.end(), FuncletPadBB
),
791 DEBUG_WITH_TYPE("winehprepare-coloring",
792 dbgs() << " Removed color \'" << FuncletPadBB
->getName()
793 << "\' from block \'" << OldBlock
->getName()
797 // Loop over all of the instructions in this funclet, fixing up operand
798 // references as we go. This uses VMap to do all the hard work.
799 for (BasicBlock
*BB
: BlocksInFunclet
)
800 // Loop over all instructions, fixing each one as we find it...
801 for (Instruction
&I
: *BB
)
802 RemapInstruction(&I
, VMap
,
803 RF_IgnoreMissingLocals
| RF_NoModuleLevelChanges
);
805 // Catchrets targeting cloned blocks need to be updated separately from
806 // the loop above because they are not in the current funclet.
807 SmallVector
<CatchReturnInst
*, 2> FixupCatchrets
;
808 for (auto &BBMapping
: Orig2Clone
) {
809 BasicBlock
*OldBlock
= BBMapping
.first
;
810 BasicBlock
*NewBlock
= BBMapping
.second
;
812 FixupCatchrets
.clear();
813 for (BasicBlock
*Pred
: predecessors(OldBlock
))
814 if (auto *CatchRet
= dyn_cast
<CatchReturnInst
>(Pred
->getTerminator()))
815 if (CatchRet
->getCatchSwitchParentPad() == FuncletToken
)
816 FixupCatchrets
.push_back(CatchRet
);
818 for (CatchReturnInst
*CatchRet
: FixupCatchrets
)
819 CatchRet
->setSuccessor(NewBlock
);
822 auto UpdatePHIOnClonedBlock
= [&](PHINode
*PN
, bool IsForOldBlock
) {
823 unsigned NumPreds
= PN
->getNumIncomingValues();
824 for (unsigned PredIdx
= 0, PredEnd
= NumPreds
; PredIdx
!= PredEnd
;
826 BasicBlock
*IncomingBlock
= PN
->getIncomingBlock(PredIdx
);
827 bool EdgeTargetsFunclet
;
829 dyn_cast
<CatchReturnInst
>(IncomingBlock
->getTerminator())) {
830 EdgeTargetsFunclet
= (CRI
->getCatchSwitchParentPad() == FuncletToken
);
832 ColorVector
&IncomingColors
= BlockColors
[IncomingBlock
];
833 assert(!IncomingColors
.empty() && "Block not colored!");
834 assert((IncomingColors
.size() == 1 ||
835 llvm::all_of(IncomingColors
,
836 [&](BasicBlock
*Color
) {
837 return Color
!= FuncletPadBB
;
839 "Cloning should leave this funclet's blocks monochromatic");
840 EdgeTargetsFunclet
= (IncomingColors
.front() == FuncletPadBB
);
842 if (IsForOldBlock
!= EdgeTargetsFunclet
)
844 PN
->removeIncomingValue(IncomingBlock
, /*DeletePHIIfEmpty=*/false);
845 // Revisit the next entry.
851 for (auto &BBMapping
: Orig2Clone
) {
852 BasicBlock
*OldBlock
= BBMapping
.first
;
853 BasicBlock
*NewBlock
= BBMapping
.second
;
854 for (PHINode
&OldPN
: OldBlock
->phis()) {
855 UpdatePHIOnClonedBlock(&OldPN
, /*IsForOldBlock=*/true);
857 for (PHINode
&NewPN
: NewBlock
->phis()) {
858 UpdatePHIOnClonedBlock(&NewPN
, /*IsForOldBlock=*/false);
862 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
863 // the PHI nodes for NewBB now.
864 for (auto &BBMapping
: Orig2Clone
) {
865 BasicBlock
*OldBlock
= BBMapping
.first
;
866 BasicBlock
*NewBlock
= BBMapping
.second
;
867 for (BasicBlock
*SuccBB
: successors(NewBlock
)) {
868 for (PHINode
&SuccPN
: SuccBB
->phis()) {
869 // Ok, we have a PHI node. Figure out what the incoming value was for
871 int OldBlockIdx
= SuccPN
.getBasicBlockIndex(OldBlock
);
872 if (OldBlockIdx
== -1)
874 Value
*IV
= SuccPN
.getIncomingValue(OldBlockIdx
);
876 // Remap the value if necessary.
877 if (auto *Inst
= dyn_cast
<Instruction
>(IV
)) {
878 ValueToValueMapTy::iterator I
= VMap
.find(Inst
);
883 SuccPN
.addIncoming(IV
, NewBlock
);
888 for (ValueToValueMapTy::value_type VT
: VMap
) {
889 // If there were values defined in BB that are used outside the funclet,
890 // then we now have to update all uses of the value to use either the
891 // original value, the cloned value, or some PHI derived value. This can
892 // require arbitrary PHI insertion, of which we are prepared to do, clean
894 SmallVector
<Use
*, 16> UsesToRename
;
896 auto *OldI
= dyn_cast
<Instruction
>(const_cast<Value
*>(VT
.first
));
899 auto *NewI
= cast
<Instruction
>(VT
.second
);
900 // Scan all uses of this instruction to see if it is used outside of its
901 // funclet, and if so, record them in UsesToRename.
902 for (Use
&U
: OldI
->uses()) {
903 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
904 BasicBlock
*UserBB
= UserI
->getParent();
905 ColorVector
&ColorsForUserBB
= BlockColors
[UserBB
];
906 assert(!ColorsForUserBB
.empty());
907 if (ColorsForUserBB
.size() > 1 ||
908 *ColorsForUserBB
.begin() != FuncletPadBB
)
909 UsesToRename
.push_back(&U
);
912 // If there are no uses outside the block, we're done with this
914 if (UsesToRename
.empty())
917 // We found a use of OldI outside of the funclet. Rename all uses of OldI
918 // that are outside its funclet to be uses of the appropriate PHI node
920 SSAUpdater SSAUpdate
;
921 SSAUpdate
.Initialize(OldI
->getType(), OldI
->getName());
922 SSAUpdate
.AddAvailableValue(OldI
->getParent(), OldI
);
923 SSAUpdate
.AddAvailableValue(NewI
->getParent(), NewI
);
925 while (!UsesToRename
.empty())
926 SSAUpdate
.RewriteUseAfterInsertions(*UsesToRename
.pop_back_val());
931 void WinEHPrepare::removeImplausibleInstructions(Function
&F
) {
932 // Remove implausible terminators and replace them with UnreachableInst.
933 for (auto &Funclet
: FuncletBlocks
) {
934 BasicBlock
*FuncletPadBB
= Funclet
.first
;
935 std::vector
<BasicBlock
*> &BlocksInFunclet
= Funclet
.second
;
936 Instruction
*FirstNonPHI
= FuncletPadBB
->getFirstNonPHI();
937 auto *FuncletPad
= dyn_cast
<FuncletPadInst
>(FirstNonPHI
);
938 auto *CatchPad
= dyn_cast_or_null
<CatchPadInst
>(FuncletPad
);
939 auto *CleanupPad
= dyn_cast_or_null
<CleanupPadInst
>(FuncletPad
);
941 for (BasicBlock
*BB
: BlocksInFunclet
) {
942 for (Instruction
&I
: *BB
) {
947 Value
*FuncletBundleOperand
= nullptr;
948 if (auto BU
= CS
.getOperandBundle(LLVMContext::OB_funclet
))
949 FuncletBundleOperand
= BU
->Inputs
.front();
951 if (FuncletBundleOperand
== FuncletPad
)
954 // Skip call sites which are nounwind intrinsics or inline asm.
956 dyn_cast
<Function
>(CS
.getCalledValue()->stripPointerCasts());
957 if (CalledFn
&& ((CalledFn
->isIntrinsic() && CS
.doesNotThrow()) ||
961 // This call site was not part of this funclet, remove it.
963 // Remove the unwind edge if it was an invoke.
964 removeUnwindEdge(BB
);
965 // Get a pointer to the new call.
966 BasicBlock::iterator CallI
=
967 std::prev(BB
->getTerminator()->getIterator());
968 auto *CI
= cast
<CallInst
>(&*CallI
);
969 changeToUnreachable(CI
, /*UseLLVMTrap=*/false);
971 changeToUnreachable(&I
, /*UseLLVMTrap=*/false);
974 // There are no more instructions in the block (except for unreachable),
979 Instruction
*TI
= BB
->getTerminator();
980 // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
981 bool IsUnreachableRet
= isa
<ReturnInst
>(TI
) && FuncletPad
;
982 // The token consumed by a CatchReturnInst must match the funclet token.
983 bool IsUnreachableCatchret
= false;
984 if (auto *CRI
= dyn_cast
<CatchReturnInst
>(TI
))
985 IsUnreachableCatchret
= CRI
->getCatchPad() != CatchPad
;
986 // The token consumed by a CleanupReturnInst must match the funclet token.
987 bool IsUnreachableCleanupret
= false;
988 if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(TI
))
989 IsUnreachableCleanupret
= CRI
->getCleanupPad() != CleanupPad
;
990 if (IsUnreachableRet
|| IsUnreachableCatchret
||
991 IsUnreachableCleanupret
) {
992 changeToUnreachable(TI
, /*UseLLVMTrap=*/false);
993 } else if (isa
<InvokeInst
>(TI
)) {
994 if (Personality
== EHPersonality::MSVC_CXX
&& CleanupPad
) {
995 // Invokes within a cleanuppad for the MSVC++ personality never
996 // transfer control to their unwind edge: the personality will
997 // terminate the program.
998 removeUnwindEdge(BB
);
1005 void WinEHPrepare::cleanupPreparedFunclets(Function
&F
) {
1006 // Clean-up some of the mess we made by removing useles PHI nodes, trivial
1008 for (Function::iterator FI
= F
.begin(), FE
= F
.end(); FI
!= FE
;) {
1009 BasicBlock
*BB
= &*FI
++;
1010 SimplifyInstructionsInBlock(BB
);
1011 ConstantFoldTerminator(BB
, /*DeleteDeadConditions=*/true);
1012 MergeBlockIntoPredecessor(BB
);
1015 // We might have some unreachable blocks after cleaning up some impossible
1017 removeUnreachableBlocks(F
);
1021 void WinEHPrepare::verifyPreparedFunclets(Function
&F
) {
1022 for (BasicBlock
&BB
: F
) {
1023 size_t NumColors
= BlockColors
[&BB
].size();
1024 assert(NumColors
== 1 && "Expected monochromatic BB!");
1026 report_fatal_error("Uncolored BB!");
1028 report_fatal_error("Multicolor BB!");
1029 assert((DisableDemotion
|| !(BB
.isEHPad() && isa
<PHINode
>(BB
.begin()))) &&
1030 "EH Pad still has a PHI!");
1035 bool WinEHPrepare::prepareExplicitEH(Function
&F
) {
1036 // Remove unreachable blocks. It is not valuable to assign them a color and
1037 // their existence can trick us into thinking values are alive when they are
1039 removeUnreachableBlocks(F
);
1041 // Determine which blocks are reachable from which funclet entries.
1044 cloneCommonBlocks(F
);
1046 if (!DisableDemotion
)
1047 demotePHIsOnFunclets(F
, DemoteCatchSwitchPHIOnly
||
1048 DemoteCatchSwitchPHIOnlyOpt
);
1050 if (!DisableCleanups
) {
1051 LLVM_DEBUG(verifyFunction(F
));
1052 removeImplausibleInstructions(F
);
1054 LLVM_DEBUG(verifyFunction(F
));
1055 cleanupPreparedFunclets(F
);
1058 LLVM_DEBUG(verifyPreparedFunclets(F
));
1059 // Recolor the CFG to verify that all is well.
1060 LLVM_DEBUG(colorFunclets(F
));
1061 LLVM_DEBUG(verifyPreparedFunclets(F
));
1063 BlockColors
.clear();
1064 FuncletBlocks
.clear();
1069 // TODO: Share loads when one use dominates another, or when a catchpad exit
1070 // dominates uses (needs dominators).
1071 AllocaInst
*WinEHPrepare::insertPHILoads(PHINode
*PN
, Function
&F
) {
1072 BasicBlock
*PHIBlock
= PN
->getParent();
1073 AllocaInst
*SpillSlot
= nullptr;
1074 Instruction
*EHPad
= PHIBlock
->getFirstNonPHI();
1076 if (!EHPad
->isTerminator()) {
1077 // If the EHPad isn't a terminator, then we can insert a load in this block
1078 // that will dominate all uses.
1079 SpillSlot
= new AllocaInst(PN
->getType(), DL
->getAllocaAddrSpace(), nullptr,
1080 Twine(PN
->getName(), ".wineh.spillslot"),
1081 &F
.getEntryBlock().front());
1082 Value
*V
= new LoadInst(PN
->getType(), SpillSlot
,
1083 Twine(PN
->getName(), ".wineh.reload"),
1084 &*PHIBlock
->getFirstInsertionPt());
1085 PN
->replaceAllUsesWith(V
);
1089 // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
1090 // loads of the slot before every use.
1091 DenseMap
<BasicBlock
*, Value
*> Loads
;
1092 for (Value::use_iterator UI
= PN
->use_begin(), UE
= PN
->use_end();
1095 auto *UsingInst
= cast
<Instruction
>(U
.getUser());
1096 if (isa
<PHINode
>(UsingInst
) && UsingInst
->getParent()->isEHPad()) {
1097 // Use is on an EH pad phi. Leave it alone; we'll insert loads and
1098 // stores for it separately.
1101 replaceUseWithLoad(PN
, U
, SpillSlot
, Loads
, F
);
1106 // TODO: improve store placement. Inserting at def is probably good, but need
1107 // to be careful not to introduce interfering stores (needs liveness analysis).
1108 // TODO: identify related phi nodes that can share spill slots, and share them
1109 // (also needs liveness).
1110 void WinEHPrepare::insertPHIStores(PHINode
*OriginalPHI
,
1111 AllocaInst
*SpillSlot
) {
1112 // Use a worklist of (Block, Value) pairs -- the given Value needs to be
1113 // stored to the spill slot by the end of the given Block.
1114 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 4> Worklist
;
1116 Worklist
.push_back({OriginalPHI
->getParent(), OriginalPHI
});
1118 while (!Worklist
.empty()) {
1119 BasicBlock
*EHBlock
;
1121 std::tie(EHBlock
, InVal
) = Worklist
.pop_back_val();
1123 PHINode
*PN
= dyn_cast
<PHINode
>(InVal
);
1124 if (PN
&& PN
->getParent() == EHBlock
) {
1125 // The value is defined by another PHI we need to remove, with no room to
1126 // insert a store after the PHI, so each predecessor needs to store its
1128 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
< e
; ++i
) {
1129 Value
*PredVal
= PN
->getIncomingValue(i
);
1131 // Undef can safely be skipped.
1132 if (isa
<UndefValue
>(PredVal
))
1135 insertPHIStore(PN
->getIncomingBlock(i
), PredVal
, SpillSlot
, Worklist
);
1138 // We need to store InVal, which dominates EHBlock, but can't put a store
1139 // in EHBlock, so need to put stores in each predecessor.
1140 for (BasicBlock
*PredBlock
: predecessors(EHBlock
)) {
1141 insertPHIStore(PredBlock
, InVal
, SpillSlot
, Worklist
);
1147 void WinEHPrepare::insertPHIStore(
1148 BasicBlock
*PredBlock
, Value
*PredVal
, AllocaInst
*SpillSlot
,
1149 SmallVectorImpl
<std::pair
<BasicBlock
*, Value
*>> &Worklist
) {
1151 if (PredBlock
->isEHPad() && PredBlock
->getFirstNonPHI()->isTerminator()) {
1152 // Pred is unsplittable, so we need to queue it on the worklist.
1153 Worklist
.push_back({PredBlock
, PredVal
});
1157 // Otherwise, insert the store at the end of the basic block.
1158 new StoreInst(PredVal
, SpillSlot
, PredBlock
->getTerminator());
1161 void WinEHPrepare::replaceUseWithLoad(Value
*V
, Use
&U
, AllocaInst
*&SpillSlot
,
1162 DenseMap
<BasicBlock
*, Value
*> &Loads
,
1164 // Lazilly create the spill slot.
1166 SpillSlot
= new AllocaInst(V
->getType(), DL
->getAllocaAddrSpace(), nullptr,
1167 Twine(V
->getName(), ".wineh.spillslot"),
1168 &F
.getEntryBlock().front());
1170 auto *UsingInst
= cast
<Instruction
>(U
.getUser());
1171 if (auto *UsingPHI
= dyn_cast
<PHINode
>(UsingInst
)) {
1172 // If this is a PHI node, we can't insert a load of the value before
1173 // the use. Instead insert the load in the predecessor block
1174 // corresponding to the incoming value.
1176 // Note that if there are multiple edges from a basic block to this
1177 // PHI node that we cannot have multiple loads. The problem is that
1178 // the resulting PHI node will have multiple values (from each load)
1179 // coming in from the same block, which is illegal SSA form.
1180 // For this reason, we keep track of and reuse loads we insert.
1181 BasicBlock
*IncomingBlock
= UsingPHI
->getIncomingBlock(U
);
1182 if (auto *CatchRet
=
1183 dyn_cast
<CatchReturnInst
>(IncomingBlock
->getTerminator())) {
1184 // Putting a load above a catchret and use on the phi would still leave
1185 // a cross-funclet def/use. We need to split the edge, change the
1186 // catchret to target the new block, and put the load there.
1187 BasicBlock
*PHIBlock
= UsingInst
->getParent();
1188 BasicBlock
*NewBlock
= SplitEdge(IncomingBlock
, PHIBlock
);
1189 // SplitEdge gives us:
1192 // br label %NewBlock
1194 // catchret label %PHIBlock
1198 // catchret label %NewBlock
1200 // br label %PHIBlock
1201 // So move the terminators to each others' blocks and swap their
1203 BranchInst
*Goto
= cast
<BranchInst
>(IncomingBlock
->getTerminator());
1204 Goto
->removeFromParent();
1205 CatchRet
->removeFromParent();
1206 IncomingBlock
->getInstList().push_back(CatchRet
);
1207 NewBlock
->getInstList().push_back(Goto
);
1208 Goto
->setSuccessor(0, PHIBlock
);
1209 CatchRet
->setSuccessor(NewBlock
);
1210 // Update the color mapping for the newly split edge.
1211 // Grab a reference to the ColorVector to be inserted before getting the
1212 // reference to the vector we are copying because inserting the new
1213 // element in BlockColors might cause the map to be reallocated.
1214 ColorVector
&ColorsForNewBlock
= BlockColors
[NewBlock
];
1215 ColorVector
&ColorsForPHIBlock
= BlockColors
[PHIBlock
];
1216 ColorsForNewBlock
= ColorsForPHIBlock
;
1217 for (BasicBlock
*FuncletPad
: ColorsForPHIBlock
)
1218 FuncletBlocks
[FuncletPad
].push_back(NewBlock
);
1219 // Treat the new block as incoming for load insertion.
1220 IncomingBlock
= NewBlock
;
1222 Value
*&Load
= Loads
[IncomingBlock
];
1223 // Insert the load into the predecessor block
1225 Load
= new LoadInst(V
->getType(), SpillSlot
,
1226 Twine(V
->getName(), ".wineh.reload"),
1227 /*isVolatile=*/false, IncomingBlock
->getTerminator());
1231 // Reload right before the old use.
1232 auto *Load
= new LoadInst(V
->getType(), SpillSlot
,
1233 Twine(V
->getName(), ".wineh.reload"),
1234 /*isVolatile=*/false, UsingInst
);
1239 void WinEHFuncInfo::addIPToStateRange(const InvokeInst
*II
,
1240 MCSymbol
*InvokeBegin
,
1241 MCSymbol
*InvokeEnd
) {
1242 assert(InvokeStateMap
.count(II
) &&
1243 "should get invoke with precomputed state");
1244 LabelToStateMap
[InvokeBegin
] = std::make_pair(InvokeStateMap
[II
], InvokeEnd
);
1247 WinEHFuncInfo::WinEHFuncInfo() {}