[llvm-readobj] - Simplify stack-sizes.test test case.
[llvm-complete.git] / utils / TableGen / CodeGenRegisters.h
blob6d933baec2aee27f83895ad56df96b8cc4c4d55b
1 //===- CodeGenRegisters.h - Register and RegisterClass Info -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_UTILS_TABLEGEN_CODEGENREGISTERS_H
15 #define LLVM_UTILS_TABLEGEN_CODEGENREGISTERS_H
17 #include "InfoByHwMode.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/SparseBitVector.h"
26 #include "llvm/ADT/StringMap.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/MC/LaneBitmask.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MachineValueType.h"
31 #include "llvm/TableGen/Record.h"
32 #include "llvm/TableGen/SetTheory.h"
33 #include <cassert>
34 #include <cstdint>
35 #include <deque>
36 #include <list>
37 #include <map>
38 #include <string>
39 #include <utility>
40 #include <vector>
42 namespace llvm {
44 class CodeGenRegBank;
45 template <typename T, typename Vector, typename Set> class SetVector;
47 /// Used to encode a step in a register lane mask transformation.
48 /// Mask the bits specified in Mask, then rotate them Rol bits to the left
49 /// assuming a wraparound at 32bits.
50 struct MaskRolPair {
51 LaneBitmask Mask;
52 uint8_t RotateLeft;
54 bool operator==(const MaskRolPair Other) const {
55 return Mask == Other.Mask && RotateLeft == Other.RotateLeft;
57 bool operator!=(const MaskRolPair Other) const {
58 return Mask != Other.Mask || RotateLeft != Other.RotateLeft;
62 /// CodeGenSubRegIndex - Represents a sub-register index.
63 class CodeGenSubRegIndex {
64 Record *const TheDef;
65 std::string Name;
66 std::string Namespace;
68 public:
69 uint16_t Size;
70 uint16_t Offset;
71 const unsigned EnumValue;
72 mutable LaneBitmask LaneMask;
73 mutable SmallVector<MaskRolPair,1> CompositionLaneMaskTransform;
75 /// A list of subregister indexes concatenated resulting in this
76 /// subregister index. This is the reverse of CodeGenRegBank::ConcatIdx.
77 SmallVector<CodeGenSubRegIndex*,4> ConcatenationOf;
79 // Are all super-registers containing this SubRegIndex covered by their
80 // sub-registers?
81 bool AllSuperRegsCovered;
82 // A subregister index is "artificial" if every subregister obtained
83 // from applying this index is artificial. Artificial subregister
84 // indexes are not used to create new register classes.
85 bool Artificial;
87 CodeGenSubRegIndex(Record *R, unsigned Enum);
88 CodeGenSubRegIndex(StringRef N, StringRef Nspace, unsigned Enum);
90 const std::string &getName() const { return Name; }
91 const std::string &getNamespace() const { return Namespace; }
92 std::string getQualifiedName() const;
94 // Map of composite subreg indices.
95 typedef std::map<CodeGenSubRegIndex *, CodeGenSubRegIndex *,
96 deref<std::less<>>>
97 CompMap;
99 // Returns the subreg index that results from composing this with Idx.
100 // Returns NULL if this and Idx don't compose.
101 CodeGenSubRegIndex *compose(CodeGenSubRegIndex *Idx) const {
102 CompMap::const_iterator I = Composed.find(Idx);
103 return I == Composed.end() ? nullptr : I->second;
106 // Add a composite subreg index: this+A = B.
107 // Return a conflicting composite, or NULL
108 CodeGenSubRegIndex *addComposite(CodeGenSubRegIndex *A,
109 CodeGenSubRegIndex *B) {
110 assert(A && B);
111 std::pair<CompMap::iterator, bool> Ins =
112 Composed.insert(std::make_pair(A, B));
113 // Synthetic subreg indices that aren't contiguous (for instance ARM
114 // register tuples) don't have a bit range, so it's OK to let
115 // B->Offset == -1. For the other cases, accumulate the offset and set
116 // the size here. Only do so if there is no offset yet though.
117 if ((Offset != (uint16_t)-1 && A->Offset != (uint16_t)-1) &&
118 (B->Offset == (uint16_t)-1)) {
119 B->Offset = Offset + A->Offset;
120 B->Size = A->Size;
122 return (Ins.second || Ins.first->second == B) ? nullptr
123 : Ins.first->second;
126 // Update the composite maps of components specified in 'ComposedOf'.
127 void updateComponents(CodeGenRegBank&);
129 // Return the map of composites.
130 const CompMap &getComposites() const { return Composed; }
132 // Compute LaneMask from Composed. Return LaneMask.
133 LaneBitmask computeLaneMask() const;
135 void setConcatenationOf(ArrayRef<CodeGenSubRegIndex*> Parts);
137 /// Replaces subregister indexes in the `ConcatenationOf` list with
138 /// list of subregisters they are composed of (if any). Do this recursively.
139 void computeConcatTransitiveClosure();
141 bool operator<(const CodeGenSubRegIndex &RHS) const {
142 return this->EnumValue < RHS.EnumValue;
145 private:
146 CompMap Composed;
149 /// CodeGenRegister - Represents a register definition.
150 struct CodeGenRegister {
151 Record *TheDef;
152 unsigned EnumValue;
153 unsigned CostPerUse;
154 bool CoveredBySubRegs;
155 bool HasDisjunctSubRegs;
156 bool Artificial;
158 // Map SubRegIndex -> Register.
159 typedef std::map<CodeGenSubRegIndex *, CodeGenRegister *,
160 deref<std::less<>>>
161 SubRegMap;
163 CodeGenRegister(Record *R, unsigned Enum);
165 const StringRef getName() const;
167 // Extract more information from TheDef. This is used to build an object
168 // graph after all CodeGenRegister objects have been created.
169 void buildObjectGraph(CodeGenRegBank&);
171 // Lazily compute a map of all sub-registers.
172 // This includes unique entries for all sub-sub-registers.
173 const SubRegMap &computeSubRegs(CodeGenRegBank&);
175 // Compute extra sub-registers by combining the existing sub-registers.
176 void computeSecondarySubRegs(CodeGenRegBank&);
178 // Add this as a super-register to all sub-registers after the sub-register
179 // graph has been built.
180 void computeSuperRegs(CodeGenRegBank&);
182 const SubRegMap &getSubRegs() const {
183 assert(SubRegsComplete && "Must precompute sub-registers");
184 return SubRegs;
187 // Add sub-registers to OSet following a pre-order defined by the .td file.
188 void addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
189 CodeGenRegBank&) const;
191 // Return the sub-register index naming Reg as a sub-register of this
192 // register. Returns NULL if Reg is not a sub-register.
193 CodeGenSubRegIndex *getSubRegIndex(const CodeGenRegister *Reg) const {
194 return SubReg2Idx.lookup(Reg);
197 typedef std::vector<const CodeGenRegister*> SuperRegList;
199 // Get the list of super-registers in topological order, small to large.
200 // This is valid after computeSubRegs visits all registers during RegBank
201 // construction.
202 const SuperRegList &getSuperRegs() const {
203 assert(SubRegsComplete && "Must precompute sub-registers");
204 return SuperRegs;
207 // Get the list of ad hoc aliases. The graph is symmetric, so the list
208 // contains all registers in 'Aliases', and all registers that mention this
209 // register in 'Aliases'.
210 ArrayRef<CodeGenRegister*> getExplicitAliases() const {
211 return ExplicitAliases;
214 // Get the topological signature of this register. This is a small integer
215 // less than RegBank.getNumTopoSigs(). Registers with the same TopoSig have
216 // identical sub-register structure. That is, they support the same set of
217 // sub-register indices mapping to the same kind of sub-registers
218 // (TopoSig-wise).
219 unsigned getTopoSig() const {
220 assert(SuperRegsComplete && "TopoSigs haven't been computed yet.");
221 return TopoSig;
224 // List of register units in ascending order.
225 typedef SparseBitVector<> RegUnitList;
226 typedef SmallVector<LaneBitmask, 16> RegUnitLaneMaskList;
228 // How many entries in RegUnitList are native?
229 RegUnitList NativeRegUnits;
231 // Get the list of register units.
232 // This is only valid after computeSubRegs() completes.
233 const RegUnitList &getRegUnits() const { return RegUnits; }
235 ArrayRef<LaneBitmask> getRegUnitLaneMasks() const {
236 return makeArrayRef(RegUnitLaneMasks).slice(0, NativeRegUnits.count());
239 // Get the native register units. This is a prefix of getRegUnits().
240 RegUnitList getNativeRegUnits() const {
241 return NativeRegUnits;
244 void setRegUnitLaneMasks(const RegUnitLaneMaskList &LaneMasks) {
245 RegUnitLaneMasks = LaneMasks;
248 // Inherit register units from subregisters.
249 // Return true if the RegUnits changed.
250 bool inheritRegUnits(CodeGenRegBank &RegBank);
252 // Adopt a register unit for pressure tracking.
253 // A unit is adopted iff its unit number is >= NativeRegUnits.count().
254 void adoptRegUnit(unsigned RUID) { RegUnits.set(RUID); }
256 // Get the sum of this register's register unit weights.
257 unsigned getWeight(const CodeGenRegBank &RegBank) const;
259 // Canonically ordered set.
260 typedef std::vector<const CodeGenRegister*> Vec;
262 private:
263 bool SubRegsComplete;
264 bool SuperRegsComplete;
265 unsigned TopoSig;
267 // The sub-registers explicit in the .td file form a tree.
268 SmallVector<CodeGenSubRegIndex*, 8> ExplicitSubRegIndices;
269 SmallVector<CodeGenRegister*, 8> ExplicitSubRegs;
271 // Explicit ad hoc aliases, symmetrized to form an undirected graph.
272 SmallVector<CodeGenRegister*, 8> ExplicitAliases;
274 // Super-registers where this is the first explicit sub-register.
275 SuperRegList LeadingSuperRegs;
277 SubRegMap SubRegs;
278 SuperRegList SuperRegs;
279 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*> SubReg2Idx;
280 RegUnitList RegUnits;
281 RegUnitLaneMaskList RegUnitLaneMasks;
284 inline bool operator<(const CodeGenRegister &A, const CodeGenRegister &B) {
285 return A.EnumValue < B.EnumValue;
288 inline bool operator==(const CodeGenRegister &A, const CodeGenRegister &B) {
289 return A.EnumValue == B.EnumValue;
292 class CodeGenRegisterClass {
293 CodeGenRegister::Vec Members;
294 // Allocation orders. Order[0] always contains all registers in Members.
295 std::vector<SmallVector<Record*, 16>> Orders;
296 // Bit mask of sub-classes including this, indexed by their EnumValue.
297 BitVector SubClasses;
298 // List of super-classes, topologocally ordered to have the larger classes
299 // first. This is the same as sorting by EnumValue.
300 SmallVector<CodeGenRegisterClass*, 4> SuperClasses;
301 Record *TheDef;
302 std::string Name;
304 // For a synthesized class, inherit missing properties from the nearest
305 // super-class.
306 void inheritProperties(CodeGenRegBank&);
308 // Map SubRegIndex -> sub-class. This is the largest sub-class where all
309 // registers have a SubRegIndex sub-register.
310 DenseMap<const CodeGenSubRegIndex *, CodeGenRegisterClass *>
311 SubClassWithSubReg;
313 // Map SubRegIndex -> set of super-reg classes. This is all register
314 // classes SuperRC such that:
316 // R:SubRegIndex in this RC for all R in SuperRC.
318 DenseMap<const CodeGenSubRegIndex *, SmallPtrSet<CodeGenRegisterClass *, 8>>
319 SuperRegClasses;
321 // Bit vector of TopoSigs for the registers in this class. This will be
322 // very sparse on regular architectures.
323 BitVector TopoSigs;
325 public:
326 unsigned EnumValue;
327 StringRef Namespace;
328 SmallVector<ValueTypeByHwMode, 4> VTs;
329 RegSizeInfoByHwMode RSI;
330 int CopyCost;
331 bool Allocatable;
332 StringRef AltOrderSelect;
333 uint8_t AllocationPriority;
334 /// Contains the combination of the lane masks of all subregisters.
335 LaneBitmask LaneMask;
336 /// True if there are at least 2 subregisters which do not interfere.
337 bool HasDisjunctSubRegs;
338 bool CoveredBySubRegs;
339 /// A register class is artificial if all its members are artificial.
340 bool Artificial;
342 // Return the Record that defined this class, or NULL if the class was
343 // created by TableGen.
344 Record *getDef() const { return TheDef; }
346 const std::string &getName() const { return Name; }
347 std::string getQualifiedName() const;
348 ArrayRef<ValueTypeByHwMode> getValueTypes() const { return VTs; }
349 unsigned getNumValueTypes() const { return VTs.size(); }
351 bool hasType(const ValueTypeByHwMode &VT) const {
352 return std::find(VTs.begin(), VTs.end(), VT) != VTs.end();
355 const ValueTypeByHwMode &getValueTypeNum(unsigned VTNum) const {
356 if (VTNum < VTs.size())
357 return VTs[VTNum];
358 llvm_unreachable("VTNum greater than number of ValueTypes in RegClass!");
361 // Return true if this this class contains the register.
362 bool contains(const CodeGenRegister*) const;
364 // Returns true if RC is a subclass.
365 // RC is a sub-class of this class if it is a valid replacement for any
366 // instruction operand where a register of this classis required. It must
367 // satisfy these conditions:
369 // 1. All RC registers are also in this.
370 // 2. The RC spill size must not be smaller than our spill size.
371 // 3. RC spill alignment must be compatible with ours.
373 bool hasSubClass(const CodeGenRegisterClass *RC) const {
374 return SubClasses.test(RC->EnumValue);
377 // getSubClassWithSubReg - Returns the largest sub-class where all
378 // registers have a SubIdx sub-register.
379 CodeGenRegisterClass *
380 getSubClassWithSubReg(const CodeGenSubRegIndex *SubIdx) const {
381 return SubClassWithSubReg.lookup(SubIdx);
384 /// Find largest subclass where all registers have SubIdx subregisters in
385 /// SubRegClass and the largest subregister class that contains those
386 /// subregisters without (as far as possible) also containing additional registers.
388 /// This can be used to find a suitable pair of classes for subregister copies.
389 /// \return std::pair<SubClass, SubRegClass> where SubClass is a SubClass is
390 /// a class where every register has SubIdx and SubRegClass is a class where
391 /// every register is covered by the SubIdx subregister of SubClass.
392 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
393 getMatchingSubClassWithSubRegs(CodeGenRegBank &RegBank,
394 const CodeGenSubRegIndex *SubIdx) const;
396 void setSubClassWithSubReg(const CodeGenSubRegIndex *SubIdx,
397 CodeGenRegisterClass *SubRC) {
398 SubClassWithSubReg[SubIdx] = SubRC;
401 // getSuperRegClasses - Returns a bit vector of all register classes
402 // containing only SubIdx super-registers of this class.
403 void getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
404 BitVector &Out) const;
406 // addSuperRegClass - Add a class containing only SubIdx super-registers.
407 void addSuperRegClass(CodeGenSubRegIndex *SubIdx,
408 CodeGenRegisterClass *SuperRC) {
409 SuperRegClasses[SubIdx].insert(SuperRC);
412 // getSubClasses - Returns a constant BitVector of subclasses indexed by
413 // EnumValue.
414 // The SubClasses vector includes an entry for this class.
415 const BitVector &getSubClasses() const { return SubClasses; }
417 // getSuperClasses - Returns a list of super classes ordered by EnumValue.
418 // The array does not include an entry for this class.
419 ArrayRef<CodeGenRegisterClass*> getSuperClasses() const {
420 return SuperClasses;
423 // Returns an ordered list of class members.
424 // The order of registers is the same as in the .td file.
425 // No = 0 is the default allocation order, No = 1 is the first alternative.
426 ArrayRef<Record*> getOrder(unsigned No = 0) const {
427 return Orders[No];
430 // Return the total number of allocation orders available.
431 unsigned getNumOrders() const { return Orders.size(); }
433 // Get the set of registers. This set contains the same registers as
434 // getOrder(0).
435 const CodeGenRegister::Vec &getMembers() const { return Members; }
437 // Get a bit vector of TopoSigs present in this register class.
438 const BitVector &getTopoSigs() const { return TopoSigs; }
440 // Populate a unique sorted list of units from a register set.
441 void buildRegUnitSet(const CodeGenRegBank &RegBank,
442 std::vector<unsigned> &RegUnits) const;
444 CodeGenRegisterClass(CodeGenRegBank&, Record *R);
446 // A key representing the parts of a register class used for forming
447 // sub-classes. Note the ordering provided by this key is not the same as
448 // the topological order used for the EnumValues.
449 struct Key {
450 const CodeGenRegister::Vec *Members;
451 RegSizeInfoByHwMode RSI;
453 Key(const CodeGenRegister::Vec *M, const RegSizeInfoByHwMode &I)
454 : Members(M), RSI(I) {}
456 Key(const CodeGenRegisterClass &RC)
457 : Members(&RC.getMembers()), RSI(RC.RSI) {}
459 // Lexicographical order of (Members, RegSizeInfoByHwMode).
460 bool operator<(const Key&) const;
463 // Create a non-user defined register class.
464 CodeGenRegisterClass(CodeGenRegBank&, StringRef Name, Key Props);
466 // Called by CodeGenRegBank::CodeGenRegBank().
467 static void computeSubClasses(CodeGenRegBank&);
470 // Register units are used to model interference and register pressure.
471 // Every register is assigned one or more register units such that two
472 // registers overlap if and only if they have a register unit in common.
474 // Normally, one register unit is created per leaf register. Non-leaf
475 // registers inherit the units of their sub-registers.
476 struct RegUnit {
477 // Weight assigned to this RegUnit for estimating register pressure.
478 // This is useful when equalizing weights in register classes with mixed
479 // register topologies.
480 unsigned Weight;
482 // Each native RegUnit corresponds to one or two root registers. The full
483 // set of registers containing this unit can be computed as the union of
484 // these two registers and their super-registers.
485 const CodeGenRegister *Roots[2];
487 // Index into RegClassUnitSets where we can find the list of UnitSets that
488 // contain this unit.
489 unsigned RegClassUnitSetsIdx;
490 // A register unit is artificial if at least one of its roots is
491 // artificial.
492 bool Artificial;
494 RegUnit() : Weight(0), RegClassUnitSetsIdx(0), Artificial(false) {
495 Roots[0] = Roots[1] = nullptr;
498 ArrayRef<const CodeGenRegister*> getRoots() const {
499 assert(!(Roots[1] && !Roots[0]) && "Invalid roots array");
500 return makeArrayRef(Roots, !!Roots[0] + !!Roots[1]);
504 // Each RegUnitSet is a sorted vector with a name.
505 struct RegUnitSet {
506 typedef std::vector<unsigned>::const_iterator iterator;
508 std::string Name;
509 std::vector<unsigned> Units;
510 unsigned Weight = 0; // Cache the sum of all unit weights.
511 unsigned Order = 0; // Cache the sort key.
513 RegUnitSet() = default;
516 // Base vector for identifying TopoSigs. The contents uniquely identify a
517 // TopoSig, only computeSuperRegs needs to know how.
518 typedef SmallVector<unsigned, 16> TopoSigId;
520 // CodeGenRegBank - Represent a target's registers and the relations between
521 // them.
522 class CodeGenRegBank {
523 SetTheory Sets;
525 const CodeGenHwModes &CGH;
527 std::deque<CodeGenSubRegIndex> SubRegIndices;
528 DenseMap<Record*, CodeGenSubRegIndex*> Def2SubRegIdx;
530 CodeGenSubRegIndex *createSubRegIndex(StringRef Name, StringRef NameSpace);
532 typedef std::map<SmallVector<CodeGenSubRegIndex*, 8>,
533 CodeGenSubRegIndex*> ConcatIdxMap;
534 ConcatIdxMap ConcatIdx;
536 // Registers.
537 std::deque<CodeGenRegister> Registers;
538 StringMap<CodeGenRegister*> RegistersByName;
539 DenseMap<Record*, CodeGenRegister*> Def2Reg;
540 unsigned NumNativeRegUnits;
542 std::map<TopoSigId, unsigned> TopoSigs;
544 // Includes native (0..NumNativeRegUnits-1) and adopted register units.
545 SmallVector<RegUnit, 8> RegUnits;
547 // Register classes.
548 std::list<CodeGenRegisterClass> RegClasses;
549 DenseMap<Record*, CodeGenRegisterClass*> Def2RC;
550 typedef std::map<CodeGenRegisterClass::Key, CodeGenRegisterClass*> RCKeyMap;
551 RCKeyMap Key2RC;
553 // Remember each unique set of register units. Initially, this contains a
554 // unique set for each register class. Simliar sets are coalesced with
555 // pruneUnitSets and new supersets are inferred during computeRegUnitSets.
556 std::vector<RegUnitSet> RegUnitSets;
558 // Map RegisterClass index to the index of the RegUnitSet that contains the
559 // class's units and any inferred RegUnit supersets.
561 // NOTE: This could grow beyond the number of register classes when we map
562 // register units to lists of unit sets. If the list of unit sets does not
563 // already exist for a register class, we create a new entry in this vector.
564 std::vector<std::vector<unsigned>> RegClassUnitSets;
566 // Give each register unit set an order based on sorting criteria.
567 std::vector<unsigned> RegUnitSetOrder;
569 // Keep track of synthesized definitions generated in TupleExpander.
570 std::vector<std::unique_ptr<Record>> SynthDefs;
572 // Add RC to *2RC maps.
573 void addToMaps(CodeGenRegisterClass*);
575 // Create a synthetic sub-class if it is missing.
576 CodeGenRegisterClass *getOrCreateSubClass(const CodeGenRegisterClass *RC,
577 const CodeGenRegister::Vec *Membs,
578 StringRef Name);
580 // Infer missing register classes.
581 void computeInferredRegisterClasses();
582 void inferCommonSubClass(CodeGenRegisterClass *RC);
583 void inferSubClassWithSubReg(CodeGenRegisterClass *RC);
585 void inferMatchingSuperRegClass(CodeGenRegisterClass *RC) {
586 inferMatchingSuperRegClass(RC, RegClasses.begin());
589 void inferMatchingSuperRegClass(
590 CodeGenRegisterClass *RC,
591 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC);
593 // Iteratively prune unit sets.
594 void pruneUnitSets();
596 // Compute a weight for each register unit created during getSubRegs.
597 void computeRegUnitWeights();
599 // Create a RegUnitSet for each RegClass and infer superclasses.
600 void computeRegUnitSets();
602 // Populate the Composite map from sub-register relationships.
603 void computeComposites();
605 // Compute a lane mask for each sub-register index.
606 void computeSubRegLaneMasks();
608 /// Computes a lane mask for each register unit enumerated by a physical
609 /// register.
610 void computeRegUnitLaneMasks();
612 public:
613 CodeGenRegBank(RecordKeeper&, const CodeGenHwModes&);
615 SetTheory &getSets() { return Sets; }
617 const CodeGenHwModes &getHwModes() const { return CGH; }
619 // Sub-register indices. The first NumNamedIndices are defined by the user
620 // in the .td files. The rest are synthesized such that all sub-registers
621 // have a unique name.
622 const std::deque<CodeGenSubRegIndex> &getSubRegIndices() const {
623 return SubRegIndices;
626 // Find a SubRegIndex form its Record def.
627 CodeGenSubRegIndex *getSubRegIdx(Record*);
629 // Find or create a sub-register index representing the A+B composition.
630 CodeGenSubRegIndex *getCompositeSubRegIndex(CodeGenSubRegIndex *A,
631 CodeGenSubRegIndex *B);
633 // Find or create a sub-register index representing the concatenation of
634 // non-overlapping sibling indices.
635 CodeGenSubRegIndex *
636 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8>&);
638 const std::deque<CodeGenRegister> &getRegisters() { return Registers; }
640 const StringMap<CodeGenRegister*> &getRegistersByName() {
641 return RegistersByName;
644 // Find a register from its Record def.
645 CodeGenRegister *getReg(Record*);
647 // Get a Register's index into the Registers array.
648 unsigned getRegIndex(const CodeGenRegister *Reg) const {
649 return Reg->EnumValue - 1;
652 // Return the number of allocated TopoSigs. The first TopoSig representing
653 // leaf registers is allocated number 0.
654 unsigned getNumTopoSigs() const {
655 return TopoSigs.size();
658 // Find or create a TopoSig for the given TopoSigId.
659 // This function is only for use by CodeGenRegister::computeSuperRegs().
660 // Others should simply use Reg->getTopoSig().
661 unsigned getTopoSig(const TopoSigId &Id) {
662 return TopoSigs.insert(std::make_pair(Id, TopoSigs.size())).first->second;
665 // Create a native register unit that is associated with one or two root
666 // registers.
667 unsigned newRegUnit(CodeGenRegister *R0, CodeGenRegister *R1 = nullptr) {
668 RegUnits.resize(RegUnits.size() + 1);
669 RegUnit &RU = RegUnits.back();
670 RU.Roots[0] = R0;
671 RU.Roots[1] = R1;
672 RU.Artificial = R0->Artificial;
673 if (R1)
674 RU.Artificial |= R1->Artificial;
675 return RegUnits.size() - 1;
678 // Create a new non-native register unit that can be adopted by a register
679 // to increase its pressure. Note that NumNativeRegUnits is not increased.
680 unsigned newRegUnit(unsigned Weight) {
681 RegUnits.resize(RegUnits.size() + 1);
682 RegUnits.back().Weight = Weight;
683 return RegUnits.size() - 1;
686 // Native units are the singular unit of a leaf register. Register aliasing
687 // is completely characterized by native units. Adopted units exist to give
688 // register additional weight but don't affect aliasing.
689 bool isNativeUnit(unsigned RUID) {
690 return RUID < NumNativeRegUnits;
693 unsigned getNumNativeRegUnits() const {
694 return NumNativeRegUnits;
697 RegUnit &getRegUnit(unsigned RUID) { return RegUnits[RUID]; }
698 const RegUnit &getRegUnit(unsigned RUID) const { return RegUnits[RUID]; }
700 std::list<CodeGenRegisterClass> &getRegClasses() { return RegClasses; }
702 const std::list<CodeGenRegisterClass> &getRegClasses() const {
703 return RegClasses;
706 // Find a register class from its def.
707 CodeGenRegisterClass *getRegClass(Record*);
709 /// getRegisterClassForRegister - Find the register class that contains the
710 /// specified physical register. If the register is not in a register
711 /// class, return null. If the register is in multiple classes, and the
712 /// classes have a superset-subset relationship and the same set of types,
713 /// return the superclass. Otherwise return null.
714 const CodeGenRegisterClass* getRegClassForRegister(Record *R);
716 // Analog of TargetRegisterInfo::getMinimalPhysRegClass. Unlike
717 // getRegClassForRegister, this tries to find the smallest class containing
718 // the physical register. If \p VT is specified, it will only find classes
719 // with a matching type
720 const CodeGenRegisterClass *
721 getMinimalPhysRegClass(Record *RegRecord, ValueTypeByHwMode *VT = nullptr);
723 // Get the sum of unit weights.
724 unsigned getRegUnitSetWeight(const std::vector<unsigned> &Units) const {
725 unsigned Weight = 0;
726 for (std::vector<unsigned>::const_iterator
727 I = Units.begin(), E = Units.end(); I != E; ++I)
728 Weight += getRegUnit(*I).Weight;
729 return Weight;
732 unsigned getRegSetIDAt(unsigned Order) const {
733 return RegUnitSetOrder[Order];
736 const RegUnitSet &getRegSetAt(unsigned Order) const {
737 return RegUnitSets[RegUnitSetOrder[Order]];
740 // Increase a RegUnitWeight.
741 void increaseRegUnitWeight(unsigned RUID, unsigned Inc) {
742 getRegUnit(RUID).Weight += Inc;
745 // Get the number of register pressure dimensions.
746 unsigned getNumRegPressureSets() const { return RegUnitSets.size(); }
748 // Get a set of register unit IDs for a given dimension of pressure.
749 const RegUnitSet &getRegPressureSet(unsigned Idx) const {
750 return RegUnitSets[Idx];
753 // The number of pressure set lists may be larget than the number of
754 // register classes if some register units appeared in a list of sets that
755 // did not correspond to an existing register class.
756 unsigned getNumRegClassPressureSetLists() const {
757 return RegClassUnitSets.size();
760 // Get a list of pressure set IDs for a register class. Liveness of a
761 // register in this class impacts each pressure set in this list by the
762 // weight of the register. An exact solution requires all registers in a
763 // class to have the same class, but it is not strictly guaranteed.
764 ArrayRef<unsigned> getRCPressureSetIDs(unsigned RCIdx) const {
765 return RegClassUnitSets[RCIdx];
768 // Computed derived records such as missing sub-register indices.
769 void computeDerivedInfo();
771 // Compute the set of registers completely covered by the registers in Regs.
772 // The returned BitVector will have a bit set for each register in Regs,
773 // all sub-registers, and all super-registers that are covered by the
774 // registers in Regs.
776 // This is used to compute the mask of call-preserved registers from a list
777 // of callee-saves.
778 BitVector computeCoveredRegisters(ArrayRef<Record*> Regs);
780 // Bit mask of lanes that cover their registers. A sub-register index whose
781 // LaneMask is contained in CoveringLanes will be completely covered by
782 // another sub-register with the same or larger lane mask.
783 LaneBitmask CoveringLanes;
785 // Helper function for printing debug information. Handles artificial
786 // (non-native) reg units.
787 void printRegUnitName(unsigned Unit) const;
790 } // end namespace llvm
792 #endif // LLVM_UTILS_TABLEGEN_CODEGENREGISTERS_H