1 //===-- llvm/AbstractTypeUser.h - AbstractTypeUser Interface ----*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file declares the AbstractTypeUser class.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_ABSTRACT_TYPE_USER_H
15 #define LLVM_ABSTRACT_TYPE_USER_H
17 #if !defined(LLVM_TYPE_H) && !defined(LLVM_VALUE_H)
18 #error Do not include this file directly. Include Type.h instead.
19 #error Some versions of GCC (e.g. 3.4 and 4.1) can not handle the inlined method
20 #error PATypeHolder::dropRef() correctly otherwise.
23 // This is the "master" include for <cassert> Whether this file needs it or not,
24 // it must always include <cassert> for the files which include
25 // llvm/AbstractTypeUser.h
27 // In this way, most every LLVM source file will have access to the assert()
28 // macro without having to #include <cassert> directly.
37 /// The AbstractTypeUser class is an interface to be implemented by classes who
38 /// could possibly use an abstract type. Abstract types are denoted by the
39 /// isAbstract flag set to true in the Type class. These are classes that
40 /// contain an Opaque type in their structure somewhere.
42 /// Classes must implement this interface so that they may be notified when an
43 /// abstract type is resolved. Abstract types may be resolved into more
44 /// concrete types through: linking, parsing, and bitcode reading. When this
45 /// happens, all of the users of the type must be updated to reference the new,
46 /// more concrete type. They are notified through the AbstractTypeUser
49 /// In addition to this, AbstractTypeUsers must keep the use list of the
50 /// potentially abstract type that they reference up-to-date. To do this in a
51 /// nice, transparent way, the PATypeHandle class is used to hold "Potentially
52 /// Abstract Types", and keep the use list of the abstract types up-to-date.
53 /// @brief LLVM Abstract Type User Representation
54 class AbstractTypeUser
{
56 virtual ~AbstractTypeUser(); // Derive from me
59 /// refineAbstractType - The callback method invoked when an abstract type is
60 /// resolved to another type. An object must override this method to update
61 /// its internal state to reference NewType instead of OldType.
63 virtual void refineAbstractType(const DerivedType
*OldTy
,
64 const Type
*NewTy
) = 0;
66 /// The other case which AbstractTypeUsers must be aware of is when a type
67 /// makes the transition from being abstract (where it has clients on it's
68 /// AbstractTypeUsers list) to concrete (where it does not). This method
69 /// notifies ATU's when this occurs for a type.
71 virtual void typeBecameConcrete(const DerivedType
*AbsTy
) = 0;
74 virtual void dump() const = 0;
78 /// PATypeHandle - Handle to a Type subclass. This class is used to keep the
79 /// use list of abstract types up-to-date.
83 AbstractTypeUser
* const User
;
85 // These functions are defined at the bottom of Type.h. See the comment there
90 // ctor - Add use to type if abstract. Note that Ty must not be null
91 inline PATypeHandle(const Type
*ty
, AbstractTypeUser
*user
)
92 : Ty(ty
), User(user
) {
96 // ctor - Add use to type if abstract.
97 inline PATypeHandle(const PATypeHandle
&T
) : Ty(T
.Ty
), User(T
.User
) {
101 // dtor - Remove reference to type...
102 inline ~PATypeHandle() { removeUser(); }
104 // Automatic casting operator so that the handle may be used naturally
105 inline operator Type
*() const { return const_cast<Type
*>(Ty
); }
106 inline Type
*get() const { return const_cast<Type
*>(Ty
); }
108 // operator= - Allow assignment to handle
109 inline Type
*operator=(const Type
*ty
) {
110 if (Ty
!= ty
) { // Ensure we don't accidentally drop last ref to Ty
118 // operator= - Allow assignment to handle
119 inline const Type
*operator=(const PATypeHandle
&T
) {
120 return operator=(T
.Ty
);
123 inline bool operator==(const Type
*ty
) {
127 // operator-> - Allow user to dereference handle naturally...
128 inline const Type
*operator->() const { return Ty
; }
132 /// PATypeHolder - Holder class for a potentially abstract type. This uses
133 /// efficient union-find techniques to handle dynamic type resolution. Unless
134 /// you need to do custom processing when types are resolved, you should always
135 /// use PATypeHolders in preference to PATypeHandles.
138 mutable const Type
*Ty
;
140 PATypeHolder(const Type
*ty
) : Ty(ty
) {
143 PATypeHolder(const PATypeHolder
&T
) : Ty(T
.Ty
) {
147 ~PATypeHolder() { dropRef(); }
149 operator Type
*() const { return get(); }
152 // operator-> - Allow user to dereference handle naturally...
153 Type
*operator->() const { return get(); }
155 // operator= - Allow assignment to handle
156 Type
*operator=(const Type
*ty
) {
157 if (Ty
!= ty
) { // Don't accidentally drop last ref to Ty.
164 Type
*operator=(const PATypeHolder
&H
) {
165 return operator=(H
.Ty
);
168 /// getRawType - This should only be used to implement the vmcore library.
170 const Type
*getRawType() const { return Ty
; }
177 } // End llvm namespace