Fix for PR1801
[llvm-complete.git] / lib / Target / X86 / X86CodeEmitter.cpp
blobcf1dda479013a45523e473571dda6ad7065fcf12
1 //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the pass that transforms the X86 machine instructions into
11 // relocatable machine code.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-emitter"
16 #include "X86InstrInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "X86Relocations.h"
20 #include "X86.h"
21 #include "llvm/PassManager.h"
22 #include "llvm/CodeGen/MachineCodeEmitter.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/Function.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Target/TargetOptions.h"
30 using namespace llvm;
32 STATISTIC(NumEmitted, "Number of machine instructions emitted");
34 namespace {
35 class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass {
36 const X86InstrInfo *II;
37 const TargetData *TD;
38 TargetMachine &TM;
39 MachineCodeEmitter &MCE;
40 bool Is64BitMode;
41 public:
42 static char ID;
43 explicit Emitter(TargetMachine &tm, MachineCodeEmitter &mce)
44 : MachineFunctionPass((intptr_t)&ID), II(0), TD(0), TM(tm),
45 MCE(mce), Is64BitMode(false) {}
46 Emitter(TargetMachine &tm, MachineCodeEmitter &mce,
47 const X86InstrInfo &ii, const TargetData &td, bool is64)
48 : MachineFunctionPass((intptr_t)&ID), II(&ii), TD(&td), TM(tm),
49 MCE(mce), Is64BitMode(is64) {}
51 bool runOnMachineFunction(MachineFunction &MF);
53 virtual const char *getPassName() const {
54 return "X86 Machine Code Emitter";
57 void emitInstruction(const MachineInstr &MI);
59 private:
60 void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
61 void emitPCRelativeValue(intptr_t Address);
62 void emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub);
63 void emitGlobalAddressForPtr(GlobalValue *GV, unsigned Reloc,
64 int Disp = 0, unsigned PCAdj = 0);
65 void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
66 void emitConstPoolAddress(unsigned CPI, unsigned Reloc, int Disp = 0,
67 unsigned PCAdj = 0);
68 void emitJumpTableAddress(unsigned JTI, unsigned Reloc, unsigned PCAdj = 0);
70 void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
71 unsigned PCAdj = 0);
73 void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
74 void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
75 void emitConstant(uint64_t Val, unsigned Size);
77 void emitMemModRMByte(const MachineInstr &MI,
78 unsigned Op, unsigned RegOpcodeField,
79 unsigned PCAdj = 0);
81 unsigned getX86RegNum(unsigned RegNo);
82 bool isX86_64ExtendedReg(const MachineOperand &MO);
83 unsigned determineREX(const MachineInstr &MI);
85 char Emitter::ID = 0;
88 /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
89 /// to the specified MCE object.
90 FunctionPass *llvm::createX86CodeEmitterPass(X86TargetMachine &TM,
91 MachineCodeEmitter &MCE) {
92 return new Emitter(TM, MCE);
95 bool Emitter::runOnMachineFunction(MachineFunction &MF) {
96 assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
97 MF.getTarget().getRelocationModel() != Reloc::Static) &&
98 "JIT relocation model must be set to static or default!");
99 II = ((X86TargetMachine&)MF.getTarget()).getInstrInfo();
100 TD = ((X86TargetMachine&)MF.getTarget()).getTargetData();
101 Is64BitMode =
102 ((X86TargetMachine&)MF.getTarget()).getSubtarget<X86Subtarget>().is64Bit();
104 do {
105 MCE.startFunction(MF);
106 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
107 MBB != E; ++MBB) {
108 MCE.StartMachineBasicBlock(MBB);
109 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
110 I != E; ++I)
111 emitInstruction(*I);
113 } while (MCE.finishFunction(MF));
115 return false;
118 /// emitPCRelativeValue - Emit a PC relative address.
120 void Emitter::emitPCRelativeValue(intptr_t Address) {
121 MCE.emitWordLE(Address-MCE.getCurrentPCValue()-4);
124 /// emitPCRelativeBlockAddress - This method keeps track of the information
125 /// necessary to resolve the address of this block later and emits a dummy
126 /// value.
128 void Emitter::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
129 // Remember where this reference was and where it is to so we can
130 // deal with it later.
131 MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
132 X86::reloc_pcrel_word, MBB));
133 MCE.emitWordLE(0);
136 /// emitGlobalAddressForCall - Emit the specified address to the code stream
137 /// assuming this is part of a function call, which is PC relative.
139 void Emitter::emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub) {
140 MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
141 X86::reloc_pcrel_word, GV, 0,
142 DoesntNeedStub));
143 MCE.emitWordLE(0);
146 /// emitGlobalAddress - Emit the specified address to the code stream assuming
147 /// this is part of a "take the address of a global" instruction.
149 void Emitter::emitGlobalAddressForPtr(GlobalValue *GV, unsigned Reloc,
150 int Disp /* = 0 */,
151 unsigned PCAdj /* = 0 */) {
152 MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
153 GV, PCAdj));
154 if (Reloc == X86::reloc_absolute_dword)
155 MCE.emitWordLE(0);
156 MCE.emitWordLE(Disp); // The relocated value will be added to the displacement
159 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
160 /// be emitted to the current location in the function, and allow it to be PC
161 /// relative.
162 void Emitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
163 MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
164 Reloc, ES));
165 if (Reloc == X86::reloc_absolute_dword)
166 MCE.emitWordLE(0);
167 MCE.emitWordLE(0);
170 /// emitConstPoolAddress - Arrange for the address of an constant pool
171 /// to be emitted to the current location in the function, and allow it to be PC
172 /// relative.
173 void Emitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
174 int Disp /* = 0 */,
175 unsigned PCAdj /* = 0 */) {
176 MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
177 Reloc, CPI, PCAdj));
178 if (Reloc == X86::reloc_absolute_dword)
179 MCE.emitWordLE(0);
180 MCE.emitWordLE(Disp); // The relocated value will be added to the displacement
183 /// emitJumpTableAddress - Arrange for the address of a jump table to
184 /// be emitted to the current location in the function, and allow it to be PC
185 /// relative.
186 void Emitter::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
187 unsigned PCAdj /* = 0 */) {
188 MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
189 Reloc, JTI, PCAdj));
190 if (Reloc == X86::reloc_absolute_dword)
191 MCE.emitWordLE(0);
192 MCE.emitWordLE(0); // The relocated value will be added to the displacement
195 unsigned Emitter::getX86RegNum(unsigned RegNo) {
196 return ((X86RegisterInfo&)II->getRegisterInfo()).getX86RegNum(RegNo);
199 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
200 unsigned RM) {
201 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
202 return RM | (RegOpcode << 3) | (Mod << 6);
205 void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){
206 MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
209 void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) {
210 // SIB byte is in the same format as the ModRMByte...
211 MCE.emitByte(ModRMByte(SS, Index, Base));
214 void Emitter::emitConstant(uint64_t Val, unsigned Size) {
215 // Output the constant in little endian byte order...
216 for (unsigned i = 0; i != Size; ++i) {
217 MCE.emitByte(Val & 255);
218 Val >>= 8;
222 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
223 /// sign-extended field.
224 static bool isDisp8(int Value) {
225 return Value == (signed char)Value;
228 void Emitter::emitDisplacementField(const MachineOperand *RelocOp,
229 int DispVal, unsigned PCAdj) {
230 // If this is a simple integer displacement that doesn't require a relocation,
231 // emit it now.
232 if (!RelocOp) {
233 emitConstant(DispVal, 4);
234 return;
237 // Otherwise, this is something that requires a relocation. Emit it as such
238 // now.
239 if (RelocOp->isGlobalAddress()) {
240 // In 64-bit static small code model, we could potentially emit absolute.
241 // But it's probably not beneficial.
242 // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
243 // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
244 unsigned rt= Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_absolute_word;
245 emitGlobalAddressForPtr(RelocOp->getGlobal(), rt,
246 RelocOp->getOffset(), PCAdj);
247 } else if (RelocOp->isConstantPoolIndex()) {
248 // Must be in 64-bit mode.
249 emitConstPoolAddress(RelocOp->getConstantPoolIndex(), X86::reloc_pcrel_word,
250 RelocOp->getOffset(), PCAdj);
251 } else if (RelocOp->isJumpTableIndex()) {
252 // Must be in 64-bit mode.
253 emitJumpTableAddress(RelocOp->getJumpTableIndex(), X86::reloc_pcrel_word,
254 PCAdj);
255 } else {
256 assert(0 && "Unknown value to relocate!");
260 void Emitter::emitMemModRMByte(const MachineInstr &MI,
261 unsigned Op, unsigned RegOpcodeField,
262 unsigned PCAdj) {
263 const MachineOperand &Op3 = MI.getOperand(Op+3);
264 int DispVal = 0;
265 const MachineOperand *DispForReloc = 0;
267 // Figure out what sort of displacement we have to handle here.
268 if (Op3.isGlobalAddress()) {
269 DispForReloc = &Op3;
270 } else if (Op3.isConstantPoolIndex()) {
271 if (Is64BitMode) {
272 DispForReloc = &Op3;
273 } else {
274 DispVal += MCE.getConstantPoolEntryAddress(Op3.getConstantPoolIndex());
275 DispVal += Op3.getOffset();
277 } else if (Op3.isJumpTableIndex()) {
278 if (Is64BitMode) {
279 DispForReloc = &Op3;
280 } else {
281 DispVal += MCE.getJumpTableEntryAddress(Op3.getJumpTableIndex());
283 } else {
284 DispVal = Op3.getImm();
287 const MachineOperand &Base = MI.getOperand(Op);
288 const MachineOperand &Scale = MI.getOperand(Op+1);
289 const MachineOperand &IndexReg = MI.getOperand(Op+2);
291 unsigned BaseReg = Base.getReg();
293 // Is a SIB byte needed?
294 if (IndexReg.getReg() == 0 &&
295 (BaseReg == 0 || getX86RegNum(BaseReg) != N86::ESP)) {
296 if (BaseReg == 0) { // Just a displacement?
297 // Emit special case [disp32] encoding
298 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
300 emitDisplacementField(DispForReloc, DispVal, PCAdj);
301 } else {
302 unsigned BaseRegNo = getX86RegNum(BaseReg);
303 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
304 // Emit simple indirect register encoding... [EAX] f.e.
305 MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
306 } else if (!DispForReloc && isDisp8(DispVal)) {
307 // Emit the disp8 encoding... [REG+disp8]
308 MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
309 emitConstant(DispVal, 1);
310 } else {
311 // Emit the most general non-SIB encoding: [REG+disp32]
312 MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
313 emitDisplacementField(DispForReloc, DispVal, PCAdj);
317 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
318 assert(IndexReg.getReg() != X86::ESP &&
319 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
321 bool ForceDisp32 = false;
322 bool ForceDisp8 = false;
323 if (BaseReg == 0) {
324 // If there is no base register, we emit the special case SIB byte with
325 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
326 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
327 ForceDisp32 = true;
328 } else if (DispForReloc) {
329 // Emit the normal disp32 encoding.
330 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
331 ForceDisp32 = true;
332 } else if (DispVal == 0 && getX86RegNum(BaseReg) != N86::EBP) {
333 // Emit no displacement ModR/M byte
334 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
335 } else if (isDisp8(DispVal)) {
336 // Emit the disp8 encoding...
337 MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
338 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
339 } else {
340 // Emit the normal disp32 encoding...
341 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
344 // Calculate what the SS field value should be...
345 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
346 unsigned SS = SSTable[Scale.getImm()];
348 if (BaseReg == 0) {
349 // Handle the SIB byte for the case where there is no base. The
350 // displacement has already been output.
351 assert(IndexReg.getReg() && "Index register must be specified!");
352 emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5);
353 } else {
354 unsigned BaseRegNo = getX86RegNum(BaseReg);
355 unsigned IndexRegNo;
356 if (IndexReg.getReg())
357 IndexRegNo = getX86RegNum(IndexReg.getReg());
358 else
359 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
360 emitSIBByte(SS, IndexRegNo, BaseRegNo);
363 // Do we need to output a displacement?
364 if (ForceDisp8) {
365 emitConstant(DispVal, 1);
366 } else if (DispVal != 0 || ForceDisp32) {
367 emitDisplacementField(DispForReloc, DispVal, PCAdj);
372 static unsigned sizeOfImm(const TargetInstrDescriptor *Desc) {
373 switch (Desc->TSFlags & X86II::ImmMask) {
374 case X86II::Imm8: return 1;
375 case X86II::Imm16: return 2;
376 case X86II::Imm32: return 4;
377 case X86II::Imm64: return 8;
378 default: assert(0 && "Immediate size not set!");
379 return 0;
383 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
384 /// e.g. r8, xmm8, etc.
385 bool Emitter::isX86_64ExtendedReg(const MachineOperand &MO) {
386 if (!MO.isRegister()) return false;
387 switch (MO.getReg()) {
388 default: break;
389 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
390 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
391 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
392 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
393 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
394 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
395 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
396 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
397 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
398 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
399 return true;
401 return false;
404 inline static bool isX86_64NonExtLowByteReg(unsigned reg) {
405 return (reg == X86::SPL || reg == X86::BPL ||
406 reg == X86::SIL || reg == X86::DIL);
409 /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
410 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
411 /// size, and 3) use of X86-64 extended registers.
412 unsigned Emitter::determineREX(const MachineInstr &MI) {
413 unsigned REX = 0;
414 const TargetInstrDescriptor *Desc = MI.getInstrDescriptor();
416 // Pseudo instructions do not need REX prefix byte.
417 if ((Desc->TSFlags & X86II::FormMask) == X86II::Pseudo)
418 return 0;
419 if (Desc->TSFlags & X86II::REX_W)
420 REX |= 1 << 3;
422 unsigned NumOps = Desc->numOperands;
423 if (NumOps) {
424 bool isTwoAddr = NumOps > 1 &&
425 Desc->getOperandConstraint(1, TOI::TIED_TO) != -1;
427 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
428 unsigned i = isTwoAddr ? 1 : 0;
429 for (unsigned e = NumOps; i != e; ++i) {
430 const MachineOperand& MO = MI.getOperand(i);
431 if (MO.isRegister()) {
432 unsigned Reg = MO.getReg();
433 if (isX86_64NonExtLowByteReg(Reg))
434 REX |= 0x40;
438 switch (Desc->TSFlags & X86II::FormMask) {
439 case X86II::MRMInitReg:
440 if (isX86_64ExtendedReg(MI.getOperand(0)))
441 REX |= (1 << 0) | (1 << 2);
442 break;
443 case X86II::MRMSrcReg: {
444 if (isX86_64ExtendedReg(MI.getOperand(0)))
445 REX |= 1 << 2;
446 i = isTwoAddr ? 2 : 1;
447 for (unsigned e = NumOps; i != e; ++i) {
448 const MachineOperand& MO = MI.getOperand(i);
449 if (isX86_64ExtendedReg(MO))
450 REX |= 1 << 0;
452 break;
454 case X86II::MRMSrcMem: {
455 if (isX86_64ExtendedReg(MI.getOperand(0)))
456 REX |= 1 << 2;
457 unsigned Bit = 0;
458 i = isTwoAddr ? 2 : 1;
459 for (; i != NumOps; ++i) {
460 const MachineOperand& MO = MI.getOperand(i);
461 if (MO.isRegister()) {
462 if (isX86_64ExtendedReg(MO))
463 REX |= 1 << Bit;
464 Bit++;
467 break;
469 case X86II::MRM0m: case X86II::MRM1m:
470 case X86II::MRM2m: case X86II::MRM3m:
471 case X86II::MRM4m: case X86II::MRM5m:
472 case X86II::MRM6m: case X86II::MRM7m:
473 case X86II::MRMDestMem: {
474 unsigned e = isTwoAddr ? 5 : 4;
475 i = isTwoAddr ? 1 : 0;
476 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
477 REX |= 1 << 2;
478 unsigned Bit = 0;
479 for (; i != e; ++i) {
480 const MachineOperand& MO = MI.getOperand(i);
481 if (MO.isRegister()) {
482 if (isX86_64ExtendedReg(MO))
483 REX |= 1 << Bit;
484 Bit++;
487 break;
489 default: {
490 if (isX86_64ExtendedReg(MI.getOperand(0)))
491 REX |= 1 << 0;
492 i = isTwoAddr ? 2 : 1;
493 for (unsigned e = NumOps; i != e; ++i) {
494 const MachineOperand& MO = MI.getOperand(i);
495 if (isX86_64ExtendedReg(MO))
496 REX |= 1 << 2;
498 break;
502 return REX;
505 void Emitter::emitInstruction(const MachineInstr &MI) {
506 NumEmitted++; // Keep track of the # of mi's emitted
508 const TargetInstrDescriptor *Desc = MI.getInstrDescriptor();
509 unsigned Opcode = Desc->Opcode;
511 // Emit the repeat opcode prefix as needed.
512 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3);
514 // Emit the operand size opcode prefix as needed.
515 if (Desc->TSFlags & X86II::OpSize) MCE.emitByte(0x66);
517 // Emit the address size opcode prefix as needed.
518 if (Desc->TSFlags & X86II::AdSize) MCE.emitByte(0x67);
520 bool Need0FPrefix = false;
521 switch (Desc->TSFlags & X86II::Op0Mask) {
522 case X86II::TB:
523 Need0FPrefix = true; // Two-byte opcode prefix
524 break;
525 case X86II::T8:
526 MCE.emitByte(0x0F);
527 MCE.emitByte(0x38);
528 break;
529 case X86II::TA:
530 MCE.emitByte(0x0F);
531 MCE.emitByte(0x3A);
532 break;
533 case X86II::REP: break; // already handled.
534 case X86II::XS: // F3 0F
535 MCE.emitByte(0xF3);
536 Need0FPrefix = true;
537 break;
538 case X86II::XD: // F2 0F
539 MCE.emitByte(0xF2);
540 Need0FPrefix = true;
541 break;
542 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
543 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
544 MCE.emitByte(0xD8+
545 (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
546 >> X86II::Op0Shift));
547 break; // Two-byte opcode prefix
548 default: assert(0 && "Invalid prefix!");
549 case 0: break; // No prefix!
552 if (Is64BitMode) {
553 // REX prefix
554 unsigned REX = determineREX(MI);
555 if (REX)
556 MCE.emitByte(0x40 | REX);
559 // 0x0F escape code must be emitted just before the opcode.
560 if (Need0FPrefix)
561 MCE.emitByte(0x0F);
563 // If this is a two-address instruction, skip one of the register operands.
564 unsigned NumOps = Desc->numOperands;
565 unsigned CurOp = 0;
566 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
567 CurOp++;
569 unsigned char BaseOpcode = II->getBaseOpcodeFor(Desc);
570 switch (Desc->TSFlags & X86II::FormMask) {
571 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
572 case X86II::Pseudo:
573 #ifndef NDEBUG
574 switch (Opcode) {
575 default:
576 assert(0 && "psuedo instructions should be removed before code emission");
577 case TargetInstrInfo::INLINEASM:
578 assert(0 && "JIT does not support inline asm!\n");
579 case TargetInstrInfo::LABEL:
580 assert(0 && "JIT does not support meta labels!\n");
581 case X86::IMPLICIT_USE:
582 case X86::IMPLICIT_DEF:
583 case X86::IMPLICIT_DEF_GR8:
584 case X86::IMPLICIT_DEF_GR16:
585 case X86::IMPLICIT_DEF_GR32:
586 case X86::IMPLICIT_DEF_GR64:
587 case X86::IMPLICIT_DEF_FR32:
588 case X86::IMPLICIT_DEF_FR64:
589 case X86::IMPLICIT_DEF_VR64:
590 case X86::IMPLICIT_DEF_VR128:
591 case X86::FP_REG_KILL:
592 break;
594 #endif
595 CurOp = NumOps;
596 break;
598 case X86II::RawFrm:
599 MCE.emitByte(BaseOpcode);
600 if (CurOp != NumOps) {
601 const MachineOperand &MO = MI.getOperand(CurOp++);
602 if (MO.isMachineBasicBlock()) {
603 emitPCRelativeBlockAddress(MO.getMachineBasicBlock());
604 } else if (MO.isGlobalAddress()) {
605 bool NeedStub = Is64BitMode ||
606 Opcode == X86::TAILJMPd ||
607 Opcode == X86::TAILJMPr || Opcode == X86::TAILJMPm;
608 emitGlobalAddressForCall(MO.getGlobal(), !NeedStub);
609 } else if (MO.isExternalSymbol()) {
610 emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
611 } else if (MO.isImmediate()) {
612 emitConstant(MO.getImm(), sizeOfImm(Desc));
613 } else {
614 assert(0 && "Unknown RawFrm operand!");
617 break;
619 case X86II::AddRegFrm:
620 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
622 if (CurOp != NumOps) {
623 const MachineOperand &MO1 = MI.getOperand(CurOp++);
624 unsigned Size = sizeOfImm(Desc);
625 if (MO1.isImmediate())
626 emitConstant(MO1.getImm(), Size);
627 else {
628 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_absolute_word;
629 if (Opcode == X86::MOV64ri)
630 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
631 if (MO1.isGlobalAddress())
632 emitGlobalAddressForPtr(MO1.getGlobal(), rt, MO1.getOffset());
633 else if (MO1.isExternalSymbol())
634 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
635 else if (MO1.isConstantPoolIndex())
636 emitConstPoolAddress(MO1.getConstantPoolIndex(), rt);
637 else if (MO1.isJumpTableIndex())
638 emitJumpTableAddress(MO1.getJumpTableIndex(), rt);
641 break;
643 case X86II::MRMDestReg: {
644 MCE.emitByte(BaseOpcode);
645 emitRegModRMByte(MI.getOperand(CurOp).getReg(),
646 getX86RegNum(MI.getOperand(CurOp+1).getReg()));
647 CurOp += 2;
648 if (CurOp != NumOps)
649 emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc));
650 break;
652 case X86II::MRMDestMem: {
653 MCE.emitByte(BaseOpcode);
654 emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(CurOp+4).getReg()));
655 CurOp += 5;
656 if (CurOp != NumOps)
657 emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc));
658 break;
661 case X86II::MRMSrcReg:
662 MCE.emitByte(BaseOpcode);
663 emitRegModRMByte(MI.getOperand(CurOp+1).getReg(),
664 getX86RegNum(MI.getOperand(CurOp).getReg()));
665 CurOp += 2;
666 if (CurOp != NumOps)
667 emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc));
668 break;
670 case X86II::MRMSrcMem: {
671 unsigned PCAdj = (CurOp+5 != NumOps) ? sizeOfImm(Desc) : 0;
673 MCE.emitByte(BaseOpcode);
674 emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()),
675 PCAdj);
676 CurOp += 5;
677 if (CurOp != NumOps)
678 emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc));
679 break;
682 case X86II::MRM0r: case X86II::MRM1r:
683 case X86II::MRM2r: case X86II::MRM3r:
684 case X86II::MRM4r: case X86II::MRM5r:
685 case X86II::MRM6r: case X86II::MRM7r:
686 MCE.emitByte(BaseOpcode);
687 emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
688 (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
690 if (CurOp != NumOps) {
691 const MachineOperand &MO1 = MI.getOperand(CurOp++);
692 unsigned Size = sizeOfImm(Desc);
693 if (MO1.isImmediate())
694 emitConstant(MO1.getImm(), Size);
695 else {
696 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
697 : X86::reloc_absolute_word;
698 if (Opcode == X86::MOV64ri32)
699 rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
700 if (MO1.isGlobalAddress())
701 emitGlobalAddressForPtr(MO1.getGlobal(), rt, MO1.getOffset());
702 else if (MO1.isExternalSymbol())
703 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
704 else if (MO1.isConstantPoolIndex())
705 emitConstPoolAddress(MO1.getConstantPoolIndex(), rt);
706 else if (MO1.isJumpTableIndex())
707 emitJumpTableAddress(MO1.getJumpTableIndex(), rt);
710 break;
712 case X86II::MRM0m: case X86II::MRM1m:
713 case X86II::MRM2m: case X86II::MRM3m:
714 case X86II::MRM4m: case X86II::MRM5m:
715 case X86II::MRM6m: case X86II::MRM7m: {
716 unsigned PCAdj = (CurOp+4 != NumOps) ?
717 (MI.getOperand(CurOp+4).isImmediate() ? sizeOfImm(Desc) : 4) : 0;
719 MCE.emitByte(BaseOpcode);
720 emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
721 PCAdj);
722 CurOp += 4;
724 if (CurOp != NumOps) {
725 const MachineOperand &MO = MI.getOperand(CurOp++);
726 unsigned Size = sizeOfImm(Desc);
727 if (MO.isImmediate())
728 emitConstant(MO.getImm(), Size);
729 else {
730 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
731 : X86::reloc_absolute_word;
732 if (Opcode == X86::MOV64mi32)
733 rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
734 if (MO.isGlobalAddress())
735 emitGlobalAddressForPtr(MO.getGlobal(), rt, MO.getOffset());
736 else if (MO.isExternalSymbol())
737 emitExternalSymbolAddress(MO.getSymbolName(), rt);
738 else if (MO.isConstantPoolIndex())
739 emitConstPoolAddress(MO.getConstantPoolIndex(), rt);
740 else if (MO.isJumpTableIndex())
741 emitJumpTableAddress(MO.getJumpTableIndex(), rt);
744 break;
747 case X86II::MRMInitReg:
748 MCE.emitByte(BaseOpcode);
749 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
750 emitRegModRMByte(MI.getOperand(CurOp).getReg(),
751 getX86RegNum(MI.getOperand(CurOp).getReg()));
752 ++CurOp;
753 break;
756 assert((Desc->Flags & M_VARIABLE_OPS) != 0 ||
757 CurOp == NumOps && "Unknown encoding!");