1 //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the pass that transforms the X86 machine instructions into
11 // relocatable machine code.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-emitter"
16 #include "X86InstrInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "X86Relocations.h"
21 #include "llvm/PassManager.h"
22 #include "llvm/CodeGen/MachineCodeEmitter.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/Function.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Target/TargetOptions.h"
32 STATISTIC(NumEmitted
, "Number of machine instructions emitted");
35 class VISIBILITY_HIDDEN Emitter
: public MachineFunctionPass
{
36 const X86InstrInfo
*II
;
39 MachineCodeEmitter
&MCE
;
43 explicit Emitter(TargetMachine
&tm
, MachineCodeEmitter
&mce
)
44 : MachineFunctionPass((intptr_t)&ID
), II(0), TD(0), TM(tm
),
45 MCE(mce
), Is64BitMode(false) {}
46 Emitter(TargetMachine
&tm
, MachineCodeEmitter
&mce
,
47 const X86InstrInfo
&ii
, const TargetData
&td
, bool is64
)
48 : MachineFunctionPass((intptr_t)&ID
), II(&ii
), TD(&td
), TM(tm
),
49 MCE(mce
), Is64BitMode(is64
) {}
51 bool runOnMachineFunction(MachineFunction
&MF
);
53 virtual const char *getPassName() const {
54 return "X86 Machine Code Emitter";
57 void emitInstruction(const MachineInstr
&MI
);
60 void emitPCRelativeBlockAddress(MachineBasicBlock
*MBB
);
61 void emitPCRelativeValue(intptr_t Address
);
62 void emitGlobalAddressForCall(GlobalValue
*GV
, bool DoesntNeedStub
);
63 void emitGlobalAddressForPtr(GlobalValue
*GV
, unsigned Reloc
,
64 int Disp
= 0, unsigned PCAdj
= 0);
65 void emitExternalSymbolAddress(const char *ES
, unsigned Reloc
);
66 void emitConstPoolAddress(unsigned CPI
, unsigned Reloc
, int Disp
= 0,
68 void emitJumpTableAddress(unsigned JTI
, unsigned Reloc
, unsigned PCAdj
= 0);
70 void emitDisplacementField(const MachineOperand
*RelocOp
, int DispVal
,
73 void emitRegModRMByte(unsigned ModRMReg
, unsigned RegOpcodeField
);
74 void emitSIBByte(unsigned SS
, unsigned Index
, unsigned Base
);
75 void emitConstant(uint64_t Val
, unsigned Size
);
77 void emitMemModRMByte(const MachineInstr
&MI
,
78 unsigned Op
, unsigned RegOpcodeField
,
81 unsigned getX86RegNum(unsigned RegNo
);
82 bool isX86_64ExtendedReg(const MachineOperand
&MO
);
83 unsigned determineREX(const MachineInstr
&MI
);
88 /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
89 /// to the specified MCE object.
90 FunctionPass
*llvm::createX86CodeEmitterPass(X86TargetMachine
&TM
,
91 MachineCodeEmitter
&MCE
) {
92 return new Emitter(TM
, MCE
);
95 bool Emitter::runOnMachineFunction(MachineFunction
&MF
) {
96 assert((MF
.getTarget().getRelocationModel() != Reloc::Default
||
97 MF
.getTarget().getRelocationModel() != Reloc::Static
) &&
98 "JIT relocation model must be set to static or default!");
99 II
= ((X86TargetMachine
&)MF
.getTarget()).getInstrInfo();
100 TD
= ((X86TargetMachine
&)MF
.getTarget()).getTargetData();
102 ((X86TargetMachine
&)MF
.getTarget()).getSubtarget
<X86Subtarget
>().is64Bit();
105 MCE
.startFunction(MF
);
106 for (MachineFunction::iterator MBB
= MF
.begin(), E
= MF
.end();
108 MCE
.StartMachineBasicBlock(MBB
);
109 for (MachineBasicBlock::const_iterator I
= MBB
->begin(), E
= MBB
->end();
113 } while (MCE
.finishFunction(MF
));
118 /// emitPCRelativeValue - Emit a PC relative address.
120 void Emitter::emitPCRelativeValue(intptr_t Address
) {
121 MCE
.emitWordLE(Address
-MCE
.getCurrentPCValue()-4);
124 /// emitPCRelativeBlockAddress - This method keeps track of the information
125 /// necessary to resolve the address of this block later and emits a dummy
128 void Emitter::emitPCRelativeBlockAddress(MachineBasicBlock
*MBB
) {
129 // Remember where this reference was and where it is to so we can
130 // deal with it later.
131 MCE
.addRelocation(MachineRelocation::getBB(MCE
.getCurrentPCOffset(),
132 X86::reloc_pcrel_word
, MBB
));
136 /// emitGlobalAddressForCall - Emit the specified address to the code stream
137 /// assuming this is part of a function call, which is PC relative.
139 void Emitter::emitGlobalAddressForCall(GlobalValue
*GV
, bool DoesntNeedStub
) {
140 MCE
.addRelocation(MachineRelocation::getGV(MCE
.getCurrentPCOffset(),
141 X86::reloc_pcrel_word
, GV
, 0,
146 /// emitGlobalAddress - Emit the specified address to the code stream assuming
147 /// this is part of a "take the address of a global" instruction.
149 void Emitter::emitGlobalAddressForPtr(GlobalValue
*GV
, unsigned Reloc
,
151 unsigned PCAdj
/* = 0 */) {
152 MCE
.addRelocation(MachineRelocation::getGV(MCE
.getCurrentPCOffset(), Reloc
,
154 if (Reloc
== X86::reloc_absolute_dword
)
156 MCE
.emitWordLE(Disp
); // The relocated value will be added to the displacement
159 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
160 /// be emitted to the current location in the function, and allow it to be PC
162 void Emitter::emitExternalSymbolAddress(const char *ES
, unsigned Reloc
) {
163 MCE
.addRelocation(MachineRelocation::getExtSym(MCE
.getCurrentPCOffset(),
165 if (Reloc
== X86::reloc_absolute_dword
)
170 /// emitConstPoolAddress - Arrange for the address of an constant pool
171 /// to be emitted to the current location in the function, and allow it to be PC
173 void Emitter::emitConstPoolAddress(unsigned CPI
, unsigned Reloc
,
175 unsigned PCAdj
/* = 0 */) {
176 MCE
.addRelocation(MachineRelocation::getConstPool(MCE
.getCurrentPCOffset(),
178 if (Reloc
== X86::reloc_absolute_dword
)
180 MCE
.emitWordLE(Disp
); // The relocated value will be added to the displacement
183 /// emitJumpTableAddress - Arrange for the address of a jump table to
184 /// be emitted to the current location in the function, and allow it to be PC
186 void Emitter::emitJumpTableAddress(unsigned JTI
, unsigned Reloc
,
187 unsigned PCAdj
/* = 0 */) {
188 MCE
.addRelocation(MachineRelocation::getJumpTable(MCE
.getCurrentPCOffset(),
190 if (Reloc
== X86::reloc_absolute_dword
)
192 MCE
.emitWordLE(0); // The relocated value will be added to the displacement
195 unsigned Emitter::getX86RegNum(unsigned RegNo
) {
196 return ((X86RegisterInfo
&)II
->getRegisterInfo()).getX86RegNum(RegNo
);
199 inline static unsigned char ModRMByte(unsigned Mod
, unsigned RegOpcode
,
201 assert(Mod
< 4 && RegOpcode
< 8 && RM
< 8 && "ModRM Fields out of range!");
202 return RM
| (RegOpcode
<< 3) | (Mod
<< 6);
205 void Emitter::emitRegModRMByte(unsigned ModRMReg
, unsigned RegOpcodeFld
){
206 MCE
.emitByte(ModRMByte(3, RegOpcodeFld
, getX86RegNum(ModRMReg
)));
209 void Emitter::emitSIBByte(unsigned SS
, unsigned Index
, unsigned Base
) {
210 // SIB byte is in the same format as the ModRMByte...
211 MCE
.emitByte(ModRMByte(SS
, Index
, Base
));
214 void Emitter::emitConstant(uint64_t Val
, unsigned Size
) {
215 // Output the constant in little endian byte order...
216 for (unsigned i
= 0; i
!= Size
; ++i
) {
217 MCE
.emitByte(Val
& 255);
222 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
223 /// sign-extended field.
224 static bool isDisp8(int Value
) {
225 return Value
== (signed char)Value
;
228 void Emitter::emitDisplacementField(const MachineOperand
*RelocOp
,
229 int DispVal
, unsigned PCAdj
) {
230 // If this is a simple integer displacement that doesn't require a relocation,
233 emitConstant(DispVal
, 4);
237 // Otherwise, this is something that requires a relocation. Emit it as such
239 if (RelocOp
->isGlobalAddress()) {
240 // In 64-bit static small code model, we could potentially emit absolute.
241 // But it's probably not beneficial.
242 // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
243 // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
244 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
: X86::reloc_absolute_word
;
245 emitGlobalAddressForPtr(RelocOp
->getGlobal(), rt
,
246 RelocOp
->getOffset(), PCAdj
);
247 } else if (RelocOp
->isConstantPoolIndex()) {
248 // Must be in 64-bit mode.
249 emitConstPoolAddress(RelocOp
->getConstantPoolIndex(), X86::reloc_pcrel_word
,
250 RelocOp
->getOffset(), PCAdj
);
251 } else if (RelocOp
->isJumpTableIndex()) {
252 // Must be in 64-bit mode.
253 emitJumpTableAddress(RelocOp
->getJumpTableIndex(), X86::reloc_pcrel_word
,
256 assert(0 && "Unknown value to relocate!");
260 void Emitter::emitMemModRMByte(const MachineInstr
&MI
,
261 unsigned Op
, unsigned RegOpcodeField
,
263 const MachineOperand
&Op3
= MI
.getOperand(Op
+3);
265 const MachineOperand
*DispForReloc
= 0;
267 // Figure out what sort of displacement we have to handle here.
268 if (Op3
.isGlobalAddress()) {
270 } else if (Op3
.isConstantPoolIndex()) {
274 DispVal
+= MCE
.getConstantPoolEntryAddress(Op3
.getConstantPoolIndex());
275 DispVal
+= Op3
.getOffset();
277 } else if (Op3
.isJumpTableIndex()) {
281 DispVal
+= MCE
.getJumpTableEntryAddress(Op3
.getJumpTableIndex());
284 DispVal
= Op3
.getImm();
287 const MachineOperand
&Base
= MI
.getOperand(Op
);
288 const MachineOperand
&Scale
= MI
.getOperand(Op
+1);
289 const MachineOperand
&IndexReg
= MI
.getOperand(Op
+2);
291 unsigned BaseReg
= Base
.getReg();
293 // Is a SIB byte needed?
294 if (IndexReg
.getReg() == 0 &&
295 (BaseReg
== 0 || getX86RegNum(BaseReg
) != N86::ESP
)) {
296 if (BaseReg
== 0) { // Just a displacement?
297 // Emit special case [disp32] encoding
298 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, 5));
300 emitDisplacementField(DispForReloc
, DispVal
, PCAdj
);
302 unsigned BaseRegNo
= getX86RegNum(BaseReg
);
303 if (!DispForReloc
&& DispVal
== 0 && BaseRegNo
!= N86::EBP
) {
304 // Emit simple indirect register encoding... [EAX] f.e.
305 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, BaseRegNo
));
306 } else if (!DispForReloc
&& isDisp8(DispVal
)) {
307 // Emit the disp8 encoding... [REG+disp8]
308 MCE
.emitByte(ModRMByte(1, RegOpcodeField
, BaseRegNo
));
309 emitConstant(DispVal
, 1);
311 // Emit the most general non-SIB encoding: [REG+disp32]
312 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, BaseRegNo
));
313 emitDisplacementField(DispForReloc
, DispVal
, PCAdj
);
317 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
318 assert(IndexReg
.getReg() != X86::ESP
&&
319 IndexReg
.getReg() != X86::RSP
&& "Cannot use ESP as index reg!");
321 bool ForceDisp32
= false;
322 bool ForceDisp8
= false;
324 // If there is no base register, we emit the special case SIB byte with
325 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
326 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, 4));
328 } else if (DispForReloc
) {
329 // Emit the normal disp32 encoding.
330 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, 4));
332 } else if (DispVal
== 0 && getX86RegNum(BaseReg
) != N86::EBP
) {
333 // Emit no displacement ModR/M byte
334 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, 4));
335 } else if (isDisp8(DispVal
)) {
336 // Emit the disp8 encoding...
337 MCE
.emitByte(ModRMByte(1, RegOpcodeField
, 4));
338 ForceDisp8
= true; // Make sure to force 8 bit disp if Base=EBP
340 // Emit the normal disp32 encoding...
341 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, 4));
344 // Calculate what the SS field value should be...
345 static const unsigned SSTable
[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
346 unsigned SS
= SSTable
[Scale
.getImm()];
349 // Handle the SIB byte for the case where there is no base. The
350 // displacement has already been output.
351 assert(IndexReg
.getReg() && "Index register must be specified!");
352 emitSIBByte(SS
, getX86RegNum(IndexReg
.getReg()), 5);
354 unsigned BaseRegNo
= getX86RegNum(BaseReg
);
356 if (IndexReg
.getReg())
357 IndexRegNo
= getX86RegNum(IndexReg
.getReg());
359 IndexRegNo
= 4; // For example [ESP+1*<noreg>+4]
360 emitSIBByte(SS
, IndexRegNo
, BaseRegNo
);
363 // Do we need to output a displacement?
365 emitConstant(DispVal
, 1);
366 } else if (DispVal
!= 0 || ForceDisp32
) {
367 emitDisplacementField(DispForReloc
, DispVal
, PCAdj
);
372 static unsigned sizeOfImm(const TargetInstrDescriptor
*Desc
) {
373 switch (Desc
->TSFlags
& X86II::ImmMask
) {
374 case X86II::Imm8
: return 1;
375 case X86II::Imm16
: return 2;
376 case X86II::Imm32
: return 4;
377 case X86II::Imm64
: return 8;
378 default: assert(0 && "Immediate size not set!");
383 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
384 /// e.g. r8, xmm8, etc.
385 bool Emitter::isX86_64ExtendedReg(const MachineOperand
&MO
) {
386 if (!MO
.isRegister()) return false;
387 switch (MO
.getReg()) {
389 case X86::R8
: case X86::R9
: case X86::R10
: case X86::R11
:
390 case X86::R12
: case X86::R13
: case X86::R14
: case X86::R15
:
391 case X86::R8D
: case X86::R9D
: case X86::R10D
: case X86::R11D
:
392 case X86::R12D
: case X86::R13D
: case X86::R14D
: case X86::R15D
:
393 case X86::R8W
: case X86::R9W
: case X86::R10W
: case X86::R11W
:
394 case X86::R12W
: case X86::R13W
: case X86::R14W
: case X86::R15W
:
395 case X86::R8B
: case X86::R9B
: case X86::R10B
: case X86::R11B
:
396 case X86::R12B
: case X86::R13B
: case X86::R14B
: case X86::R15B
:
397 case X86::XMM8
: case X86::XMM9
: case X86::XMM10
: case X86::XMM11
:
398 case X86::XMM12
: case X86::XMM13
: case X86::XMM14
: case X86::XMM15
:
404 inline static bool isX86_64NonExtLowByteReg(unsigned reg
) {
405 return (reg
== X86::SPL
|| reg
== X86::BPL
||
406 reg
== X86::SIL
|| reg
== X86::DIL
);
409 /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
410 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
411 /// size, and 3) use of X86-64 extended registers.
412 unsigned Emitter::determineREX(const MachineInstr
&MI
) {
414 const TargetInstrDescriptor
*Desc
= MI
.getInstrDescriptor();
416 // Pseudo instructions do not need REX prefix byte.
417 if ((Desc
->TSFlags
& X86II::FormMask
) == X86II::Pseudo
)
419 if (Desc
->TSFlags
& X86II::REX_W
)
422 unsigned NumOps
= Desc
->numOperands
;
424 bool isTwoAddr
= NumOps
> 1 &&
425 Desc
->getOperandConstraint(1, TOI::TIED_TO
) != -1;
427 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
428 unsigned i
= isTwoAddr
? 1 : 0;
429 for (unsigned e
= NumOps
; i
!= e
; ++i
) {
430 const MachineOperand
& MO
= MI
.getOperand(i
);
431 if (MO
.isRegister()) {
432 unsigned Reg
= MO
.getReg();
433 if (isX86_64NonExtLowByteReg(Reg
))
438 switch (Desc
->TSFlags
& X86II::FormMask
) {
439 case X86II::MRMInitReg
:
440 if (isX86_64ExtendedReg(MI
.getOperand(0)))
441 REX
|= (1 << 0) | (1 << 2);
443 case X86II::MRMSrcReg
: {
444 if (isX86_64ExtendedReg(MI
.getOperand(0)))
446 i
= isTwoAddr
? 2 : 1;
447 for (unsigned e
= NumOps
; i
!= e
; ++i
) {
448 const MachineOperand
& MO
= MI
.getOperand(i
);
449 if (isX86_64ExtendedReg(MO
))
454 case X86II::MRMSrcMem
: {
455 if (isX86_64ExtendedReg(MI
.getOperand(0)))
458 i
= isTwoAddr
? 2 : 1;
459 for (; i
!= NumOps
; ++i
) {
460 const MachineOperand
& MO
= MI
.getOperand(i
);
461 if (MO
.isRegister()) {
462 if (isX86_64ExtendedReg(MO
))
469 case X86II::MRM0m
: case X86II::MRM1m
:
470 case X86II::MRM2m
: case X86II::MRM3m
:
471 case X86II::MRM4m
: case X86II::MRM5m
:
472 case X86II::MRM6m
: case X86II::MRM7m
:
473 case X86II::MRMDestMem
: {
474 unsigned e
= isTwoAddr
? 5 : 4;
475 i
= isTwoAddr
? 1 : 0;
476 if (NumOps
> e
&& isX86_64ExtendedReg(MI
.getOperand(e
)))
479 for (; i
!= e
; ++i
) {
480 const MachineOperand
& MO
= MI
.getOperand(i
);
481 if (MO
.isRegister()) {
482 if (isX86_64ExtendedReg(MO
))
490 if (isX86_64ExtendedReg(MI
.getOperand(0)))
492 i
= isTwoAddr
? 2 : 1;
493 for (unsigned e
= NumOps
; i
!= e
; ++i
) {
494 const MachineOperand
& MO
= MI
.getOperand(i
);
495 if (isX86_64ExtendedReg(MO
))
505 void Emitter::emitInstruction(const MachineInstr
&MI
) {
506 NumEmitted
++; // Keep track of the # of mi's emitted
508 const TargetInstrDescriptor
*Desc
= MI
.getInstrDescriptor();
509 unsigned Opcode
= Desc
->Opcode
;
511 // Emit the repeat opcode prefix as needed.
512 if ((Desc
->TSFlags
& X86II::Op0Mask
) == X86II::REP
) MCE
.emitByte(0xF3);
514 // Emit the operand size opcode prefix as needed.
515 if (Desc
->TSFlags
& X86II::OpSize
) MCE
.emitByte(0x66);
517 // Emit the address size opcode prefix as needed.
518 if (Desc
->TSFlags
& X86II::AdSize
) MCE
.emitByte(0x67);
520 bool Need0FPrefix
= false;
521 switch (Desc
->TSFlags
& X86II::Op0Mask
) {
523 Need0FPrefix
= true; // Two-byte opcode prefix
533 case X86II::REP
: break; // already handled.
534 case X86II::XS
: // F3 0F
538 case X86II::XD
: // F2 0F
542 case X86II::D8
: case X86II::D9
: case X86II::DA
: case X86II::DB
:
543 case X86II::DC
: case X86II::DD
: case X86II::DE
: case X86II::DF
:
545 (((Desc
->TSFlags
& X86II::Op0Mask
)-X86II::D8
)
546 >> X86II::Op0Shift
));
547 break; // Two-byte opcode prefix
548 default: assert(0 && "Invalid prefix!");
549 case 0: break; // No prefix!
554 unsigned REX
= determineREX(MI
);
556 MCE
.emitByte(0x40 | REX
);
559 // 0x0F escape code must be emitted just before the opcode.
563 // If this is a two-address instruction, skip one of the register operands.
564 unsigned NumOps
= Desc
->numOperands
;
566 if (NumOps
> 1 && Desc
->getOperandConstraint(1, TOI::TIED_TO
) != -1)
569 unsigned char BaseOpcode
= II
->getBaseOpcodeFor(Desc
);
570 switch (Desc
->TSFlags
& X86II::FormMask
) {
571 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
576 assert(0 && "psuedo instructions should be removed before code emission");
577 case TargetInstrInfo::INLINEASM
:
578 assert(0 && "JIT does not support inline asm!\n");
579 case TargetInstrInfo::LABEL
:
580 assert(0 && "JIT does not support meta labels!\n");
581 case X86::IMPLICIT_USE
:
582 case X86::IMPLICIT_DEF
:
583 case X86::IMPLICIT_DEF_GR8
:
584 case X86::IMPLICIT_DEF_GR16
:
585 case X86::IMPLICIT_DEF_GR32
:
586 case X86::IMPLICIT_DEF_GR64
:
587 case X86::IMPLICIT_DEF_FR32
:
588 case X86::IMPLICIT_DEF_FR64
:
589 case X86::IMPLICIT_DEF_VR64
:
590 case X86::IMPLICIT_DEF_VR128
:
591 case X86::FP_REG_KILL
:
599 MCE
.emitByte(BaseOpcode
);
600 if (CurOp
!= NumOps
) {
601 const MachineOperand
&MO
= MI
.getOperand(CurOp
++);
602 if (MO
.isMachineBasicBlock()) {
603 emitPCRelativeBlockAddress(MO
.getMachineBasicBlock());
604 } else if (MO
.isGlobalAddress()) {
605 bool NeedStub
= Is64BitMode
||
606 Opcode
== X86::TAILJMPd
||
607 Opcode
== X86::TAILJMPr
|| Opcode
== X86::TAILJMPm
;
608 emitGlobalAddressForCall(MO
.getGlobal(), !NeedStub
);
609 } else if (MO
.isExternalSymbol()) {
610 emitExternalSymbolAddress(MO
.getSymbolName(), X86::reloc_pcrel_word
);
611 } else if (MO
.isImmediate()) {
612 emitConstant(MO
.getImm(), sizeOfImm(Desc
));
614 assert(0 && "Unknown RawFrm operand!");
619 case X86II::AddRegFrm
:
620 MCE
.emitByte(BaseOpcode
+ getX86RegNum(MI
.getOperand(CurOp
++).getReg()));
622 if (CurOp
!= NumOps
) {
623 const MachineOperand
&MO1
= MI
.getOperand(CurOp
++);
624 unsigned Size
= sizeOfImm(Desc
);
625 if (MO1
.isImmediate())
626 emitConstant(MO1
.getImm(), Size
);
628 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
: X86::reloc_absolute_word
;
629 if (Opcode
== X86::MOV64ri
)
630 rt
= X86::reloc_absolute_dword
; // FIXME: add X86II flag?
631 if (MO1
.isGlobalAddress())
632 emitGlobalAddressForPtr(MO1
.getGlobal(), rt
, MO1
.getOffset());
633 else if (MO1
.isExternalSymbol())
634 emitExternalSymbolAddress(MO1
.getSymbolName(), rt
);
635 else if (MO1
.isConstantPoolIndex())
636 emitConstPoolAddress(MO1
.getConstantPoolIndex(), rt
);
637 else if (MO1
.isJumpTableIndex())
638 emitJumpTableAddress(MO1
.getJumpTableIndex(), rt
);
643 case X86II::MRMDestReg
: {
644 MCE
.emitByte(BaseOpcode
);
645 emitRegModRMByte(MI
.getOperand(CurOp
).getReg(),
646 getX86RegNum(MI
.getOperand(CurOp
+1).getReg()));
649 emitConstant(MI
.getOperand(CurOp
++).getImm(), sizeOfImm(Desc
));
652 case X86II::MRMDestMem
: {
653 MCE
.emitByte(BaseOpcode
);
654 emitMemModRMByte(MI
, CurOp
, getX86RegNum(MI
.getOperand(CurOp
+4).getReg()));
657 emitConstant(MI
.getOperand(CurOp
++).getImm(), sizeOfImm(Desc
));
661 case X86II::MRMSrcReg
:
662 MCE
.emitByte(BaseOpcode
);
663 emitRegModRMByte(MI
.getOperand(CurOp
+1).getReg(),
664 getX86RegNum(MI
.getOperand(CurOp
).getReg()));
667 emitConstant(MI
.getOperand(CurOp
++).getImm(), sizeOfImm(Desc
));
670 case X86II::MRMSrcMem
: {
671 unsigned PCAdj
= (CurOp
+5 != NumOps
) ? sizeOfImm(Desc
) : 0;
673 MCE
.emitByte(BaseOpcode
);
674 emitMemModRMByte(MI
, CurOp
+1, getX86RegNum(MI
.getOperand(CurOp
).getReg()),
678 emitConstant(MI
.getOperand(CurOp
++).getImm(), sizeOfImm(Desc
));
682 case X86II::MRM0r
: case X86II::MRM1r
:
683 case X86II::MRM2r
: case X86II::MRM3r
:
684 case X86II::MRM4r
: case X86II::MRM5r
:
685 case X86II::MRM6r
: case X86II::MRM7r
:
686 MCE
.emitByte(BaseOpcode
);
687 emitRegModRMByte(MI
.getOperand(CurOp
++).getReg(),
688 (Desc
->TSFlags
& X86II::FormMask
)-X86II::MRM0r
);
690 if (CurOp
!= NumOps
) {
691 const MachineOperand
&MO1
= MI
.getOperand(CurOp
++);
692 unsigned Size
= sizeOfImm(Desc
);
693 if (MO1
.isImmediate())
694 emitConstant(MO1
.getImm(), Size
);
696 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
697 : X86::reloc_absolute_word
;
698 if (Opcode
== X86::MOV64ri32
)
699 rt
= X86::reloc_absolute_word
; // FIXME: add X86II flag?
700 if (MO1
.isGlobalAddress())
701 emitGlobalAddressForPtr(MO1
.getGlobal(), rt
, MO1
.getOffset());
702 else if (MO1
.isExternalSymbol())
703 emitExternalSymbolAddress(MO1
.getSymbolName(), rt
);
704 else if (MO1
.isConstantPoolIndex())
705 emitConstPoolAddress(MO1
.getConstantPoolIndex(), rt
);
706 else if (MO1
.isJumpTableIndex())
707 emitJumpTableAddress(MO1
.getJumpTableIndex(), rt
);
712 case X86II::MRM0m
: case X86II::MRM1m
:
713 case X86II::MRM2m
: case X86II::MRM3m
:
714 case X86II::MRM4m
: case X86II::MRM5m
:
715 case X86II::MRM6m
: case X86II::MRM7m
: {
716 unsigned PCAdj
= (CurOp
+4 != NumOps
) ?
717 (MI
.getOperand(CurOp
+4).isImmediate() ? sizeOfImm(Desc
) : 4) : 0;
719 MCE
.emitByte(BaseOpcode
);
720 emitMemModRMByte(MI
, CurOp
, (Desc
->TSFlags
& X86II::FormMask
)-X86II::MRM0m
,
724 if (CurOp
!= NumOps
) {
725 const MachineOperand
&MO
= MI
.getOperand(CurOp
++);
726 unsigned Size
= sizeOfImm(Desc
);
727 if (MO
.isImmediate())
728 emitConstant(MO
.getImm(), Size
);
730 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
731 : X86::reloc_absolute_word
;
732 if (Opcode
== X86::MOV64mi32
)
733 rt
= X86::reloc_absolute_word
; // FIXME: add X86II flag?
734 if (MO
.isGlobalAddress())
735 emitGlobalAddressForPtr(MO
.getGlobal(), rt
, MO
.getOffset());
736 else if (MO
.isExternalSymbol())
737 emitExternalSymbolAddress(MO
.getSymbolName(), rt
);
738 else if (MO
.isConstantPoolIndex())
739 emitConstPoolAddress(MO
.getConstantPoolIndex(), rt
);
740 else if (MO
.isJumpTableIndex())
741 emitJumpTableAddress(MO
.getJumpTableIndex(), rt
);
747 case X86II::MRMInitReg
:
748 MCE
.emitByte(BaseOpcode
);
749 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
750 emitRegModRMByte(MI
.getOperand(CurOp
).getReg(),
751 getX86RegNum(MI
.getOperand(CurOp
).getReg()));
756 assert((Desc
->Flags
& M_VARIABLE_OPS
) != 0 ||
757 CurOp
== NumOps
&& "Unknown encoding!");