Fix for PR1801
[llvm-complete.git] / lib / Target / X86 / X86InstrInfo.cpp
blob9d5e6371199e3c0beb27a2cca86a0deea4fe141f
1 //===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #include "X86InstrInfo.h"
15 #include "X86.h"
16 #include "X86GenInstrInfo.inc"
17 #include "X86InstrBuilder.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/SSARegMap.h"
24 #include "llvm/Target/TargetOptions.h"
25 using namespace llvm;
27 X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
28 : TargetInstrInfo(X86Insts, array_lengthof(X86Insts)),
29 TM(tm), RI(tm, *this) {
32 bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
33 unsigned& sourceReg,
34 unsigned& destReg) const {
35 MachineOpCode oc = MI.getOpcode();
36 if (oc == X86::MOV8rr || oc == X86::MOV16rr ||
37 oc == X86::MOV32rr || oc == X86::MOV64rr ||
38 oc == X86::MOV16to16_ || oc == X86::MOV32to32_ ||
39 oc == X86::MOV_Fp3232 || oc == X86::MOVSSrr || oc == X86::MOVSDrr ||
40 oc == X86::MOV_Fp3264 || oc == X86::MOV_Fp6432 || oc == X86::MOV_Fp6464 ||
41 oc == X86::FsMOVAPSrr || oc == X86::FsMOVAPDrr ||
42 oc == X86::MOVAPSrr || oc == X86::MOVAPDrr ||
43 oc == X86::MOVSS2PSrr || oc == X86::MOVSD2PDrr ||
44 oc == X86::MOVPS2SSrr || oc == X86::MOVPD2SDrr ||
45 oc == X86::MMX_MOVD64rr || oc == X86::MMX_MOVQ64rr) {
46 assert(MI.getNumOperands() >= 2 &&
47 MI.getOperand(0).isRegister() &&
48 MI.getOperand(1).isRegister() &&
49 "invalid register-register move instruction");
50 sourceReg = MI.getOperand(1).getReg();
51 destReg = MI.getOperand(0).getReg();
52 return true;
54 return false;
57 unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
58 int &FrameIndex) const {
59 switch (MI->getOpcode()) {
60 default: break;
61 case X86::MOV8rm:
62 case X86::MOV16rm:
63 case X86::MOV16_rm:
64 case X86::MOV32rm:
65 case X86::MOV32_rm:
66 case X86::MOV64rm:
67 case X86::LD_Fp64m:
68 case X86::MOVSSrm:
69 case X86::MOVSDrm:
70 case X86::MOVAPSrm:
71 case X86::MOVAPDrm:
72 case X86::MMX_MOVD64rm:
73 case X86::MMX_MOVQ64rm:
74 if (MI->getOperand(1).isFrameIndex() && MI->getOperand(2).isImmediate() &&
75 MI->getOperand(3).isRegister() && MI->getOperand(4).isImmediate() &&
76 MI->getOperand(2).getImmedValue() == 1 &&
77 MI->getOperand(3).getReg() == 0 &&
78 MI->getOperand(4).getImmedValue() == 0) {
79 FrameIndex = MI->getOperand(1).getFrameIndex();
80 return MI->getOperand(0).getReg();
82 break;
84 return 0;
87 unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
88 int &FrameIndex) const {
89 switch (MI->getOpcode()) {
90 default: break;
91 case X86::MOV8mr:
92 case X86::MOV16mr:
93 case X86::MOV16_mr:
94 case X86::MOV32mr:
95 case X86::MOV32_mr:
96 case X86::MOV64mr:
97 case X86::ST_FpP64m:
98 case X86::MOVSSmr:
99 case X86::MOVSDmr:
100 case X86::MOVAPSmr:
101 case X86::MOVAPDmr:
102 case X86::MMX_MOVD64mr:
103 case X86::MMX_MOVQ64mr:
104 case X86::MMX_MOVNTQmr:
105 if (MI->getOperand(0).isFrameIndex() && MI->getOperand(1).isImmediate() &&
106 MI->getOperand(2).isRegister() && MI->getOperand(3).isImmediate() &&
107 MI->getOperand(1).getImmedValue() == 1 &&
108 MI->getOperand(2).getReg() == 0 &&
109 MI->getOperand(3).getImmedValue() == 0) {
110 FrameIndex = MI->getOperand(0).getFrameIndex();
111 return MI->getOperand(4).getReg();
113 break;
115 return 0;
119 bool X86InstrInfo::isReallyTriviallyReMaterializable(MachineInstr *MI) const {
120 switch (MI->getOpcode()) {
121 default: break;
122 case X86::MOV8rm:
123 case X86::MOV16rm:
124 case X86::MOV16_rm:
125 case X86::MOV32rm:
126 case X86::MOV32_rm:
127 case X86::MOV64rm:
128 case X86::LD_Fp64m:
129 case X86::MOVSSrm:
130 case X86::MOVSDrm:
131 case X86::MOVAPSrm:
132 case X86::MOVAPDrm:
133 case X86::MMX_MOVD64rm:
134 case X86::MMX_MOVQ64rm:
135 // Loads from constant pools are trivially rematerializable.
136 return MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate() &&
137 MI->getOperand(3).isRegister() && MI->getOperand(4).isConstantPoolIndex() &&
138 MI->getOperand(1).getReg() == 0 &&
139 MI->getOperand(2).getImmedValue() == 1 &&
140 MI->getOperand(3).getReg() == 0;
142 // All other instructions marked M_REMATERIALIZABLE are always trivially
143 // rematerializable.
144 return true;
147 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
148 /// is not marked dead.
149 static bool hasLiveCondCodeDef(MachineInstr *MI) {
150 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
151 MachineOperand &MO = MI->getOperand(i);
152 if (MO.isRegister() && MO.isDef() &&
153 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
154 return true;
157 return false;
160 /// convertToThreeAddress - This method must be implemented by targets that
161 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
162 /// may be able to convert a two-address instruction into a true
163 /// three-address instruction on demand. This allows the X86 target (for
164 /// example) to convert ADD and SHL instructions into LEA instructions if they
165 /// would require register copies due to two-addressness.
167 /// This method returns a null pointer if the transformation cannot be
168 /// performed, otherwise it returns the new instruction.
170 MachineInstr *
171 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
172 MachineBasicBlock::iterator &MBBI,
173 LiveVariables &LV) const {
174 MachineInstr *MI = MBBI;
175 // All instructions input are two-addr instructions. Get the known operands.
176 unsigned Dest = MI->getOperand(0).getReg();
177 unsigned Src = MI->getOperand(1).getReg();
179 MachineInstr *NewMI = NULL;
180 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
181 // we have better subtarget support, enable the 16-bit LEA generation here.
182 bool DisableLEA16 = true;
184 unsigned MIOpc = MI->getOpcode();
185 switch (MIOpc) {
186 case X86::SHUFPSrri: {
187 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
188 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
190 unsigned A = MI->getOperand(0).getReg();
191 unsigned B = MI->getOperand(1).getReg();
192 unsigned C = MI->getOperand(2).getReg();
193 unsigned M = MI->getOperand(3).getImm();
194 if (B != C) return 0;
195 NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
196 break;
198 case X86::SHL64ri: {
199 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
200 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
201 // the flags produced by a shift yet, so this is safe.
202 unsigned Dest = MI->getOperand(0).getReg();
203 unsigned Src = MI->getOperand(1).getReg();
204 unsigned ShAmt = MI->getOperand(2).getImm();
205 if (ShAmt == 0 || ShAmt >= 4) return 0;
207 NewMI = BuildMI(get(X86::LEA64r), Dest)
208 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
209 break;
211 case X86::SHL32ri: {
212 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
213 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
214 // the flags produced by a shift yet, so this is safe.
215 unsigned Dest = MI->getOperand(0).getReg();
216 unsigned Src = MI->getOperand(1).getReg();
217 unsigned ShAmt = MI->getOperand(2).getImm();
218 if (ShAmt == 0 || ShAmt >= 4) return 0;
220 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
221 X86::LEA64_32r : X86::LEA32r;
222 NewMI = BuildMI(get(Opc), Dest)
223 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
224 break;
226 case X86::SHL16ri: {
227 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
228 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
229 // the flags produced by a shift yet, so this is safe.
230 unsigned Dest = MI->getOperand(0).getReg();
231 unsigned Src = MI->getOperand(1).getReg();
232 unsigned ShAmt = MI->getOperand(2).getImm();
233 if (ShAmt == 0 || ShAmt >= 4) return 0;
235 if (DisableLEA16) {
236 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
237 SSARegMap *RegMap = MFI->getParent()->getSSARegMap();
238 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
239 ? X86::LEA64_32r : X86::LEA32r;
240 unsigned leaInReg = RegMap->createVirtualRegister(&X86::GR32RegClass);
241 unsigned leaOutReg = RegMap->createVirtualRegister(&X86::GR32RegClass);
243 MachineInstr *Ins =
244 BuildMI(get(X86::INSERT_SUBREG), leaInReg).addReg(Src).addImm(2);
245 Ins->copyKillDeadInfo(MI);
247 NewMI = BuildMI(get(Opc), leaOutReg)
248 .addReg(0).addImm(1 << ShAmt).addReg(leaInReg).addImm(0);
250 MachineInstr *Ext =
251 BuildMI(get(X86::EXTRACT_SUBREG), Dest).addReg(leaOutReg).addImm(2);
252 Ext->copyKillDeadInfo(MI);
254 MFI->insert(MBBI, Ins); // Insert the insert_subreg
255 LV.instructionChanged(MI, NewMI); // Update live variables
256 LV.addVirtualRegisterKilled(leaInReg, NewMI);
257 MFI->insert(MBBI, NewMI); // Insert the new inst
258 LV.addVirtualRegisterKilled(leaOutReg, Ext);
259 MFI->insert(MBBI, Ext); // Insert the extract_subreg
260 return Ext;
261 } else {
262 NewMI = BuildMI(get(X86::LEA16r), Dest)
263 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
265 break;
267 default: {
268 // The following opcodes also sets the condition code register(s). Only
269 // convert them to equivalent lea if the condition code register def's
270 // are dead!
271 if (hasLiveCondCodeDef(MI))
272 return 0;
274 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
275 switch (MIOpc) {
276 default: return 0;
277 case X86::INC64r:
278 case X86::INC32r: {
279 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
280 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
281 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
282 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, 1);
283 break;
285 case X86::INC16r:
286 case X86::INC64_16r:
287 if (DisableLEA16) return 0;
288 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
289 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
290 break;
291 case X86::DEC64r:
292 case X86::DEC32r: {
293 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
294 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
295 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
296 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, -1);
297 break;
299 case X86::DEC16r:
300 case X86::DEC64_16r:
301 if (DisableLEA16) return 0;
302 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
303 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
304 break;
305 case X86::ADD64rr:
306 case X86::ADD32rr: {
307 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
308 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
309 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
310 NewMI = addRegReg(BuildMI(get(Opc), Dest), Src,
311 MI->getOperand(2).getReg());
312 break;
314 case X86::ADD16rr:
315 if (DisableLEA16) return 0;
316 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
317 NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
318 MI->getOperand(2).getReg());
319 break;
320 case X86::ADD64ri32:
321 case X86::ADD64ri8:
322 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
323 if (MI->getOperand(2).isImmediate())
324 NewMI = addRegOffset(BuildMI(get(X86::LEA64r), Dest), Src,
325 MI->getOperand(2).getImmedValue());
326 break;
327 case X86::ADD32ri:
328 case X86::ADD32ri8:
329 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
330 if (MI->getOperand(2).isImmediate()) {
331 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
332 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src,
333 MI->getOperand(2).getImmedValue());
335 break;
336 case X86::ADD16ri:
337 case X86::ADD16ri8:
338 if (DisableLEA16) return 0;
339 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
340 if (MI->getOperand(2).isImmediate())
341 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
342 MI->getOperand(2).getImmedValue());
343 break;
344 case X86::SHL16ri:
345 if (DisableLEA16) return 0;
346 case X86::SHL32ri:
347 case X86::SHL64ri: {
348 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
349 "Unknown shl instruction!");
350 unsigned ShAmt = MI->getOperand(2).getImmedValue();
351 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
352 X86AddressMode AM;
353 AM.Scale = 1 << ShAmt;
354 AM.IndexReg = Src;
355 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
356 : (MIOpc == X86::SHL32ri
357 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
358 NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
360 break;
366 NewMI->copyKillDeadInfo(MI);
367 LV.instructionChanged(MI, NewMI); // Update live variables
368 MFI->insert(MBBI, NewMI); // Insert the new inst
369 return NewMI;
372 /// commuteInstruction - We have a few instructions that must be hacked on to
373 /// commute them.
375 MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
376 switch (MI->getOpcode()) {
377 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
378 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
379 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
380 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
381 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
382 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
383 unsigned Opc;
384 unsigned Size;
385 switch (MI->getOpcode()) {
386 default: assert(0 && "Unreachable!");
387 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
388 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
389 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
390 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
391 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
392 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
394 unsigned Amt = MI->getOperand(3).getImmedValue();
395 unsigned A = MI->getOperand(0).getReg();
396 unsigned B = MI->getOperand(1).getReg();
397 unsigned C = MI->getOperand(2).getReg();
398 bool BisKill = MI->getOperand(1).isKill();
399 bool CisKill = MI->getOperand(2).isKill();
400 return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
401 .addReg(B, false, false, BisKill).addImm(Size-Amt);
403 case X86::CMOVB16rr:
404 case X86::CMOVB32rr:
405 case X86::CMOVB64rr:
406 case X86::CMOVAE16rr:
407 case X86::CMOVAE32rr:
408 case X86::CMOVAE64rr:
409 case X86::CMOVE16rr:
410 case X86::CMOVE32rr:
411 case X86::CMOVE64rr:
412 case X86::CMOVNE16rr:
413 case X86::CMOVNE32rr:
414 case X86::CMOVNE64rr:
415 case X86::CMOVBE16rr:
416 case X86::CMOVBE32rr:
417 case X86::CMOVBE64rr:
418 case X86::CMOVA16rr:
419 case X86::CMOVA32rr:
420 case X86::CMOVA64rr:
421 case X86::CMOVL16rr:
422 case X86::CMOVL32rr:
423 case X86::CMOVL64rr:
424 case X86::CMOVGE16rr:
425 case X86::CMOVGE32rr:
426 case X86::CMOVGE64rr:
427 case X86::CMOVLE16rr:
428 case X86::CMOVLE32rr:
429 case X86::CMOVLE64rr:
430 case X86::CMOVG16rr:
431 case X86::CMOVG32rr:
432 case X86::CMOVG64rr:
433 case X86::CMOVS16rr:
434 case X86::CMOVS32rr:
435 case X86::CMOVS64rr:
436 case X86::CMOVNS16rr:
437 case X86::CMOVNS32rr:
438 case X86::CMOVNS64rr:
439 case X86::CMOVP16rr:
440 case X86::CMOVP32rr:
441 case X86::CMOVP64rr:
442 case X86::CMOVNP16rr:
443 case X86::CMOVNP32rr:
444 case X86::CMOVNP64rr: {
445 unsigned Opc = 0;
446 switch (MI->getOpcode()) {
447 default: break;
448 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
449 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
450 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
451 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
452 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
453 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
454 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
455 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
456 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
457 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
458 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
459 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
460 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
461 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
462 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
463 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
464 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
465 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
466 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
467 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
468 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
469 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
470 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
471 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
472 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
473 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
474 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
475 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
476 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
477 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
478 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
479 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
480 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
481 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
482 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
483 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
484 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
485 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
486 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
487 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
488 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
489 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
492 MI->setInstrDescriptor(get(Opc));
493 // Fallthrough intended.
495 default:
496 return TargetInstrInfo::commuteInstruction(MI);
500 static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
501 switch (BrOpc) {
502 default: return X86::COND_INVALID;
503 case X86::JE: return X86::COND_E;
504 case X86::JNE: return X86::COND_NE;
505 case X86::JL: return X86::COND_L;
506 case X86::JLE: return X86::COND_LE;
507 case X86::JG: return X86::COND_G;
508 case X86::JGE: return X86::COND_GE;
509 case X86::JB: return X86::COND_B;
510 case X86::JBE: return X86::COND_BE;
511 case X86::JA: return X86::COND_A;
512 case X86::JAE: return X86::COND_AE;
513 case X86::JS: return X86::COND_S;
514 case X86::JNS: return X86::COND_NS;
515 case X86::JP: return X86::COND_P;
516 case X86::JNP: return X86::COND_NP;
517 case X86::JO: return X86::COND_O;
518 case X86::JNO: return X86::COND_NO;
522 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
523 switch (CC) {
524 default: assert(0 && "Illegal condition code!");
525 case X86::COND_E: return X86::JE;
526 case X86::COND_NE: return X86::JNE;
527 case X86::COND_L: return X86::JL;
528 case X86::COND_LE: return X86::JLE;
529 case X86::COND_G: return X86::JG;
530 case X86::COND_GE: return X86::JGE;
531 case X86::COND_B: return X86::JB;
532 case X86::COND_BE: return X86::JBE;
533 case X86::COND_A: return X86::JA;
534 case X86::COND_AE: return X86::JAE;
535 case X86::COND_S: return X86::JS;
536 case X86::COND_NS: return X86::JNS;
537 case X86::COND_P: return X86::JP;
538 case X86::COND_NP: return X86::JNP;
539 case X86::COND_O: return X86::JO;
540 case X86::COND_NO: return X86::JNO;
544 /// GetOppositeBranchCondition - Return the inverse of the specified condition,
545 /// e.g. turning COND_E to COND_NE.
546 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
547 switch (CC) {
548 default: assert(0 && "Illegal condition code!");
549 case X86::COND_E: return X86::COND_NE;
550 case X86::COND_NE: return X86::COND_E;
551 case X86::COND_L: return X86::COND_GE;
552 case X86::COND_LE: return X86::COND_G;
553 case X86::COND_G: return X86::COND_LE;
554 case X86::COND_GE: return X86::COND_L;
555 case X86::COND_B: return X86::COND_AE;
556 case X86::COND_BE: return X86::COND_A;
557 case X86::COND_A: return X86::COND_BE;
558 case X86::COND_AE: return X86::COND_B;
559 case X86::COND_S: return X86::COND_NS;
560 case X86::COND_NS: return X86::COND_S;
561 case X86::COND_P: return X86::COND_NP;
562 case X86::COND_NP: return X86::COND_P;
563 case X86::COND_O: return X86::COND_NO;
564 case X86::COND_NO: return X86::COND_O;
568 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
569 const TargetInstrDescriptor *TID = MI->getInstrDescriptor();
570 if (TID->Flags & M_TERMINATOR_FLAG) {
571 // Conditional branch is a special case.
572 if ((TID->Flags & M_BRANCH_FLAG) != 0 && (TID->Flags & M_BARRIER_FLAG) == 0)
573 return true;
574 if ((TID->Flags & M_PREDICABLE) == 0)
575 return true;
576 return !isPredicated(MI);
578 return false;
581 // For purposes of branch analysis do not count FP_REG_KILL as a terminator.
582 static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
583 const X86InstrInfo &TII) {
584 if (MI->getOpcode() == X86::FP_REG_KILL)
585 return false;
586 return TII.isUnpredicatedTerminator(MI);
589 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
590 MachineBasicBlock *&TBB,
591 MachineBasicBlock *&FBB,
592 std::vector<MachineOperand> &Cond) const {
593 // If the block has no terminators, it just falls into the block after it.
594 MachineBasicBlock::iterator I = MBB.end();
595 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
596 return false;
598 // Get the last instruction in the block.
599 MachineInstr *LastInst = I;
601 // If there is only one terminator instruction, process it.
602 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
603 if (!isBranch(LastInst->getOpcode()))
604 return true;
606 // If the block ends with a branch there are 3 possibilities:
607 // it's an unconditional, conditional, or indirect branch.
609 if (LastInst->getOpcode() == X86::JMP) {
610 TBB = LastInst->getOperand(0).getMachineBasicBlock();
611 return false;
613 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
614 if (BranchCode == X86::COND_INVALID)
615 return true; // Can't handle indirect branch.
617 // Otherwise, block ends with fall-through condbranch.
618 TBB = LastInst->getOperand(0).getMachineBasicBlock();
619 Cond.push_back(MachineOperand::CreateImm(BranchCode));
620 return false;
623 // Get the instruction before it if it's a terminator.
624 MachineInstr *SecondLastInst = I;
626 // If there are three terminators, we don't know what sort of block this is.
627 if (SecondLastInst && I != MBB.begin() &&
628 isBrAnalysisUnpredicatedTerminator(--I, *this))
629 return true;
631 // If the block ends with X86::JMP and a conditional branch, handle it.
632 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
633 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
634 TBB = SecondLastInst->getOperand(0).getMachineBasicBlock();
635 Cond.push_back(MachineOperand::CreateImm(BranchCode));
636 FBB = LastInst->getOperand(0).getMachineBasicBlock();
637 return false;
640 // If the block ends with two X86::JMPs, handle it. The second one is not
641 // executed, so remove it.
642 if (SecondLastInst->getOpcode() == X86::JMP &&
643 LastInst->getOpcode() == X86::JMP) {
644 TBB = SecondLastInst->getOperand(0).getMachineBasicBlock();
645 I = LastInst;
646 I->eraseFromParent();
647 return false;
650 // Otherwise, can't handle this.
651 return true;
654 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
655 MachineBasicBlock::iterator I = MBB.end();
656 if (I == MBB.begin()) return 0;
657 --I;
658 if (I->getOpcode() != X86::JMP &&
659 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
660 return 0;
662 // Remove the branch.
663 I->eraseFromParent();
665 I = MBB.end();
667 if (I == MBB.begin()) return 1;
668 --I;
669 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
670 return 1;
672 // Remove the branch.
673 I->eraseFromParent();
674 return 2;
677 unsigned
678 X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
679 MachineBasicBlock *FBB,
680 const std::vector<MachineOperand> &Cond) const {
681 // Shouldn't be a fall through.
682 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
683 assert((Cond.size() == 1 || Cond.size() == 0) &&
684 "X86 branch conditions have one component!");
686 if (FBB == 0) { // One way branch.
687 if (Cond.empty()) {
688 // Unconditional branch?
689 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
690 } else {
691 // Conditional branch.
692 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
693 BuildMI(&MBB, get(Opc)).addMBB(TBB);
695 return 1;
698 // Two-way Conditional branch.
699 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
700 BuildMI(&MBB, get(Opc)).addMBB(TBB);
701 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
702 return 2;
705 bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
706 if (MBB.empty()) return false;
708 switch (MBB.back().getOpcode()) {
709 case X86::TCRETURNri:
710 case X86::TCRETURNdi:
711 case X86::RET: // Return.
712 case X86::RETI:
713 case X86::TAILJMPd:
714 case X86::TAILJMPr:
715 case X86::TAILJMPm:
716 case X86::JMP: // Uncond branch.
717 case X86::JMP32r: // Indirect branch.
718 case X86::JMP64r: // Indirect branch (64-bit).
719 case X86::JMP32m: // Indirect branch through mem.
720 case X86::JMP64m: // Indirect branch through mem (64-bit).
721 return true;
722 default: return false;
726 bool X86InstrInfo::
727 ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
728 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
729 Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
730 return false;
733 const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
734 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
735 if (Subtarget->is64Bit())
736 return &X86::GR64RegClass;
737 else
738 return &X86::GR32RegClass;