1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions. This pass does not modify the CFG This pass is where algebraic
12 // simplification happens.
14 // This pass combines things like:
20 // This is a simple worklist driven algorithm.
22 // This pass guarantees that the following canonicalizations are performed on
24 // 1. If a binary operator has a constant operand, it is moved to the RHS
25 // 2. Bitwise operators with constant operands are always grouped so that
26 // shifts are performed first, then or's, then and's, then xor's.
27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28 // 4. All cmp instructions on boolean values are replaced with logical ops
29 // 5. add X, X is represented as (X*2) => (X << 1)
30 // 6. Multiplies with a power-of-two constant argument are transformed into
34 //===----------------------------------------------------------------------===//
36 #define DEBUG_TYPE "instcombine"
37 #include "llvm/Transforms/Scalar.h"
38 #include "llvm/IntrinsicInst.h"
39 #include "llvm/Pass.h"
40 #include "llvm/DerivedTypes.h"
41 #include "llvm/GlobalVariable.h"
42 #include "llvm/ParameterAttributes.h"
43 #include "llvm/Analysis/ConstantFolding.h"
44 #include "llvm/Target/TargetData.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Support/CallSite.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/GetElementPtrTypeIterator.h"
50 #include "llvm/Support/InstVisitor.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/PatternMatch.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/ADT/DenseMap.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/SmallPtrSet.h"
57 #include "llvm/ADT/Statistic.h"
58 #include "llvm/ADT/STLExtras.h"
62 using namespace llvm::PatternMatch
;
64 STATISTIC(NumCombined
, "Number of insts combined");
65 STATISTIC(NumConstProp
, "Number of constant folds");
66 STATISTIC(NumDeadInst
, "Number of dead inst eliminated");
67 STATISTIC(NumDeadStore
, "Number of dead stores eliminated");
68 STATISTIC(NumSunkInst
, "Number of instructions sunk");
71 class VISIBILITY_HIDDEN InstCombiner
72 : public FunctionPass
,
73 public InstVisitor
<InstCombiner
, Instruction
*> {
74 // Worklist of all of the instructions that need to be simplified.
75 std::vector
<Instruction
*> Worklist
;
76 DenseMap
<Instruction
*, unsigned> WorklistMap
;
78 bool MustPreserveLCSSA
;
80 static char ID
; // Pass identification, replacement for typeid
81 InstCombiner() : FunctionPass((intptr_t)&ID
) {}
83 /// AddToWorkList - Add the specified instruction to the worklist if it
84 /// isn't already in it.
85 void AddToWorkList(Instruction
*I
) {
86 if (WorklistMap
.insert(std::make_pair(I
, Worklist
.size())))
87 Worklist
.push_back(I
);
90 // RemoveFromWorkList - remove I from the worklist if it exists.
91 void RemoveFromWorkList(Instruction
*I
) {
92 DenseMap
<Instruction
*, unsigned>::iterator It
= WorklistMap
.find(I
);
93 if (It
== WorklistMap
.end()) return; // Not in worklist.
95 // Don't bother moving everything down, just null out the slot.
96 Worklist
[It
->second
] = 0;
98 WorklistMap
.erase(It
);
101 Instruction
*RemoveOneFromWorkList() {
102 Instruction
*I
= Worklist
.back();
104 WorklistMap
.erase(I
);
109 /// AddUsersToWorkList - When an instruction is simplified, add all users of
110 /// the instruction to the work lists because they might get more simplified
113 void AddUsersToWorkList(Value
&I
) {
114 for (Value::use_iterator UI
= I
.use_begin(), UE
= I
.use_end();
116 AddToWorkList(cast
<Instruction
>(*UI
));
119 /// AddUsesToWorkList - When an instruction is simplified, add operands to
120 /// the work lists because they might get more simplified now.
122 void AddUsesToWorkList(Instruction
&I
) {
123 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
124 if (Instruction
*Op
= dyn_cast
<Instruction
>(I
.getOperand(i
)))
128 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
129 /// dead. Add all of its operands to the worklist, turning them into
130 /// undef's to reduce the number of uses of those instructions.
132 /// Return the specified operand before it is turned into an undef.
134 Value
*AddSoonDeadInstToWorklist(Instruction
&I
, unsigned op
) {
135 Value
*R
= I
.getOperand(op
);
137 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
138 if (Instruction
*Op
= dyn_cast
<Instruction
>(I
.getOperand(i
))) {
140 // Set the operand to undef to drop the use.
141 I
.setOperand(i
, UndefValue::get(Op
->getType()));
148 virtual bool runOnFunction(Function
&F
);
150 bool DoOneIteration(Function
&F
, unsigned ItNum
);
152 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
153 AU
.addRequired
<TargetData
>();
154 AU
.addPreservedID(LCSSAID
);
155 AU
.setPreservesCFG();
158 TargetData
&getTargetData() const { return *TD
; }
160 // Visitation implementation - Implement instruction combining for different
161 // instruction types. The semantics are as follows:
163 // null - No change was made
164 // I - Change was made, I is still valid, I may be dead though
165 // otherwise - Change was made, replace I with returned instruction
167 Instruction
*visitAdd(BinaryOperator
&I
);
168 Instruction
*visitSub(BinaryOperator
&I
);
169 Instruction
*visitMul(BinaryOperator
&I
);
170 Instruction
*visitURem(BinaryOperator
&I
);
171 Instruction
*visitSRem(BinaryOperator
&I
);
172 Instruction
*visitFRem(BinaryOperator
&I
);
173 Instruction
*commonRemTransforms(BinaryOperator
&I
);
174 Instruction
*commonIRemTransforms(BinaryOperator
&I
);
175 Instruction
*commonDivTransforms(BinaryOperator
&I
);
176 Instruction
*commonIDivTransforms(BinaryOperator
&I
);
177 Instruction
*visitUDiv(BinaryOperator
&I
);
178 Instruction
*visitSDiv(BinaryOperator
&I
);
179 Instruction
*visitFDiv(BinaryOperator
&I
);
180 Instruction
*visitAnd(BinaryOperator
&I
);
181 Instruction
*visitOr (BinaryOperator
&I
);
182 Instruction
*visitXor(BinaryOperator
&I
);
183 Instruction
*visitShl(BinaryOperator
&I
);
184 Instruction
*visitAShr(BinaryOperator
&I
);
185 Instruction
*visitLShr(BinaryOperator
&I
);
186 Instruction
*commonShiftTransforms(BinaryOperator
&I
);
187 Instruction
*visitFCmpInst(FCmpInst
&I
);
188 Instruction
*visitICmpInst(ICmpInst
&I
);
189 Instruction
*visitICmpInstWithCastAndCast(ICmpInst
&ICI
);
190 Instruction
*visitICmpInstWithInstAndIntCst(ICmpInst
&ICI
,
193 Instruction
*FoldICmpDivCst(ICmpInst
&ICI
, BinaryOperator
*DivI
,
194 ConstantInt
*DivRHS
);
196 Instruction
*FoldGEPICmp(User
*GEPLHS
, Value
*RHS
,
197 ICmpInst::Predicate Cond
, Instruction
&I
);
198 Instruction
*FoldShiftByConstant(Value
*Op0
, ConstantInt
*Op1
,
200 Instruction
*commonCastTransforms(CastInst
&CI
);
201 Instruction
*commonIntCastTransforms(CastInst
&CI
);
202 Instruction
*commonPointerCastTransforms(CastInst
&CI
);
203 Instruction
*visitTrunc(TruncInst
&CI
);
204 Instruction
*visitZExt(ZExtInst
&CI
);
205 Instruction
*visitSExt(SExtInst
&CI
);
206 Instruction
*visitFPTrunc(CastInst
&CI
);
207 Instruction
*visitFPExt(CastInst
&CI
);
208 Instruction
*visitFPToUI(CastInst
&CI
);
209 Instruction
*visitFPToSI(CastInst
&CI
);
210 Instruction
*visitUIToFP(CastInst
&CI
);
211 Instruction
*visitSIToFP(CastInst
&CI
);
212 Instruction
*visitPtrToInt(CastInst
&CI
);
213 Instruction
*visitIntToPtr(CastInst
&CI
);
214 Instruction
*visitBitCast(BitCastInst
&CI
);
215 Instruction
*FoldSelectOpOp(SelectInst
&SI
, Instruction
*TI
,
217 Instruction
*visitSelectInst(SelectInst
&CI
);
218 Instruction
*visitCallInst(CallInst
&CI
);
219 Instruction
*visitInvokeInst(InvokeInst
&II
);
220 Instruction
*visitPHINode(PHINode
&PN
);
221 Instruction
*visitGetElementPtrInst(GetElementPtrInst
&GEP
);
222 Instruction
*visitAllocationInst(AllocationInst
&AI
);
223 Instruction
*visitFreeInst(FreeInst
&FI
);
224 Instruction
*visitLoadInst(LoadInst
&LI
);
225 Instruction
*visitStoreInst(StoreInst
&SI
);
226 Instruction
*visitBranchInst(BranchInst
&BI
);
227 Instruction
*visitSwitchInst(SwitchInst
&SI
);
228 Instruction
*visitInsertElementInst(InsertElementInst
&IE
);
229 Instruction
*visitExtractElementInst(ExtractElementInst
&EI
);
230 Instruction
*visitShuffleVectorInst(ShuffleVectorInst
&SVI
);
232 // visitInstruction - Specify what to return for unhandled instructions...
233 Instruction
*visitInstruction(Instruction
&I
) { return 0; }
236 Instruction
*visitCallSite(CallSite CS
);
237 bool transformConstExprCastCall(CallSite CS
);
238 Instruction
*transformCallThroughTrampoline(CallSite CS
);
241 // InsertNewInstBefore - insert an instruction New before instruction Old
242 // in the program. Add the new instruction to the worklist.
244 Instruction
*InsertNewInstBefore(Instruction
*New
, Instruction
&Old
) {
245 assert(New
&& New
->getParent() == 0 &&
246 "New instruction already inserted into a basic block!");
247 BasicBlock
*BB
= Old
.getParent();
248 BB
->getInstList().insert(&Old
, New
); // Insert inst
253 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
254 /// This also adds the cast to the worklist. Finally, this returns the
256 Value
*InsertCastBefore(Instruction::CastOps opc
, Value
*V
, const Type
*Ty
,
258 if (V
->getType() == Ty
) return V
;
260 if (Constant
*CV
= dyn_cast
<Constant
>(V
))
261 return ConstantExpr::getCast(opc
, CV
, Ty
);
263 Instruction
*C
= CastInst::create(opc
, V
, Ty
, V
->getName(), &Pos
);
268 // ReplaceInstUsesWith - This method is to be used when an instruction is
269 // found to be dead, replacable with another preexisting expression. Here
270 // we add all uses of I to the worklist, replace all uses of I with the new
271 // value, then return I, so that the inst combiner will know that I was
274 Instruction
*ReplaceInstUsesWith(Instruction
&I
, Value
*V
) {
275 AddUsersToWorkList(I
); // Add all modified instrs to worklist
277 I
.replaceAllUsesWith(V
);
280 // If we are replacing the instruction with itself, this must be in a
281 // segment of unreachable code, so just clobber the instruction.
282 I
.replaceAllUsesWith(UndefValue::get(I
.getType()));
287 // UpdateValueUsesWith - This method is to be used when an value is
288 // found to be replacable with another preexisting expression or was
289 // updated. Here we add all uses of I to the worklist, replace all uses of
290 // I with the new value (unless the instruction was just updated), then
291 // return true, so that the inst combiner will know that I was modified.
293 bool UpdateValueUsesWith(Value
*Old
, Value
*New
) {
294 AddUsersToWorkList(*Old
); // Add all modified instrs to worklist
296 Old
->replaceAllUsesWith(New
);
297 if (Instruction
*I
= dyn_cast
<Instruction
>(Old
))
299 if (Instruction
*I
= dyn_cast
<Instruction
>(New
))
304 // EraseInstFromFunction - When dealing with an instruction that has side
305 // effects or produces a void value, we can't rely on DCE to delete the
306 // instruction. Instead, visit methods should return the value returned by
308 Instruction
*EraseInstFromFunction(Instruction
&I
) {
309 assert(I
.use_empty() && "Cannot erase instruction that is used!");
310 AddUsesToWorkList(I
);
311 RemoveFromWorkList(&I
);
313 return 0; // Don't do anything with FI
317 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
318 /// InsertBefore instruction. This is specialized a bit to avoid inserting
319 /// casts that are known to not do anything...
321 Value
*InsertOperandCastBefore(Instruction::CastOps opcode
,
322 Value
*V
, const Type
*DestTy
,
323 Instruction
*InsertBefore
);
325 /// SimplifyCommutative - This performs a few simplifications for
326 /// commutative operators.
327 bool SimplifyCommutative(BinaryOperator
&I
);
329 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
330 /// most-complex to least-complex order.
331 bool SimplifyCompare(CmpInst
&I
);
333 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
334 /// on the demanded bits.
335 bool SimplifyDemandedBits(Value
*V
, APInt DemandedMask
,
336 APInt
& KnownZero
, APInt
& KnownOne
,
339 Value
*SimplifyDemandedVectorElts(Value
*V
, uint64_t DemandedElts
,
340 uint64_t &UndefElts
, unsigned Depth
= 0);
342 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
343 // PHI node as operand #0, see if we can fold the instruction into the PHI
344 // (which is only possible if all operands to the PHI are constants).
345 Instruction
*FoldOpIntoPhi(Instruction
&I
);
347 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
348 // operator and they all are only used by the PHI, PHI together their
349 // inputs, and do the operation once, to the result of the PHI.
350 Instruction
*FoldPHIArgOpIntoPHI(PHINode
&PN
);
351 Instruction
*FoldPHIArgBinOpIntoPHI(PHINode
&PN
);
354 Instruction
*OptAndOp(Instruction
*Op
, ConstantInt
*OpRHS
,
355 ConstantInt
*AndRHS
, BinaryOperator
&TheAnd
);
357 Value
*FoldLogicalPlusAnd(Value
*LHS
, Value
*RHS
, ConstantInt
*Mask
,
358 bool isSub
, Instruction
&I
);
359 Instruction
*InsertRangeTest(Value
*V
, Constant
*Lo
, Constant
*Hi
,
360 bool isSigned
, bool Inside
, Instruction
&IB
);
361 Instruction
*PromoteCastOfAllocation(BitCastInst
&CI
, AllocationInst
&AI
);
362 Instruction
*MatchBSwap(BinaryOperator
&I
);
363 bool SimplifyStoreAtEndOfBlock(StoreInst
&SI
);
365 Value
*EvaluateInDifferentType(Value
*V
, const Type
*Ty
, bool isSigned
);
368 char InstCombiner::ID
= 0;
369 RegisterPass
<InstCombiner
> X("instcombine", "Combine redundant instructions");
372 // getComplexity: Assign a complexity or rank value to LLVM Values...
373 // 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
374 static unsigned getComplexity(Value
*V
) {
375 if (isa
<Instruction
>(V
)) {
376 if (BinaryOperator::isNeg(V
) || BinaryOperator::isNot(V
))
380 if (isa
<Argument
>(V
)) return 3;
381 return isa
<Constant
>(V
) ? (isa
<UndefValue
>(V
) ? 0 : 1) : 2;
384 // isOnlyUse - Return true if this instruction will be deleted if we stop using
386 static bool isOnlyUse(Value
*V
) {
387 return V
->hasOneUse() || isa
<Constant
>(V
);
390 // getPromotedType - Return the specified type promoted as it would be to pass
391 // though a va_arg area...
392 static const Type
*getPromotedType(const Type
*Ty
) {
393 if (const IntegerType
* ITy
= dyn_cast
<IntegerType
>(Ty
)) {
394 if (ITy
->getBitWidth() < 32)
395 return Type::Int32Ty
;
400 /// getBitCastOperand - If the specified operand is a CastInst or a constant
401 /// expression bitcast, return the operand value, otherwise return null.
402 static Value
*getBitCastOperand(Value
*V
) {
403 if (BitCastInst
*I
= dyn_cast
<BitCastInst
>(V
))
404 return I
->getOperand(0);
405 else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
406 if (CE
->getOpcode() == Instruction::BitCast
)
407 return CE
->getOperand(0);
411 /// This function is a wrapper around CastInst::isEliminableCastPair. It
412 /// simply extracts arguments and returns what that function returns.
413 static Instruction::CastOps
414 isEliminableCastPair(
415 const CastInst
*CI
, ///< The first cast instruction
416 unsigned opcode
, ///< The opcode of the second cast instruction
417 const Type
*DstTy
, ///< The target type for the second cast instruction
418 TargetData
*TD
///< The target data for pointer size
421 const Type
*SrcTy
= CI
->getOperand(0)->getType(); // A from above
422 const Type
*MidTy
= CI
->getType(); // B from above
424 // Get the opcodes of the two Cast instructions
425 Instruction::CastOps firstOp
= Instruction::CastOps(CI
->getOpcode());
426 Instruction::CastOps secondOp
= Instruction::CastOps(opcode
);
428 return Instruction::CastOps(
429 CastInst::isEliminableCastPair(firstOp
, secondOp
, SrcTy
, MidTy
,
430 DstTy
, TD
->getIntPtrType()));
433 /// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
434 /// in any code being generated. It does not require codegen if V is simple
435 /// enough or if the cast can be folded into other casts.
436 static bool ValueRequiresCast(Instruction::CastOps opcode
, const Value
*V
,
437 const Type
*Ty
, TargetData
*TD
) {
438 if (V
->getType() == Ty
|| isa
<Constant
>(V
)) return false;
440 // If this is another cast that can be eliminated, it isn't codegen either.
441 if (const CastInst
*CI
= dyn_cast
<CastInst
>(V
))
442 if (isEliminableCastPair(CI
, opcode
, Ty
, TD
))
447 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
448 /// InsertBefore instruction. This is specialized a bit to avoid inserting
449 /// casts that are known to not do anything...
451 Value
*InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode
,
452 Value
*V
, const Type
*DestTy
,
453 Instruction
*InsertBefore
) {
454 if (V
->getType() == DestTy
) return V
;
455 if (Constant
*C
= dyn_cast
<Constant
>(V
))
456 return ConstantExpr::getCast(opcode
, C
, DestTy
);
458 return InsertCastBefore(opcode
, V
, DestTy
, *InsertBefore
);
461 // SimplifyCommutative - This performs a few simplifications for commutative
464 // 1. Order operands such that they are listed from right (least complex) to
465 // left (most complex). This puts constants before unary operators before
468 // 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
469 // 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
471 bool InstCombiner::SimplifyCommutative(BinaryOperator
&I
) {
472 bool Changed
= false;
473 if (getComplexity(I
.getOperand(0)) < getComplexity(I
.getOperand(1)))
474 Changed
= !I
.swapOperands();
476 if (!I
.isAssociative()) return Changed
;
477 Instruction::BinaryOps Opcode
= I
.getOpcode();
478 if (BinaryOperator
*Op
= dyn_cast
<BinaryOperator
>(I
.getOperand(0)))
479 if (Op
->getOpcode() == Opcode
&& isa
<Constant
>(Op
->getOperand(1))) {
480 if (isa
<Constant
>(I
.getOperand(1))) {
481 Constant
*Folded
= ConstantExpr::get(I
.getOpcode(),
482 cast
<Constant
>(I
.getOperand(1)),
483 cast
<Constant
>(Op
->getOperand(1)));
484 I
.setOperand(0, Op
->getOperand(0));
485 I
.setOperand(1, Folded
);
487 } else if (BinaryOperator
*Op1
=dyn_cast
<BinaryOperator
>(I
.getOperand(1)))
488 if (Op1
->getOpcode() == Opcode
&& isa
<Constant
>(Op1
->getOperand(1)) &&
489 isOnlyUse(Op
) && isOnlyUse(Op1
)) {
490 Constant
*C1
= cast
<Constant
>(Op
->getOperand(1));
491 Constant
*C2
= cast
<Constant
>(Op1
->getOperand(1));
493 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
494 Constant
*Folded
= ConstantExpr::get(I
.getOpcode(), C1
, C2
);
495 Instruction
*New
= BinaryOperator::create(Opcode
, Op
->getOperand(0),
499 I
.setOperand(0, New
);
500 I
.setOperand(1, Folded
);
507 /// SimplifyCompare - For a CmpInst this function just orders the operands
508 /// so that theyare listed from right (least complex) to left (most complex).
509 /// This puts constants before unary operators before binary operators.
510 bool InstCombiner::SimplifyCompare(CmpInst
&I
) {
511 if (getComplexity(I
.getOperand(0)) >= getComplexity(I
.getOperand(1)))
514 // Compare instructions are not associative so there's nothing else we can do.
518 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
519 // if the LHS is a constant zero (which is the 'negate' form).
521 static inline Value
*dyn_castNegVal(Value
*V
) {
522 if (BinaryOperator::isNeg(V
))
523 return BinaryOperator::getNegArgument(V
);
525 // Constants can be considered to be negated values if they can be folded.
526 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(V
))
527 return ConstantExpr::getNeg(C
);
531 static inline Value
*dyn_castNotVal(Value
*V
) {
532 if (BinaryOperator::isNot(V
))
533 return BinaryOperator::getNotArgument(V
);
535 // Constants can be considered to be not'ed values...
536 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(V
))
537 return ConstantInt::get(~C
->getValue());
541 // dyn_castFoldableMul - If this value is a multiply that can be folded into
542 // other computations (because it has a constant operand), return the
543 // non-constant operand of the multiply, and set CST to point to the multiplier.
544 // Otherwise, return null.
546 static inline Value
*dyn_castFoldableMul(Value
*V
, ConstantInt
*&CST
) {
547 if (V
->hasOneUse() && V
->getType()->isInteger())
548 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
549 if (I
->getOpcode() == Instruction::Mul
)
550 if ((CST
= dyn_cast
<ConstantInt
>(I
->getOperand(1))))
551 return I
->getOperand(0);
552 if (I
->getOpcode() == Instruction::Shl
)
553 if ((CST
= dyn_cast
<ConstantInt
>(I
->getOperand(1)))) {
554 // The multiplier is really 1 << CST.
555 uint32_t BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
556 uint32_t CSTVal
= CST
->getLimitedValue(BitWidth
);
557 CST
= ConstantInt::get(APInt(BitWidth
, 1).shl(CSTVal
));
558 return I
->getOperand(0);
564 /// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
565 /// expression, return it.
566 static User
*dyn_castGetElementPtr(Value
*V
) {
567 if (isa
<GetElementPtrInst
>(V
)) return cast
<User
>(V
);
568 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
569 if (CE
->getOpcode() == Instruction::GetElementPtr
)
570 return cast
<User
>(V
);
574 /// AddOne - Add one to a ConstantInt
575 static ConstantInt
*AddOne(ConstantInt
*C
) {
576 APInt
Val(C
->getValue());
577 return ConstantInt::get(++Val
);
579 /// SubOne - Subtract one from a ConstantInt
580 static ConstantInt
*SubOne(ConstantInt
*C
) {
581 APInt
Val(C
->getValue());
582 return ConstantInt::get(--Val
);
584 /// Add - Add two ConstantInts together
585 static ConstantInt
*Add(ConstantInt
*C1
, ConstantInt
*C2
) {
586 return ConstantInt::get(C1
->getValue() + C2
->getValue());
588 /// And - Bitwise AND two ConstantInts together
589 static ConstantInt
*And(ConstantInt
*C1
, ConstantInt
*C2
) {
590 return ConstantInt::get(C1
->getValue() & C2
->getValue());
592 /// Subtract - Subtract one ConstantInt from another
593 static ConstantInt
*Subtract(ConstantInt
*C1
, ConstantInt
*C2
) {
594 return ConstantInt::get(C1
->getValue() - C2
->getValue());
596 /// Multiply - Multiply two ConstantInts together
597 static ConstantInt
*Multiply(ConstantInt
*C1
, ConstantInt
*C2
) {
598 return ConstantInt::get(C1
->getValue() * C2
->getValue());
601 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
602 /// known to be either zero or one and return them in the KnownZero/KnownOne
603 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit
605 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
606 /// we cannot optimize based on the assumption that it is zero without changing
607 /// it to be an explicit zero. If we don't change it to zero, other code could
608 /// optimized based on the contradictory assumption that it is non-zero.
609 /// Because instcombine aggressively folds operations with undef args anyway,
610 /// this won't lose us code quality.
611 static void ComputeMaskedBits(Value
*V
, const APInt
&Mask
, APInt
& KnownZero
,
612 APInt
& KnownOne
, unsigned Depth
= 0) {
613 assert(V
&& "No Value?");
614 assert(Depth
<= 6 && "Limit Search Depth");
615 uint32_t BitWidth
= Mask
.getBitWidth();
616 assert(cast
<IntegerType
>(V
->getType())->getBitWidth() == BitWidth
&&
617 KnownZero
.getBitWidth() == BitWidth
&&
618 KnownOne
.getBitWidth() == BitWidth
&&
619 "V, Mask, KnownOne and KnownZero should have same BitWidth");
620 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
621 // We know all of the bits for a constant!
622 KnownOne
= CI
->getValue() & Mask
;
623 KnownZero
= ~KnownOne
& Mask
;
627 if (Depth
== 6 || Mask
== 0)
628 return; // Limit search depth.
630 Instruction
*I
= dyn_cast
<Instruction
>(V
);
633 KnownZero
.clear(); KnownOne
.clear(); // Don't know anything.
634 APInt
KnownZero2(KnownZero
), KnownOne2(KnownOne
);
636 switch (I
->getOpcode()) {
637 case Instruction::And
: {
638 // If either the LHS or the RHS are Zero, the result is zero.
639 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
640 APInt
Mask2(Mask
& ~KnownZero
);
641 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
642 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
643 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
645 // Output known-1 bits are only known if set in both the LHS & RHS.
646 KnownOne
&= KnownOne2
;
647 // Output known-0 are known to be clear if zero in either the LHS | RHS.
648 KnownZero
|= KnownZero2
;
651 case Instruction::Or
: {
652 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
653 APInt
Mask2(Mask
& ~KnownOne
);
654 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
655 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
656 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
658 // Output known-0 bits are only known if clear in both the LHS & RHS.
659 KnownZero
&= KnownZero2
;
660 // Output known-1 are known to be set if set in either the LHS | RHS.
661 KnownOne
|= KnownOne2
;
664 case Instruction::Xor
: {
665 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
666 ComputeMaskedBits(I
->getOperand(0), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
667 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
668 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
670 // Output known-0 bits are known if clear or set in both the LHS & RHS.
671 APInt KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
672 // Output known-1 are known to be set if set in only one of the LHS, RHS.
673 KnownOne
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
674 KnownZero
= KnownZeroOut
;
677 case Instruction::Select
:
678 ComputeMaskedBits(I
->getOperand(2), Mask
, KnownZero
, KnownOne
, Depth
+1);
679 ComputeMaskedBits(I
->getOperand(1), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
680 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
681 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
683 // Only known if known in both the LHS and RHS.
684 KnownOne
&= KnownOne2
;
685 KnownZero
&= KnownZero2
;
687 case Instruction::FPTrunc
:
688 case Instruction::FPExt
:
689 case Instruction::FPToUI
:
690 case Instruction::FPToSI
:
691 case Instruction::SIToFP
:
692 case Instruction::PtrToInt
:
693 case Instruction::UIToFP
:
694 case Instruction::IntToPtr
:
695 return; // Can't work with floating point or pointers
696 case Instruction::Trunc
: {
697 // All these have integer operands
698 uint32_t SrcBitWidth
=
699 cast
<IntegerType
>(I
->getOperand(0)->getType())->getBitWidth();
701 MaskIn
.zext(SrcBitWidth
);
702 KnownZero
.zext(SrcBitWidth
);
703 KnownOne
.zext(SrcBitWidth
);
704 ComputeMaskedBits(I
->getOperand(0), MaskIn
, KnownZero
, KnownOne
, Depth
+1);
705 KnownZero
.trunc(BitWidth
);
706 KnownOne
.trunc(BitWidth
);
709 case Instruction::BitCast
: {
710 const Type
*SrcTy
= I
->getOperand(0)->getType();
711 if (SrcTy
->isInteger()) {
712 ComputeMaskedBits(I
->getOperand(0), Mask
, KnownZero
, KnownOne
, Depth
+1);
717 case Instruction::ZExt
: {
718 // Compute the bits in the result that are not present in the input.
719 const IntegerType
*SrcTy
= cast
<IntegerType
>(I
->getOperand(0)->getType());
720 uint32_t SrcBitWidth
= SrcTy
->getBitWidth();
723 MaskIn
.trunc(SrcBitWidth
);
724 KnownZero
.trunc(SrcBitWidth
);
725 KnownOne
.trunc(SrcBitWidth
);
726 ComputeMaskedBits(I
->getOperand(0), MaskIn
, KnownZero
, KnownOne
, Depth
+1);
727 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
728 // The top bits are known to be zero.
729 KnownZero
.zext(BitWidth
);
730 KnownOne
.zext(BitWidth
);
731 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
734 case Instruction::SExt
: {
735 // Compute the bits in the result that are not present in the input.
736 const IntegerType
*SrcTy
= cast
<IntegerType
>(I
->getOperand(0)->getType());
737 uint32_t SrcBitWidth
= SrcTy
->getBitWidth();
740 MaskIn
.trunc(SrcBitWidth
);
741 KnownZero
.trunc(SrcBitWidth
);
742 KnownOne
.trunc(SrcBitWidth
);
743 ComputeMaskedBits(I
->getOperand(0), MaskIn
, KnownZero
, KnownOne
, Depth
+1);
744 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
745 KnownZero
.zext(BitWidth
);
746 KnownOne
.zext(BitWidth
);
748 // If the sign bit of the input is known set or clear, then we know the
749 // top bits of the result.
750 if (KnownZero
[SrcBitWidth
-1]) // Input sign bit known zero
751 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
752 else if (KnownOne
[SrcBitWidth
-1]) // Input sign bit known set
753 KnownOne
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
756 case Instruction::Shl
:
757 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
758 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
759 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
760 APInt
Mask2(Mask
.lshr(ShiftAmt
));
761 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
, KnownOne
, Depth
+1);
762 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
763 KnownZero
<<= ShiftAmt
;
764 KnownOne
<<= ShiftAmt
;
765 KnownZero
|= APInt::getLowBitsSet(BitWidth
, ShiftAmt
); // low bits known 0
769 case Instruction::LShr
:
770 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
771 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
772 // Compute the new bits that are at the top now.
773 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
775 // Unsigned shift right.
776 APInt
Mask2(Mask
.shl(ShiftAmt
));
777 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
,KnownOne
,Depth
+1);
778 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
779 KnownZero
= APIntOps::lshr(KnownZero
, ShiftAmt
);
780 KnownOne
= APIntOps::lshr(KnownOne
, ShiftAmt
);
781 // high bits known zero.
782 KnownZero
|= APInt::getHighBitsSet(BitWidth
, ShiftAmt
);
786 case Instruction::AShr
:
787 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
788 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
789 // Compute the new bits that are at the top now.
790 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
792 // Signed shift right.
793 APInt
Mask2(Mask
.shl(ShiftAmt
));
794 ComputeMaskedBits(I
->getOperand(0), Mask2
, KnownZero
,KnownOne
,Depth
+1);
795 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
796 KnownZero
= APIntOps::lshr(KnownZero
, ShiftAmt
);
797 KnownOne
= APIntOps::lshr(KnownOne
, ShiftAmt
);
799 APInt
HighBits(APInt::getHighBitsSet(BitWidth
, ShiftAmt
));
800 if (KnownZero
[BitWidth
-ShiftAmt
-1]) // New bits are known zero.
801 KnownZero
|= HighBits
;
802 else if (KnownOne
[BitWidth
-ShiftAmt
-1]) // New bits are known one.
803 KnownOne
|= HighBits
;
810 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
811 /// this predicate to simplify operations downstream. Mask is known to be zero
812 /// for bits that V cannot have.
813 static bool MaskedValueIsZero(Value
*V
, const APInt
& Mask
, unsigned Depth
= 0) {
814 APInt
KnownZero(Mask
.getBitWidth(), 0), KnownOne(Mask
.getBitWidth(), 0);
815 ComputeMaskedBits(V
, Mask
, KnownZero
, KnownOne
, Depth
);
816 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
817 return (KnownZero
& Mask
) == Mask
;
820 /// ShrinkDemandedConstant - Check to see if the specified operand of the
821 /// specified instruction is a constant integer. If so, check to see if there
822 /// are any bits set in the constant that are not demanded. If so, shrink the
823 /// constant and return true.
824 static bool ShrinkDemandedConstant(Instruction
*I
, unsigned OpNo
,
826 assert(I
&& "No instruction?");
827 assert(OpNo
< I
->getNumOperands() && "Operand index too large");
829 // If the operand is not a constant integer, nothing to do.
830 ConstantInt
*OpC
= dyn_cast
<ConstantInt
>(I
->getOperand(OpNo
));
831 if (!OpC
) return false;
833 // If there are no bits set that aren't demanded, nothing to do.
834 Demanded
.zextOrTrunc(OpC
->getValue().getBitWidth());
835 if ((~Demanded
& OpC
->getValue()) == 0)
838 // This instruction is producing bits that are not demanded. Shrink the RHS.
839 Demanded
&= OpC
->getValue();
840 I
->setOperand(OpNo
, ConstantInt::get(Demanded
));
844 // ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
845 // set of known zero and one bits, compute the maximum and minimum values that
846 // could have the specified known zero and known one bits, returning them in
848 static void ComputeSignedMinMaxValuesFromKnownBits(const Type
*Ty
,
849 const APInt
& KnownZero
,
850 const APInt
& KnownOne
,
851 APInt
& Min
, APInt
& Max
) {
852 uint32_t BitWidth
= cast
<IntegerType
>(Ty
)->getBitWidth();
853 assert(KnownZero
.getBitWidth() == BitWidth
&&
854 KnownOne
.getBitWidth() == BitWidth
&&
855 Min
.getBitWidth() == BitWidth
&& Max
.getBitWidth() == BitWidth
&&
856 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
857 APInt UnknownBits
= ~(KnownZero
|KnownOne
);
859 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
860 // bit if it is unknown.
862 Max
= KnownOne
|UnknownBits
;
864 if (UnknownBits
[BitWidth
-1]) { // Sign bit is unknown
866 Max
.clear(BitWidth
-1);
870 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
871 // a set of known zero and one bits, compute the maximum and minimum values that
872 // could have the specified known zero and known one bits, returning them in
874 static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type
*Ty
,
875 const APInt
&KnownZero
,
876 const APInt
&KnownOne
,
877 APInt
&Min
, APInt
&Max
) {
878 uint32_t BitWidth
= cast
<IntegerType
>(Ty
)->getBitWidth(); BitWidth
= BitWidth
;
879 assert(KnownZero
.getBitWidth() == BitWidth
&&
880 KnownOne
.getBitWidth() == BitWidth
&&
881 Min
.getBitWidth() == BitWidth
&& Max
.getBitWidth() &&
882 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
883 APInt UnknownBits
= ~(KnownZero
|KnownOne
);
885 // The minimum value is when the unknown bits are all zeros.
887 // The maximum value is when the unknown bits are all ones.
888 Max
= KnownOne
|UnknownBits
;
891 /// SimplifyDemandedBits - This function attempts to replace V with a simpler
892 /// value based on the demanded bits. When this function is called, it is known
893 /// that only the bits set in DemandedMask of the result of V are ever used
894 /// downstream. Consequently, depending on the mask and V, it may be possible
895 /// to replace V with a constant or one of its operands. In such cases, this
896 /// function does the replacement and returns true. In all other cases, it
897 /// returns false after analyzing the expression and setting KnownOne and known
898 /// to be one in the expression. KnownZero contains all the bits that are known
899 /// to be zero in the expression. These are provided to potentially allow the
900 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify
901 /// the expression. KnownOne and KnownZero always follow the invariant that
902 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
903 /// the bits in KnownOne and KnownZero may only be accurate for those bits set
904 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
905 /// and KnownOne must all be the same.
906 bool InstCombiner::SimplifyDemandedBits(Value
*V
, APInt DemandedMask
,
907 APInt
& KnownZero
, APInt
& KnownOne
,
909 assert(V
!= 0 && "Null pointer of Value???");
910 assert(Depth
<= 6 && "Limit Search Depth");
911 uint32_t BitWidth
= DemandedMask
.getBitWidth();
912 const IntegerType
*VTy
= cast
<IntegerType
>(V
->getType());
913 assert(VTy
->getBitWidth() == BitWidth
&&
914 KnownZero
.getBitWidth() == BitWidth
&&
915 KnownOne
.getBitWidth() == BitWidth
&&
916 "Value *V, DemandedMask, KnownZero and KnownOne \
917 must have same BitWidth");
918 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
919 // We know all of the bits for a constant!
920 KnownOne
= CI
->getValue() & DemandedMask
;
921 KnownZero
= ~KnownOne
& DemandedMask
;
927 if (!V
->hasOneUse()) { // Other users may use these bits.
928 if (Depth
!= 0) { // Not at the root.
929 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
930 ComputeMaskedBits(V
, DemandedMask
, KnownZero
, KnownOne
, Depth
);
933 // If this is the root being simplified, allow it to have multiple uses,
934 // just set the DemandedMask to all bits.
935 DemandedMask
= APInt::getAllOnesValue(BitWidth
);
936 } else if (DemandedMask
== 0) { // Not demanding any bits from V.
937 if (V
!= UndefValue::get(VTy
))
938 return UpdateValueUsesWith(V
, UndefValue::get(VTy
));
940 } else if (Depth
== 6) { // Limit search depth.
944 Instruction
*I
= dyn_cast
<Instruction
>(V
);
945 if (!I
) return false; // Only analyze instructions.
947 APInt
LHSKnownZero(BitWidth
, 0), LHSKnownOne(BitWidth
, 0);
948 APInt
&RHSKnownZero
= KnownZero
, &RHSKnownOne
= KnownOne
;
949 switch (I
->getOpcode()) {
951 case Instruction::And
:
952 // If either the LHS or the RHS are Zero, the result is zero.
953 if (SimplifyDemandedBits(I
->getOperand(1), DemandedMask
,
954 RHSKnownZero
, RHSKnownOne
, Depth
+1))
956 assert((RHSKnownZero
& RHSKnownOne
) == 0 &&
957 "Bits known to be one AND zero?");
959 // If something is known zero on the RHS, the bits aren't demanded on the
961 if (SimplifyDemandedBits(I
->getOperand(0), DemandedMask
& ~RHSKnownZero
,
962 LHSKnownZero
, LHSKnownOne
, Depth
+1))
964 assert((LHSKnownZero
& LHSKnownOne
) == 0 &&
965 "Bits known to be one AND zero?");
967 // If all of the demanded bits are known 1 on one side, return the other.
968 // These bits cannot contribute to the result of the 'and'.
969 if ((DemandedMask
& ~LHSKnownZero
& RHSKnownOne
) ==
970 (DemandedMask
& ~LHSKnownZero
))
971 return UpdateValueUsesWith(I
, I
->getOperand(0));
972 if ((DemandedMask
& ~RHSKnownZero
& LHSKnownOne
) ==
973 (DemandedMask
& ~RHSKnownZero
))
974 return UpdateValueUsesWith(I
, I
->getOperand(1));
976 // If all of the demanded bits in the inputs are known zeros, return zero.
977 if ((DemandedMask
& (RHSKnownZero
|LHSKnownZero
)) == DemandedMask
)
978 return UpdateValueUsesWith(I
, Constant::getNullValue(VTy
));
980 // If the RHS is a constant, see if we can simplify it.
981 if (ShrinkDemandedConstant(I
, 1, DemandedMask
& ~LHSKnownZero
))
982 return UpdateValueUsesWith(I
, I
);
984 // Output known-1 bits are only known if set in both the LHS & RHS.
985 RHSKnownOne
&= LHSKnownOne
;
986 // Output known-0 are known to be clear if zero in either the LHS | RHS.
987 RHSKnownZero
|= LHSKnownZero
;
989 case Instruction::Or
:
990 // If either the LHS or the RHS are One, the result is One.
991 if (SimplifyDemandedBits(I
->getOperand(1), DemandedMask
,
992 RHSKnownZero
, RHSKnownOne
, Depth
+1))
994 assert((RHSKnownZero
& RHSKnownOne
) == 0 &&
995 "Bits known to be one AND zero?");
996 // If something is known one on the RHS, the bits aren't demanded on the
998 if (SimplifyDemandedBits(I
->getOperand(0), DemandedMask
& ~RHSKnownOne
,
999 LHSKnownZero
, LHSKnownOne
, Depth
+1))
1001 assert((LHSKnownZero
& LHSKnownOne
) == 0 &&
1002 "Bits known to be one AND zero?");
1004 // If all of the demanded bits are known zero on one side, return the other.
1005 // These bits cannot contribute to the result of the 'or'.
1006 if ((DemandedMask
& ~LHSKnownOne
& RHSKnownZero
) ==
1007 (DemandedMask
& ~LHSKnownOne
))
1008 return UpdateValueUsesWith(I
, I
->getOperand(0));
1009 if ((DemandedMask
& ~RHSKnownOne
& LHSKnownZero
) ==
1010 (DemandedMask
& ~RHSKnownOne
))
1011 return UpdateValueUsesWith(I
, I
->getOperand(1));
1013 // If all of the potentially set bits on one side are known to be set on
1014 // the other side, just use the 'other' side.
1015 if ((DemandedMask
& (~RHSKnownZero
) & LHSKnownOne
) ==
1016 (DemandedMask
& (~RHSKnownZero
)))
1017 return UpdateValueUsesWith(I
, I
->getOperand(0));
1018 if ((DemandedMask
& (~LHSKnownZero
) & RHSKnownOne
) ==
1019 (DemandedMask
& (~LHSKnownZero
)))
1020 return UpdateValueUsesWith(I
, I
->getOperand(1));
1022 // If the RHS is a constant, see if we can simplify it.
1023 if (ShrinkDemandedConstant(I
, 1, DemandedMask
))
1024 return UpdateValueUsesWith(I
, I
);
1026 // Output known-0 bits are only known if clear in both the LHS & RHS.
1027 RHSKnownZero
&= LHSKnownZero
;
1028 // Output known-1 are known to be set if set in either the LHS | RHS.
1029 RHSKnownOne
|= LHSKnownOne
;
1031 case Instruction::Xor
: {
1032 if (SimplifyDemandedBits(I
->getOperand(1), DemandedMask
,
1033 RHSKnownZero
, RHSKnownOne
, Depth
+1))
1035 assert((RHSKnownZero
& RHSKnownOne
) == 0 &&
1036 "Bits known to be one AND zero?");
1037 if (SimplifyDemandedBits(I
->getOperand(0), DemandedMask
,
1038 LHSKnownZero
, LHSKnownOne
, Depth
+1))
1040 assert((LHSKnownZero
& LHSKnownOne
) == 0 &&
1041 "Bits known to be one AND zero?");
1043 // If all of the demanded bits are known zero on one side, return the other.
1044 // These bits cannot contribute to the result of the 'xor'.
1045 if ((DemandedMask
& RHSKnownZero
) == DemandedMask
)
1046 return UpdateValueUsesWith(I
, I
->getOperand(0));
1047 if ((DemandedMask
& LHSKnownZero
) == DemandedMask
)
1048 return UpdateValueUsesWith(I
, I
->getOperand(1));
1050 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1051 APInt KnownZeroOut
= (RHSKnownZero
& LHSKnownZero
) |
1052 (RHSKnownOne
& LHSKnownOne
);
1053 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1054 APInt KnownOneOut
= (RHSKnownZero
& LHSKnownOne
) |
1055 (RHSKnownOne
& LHSKnownZero
);
1057 // If all of the demanded bits are known to be zero on one side or the
1058 // other, turn this into an *inclusive* or.
1059 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1060 if ((DemandedMask
& ~RHSKnownZero
& ~LHSKnownZero
) == 0) {
1062 BinaryOperator::createOr(I
->getOperand(0), I
->getOperand(1),
1064 InsertNewInstBefore(Or
, *I
);
1065 return UpdateValueUsesWith(I
, Or
);
1068 // If all of the demanded bits on one side are known, and all of the set
1069 // bits on that side are also known to be set on the other side, turn this
1070 // into an AND, as we know the bits will be cleared.
1071 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1072 if ((DemandedMask
& (RHSKnownZero
|RHSKnownOne
)) == DemandedMask
) {
1074 if ((RHSKnownOne
& LHSKnownOne
) == RHSKnownOne
) {
1075 Constant
*AndC
= ConstantInt::get(~RHSKnownOne
& DemandedMask
);
1077 BinaryOperator::createAnd(I
->getOperand(0), AndC
, "tmp");
1078 InsertNewInstBefore(And
, *I
);
1079 return UpdateValueUsesWith(I
, And
);
1083 // If the RHS is a constant, see if we can simplify it.
1084 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
1085 if (ShrinkDemandedConstant(I
, 1, DemandedMask
))
1086 return UpdateValueUsesWith(I
, I
);
1088 RHSKnownZero
= KnownZeroOut
;
1089 RHSKnownOne
= KnownOneOut
;
1092 case Instruction::Select
:
1093 if (SimplifyDemandedBits(I
->getOperand(2), DemandedMask
,
1094 RHSKnownZero
, RHSKnownOne
, Depth
+1))
1096 if (SimplifyDemandedBits(I
->getOperand(1), DemandedMask
,
1097 LHSKnownZero
, LHSKnownOne
, Depth
+1))
1099 assert((RHSKnownZero
& RHSKnownOne
) == 0 &&
1100 "Bits known to be one AND zero?");
1101 assert((LHSKnownZero
& LHSKnownOne
) == 0 &&
1102 "Bits known to be one AND zero?");
1104 // If the operands are constants, see if we can simplify them.
1105 if (ShrinkDemandedConstant(I
, 1, DemandedMask
))
1106 return UpdateValueUsesWith(I
, I
);
1107 if (ShrinkDemandedConstant(I
, 2, DemandedMask
))
1108 return UpdateValueUsesWith(I
, I
);
1110 // Only known if known in both the LHS and RHS.
1111 RHSKnownOne
&= LHSKnownOne
;
1112 RHSKnownZero
&= LHSKnownZero
;
1114 case Instruction::Trunc
: {
1116 cast
<IntegerType
>(I
->getOperand(0)->getType())->getBitWidth();
1117 DemandedMask
.zext(truncBf
);
1118 RHSKnownZero
.zext(truncBf
);
1119 RHSKnownOne
.zext(truncBf
);
1120 if (SimplifyDemandedBits(I
->getOperand(0), DemandedMask
,
1121 RHSKnownZero
, RHSKnownOne
, Depth
+1))
1123 DemandedMask
.trunc(BitWidth
);
1124 RHSKnownZero
.trunc(BitWidth
);
1125 RHSKnownOne
.trunc(BitWidth
);
1126 assert((RHSKnownZero
& RHSKnownOne
) == 0 &&
1127 "Bits known to be one AND zero?");
1130 case Instruction::BitCast
:
1131 if (!I
->getOperand(0)->getType()->isInteger())
1134 if (SimplifyDemandedBits(I
->getOperand(0), DemandedMask
,
1135 RHSKnownZero
, RHSKnownOne
, Depth
+1))
1137 assert((RHSKnownZero
& RHSKnownOne
) == 0 &&
1138 "Bits known to be one AND zero?");
1140 case Instruction::ZExt
: {
1141 // Compute the bits in the result that are not present in the input.
1142 const IntegerType
*SrcTy
= cast
<IntegerType
>(I
->getOperand(0)->getType());
1143 uint32_t SrcBitWidth
= SrcTy
->getBitWidth();
1145 DemandedMask
.trunc(SrcBitWidth
);
1146 RHSKnownZero
.trunc(SrcBitWidth
);
1147 RHSKnownOne
.trunc(SrcBitWidth
);
1148 if (SimplifyDemandedBits(I
->getOperand(0), DemandedMask
,
1149 RHSKnownZero
, RHSKnownOne
, Depth
+1))
1151 DemandedMask
.zext(BitWidth
);
1152 RHSKnownZero
.zext(BitWidth
);
1153 RHSKnownOne
.zext(BitWidth
);
1154 assert((RHSKnownZero
& RHSKnownOne
) == 0 &&
1155 "Bits known to be one AND zero?");
1156 // The top bits are known to be zero.
1157 RHSKnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
1160 case Instruction::SExt
: {
1161 // Compute the bits in the result that are not present in the input.
1162 const IntegerType
*SrcTy
= cast
<IntegerType
>(I
->getOperand(0)->getType());
1163 uint32_t SrcBitWidth
= SrcTy
->getBitWidth();
1165 APInt InputDemandedBits
= DemandedMask
&
1166 APInt::getLowBitsSet(BitWidth
, SrcBitWidth
);
1168 APInt
NewBits(APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
));
1169 // If any of the sign extended bits are demanded, we know that the sign
1171 if ((NewBits
& DemandedMask
) != 0)
1172 InputDemandedBits
.set(SrcBitWidth
-1);
1174 InputDemandedBits
.trunc(SrcBitWidth
);
1175 RHSKnownZero
.trunc(SrcBitWidth
);
1176 RHSKnownOne
.trunc(SrcBitWidth
);
1177 if (SimplifyDemandedBits(I
->getOperand(0), InputDemandedBits
,
1178 RHSKnownZero
, RHSKnownOne
, Depth
+1))
1180 InputDemandedBits
.zext(BitWidth
);
1181 RHSKnownZero
.zext(BitWidth
);
1182 RHSKnownOne
.zext(BitWidth
);
1183 assert((RHSKnownZero
& RHSKnownOne
) == 0 &&
1184 "Bits known to be one AND zero?");
1186 // If the sign bit of the input is known set or clear, then we know the
1187 // top bits of the result.
1189 // If the input sign bit is known zero, or if the NewBits are not demanded
1190 // convert this into a zero extension.
1191 if (RHSKnownZero
[SrcBitWidth
-1] || (NewBits
& ~DemandedMask
) == NewBits
)
1193 // Convert to ZExt cast
1194 CastInst
*NewCast
= new ZExtInst(I
->getOperand(0), VTy
, I
->getName(), I
);
1195 return UpdateValueUsesWith(I
, NewCast
);
1196 } else if (RHSKnownOne
[SrcBitWidth
-1]) { // Input sign bit known set
1197 RHSKnownOne
|= NewBits
;
1201 case Instruction::Add
: {
1202 // Figure out what the input bits are. If the top bits of the and result
1203 // are not demanded, then the add doesn't demand them from its input
1205 uint32_t NLZ
= DemandedMask
.countLeadingZeros();
1207 // If there is a constant on the RHS, there are a variety of xformations
1209 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
1210 // If null, this should be simplified elsewhere. Some of the xforms here
1211 // won't work if the RHS is zero.
1215 // If the top bit of the output is demanded, demand everything from the
1216 // input. Otherwise, we demand all the input bits except NLZ top bits.
1217 APInt
InDemandedBits(APInt::getLowBitsSet(BitWidth
, BitWidth
- NLZ
));
1219 // Find information about known zero/one bits in the input.
1220 if (SimplifyDemandedBits(I
->getOperand(0), InDemandedBits
,
1221 LHSKnownZero
, LHSKnownOne
, Depth
+1))
1224 // If the RHS of the add has bits set that can't affect the input, reduce
1226 if (ShrinkDemandedConstant(I
, 1, InDemandedBits
))
1227 return UpdateValueUsesWith(I
, I
);
1229 // Avoid excess work.
1230 if (LHSKnownZero
== 0 && LHSKnownOne
== 0)
1233 // Turn it into OR if input bits are zero.
1234 if ((LHSKnownZero
& RHS
->getValue()) == RHS
->getValue()) {
1236 BinaryOperator::createOr(I
->getOperand(0), I
->getOperand(1),
1238 InsertNewInstBefore(Or
, *I
);
1239 return UpdateValueUsesWith(I
, Or
);
1242 // We can say something about the output known-zero and known-one bits,
1243 // depending on potential carries from the input constant and the
1244 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1245 // bits set and the RHS constant is 0x01001, then we know we have a known
1246 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1248 // To compute this, we first compute the potential carry bits. These are
1249 // the bits which may be modified. I'm not aware of a better way to do
1251 const APInt
& RHSVal
= RHS
->getValue();
1252 APInt
CarryBits((~LHSKnownZero
+ RHSVal
) ^ (~LHSKnownZero
^ RHSVal
));
1254 // Now that we know which bits have carries, compute the known-1/0 sets.
1256 // Bits are known one if they are known zero in one operand and one in the
1257 // other, and there is no input carry.
1258 RHSKnownOne
= ((LHSKnownZero
& RHSVal
) |
1259 (LHSKnownOne
& ~RHSVal
)) & ~CarryBits
;
1261 // Bits are known zero if they are known zero in both operands and there
1262 // is no input carry.
1263 RHSKnownZero
= LHSKnownZero
& ~RHSVal
& ~CarryBits
;
1265 // If the high-bits of this ADD are not demanded, then it does not demand
1266 // the high bits of its LHS or RHS.
1267 if (DemandedMask
[BitWidth
-1] == 0) {
1268 // Right fill the mask of bits for this ADD to demand the most
1269 // significant bit and all those below it.
1270 APInt
DemandedFromOps(APInt::getLowBitsSet(BitWidth
, BitWidth
-NLZ
));
1271 if (SimplifyDemandedBits(I
->getOperand(0), DemandedFromOps
,
1272 LHSKnownZero
, LHSKnownOne
, Depth
+1))
1274 if (SimplifyDemandedBits(I
->getOperand(1), DemandedFromOps
,
1275 LHSKnownZero
, LHSKnownOne
, Depth
+1))
1281 case Instruction::Sub
:
1282 // If the high-bits of this SUB are not demanded, then it does not demand
1283 // the high bits of its LHS or RHS.
1284 if (DemandedMask
[BitWidth
-1] == 0) {
1285 // Right fill the mask of bits for this SUB to demand the most
1286 // significant bit and all those below it.
1287 uint32_t NLZ
= DemandedMask
.countLeadingZeros();
1288 APInt
DemandedFromOps(APInt::getLowBitsSet(BitWidth
, BitWidth
-NLZ
));
1289 if (SimplifyDemandedBits(I
->getOperand(0), DemandedFromOps
,
1290 LHSKnownZero
, LHSKnownOne
, Depth
+1))
1292 if (SimplifyDemandedBits(I
->getOperand(1), DemandedFromOps
,
1293 LHSKnownZero
, LHSKnownOne
, Depth
+1))
1297 case Instruction::Shl
:
1298 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
1299 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
1300 APInt
DemandedMaskIn(DemandedMask
.lshr(ShiftAmt
));
1301 if (SimplifyDemandedBits(I
->getOperand(0), DemandedMaskIn
,
1302 RHSKnownZero
, RHSKnownOne
, Depth
+1))
1304 assert((RHSKnownZero
& RHSKnownOne
) == 0 &&
1305 "Bits known to be one AND zero?");
1306 RHSKnownZero
<<= ShiftAmt
;
1307 RHSKnownOne
<<= ShiftAmt
;
1308 // low bits known zero.
1310 RHSKnownZero
|= APInt::getLowBitsSet(BitWidth
, ShiftAmt
);
1313 case Instruction::LShr
:
1314 // For a logical shift right
1315 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
1316 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
1318 // Unsigned shift right.
1319 APInt
DemandedMaskIn(DemandedMask
.shl(ShiftAmt
));
1320 if (SimplifyDemandedBits(I
->getOperand(0), DemandedMaskIn
,
1321 RHSKnownZero
, RHSKnownOne
, Depth
+1))
1323 assert((RHSKnownZero
& RHSKnownOne
) == 0 &&
1324 "Bits known to be one AND zero?");
1325 RHSKnownZero
= APIntOps::lshr(RHSKnownZero
, ShiftAmt
);
1326 RHSKnownOne
= APIntOps::lshr(RHSKnownOne
, ShiftAmt
);
1328 // Compute the new bits that are at the top now.
1329 APInt
HighBits(APInt::getHighBitsSet(BitWidth
, ShiftAmt
));
1330 RHSKnownZero
|= HighBits
; // high bits known zero.
1334 case Instruction::AShr
:
1335 // If this is an arithmetic shift right and only the low-bit is set, we can
1336 // always convert this into a logical shr, even if the shift amount is
1337 // variable. The low bit of the shift cannot be an input sign bit unless
1338 // the shift amount is >= the size of the datatype, which is undefined.
1339 if (DemandedMask
== 1) {
1340 // Perform the logical shift right.
1341 Value
*NewVal
= BinaryOperator::createLShr(
1342 I
->getOperand(0), I
->getOperand(1), I
->getName());
1343 InsertNewInstBefore(cast
<Instruction
>(NewVal
), *I
);
1344 return UpdateValueUsesWith(I
, NewVal
);
1347 // If the sign bit is the only bit demanded by this ashr, then there is no
1348 // need to do it, the shift doesn't change the high bit.
1349 if (DemandedMask
.isSignBit())
1350 return UpdateValueUsesWith(I
, I
->getOperand(0));
1352 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
1353 uint32_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
1355 // Signed shift right.
1356 APInt
DemandedMaskIn(DemandedMask
.shl(ShiftAmt
));
1357 // If any of the "high bits" are demanded, we should set the sign bit as
1359 if (DemandedMask
.countLeadingZeros() <= ShiftAmt
)
1360 DemandedMaskIn
.set(BitWidth
-1);
1361 if (SimplifyDemandedBits(I
->getOperand(0),
1363 RHSKnownZero
, RHSKnownOne
, Depth
+1))
1365 assert((RHSKnownZero
& RHSKnownOne
) == 0 &&
1366 "Bits known to be one AND zero?");
1367 // Compute the new bits that are at the top now.
1368 APInt
HighBits(APInt::getHighBitsSet(BitWidth
, ShiftAmt
));
1369 RHSKnownZero
= APIntOps::lshr(RHSKnownZero
, ShiftAmt
);
1370 RHSKnownOne
= APIntOps::lshr(RHSKnownOne
, ShiftAmt
);
1372 // Handle the sign bits.
1373 APInt
SignBit(APInt::getSignBit(BitWidth
));
1374 // Adjust to where it is now in the mask.
1375 SignBit
= APIntOps::lshr(SignBit
, ShiftAmt
);
1377 // If the input sign bit is known to be zero, or if none of the top bits
1378 // are demanded, turn this into an unsigned shift right.
1379 if (RHSKnownZero
[BitWidth
-ShiftAmt
-1] ||
1380 (HighBits
& ~DemandedMask
) == HighBits
) {
1381 // Perform the logical shift right.
1382 Value
*NewVal
= BinaryOperator::createLShr(
1383 I
->getOperand(0), SA
, I
->getName());
1384 InsertNewInstBefore(cast
<Instruction
>(NewVal
), *I
);
1385 return UpdateValueUsesWith(I
, NewVal
);
1386 } else if ((RHSKnownOne
& SignBit
) != 0) { // New bits are known one.
1387 RHSKnownOne
|= HighBits
;
1393 // If the client is only demanding bits that we know, return the known
1395 if ((DemandedMask
& (RHSKnownZero
|RHSKnownOne
)) == DemandedMask
)
1396 return UpdateValueUsesWith(I
, ConstantInt::get(RHSKnownOne
));
1401 /// SimplifyDemandedVectorElts - The specified value producecs a vector with
1402 /// 64 or fewer elements. DemandedElts contains the set of elements that are
1403 /// actually used by the caller. This method analyzes which elements of the
1404 /// operand are undef and returns that information in UndefElts.
1406 /// If the information about demanded elements can be used to simplify the
1407 /// operation, the operation is simplified, then the resultant value is
1408 /// returned. This returns null if no change was made.
1409 Value
*InstCombiner::SimplifyDemandedVectorElts(Value
*V
, uint64_t DemandedElts
,
1410 uint64_t &UndefElts
,
1412 unsigned VWidth
= cast
<VectorType
>(V
->getType())->getNumElements();
1413 assert(VWidth
<= 64 && "Vector too wide to analyze!");
1414 uint64_t EltMask
= ~0ULL >> (64-VWidth
);
1415 assert(DemandedElts
!= EltMask
&& (DemandedElts
& ~EltMask
) == 0 &&
1416 "Invalid DemandedElts!");
1418 if (isa
<UndefValue
>(V
)) {
1419 // If the entire vector is undefined, just return this info.
1420 UndefElts
= EltMask
;
1422 } else if (DemandedElts
== 0) { // If nothing is demanded, provide undef.
1423 UndefElts
= EltMask
;
1424 return UndefValue::get(V
->getType());
1428 if (ConstantVector
*CP
= dyn_cast
<ConstantVector
>(V
)) {
1429 const Type
*EltTy
= cast
<VectorType
>(V
->getType())->getElementType();
1430 Constant
*Undef
= UndefValue::get(EltTy
);
1432 std::vector
<Constant
*> Elts
;
1433 for (unsigned i
= 0; i
!= VWidth
; ++i
)
1434 if (!(DemandedElts
& (1ULL << i
))) { // If not demanded, set to undef.
1435 Elts
.push_back(Undef
);
1436 UndefElts
|= (1ULL << i
);
1437 } else if (isa
<UndefValue
>(CP
->getOperand(i
))) { // Already undef.
1438 Elts
.push_back(Undef
);
1439 UndefElts
|= (1ULL << i
);
1440 } else { // Otherwise, defined.
1441 Elts
.push_back(CP
->getOperand(i
));
1444 // If we changed the constant, return it.
1445 Constant
*NewCP
= ConstantVector::get(Elts
);
1446 return NewCP
!= CP
? NewCP
: 0;
1447 } else if (isa
<ConstantAggregateZero
>(V
)) {
1448 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1450 const Type
*EltTy
= cast
<VectorType
>(V
->getType())->getElementType();
1451 Constant
*Zero
= Constant::getNullValue(EltTy
);
1452 Constant
*Undef
= UndefValue::get(EltTy
);
1453 std::vector
<Constant
*> Elts
;
1454 for (unsigned i
= 0; i
!= VWidth
; ++i
)
1455 Elts
.push_back((DemandedElts
& (1ULL << i
)) ? Zero
: Undef
);
1456 UndefElts
= DemandedElts
^ EltMask
;
1457 return ConstantVector::get(Elts
);
1460 if (!V
->hasOneUse()) { // Other users may use these bits.
1461 if (Depth
!= 0) { // Not at the root.
1462 // TODO: Just compute the UndefElts information recursively.
1466 } else if (Depth
== 10) { // Limit search depth.
1470 Instruction
*I
= dyn_cast
<Instruction
>(V
);
1471 if (!I
) return false; // Only analyze instructions.
1473 bool MadeChange
= false;
1474 uint64_t UndefElts2
;
1476 switch (I
->getOpcode()) {
1479 case Instruction::InsertElement
: {
1480 // If this is a variable index, we don't know which element it overwrites.
1481 // demand exactly the same input as we produce.
1482 ConstantInt
*Idx
= dyn_cast
<ConstantInt
>(I
->getOperand(2));
1484 // Note that we can't propagate undef elt info, because we don't know
1485 // which elt is getting updated.
1486 TmpV
= SimplifyDemandedVectorElts(I
->getOperand(0), DemandedElts
,
1487 UndefElts2
, Depth
+1);
1488 if (TmpV
) { I
->setOperand(0, TmpV
); MadeChange
= true; }
1492 // If this is inserting an element that isn't demanded, remove this
1494 unsigned IdxNo
= Idx
->getZExtValue();
1495 if (IdxNo
>= VWidth
|| (DemandedElts
& (1ULL << IdxNo
)) == 0)
1496 return AddSoonDeadInstToWorklist(*I
, 0);
1498 // Otherwise, the element inserted overwrites whatever was there, so the
1499 // input demanded set is simpler than the output set.
1500 TmpV
= SimplifyDemandedVectorElts(I
->getOperand(0),
1501 DemandedElts
& ~(1ULL << IdxNo
),
1502 UndefElts
, Depth
+1);
1503 if (TmpV
) { I
->setOperand(0, TmpV
); MadeChange
= true; }
1505 // The inserted element is defined.
1506 UndefElts
|= 1ULL << IdxNo
;
1509 case Instruction::BitCast
: {
1510 // Vector->vector casts only.
1511 const VectorType
*VTy
= dyn_cast
<VectorType
>(I
->getOperand(0)->getType());
1513 unsigned InVWidth
= VTy
->getNumElements();
1514 uint64_t InputDemandedElts
= 0;
1517 if (VWidth
== InVWidth
) {
1518 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1519 // elements as are demanded of us.
1521 InputDemandedElts
= DemandedElts
;
1522 } else if (VWidth
> InVWidth
) {
1526 // If there are more elements in the result than there are in the source,
1527 // then an input element is live if any of the corresponding output
1528 // elements are live.
1529 Ratio
= VWidth
/InVWidth
;
1530 for (unsigned OutIdx
= 0; OutIdx
!= VWidth
; ++OutIdx
) {
1531 if (DemandedElts
& (1ULL << OutIdx
))
1532 InputDemandedElts
|= 1ULL << (OutIdx
/Ratio
);
1538 // If there are more elements in the source than there are in the result,
1539 // then an input element is live if the corresponding output element is
1541 Ratio
= InVWidth
/VWidth
;
1542 for (unsigned InIdx
= 0; InIdx
!= InVWidth
; ++InIdx
)
1543 if (DemandedElts
& (1ULL << InIdx
/Ratio
))
1544 InputDemandedElts
|= 1ULL << InIdx
;
1547 // div/rem demand all inputs, because they don't want divide by zero.
1548 TmpV
= SimplifyDemandedVectorElts(I
->getOperand(0), InputDemandedElts
,
1549 UndefElts2
, Depth
+1);
1551 I
->setOperand(0, TmpV
);
1555 UndefElts
= UndefElts2
;
1556 if (VWidth
> InVWidth
) {
1557 assert(0 && "Unimp");
1558 // If there are more elements in the result than there are in the source,
1559 // then an output element is undef if the corresponding input element is
1561 for (unsigned OutIdx
= 0; OutIdx
!= VWidth
; ++OutIdx
)
1562 if (UndefElts2
& (1ULL << (OutIdx
/Ratio
)))
1563 UndefElts
|= 1ULL << OutIdx
;
1564 } else if (VWidth
< InVWidth
) {
1565 assert(0 && "Unimp");
1566 // If there are more elements in the source than there are in the result,
1567 // then a result element is undef if all of the corresponding input
1568 // elements are undef.
1569 UndefElts
= ~0ULL >> (64-VWidth
); // Start out all undef.
1570 for (unsigned InIdx
= 0; InIdx
!= InVWidth
; ++InIdx
)
1571 if ((UndefElts2
& (1ULL << InIdx
)) == 0) // Not undef?
1572 UndefElts
&= ~(1ULL << (InIdx
/Ratio
)); // Clear undef bit.
1576 case Instruction::And
:
1577 case Instruction::Or
:
1578 case Instruction::Xor
:
1579 case Instruction::Add
:
1580 case Instruction::Sub
:
1581 case Instruction::Mul
:
1582 // div/rem demand all inputs, because they don't want divide by zero.
1583 TmpV
= SimplifyDemandedVectorElts(I
->getOperand(0), DemandedElts
,
1584 UndefElts
, Depth
+1);
1585 if (TmpV
) { I
->setOperand(0, TmpV
); MadeChange
= true; }
1586 TmpV
= SimplifyDemandedVectorElts(I
->getOperand(1), DemandedElts
,
1587 UndefElts2
, Depth
+1);
1588 if (TmpV
) { I
->setOperand(1, TmpV
); MadeChange
= true; }
1590 // Output elements are undefined if both are undefined. Consider things
1591 // like undef&0. The result is known zero, not undef.
1592 UndefElts
&= UndefElts2
;
1595 case Instruction::Call
: {
1596 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
);
1598 switch (II
->getIntrinsicID()) {
1601 // Binary vector operations that work column-wise. A dest element is a
1602 // function of the corresponding input elements from the two inputs.
1603 case Intrinsic::x86_sse_sub_ss
:
1604 case Intrinsic::x86_sse_mul_ss
:
1605 case Intrinsic::x86_sse_min_ss
:
1606 case Intrinsic::x86_sse_max_ss
:
1607 case Intrinsic::x86_sse2_sub_sd
:
1608 case Intrinsic::x86_sse2_mul_sd
:
1609 case Intrinsic::x86_sse2_min_sd
:
1610 case Intrinsic::x86_sse2_max_sd
:
1611 TmpV
= SimplifyDemandedVectorElts(II
->getOperand(1), DemandedElts
,
1612 UndefElts
, Depth
+1);
1613 if (TmpV
) { II
->setOperand(1, TmpV
); MadeChange
= true; }
1614 TmpV
= SimplifyDemandedVectorElts(II
->getOperand(2), DemandedElts
,
1615 UndefElts2
, Depth
+1);
1616 if (TmpV
) { II
->setOperand(2, TmpV
); MadeChange
= true; }
1618 // If only the low elt is demanded and this is a scalarizable intrinsic,
1619 // scalarize it now.
1620 if (DemandedElts
== 1) {
1621 switch (II
->getIntrinsicID()) {
1623 case Intrinsic::x86_sse_sub_ss
:
1624 case Intrinsic::x86_sse_mul_ss
:
1625 case Intrinsic::x86_sse2_sub_sd
:
1626 case Intrinsic::x86_sse2_mul_sd
:
1627 // TODO: Lower MIN/MAX/ABS/etc
1628 Value
*LHS
= II
->getOperand(1);
1629 Value
*RHS
= II
->getOperand(2);
1630 // Extract the element as scalars.
1631 LHS
= InsertNewInstBefore(new ExtractElementInst(LHS
, 0U,"tmp"), *II
);
1632 RHS
= InsertNewInstBefore(new ExtractElementInst(RHS
, 0U,"tmp"), *II
);
1634 switch (II
->getIntrinsicID()) {
1635 default: assert(0 && "Case stmts out of sync!");
1636 case Intrinsic::x86_sse_sub_ss
:
1637 case Intrinsic::x86_sse2_sub_sd
:
1638 TmpV
= InsertNewInstBefore(BinaryOperator::createSub(LHS
, RHS
,
1639 II
->getName()), *II
);
1641 case Intrinsic::x86_sse_mul_ss
:
1642 case Intrinsic::x86_sse2_mul_sd
:
1643 TmpV
= InsertNewInstBefore(BinaryOperator::createMul(LHS
, RHS
,
1644 II
->getName()), *II
);
1649 new InsertElementInst(UndefValue::get(II
->getType()), TmpV
, 0U,
1651 InsertNewInstBefore(New
, *II
);
1652 AddSoonDeadInstToWorklist(*II
, 0);
1657 // Output elements are undefined if both are undefined. Consider things
1658 // like undef&0. The result is known zero, not undef.
1659 UndefElts
&= UndefElts2
;
1665 return MadeChange
? I
: 0;
1668 /// @returns true if the specified compare predicate is
1669 /// true when both operands are equal...
1670 /// @brief Determine if the icmp Predicate is true when both operands are equal
1671 static bool isTrueWhenEqual(ICmpInst::Predicate pred
) {
1672 return pred
== ICmpInst::ICMP_EQ
|| pred
== ICmpInst::ICMP_UGE
||
1673 pred
== ICmpInst::ICMP_SGE
|| pred
== ICmpInst::ICMP_ULE
||
1674 pred
== ICmpInst::ICMP_SLE
;
1677 /// @returns true if the specified compare instruction is
1678 /// true when both operands are equal...
1679 /// @brief Determine if the ICmpInst returns true when both operands are equal
1680 static bool isTrueWhenEqual(ICmpInst
&ICI
) {
1681 return isTrueWhenEqual(ICI
.getPredicate());
1684 /// AssociativeOpt - Perform an optimization on an associative operator. This
1685 /// function is designed to check a chain of associative operators for a
1686 /// potential to apply a certain optimization. Since the optimization may be
1687 /// applicable if the expression was reassociated, this checks the chain, then
1688 /// reassociates the expression as necessary to expose the optimization
1689 /// opportunity. This makes use of a special Functor, which must define
1690 /// 'shouldApply' and 'apply' methods.
1692 template<typename Functor
>
1693 Instruction
*AssociativeOpt(BinaryOperator
&Root
, const Functor
&F
) {
1694 unsigned Opcode
= Root
.getOpcode();
1695 Value
*LHS
= Root
.getOperand(0);
1697 // Quick check, see if the immediate LHS matches...
1698 if (F
.shouldApply(LHS
))
1699 return F
.apply(Root
);
1701 // Otherwise, if the LHS is not of the same opcode as the root, return.
1702 Instruction
*LHSI
= dyn_cast
<Instruction
>(LHS
);
1703 while (LHSI
&& LHSI
->getOpcode() == Opcode
&& LHSI
->hasOneUse()) {
1704 // Should we apply this transform to the RHS?
1705 bool ShouldApply
= F
.shouldApply(LHSI
->getOperand(1));
1707 // If not to the RHS, check to see if we should apply to the LHS...
1708 if (!ShouldApply
&& F
.shouldApply(LHSI
->getOperand(0))) {
1709 cast
<BinaryOperator
>(LHSI
)->swapOperands(); // Make the LHS the RHS
1713 // If the functor wants to apply the optimization to the RHS of LHSI,
1714 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1716 BasicBlock
*BB
= Root
.getParent();
1718 // Now all of the instructions are in the current basic block, go ahead
1719 // and perform the reassociation.
1720 Instruction
*TmpLHSI
= cast
<Instruction
>(Root
.getOperand(0));
1722 // First move the selected RHS to the LHS of the root...
1723 Root
.setOperand(0, LHSI
->getOperand(1));
1725 // Make what used to be the LHS of the root be the user of the root...
1726 Value
*ExtraOperand
= TmpLHSI
->getOperand(1);
1727 if (&Root
== TmpLHSI
) {
1728 Root
.replaceAllUsesWith(Constant::getNullValue(TmpLHSI
->getType()));
1731 Root
.replaceAllUsesWith(TmpLHSI
); // Users now use TmpLHSI
1732 TmpLHSI
->setOperand(1, &Root
); // TmpLHSI now uses the root
1733 TmpLHSI
->getParent()->getInstList().remove(TmpLHSI
);
1734 BasicBlock::iterator ARI
= &Root
; ++ARI
;
1735 BB
->getInstList().insert(ARI
, TmpLHSI
); // Move TmpLHSI to after Root
1738 // Now propagate the ExtraOperand down the chain of instructions until we
1740 while (TmpLHSI
!= LHSI
) {
1741 Instruction
*NextLHSI
= cast
<Instruction
>(TmpLHSI
->getOperand(0));
1742 // Move the instruction to immediately before the chain we are
1743 // constructing to avoid breaking dominance properties.
1744 NextLHSI
->getParent()->getInstList().remove(NextLHSI
);
1745 BB
->getInstList().insert(ARI
, NextLHSI
);
1748 Value
*NextOp
= NextLHSI
->getOperand(1);
1749 NextLHSI
->setOperand(1, ExtraOperand
);
1751 ExtraOperand
= NextOp
;
1754 // Now that the instructions are reassociated, have the functor perform
1755 // the transformation...
1756 return F
.apply(Root
);
1759 LHSI
= dyn_cast
<Instruction
>(LHSI
->getOperand(0));
1765 // AddRHS - Implements: X + X --> X << 1
1768 AddRHS(Value
*rhs
) : RHS(rhs
) {}
1769 bool shouldApply(Value
*LHS
) const { return LHS
== RHS
; }
1770 Instruction
*apply(BinaryOperator
&Add
) const {
1771 return BinaryOperator::createShl(Add
.getOperand(0),
1772 ConstantInt::get(Add
.getType(), 1));
1776 // AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1778 struct AddMaskingAnd
{
1780 AddMaskingAnd(Constant
*c
) : C2(c
) {}
1781 bool shouldApply(Value
*LHS
) const {
1783 return match(LHS
, m_And(m_Value(), m_ConstantInt(C1
))) &&
1784 ConstantExpr::getAnd(C1
, C2
)->isNullValue();
1786 Instruction
*apply(BinaryOperator
&Add
) const {
1787 return BinaryOperator::createOr(Add
.getOperand(0), Add
.getOperand(1));
1791 static Value
*FoldOperationIntoSelectOperand(Instruction
&I
, Value
*SO
,
1793 if (CastInst
*CI
= dyn_cast
<CastInst
>(&I
)) {
1794 if (Constant
*SOC
= dyn_cast
<Constant
>(SO
))
1795 return ConstantExpr::getCast(CI
->getOpcode(), SOC
, I
.getType());
1797 return IC
->InsertNewInstBefore(CastInst::create(
1798 CI
->getOpcode(), SO
, I
.getType(), SO
->getName() + ".cast"), I
);
1801 // Figure out if the constant is the left or the right argument.
1802 bool ConstIsRHS
= isa
<Constant
>(I
.getOperand(1));
1803 Constant
*ConstOperand
= cast
<Constant
>(I
.getOperand(ConstIsRHS
));
1805 if (Constant
*SOC
= dyn_cast
<Constant
>(SO
)) {
1807 return ConstantExpr::get(I
.getOpcode(), SOC
, ConstOperand
);
1808 return ConstantExpr::get(I
.getOpcode(), ConstOperand
, SOC
);
1811 Value
*Op0
= SO
, *Op1
= ConstOperand
;
1813 std::swap(Op0
, Op1
);
1815 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(&I
))
1816 New
= BinaryOperator::create(BO
->getOpcode(), Op0
, Op1
,SO
->getName()+".op");
1817 else if (CmpInst
*CI
= dyn_cast
<CmpInst
>(&I
))
1818 New
= CmpInst::create(CI
->getOpcode(), CI
->getPredicate(), Op0
, Op1
,
1819 SO
->getName()+".cmp");
1821 assert(0 && "Unknown binary instruction type!");
1824 return IC
->InsertNewInstBefore(New
, I
);
1827 // FoldOpIntoSelect - Given an instruction with a select as one operand and a
1828 // constant as the other operand, try to fold the binary operator into the
1829 // select arguments. This also works for Cast instructions, which obviously do
1830 // not have a second operand.
1831 static Instruction
*FoldOpIntoSelect(Instruction
&Op
, SelectInst
*SI
,
1833 // Don't modify shared select instructions
1834 if (!SI
->hasOneUse()) return 0;
1835 Value
*TV
= SI
->getOperand(1);
1836 Value
*FV
= SI
->getOperand(2);
1838 if (isa
<Constant
>(TV
) || isa
<Constant
>(FV
)) {
1839 // Bool selects with constant operands can be folded to logical ops.
1840 if (SI
->getType() == Type::Int1Ty
) return 0;
1842 Value
*SelectTrueVal
= FoldOperationIntoSelectOperand(Op
, TV
, IC
);
1843 Value
*SelectFalseVal
= FoldOperationIntoSelectOperand(Op
, FV
, IC
);
1845 return new SelectInst(SI
->getCondition(), SelectTrueVal
,
1852 /// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1853 /// node as operand #0, see if we can fold the instruction into the PHI (which
1854 /// is only possible if all operands to the PHI are constants).
1855 Instruction
*InstCombiner::FoldOpIntoPhi(Instruction
&I
) {
1856 PHINode
*PN
= cast
<PHINode
>(I
.getOperand(0));
1857 unsigned NumPHIValues
= PN
->getNumIncomingValues();
1858 if (!PN
->hasOneUse() || NumPHIValues
== 0) return 0;
1860 // Check to see if all of the operands of the PHI are constants. If there is
1861 // one non-constant value, remember the BB it is. If there is more than one
1862 // or if *it* is a PHI, bail out.
1863 BasicBlock
*NonConstBB
= 0;
1864 for (unsigned i
= 0; i
!= NumPHIValues
; ++i
)
1865 if (!isa
<Constant
>(PN
->getIncomingValue(i
))) {
1866 if (NonConstBB
) return 0; // More than one non-const value.
1867 if (isa
<PHINode
>(PN
->getIncomingValue(i
))) return 0; // Itself a phi.
1868 NonConstBB
= PN
->getIncomingBlock(i
);
1870 // If the incoming non-constant value is in I's block, we have an infinite
1872 if (NonConstBB
== I
.getParent())
1876 // If there is exactly one non-constant value, we can insert a copy of the
1877 // operation in that block. However, if this is a critical edge, we would be
1878 // inserting the computation one some other paths (e.g. inside a loop). Only
1879 // do this if the pred block is unconditionally branching into the phi block.
1881 BranchInst
*BI
= dyn_cast
<BranchInst
>(NonConstBB
->getTerminator());
1882 if (!BI
|| !BI
->isUnconditional()) return 0;
1885 // Okay, we can do the transformation: create the new PHI node.
1886 PHINode
*NewPN
= new PHINode(I
.getType(), "");
1887 NewPN
->reserveOperandSpace(PN
->getNumOperands()/2);
1888 InsertNewInstBefore(NewPN
, *PN
);
1889 NewPN
->takeName(PN
);
1891 // Next, add all of the operands to the PHI.
1892 if (I
.getNumOperands() == 2) {
1893 Constant
*C
= cast
<Constant
>(I
.getOperand(1));
1894 for (unsigned i
= 0; i
!= NumPHIValues
; ++i
) {
1896 if (Constant
*InC
= dyn_cast
<Constant
>(PN
->getIncomingValue(i
))) {
1897 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(&I
))
1898 InV
= ConstantExpr::getCompare(CI
->getPredicate(), InC
, C
);
1900 InV
= ConstantExpr::get(I
.getOpcode(), InC
, C
);
1902 assert(PN
->getIncomingBlock(i
) == NonConstBB
);
1903 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(&I
))
1904 InV
= BinaryOperator::create(BO
->getOpcode(),
1905 PN
->getIncomingValue(i
), C
, "phitmp",
1906 NonConstBB
->getTerminator());
1907 else if (CmpInst
*CI
= dyn_cast
<CmpInst
>(&I
))
1908 InV
= CmpInst::create(CI
->getOpcode(),
1910 PN
->getIncomingValue(i
), C
, "phitmp",
1911 NonConstBB
->getTerminator());
1913 assert(0 && "Unknown binop!");
1915 AddToWorkList(cast
<Instruction
>(InV
));
1917 NewPN
->addIncoming(InV
, PN
->getIncomingBlock(i
));
1920 CastInst
*CI
= cast
<CastInst
>(&I
);
1921 const Type
*RetTy
= CI
->getType();
1922 for (unsigned i
= 0; i
!= NumPHIValues
; ++i
) {
1924 if (Constant
*InC
= dyn_cast
<Constant
>(PN
->getIncomingValue(i
))) {
1925 InV
= ConstantExpr::getCast(CI
->getOpcode(), InC
, RetTy
);
1927 assert(PN
->getIncomingBlock(i
) == NonConstBB
);
1928 InV
= CastInst::create(CI
->getOpcode(), PN
->getIncomingValue(i
),
1929 I
.getType(), "phitmp",
1930 NonConstBB
->getTerminator());
1931 AddToWorkList(cast
<Instruction
>(InV
));
1933 NewPN
->addIncoming(InV
, PN
->getIncomingBlock(i
));
1936 return ReplaceInstUsesWith(I
, NewPN
);
1939 Instruction
*InstCombiner::visitAdd(BinaryOperator
&I
) {
1940 bool Changed
= SimplifyCommutative(I
);
1941 Value
*LHS
= I
.getOperand(0), *RHS
= I
.getOperand(1);
1943 if (Constant
*RHSC
= dyn_cast
<Constant
>(RHS
)) {
1944 // X + undef -> undef
1945 if (isa
<UndefValue
>(RHS
))
1946 return ReplaceInstUsesWith(I
, RHS
);
1949 if (!I
.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
1950 if (RHSC
->isNullValue())
1951 return ReplaceInstUsesWith(I
, LHS
);
1952 } else if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(RHSC
)) {
1953 if (CFP
->isExactlyValue(ConstantFP::getNegativeZero
1954 (I
.getType())->getValueAPF()))
1955 return ReplaceInstUsesWith(I
, LHS
);
1958 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RHSC
)) {
1959 // X + (signbit) --> X ^ signbit
1960 const APInt
& Val
= CI
->getValue();
1961 uint32_t BitWidth
= Val
.getBitWidth();
1962 if (Val
== APInt::getSignBit(BitWidth
))
1963 return BinaryOperator::createXor(LHS
, RHS
);
1965 // See if SimplifyDemandedBits can simplify this. This handles stuff like
1966 // (X & 254)+1 -> (X&254)|1
1967 if (!isa
<VectorType
>(I
.getType())) {
1968 APInt
KnownZero(BitWidth
, 0), KnownOne(BitWidth
, 0);
1969 if (SimplifyDemandedBits(&I
, APInt::getAllOnesValue(BitWidth
),
1970 KnownZero
, KnownOne
))
1975 if (isa
<PHINode
>(LHS
))
1976 if (Instruction
*NV
= FoldOpIntoPhi(I
))
1979 ConstantInt
*XorRHS
= 0;
1981 if (isa
<ConstantInt
>(RHSC
) &&
1982 match(LHS
, m_Xor(m_Value(XorLHS
), m_ConstantInt(XorRHS
)))) {
1983 uint32_t TySizeBits
= I
.getType()->getPrimitiveSizeInBits();
1984 const APInt
& RHSVal
= cast
<ConstantInt
>(RHSC
)->getValue();
1986 uint32_t Size
= TySizeBits
/ 2;
1987 APInt
C0080Val(APInt(TySizeBits
, 1ULL).shl(Size
- 1));
1988 APInt
CFF80Val(-C0080Val
);
1990 if (TySizeBits
> Size
) {
1991 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1992 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1993 if ((RHSVal
== CFF80Val
&& XorRHS
->getValue() == C0080Val
) ||
1994 (RHSVal
== C0080Val
&& XorRHS
->getValue() == CFF80Val
)) {
1995 // This is a sign extend if the top bits are known zero.
1996 if (!MaskedValueIsZero(XorLHS
,
1997 APInt::getHighBitsSet(TySizeBits
, TySizeBits
- Size
)))
1998 Size
= 0; // Not a sign ext, but can't be any others either.
2003 C0080Val
= APIntOps::lshr(C0080Val
, Size
);
2004 CFF80Val
= APIntOps::ashr(CFF80Val
, Size
);
2005 } while (Size
>= 1);
2007 // FIXME: This shouldn't be necessary. When the backends can handle types
2008 // with funny bit widths then this whole cascade of if statements should
2009 // be removed. It is just here to get the size of the "middle" type back
2010 // up to something that the back ends can handle.
2011 const Type
*MiddleType
= 0;
2014 case 32: MiddleType
= Type::Int32Ty
; break;
2015 case 16: MiddleType
= Type::Int16Ty
; break;
2016 case 8: MiddleType
= Type::Int8Ty
; break;
2019 Instruction
*NewTrunc
= new TruncInst(XorLHS
, MiddleType
, "sext");
2020 InsertNewInstBefore(NewTrunc
, I
);
2021 return new SExtInst(NewTrunc
, I
.getType(), I
.getName());
2027 if (I
.getType()->isInteger() && I
.getType() != Type::Int1Ty
) {
2028 if (Instruction
*Result
= AssociativeOpt(I
, AddRHS(RHS
))) return Result
;
2030 if (Instruction
*RHSI
= dyn_cast
<Instruction
>(RHS
)) {
2031 if (RHSI
->getOpcode() == Instruction::Sub
)
2032 if (LHS
== RHSI
->getOperand(1)) // A + (B - A) --> B
2033 return ReplaceInstUsesWith(I
, RHSI
->getOperand(0));
2035 if (Instruction
*LHSI
= dyn_cast
<Instruction
>(LHS
)) {
2036 if (LHSI
->getOpcode() == Instruction::Sub
)
2037 if (RHS
== LHSI
->getOperand(1)) // (B - A) + A --> B
2038 return ReplaceInstUsesWith(I
, LHSI
->getOperand(0));
2043 if (Value
*V
= dyn_castNegVal(LHS
))
2044 return BinaryOperator::createSub(RHS
, V
);
2047 if (!isa
<Constant
>(RHS
))
2048 if (Value
*V
= dyn_castNegVal(RHS
))
2049 return BinaryOperator::createSub(LHS
, V
);
2053 if (Value
*X
= dyn_castFoldableMul(LHS
, C2
)) {
2054 if (X
== RHS
) // X*C + X --> X * (C+1)
2055 return BinaryOperator::createMul(RHS
, AddOne(C2
));
2057 // X*C1 + X*C2 --> X * (C1+C2)
2059 if (X
== dyn_castFoldableMul(RHS
, C1
))
2060 return BinaryOperator::createMul(X
, Add(C1
, C2
));
2063 // X + X*C --> X * (C+1)
2064 if (dyn_castFoldableMul(RHS
, C2
) == LHS
)
2065 return BinaryOperator::createMul(LHS
, AddOne(C2
));
2067 // X + ~X --> -1 since ~X = -X-1
2068 if (dyn_castNotVal(LHS
) == RHS
|| dyn_castNotVal(RHS
) == LHS
)
2069 return ReplaceInstUsesWith(I
, Constant::getAllOnesValue(I
.getType()));
2072 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2073 if (match(RHS
, m_And(m_Value(), m_ConstantInt(C2
))))
2074 if (Instruction
*R
= AssociativeOpt(I
, AddMaskingAnd(C2
)))
2077 if (ConstantInt
*CRHS
= dyn_cast
<ConstantInt
>(RHS
)) {
2079 if (match(LHS
, m_Not(m_Value(X
)))) // ~X + C --> (C-1) - X
2080 return BinaryOperator::createSub(SubOne(CRHS
), X
);
2082 // (X & FF00) + xx00 -> (X+xx00) & FF00
2083 if (LHS
->hasOneUse() && match(LHS
, m_And(m_Value(X
), m_ConstantInt(C2
)))) {
2084 Constant
*Anded
= And(CRHS
, C2
);
2085 if (Anded
== CRHS
) {
2086 // See if all bits from the first bit set in the Add RHS up are included
2087 // in the mask. First, get the rightmost bit.
2088 const APInt
& AddRHSV
= CRHS
->getValue();
2090 // Form a mask of all bits from the lowest bit added through the top.
2091 APInt
AddRHSHighBits(~((AddRHSV
& -AddRHSV
)-1));
2093 // See if the and mask includes all of these bits.
2094 APInt
AddRHSHighBitsAnd(AddRHSHighBits
& C2
->getValue());
2096 if (AddRHSHighBits
== AddRHSHighBitsAnd
) {
2097 // Okay, the xform is safe. Insert the new add pronto.
2098 Value
*NewAdd
= InsertNewInstBefore(BinaryOperator::createAdd(X
, CRHS
,
2099 LHS
->getName()), I
);
2100 return BinaryOperator::createAnd(NewAdd
, C2
);
2105 // Try to fold constant add into select arguments.
2106 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(LHS
))
2107 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
2111 // add (cast *A to intptrtype) B ->
2112 // cast (GEP (cast *A to sbyte*) B) ->
2115 CastInst
*CI
= dyn_cast
<CastInst
>(LHS
);
2118 CI
= dyn_cast
<CastInst
>(RHS
);
2121 if (CI
&& CI
->getType()->isSized() &&
2122 (CI
->getType()->getPrimitiveSizeInBits() ==
2123 TD
->getIntPtrType()->getPrimitiveSizeInBits())
2124 && isa
<PointerType
>(CI
->getOperand(0)->getType())) {
2125 Value
*I2
= InsertCastBefore(Instruction::BitCast
, CI
->getOperand(0),
2126 PointerType::get(Type::Int8Ty
), I
);
2127 I2
= InsertNewInstBefore(new GetElementPtrInst(I2
, Other
, "ctg2"), I
);
2128 return new PtrToIntInst(I2
, CI
->getType());
2132 return Changed
? &I
: 0;
2135 // isSignBit - Return true if the value represented by the constant only has the
2136 // highest order bit set.
2137 static bool isSignBit(ConstantInt
*CI
) {
2138 uint32_t NumBits
= CI
->getType()->getPrimitiveSizeInBits();
2139 return CI
->getValue() == APInt::getSignBit(NumBits
);
2142 Instruction
*InstCombiner::visitSub(BinaryOperator
&I
) {
2143 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2145 if (Op0
== Op1
) // sub X, X -> 0
2146 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
2148 // If this is a 'B = x-(-A)', change to B = x+A...
2149 if (Value
*V
= dyn_castNegVal(Op1
))
2150 return BinaryOperator::createAdd(Op0
, V
);
2152 if (isa
<UndefValue
>(Op0
))
2153 return ReplaceInstUsesWith(I
, Op0
); // undef - X -> undef
2154 if (isa
<UndefValue
>(Op1
))
2155 return ReplaceInstUsesWith(I
, Op1
); // X - undef -> undef
2157 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Op0
)) {
2158 // Replace (-1 - A) with (~A)...
2159 if (C
->isAllOnesValue())
2160 return BinaryOperator::createNot(Op1
);
2162 // C - ~X == X + (1+C)
2164 if (match(Op1
, m_Not(m_Value(X
))))
2165 return BinaryOperator::createAdd(X
, AddOne(C
));
2167 // -(X >>u 31) -> (X >>s 31)
2168 // -(X >>s 31) -> (X >>u 31)
2170 if (BinaryOperator
*SI
= dyn_cast
<BinaryOperator
>(Op1
))
2171 if (SI
->getOpcode() == Instruction::LShr
) {
2172 if (ConstantInt
*CU
= dyn_cast
<ConstantInt
>(SI
->getOperand(1))) {
2173 // Check to see if we are shifting out everything but the sign bit.
2174 if (CU
->getLimitedValue(SI
->getType()->getPrimitiveSizeInBits()) ==
2175 SI
->getType()->getPrimitiveSizeInBits()-1) {
2176 // Ok, the transformation is safe. Insert AShr.
2177 return BinaryOperator::create(Instruction::AShr
,
2178 SI
->getOperand(0), CU
, SI
->getName());
2182 else if (SI
->getOpcode() == Instruction::AShr
) {
2183 if (ConstantInt
*CU
= dyn_cast
<ConstantInt
>(SI
->getOperand(1))) {
2184 // Check to see if we are shifting out everything but the sign bit.
2185 if (CU
->getLimitedValue(SI
->getType()->getPrimitiveSizeInBits()) ==
2186 SI
->getType()->getPrimitiveSizeInBits()-1) {
2187 // Ok, the transformation is safe. Insert LShr.
2188 return BinaryOperator::createLShr(
2189 SI
->getOperand(0), CU
, SI
->getName());
2195 // Try to fold constant sub into select arguments.
2196 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
))
2197 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
2200 if (isa
<PHINode
>(Op0
))
2201 if (Instruction
*NV
= FoldOpIntoPhi(I
))
2205 if (BinaryOperator
*Op1I
= dyn_cast
<BinaryOperator
>(Op1
)) {
2206 if (Op1I
->getOpcode() == Instruction::Add
&&
2207 !Op0
->getType()->isFPOrFPVector()) {
2208 if (Op1I
->getOperand(0) == Op0
) // X-(X+Y) == -Y
2209 return BinaryOperator::createNeg(Op1I
->getOperand(1), I
.getName());
2210 else if (Op1I
->getOperand(1) == Op0
) // X-(Y+X) == -Y
2211 return BinaryOperator::createNeg(Op1I
->getOperand(0), I
.getName());
2212 else if (ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(I
.getOperand(0))) {
2213 if (ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(Op1I
->getOperand(1)))
2214 // C1-(X+C2) --> (C1-C2)-X
2215 return BinaryOperator::createSub(Subtract(CI1
, CI2
),
2216 Op1I
->getOperand(0));
2220 if (Op1I
->hasOneUse()) {
2221 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2222 // is not used by anyone else...
2224 if (Op1I
->getOpcode() == Instruction::Sub
&&
2225 !Op1I
->getType()->isFPOrFPVector()) {
2226 // Swap the two operands of the subexpr...
2227 Value
*IIOp0
= Op1I
->getOperand(0), *IIOp1
= Op1I
->getOperand(1);
2228 Op1I
->setOperand(0, IIOp1
);
2229 Op1I
->setOperand(1, IIOp0
);
2231 // Create the new top level add instruction...
2232 return BinaryOperator::createAdd(Op0
, Op1
);
2235 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2237 if (Op1I
->getOpcode() == Instruction::And
&&
2238 (Op1I
->getOperand(0) == Op0
|| Op1I
->getOperand(1) == Op0
)) {
2239 Value
*OtherOp
= Op1I
->getOperand(Op1I
->getOperand(0) == Op0
);
2242 InsertNewInstBefore(BinaryOperator::createNot(OtherOp
, "B.not"), I
);
2243 return BinaryOperator::createAnd(Op0
, NewNot
);
2246 // 0 - (X sdiv C) -> (X sdiv -C)
2247 if (Op1I
->getOpcode() == Instruction::SDiv
)
2248 if (ConstantInt
*CSI
= dyn_cast
<ConstantInt
>(Op0
))
2250 if (Constant
*DivRHS
= dyn_cast
<Constant
>(Op1I
->getOperand(1)))
2251 return BinaryOperator::createSDiv(Op1I
->getOperand(0),
2252 ConstantExpr::getNeg(DivRHS
));
2254 // X - X*C --> X * (1-C)
2255 ConstantInt
*C2
= 0;
2256 if (dyn_castFoldableMul(Op1I
, C2
) == Op0
) {
2257 Constant
*CP1
= Subtract(ConstantInt::get(I
.getType(), 1), C2
);
2258 return BinaryOperator::createMul(Op0
, CP1
);
2261 // X - ((X / Y) * Y) --> X % Y
2262 if (Op1I
->getOpcode() == Instruction::Mul
)
2263 if (Instruction
*I
= dyn_cast
<Instruction
>(Op1I
->getOperand(0)))
2264 if (Op0
== I
->getOperand(0) &&
2265 Op1I
->getOperand(1) == I
->getOperand(1)) {
2266 if (I
->getOpcode() == Instruction::SDiv
)
2267 return BinaryOperator::createSRem(Op0
, Op1I
->getOperand(1));
2268 if (I
->getOpcode() == Instruction::UDiv
)
2269 return BinaryOperator::createURem(Op0
, Op1I
->getOperand(1));
2274 if (!Op0
->getType()->isFPOrFPVector())
2275 if (BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(Op0
))
2276 if (Op0I
->getOpcode() == Instruction::Add
) {
2277 if (Op0I
->getOperand(0) == Op1
) // (Y+X)-Y == X
2278 return ReplaceInstUsesWith(I
, Op0I
->getOperand(1));
2279 else if (Op0I
->getOperand(1) == Op1
) // (X+Y)-Y == X
2280 return ReplaceInstUsesWith(I
, Op0I
->getOperand(0));
2281 } else if (Op0I
->getOpcode() == Instruction::Sub
) {
2282 if (Op0I
->getOperand(0) == Op1
) // (X-Y)-X == -Y
2283 return BinaryOperator::createNeg(Op0I
->getOperand(1), I
.getName());
2287 if (Value
*X
= dyn_castFoldableMul(Op0
, C1
)) {
2288 if (X
== Op1
) // X*C - X --> X * (C-1)
2289 return BinaryOperator::createMul(Op1
, SubOne(C1
));
2291 ConstantInt
*C2
; // X*C1 - X*C2 -> X * (C1-C2)
2292 if (X
== dyn_castFoldableMul(Op1
, C2
))
2293 return BinaryOperator::createMul(Op1
, Subtract(C1
, C2
));
2298 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
2299 /// comparison only checks the sign bit. If it only checks the sign bit, set
2300 /// TrueIfSigned if the result of the comparison is true when the input value is
2302 static bool isSignBitCheck(ICmpInst::Predicate pred
, ConstantInt
*RHS
,
2303 bool &TrueIfSigned
) {
2305 case ICmpInst::ICMP_SLT
: // True if LHS s< 0
2306 TrueIfSigned
= true;
2307 return RHS
->isZero();
2308 case ICmpInst::ICMP_SLE
: // True if LHS s<= RHS and RHS == -1
2309 TrueIfSigned
= true;
2310 return RHS
->isAllOnesValue();
2311 case ICmpInst::ICMP_SGT
: // True if LHS s> -1
2312 TrueIfSigned
= false;
2313 return RHS
->isAllOnesValue();
2314 case ICmpInst::ICMP_UGT
:
2315 // True if LHS u> RHS and RHS == high-bit-mask - 1
2316 TrueIfSigned
= true;
2317 return RHS
->getValue() ==
2318 APInt::getSignedMaxValue(RHS
->getType()->getPrimitiveSizeInBits());
2319 case ICmpInst::ICMP_UGE
:
2320 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2321 TrueIfSigned
= true;
2322 return RHS
->getValue() ==
2323 APInt::getSignBit(RHS
->getType()->getPrimitiveSizeInBits());
2329 Instruction
*InstCombiner::visitMul(BinaryOperator
&I
) {
2330 bool Changed
= SimplifyCommutative(I
);
2331 Value
*Op0
= I
.getOperand(0);
2333 if (isa
<UndefValue
>(I
.getOperand(1))) // undef * X -> 0
2334 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
2336 // Simplify mul instructions with a constant RHS...
2337 if (Constant
*Op1
= dyn_cast
<Constant
>(I
.getOperand(1))) {
2338 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
2340 // ((X << C1)*C2) == (X * (C2 << C1))
2341 if (BinaryOperator
*SI
= dyn_cast
<BinaryOperator
>(Op0
))
2342 if (SI
->getOpcode() == Instruction::Shl
)
2343 if (Constant
*ShOp
= dyn_cast
<Constant
>(SI
->getOperand(1)))
2344 return BinaryOperator::createMul(SI
->getOperand(0),
2345 ConstantExpr::getShl(CI
, ShOp
));
2348 return ReplaceInstUsesWith(I
, Op1
); // X * 0 == 0
2349 if (CI
->equalsInt(1)) // X * 1 == X
2350 return ReplaceInstUsesWith(I
, Op0
);
2351 if (CI
->isAllOnesValue()) // X * -1 == 0 - X
2352 return BinaryOperator::createNeg(Op0
, I
.getName());
2354 const APInt
& Val
= cast
<ConstantInt
>(CI
)->getValue();
2355 if (Val
.isPowerOf2()) { // Replace X*(2^C) with X << C
2356 return BinaryOperator::createShl(Op0
,
2357 ConstantInt::get(Op0
->getType(), Val
.logBase2()));
2359 } else if (ConstantFP
*Op1F
= dyn_cast
<ConstantFP
>(Op1
)) {
2360 if (Op1F
->isNullValue())
2361 return ReplaceInstUsesWith(I
, Op1
);
2363 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2364 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
2365 // We need a better interface for long double here.
2366 if (Op1
->getType() == Type::FloatTy
|| Op1
->getType() == Type::DoubleTy
)
2367 if (Op1F
->isExactlyValue(1.0))
2368 return ReplaceInstUsesWith(I
, Op0
); // Eliminate 'mul double %X, 1.0'
2371 if (BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(Op0
))
2372 if (Op0I
->getOpcode() == Instruction::Add
&& Op0I
->hasOneUse() &&
2373 isa
<ConstantInt
>(Op0I
->getOperand(1))) {
2374 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
2375 Instruction
*Add
= BinaryOperator::createMul(Op0I
->getOperand(0),
2377 InsertNewInstBefore(Add
, I
);
2378 Value
*C1C2
= ConstantExpr::getMul(Op1
,
2379 cast
<Constant
>(Op0I
->getOperand(1)));
2380 return BinaryOperator::createAdd(Add
, C1C2
);
2384 // Try to fold constant mul into select arguments.
2385 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0
))
2386 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
2389 if (isa
<PHINode
>(Op0
))
2390 if (Instruction
*NV
= FoldOpIntoPhi(I
))
2394 if (Value
*Op0v
= dyn_castNegVal(Op0
)) // -X * -Y = X*Y
2395 if (Value
*Op1v
= dyn_castNegVal(I
.getOperand(1)))
2396 return BinaryOperator::createMul(Op0v
, Op1v
);
2398 // If one of the operands of the multiply is a cast from a boolean value, then
2399 // we know the bool is either zero or one, so this is a 'masking' multiply.
2400 // See if we can simplify things based on how the boolean was originally
2402 CastInst
*BoolCast
= 0;
2403 if (ZExtInst
*CI
= dyn_cast
<ZExtInst
>(I
.getOperand(0)))
2404 if (CI
->getOperand(0)->getType() == Type::Int1Ty
)
2407 if (ZExtInst
*CI
= dyn_cast
<ZExtInst
>(I
.getOperand(1)))
2408 if (CI
->getOperand(0)->getType() == Type::Int1Ty
)
2411 if (ICmpInst
*SCI
= dyn_cast
<ICmpInst
>(BoolCast
->getOperand(0))) {
2412 Value
*SCIOp0
= SCI
->getOperand(0), *SCIOp1
= SCI
->getOperand(1);
2413 const Type
*SCOpTy
= SCIOp0
->getType();
2416 // If the icmp is true iff the sign bit of X is set, then convert this
2417 // multiply into a shift/and combination.
2418 if (isa
<ConstantInt
>(SCIOp1
) &&
2419 isSignBitCheck(SCI
->getPredicate(), cast
<ConstantInt
>(SCIOp1
), TIS
) &&
2421 // Shift the X value right to turn it into "all signbits".
2422 Constant
*Amt
= ConstantInt::get(SCIOp0
->getType(),
2423 SCOpTy
->getPrimitiveSizeInBits()-1);
2425 InsertNewInstBefore(
2426 BinaryOperator::create(Instruction::AShr
, SCIOp0
, Amt
,
2427 BoolCast
->getOperand(0)->getName()+
2430 // If the multiply type is not the same as the source type, sign extend
2431 // or truncate to the multiply type.
2432 if (I
.getType() != V
->getType()) {
2433 uint32_t SrcBits
= V
->getType()->getPrimitiveSizeInBits();
2434 uint32_t DstBits
= I
.getType()->getPrimitiveSizeInBits();
2435 Instruction::CastOps opcode
=
2436 (SrcBits
== DstBits
? Instruction::BitCast
:
2437 (SrcBits
< DstBits
? Instruction::SExt
: Instruction::Trunc
));
2438 V
= InsertCastBefore(opcode
, V
, I
.getType(), I
);
2441 Value
*OtherOp
= Op0
== BoolCast
? I
.getOperand(1) : Op0
;
2442 return BinaryOperator::createAnd(V
, OtherOp
);
2447 return Changed
? &I
: 0;
2450 /// This function implements the transforms on div instructions that work
2451 /// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2452 /// used by the visitors to those instructions.
2453 /// @brief Transforms common to all three div instructions
2454 Instruction
*InstCombiner::commonDivTransforms(BinaryOperator
&I
) {
2455 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2458 if (isa
<UndefValue
>(Op0
))
2459 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
2461 // X / undef -> undef
2462 if (isa
<UndefValue
>(Op1
))
2463 return ReplaceInstUsesWith(I
, Op1
);
2465 // Handle cases involving: div X, (select Cond, Y, Z)
2466 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
)) {
2467 // div X, (Cond ? 0 : Y) -> div X, Y. If the div and the select are in the
2468 // same basic block, then we replace the select with Y, and the condition
2469 // of the select with false (if the cond value is in the same BB). If the
2470 // select has uses other than the div, this allows them to be simplified
2471 // also. Note that div X, Y is just as good as div X, 0 (undef)
2472 if (Constant
*ST
= dyn_cast
<Constant
>(SI
->getOperand(1)))
2473 if (ST
->isNullValue()) {
2474 Instruction
*CondI
= dyn_cast
<Instruction
>(SI
->getOperand(0));
2475 if (CondI
&& CondI
->getParent() == I
.getParent())
2476 UpdateValueUsesWith(CondI
, ConstantInt::getFalse());
2477 else if (I
.getParent() != SI
->getParent() || SI
->hasOneUse())
2478 I
.setOperand(1, SI
->getOperand(2));
2480 UpdateValueUsesWith(SI
, SI
->getOperand(2));
2484 // Likewise for: div X, (Cond ? Y : 0) -> div X, Y
2485 if (Constant
*ST
= dyn_cast
<Constant
>(SI
->getOperand(2)))
2486 if (ST
->isNullValue()) {
2487 Instruction
*CondI
= dyn_cast
<Instruction
>(SI
->getOperand(0));
2488 if (CondI
&& CondI
->getParent() == I
.getParent())
2489 UpdateValueUsesWith(CondI
, ConstantInt::getTrue());
2490 else if (I
.getParent() != SI
->getParent() || SI
->hasOneUse())
2491 I
.setOperand(1, SI
->getOperand(1));
2493 UpdateValueUsesWith(SI
, SI
->getOperand(1));
2501 /// This function implements the transforms common to both integer division
2502 /// instructions (udiv and sdiv). It is called by the visitors to those integer
2503 /// division instructions.
2504 /// @brief Common integer divide transforms
2505 Instruction
*InstCombiner::commonIDivTransforms(BinaryOperator
&I
) {
2506 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2508 if (Instruction
*Common
= commonDivTransforms(I
))
2511 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(Op1
)) {
2513 if (RHS
->equalsInt(1))
2514 return ReplaceInstUsesWith(I
, Op0
);
2516 // (X / C1) / C2 -> X / (C1*C2)
2517 if (Instruction
*LHS
= dyn_cast
<Instruction
>(Op0
))
2518 if (Instruction::BinaryOps(LHS
->getOpcode()) == I
.getOpcode())
2519 if (ConstantInt
*LHSRHS
= dyn_cast
<ConstantInt
>(LHS
->getOperand(1))) {
2520 return BinaryOperator::create(I
.getOpcode(), LHS
->getOperand(0),
2521 Multiply(RHS
, LHSRHS
));
2524 if (!RHS
->isZero()) { // avoid X udiv 0
2525 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0
))
2526 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
2528 if (isa
<PHINode
>(Op0
))
2529 if (Instruction
*NV
= FoldOpIntoPhi(I
))
2534 // 0 / X == 0, we don't need to preserve faults!
2535 if (ConstantInt
*LHS
= dyn_cast
<ConstantInt
>(Op0
))
2536 if (LHS
->equalsInt(0))
2537 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
2542 Instruction
*InstCombiner::visitUDiv(BinaryOperator
&I
) {
2543 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2545 // Handle the integer div common cases
2546 if (Instruction
*Common
= commonIDivTransforms(I
))
2549 // X udiv C^2 -> X >> C
2550 // Check to see if this is an unsigned division with an exact power of 2,
2551 // if so, convert to a right shift.
2552 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Op1
)) {
2553 if (C
->getValue().isPowerOf2()) // 0 not included in isPowerOf2
2554 return BinaryOperator::createLShr(Op0
,
2555 ConstantInt::get(Op0
->getType(), C
->getValue().logBase2()));
2558 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2559 if (BinaryOperator
*RHSI
= dyn_cast
<BinaryOperator
>(I
.getOperand(1))) {
2560 if (RHSI
->getOpcode() == Instruction::Shl
&&
2561 isa
<ConstantInt
>(RHSI
->getOperand(0))) {
2562 const APInt
& C1
= cast
<ConstantInt
>(RHSI
->getOperand(0))->getValue();
2563 if (C1
.isPowerOf2()) {
2564 Value
*N
= RHSI
->getOperand(1);
2565 const Type
*NTy
= N
->getType();
2566 if (uint32_t C2
= C1
.logBase2()) {
2567 Constant
*C2V
= ConstantInt::get(NTy
, C2
);
2568 N
= InsertNewInstBefore(BinaryOperator::createAdd(N
, C2V
, "tmp"), I
);
2570 return BinaryOperator::createLShr(Op0
, N
);
2575 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2576 // where C1&C2 are powers of two.
2577 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
))
2578 if (ConstantInt
*STO
= dyn_cast
<ConstantInt
>(SI
->getOperand(1)))
2579 if (ConstantInt
*SFO
= dyn_cast
<ConstantInt
>(SI
->getOperand(2))) {
2580 const APInt
&TVA
= STO
->getValue(), &FVA
= SFO
->getValue();
2581 if (TVA
.isPowerOf2() && FVA
.isPowerOf2()) {
2582 // Compute the shift amounts
2583 uint32_t TSA
= TVA
.logBase2(), FSA
= FVA
.logBase2();
2584 // Construct the "on true" case of the select
2585 Constant
*TC
= ConstantInt::get(Op0
->getType(), TSA
);
2586 Instruction
*TSI
= BinaryOperator::createLShr(
2587 Op0
, TC
, SI
->getName()+".t");
2588 TSI
= InsertNewInstBefore(TSI
, I
);
2590 // Construct the "on false" case of the select
2591 Constant
*FC
= ConstantInt::get(Op0
->getType(), FSA
);
2592 Instruction
*FSI
= BinaryOperator::createLShr(
2593 Op0
, FC
, SI
->getName()+".f");
2594 FSI
= InsertNewInstBefore(FSI
, I
);
2596 // construct the select instruction and return it.
2597 return new SelectInst(SI
->getOperand(0), TSI
, FSI
, SI
->getName());
2603 Instruction
*InstCombiner::visitSDiv(BinaryOperator
&I
) {
2604 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2606 // Handle the integer div common cases
2607 if (Instruction
*Common
= commonIDivTransforms(I
))
2610 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(Op1
)) {
2612 if (RHS
->isAllOnesValue())
2613 return BinaryOperator::createNeg(Op0
);
2616 if (Value
*LHSNeg
= dyn_castNegVal(Op0
))
2617 return BinaryOperator::createSDiv(LHSNeg
, ConstantExpr::getNeg(RHS
));
2620 // If the sign bits of both operands are zero (i.e. we can prove they are
2621 // unsigned inputs), turn this into a udiv.
2622 if (I
.getType()->isInteger()) {
2623 APInt
Mask(APInt::getSignBit(I
.getType()->getPrimitiveSizeInBits()));
2624 if (MaskedValueIsZero(Op1
, Mask
) && MaskedValueIsZero(Op0
, Mask
)) {
2625 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
2626 return BinaryOperator::createUDiv(Op0
, Op1
, I
.getName());
2633 Instruction
*InstCombiner::visitFDiv(BinaryOperator
&I
) {
2634 return commonDivTransforms(I
);
2637 /// GetFactor - If we can prove that the specified value is at least a multiple
2638 /// of some factor, return that factor.
2639 static Constant
*GetFactor(Value
*V
) {
2640 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
2643 // Unless we can be tricky, we know this is a multiple of 1.
2644 Constant
*Result
= ConstantInt::get(V
->getType(), 1);
2646 Instruction
*I
= dyn_cast
<Instruction
>(V
);
2647 if (!I
) return Result
;
2649 if (I
->getOpcode() == Instruction::Mul
) {
2650 // Handle multiplies by a constant, etc.
2651 return ConstantExpr::getMul(GetFactor(I
->getOperand(0)),
2652 GetFactor(I
->getOperand(1)));
2653 } else if (I
->getOpcode() == Instruction::Shl
) {
2654 // (X<<C) -> X * (1 << C)
2655 if (Constant
*ShRHS
= dyn_cast
<Constant
>(I
->getOperand(1))) {
2656 ShRHS
= ConstantExpr::getShl(Result
, ShRHS
);
2657 return ConstantExpr::getMul(GetFactor(I
->getOperand(0)), ShRHS
);
2659 } else if (I
->getOpcode() == Instruction::And
) {
2660 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
2661 // X & 0xFFF0 is known to be a multiple of 16.
2662 uint32_t Zeros
= RHS
->getValue().countTrailingZeros();
2663 if (Zeros
!= V
->getType()->getPrimitiveSizeInBits())
2664 return ConstantExpr::getShl(Result
,
2665 ConstantInt::get(Result
->getType(), Zeros
));
2667 } else if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
2668 // Only handle int->int casts.
2669 if (!CI
->isIntegerCast())
2671 Value
*Op
= CI
->getOperand(0);
2672 return ConstantExpr::getCast(CI
->getOpcode(), GetFactor(Op
), V
->getType());
2677 /// This function implements the transforms on rem instructions that work
2678 /// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2679 /// is used by the visitors to those instructions.
2680 /// @brief Transforms common to all three rem instructions
2681 Instruction
*InstCombiner::commonRemTransforms(BinaryOperator
&I
) {
2682 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2684 // 0 % X == 0, we don't need to preserve faults!
2685 if (Constant
*LHS
= dyn_cast
<Constant
>(Op0
))
2686 if (LHS
->isNullValue())
2687 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
2689 if (isa
<UndefValue
>(Op0
)) // undef % X -> 0
2690 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
2691 if (isa
<UndefValue
>(Op1
))
2692 return ReplaceInstUsesWith(I
, Op1
); // X % undef -> undef
2694 // Handle cases involving: rem X, (select Cond, Y, Z)
2695 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
)) {
2696 // rem X, (Cond ? 0 : Y) -> rem X, Y. If the rem and the select are in
2697 // the same basic block, then we replace the select with Y, and the
2698 // condition of the select with false (if the cond value is in the same
2699 // BB). If the select has uses other than the div, this allows them to be
2701 if (Constant
*ST
= dyn_cast
<Constant
>(SI
->getOperand(1)))
2702 if (ST
->isNullValue()) {
2703 Instruction
*CondI
= dyn_cast
<Instruction
>(SI
->getOperand(0));
2704 if (CondI
&& CondI
->getParent() == I
.getParent())
2705 UpdateValueUsesWith(CondI
, ConstantInt::getFalse());
2706 else if (I
.getParent() != SI
->getParent() || SI
->hasOneUse())
2707 I
.setOperand(1, SI
->getOperand(2));
2709 UpdateValueUsesWith(SI
, SI
->getOperand(2));
2712 // Likewise for: rem X, (Cond ? Y : 0) -> rem X, Y
2713 if (Constant
*ST
= dyn_cast
<Constant
>(SI
->getOperand(2)))
2714 if (ST
->isNullValue()) {
2715 Instruction
*CondI
= dyn_cast
<Instruction
>(SI
->getOperand(0));
2716 if (CondI
&& CondI
->getParent() == I
.getParent())
2717 UpdateValueUsesWith(CondI
, ConstantInt::getTrue());
2718 else if (I
.getParent() != SI
->getParent() || SI
->hasOneUse())
2719 I
.setOperand(1, SI
->getOperand(1));
2721 UpdateValueUsesWith(SI
, SI
->getOperand(1));
2729 /// This function implements the transforms common to both integer remainder
2730 /// instructions (urem and srem). It is called by the visitors to those integer
2731 /// remainder instructions.
2732 /// @brief Common integer remainder transforms
2733 Instruction
*InstCombiner::commonIRemTransforms(BinaryOperator
&I
) {
2734 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2736 if (Instruction
*common
= commonRemTransforms(I
))
2739 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(Op1
)) {
2740 // X % 0 == undef, we don't need to preserve faults!
2741 if (RHS
->equalsInt(0))
2742 return ReplaceInstUsesWith(I
, UndefValue::get(I
.getType()));
2744 if (RHS
->equalsInt(1)) // X % 1 == 0
2745 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
2747 if (Instruction
*Op0I
= dyn_cast
<Instruction
>(Op0
)) {
2748 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0I
)) {
2749 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
2751 } else if (isa
<PHINode
>(Op0I
)) {
2752 if (Instruction
*NV
= FoldOpIntoPhi(I
))
2755 // (X * C1) % C2 --> 0 iff C1 % C2 == 0
2756 if (ConstantExpr::getSRem(GetFactor(Op0I
), RHS
)->isNullValue())
2757 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
2764 Instruction
*InstCombiner::visitURem(BinaryOperator
&I
) {
2765 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2767 if (Instruction
*common
= commonIRemTransforms(I
))
2770 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(Op1
)) {
2771 // X urem C^2 -> X and C
2772 // Check to see if this is an unsigned remainder with an exact power of 2,
2773 // if so, convert to a bitwise and.
2774 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(RHS
))
2775 if (C
->getValue().isPowerOf2())
2776 return BinaryOperator::createAnd(Op0
, SubOne(C
));
2779 if (Instruction
*RHSI
= dyn_cast
<Instruction
>(I
.getOperand(1))) {
2780 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
2781 if (RHSI
->getOpcode() == Instruction::Shl
&&
2782 isa
<ConstantInt
>(RHSI
->getOperand(0))) {
2783 if (cast
<ConstantInt
>(RHSI
->getOperand(0))->getValue().isPowerOf2()) {
2784 Constant
*N1
= ConstantInt::getAllOnesValue(I
.getType());
2785 Value
*Add
= InsertNewInstBefore(BinaryOperator::createAdd(RHSI
, N1
,
2787 return BinaryOperator::createAnd(Op0
, Add
);
2792 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
2793 // where C1&C2 are powers of two.
2794 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
)) {
2795 if (ConstantInt
*STO
= dyn_cast
<ConstantInt
>(SI
->getOperand(1)))
2796 if (ConstantInt
*SFO
= dyn_cast
<ConstantInt
>(SI
->getOperand(2))) {
2797 // STO == 0 and SFO == 0 handled above.
2798 if ((STO
->getValue().isPowerOf2()) &&
2799 (SFO
->getValue().isPowerOf2())) {
2800 Value
*TrueAnd
= InsertNewInstBefore(
2801 BinaryOperator::createAnd(Op0
, SubOne(STO
), SI
->getName()+".t"), I
);
2802 Value
*FalseAnd
= InsertNewInstBefore(
2803 BinaryOperator::createAnd(Op0
, SubOne(SFO
), SI
->getName()+".f"), I
);
2804 return new SelectInst(SI
->getOperand(0), TrueAnd
, FalseAnd
);
2812 Instruction
*InstCombiner::visitSRem(BinaryOperator
&I
) {
2813 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2815 // Handle the integer rem common cases
2816 if (Instruction
*common
= commonIRemTransforms(I
))
2819 if (Value
*RHSNeg
= dyn_castNegVal(Op1
))
2820 if (!isa
<ConstantInt
>(RHSNeg
) ||
2821 cast
<ConstantInt
>(RHSNeg
)->getValue().isStrictlyPositive()) {
2823 AddUsesToWorkList(I
);
2824 I
.setOperand(1, RHSNeg
);
2828 // If the sign bits of both operands are zero (i.e. we can prove they are
2829 // unsigned inputs), turn this into a urem.
2830 if (I
.getType()->isInteger()) {
2831 APInt
Mask(APInt::getSignBit(I
.getType()->getPrimitiveSizeInBits()));
2832 if (MaskedValueIsZero(Op1
, Mask
) && MaskedValueIsZero(Op0
, Mask
)) {
2833 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
2834 return BinaryOperator::createURem(Op0
, Op1
, I
.getName());
2841 Instruction
*InstCombiner::visitFRem(BinaryOperator
&I
) {
2842 return commonRemTransforms(I
);
2845 // isMaxValueMinusOne - return true if this is Max-1
2846 static bool isMaxValueMinusOne(const ConstantInt
*C
, bool isSigned
) {
2847 uint32_t TypeBits
= C
->getType()->getPrimitiveSizeInBits();
2849 return C
->getValue() == APInt::getAllOnesValue(TypeBits
) - 1;
2850 return C
->getValue() == APInt::getSignedMaxValue(TypeBits
)-1;
2853 // isMinValuePlusOne - return true if this is Min+1
2854 static bool isMinValuePlusOne(const ConstantInt
*C
, bool isSigned
) {
2856 return C
->getValue() == 1; // unsigned
2858 // Calculate 1111111111000000000000
2859 uint32_t TypeBits
= C
->getType()->getPrimitiveSizeInBits();
2860 return C
->getValue() == APInt::getSignedMinValue(TypeBits
)+1;
2863 // isOneBitSet - Return true if there is exactly one bit set in the specified
2865 static bool isOneBitSet(const ConstantInt
*CI
) {
2866 return CI
->getValue().isPowerOf2();
2869 // isHighOnes - Return true if the constant is of the form 1+0+.
2870 // This is the same as lowones(~X).
2871 static bool isHighOnes(const ConstantInt
*CI
) {
2872 return (~CI
->getValue() + 1).isPowerOf2();
2875 /// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
2876 /// are carefully arranged to allow folding of expressions such as:
2878 /// (A < B) | (A > B) --> (A != B)
2880 /// Note that this is only valid if the first and second predicates have the
2881 /// same sign. Is illegal to do: (A u< B) | (A s> B)
2883 /// Three bits are used to represent the condition, as follows:
2888 /// <=> Value Definition
2889 /// 000 0 Always false
2896 /// 111 7 Always true
2898 static unsigned getICmpCode(const ICmpInst
*ICI
) {
2899 switch (ICI
->getPredicate()) {
2901 case ICmpInst::ICMP_UGT
: return 1; // 001
2902 case ICmpInst::ICMP_SGT
: return 1; // 001
2903 case ICmpInst::ICMP_EQ
: return 2; // 010
2904 case ICmpInst::ICMP_UGE
: return 3; // 011
2905 case ICmpInst::ICMP_SGE
: return 3; // 011
2906 case ICmpInst::ICMP_ULT
: return 4; // 100
2907 case ICmpInst::ICMP_SLT
: return 4; // 100
2908 case ICmpInst::ICMP_NE
: return 5; // 101
2909 case ICmpInst::ICMP_ULE
: return 6; // 110
2910 case ICmpInst::ICMP_SLE
: return 6; // 110
2913 assert(0 && "Invalid ICmp predicate!");
2918 /// getICmpValue - This is the complement of getICmpCode, which turns an
2919 /// opcode and two operands into either a constant true or false, or a brand
2920 /// new ICmp instruction. The sign is passed in to determine which kind
2921 /// of predicate to use in new icmp instructions.
2922 static Value
*getICmpValue(bool sign
, unsigned code
, Value
*LHS
, Value
*RHS
) {
2924 default: assert(0 && "Illegal ICmp code!");
2925 case 0: return ConstantInt::getFalse();
2928 return new ICmpInst(ICmpInst::ICMP_SGT
, LHS
, RHS
);
2930 return new ICmpInst(ICmpInst::ICMP_UGT
, LHS
, RHS
);
2931 case 2: return new ICmpInst(ICmpInst::ICMP_EQ
, LHS
, RHS
);
2934 return new ICmpInst(ICmpInst::ICMP_SGE
, LHS
, RHS
);
2936 return new ICmpInst(ICmpInst::ICMP_UGE
, LHS
, RHS
);
2939 return new ICmpInst(ICmpInst::ICMP_SLT
, LHS
, RHS
);
2941 return new ICmpInst(ICmpInst::ICMP_ULT
, LHS
, RHS
);
2942 case 5: return new ICmpInst(ICmpInst::ICMP_NE
, LHS
, RHS
);
2945 return new ICmpInst(ICmpInst::ICMP_SLE
, LHS
, RHS
);
2947 return new ICmpInst(ICmpInst::ICMP_ULE
, LHS
, RHS
);
2948 case 7: return ConstantInt::getTrue();
2952 static bool PredicatesFoldable(ICmpInst::Predicate p1
, ICmpInst::Predicate p2
) {
2953 return (ICmpInst::isSignedPredicate(p1
) == ICmpInst::isSignedPredicate(p2
)) ||
2954 (ICmpInst::isSignedPredicate(p1
) &&
2955 (p2
== ICmpInst::ICMP_EQ
|| p2
== ICmpInst::ICMP_NE
)) ||
2956 (ICmpInst::isSignedPredicate(p2
) &&
2957 (p1
== ICmpInst::ICMP_EQ
|| p1
== ICmpInst::ICMP_NE
));
2961 // FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
2962 struct FoldICmpLogical
{
2965 ICmpInst::Predicate pred
;
2966 FoldICmpLogical(InstCombiner
&ic
, ICmpInst
*ICI
)
2967 : IC(ic
), LHS(ICI
->getOperand(0)), RHS(ICI
->getOperand(1)),
2968 pred(ICI
->getPredicate()) {}
2969 bool shouldApply(Value
*V
) const {
2970 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(V
))
2971 if (PredicatesFoldable(pred
, ICI
->getPredicate()))
2972 return (ICI
->getOperand(0) == LHS
&& ICI
->getOperand(1) == RHS
||
2973 ICI
->getOperand(0) == RHS
&& ICI
->getOperand(1) == LHS
);
2976 Instruction
*apply(Instruction
&Log
) const {
2977 ICmpInst
*ICI
= cast
<ICmpInst
>(Log
.getOperand(0));
2978 if (ICI
->getOperand(0) != LHS
) {
2979 assert(ICI
->getOperand(1) == LHS
);
2980 ICI
->swapOperands(); // Swap the LHS and RHS of the ICmp
2983 ICmpInst
*RHSICI
= cast
<ICmpInst
>(Log
.getOperand(1));
2984 unsigned LHSCode
= getICmpCode(ICI
);
2985 unsigned RHSCode
= getICmpCode(RHSICI
);
2987 switch (Log
.getOpcode()) {
2988 case Instruction::And
: Code
= LHSCode
& RHSCode
; break;
2989 case Instruction::Or
: Code
= LHSCode
| RHSCode
; break;
2990 case Instruction::Xor
: Code
= LHSCode
^ RHSCode
; break;
2991 default: assert(0 && "Illegal logical opcode!"); return 0;
2994 bool isSigned
= ICmpInst::isSignedPredicate(RHSICI
->getPredicate()) ||
2995 ICmpInst::isSignedPredicate(ICI
->getPredicate());
2997 Value
*RV
= getICmpValue(isSigned
, Code
, LHS
, RHS
);
2998 if (Instruction
*I
= dyn_cast
<Instruction
>(RV
))
3000 // Otherwise, it's a constant boolean value...
3001 return IC
.ReplaceInstUsesWith(Log
, RV
);
3004 } // end anonymous namespace
3006 // OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3007 // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3008 // guaranteed to be a binary operator.
3009 Instruction
*InstCombiner::OptAndOp(Instruction
*Op
,
3011 ConstantInt
*AndRHS
,
3012 BinaryOperator
&TheAnd
) {
3013 Value
*X
= Op
->getOperand(0);
3014 Constant
*Together
= 0;
3016 Together
= And(AndRHS
, OpRHS
);
3018 switch (Op
->getOpcode()) {
3019 case Instruction::Xor
:
3020 if (Op
->hasOneUse()) {
3021 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
3022 Instruction
*And
= BinaryOperator::createAnd(X
, AndRHS
);
3023 InsertNewInstBefore(And
, TheAnd
);
3025 return BinaryOperator::createXor(And
, Together
);
3028 case Instruction::Or
:
3029 if (Together
== AndRHS
) // (X | C) & C --> C
3030 return ReplaceInstUsesWith(TheAnd
, AndRHS
);
3032 if (Op
->hasOneUse() && Together
!= OpRHS
) {
3033 // (X | C1) & C2 --> (X | (C1&C2)) & C2
3034 Instruction
*Or
= BinaryOperator::createOr(X
, Together
);
3035 InsertNewInstBefore(Or
, TheAnd
);
3037 return BinaryOperator::createAnd(Or
, AndRHS
);
3040 case Instruction::Add
:
3041 if (Op
->hasOneUse()) {
3042 // Adding a one to a single bit bit-field should be turned into an XOR
3043 // of the bit. First thing to check is to see if this AND is with a
3044 // single bit constant.
3045 const APInt
& AndRHSV
= cast
<ConstantInt
>(AndRHS
)->getValue();
3047 // If there is only one bit set...
3048 if (isOneBitSet(cast
<ConstantInt
>(AndRHS
))) {
3049 // Ok, at this point, we know that we are masking the result of the
3050 // ADD down to exactly one bit. If the constant we are adding has
3051 // no bits set below this bit, then we can eliminate the ADD.
3052 const APInt
& AddRHS
= cast
<ConstantInt
>(OpRHS
)->getValue();
3054 // Check to see if any bits below the one bit set in AndRHSV are set.
3055 if ((AddRHS
& (AndRHSV
-1)) == 0) {
3056 // If not, the only thing that can effect the output of the AND is
3057 // the bit specified by AndRHSV. If that bit is set, the effect of
3058 // the XOR is to toggle the bit. If it is clear, then the ADD has
3060 if ((AddRHS
& AndRHSV
) == 0) { // Bit is not set, noop
3061 TheAnd
.setOperand(0, X
);
3064 // Pull the XOR out of the AND.
3065 Instruction
*NewAnd
= BinaryOperator::createAnd(X
, AndRHS
);
3066 InsertNewInstBefore(NewAnd
, TheAnd
);
3067 NewAnd
->takeName(Op
);
3068 return BinaryOperator::createXor(NewAnd
, AndRHS
);
3075 case Instruction::Shl
: {
3076 // We know that the AND will not produce any of the bits shifted in, so if
3077 // the anded constant includes them, clear them now!
3079 uint32_t BitWidth
= AndRHS
->getType()->getBitWidth();
3080 uint32_t OpRHSVal
= OpRHS
->getLimitedValue(BitWidth
);
3081 APInt
ShlMask(APInt::getHighBitsSet(BitWidth
, BitWidth
-OpRHSVal
));
3082 ConstantInt
*CI
= ConstantInt::get(AndRHS
->getValue() & ShlMask
);
3084 if (CI
->getValue() == ShlMask
) {
3085 // Masking out bits that the shift already masks
3086 return ReplaceInstUsesWith(TheAnd
, Op
); // No need for the and.
3087 } else if (CI
!= AndRHS
) { // Reducing bits set in and.
3088 TheAnd
.setOperand(1, CI
);
3093 case Instruction::LShr
:
3095 // We know that the AND will not produce any of the bits shifted in, so if
3096 // the anded constant includes them, clear them now! This only applies to
3097 // unsigned shifts, because a signed shr may bring in set bits!
3099 uint32_t BitWidth
= AndRHS
->getType()->getBitWidth();
3100 uint32_t OpRHSVal
= OpRHS
->getLimitedValue(BitWidth
);
3101 APInt
ShrMask(APInt::getLowBitsSet(BitWidth
, BitWidth
- OpRHSVal
));
3102 ConstantInt
*CI
= ConstantInt::get(AndRHS
->getValue() & ShrMask
);
3104 if (CI
->getValue() == ShrMask
) {
3105 // Masking out bits that the shift already masks.
3106 return ReplaceInstUsesWith(TheAnd
, Op
);
3107 } else if (CI
!= AndRHS
) {
3108 TheAnd
.setOperand(1, CI
); // Reduce bits set in and cst.
3113 case Instruction::AShr
:
3115 // See if this is shifting in some sign extension, then masking it out
3117 if (Op
->hasOneUse()) {
3118 uint32_t BitWidth
= AndRHS
->getType()->getBitWidth();
3119 uint32_t OpRHSVal
= OpRHS
->getLimitedValue(BitWidth
);
3120 APInt
ShrMask(APInt::getLowBitsSet(BitWidth
, BitWidth
- OpRHSVal
));
3121 Constant
*C
= ConstantInt::get(AndRHS
->getValue() & ShrMask
);
3122 if (C
== AndRHS
) { // Masking out bits shifted in.
3123 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3124 // Make the argument unsigned.
3125 Value
*ShVal
= Op
->getOperand(0);
3126 ShVal
= InsertNewInstBefore(
3127 BinaryOperator::createLShr(ShVal
, OpRHS
,
3128 Op
->getName()), TheAnd
);
3129 return BinaryOperator::createAnd(ShVal
, AndRHS
, TheAnd
.getName());
3138 /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3139 /// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3140 /// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3141 /// whether to treat the V, Lo and HI as signed or not. IB is the location to
3142 /// insert new instructions.
3143 Instruction
*InstCombiner::InsertRangeTest(Value
*V
, Constant
*Lo
, Constant
*Hi
,
3144 bool isSigned
, bool Inside
,
3146 assert(cast
<ConstantInt
>(ConstantExpr::getICmp((isSigned
?
3147 ICmpInst::ICMP_SLE
:ICmpInst::ICMP_ULE
), Lo
, Hi
))->getZExtValue() &&
3148 "Lo is not <= Hi in range emission code!");
3151 if (Lo
== Hi
) // Trivially false.
3152 return new ICmpInst(ICmpInst::ICMP_NE
, V
, V
);
3154 // V >= Min && V < Hi --> V < Hi
3155 if (cast
<ConstantInt
>(Lo
)->isMinValue(isSigned
)) {
3156 ICmpInst::Predicate pred
= (isSigned
?
3157 ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
);
3158 return new ICmpInst(pred
, V
, Hi
);
3161 // Emit V-Lo <u Hi-Lo
3162 Constant
*NegLo
= ConstantExpr::getNeg(Lo
);
3163 Instruction
*Add
= BinaryOperator::createAdd(V
, NegLo
, V
->getName()+".off");
3164 InsertNewInstBefore(Add
, IB
);
3165 Constant
*UpperBound
= ConstantExpr::getAdd(NegLo
, Hi
);
3166 return new ICmpInst(ICmpInst::ICMP_ULT
, Add
, UpperBound
);
3169 if (Lo
== Hi
) // Trivially true.
3170 return new ICmpInst(ICmpInst::ICMP_EQ
, V
, V
);
3172 // V < Min || V >= Hi -> V > Hi-1
3173 Hi
= SubOne(cast
<ConstantInt
>(Hi
));
3174 if (cast
<ConstantInt
>(Lo
)->isMinValue(isSigned
)) {
3175 ICmpInst::Predicate pred
= (isSigned
?
3176 ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
);
3177 return new ICmpInst(pred
, V
, Hi
);
3180 // Emit V-Lo >u Hi-1-Lo
3181 // Note that Hi has already had one subtracted from it, above.
3182 ConstantInt
*NegLo
= cast
<ConstantInt
>(ConstantExpr::getNeg(Lo
));
3183 Instruction
*Add
= BinaryOperator::createAdd(V
, NegLo
, V
->getName()+".off");
3184 InsertNewInstBefore(Add
, IB
);
3185 Constant
*LowerBound
= ConstantExpr::getAdd(NegLo
, Hi
);
3186 return new ICmpInst(ICmpInst::ICMP_UGT
, Add
, LowerBound
);
3189 // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3190 // any number of 0s on either side. The 1s are allowed to wrap from LSB to
3191 // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3192 // not, since all 1s are not contiguous.
3193 static bool isRunOfOnes(ConstantInt
*Val
, uint32_t &MB
, uint32_t &ME
) {
3194 const APInt
& V
= Val
->getValue();
3195 uint32_t BitWidth
= Val
->getType()->getBitWidth();
3196 if (!APIntOps::isShiftedMask(BitWidth
, V
)) return false;
3198 // look for the first zero bit after the run of ones
3199 MB
= BitWidth
- ((V
- 1) ^ V
).countLeadingZeros();
3200 // look for the first non-zero bit
3201 ME
= V
.getActiveBits();
3205 /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3206 /// where isSub determines whether the operator is a sub. If we can fold one of
3207 /// the following xforms:
3209 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3210 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3211 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3213 /// return (A +/- B).
3215 Value
*InstCombiner::FoldLogicalPlusAnd(Value
*LHS
, Value
*RHS
,
3216 ConstantInt
*Mask
, bool isSub
,
3218 Instruction
*LHSI
= dyn_cast
<Instruction
>(LHS
);
3219 if (!LHSI
|| LHSI
->getNumOperands() != 2 ||
3220 !isa
<ConstantInt
>(LHSI
->getOperand(1))) return 0;
3222 ConstantInt
*N
= cast
<ConstantInt
>(LHSI
->getOperand(1));
3224 switch (LHSI
->getOpcode()) {
3226 case Instruction::And
:
3227 if (And(N
, Mask
) == Mask
) {
3228 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3229 if ((Mask
->getValue().countLeadingZeros() +
3230 Mask
->getValue().countPopulation()) ==
3231 Mask
->getValue().getBitWidth())
3234 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3235 // part, we don't need any explicit masks to take them out of A. If that
3236 // is all N is, ignore it.
3237 uint32_t MB
= 0, ME
= 0;
3238 if (isRunOfOnes(Mask
, MB
, ME
)) { // begin/end bit of run, inclusive
3239 uint32_t BitWidth
= cast
<IntegerType
>(RHS
->getType())->getBitWidth();
3240 APInt
Mask(APInt::getLowBitsSet(BitWidth
, MB
-1));
3241 if (MaskedValueIsZero(RHS
, Mask
))
3246 case Instruction::Or
:
3247 case Instruction::Xor
:
3248 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3249 if ((Mask
->getValue().countLeadingZeros() +
3250 Mask
->getValue().countPopulation()) == Mask
->getValue().getBitWidth()
3251 && And(N
, Mask
)->isZero())
3258 New
= BinaryOperator::createSub(LHSI
->getOperand(0), RHS
, "fold");
3260 New
= BinaryOperator::createAdd(LHSI
->getOperand(0), RHS
, "fold");
3261 return InsertNewInstBefore(New
, I
);
3264 Instruction
*InstCombiner::visitAnd(BinaryOperator
&I
) {
3265 bool Changed
= SimplifyCommutative(I
);
3266 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
3268 if (isa
<UndefValue
>(Op1
)) // X & undef -> 0
3269 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
3273 return ReplaceInstUsesWith(I
, Op1
);
3275 // See if we can simplify any instructions used by the instruction whose sole
3276 // purpose is to compute bits we don't care about.
3277 if (!isa
<VectorType
>(I
.getType())) {
3278 uint32_t BitWidth
= cast
<IntegerType
>(I
.getType())->getBitWidth();
3279 APInt
KnownZero(BitWidth
, 0), KnownOne(BitWidth
, 0);
3280 if (SimplifyDemandedBits(&I
, APInt::getAllOnesValue(BitWidth
),
3281 KnownZero
, KnownOne
))
3284 if (ConstantVector
*CP
= dyn_cast
<ConstantVector
>(Op1
)) {
3285 if (CP
->isAllOnesValue()) // X & <-1,-1> -> X
3286 return ReplaceInstUsesWith(I
, I
.getOperand(0));
3287 } else if (isa
<ConstantAggregateZero
>(Op1
)) {
3288 return ReplaceInstUsesWith(I
, Op1
); // X & <0,0> -> <0,0>
3292 if (ConstantInt
*AndRHS
= dyn_cast
<ConstantInt
>(Op1
)) {
3293 const APInt
& AndRHSMask
= AndRHS
->getValue();
3294 APInt
NotAndRHS(~AndRHSMask
);
3296 // Optimize a variety of ((val OP C1) & C2) combinations...
3297 if (isa
<BinaryOperator
>(Op0
)) {
3298 Instruction
*Op0I
= cast
<Instruction
>(Op0
);
3299 Value
*Op0LHS
= Op0I
->getOperand(0);
3300 Value
*Op0RHS
= Op0I
->getOperand(1);
3301 switch (Op0I
->getOpcode()) {
3302 case Instruction::Xor
:
3303 case Instruction::Or
:
3304 // If the mask is only needed on one incoming arm, push it up.
3305 if (Op0I
->hasOneUse()) {
3306 if (MaskedValueIsZero(Op0LHS
, NotAndRHS
)) {
3307 // Not masking anything out for the LHS, move to RHS.
3308 Instruction
*NewRHS
= BinaryOperator::createAnd(Op0RHS
, AndRHS
,
3309 Op0RHS
->getName()+".masked");
3310 InsertNewInstBefore(NewRHS
, I
);
3311 return BinaryOperator::create(
3312 cast
<BinaryOperator
>(Op0I
)->getOpcode(), Op0LHS
, NewRHS
);
3314 if (!isa
<Constant
>(Op0RHS
) &&
3315 MaskedValueIsZero(Op0RHS
, NotAndRHS
)) {
3316 // Not masking anything out for the RHS, move to LHS.
3317 Instruction
*NewLHS
= BinaryOperator::createAnd(Op0LHS
, AndRHS
,
3318 Op0LHS
->getName()+".masked");
3319 InsertNewInstBefore(NewLHS
, I
);
3320 return BinaryOperator::create(
3321 cast
<BinaryOperator
>(Op0I
)->getOpcode(), NewLHS
, Op0RHS
);
3326 case Instruction::Add
:
3327 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3328 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3329 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3330 if (Value
*V
= FoldLogicalPlusAnd(Op0LHS
, Op0RHS
, AndRHS
, false, I
))
3331 return BinaryOperator::createAnd(V
, AndRHS
);
3332 if (Value
*V
= FoldLogicalPlusAnd(Op0RHS
, Op0LHS
, AndRHS
, false, I
))
3333 return BinaryOperator::createAnd(V
, AndRHS
); // Add commutes
3336 case Instruction::Sub
:
3337 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3338 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3339 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3340 if (Value
*V
= FoldLogicalPlusAnd(Op0LHS
, Op0RHS
, AndRHS
, true, I
))
3341 return BinaryOperator::createAnd(V
, AndRHS
);
3345 if (ConstantInt
*Op0CI
= dyn_cast
<ConstantInt
>(Op0I
->getOperand(1)))
3346 if (Instruction
*Res
= OptAndOp(Op0I
, Op0CI
, AndRHS
, I
))
3348 } else if (CastInst
*CI
= dyn_cast
<CastInst
>(Op0
)) {
3349 // If this is an integer truncation or change from signed-to-unsigned, and
3350 // if the source is an and/or with immediate, transform it. This
3351 // frequently occurs for bitfield accesses.
3352 if (Instruction
*CastOp
= dyn_cast
<Instruction
>(CI
->getOperand(0))) {
3353 if ((isa
<TruncInst
>(CI
) || isa
<BitCastInst
>(CI
)) &&
3354 CastOp
->getNumOperands() == 2)
3355 if (ConstantInt
*AndCI
= dyn_cast
<ConstantInt
>(CastOp
->getOperand(1)))
3356 if (CastOp
->getOpcode() == Instruction::And
) {
3357 // Change: and (cast (and X, C1) to T), C2
3358 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3359 // This will fold the two constants together, which may allow
3360 // other simplifications.
3361 Instruction
*NewCast
= CastInst::createTruncOrBitCast(
3362 CastOp
->getOperand(0), I
.getType(),
3363 CastOp
->getName()+".shrunk");
3364 NewCast
= InsertNewInstBefore(NewCast
, I
);
3365 // trunc_or_bitcast(C1)&C2
3366 Constant
*C3
= ConstantExpr::getTruncOrBitCast(AndCI
,I
.getType());
3367 C3
= ConstantExpr::getAnd(C3
, AndRHS
);
3368 return BinaryOperator::createAnd(NewCast
, C3
);
3369 } else if (CastOp
->getOpcode() == Instruction::Or
) {
3370 // Change: and (cast (or X, C1) to T), C2
3371 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3372 Constant
*C3
= ConstantExpr::getTruncOrBitCast(AndCI
,I
.getType());
3373 if (ConstantExpr::getAnd(C3
, AndRHS
) == AndRHS
) // trunc(C1)&C2
3374 return ReplaceInstUsesWith(I
, AndRHS
);
3379 // Try to fold constant and into select arguments.
3380 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0
))
3381 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
3383 if (isa
<PHINode
>(Op0
))
3384 if (Instruction
*NV
= FoldOpIntoPhi(I
))
3388 Value
*Op0NotVal
= dyn_castNotVal(Op0
);
3389 Value
*Op1NotVal
= dyn_castNotVal(Op1
);
3391 if (Op0NotVal
== Op1
|| Op1NotVal
== Op0
) // A & ~A == ~A & A == 0
3392 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
3394 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3395 if (Op0NotVal
&& Op1NotVal
&& isOnlyUse(Op0
) && isOnlyUse(Op1
)) {
3396 Instruction
*Or
= BinaryOperator::createOr(Op0NotVal
, Op1NotVal
,
3397 I
.getName()+".demorgan");
3398 InsertNewInstBefore(Or
, I
);
3399 return BinaryOperator::createNot(Or
);
3403 Value
*A
= 0, *B
= 0, *C
= 0, *D
= 0;
3404 if (match(Op0
, m_Or(m_Value(A
), m_Value(B
)))) {
3405 if (A
== Op1
|| B
== Op1
) // (A | ?) & A --> A
3406 return ReplaceInstUsesWith(I
, Op1
);
3408 // (A|B) & ~(A&B) -> A^B
3409 if (match(Op1
, m_Not(m_And(m_Value(C
), m_Value(D
))))) {
3410 if ((A
== C
&& B
== D
) || (A
== D
&& B
== C
))
3411 return BinaryOperator::createXor(A
, B
);
3415 if (match(Op1
, m_Or(m_Value(A
), m_Value(B
)))) {
3416 if (A
== Op0
|| B
== Op0
) // A & (A | ?) --> A
3417 return ReplaceInstUsesWith(I
, Op0
);
3419 // ~(A&B) & (A|B) -> A^B
3420 if (match(Op0
, m_Not(m_And(m_Value(C
), m_Value(D
))))) {
3421 if ((A
== C
&& B
== D
) || (A
== D
&& B
== C
))
3422 return BinaryOperator::createXor(A
, B
);
3426 if (Op0
->hasOneUse() &&
3427 match(Op0
, m_Xor(m_Value(A
), m_Value(B
)))) {
3428 if (A
== Op1
) { // (A^B)&A -> A&(A^B)
3429 I
.swapOperands(); // Simplify below
3430 std::swap(Op0
, Op1
);
3431 } else if (B
== Op1
) { // (A^B)&B -> B&(B^A)
3432 cast
<BinaryOperator
>(Op0
)->swapOperands();
3433 I
.swapOperands(); // Simplify below
3434 std::swap(Op0
, Op1
);
3437 if (Op1
->hasOneUse() &&
3438 match(Op1
, m_Xor(m_Value(A
), m_Value(B
)))) {
3439 if (B
== Op0
) { // B&(A^B) -> B&(B^A)
3440 cast
<BinaryOperator
>(Op1
)->swapOperands();
3443 if (A
== Op0
) { // A&(A^B) -> A & ~B
3444 Instruction
*NotB
= BinaryOperator::createNot(B
, "tmp");
3445 InsertNewInstBefore(NotB
, I
);
3446 return BinaryOperator::createAnd(A
, NotB
);
3451 if (ICmpInst
*RHS
= dyn_cast
<ICmpInst
>(Op1
)) {
3452 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3453 if (Instruction
*R
= AssociativeOpt(I
, FoldICmpLogical(*this, RHS
)))
3456 Value
*LHSVal
, *RHSVal
;
3457 ConstantInt
*LHSCst
, *RHSCst
;
3458 ICmpInst::Predicate LHSCC
, RHSCC
;
3459 if (match(Op0
, m_ICmp(LHSCC
, m_Value(LHSVal
), m_ConstantInt(LHSCst
))))
3460 if (match(RHS
, m_ICmp(RHSCC
, m_Value(RHSVal
), m_ConstantInt(RHSCst
))))
3461 if (LHSVal
== RHSVal
&& // Found (X icmp C1) & (X icmp C2)
3462 // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere.
3463 LHSCC
!= ICmpInst::ICMP_UGE
&& LHSCC
!= ICmpInst::ICMP_ULE
&&
3464 RHSCC
!= ICmpInst::ICMP_UGE
&& RHSCC
!= ICmpInst::ICMP_ULE
&&
3465 LHSCC
!= ICmpInst::ICMP_SGE
&& LHSCC
!= ICmpInst::ICMP_SLE
&&
3466 RHSCC
!= ICmpInst::ICMP_SGE
&& RHSCC
!= ICmpInst::ICMP_SLE
) {
3467 // Ensure that the larger constant is on the RHS.
3468 ICmpInst::Predicate GT
= ICmpInst::isSignedPredicate(LHSCC
) ?
3469 ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
3470 Constant
*Cmp
= ConstantExpr::getICmp(GT
, LHSCst
, RHSCst
);
3471 ICmpInst
*LHS
= cast
<ICmpInst
>(Op0
);
3472 if (cast
<ConstantInt
>(Cmp
)->getZExtValue()) {
3473 std::swap(LHS
, RHS
);
3474 std::swap(LHSCst
, RHSCst
);
3475 std::swap(LHSCC
, RHSCC
);
3478 // At this point, we know we have have two icmp instructions
3479 // comparing a value against two constants and and'ing the result
3480 // together. Because of the above check, we know that we only have
3481 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3482 // (from the FoldICmpLogical check above), that the two constants
3483 // are not equal and that the larger constant is on the RHS
3484 assert(LHSCst
!= RHSCst
&& "Compares not folded above?");
3487 default: assert(0 && "Unknown integer condition code!");
3488 case ICmpInst::ICMP_EQ
:
3490 default: assert(0 && "Unknown integer condition code!");
3491 case ICmpInst::ICMP_EQ
: // (X == 13 & X == 15) -> false
3492 case ICmpInst::ICMP_UGT
: // (X == 13 & X > 15) -> false
3493 case ICmpInst::ICMP_SGT
: // (X == 13 & X > 15) -> false
3494 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
3495 case ICmpInst::ICMP_NE
: // (X == 13 & X != 15) -> X == 13
3496 case ICmpInst::ICMP_ULT
: // (X == 13 & X < 15) -> X == 13
3497 case ICmpInst::ICMP_SLT
: // (X == 13 & X < 15) -> X == 13
3498 return ReplaceInstUsesWith(I
, LHS
);
3500 case ICmpInst::ICMP_NE
:
3502 default: assert(0 && "Unknown integer condition code!");
3503 case ICmpInst::ICMP_ULT
:
3504 if (LHSCst
== SubOne(RHSCst
)) // (X != 13 & X u< 14) -> X < 13
3505 return new ICmpInst(ICmpInst::ICMP_ULT
, LHSVal
, LHSCst
);
3506 break; // (X != 13 & X u< 15) -> no change
3507 case ICmpInst::ICMP_SLT
:
3508 if (LHSCst
== SubOne(RHSCst
)) // (X != 13 & X s< 14) -> X < 13
3509 return new ICmpInst(ICmpInst::ICMP_SLT
, LHSVal
, LHSCst
);
3510 break; // (X != 13 & X s< 15) -> no change
3511 case ICmpInst::ICMP_EQ
: // (X != 13 & X == 15) -> X == 15
3512 case ICmpInst::ICMP_UGT
: // (X != 13 & X u> 15) -> X u> 15
3513 case ICmpInst::ICMP_SGT
: // (X != 13 & X s> 15) -> X s> 15
3514 return ReplaceInstUsesWith(I
, RHS
);
3515 case ICmpInst::ICMP_NE
:
3516 if (LHSCst
== SubOne(RHSCst
)){// (X != 13 & X != 14) -> X-13 >u 1
3517 Constant
*AddCST
= ConstantExpr::getNeg(LHSCst
);
3518 Instruction
*Add
= BinaryOperator::createAdd(LHSVal
, AddCST
,
3519 LHSVal
->getName()+".off");
3520 InsertNewInstBefore(Add
, I
);
3521 return new ICmpInst(ICmpInst::ICMP_UGT
, Add
,
3522 ConstantInt::get(Add
->getType(), 1));
3524 break; // (X != 13 & X != 15) -> no change
3527 case ICmpInst::ICMP_ULT
:
3529 default: assert(0 && "Unknown integer condition code!");
3530 case ICmpInst::ICMP_EQ
: // (X u< 13 & X == 15) -> false
3531 case ICmpInst::ICMP_UGT
: // (X u< 13 & X u> 15) -> false
3532 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
3533 case ICmpInst::ICMP_SGT
: // (X u< 13 & X s> 15) -> no change
3535 case ICmpInst::ICMP_NE
: // (X u< 13 & X != 15) -> X u< 13
3536 case ICmpInst::ICMP_ULT
: // (X u< 13 & X u< 15) -> X u< 13
3537 return ReplaceInstUsesWith(I
, LHS
);
3538 case ICmpInst::ICMP_SLT
: // (X u< 13 & X s< 15) -> no change
3542 case ICmpInst::ICMP_SLT
:
3544 default: assert(0 && "Unknown integer condition code!");
3545 case ICmpInst::ICMP_EQ
: // (X s< 13 & X == 15) -> false
3546 case ICmpInst::ICMP_SGT
: // (X s< 13 & X s> 15) -> false
3547 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
3548 case ICmpInst::ICMP_UGT
: // (X s< 13 & X u> 15) -> no change
3550 case ICmpInst::ICMP_NE
: // (X s< 13 & X != 15) -> X < 13
3551 case ICmpInst::ICMP_SLT
: // (X s< 13 & X s< 15) -> X < 13
3552 return ReplaceInstUsesWith(I
, LHS
);
3553 case ICmpInst::ICMP_ULT
: // (X s< 13 & X u< 15) -> no change
3557 case ICmpInst::ICMP_UGT
:
3559 default: assert(0 && "Unknown integer condition code!");
3560 case ICmpInst::ICMP_EQ
: // (X u> 13 & X == 15) -> X > 13
3561 return ReplaceInstUsesWith(I
, LHS
);
3562 case ICmpInst::ICMP_UGT
: // (X u> 13 & X u> 15) -> X u> 15
3563 return ReplaceInstUsesWith(I
, RHS
);
3564 case ICmpInst::ICMP_SGT
: // (X u> 13 & X s> 15) -> no change
3566 case ICmpInst::ICMP_NE
:
3567 if (RHSCst
== AddOne(LHSCst
)) // (X u> 13 & X != 14) -> X u> 14
3568 return new ICmpInst(LHSCC
, LHSVal
, RHSCst
);
3569 break; // (X u> 13 & X != 15) -> no change
3570 case ICmpInst::ICMP_ULT
: // (X u> 13 & X u< 15) ->(X-14) <u 1
3571 return InsertRangeTest(LHSVal
, AddOne(LHSCst
), RHSCst
, false,
3573 case ICmpInst::ICMP_SLT
: // (X u> 13 & X s< 15) -> no change
3577 case ICmpInst::ICMP_SGT
:
3579 default: assert(0 && "Unknown integer condition code!");
3580 case ICmpInst::ICMP_EQ
: // (X s> 13 & X == 15) -> X == 15
3581 case ICmpInst::ICMP_SGT
: // (X s> 13 & X s> 15) -> X s> 15
3582 return ReplaceInstUsesWith(I
, RHS
);
3583 case ICmpInst::ICMP_UGT
: // (X s> 13 & X u> 15) -> no change
3585 case ICmpInst::ICMP_NE
:
3586 if (RHSCst
== AddOne(LHSCst
)) // (X s> 13 & X != 14) -> X s> 14
3587 return new ICmpInst(LHSCC
, LHSVal
, RHSCst
);
3588 break; // (X s> 13 & X != 15) -> no change
3589 case ICmpInst::ICMP_SLT
: // (X s> 13 & X s< 15) ->(X-14) s< 1
3590 return InsertRangeTest(LHSVal
, AddOne(LHSCst
), RHSCst
, true,
3592 case ICmpInst::ICMP_ULT
: // (X s> 13 & X u< 15) -> no change
3600 // fold (and (cast A), (cast B)) -> (cast (and A, B))
3601 if (CastInst
*Op0C
= dyn_cast
<CastInst
>(Op0
))
3602 if (CastInst
*Op1C
= dyn_cast
<CastInst
>(Op1
))
3603 if (Op0C
->getOpcode() == Op1C
->getOpcode()) { // same cast kind ?
3604 const Type
*SrcTy
= Op0C
->getOperand(0)->getType();
3605 if (SrcTy
== Op1C
->getOperand(0)->getType() && SrcTy
->isInteger() &&
3606 // Only do this if the casts both really cause code to be generated.
3607 ValueRequiresCast(Op0C
->getOpcode(), Op0C
->getOperand(0),
3609 ValueRequiresCast(Op1C
->getOpcode(), Op1C
->getOperand(0),
3611 Instruction
*NewOp
= BinaryOperator::createAnd(Op0C
->getOperand(0),
3612 Op1C
->getOperand(0),
3614 InsertNewInstBefore(NewOp
, I
);
3615 return CastInst::create(Op0C
->getOpcode(), NewOp
, I
.getType());
3619 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
3620 if (BinaryOperator
*SI1
= dyn_cast
<BinaryOperator
>(Op1
)) {
3621 if (BinaryOperator
*SI0
= dyn_cast
<BinaryOperator
>(Op0
))
3622 if (SI0
->isShift() && SI0
->getOpcode() == SI1
->getOpcode() &&
3623 SI0
->getOperand(1) == SI1
->getOperand(1) &&
3624 (SI0
->hasOneUse() || SI1
->hasOneUse())) {
3625 Instruction
*NewOp
=
3626 InsertNewInstBefore(BinaryOperator::createAnd(SI0
->getOperand(0),
3628 SI0
->getName()), I
);
3629 return BinaryOperator::create(SI1
->getOpcode(), NewOp
,
3630 SI1
->getOperand(1));
3634 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
3635 if (FCmpInst
*LHS
= dyn_cast
<FCmpInst
>(I
.getOperand(0))) {
3636 if (FCmpInst
*RHS
= dyn_cast
<FCmpInst
>(I
.getOperand(1))) {
3637 if (LHS
->getPredicate() == FCmpInst::FCMP_ORD
&&
3638 RHS
->getPredicate() == FCmpInst::FCMP_ORD
)
3639 if (ConstantFP
*LHSC
= dyn_cast
<ConstantFP
>(LHS
->getOperand(1)))
3640 if (ConstantFP
*RHSC
= dyn_cast
<ConstantFP
>(RHS
->getOperand(1))) {
3641 // If either of the constants are nans, then the whole thing returns
3643 if (LHSC
->getValueAPF().isNaN() || RHSC
->getValueAPF().isNaN())
3644 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
3645 return new FCmpInst(FCmpInst::FCMP_ORD
, LHS
->getOperand(0),
3646 RHS
->getOperand(0));
3651 return Changed
? &I
: 0;
3654 /// CollectBSwapParts - Look to see if the specified value defines a single byte
3655 /// in the result. If it does, and if the specified byte hasn't been filled in
3656 /// yet, fill it in and return false.
3657 static bool CollectBSwapParts(Value
*V
, SmallVector
<Value
*, 8> &ByteValues
) {
3658 Instruction
*I
= dyn_cast
<Instruction
>(V
);
3659 if (I
== 0) return true;
3661 // If this is an or instruction, it is an inner node of the bswap.
3662 if (I
->getOpcode() == Instruction::Or
)
3663 return CollectBSwapParts(I
->getOperand(0), ByteValues
) ||
3664 CollectBSwapParts(I
->getOperand(1), ByteValues
);
3666 uint32_t BitWidth
= I
->getType()->getPrimitiveSizeInBits();
3667 // If this is a shift by a constant int, and it is "24", then its operand
3668 // defines a byte. We only handle unsigned types here.
3669 if (I
->isShift() && isa
<ConstantInt
>(I
->getOperand(1))) {
3670 // Not shifting the entire input by N-1 bytes?
3671 if (cast
<ConstantInt
>(I
->getOperand(1))->getLimitedValue(BitWidth
) !=
3672 8*(ByteValues
.size()-1))
3676 if (I
->getOpcode() == Instruction::Shl
) {
3677 // X << 24 defines the top byte with the lowest of the input bytes.
3678 DestNo
= ByteValues
.size()-1;
3680 // X >>u 24 defines the low byte with the highest of the input bytes.
3684 // If the destination byte value is already defined, the values are or'd
3685 // together, which isn't a bswap (unless it's an or of the same bits).
3686 if (ByteValues
[DestNo
] && ByteValues
[DestNo
] != I
->getOperand(0))
3688 ByteValues
[DestNo
] = I
->getOperand(0);
3692 // Otherwise, we can only handle and(shift X, imm), imm). Bail out of if we
3694 Value
*Shift
= 0, *ShiftLHS
= 0;
3695 ConstantInt
*AndAmt
= 0, *ShiftAmt
= 0;
3696 if (!match(I
, m_And(m_Value(Shift
), m_ConstantInt(AndAmt
))) ||
3697 !match(Shift
, m_Shift(m_Value(ShiftLHS
), m_ConstantInt(ShiftAmt
))))
3699 Instruction
*SI
= cast
<Instruction
>(Shift
);
3701 // Make sure that the shift amount is by a multiple of 8 and isn't too big.
3702 if (ShiftAmt
->getLimitedValue(BitWidth
) & 7 ||
3703 ShiftAmt
->getLimitedValue(BitWidth
) > 8*ByteValues
.size())
3706 // Turn 0xFF -> 0, 0xFF00 -> 1, 0xFF0000 -> 2, etc.
3708 if (AndAmt
->getValue().getActiveBits() > 64)
3710 uint64_t AndAmtVal
= AndAmt
->getZExtValue();
3711 for (DestByte
= 0; DestByte
!= ByteValues
.size(); ++DestByte
)
3712 if (AndAmtVal
== uint64_t(0xFF) << 8*DestByte
)
3714 // Unknown mask for bswap.
3715 if (DestByte
== ByteValues
.size()) return true;
3717 unsigned ShiftBytes
= ShiftAmt
->getZExtValue()/8;
3719 if (SI
->getOpcode() == Instruction::Shl
)
3720 SrcByte
= DestByte
- ShiftBytes
;
3722 SrcByte
= DestByte
+ ShiftBytes
;
3724 // If the SrcByte isn't a bswapped value from the DestByte, reject it.
3725 if (SrcByte
!= ByteValues
.size()-DestByte
-1)
3728 // If the destination byte value is already defined, the values are or'd
3729 // together, which isn't a bswap (unless it's an or of the same bits).
3730 if (ByteValues
[DestByte
] && ByteValues
[DestByte
] != SI
->getOperand(0))
3732 ByteValues
[DestByte
] = SI
->getOperand(0);
3736 /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
3737 /// If so, insert the new bswap intrinsic and return it.
3738 Instruction
*InstCombiner::MatchBSwap(BinaryOperator
&I
) {
3739 const IntegerType
*ITy
= dyn_cast
<IntegerType
>(I
.getType());
3740 if (!ITy
|| ITy
->getBitWidth() % 16)
3741 return 0; // Can only bswap pairs of bytes. Can't do vectors.
3743 /// ByteValues - For each byte of the result, we keep track of which value
3744 /// defines each byte.
3745 SmallVector
<Value
*, 8> ByteValues
;
3746 ByteValues
.resize(ITy
->getBitWidth()/8);
3748 // Try to find all the pieces corresponding to the bswap.
3749 if (CollectBSwapParts(I
.getOperand(0), ByteValues
) ||
3750 CollectBSwapParts(I
.getOperand(1), ByteValues
))
3753 // Check to see if all of the bytes come from the same value.
3754 Value
*V
= ByteValues
[0];
3755 if (V
== 0) return 0; // Didn't find a byte? Must be zero.
3757 // Check to make sure that all of the bytes come from the same value.
3758 for (unsigned i
= 1, e
= ByteValues
.size(); i
!= e
; ++i
)
3759 if (ByteValues
[i
] != V
)
3761 const Type
*Tys
[] = { ITy
};
3762 Module
*M
= I
.getParent()->getParent()->getParent();
3763 Function
*F
= Intrinsic::getDeclaration(M
, Intrinsic::bswap
, Tys
, 1);
3764 return new CallInst(F
, V
);
3768 Instruction
*InstCombiner::visitOr(BinaryOperator
&I
) {
3769 bool Changed
= SimplifyCommutative(I
);
3770 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
3772 if (isa
<UndefValue
>(Op1
)) // X | undef -> -1
3773 return ReplaceInstUsesWith(I
, Constant::getAllOnesValue(I
.getType()));
3777 return ReplaceInstUsesWith(I
, Op0
);
3779 // See if we can simplify any instructions used by the instruction whose sole
3780 // purpose is to compute bits we don't care about.
3781 if (!isa
<VectorType
>(I
.getType())) {
3782 uint32_t BitWidth
= cast
<IntegerType
>(I
.getType())->getBitWidth();
3783 APInt
KnownZero(BitWidth
, 0), KnownOne(BitWidth
, 0);
3784 if (SimplifyDemandedBits(&I
, APInt::getAllOnesValue(BitWidth
),
3785 KnownZero
, KnownOne
))
3787 } else if (isa
<ConstantAggregateZero
>(Op1
)) {
3788 return ReplaceInstUsesWith(I
, Op0
); // X | <0,0> -> X
3789 } else if (ConstantVector
*CP
= dyn_cast
<ConstantVector
>(Op1
)) {
3790 if (CP
->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
3791 return ReplaceInstUsesWith(I
, I
.getOperand(1));
3797 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(Op1
)) {
3798 ConstantInt
*C1
= 0; Value
*X
= 0;
3799 // (X & C1) | C2 --> (X | C2) & (C1|C2)
3800 if (match(Op0
, m_And(m_Value(X
), m_ConstantInt(C1
))) && isOnlyUse(Op0
)) {
3801 Instruction
*Or
= BinaryOperator::createOr(X
, RHS
);
3802 InsertNewInstBefore(Or
, I
);
3804 return BinaryOperator::createAnd(Or
,
3805 ConstantInt::get(RHS
->getValue() | C1
->getValue()));
3808 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
3809 if (match(Op0
, m_Xor(m_Value(X
), m_ConstantInt(C1
))) && isOnlyUse(Op0
)) {
3810 Instruction
*Or
= BinaryOperator::createOr(X
, RHS
);
3811 InsertNewInstBefore(Or
, I
);
3813 return BinaryOperator::createXor(Or
,
3814 ConstantInt::get(C1
->getValue() & ~RHS
->getValue()));
3817 // Try to fold constant and into select arguments.
3818 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0
))
3819 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
3821 if (isa
<PHINode
>(Op0
))
3822 if (Instruction
*NV
= FoldOpIntoPhi(I
))
3826 Value
*A
= 0, *B
= 0;
3827 ConstantInt
*C1
= 0, *C2
= 0;
3829 if (match(Op0
, m_And(m_Value(A
), m_Value(B
))))
3830 if (A
== Op1
|| B
== Op1
) // (A & ?) | A --> A
3831 return ReplaceInstUsesWith(I
, Op1
);
3832 if (match(Op1
, m_And(m_Value(A
), m_Value(B
))))
3833 if (A
== Op0
|| B
== Op0
) // A | (A & ?) --> A
3834 return ReplaceInstUsesWith(I
, Op0
);
3836 // (A | B) | C and A | (B | C) -> bswap if possible.
3837 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
3838 if (match(Op0
, m_Or(m_Value(), m_Value())) ||
3839 match(Op1
, m_Or(m_Value(), m_Value())) ||
3840 (match(Op0
, m_Shift(m_Value(), m_Value())) &&
3841 match(Op1
, m_Shift(m_Value(), m_Value())))) {
3842 if (Instruction
*BSwap
= MatchBSwap(I
))
3846 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
3847 if (Op0
->hasOneUse() && match(Op0
, m_Xor(m_Value(A
), m_ConstantInt(C1
))) &&
3848 MaskedValueIsZero(Op1
, C1
->getValue())) {
3849 Instruction
*NOr
= BinaryOperator::createOr(A
, Op1
);
3850 InsertNewInstBefore(NOr
, I
);
3852 return BinaryOperator::createXor(NOr
, C1
);
3855 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
3856 if (Op1
->hasOneUse() && match(Op1
, m_Xor(m_Value(A
), m_ConstantInt(C1
))) &&
3857 MaskedValueIsZero(Op0
, C1
->getValue())) {
3858 Instruction
*NOr
= BinaryOperator::createOr(A
, Op0
);
3859 InsertNewInstBefore(NOr
, I
);
3861 return BinaryOperator::createXor(NOr
, C1
);
3865 Value
*C
= 0, *D
= 0;
3866 if (match(Op0
, m_And(m_Value(A
), m_Value(C
))) &&
3867 match(Op1
, m_And(m_Value(B
), m_Value(D
)))) {
3868 Value
*V1
= 0, *V2
= 0, *V3
= 0;
3869 C1
= dyn_cast
<ConstantInt
>(C
);
3870 C2
= dyn_cast
<ConstantInt
>(D
);
3871 if (C1
&& C2
) { // (A & C1)|(B & C2)
3872 // If we have: ((V + N) & C1) | (V & C2)
3873 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
3874 // replace with V+N.
3875 if (C1
->getValue() == ~C2
->getValue()) {
3876 if ((C2
->getValue() & (C2
->getValue()+1)) == 0 && // C2 == 0+1+
3877 match(A
, m_Add(m_Value(V1
), m_Value(V2
)))) {
3878 // Add commutes, try both ways.
3879 if (V1
== B
&& MaskedValueIsZero(V2
, C2
->getValue()))
3880 return ReplaceInstUsesWith(I
, A
);
3881 if (V2
== B
&& MaskedValueIsZero(V1
, C2
->getValue()))
3882 return ReplaceInstUsesWith(I
, A
);
3884 // Or commutes, try both ways.
3885 if ((C1
->getValue() & (C1
->getValue()+1)) == 0 &&
3886 match(B
, m_Add(m_Value(V1
), m_Value(V2
)))) {
3887 // Add commutes, try both ways.
3888 if (V1
== A
&& MaskedValueIsZero(V2
, C1
->getValue()))
3889 return ReplaceInstUsesWith(I
, B
);
3890 if (V2
== A
&& MaskedValueIsZero(V1
, C1
->getValue()))
3891 return ReplaceInstUsesWith(I
, B
);
3894 V1
= 0; V2
= 0; V3
= 0;
3897 // Check to see if we have any common things being and'ed. If so, find the
3898 // terms for V1 & (V2|V3).
3899 if (isOnlyUse(Op0
) || isOnlyUse(Op1
)) {
3900 if (A
== B
) // (A & C)|(A & D) == A & (C|D)
3901 V1
= A
, V2
= C
, V3
= D
;
3902 else if (A
== D
) // (A & C)|(B & A) == A & (B|C)
3903 V1
= A
, V2
= B
, V3
= C
;
3904 else if (C
== B
) // (A & C)|(C & D) == C & (A|D)
3905 V1
= C
, V2
= A
, V3
= D
;
3906 else if (C
== D
) // (A & C)|(B & C) == C & (A|B)
3907 V1
= C
, V2
= A
, V3
= B
;
3911 InsertNewInstBefore(BinaryOperator::createOr(V2
, V3
, "tmp"), I
);
3912 return BinaryOperator::createAnd(V1
, Or
);
3917 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
3918 if (BinaryOperator
*SI1
= dyn_cast
<BinaryOperator
>(Op1
)) {
3919 if (BinaryOperator
*SI0
= dyn_cast
<BinaryOperator
>(Op0
))
3920 if (SI0
->isShift() && SI0
->getOpcode() == SI1
->getOpcode() &&
3921 SI0
->getOperand(1) == SI1
->getOperand(1) &&
3922 (SI0
->hasOneUse() || SI1
->hasOneUse())) {
3923 Instruction
*NewOp
=
3924 InsertNewInstBefore(BinaryOperator::createOr(SI0
->getOperand(0),
3926 SI0
->getName()), I
);
3927 return BinaryOperator::create(SI1
->getOpcode(), NewOp
,
3928 SI1
->getOperand(1));
3932 if (match(Op0
, m_Not(m_Value(A
)))) { // ~A | Op1
3933 if (A
== Op1
) // ~A | A == -1
3934 return ReplaceInstUsesWith(I
, Constant::getAllOnesValue(I
.getType()));
3938 // Note, A is still live here!
3939 if (match(Op1
, m_Not(m_Value(B
)))) { // Op0 | ~B
3941 return ReplaceInstUsesWith(I
, Constant::getAllOnesValue(I
.getType()));
3943 // (~A | ~B) == (~(A & B)) - De Morgan's Law
3944 if (A
&& isOnlyUse(Op0
) && isOnlyUse(Op1
)) {
3945 Value
*And
= InsertNewInstBefore(BinaryOperator::createAnd(A
, B
,
3946 I
.getName()+".demorgan"), I
);
3947 return BinaryOperator::createNot(And
);
3951 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
3952 if (ICmpInst
*RHS
= dyn_cast
<ICmpInst
>(I
.getOperand(1))) {
3953 if (Instruction
*R
= AssociativeOpt(I
, FoldICmpLogical(*this, RHS
)))
3956 Value
*LHSVal
, *RHSVal
;
3957 ConstantInt
*LHSCst
, *RHSCst
;
3958 ICmpInst::Predicate LHSCC
, RHSCC
;
3959 if (match(Op0
, m_ICmp(LHSCC
, m_Value(LHSVal
), m_ConstantInt(LHSCst
))))
3960 if (match(RHS
, m_ICmp(RHSCC
, m_Value(RHSVal
), m_ConstantInt(RHSCst
))))
3961 if (LHSVal
== RHSVal
&& // Found (X icmp C1) | (X icmp C2)
3962 // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere.
3963 LHSCC
!= ICmpInst::ICMP_UGE
&& LHSCC
!= ICmpInst::ICMP_ULE
&&
3964 RHSCC
!= ICmpInst::ICMP_UGE
&& RHSCC
!= ICmpInst::ICMP_ULE
&&
3965 LHSCC
!= ICmpInst::ICMP_SGE
&& LHSCC
!= ICmpInst::ICMP_SLE
&&
3966 RHSCC
!= ICmpInst::ICMP_SGE
&& RHSCC
!= ICmpInst::ICMP_SLE
&&
3967 // We can't fold (ugt x, C) | (sgt x, C2).
3968 PredicatesFoldable(LHSCC
, RHSCC
)) {
3969 // Ensure that the larger constant is on the RHS.
3970 ICmpInst
*LHS
= cast
<ICmpInst
>(Op0
);
3972 if (ICmpInst::isSignedPredicate(LHSCC
))
3973 NeedsSwap
= LHSCst
->getValue().sgt(RHSCst
->getValue());
3975 NeedsSwap
= LHSCst
->getValue().ugt(RHSCst
->getValue());
3978 std::swap(LHS
, RHS
);
3979 std::swap(LHSCst
, RHSCst
);
3980 std::swap(LHSCC
, RHSCC
);
3983 // At this point, we know we have have two icmp instructions
3984 // comparing a value against two constants and or'ing the result
3985 // together. Because of the above check, we know that we only have
3986 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
3987 // FoldICmpLogical check above), that the two constants are not
3989 assert(LHSCst
!= RHSCst
&& "Compares not folded above?");
3992 default: assert(0 && "Unknown integer condition code!");
3993 case ICmpInst::ICMP_EQ
:
3995 default: assert(0 && "Unknown integer condition code!");
3996 case ICmpInst::ICMP_EQ
:
3997 if (LHSCst
== SubOne(RHSCst
)) {// (X == 13 | X == 14) -> X-13 <u 2
3998 Constant
*AddCST
= ConstantExpr::getNeg(LHSCst
);
3999 Instruction
*Add
= BinaryOperator::createAdd(LHSVal
, AddCST
,
4000 LHSVal
->getName()+".off");
4001 InsertNewInstBefore(Add
, I
);
4002 AddCST
= Subtract(AddOne(RHSCst
), LHSCst
);
4003 return new ICmpInst(ICmpInst::ICMP_ULT
, Add
, AddCST
);
4005 break; // (X == 13 | X == 15) -> no change
4006 case ICmpInst::ICMP_UGT
: // (X == 13 | X u> 14) -> no change
4007 case ICmpInst::ICMP_SGT
: // (X == 13 | X s> 14) -> no change
4009 case ICmpInst::ICMP_NE
: // (X == 13 | X != 15) -> X != 15
4010 case ICmpInst::ICMP_ULT
: // (X == 13 | X u< 15) -> X u< 15
4011 case ICmpInst::ICMP_SLT
: // (X == 13 | X s< 15) -> X s< 15
4012 return ReplaceInstUsesWith(I
, RHS
);
4015 case ICmpInst::ICMP_NE
:
4017 default: assert(0 && "Unknown integer condition code!");
4018 case ICmpInst::ICMP_EQ
: // (X != 13 | X == 15) -> X != 13
4019 case ICmpInst::ICMP_UGT
: // (X != 13 | X u> 15) -> X != 13
4020 case ICmpInst::ICMP_SGT
: // (X != 13 | X s> 15) -> X != 13
4021 return ReplaceInstUsesWith(I
, LHS
);
4022 case ICmpInst::ICMP_NE
: // (X != 13 | X != 15) -> true
4023 case ICmpInst::ICMP_ULT
: // (X != 13 | X u< 15) -> true
4024 case ICmpInst::ICMP_SLT
: // (X != 13 | X s< 15) -> true
4025 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
4028 case ICmpInst::ICMP_ULT
:
4030 default: assert(0 && "Unknown integer condition code!");
4031 case ICmpInst::ICMP_EQ
: // (X u< 13 | X == 14) -> no change
4033 case ICmpInst::ICMP_UGT
: // (X u< 13 | X u> 15) ->(X-13) u> 2
4034 // If RHSCst is [us]MAXINT, it is always false. Not handling
4035 // this can cause overflow.
4036 if (RHSCst
->isMaxValue(false))
4037 return ReplaceInstUsesWith(I
, LHS
);
4038 return InsertRangeTest(LHSVal
, LHSCst
, AddOne(RHSCst
), false,
4040 case ICmpInst::ICMP_SGT
: // (X u< 13 | X s> 15) -> no change
4042 case ICmpInst::ICMP_NE
: // (X u< 13 | X != 15) -> X != 15
4043 case ICmpInst::ICMP_ULT
: // (X u< 13 | X u< 15) -> X u< 15
4044 return ReplaceInstUsesWith(I
, RHS
);
4045 case ICmpInst::ICMP_SLT
: // (X u< 13 | X s< 15) -> no change
4049 case ICmpInst::ICMP_SLT
:
4051 default: assert(0 && "Unknown integer condition code!");
4052 case ICmpInst::ICMP_EQ
: // (X s< 13 | X == 14) -> no change
4054 case ICmpInst::ICMP_SGT
: // (X s< 13 | X s> 15) ->(X-13) s> 2
4055 // If RHSCst is [us]MAXINT, it is always false. Not handling
4056 // this can cause overflow.
4057 if (RHSCst
->isMaxValue(true))
4058 return ReplaceInstUsesWith(I
, LHS
);
4059 return InsertRangeTest(LHSVal
, LHSCst
, AddOne(RHSCst
), true,
4061 case ICmpInst::ICMP_UGT
: // (X s< 13 | X u> 15) -> no change
4063 case ICmpInst::ICMP_NE
: // (X s< 13 | X != 15) -> X != 15
4064 case ICmpInst::ICMP_SLT
: // (X s< 13 | X s< 15) -> X s< 15
4065 return ReplaceInstUsesWith(I
, RHS
);
4066 case ICmpInst::ICMP_ULT
: // (X s< 13 | X u< 15) -> no change
4070 case ICmpInst::ICMP_UGT
:
4072 default: assert(0 && "Unknown integer condition code!");
4073 case ICmpInst::ICMP_EQ
: // (X u> 13 | X == 15) -> X u> 13
4074 case ICmpInst::ICMP_UGT
: // (X u> 13 | X u> 15) -> X u> 13
4075 return ReplaceInstUsesWith(I
, LHS
);
4076 case ICmpInst::ICMP_SGT
: // (X u> 13 | X s> 15) -> no change
4078 case ICmpInst::ICMP_NE
: // (X u> 13 | X != 15) -> true
4079 case ICmpInst::ICMP_ULT
: // (X u> 13 | X u< 15) -> true
4080 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
4081 case ICmpInst::ICMP_SLT
: // (X u> 13 | X s< 15) -> no change
4085 case ICmpInst::ICMP_SGT
:
4087 default: assert(0 && "Unknown integer condition code!");
4088 case ICmpInst::ICMP_EQ
: // (X s> 13 | X == 15) -> X > 13
4089 case ICmpInst::ICMP_SGT
: // (X s> 13 | X s> 15) -> X > 13
4090 return ReplaceInstUsesWith(I
, LHS
);
4091 case ICmpInst::ICMP_UGT
: // (X s> 13 | X u> 15) -> no change
4093 case ICmpInst::ICMP_NE
: // (X s> 13 | X != 15) -> true
4094 case ICmpInst::ICMP_SLT
: // (X s> 13 | X s< 15) -> true
4095 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
4096 case ICmpInst::ICMP_ULT
: // (X s> 13 | X u< 15) -> no change
4104 // fold (or (cast A), (cast B)) -> (cast (or A, B))
4105 if (CastInst
*Op0C
= dyn_cast
<CastInst
>(Op0
)) {
4106 if (CastInst
*Op1C
= dyn_cast
<CastInst
>(Op1
))
4107 if (Op0C
->getOpcode() == Op1C
->getOpcode()) {// same cast kind ?
4108 const Type
*SrcTy
= Op0C
->getOperand(0)->getType();
4109 if (SrcTy
== Op1C
->getOperand(0)->getType() && SrcTy
->isInteger() &&
4110 // Only do this if the casts both really cause code to be generated.
4111 ValueRequiresCast(Op0C
->getOpcode(), Op0C
->getOperand(0),
4113 ValueRequiresCast(Op1C
->getOpcode(), Op1C
->getOperand(0),
4115 Instruction
*NewOp
= BinaryOperator::createOr(Op0C
->getOperand(0),
4116 Op1C
->getOperand(0),
4118 InsertNewInstBefore(NewOp
, I
);
4119 return CastInst::create(Op0C
->getOpcode(), NewOp
, I
.getType());
4125 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4126 if (FCmpInst
*LHS
= dyn_cast
<FCmpInst
>(I
.getOperand(0))) {
4127 if (FCmpInst
*RHS
= dyn_cast
<FCmpInst
>(I
.getOperand(1))) {
4128 if (LHS
->getPredicate() == FCmpInst::FCMP_UNO
&&
4129 RHS
->getPredicate() == FCmpInst::FCMP_UNO
)
4130 if (ConstantFP
*LHSC
= dyn_cast
<ConstantFP
>(LHS
->getOperand(1)))
4131 if (ConstantFP
*RHSC
= dyn_cast
<ConstantFP
>(RHS
->getOperand(1))) {
4132 // If either of the constants are nans, then the whole thing returns
4134 if (LHSC
->getValueAPF().isNaN() || RHSC
->getValueAPF().isNaN())
4135 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
4137 // Otherwise, no need to compare the two constants, compare the
4139 return new FCmpInst(FCmpInst::FCMP_UNO
, LHS
->getOperand(0),
4140 RHS
->getOperand(0));
4145 return Changed
? &I
: 0;
4148 // XorSelf - Implements: X ^ X --> 0
4151 XorSelf(Value
*rhs
) : RHS(rhs
) {}
4152 bool shouldApply(Value
*LHS
) const { return LHS
== RHS
; }
4153 Instruction
*apply(BinaryOperator
&Xor
) const {
4159 Instruction
*InstCombiner::visitXor(BinaryOperator
&I
) {
4160 bool Changed
= SimplifyCommutative(I
);
4161 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
4163 if (isa
<UndefValue
>(Op1
))
4164 return ReplaceInstUsesWith(I
, Op1
); // X ^ undef -> undef
4166 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4167 if (Instruction
*Result
= AssociativeOpt(I
, XorSelf(Op1
))) {
4168 assert(Result
== &I
&& "AssociativeOpt didn't work?"); Result
=Result
;
4169 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
4172 // See if we can simplify any instructions used by the instruction whose sole
4173 // purpose is to compute bits we don't care about.
4174 if (!isa
<VectorType
>(I
.getType())) {
4175 uint32_t BitWidth
= cast
<IntegerType
>(I
.getType())->getBitWidth();
4176 APInt
KnownZero(BitWidth
, 0), KnownOne(BitWidth
, 0);
4177 if (SimplifyDemandedBits(&I
, APInt::getAllOnesValue(BitWidth
),
4178 KnownZero
, KnownOne
))
4180 } else if (isa
<ConstantAggregateZero
>(Op1
)) {
4181 return ReplaceInstUsesWith(I
, Op0
); // X ^ <0,0> -> X
4184 // Is this a ~ operation?
4185 if (Value
*NotOp
= dyn_castNotVal(&I
)) {
4186 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4187 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4188 if (BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(NotOp
)) {
4189 if (Op0I
->getOpcode() == Instruction::And
||
4190 Op0I
->getOpcode() == Instruction::Or
) {
4191 if (dyn_castNotVal(Op0I
->getOperand(1))) Op0I
->swapOperands();
4192 if (Value
*Op0NotVal
= dyn_castNotVal(Op0I
->getOperand(0))) {
4194 BinaryOperator::createNot(Op0I
->getOperand(1),
4195 Op0I
->getOperand(1)->getName()+".not");
4196 InsertNewInstBefore(NotY
, I
);
4197 if (Op0I
->getOpcode() == Instruction::And
)
4198 return BinaryOperator::createOr(Op0NotVal
, NotY
);
4200 return BinaryOperator::createAnd(Op0NotVal
, NotY
);
4207 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(Op1
)) {
4208 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4209 if (RHS
== ConstantInt::getTrue() && Op0
->hasOneUse()) {
4210 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(Op0
))
4211 return new ICmpInst(ICI
->getInversePredicate(),
4212 ICI
->getOperand(0), ICI
->getOperand(1));
4214 if (FCmpInst
*FCI
= dyn_cast
<FCmpInst
>(Op0
))
4215 return new FCmpInst(FCI
->getInversePredicate(),
4216 FCI
->getOperand(0), FCI
->getOperand(1));
4219 if (BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(Op0
)) {
4220 // ~(c-X) == X-c-1 == X+(-c-1)
4221 if (Op0I
->getOpcode() == Instruction::Sub
&& RHS
->isAllOnesValue())
4222 if (Constant
*Op0I0C
= dyn_cast
<Constant
>(Op0I
->getOperand(0))) {
4223 Constant
*NegOp0I0C
= ConstantExpr::getNeg(Op0I0C
);
4224 Constant
*ConstantRHS
= ConstantExpr::getSub(NegOp0I0C
,
4225 ConstantInt::get(I
.getType(), 1));
4226 return BinaryOperator::createAdd(Op0I
->getOperand(1), ConstantRHS
);
4229 if (ConstantInt
*Op0CI
= dyn_cast
<ConstantInt
>(Op0I
->getOperand(1)))
4230 if (Op0I
->getOpcode() == Instruction::Add
) {
4231 // ~(X-c) --> (-c-1)-X
4232 if (RHS
->isAllOnesValue()) {
4233 Constant
*NegOp0CI
= ConstantExpr::getNeg(Op0CI
);
4234 return BinaryOperator::createSub(
4235 ConstantExpr::getSub(NegOp0CI
,
4236 ConstantInt::get(I
.getType(), 1)),
4237 Op0I
->getOperand(0));
4238 } else if (RHS
->getValue().isSignBit()) {
4239 // (X + C) ^ signbit -> (X + C + signbit)
4240 Constant
*C
= ConstantInt::get(RHS
->getValue() + Op0CI
->getValue());
4241 return BinaryOperator::createAdd(Op0I
->getOperand(0), C
);
4244 } else if (Op0I
->getOpcode() == Instruction::Or
) {
4245 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4246 if (MaskedValueIsZero(Op0I
->getOperand(0), Op0CI
->getValue())) {
4247 Constant
*NewRHS
= ConstantExpr::getOr(Op0CI
, RHS
);
4248 // Anything in both C1 and C2 is known to be zero, remove it from
4250 Constant
*CommonBits
= And(Op0CI
, RHS
);
4251 NewRHS
= ConstantExpr::getAnd(NewRHS
,
4252 ConstantExpr::getNot(CommonBits
));
4253 AddToWorkList(Op0I
);
4254 I
.setOperand(0, Op0I
->getOperand(0));
4255 I
.setOperand(1, NewRHS
);
4261 // Try to fold constant and into select arguments.
4262 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0
))
4263 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
4265 if (isa
<PHINode
>(Op0
))
4266 if (Instruction
*NV
= FoldOpIntoPhi(I
))
4270 if (Value
*X
= dyn_castNotVal(Op0
)) // ~A ^ A == -1
4272 return ReplaceInstUsesWith(I
, Constant::getAllOnesValue(I
.getType()));
4274 if (Value
*X
= dyn_castNotVal(Op1
)) // A ^ ~A == -1
4276 return ReplaceInstUsesWith(I
, Constant::getAllOnesValue(I
.getType()));
4279 BinaryOperator
*Op1I
= dyn_cast
<BinaryOperator
>(Op1
);
4282 if (match(Op1I
, m_Or(m_Value(A
), m_Value(B
)))) {
4283 if (A
== Op0
) { // B^(B|A) == (A|B)^B
4284 Op1I
->swapOperands();
4286 std::swap(Op0
, Op1
);
4287 } else if (B
== Op0
) { // B^(A|B) == (A|B)^B
4288 I
.swapOperands(); // Simplified below.
4289 std::swap(Op0
, Op1
);
4291 } else if (match(Op1I
, m_Xor(m_Value(A
), m_Value(B
)))) {
4292 if (Op0
== A
) // A^(A^B) == B
4293 return ReplaceInstUsesWith(I
, B
);
4294 else if (Op0
== B
) // A^(B^A) == B
4295 return ReplaceInstUsesWith(I
, A
);
4296 } else if (match(Op1I
, m_And(m_Value(A
), m_Value(B
))) && Op1I
->hasOneUse()){
4297 if (A
== Op0
) { // A^(A&B) -> A^(B&A)
4298 Op1I
->swapOperands();
4301 if (B
== Op0
) { // A^(B&A) -> (B&A)^A
4302 I
.swapOperands(); // Simplified below.
4303 std::swap(Op0
, Op1
);
4308 BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(Op0
);
4311 if (match(Op0I
, m_Or(m_Value(A
), m_Value(B
))) && Op0I
->hasOneUse()) {
4312 if (A
== Op1
) // (B|A)^B == (A|B)^B
4314 if (B
== Op1
) { // (A|B)^B == A & ~B
4316 InsertNewInstBefore(BinaryOperator::createNot(Op1
, "tmp"), I
);
4317 return BinaryOperator::createAnd(A
, NotB
);
4319 } else if (match(Op0I
, m_Xor(m_Value(A
), m_Value(B
)))) {
4320 if (Op1
== A
) // (A^B)^A == B
4321 return ReplaceInstUsesWith(I
, B
);
4322 else if (Op1
== B
) // (B^A)^A == B
4323 return ReplaceInstUsesWith(I
, A
);
4324 } else if (match(Op0I
, m_And(m_Value(A
), m_Value(B
))) && Op0I
->hasOneUse()){
4325 if (A
== Op1
) // (A&B)^A -> (B&A)^A
4327 if (B
== Op1
&& // (B&A)^A == ~B & A
4328 !isa
<ConstantInt
>(Op1
)) { // Canonical form is (B&C)^C
4330 InsertNewInstBefore(BinaryOperator::createNot(A
, "tmp"), I
);
4331 return BinaryOperator::createAnd(N
, Op1
);
4336 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4337 if (Op0I
&& Op1I
&& Op0I
->isShift() &&
4338 Op0I
->getOpcode() == Op1I
->getOpcode() &&
4339 Op0I
->getOperand(1) == Op1I
->getOperand(1) &&
4340 (Op1I
->hasOneUse() || Op1I
->hasOneUse())) {
4341 Instruction
*NewOp
=
4342 InsertNewInstBefore(BinaryOperator::createXor(Op0I
->getOperand(0),
4343 Op1I
->getOperand(0),
4344 Op0I
->getName()), I
);
4345 return BinaryOperator::create(Op1I
->getOpcode(), NewOp
,
4346 Op1I
->getOperand(1));
4350 Value
*A
, *B
, *C
, *D
;
4351 // (A & B)^(A | B) -> A ^ B
4352 if (match(Op0I
, m_And(m_Value(A
), m_Value(B
))) &&
4353 match(Op1I
, m_Or(m_Value(C
), m_Value(D
)))) {
4354 if ((A
== C
&& B
== D
) || (A
== D
&& B
== C
))
4355 return BinaryOperator::createXor(A
, B
);
4357 // (A | B)^(A & B) -> A ^ B
4358 if (match(Op0I
, m_Or(m_Value(A
), m_Value(B
))) &&
4359 match(Op1I
, m_And(m_Value(C
), m_Value(D
)))) {
4360 if ((A
== C
&& B
== D
) || (A
== D
&& B
== C
))
4361 return BinaryOperator::createXor(A
, B
);
4365 if ((Op0I
->hasOneUse() || Op1I
->hasOneUse()) &&
4366 match(Op0I
, m_And(m_Value(A
), m_Value(B
))) &&
4367 match(Op1I
, m_And(m_Value(C
), m_Value(D
)))) {
4368 // (X & Y)^(X & Y) -> (Y^Z) & X
4369 Value
*X
= 0, *Y
= 0, *Z
= 0;
4371 X
= A
, Y
= B
, Z
= D
;
4373 X
= A
, Y
= B
, Z
= C
;
4375 X
= B
, Y
= A
, Z
= D
;
4377 X
= B
, Y
= A
, Z
= C
;
4380 Instruction
*NewOp
=
4381 InsertNewInstBefore(BinaryOperator::createXor(Y
, Z
, Op0
->getName()), I
);
4382 return BinaryOperator::createAnd(NewOp
, X
);
4387 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4388 if (ICmpInst
*RHS
= dyn_cast
<ICmpInst
>(I
.getOperand(1)))
4389 if (Instruction
*R
= AssociativeOpt(I
, FoldICmpLogical(*this, RHS
)))
4392 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
4393 if (CastInst
*Op0C
= dyn_cast
<CastInst
>(Op0
)) {
4394 if (CastInst
*Op1C
= dyn_cast
<CastInst
>(Op1
))
4395 if (Op0C
->getOpcode() == Op1C
->getOpcode()) { // same cast kind?
4396 const Type
*SrcTy
= Op0C
->getOperand(0)->getType();
4397 if (SrcTy
== Op1C
->getOperand(0)->getType() && SrcTy
->isInteger() &&
4398 // Only do this if the casts both really cause code to be generated.
4399 ValueRequiresCast(Op0C
->getOpcode(), Op0C
->getOperand(0),
4401 ValueRequiresCast(Op1C
->getOpcode(), Op1C
->getOperand(0),
4403 Instruction
*NewOp
= BinaryOperator::createXor(Op0C
->getOperand(0),
4404 Op1C
->getOperand(0),
4406 InsertNewInstBefore(NewOp
, I
);
4407 return CastInst::create(Op0C
->getOpcode(), NewOp
, I
.getType());
4411 return Changed
? &I
: 0;
4414 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
4415 /// overflowed for this type.
4416 static bool AddWithOverflow(ConstantInt
*&Result
, ConstantInt
*In1
,
4417 ConstantInt
*In2
, bool IsSigned
= false) {
4418 Result
= cast
<ConstantInt
>(Add(In1
, In2
));
4421 if (In2
->getValue().isNegative())
4422 return Result
->getValue().sgt(In1
->getValue());
4424 return Result
->getValue().slt(In1
->getValue());
4426 return Result
->getValue().ult(In1
->getValue());
4429 /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
4430 /// code necessary to compute the offset from the base pointer (without adding
4431 /// in the base pointer). Return the result as a signed integer of intptr size.
4432 static Value
*EmitGEPOffset(User
*GEP
, Instruction
&I
, InstCombiner
&IC
) {
4433 TargetData
&TD
= IC
.getTargetData();
4434 gep_type_iterator GTI
= gep_type_begin(GEP
);
4435 const Type
*IntPtrTy
= TD
.getIntPtrType();
4436 Value
*Result
= Constant::getNullValue(IntPtrTy
);
4438 // Build a mask for high order bits.
4439 unsigned IntPtrWidth
= TD
.getPointerSize()*8;
4440 uint64_t PtrSizeMask
= ~0ULL >> (64-IntPtrWidth
);
4442 for (unsigned i
= 1, e
= GEP
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
4443 Value
*Op
= GEP
->getOperand(i
);
4444 uint64_t Size
= TD
.getABITypeSize(GTI
.getIndexedType()) & PtrSizeMask
;
4445 if (ConstantInt
*OpC
= dyn_cast
<ConstantInt
>(Op
)) {
4446 if (OpC
->isZero()) continue;
4448 // Handle a struct index, which adds its field offset to the pointer.
4449 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
4450 Size
= TD
.getStructLayout(STy
)->getElementOffset(OpC
->getZExtValue());
4452 if (ConstantInt
*RC
= dyn_cast
<ConstantInt
>(Result
))
4453 Result
= ConstantInt::get(RC
->getValue() + APInt(IntPtrWidth
, Size
));
4455 Result
= IC
.InsertNewInstBefore(
4456 BinaryOperator::createAdd(Result
,
4457 ConstantInt::get(IntPtrTy
, Size
),
4458 GEP
->getName()+".offs"), I
);
4462 Constant
*Scale
= ConstantInt::get(IntPtrTy
, Size
);
4463 Constant
*OC
= ConstantExpr::getIntegerCast(OpC
, IntPtrTy
, true /*SExt*/);
4464 Scale
= ConstantExpr::getMul(OC
, Scale
);
4465 if (Constant
*RC
= dyn_cast
<Constant
>(Result
))
4466 Result
= ConstantExpr::getAdd(RC
, Scale
);
4468 // Emit an add instruction.
4469 Result
= IC
.InsertNewInstBefore(
4470 BinaryOperator::createAdd(Result
, Scale
,
4471 GEP
->getName()+".offs"), I
);
4475 // Convert to correct type.
4476 if (Op
->getType() != IntPtrTy
) {
4477 if (Constant
*OpC
= dyn_cast
<Constant
>(Op
))
4478 Op
= ConstantExpr::getSExt(OpC
, IntPtrTy
);
4480 Op
= IC
.InsertNewInstBefore(new SExtInst(Op
, IntPtrTy
,
4481 Op
->getName()+".c"), I
);
4484 Constant
*Scale
= ConstantInt::get(IntPtrTy
, Size
);
4485 if (Constant
*OpC
= dyn_cast
<Constant
>(Op
))
4486 Op
= ConstantExpr::getMul(OpC
, Scale
);
4487 else // We'll let instcombine(mul) convert this to a shl if possible.
4488 Op
= IC
.InsertNewInstBefore(BinaryOperator::createMul(Op
, Scale
,
4489 GEP
->getName()+".idx"), I
);
4492 // Emit an add instruction.
4493 if (isa
<Constant
>(Op
) && isa
<Constant
>(Result
))
4494 Result
= ConstantExpr::getAdd(cast
<Constant
>(Op
),
4495 cast
<Constant
>(Result
));
4497 Result
= IC
.InsertNewInstBefore(BinaryOperator::createAdd(Op
, Result
,
4498 GEP
->getName()+".offs"), I
);
4503 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
4504 /// else. At this point we know that the GEP is on the LHS of the comparison.
4505 Instruction
*InstCombiner::FoldGEPICmp(User
*GEPLHS
, Value
*RHS
,
4506 ICmpInst::Predicate Cond
,
4508 assert(dyn_castGetElementPtr(GEPLHS
) && "LHS is not a getelementptr!");
4510 if (CastInst
*CI
= dyn_cast
<CastInst
>(RHS
))
4511 if (isa
<PointerType
>(CI
->getOperand(0)->getType()))
4512 RHS
= CI
->getOperand(0);
4514 Value
*PtrBase
= GEPLHS
->getOperand(0);
4515 if (PtrBase
== RHS
) {
4516 // As an optimization, we don't actually have to compute the actual value of
4517 // OFFSET if this is a icmp_eq or icmp_ne comparison, just return whether
4518 // each index is zero or not.
4519 if (Cond
== ICmpInst::ICMP_EQ
|| Cond
== ICmpInst::ICMP_NE
) {
4520 Instruction
*InVal
= 0;
4521 gep_type_iterator GTI
= gep_type_begin(GEPLHS
);
4522 for (unsigned i
= 1, e
= GEPLHS
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
4524 if (Constant
*C
= dyn_cast
<Constant
>(GEPLHS
->getOperand(i
))) {
4525 if (isa
<UndefValue
>(C
)) // undef index -> undef.
4526 return ReplaceInstUsesWith(I
, UndefValue::get(I
.getType()));
4527 if (C
->isNullValue())
4529 else if (TD
->getABITypeSize(GTI
.getIndexedType()) == 0) {
4530 EmitIt
= false; // This is indexing into a zero sized array?
4531 } else if (isa
<ConstantInt
>(C
))
4532 return ReplaceInstUsesWith(I
, // No comparison is needed here.
4533 ConstantInt::get(Type::Int1Ty
,
4534 Cond
== ICmpInst::ICMP_NE
));
4539 new ICmpInst(Cond
, GEPLHS
->getOperand(i
),
4540 Constant::getNullValue(GEPLHS
->getOperand(i
)->getType()));
4544 InVal
= InsertNewInstBefore(InVal
, I
);
4545 InsertNewInstBefore(Comp
, I
);
4546 if (Cond
== ICmpInst::ICMP_NE
) // True if any are unequal
4547 InVal
= BinaryOperator::createOr(InVal
, Comp
);
4548 else // True if all are equal
4549 InVal
= BinaryOperator::createAnd(InVal
, Comp
);
4557 // No comparison is needed here, all indexes = 0
4558 ReplaceInstUsesWith(I
, ConstantInt::get(Type::Int1Ty
,
4559 Cond
== ICmpInst::ICMP_EQ
));
4562 // Only lower this if the icmp is the only user of the GEP or if we expect
4563 // the result to fold to a constant!
4564 if (isa
<ConstantExpr
>(GEPLHS
) || GEPLHS
->hasOneUse()) {
4565 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
4566 Value
*Offset
= EmitGEPOffset(GEPLHS
, I
, *this);
4567 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), Offset
,
4568 Constant::getNullValue(Offset
->getType()));
4570 } else if (User
*GEPRHS
= dyn_castGetElementPtr(RHS
)) {
4571 // If the base pointers are different, but the indices are the same, just
4572 // compare the base pointer.
4573 if (PtrBase
!= GEPRHS
->getOperand(0)) {
4574 bool IndicesTheSame
= GEPLHS
->getNumOperands()==GEPRHS
->getNumOperands();
4575 IndicesTheSame
&= GEPLHS
->getOperand(0)->getType() ==
4576 GEPRHS
->getOperand(0)->getType();
4578 for (unsigned i
= 1, e
= GEPLHS
->getNumOperands(); i
!= e
; ++i
)
4579 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
4580 IndicesTheSame
= false;
4584 // If all indices are the same, just compare the base pointers.
4586 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
),
4587 GEPLHS
->getOperand(0), GEPRHS
->getOperand(0));
4589 // Otherwise, the base pointers are different and the indices are
4590 // different, bail out.
4594 // If one of the GEPs has all zero indices, recurse.
4595 bool AllZeros
= true;
4596 for (unsigned i
= 1, e
= GEPLHS
->getNumOperands(); i
!= e
; ++i
)
4597 if (!isa
<Constant
>(GEPLHS
->getOperand(i
)) ||
4598 !cast
<Constant
>(GEPLHS
->getOperand(i
))->isNullValue()) {
4603 return FoldGEPICmp(GEPRHS
, GEPLHS
->getOperand(0),
4604 ICmpInst::getSwappedPredicate(Cond
), I
);
4606 // If the other GEP has all zero indices, recurse.
4608 for (unsigned i
= 1, e
= GEPRHS
->getNumOperands(); i
!= e
; ++i
)
4609 if (!isa
<Constant
>(GEPRHS
->getOperand(i
)) ||
4610 !cast
<Constant
>(GEPRHS
->getOperand(i
))->isNullValue()) {
4615 return FoldGEPICmp(GEPLHS
, GEPRHS
->getOperand(0), Cond
, I
);
4617 if (GEPLHS
->getNumOperands() == GEPRHS
->getNumOperands()) {
4618 // If the GEPs only differ by one index, compare it.
4619 unsigned NumDifferences
= 0; // Keep track of # differences.
4620 unsigned DiffOperand
= 0; // The operand that differs.
4621 for (unsigned i
= 1, e
= GEPRHS
->getNumOperands(); i
!= e
; ++i
)
4622 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
4623 if (GEPLHS
->getOperand(i
)->getType()->getPrimitiveSizeInBits() !=
4624 GEPRHS
->getOperand(i
)->getType()->getPrimitiveSizeInBits()) {
4625 // Irreconcilable differences.
4629 if (NumDifferences
++) break;
4634 if (NumDifferences
== 0) // SAME GEP?
4635 return ReplaceInstUsesWith(I
, // No comparison is needed here.
4636 ConstantInt::get(Type::Int1Ty
,
4637 isTrueWhenEqual(Cond
)));
4639 else if (NumDifferences
== 1) {
4640 Value
*LHSV
= GEPLHS
->getOperand(DiffOperand
);
4641 Value
*RHSV
= GEPRHS
->getOperand(DiffOperand
);
4642 // Make sure we do a signed comparison here.
4643 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), LHSV
, RHSV
);
4647 // Only lower this if the icmp is the only user of the GEP or if we expect
4648 // the result to fold to a constant!
4649 if ((isa
<ConstantExpr
>(GEPLHS
) || GEPLHS
->hasOneUse()) &&
4650 (isa
<ConstantExpr
>(GEPRHS
) || GEPRHS
->hasOneUse())) {
4651 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
4652 Value
*L
= EmitGEPOffset(GEPLHS
, I
, *this);
4653 Value
*R
= EmitGEPOffset(GEPRHS
, I
, *this);
4654 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), L
, R
);
4660 Instruction
*InstCombiner::visitFCmpInst(FCmpInst
&I
) {
4661 bool Changed
= SimplifyCompare(I
);
4662 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
4664 // Fold trivial predicates.
4665 if (I
.getPredicate() == FCmpInst::FCMP_FALSE
)
4666 return ReplaceInstUsesWith(I
, Constant::getNullValue(Type::Int1Ty
));
4667 if (I
.getPredicate() == FCmpInst::FCMP_TRUE
)
4668 return ReplaceInstUsesWith(I
, ConstantInt::get(Type::Int1Ty
, 1));
4670 // Simplify 'fcmp pred X, X'
4672 switch (I
.getPredicate()) {
4673 default: assert(0 && "Unknown predicate!");
4674 case FCmpInst::FCMP_UEQ
: // True if unordered or equal
4675 case FCmpInst::FCMP_UGE
: // True if unordered, greater than, or equal
4676 case FCmpInst::FCMP_ULE
: // True if unordered, less than, or equal
4677 return ReplaceInstUsesWith(I
, ConstantInt::get(Type::Int1Ty
, 1));
4678 case FCmpInst::FCMP_OGT
: // True if ordered and greater than
4679 case FCmpInst::FCMP_OLT
: // True if ordered and less than
4680 case FCmpInst::FCMP_ONE
: // True if ordered and operands are unequal
4681 return ReplaceInstUsesWith(I
, ConstantInt::get(Type::Int1Ty
, 0));
4683 case FCmpInst::FCMP_UNO
: // True if unordered: isnan(X) | isnan(Y)
4684 case FCmpInst::FCMP_ULT
: // True if unordered or less than
4685 case FCmpInst::FCMP_UGT
: // True if unordered or greater than
4686 case FCmpInst::FCMP_UNE
: // True if unordered or not equal
4687 // Canonicalize these to be 'fcmp uno %X, 0.0'.
4688 I
.setPredicate(FCmpInst::FCMP_UNO
);
4689 I
.setOperand(1, Constant::getNullValue(Op0
->getType()));
4692 case FCmpInst::FCMP_ORD
: // True if ordered (no nans)
4693 case FCmpInst::FCMP_OEQ
: // True if ordered and equal
4694 case FCmpInst::FCMP_OGE
: // True if ordered and greater than or equal
4695 case FCmpInst::FCMP_OLE
: // True if ordered and less than or equal
4696 // Canonicalize these to be 'fcmp ord %X, 0.0'.
4697 I
.setPredicate(FCmpInst::FCMP_ORD
);
4698 I
.setOperand(1, Constant::getNullValue(Op0
->getType()));
4703 if (isa
<UndefValue
>(Op1
)) // fcmp pred X, undef -> undef
4704 return ReplaceInstUsesWith(I
, UndefValue::get(Type::Int1Ty
));
4706 // Handle fcmp with constant RHS
4707 if (Constant
*RHSC
= dyn_cast
<Constant
>(Op1
)) {
4708 if (Instruction
*LHSI
= dyn_cast
<Instruction
>(Op0
))
4709 switch (LHSI
->getOpcode()) {
4710 case Instruction::PHI
:
4711 if (Instruction
*NV
= FoldOpIntoPhi(I
))
4714 case Instruction::Select
:
4715 // If either operand of the select is a constant, we can fold the
4716 // comparison into the select arms, which will cause one to be
4717 // constant folded and the select turned into a bitwise or.
4718 Value
*Op1
= 0, *Op2
= 0;
4719 if (LHSI
->hasOneUse()) {
4720 if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(1))) {
4721 // Fold the known value into the constant operand.
4722 Op1
= ConstantExpr::getCompare(I
.getPredicate(), C
, RHSC
);
4723 // Insert a new FCmp of the other select operand.
4724 Op2
= InsertNewInstBefore(new FCmpInst(I
.getPredicate(),
4725 LHSI
->getOperand(2), RHSC
,
4727 } else if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(2))) {
4728 // Fold the known value into the constant operand.
4729 Op2
= ConstantExpr::getCompare(I
.getPredicate(), C
, RHSC
);
4730 // Insert a new FCmp of the other select operand.
4731 Op1
= InsertNewInstBefore(new FCmpInst(I
.getPredicate(),
4732 LHSI
->getOperand(1), RHSC
,
4738 return new SelectInst(LHSI
->getOperand(0), Op1
, Op2
);
4743 return Changed
? &I
: 0;
4746 Instruction
*InstCombiner::visitICmpInst(ICmpInst
&I
) {
4747 bool Changed
= SimplifyCompare(I
);
4748 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
4749 const Type
*Ty
= Op0
->getType();
4753 return ReplaceInstUsesWith(I
, ConstantInt::get(Type::Int1Ty
,
4754 isTrueWhenEqual(I
)));
4756 if (isa
<UndefValue
>(Op1
)) // X icmp undef -> undef
4757 return ReplaceInstUsesWith(I
, UndefValue::get(Type::Int1Ty
));
4759 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
4760 // addresses never equal each other! We already know that Op0 != Op1.
4761 if ((isa
<GlobalValue
>(Op0
) || isa
<AllocaInst
>(Op0
) ||
4762 isa
<ConstantPointerNull
>(Op0
)) &&
4763 (isa
<GlobalValue
>(Op1
) || isa
<AllocaInst
>(Op1
) ||
4764 isa
<ConstantPointerNull
>(Op1
)))
4765 return ReplaceInstUsesWith(I
, ConstantInt::get(Type::Int1Ty
,
4766 !isTrueWhenEqual(I
)));
4768 // icmp's with boolean values can always be turned into bitwise operations
4769 if (Ty
== Type::Int1Ty
) {
4770 switch (I
.getPredicate()) {
4771 default: assert(0 && "Invalid icmp instruction!");
4772 case ICmpInst::ICMP_EQ
: { // icmp eq bool %A, %B -> ~(A^B)
4773 Instruction
*Xor
= BinaryOperator::createXor(Op0
, Op1
, I
.getName()+"tmp");
4774 InsertNewInstBefore(Xor
, I
);
4775 return BinaryOperator::createNot(Xor
);
4777 case ICmpInst::ICMP_NE
: // icmp eq bool %A, %B -> A^B
4778 return BinaryOperator::createXor(Op0
, Op1
);
4780 case ICmpInst::ICMP_UGT
:
4781 case ICmpInst::ICMP_SGT
:
4782 std::swap(Op0
, Op1
); // Change icmp gt -> icmp lt
4784 case ICmpInst::ICMP_ULT
:
4785 case ICmpInst::ICMP_SLT
: { // icmp lt bool A, B -> ~X & Y
4786 Instruction
*Not
= BinaryOperator::createNot(Op0
, I
.getName()+"tmp");
4787 InsertNewInstBefore(Not
, I
);
4788 return BinaryOperator::createAnd(Not
, Op1
);
4790 case ICmpInst::ICMP_UGE
:
4791 case ICmpInst::ICMP_SGE
:
4792 std::swap(Op0
, Op1
); // Change icmp ge -> icmp le
4794 case ICmpInst::ICMP_ULE
:
4795 case ICmpInst::ICMP_SLE
: { // icmp le bool %A, %B -> ~A | B
4796 Instruction
*Not
= BinaryOperator::createNot(Op0
, I
.getName()+"tmp");
4797 InsertNewInstBefore(Not
, I
);
4798 return BinaryOperator::createOr(Not
, Op1
);
4803 // See if we are doing a comparison between a constant and an instruction that
4804 // can be folded into the comparison.
4805 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
4806 switch (I
.getPredicate()) {
4808 case ICmpInst::ICMP_ULT
: // A <u MIN -> FALSE
4809 if (CI
->isMinValue(false))
4810 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
4811 if (CI
->isMaxValue(false)) // A <u MAX -> A != MAX
4812 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
,Op1
);
4813 if (isMinValuePlusOne(CI
,false)) // A <u MIN+1 -> A == MIN
4814 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, SubOne(CI
));
4815 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
4816 if (CI
->isMinValue(true))
4817 return new ICmpInst(ICmpInst::ICMP_SGT
, Op0
,
4818 ConstantInt::getAllOnesValue(Op0
->getType()));
4822 case ICmpInst::ICMP_SLT
:
4823 if (CI
->isMinValue(true)) // A <s MIN -> FALSE
4824 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
4825 if (CI
->isMaxValue(true)) // A <s MAX -> A != MAX
4826 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
4827 if (isMinValuePlusOne(CI
,true)) // A <s MIN+1 -> A == MIN
4828 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, SubOne(CI
));
4831 case ICmpInst::ICMP_UGT
:
4832 if (CI
->isMaxValue(false)) // A >u MAX -> FALSE
4833 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
4834 if (CI
->isMinValue(false)) // A >u MIN -> A != MIN
4835 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
4836 if (isMaxValueMinusOne(CI
, false)) // A >u MAX-1 -> A == MAX
4837 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, AddOne(CI
));
4839 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
4840 if (CI
->isMaxValue(true))
4841 return new ICmpInst(ICmpInst::ICMP_SLT
, Op0
,
4842 ConstantInt::getNullValue(Op0
->getType()));
4845 case ICmpInst::ICMP_SGT
:
4846 if (CI
->isMaxValue(true)) // A >s MAX -> FALSE
4847 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
4848 if (CI
->isMinValue(true)) // A >s MIN -> A != MIN
4849 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
4850 if (isMaxValueMinusOne(CI
, true)) // A >s MAX-1 -> A == MAX
4851 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, AddOne(CI
));
4854 case ICmpInst::ICMP_ULE
:
4855 if (CI
->isMaxValue(false)) // A <=u MAX -> TRUE
4856 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
4857 if (CI
->isMinValue(false)) // A <=u MIN -> A == MIN
4858 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
4859 if (isMaxValueMinusOne(CI
,false)) // A <=u MAX-1 -> A != MAX
4860 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, AddOne(CI
));
4863 case ICmpInst::ICMP_SLE
:
4864 if (CI
->isMaxValue(true)) // A <=s MAX -> TRUE
4865 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
4866 if (CI
->isMinValue(true)) // A <=s MIN -> A == MIN
4867 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
4868 if (isMaxValueMinusOne(CI
,true)) // A <=s MAX-1 -> A != MAX
4869 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, AddOne(CI
));
4872 case ICmpInst::ICMP_UGE
:
4873 if (CI
->isMinValue(false)) // A >=u MIN -> TRUE
4874 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
4875 if (CI
->isMaxValue(false)) // A >=u MAX -> A == MAX
4876 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
4877 if (isMinValuePlusOne(CI
,false)) // A >=u MIN-1 -> A != MIN
4878 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, SubOne(CI
));
4881 case ICmpInst::ICMP_SGE
:
4882 if (CI
->isMinValue(true)) // A >=s MIN -> TRUE
4883 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
4884 if (CI
->isMaxValue(true)) // A >=s MAX -> A == MAX
4885 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
4886 if (isMinValuePlusOne(CI
,true)) // A >=s MIN-1 -> A != MIN
4887 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, SubOne(CI
));
4891 // If we still have a icmp le or icmp ge instruction, turn it into the
4892 // appropriate icmp lt or icmp gt instruction. Since the border cases have
4893 // already been handled above, this requires little checking.
4895 switch (I
.getPredicate()) {
4897 case ICmpInst::ICMP_ULE
:
4898 return new ICmpInst(ICmpInst::ICMP_ULT
, Op0
, AddOne(CI
));
4899 case ICmpInst::ICMP_SLE
:
4900 return new ICmpInst(ICmpInst::ICMP_SLT
, Op0
, AddOne(CI
));
4901 case ICmpInst::ICMP_UGE
:
4902 return new ICmpInst( ICmpInst::ICMP_UGT
, Op0
, SubOne(CI
));
4903 case ICmpInst::ICMP_SGE
:
4904 return new ICmpInst(ICmpInst::ICMP_SGT
, Op0
, SubOne(CI
));
4907 // See if we can fold the comparison based on bits known to be zero or one
4908 // in the input. If this comparison is a normal comparison, it demands all
4909 // bits, if it is a sign bit comparison, it only demands the sign bit.
4912 bool isSignBit
= isSignBitCheck(I
.getPredicate(), CI
, UnusedBit
);
4914 uint32_t BitWidth
= cast
<IntegerType
>(Ty
)->getBitWidth();
4915 APInt
KnownZero(BitWidth
, 0), KnownOne(BitWidth
, 0);
4916 if (SimplifyDemandedBits(Op0
,
4917 isSignBit
? APInt::getSignBit(BitWidth
)
4918 : APInt::getAllOnesValue(BitWidth
),
4919 KnownZero
, KnownOne
, 0))
4922 // Given the known and unknown bits, compute a range that the LHS could be
4924 if ((KnownOne
| KnownZero
) != 0) {
4925 // Compute the Min, Max and RHS values based on the known bits. For the
4926 // EQ and NE we use unsigned values.
4927 APInt
Min(BitWidth
, 0), Max(BitWidth
, 0);
4928 const APInt
& RHSVal
= CI
->getValue();
4929 if (ICmpInst::isSignedPredicate(I
.getPredicate())) {
4930 ComputeSignedMinMaxValuesFromKnownBits(Ty
, KnownZero
, KnownOne
, Min
,
4933 ComputeUnsignedMinMaxValuesFromKnownBits(Ty
, KnownZero
, KnownOne
, Min
,
4936 switch (I
.getPredicate()) { // LE/GE have been folded already.
4937 default: assert(0 && "Unknown icmp opcode!");
4938 case ICmpInst::ICMP_EQ
:
4939 if (Max
.ult(RHSVal
) || Min
.ugt(RHSVal
))
4940 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
4942 case ICmpInst::ICMP_NE
:
4943 if (Max
.ult(RHSVal
) || Min
.ugt(RHSVal
))
4944 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
4946 case ICmpInst::ICMP_ULT
:
4947 if (Max
.ult(RHSVal
))
4948 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
4949 if (Min
.uge(RHSVal
))
4950 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
4952 case ICmpInst::ICMP_UGT
:
4953 if (Min
.ugt(RHSVal
))
4954 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
4955 if (Max
.ule(RHSVal
))
4956 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
4958 case ICmpInst::ICMP_SLT
:
4959 if (Max
.slt(RHSVal
))
4960 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
4961 if (Min
.sgt(RHSVal
))
4962 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
4964 case ICmpInst::ICMP_SGT
:
4965 if (Min
.sgt(RHSVal
))
4966 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
4967 if (Max
.sle(RHSVal
))
4968 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
4973 // Since the RHS is a ConstantInt (CI), if the left hand side is an
4974 // instruction, see if that instruction also has constants so that the
4975 // instruction can be folded into the icmp
4976 if (Instruction
*LHSI
= dyn_cast
<Instruction
>(Op0
))
4977 if (Instruction
*Res
= visitICmpInstWithInstAndIntCst(I
, LHSI
, CI
))
4981 // Handle icmp with constant (but not simple integer constant) RHS
4982 if (Constant
*RHSC
= dyn_cast
<Constant
>(Op1
)) {
4983 if (Instruction
*LHSI
= dyn_cast
<Instruction
>(Op0
))
4984 switch (LHSI
->getOpcode()) {
4985 case Instruction::GetElementPtr
:
4986 if (RHSC
->isNullValue()) {
4987 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
4988 bool isAllZeros
= true;
4989 for (unsigned i
= 1, e
= LHSI
->getNumOperands(); i
!= e
; ++i
)
4990 if (!isa
<Constant
>(LHSI
->getOperand(i
)) ||
4991 !cast
<Constant
>(LHSI
->getOperand(i
))->isNullValue()) {
4996 return new ICmpInst(I
.getPredicate(), LHSI
->getOperand(0),
4997 Constant::getNullValue(LHSI
->getOperand(0)->getType()));
5001 case Instruction::PHI
:
5002 if (Instruction
*NV
= FoldOpIntoPhi(I
))
5005 case Instruction::Select
: {
5006 // If either operand of the select is a constant, we can fold the
5007 // comparison into the select arms, which will cause one to be
5008 // constant folded and the select turned into a bitwise or.
5009 Value
*Op1
= 0, *Op2
= 0;
5010 if (LHSI
->hasOneUse()) {
5011 if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(1))) {
5012 // Fold the known value into the constant operand.
5013 Op1
= ConstantExpr::getICmp(I
.getPredicate(), C
, RHSC
);
5014 // Insert a new ICmp of the other select operand.
5015 Op2
= InsertNewInstBefore(new ICmpInst(I
.getPredicate(),
5016 LHSI
->getOperand(2), RHSC
,
5018 } else if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(2))) {
5019 // Fold the known value into the constant operand.
5020 Op2
= ConstantExpr::getICmp(I
.getPredicate(), C
, RHSC
);
5021 // Insert a new ICmp of the other select operand.
5022 Op1
= InsertNewInstBefore(new ICmpInst(I
.getPredicate(),
5023 LHSI
->getOperand(1), RHSC
,
5029 return new SelectInst(LHSI
->getOperand(0), Op1
, Op2
);
5032 case Instruction::Malloc
:
5033 // If we have (malloc != null), and if the malloc has a single use, we
5034 // can assume it is successful and remove the malloc.
5035 if (LHSI
->hasOneUse() && isa
<ConstantPointerNull
>(RHSC
)) {
5036 AddToWorkList(LHSI
);
5037 return ReplaceInstUsesWith(I
, ConstantInt::get(Type::Int1Ty
,
5038 !isTrueWhenEqual(I
)));
5044 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5045 if (User
*GEP
= dyn_castGetElementPtr(Op0
))
5046 if (Instruction
*NI
= FoldGEPICmp(GEP
, Op1
, I
.getPredicate(), I
))
5048 if (User
*GEP
= dyn_castGetElementPtr(Op1
))
5049 if (Instruction
*NI
= FoldGEPICmp(GEP
, Op0
,
5050 ICmpInst::getSwappedPredicate(I
.getPredicate()), I
))
5053 // Test to see if the operands of the icmp are casted versions of other
5054 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
5056 if (BitCastInst
*CI
= dyn_cast
<BitCastInst
>(Op0
)) {
5057 if (isa
<PointerType
>(Op0
->getType()) &&
5058 (isa
<Constant
>(Op1
) || isa
<BitCastInst
>(Op1
))) {
5059 // We keep moving the cast from the left operand over to the right
5060 // operand, where it can often be eliminated completely.
5061 Op0
= CI
->getOperand(0);
5063 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
5064 // so eliminate it as well.
5065 if (BitCastInst
*CI2
= dyn_cast
<BitCastInst
>(Op1
))
5066 Op1
= CI2
->getOperand(0);
5068 // If Op1 is a constant, we can fold the cast into the constant.
5069 if (Op0
->getType() != Op1
->getType())
5070 if (Constant
*Op1C
= dyn_cast
<Constant
>(Op1
)) {
5071 Op1
= ConstantExpr::getBitCast(Op1C
, Op0
->getType());
5073 // Otherwise, cast the RHS right before the icmp
5074 Op1
= InsertCastBefore(Instruction::BitCast
, Op1
, Op0
->getType(), I
);
5076 return new ICmpInst(I
.getPredicate(), Op0
, Op1
);
5080 if (isa
<CastInst
>(Op0
)) {
5081 // Handle the special case of: icmp (cast bool to X), <cst>
5082 // This comes up when you have code like
5085 // For generality, we handle any zero-extension of any operand comparison
5086 // with a constant or another cast from the same type.
5087 if (isa
<ConstantInt
>(Op1
) || isa
<CastInst
>(Op1
))
5088 if (Instruction
*R
= visitICmpInstWithCastAndCast(I
))
5092 if (I
.isEquality()) {
5093 Value
*A
, *B
, *C
, *D
;
5094 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
)))) {
5095 if (A
== Op1
|| B
== Op1
) { // (A^B) == A -> B == 0
5096 Value
*OtherVal
= A
== Op1
? B
: A
;
5097 return new ICmpInst(I
.getPredicate(), OtherVal
,
5098 Constant::getNullValue(A
->getType()));
5101 if (match(Op1
, m_Xor(m_Value(C
), m_Value(D
)))) {
5102 // A^c1 == C^c2 --> A == C^(c1^c2)
5103 if (ConstantInt
*C1
= dyn_cast
<ConstantInt
>(B
))
5104 if (ConstantInt
*C2
= dyn_cast
<ConstantInt
>(D
))
5105 if (Op1
->hasOneUse()) {
5106 Constant
*NC
= ConstantInt::get(C1
->getValue() ^ C2
->getValue());
5107 Instruction
*Xor
= BinaryOperator::createXor(C
, NC
, "tmp");
5108 return new ICmpInst(I
.getPredicate(), A
,
5109 InsertNewInstBefore(Xor
, I
));
5112 // A^B == A^D -> B == D
5113 if (A
== C
) return new ICmpInst(I
.getPredicate(), B
, D
);
5114 if (A
== D
) return new ICmpInst(I
.getPredicate(), B
, C
);
5115 if (B
== C
) return new ICmpInst(I
.getPredicate(), A
, D
);
5116 if (B
== D
) return new ICmpInst(I
.getPredicate(), A
, C
);
5120 if (match(Op1
, m_Xor(m_Value(A
), m_Value(B
))) &&
5121 (A
== Op0
|| B
== Op0
)) {
5122 // A == (A^B) -> B == 0
5123 Value
*OtherVal
= A
== Op0
? B
: A
;
5124 return new ICmpInst(I
.getPredicate(), OtherVal
,
5125 Constant::getNullValue(A
->getType()));
5127 if (match(Op0
, m_Sub(m_Value(A
), m_Value(B
))) && A
== Op1
) {
5128 // (A-B) == A -> B == 0
5129 return new ICmpInst(I
.getPredicate(), B
,
5130 Constant::getNullValue(B
->getType()));
5132 if (match(Op1
, m_Sub(m_Value(A
), m_Value(B
))) && A
== Op0
) {
5133 // A == (A-B) -> B == 0
5134 return new ICmpInst(I
.getPredicate(), B
,
5135 Constant::getNullValue(B
->getType()));
5138 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
5139 if (Op0
->hasOneUse() && Op1
->hasOneUse() &&
5140 match(Op0
, m_And(m_Value(A
), m_Value(B
))) &&
5141 match(Op1
, m_And(m_Value(C
), m_Value(D
)))) {
5142 Value
*X
= 0, *Y
= 0, *Z
= 0;
5145 X
= B
; Y
= D
; Z
= A
;
5146 } else if (A
== D
) {
5147 X
= B
; Y
= C
; Z
= A
;
5148 } else if (B
== C
) {
5149 X
= A
; Y
= D
; Z
= B
;
5150 } else if (B
== D
) {
5151 X
= A
; Y
= C
; Z
= B
;
5154 if (X
) { // Build (X^Y) & Z
5155 Op1
= InsertNewInstBefore(BinaryOperator::createXor(X
, Y
, "tmp"), I
);
5156 Op1
= InsertNewInstBefore(BinaryOperator::createAnd(Op1
, Z
, "tmp"), I
);
5157 I
.setOperand(0, Op1
);
5158 I
.setOperand(1, Constant::getNullValue(Op1
->getType()));
5163 return Changed
? &I
: 0;
5167 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
5168 /// and CmpRHS are both known to be integer constants.
5169 Instruction
*InstCombiner::FoldICmpDivCst(ICmpInst
&ICI
, BinaryOperator
*DivI
,
5170 ConstantInt
*DivRHS
) {
5171 ConstantInt
*CmpRHS
= cast
<ConstantInt
>(ICI
.getOperand(1));
5172 const APInt
&CmpRHSV
= CmpRHS
->getValue();
5174 // FIXME: If the operand types don't match the type of the divide
5175 // then don't attempt this transform. The code below doesn't have the
5176 // logic to deal with a signed divide and an unsigned compare (and
5177 // vice versa). This is because (x /s C1) <s C2 produces different
5178 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
5179 // (x /u C1) <u C2. Simply casting the operands and result won't
5180 // work. :( The if statement below tests that condition and bails
5182 bool DivIsSigned
= DivI
->getOpcode() == Instruction::SDiv
;
5183 if (!ICI
.isEquality() && DivIsSigned
!= ICI
.isSignedPredicate())
5185 if (DivRHS
->isZero())
5186 return 0; // The ProdOV computation fails on divide by zero.
5188 // Compute Prod = CI * DivRHS. We are essentially solving an equation
5189 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
5190 // C2 (CI). By solving for X we can turn this into a range check
5191 // instead of computing a divide.
5192 ConstantInt
*Prod
= Multiply(CmpRHS
, DivRHS
);
5194 // Determine if the product overflows by seeing if the product is
5195 // not equal to the divide. Make sure we do the same kind of divide
5196 // as in the LHS instruction that we're folding.
5197 bool ProdOV
= (DivIsSigned
? ConstantExpr::getSDiv(Prod
, DivRHS
) :
5198 ConstantExpr::getUDiv(Prod
, DivRHS
)) != CmpRHS
;
5200 // Get the ICmp opcode
5201 ICmpInst::Predicate Pred
= ICI
.getPredicate();
5203 // Figure out the interval that is being checked. For example, a comparison
5204 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
5205 // Compute this interval based on the constants involved and the signedness of
5206 // the compare/divide. This computes a half-open interval, keeping track of
5207 // whether either value in the interval overflows. After analysis each
5208 // overflow variable is set to 0 if it's corresponding bound variable is valid
5209 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
5210 int LoOverflow
= 0, HiOverflow
= 0;
5211 ConstantInt
*LoBound
= 0, *HiBound
= 0;
5214 if (!DivIsSigned
) { // udiv
5215 // e.g. X/5 op 3 --> [15, 20)
5217 HiOverflow
= LoOverflow
= ProdOV
;
5219 HiOverflow
= AddWithOverflow(HiBound
, LoBound
, DivRHS
, false);
5220 } else if (DivRHS
->getValue().isPositive()) { // Divisor is > 0.
5221 if (CmpRHSV
== 0) { // (X / pos) op 0
5222 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
5223 LoBound
= cast
<ConstantInt
>(ConstantExpr::getNeg(SubOne(DivRHS
)));
5225 } else if (CmpRHSV
.isPositive()) { // (X / pos) op pos
5226 LoBound
= Prod
; // e.g. X/5 op 3 --> [15, 20)
5227 HiOverflow
= LoOverflow
= ProdOV
;
5229 HiOverflow
= AddWithOverflow(HiBound
, Prod
, DivRHS
, true);
5230 } else { // (X / pos) op neg
5231 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
5232 Constant
*DivRHSH
= ConstantExpr::getNeg(SubOne(DivRHS
));
5233 LoOverflow
= AddWithOverflow(LoBound
, Prod
,
5234 cast
<ConstantInt
>(DivRHSH
), true) ? -1 : 0;
5235 HiBound
= AddOne(Prod
);
5236 HiOverflow
= ProdOV
? -1 : 0;
5238 } else { // Divisor is < 0.
5239 if (CmpRHSV
== 0) { // (X / neg) op 0
5240 // e.g. X/-5 op 0 --> [-4, 5)
5241 LoBound
= AddOne(DivRHS
);
5242 HiBound
= cast
<ConstantInt
>(ConstantExpr::getNeg(DivRHS
));
5243 if (HiBound
== DivRHS
) { // -INTMIN = INTMIN
5244 HiOverflow
= 1; // [INTMIN+1, overflow)
5245 HiBound
= 0; // e.g. X/INTMIN = 0 --> X > INTMIN
5247 } else if (CmpRHSV
.isPositive()) { // (X / neg) op pos
5248 // e.g. X/-5 op 3 --> [-19, -14)
5249 HiOverflow
= LoOverflow
= ProdOV
? -1 : 0;
5251 LoOverflow
= AddWithOverflow(LoBound
, Prod
, AddOne(DivRHS
), true) ?-1:0;
5252 HiBound
= AddOne(Prod
);
5253 } else { // (X / neg) op neg
5254 // e.g. X/-5 op -3 --> [15, 20)
5256 LoOverflow
= HiOverflow
= ProdOV
? 1 : 0;
5257 HiBound
= Subtract(Prod
, DivRHS
);
5260 // Dividing by a negative swaps the condition. LT <-> GT
5261 Pred
= ICmpInst::getSwappedPredicate(Pred
);
5264 Value
*X
= DivI
->getOperand(0);
5266 default: assert(0 && "Unhandled icmp opcode!");
5267 case ICmpInst::ICMP_EQ
:
5268 if (LoOverflow
&& HiOverflow
)
5269 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse());
5270 else if (HiOverflow
)
5271 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
:
5272 ICmpInst::ICMP_UGE
, X
, LoBound
);
5273 else if (LoOverflow
)
5274 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
:
5275 ICmpInst::ICMP_ULT
, X
, HiBound
);
5277 return InsertRangeTest(X
, LoBound
, HiBound
, DivIsSigned
, true, ICI
);
5278 case ICmpInst::ICMP_NE
:
5279 if (LoOverflow
&& HiOverflow
)
5280 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue());
5281 else if (HiOverflow
)
5282 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
:
5283 ICmpInst::ICMP_ULT
, X
, LoBound
);
5284 else if (LoOverflow
)
5285 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
:
5286 ICmpInst::ICMP_UGE
, X
, HiBound
);
5288 return InsertRangeTest(X
, LoBound
, HiBound
, DivIsSigned
, false, ICI
);
5289 case ICmpInst::ICMP_ULT
:
5290 case ICmpInst::ICMP_SLT
:
5291 if (LoOverflow
== +1) // Low bound is greater than input range.
5292 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue());
5293 if (LoOverflow
== -1) // Low bound is less than input range.
5294 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse());
5295 return new ICmpInst(Pred
, X
, LoBound
);
5296 case ICmpInst::ICMP_UGT
:
5297 case ICmpInst::ICMP_SGT
:
5298 if (HiOverflow
== +1) // High bound greater than input range.
5299 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse());
5300 else if (HiOverflow
== -1) // High bound less than input range.
5301 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue());
5302 if (Pred
== ICmpInst::ICMP_UGT
)
5303 return new ICmpInst(ICmpInst::ICMP_UGE
, X
, HiBound
);
5305 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, HiBound
);
5310 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
5312 Instruction
*InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst
&ICI
,
5315 const APInt
&RHSV
= RHS
->getValue();
5317 switch (LHSI
->getOpcode()) {
5318 case Instruction::Xor
: // (icmp pred (xor X, XorCST), CI)
5319 if (ConstantInt
*XorCST
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1))) {
5320 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
5322 if (ICI
.getPredicate() == ICmpInst::ICMP_SLT
&& RHSV
== 0 ||
5323 ICI
.getPredicate() == ICmpInst::ICMP_SGT
&& RHSV
.isAllOnesValue()) {
5324 Value
*CompareVal
= LHSI
->getOperand(0);
5326 // If the sign bit of the XorCST is not set, there is no change to
5327 // the operation, just stop using the Xor.
5328 if (!XorCST
->getValue().isNegative()) {
5329 ICI
.setOperand(0, CompareVal
);
5330 AddToWorkList(LHSI
);
5334 // Was the old condition true if the operand is positive?
5335 bool isTrueIfPositive
= ICI
.getPredicate() == ICmpInst::ICMP_SGT
;
5337 // If so, the new one isn't.
5338 isTrueIfPositive
^= true;
5340 if (isTrueIfPositive
)
5341 return new ICmpInst(ICmpInst::ICMP_SGT
, CompareVal
, SubOne(RHS
));
5343 return new ICmpInst(ICmpInst::ICMP_SLT
, CompareVal
, AddOne(RHS
));
5347 case Instruction::And
: // (icmp pred (and X, AndCST), RHS)
5348 if (LHSI
->hasOneUse() && isa
<ConstantInt
>(LHSI
->getOperand(1)) &&
5349 LHSI
->getOperand(0)->hasOneUse()) {
5350 ConstantInt
*AndCST
= cast
<ConstantInt
>(LHSI
->getOperand(1));
5352 // If the LHS is an AND of a truncating cast, we can widen the
5353 // and/compare to be the input width without changing the value
5354 // produced, eliminating a cast.
5355 if (TruncInst
*Cast
= dyn_cast
<TruncInst
>(LHSI
->getOperand(0))) {
5356 // We can do this transformation if either the AND constant does not
5357 // have its sign bit set or if it is an equality comparison.
5358 // Extending a relational comparison when we're checking the sign
5359 // bit would not work.
5360 if (Cast
->hasOneUse() &&
5361 (ICI
.isEquality() || AndCST
->getValue().isPositive() &&
5362 RHSV
.isPositive())) {
5364 cast
<IntegerType
>(Cast
->getOperand(0)->getType())->getBitWidth();
5365 APInt NewCST
= AndCST
->getValue();
5366 NewCST
.zext(BitWidth
);
5368 NewCI
.zext(BitWidth
);
5369 Instruction
*NewAnd
=
5370 BinaryOperator::createAnd(Cast
->getOperand(0),
5371 ConstantInt::get(NewCST
),LHSI
->getName());
5372 InsertNewInstBefore(NewAnd
, ICI
);
5373 return new ICmpInst(ICI
.getPredicate(), NewAnd
,
5374 ConstantInt::get(NewCI
));
5378 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
5379 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
5380 // happens a LOT in code produced by the C front-end, for bitfield
5382 BinaryOperator
*Shift
= dyn_cast
<BinaryOperator
>(LHSI
->getOperand(0));
5383 if (Shift
&& !Shift
->isShift())
5387 ShAmt
= Shift
? dyn_cast
<ConstantInt
>(Shift
->getOperand(1)) : 0;
5388 const Type
*Ty
= Shift
? Shift
->getType() : 0; // Type of the shift.
5389 const Type
*AndTy
= AndCST
->getType(); // Type of the and.
5391 // We can fold this as long as we can't shift unknown bits
5392 // into the mask. This can only happen with signed shift
5393 // rights, as they sign-extend.
5395 bool CanFold
= Shift
->isLogicalShift();
5397 // To test for the bad case of the signed shr, see if any
5398 // of the bits shifted in could be tested after the mask.
5399 uint32_t TyBits
= Ty
->getPrimitiveSizeInBits();
5400 int ShAmtVal
= TyBits
- ShAmt
->getLimitedValue(TyBits
);
5402 uint32_t BitWidth
= AndTy
->getPrimitiveSizeInBits();
5403 if ((APInt::getHighBitsSet(BitWidth
, BitWidth
-ShAmtVal
) &
5404 AndCST
->getValue()) == 0)
5410 if (Shift
->getOpcode() == Instruction::Shl
)
5411 NewCst
= ConstantExpr::getLShr(RHS
, ShAmt
);
5413 NewCst
= ConstantExpr::getShl(RHS
, ShAmt
);
5415 // Check to see if we are shifting out any of the bits being
5417 if (ConstantExpr::get(Shift
->getOpcode(), NewCst
, ShAmt
) != RHS
) {
5418 // If we shifted bits out, the fold is not going to work out.
5419 // As a special case, check to see if this means that the
5420 // result is always true or false now.
5421 if (ICI
.getPredicate() == ICmpInst::ICMP_EQ
)
5422 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse());
5423 if (ICI
.getPredicate() == ICmpInst::ICMP_NE
)
5424 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue());
5426 ICI
.setOperand(1, NewCst
);
5427 Constant
*NewAndCST
;
5428 if (Shift
->getOpcode() == Instruction::Shl
)
5429 NewAndCST
= ConstantExpr::getLShr(AndCST
, ShAmt
);
5431 NewAndCST
= ConstantExpr::getShl(AndCST
, ShAmt
);
5432 LHSI
->setOperand(1, NewAndCST
);
5433 LHSI
->setOperand(0, Shift
->getOperand(0));
5434 AddToWorkList(Shift
); // Shift is dead.
5435 AddUsesToWorkList(ICI
);
5441 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
5442 // preferable because it allows the C<<Y expression to be hoisted out
5443 // of a loop if Y is invariant and X is not.
5444 if (Shift
&& Shift
->hasOneUse() && RHSV
== 0 &&
5445 ICI
.isEquality() && !Shift
->isArithmeticShift() &&
5446 isa
<Instruction
>(Shift
->getOperand(0))) {
5449 if (Shift
->getOpcode() == Instruction::LShr
) {
5450 NS
= BinaryOperator::createShl(AndCST
,
5451 Shift
->getOperand(1), "tmp");
5453 // Insert a logical shift.
5454 NS
= BinaryOperator::createLShr(AndCST
,
5455 Shift
->getOperand(1), "tmp");
5457 InsertNewInstBefore(cast
<Instruction
>(NS
), ICI
);
5459 // Compute X & (C << Y).
5460 Instruction
*NewAnd
=
5461 BinaryOperator::createAnd(Shift
->getOperand(0), NS
, LHSI
->getName());
5462 InsertNewInstBefore(NewAnd
, ICI
);
5464 ICI
.setOperand(0, NewAnd
);
5470 case Instruction::Shl
: { // (icmp pred (shl X, ShAmt), CI)
5471 ConstantInt
*ShAmt
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1));
5474 uint32_t TypeBits
= RHSV
.getBitWidth();
5476 // Check that the shift amount is in range. If not, don't perform
5477 // undefined shifts. When the shift is visited it will be
5479 if (ShAmt
->uge(TypeBits
))
5482 if (ICI
.isEquality()) {
5483 // If we are comparing against bits always shifted out, the
5484 // comparison cannot succeed.
5486 ConstantExpr::getShl(ConstantExpr::getLShr(RHS
, ShAmt
), ShAmt
);
5487 if (Comp
!= RHS
) {// Comparing against a bit that we know is zero.
5488 bool IsICMP_NE
= ICI
.getPredicate() == ICmpInst::ICMP_NE
;
5489 Constant
*Cst
= ConstantInt::get(Type::Int1Ty
, IsICMP_NE
);
5490 return ReplaceInstUsesWith(ICI
, Cst
);
5493 if (LHSI
->hasOneUse()) {
5494 // Otherwise strength reduce the shift into an and.
5495 uint32_t ShAmtVal
= (uint32_t)ShAmt
->getLimitedValue(TypeBits
);
5497 ConstantInt::get(APInt::getLowBitsSet(TypeBits
, TypeBits
-ShAmtVal
));
5500 BinaryOperator::createAnd(LHSI
->getOperand(0),
5501 Mask
, LHSI
->getName()+".mask");
5502 Value
*And
= InsertNewInstBefore(AndI
, ICI
);
5503 return new ICmpInst(ICI
.getPredicate(), And
,
5504 ConstantInt::get(RHSV
.lshr(ShAmtVal
)));
5508 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
5509 bool TrueIfSigned
= false;
5510 if (LHSI
->hasOneUse() &&
5511 isSignBitCheck(ICI
.getPredicate(), RHS
, TrueIfSigned
)) {
5512 // (X << 31) <s 0 --> (X&1) != 0
5513 Constant
*Mask
= ConstantInt::get(APInt(TypeBits
, 1) <<
5514 (TypeBits
-ShAmt
->getZExtValue()-1));
5516 BinaryOperator::createAnd(LHSI
->getOperand(0),
5517 Mask
, LHSI
->getName()+".mask");
5518 Value
*And
= InsertNewInstBefore(AndI
, ICI
);
5520 return new ICmpInst(TrueIfSigned
? ICmpInst::ICMP_NE
: ICmpInst::ICMP_EQ
,
5521 And
, Constant::getNullValue(And
->getType()));
5526 case Instruction::LShr
: // (icmp pred (shr X, ShAmt), CI)
5527 case Instruction::AShr
: {
5528 ConstantInt
*ShAmt
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1));
5531 if (ICI
.isEquality()) {
5532 // Check that the shift amount is in range. If not, don't perform
5533 // undefined shifts. When the shift is visited it will be
5535 uint32_t TypeBits
= RHSV
.getBitWidth();
5536 if (ShAmt
->uge(TypeBits
))
5538 uint32_t ShAmtVal
= (uint32_t)ShAmt
->getLimitedValue(TypeBits
);
5540 // If we are comparing against bits always shifted out, the
5541 // comparison cannot succeed.
5542 APInt Comp
= RHSV
<< ShAmtVal
;
5543 if (LHSI
->getOpcode() == Instruction::LShr
)
5544 Comp
= Comp
.lshr(ShAmtVal
);
5546 Comp
= Comp
.ashr(ShAmtVal
);
5548 if (Comp
!= RHSV
) { // Comparing against a bit that we know is zero.
5549 bool IsICMP_NE
= ICI
.getPredicate() == ICmpInst::ICMP_NE
;
5550 Constant
*Cst
= ConstantInt::get(Type::Int1Ty
, IsICMP_NE
);
5551 return ReplaceInstUsesWith(ICI
, Cst
);
5554 if (LHSI
->hasOneUse() || RHSV
== 0) {
5555 // Otherwise strength reduce the shift into an and.
5556 APInt
Val(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShAmtVal
));
5557 Constant
*Mask
= ConstantInt::get(Val
);
5560 BinaryOperator::createAnd(LHSI
->getOperand(0),
5561 Mask
, LHSI
->getName()+".mask");
5562 Value
*And
= InsertNewInstBefore(AndI
, ICI
);
5563 return new ICmpInst(ICI
.getPredicate(), And
,
5564 ConstantExpr::getShl(RHS
, ShAmt
));
5570 case Instruction::SDiv
:
5571 case Instruction::UDiv
:
5572 // Fold: icmp pred ([us]div X, C1), C2 -> range test
5573 // Fold this div into the comparison, producing a range check.
5574 // Determine, based on the divide type, what the range is being
5575 // checked. If there is an overflow on the low or high side, remember
5576 // it, otherwise compute the range [low, hi) bounding the new value.
5577 // See: InsertRangeTest above for the kinds of replacements possible.
5578 if (ConstantInt
*DivRHS
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1)))
5579 if (Instruction
*R
= FoldICmpDivCst(ICI
, cast
<BinaryOperator
>(LHSI
),
5585 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
5586 if (ICI
.isEquality()) {
5587 bool isICMP_NE
= ICI
.getPredicate() == ICmpInst::ICMP_NE
;
5589 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
5590 // the second operand is a constant, simplify a bit.
5591 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(LHSI
)) {
5592 switch (BO
->getOpcode()) {
5593 case Instruction::SRem
:
5594 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
5595 if (RHSV
== 0 && isa
<ConstantInt
>(BO
->getOperand(1)) &&BO
->hasOneUse()){
5596 const APInt
&V
= cast
<ConstantInt
>(BO
->getOperand(1))->getValue();
5597 if (V
.sgt(APInt(V
.getBitWidth(), 1)) && V
.isPowerOf2()) {
5598 Instruction
*NewRem
=
5599 BinaryOperator::createURem(BO
->getOperand(0), BO
->getOperand(1),
5601 InsertNewInstBefore(NewRem
, ICI
);
5602 return new ICmpInst(ICI
.getPredicate(), NewRem
,
5603 Constant::getNullValue(BO
->getType()));
5607 case Instruction::Add
:
5608 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
5609 if (ConstantInt
*BOp1C
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
5610 if (BO
->hasOneUse())
5611 return new ICmpInst(ICI
.getPredicate(), BO
->getOperand(0),
5612 Subtract(RHS
, BOp1C
));
5613 } else if (RHSV
== 0) {
5614 // Replace ((add A, B) != 0) with (A != -B) if A or B is
5615 // efficiently invertible, or if the add has just this one use.
5616 Value
*BOp0
= BO
->getOperand(0), *BOp1
= BO
->getOperand(1);
5618 if (Value
*NegVal
= dyn_castNegVal(BOp1
))
5619 return new ICmpInst(ICI
.getPredicate(), BOp0
, NegVal
);
5620 else if (Value
*NegVal
= dyn_castNegVal(BOp0
))
5621 return new ICmpInst(ICI
.getPredicate(), NegVal
, BOp1
);
5622 else if (BO
->hasOneUse()) {
5623 Instruction
*Neg
= BinaryOperator::createNeg(BOp1
);
5624 InsertNewInstBefore(Neg
, ICI
);
5626 return new ICmpInst(ICI
.getPredicate(), BOp0
, Neg
);
5630 case Instruction::Xor
:
5631 // For the xor case, we can xor two constants together, eliminating
5632 // the explicit xor.
5633 if (Constant
*BOC
= dyn_cast
<Constant
>(BO
->getOperand(1)))
5634 return new ICmpInst(ICI
.getPredicate(), BO
->getOperand(0),
5635 ConstantExpr::getXor(RHS
, BOC
));
5638 case Instruction::Sub
:
5639 // Replace (([sub|xor] A, B) != 0) with (A != B)
5641 return new ICmpInst(ICI
.getPredicate(), BO
->getOperand(0),
5645 case Instruction::Or
:
5646 // If bits are being or'd in that are not present in the constant we
5647 // are comparing against, then the comparison could never succeed!
5648 if (Constant
*BOC
= dyn_cast
<Constant
>(BO
->getOperand(1))) {
5649 Constant
*NotCI
= ConstantExpr::getNot(RHS
);
5650 if (!ConstantExpr::getAnd(BOC
, NotCI
)->isNullValue())
5651 return ReplaceInstUsesWith(ICI
, ConstantInt::get(Type::Int1Ty
,
5656 case Instruction::And
:
5657 if (ConstantInt
*BOC
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
5658 // If bits are being compared against that are and'd out, then the
5659 // comparison can never succeed!
5660 if ((RHSV
& ~BOC
->getValue()) != 0)
5661 return ReplaceInstUsesWith(ICI
, ConstantInt::get(Type::Int1Ty
,
5664 // If we have ((X & C) == C), turn it into ((X & C) != 0).
5665 if (RHS
== BOC
&& RHSV
.isPowerOf2())
5666 return new ICmpInst(isICMP_NE
? ICmpInst::ICMP_EQ
:
5667 ICmpInst::ICMP_NE
, LHSI
,
5668 Constant::getNullValue(RHS
->getType()));
5670 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
5671 if (isSignBit(BOC
)) {
5672 Value
*X
= BO
->getOperand(0);
5673 Constant
*Zero
= Constant::getNullValue(X
->getType());
5674 ICmpInst::Predicate pred
= isICMP_NE
?
5675 ICmpInst::ICMP_SLT
: ICmpInst::ICMP_SGE
;
5676 return new ICmpInst(pred
, X
, Zero
);
5679 // ((X & ~7) == 0) --> X < 8
5680 if (RHSV
== 0 && isHighOnes(BOC
)) {
5681 Value
*X
= BO
->getOperand(0);
5682 Constant
*NegX
= ConstantExpr::getNeg(BOC
);
5683 ICmpInst::Predicate pred
= isICMP_NE
?
5684 ICmpInst::ICMP_UGE
: ICmpInst::ICMP_ULT
;
5685 return new ICmpInst(pred
, X
, NegX
);
5690 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(LHSI
)) {
5691 // Handle icmp {eq|ne} <intrinsic>, intcst.
5692 if (II
->getIntrinsicID() == Intrinsic::bswap
) {
5694 ICI
.setOperand(0, II
->getOperand(1));
5695 ICI
.setOperand(1, ConstantInt::get(RHSV
.byteSwap()));
5699 } else { // Not a ICMP_EQ/ICMP_NE
5700 // If the LHS is a cast from an integral value of the same size,
5701 // then since we know the RHS is a constant, try to simlify.
5702 if (CastInst
*Cast
= dyn_cast
<CastInst
>(LHSI
)) {
5703 Value
*CastOp
= Cast
->getOperand(0);
5704 const Type
*SrcTy
= CastOp
->getType();
5705 uint32_t SrcTySize
= SrcTy
->getPrimitiveSizeInBits();
5706 if (SrcTy
->isInteger() &&
5707 SrcTySize
== Cast
->getType()->getPrimitiveSizeInBits()) {
5708 // If this is an unsigned comparison, try to make the comparison use
5709 // smaller constant values.
5710 if (ICI
.getPredicate() == ICmpInst::ICMP_ULT
&& RHSV
.isSignBit()) {
5711 // X u< 128 => X s> -1
5712 return new ICmpInst(ICmpInst::ICMP_SGT
, CastOp
,
5713 ConstantInt::get(APInt::getAllOnesValue(SrcTySize
)));
5714 } else if (ICI
.getPredicate() == ICmpInst::ICMP_UGT
&&
5715 RHSV
== APInt::getSignedMaxValue(SrcTySize
)) {
5716 // X u> 127 => X s< 0
5717 return new ICmpInst(ICmpInst::ICMP_SLT
, CastOp
,
5718 Constant::getNullValue(SrcTy
));
5726 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
5727 /// We only handle extending casts so far.
5729 Instruction
*InstCombiner::visitICmpInstWithCastAndCast(ICmpInst
&ICI
) {
5730 const CastInst
*LHSCI
= cast
<CastInst
>(ICI
.getOperand(0));
5731 Value
*LHSCIOp
= LHSCI
->getOperand(0);
5732 const Type
*SrcTy
= LHSCIOp
->getType();
5733 const Type
*DestTy
= LHSCI
->getType();
5736 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
5737 // integer type is the same size as the pointer type.
5738 if (LHSCI
->getOpcode() == Instruction::PtrToInt
&&
5739 getTargetData().getPointerSizeInBits() ==
5740 cast
<IntegerType
>(DestTy
)->getBitWidth()) {
5742 if (Constant
*RHSC
= dyn_cast
<Constant
>(ICI
.getOperand(1))) {
5743 RHSOp
= ConstantExpr::getIntToPtr(RHSC
, SrcTy
);
5744 } else if (PtrToIntInst
*RHSC
= dyn_cast
<PtrToIntInst
>(ICI
.getOperand(1))) {
5745 RHSOp
= RHSC
->getOperand(0);
5746 // If the pointer types don't match, insert a bitcast.
5747 if (LHSCIOp
->getType() != RHSOp
->getType())
5748 RHSOp
= InsertCastBefore(Instruction::BitCast
, RHSOp
,
5749 LHSCIOp
->getType(), ICI
);
5753 return new ICmpInst(ICI
.getPredicate(), LHSCIOp
, RHSOp
);
5756 // The code below only handles extension cast instructions, so far.
5758 if (LHSCI
->getOpcode() != Instruction::ZExt
&&
5759 LHSCI
->getOpcode() != Instruction::SExt
)
5762 bool isSignedExt
= LHSCI
->getOpcode() == Instruction::SExt
;
5763 bool isSignedCmp
= ICI
.isSignedPredicate();
5765 if (CastInst
*CI
= dyn_cast
<CastInst
>(ICI
.getOperand(1))) {
5766 // Not an extension from the same type?
5767 RHSCIOp
= CI
->getOperand(0);
5768 if (RHSCIOp
->getType() != LHSCIOp
->getType())
5771 // If the signedness of the two compares doesn't agree (i.e. one is a sext
5772 // and the other is a zext), then we can't handle this.
5773 if (CI
->getOpcode() != LHSCI
->getOpcode())
5776 // Likewise, if the signedness of the [sz]exts and the compare don't match,
5777 // then we can't handle this.
5778 if (isSignedExt
!= isSignedCmp
&& !ICI
.isEquality())
5781 // Okay, just insert a compare of the reduced operands now!
5782 return new ICmpInst(ICI
.getPredicate(), LHSCIOp
, RHSCIOp
);
5785 // If we aren't dealing with a constant on the RHS, exit early
5786 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(ICI
.getOperand(1));
5790 // Compute the constant that would happen if we truncated to SrcTy then
5791 // reextended to DestTy.
5792 Constant
*Res1
= ConstantExpr::getTrunc(CI
, SrcTy
);
5793 Constant
*Res2
= ConstantExpr::getCast(LHSCI
->getOpcode(), Res1
, DestTy
);
5795 // If the re-extended constant didn't change...
5797 // Make sure that sign of the Cmp and the sign of the Cast are the same.
5798 // For example, we might have:
5799 // %A = sext short %X to uint
5800 // %B = icmp ugt uint %A, 1330
5801 // It is incorrect to transform this into
5802 // %B = icmp ugt short %X, 1330
5803 // because %A may have negative value.
5805 // However, it is OK if SrcTy is bool (See cast-set.ll testcase)
5806 // OR operation is EQ/NE.
5807 if (isSignedExt
== isSignedCmp
|| SrcTy
== Type::Int1Ty
|| ICI
.isEquality())
5808 return new ICmpInst(ICI
.getPredicate(), LHSCIOp
, Res1
);
5813 // The re-extended constant changed so the constant cannot be represented
5814 // in the shorter type. Consequently, we cannot emit a simple comparison.
5816 // First, handle some easy cases. We know the result cannot be equal at this
5817 // point so handle the ICI.isEquality() cases
5818 if (ICI
.getPredicate() == ICmpInst::ICMP_EQ
)
5819 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse());
5820 if (ICI
.getPredicate() == ICmpInst::ICMP_NE
)
5821 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue());
5823 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
5824 // should have been folded away previously and not enter in here.
5827 // We're performing a signed comparison.
5828 if (cast
<ConstantInt
>(CI
)->getValue().isNegative())
5829 Result
= ConstantInt::getFalse(); // X < (small) --> false
5831 Result
= ConstantInt::getTrue(); // X < (large) --> true
5833 // We're performing an unsigned comparison.
5835 // We're performing an unsigned comp with a sign extended value.
5836 // This is true if the input is >= 0. [aka >s -1]
5837 Constant
*NegOne
= ConstantInt::getAllOnesValue(SrcTy
);
5838 Result
= InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT
, LHSCIOp
,
5839 NegOne
, ICI
.getName()), ICI
);
5841 // Unsigned extend & unsigned compare -> always true.
5842 Result
= ConstantInt::getTrue();
5846 // Finally, return the value computed.
5847 if (ICI
.getPredicate() == ICmpInst::ICMP_ULT
||
5848 ICI
.getPredicate() == ICmpInst::ICMP_SLT
) {
5849 return ReplaceInstUsesWith(ICI
, Result
);
5851 assert((ICI
.getPredicate()==ICmpInst::ICMP_UGT
||
5852 ICI
.getPredicate()==ICmpInst::ICMP_SGT
) &&
5853 "ICmp should be folded!");
5854 if (Constant
*CI
= dyn_cast
<Constant
>(Result
))
5855 return ReplaceInstUsesWith(ICI
, ConstantExpr::getNot(CI
));
5857 return BinaryOperator::createNot(Result
);
5861 Instruction
*InstCombiner::visitShl(BinaryOperator
&I
) {
5862 return commonShiftTransforms(I
);
5865 Instruction
*InstCombiner::visitLShr(BinaryOperator
&I
) {
5866 return commonShiftTransforms(I
);
5869 Instruction
*InstCombiner::visitAShr(BinaryOperator
&I
) {
5870 return commonShiftTransforms(I
);
5873 Instruction
*InstCombiner::commonShiftTransforms(BinaryOperator
&I
) {
5874 assert(I
.getOperand(1)->getType() == I
.getOperand(0)->getType());
5875 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
5877 // shl X, 0 == X and shr X, 0 == X
5878 // shl 0, X == 0 and shr 0, X == 0
5879 if (Op1
== Constant::getNullValue(Op1
->getType()) ||
5880 Op0
== Constant::getNullValue(Op0
->getType()))
5881 return ReplaceInstUsesWith(I
, Op0
);
5883 if (isa
<UndefValue
>(Op0
)) {
5884 if (I
.getOpcode() == Instruction::AShr
) // undef >>s X -> undef
5885 return ReplaceInstUsesWith(I
, Op0
);
5886 else // undef << X -> 0, undef >>u X -> 0
5887 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
5889 if (isa
<UndefValue
>(Op1
)) {
5890 if (I
.getOpcode() == Instruction::AShr
) // X >>s undef -> X
5891 return ReplaceInstUsesWith(I
, Op0
);
5892 else // X << undef, X >>u undef -> 0
5893 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
5896 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
5897 if (I
.getOpcode() == Instruction::AShr
)
5898 if (ConstantInt
*CSI
= dyn_cast
<ConstantInt
>(Op0
))
5899 if (CSI
->isAllOnesValue())
5900 return ReplaceInstUsesWith(I
, CSI
);
5902 // Try to fold constant and into select arguments.
5903 if (isa
<Constant
>(Op0
))
5904 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
))
5905 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
5908 // See if we can turn a signed shr into an unsigned shr.
5909 if (I
.isArithmeticShift()) {
5910 if (MaskedValueIsZero(Op0
,
5911 APInt::getSignBit(I
.getType()->getPrimitiveSizeInBits()))) {
5912 return BinaryOperator::createLShr(Op0
, Op1
, I
.getName());
5916 if (ConstantInt
*CUI
= dyn_cast
<ConstantInt
>(Op1
))
5917 if (Instruction
*Res
= FoldShiftByConstant(Op0
, CUI
, I
))
5922 Instruction
*InstCombiner::FoldShiftByConstant(Value
*Op0
, ConstantInt
*Op1
,
5923 BinaryOperator
&I
) {
5924 bool isLeftShift
= I
.getOpcode() == Instruction::Shl
;
5926 // See if we can simplify any instructions used by the instruction whose sole
5927 // purpose is to compute bits we don't care about.
5928 uint32_t TypeBits
= Op0
->getType()->getPrimitiveSizeInBits();
5929 APInt
KnownZero(TypeBits
, 0), KnownOne(TypeBits
, 0);
5930 if (SimplifyDemandedBits(&I
, APInt::getAllOnesValue(TypeBits
),
5931 KnownZero
, KnownOne
))
5934 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
5935 // of a signed value.
5937 if (Op1
->uge(TypeBits
)) {
5938 if (I
.getOpcode() != Instruction::AShr
)
5939 return ReplaceInstUsesWith(I
, Constant::getNullValue(Op0
->getType()));
5941 I
.setOperand(1, ConstantInt::get(I
.getType(), TypeBits
-1));
5946 // ((X*C1) << C2) == (X * (C1 << C2))
5947 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Op0
))
5948 if (BO
->getOpcode() == Instruction::Mul
&& isLeftShift
)
5949 if (Constant
*BOOp
= dyn_cast
<Constant
>(BO
->getOperand(1)))
5950 return BinaryOperator::createMul(BO
->getOperand(0),
5951 ConstantExpr::getShl(BOOp
, Op1
));
5953 // Try to fold constant and into select arguments.
5954 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0
))
5955 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
5957 if (isa
<PHINode
>(Op0
))
5958 if (Instruction
*NV
= FoldOpIntoPhi(I
))
5961 if (Op0
->hasOneUse()) {
5962 if (BinaryOperator
*Op0BO
= dyn_cast
<BinaryOperator
>(Op0
)) {
5963 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
5966 switch (Op0BO
->getOpcode()) {
5968 case Instruction::Add
:
5969 case Instruction::And
:
5970 case Instruction::Or
:
5971 case Instruction::Xor
: {
5972 // These operators commute.
5973 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
5974 if (isLeftShift
&& Op0BO
->getOperand(1)->hasOneUse() &&
5975 match(Op0BO
->getOperand(1),
5976 m_Shr(m_Value(V1
), m_ConstantInt(CC
))) && CC
== Op1
) {
5977 Instruction
*YS
= BinaryOperator::createShl(
5978 Op0BO
->getOperand(0), Op1
,
5980 InsertNewInstBefore(YS
, I
); // (Y << C)
5982 BinaryOperator::create(Op0BO
->getOpcode(), YS
, V1
,
5983 Op0BO
->getOperand(1)->getName());
5984 InsertNewInstBefore(X
, I
); // (X + (Y << C))
5985 uint32_t Op1Val
= Op1
->getLimitedValue(TypeBits
);
5986 return BinaryOperator::createAnd(X
, ConstantInt::get(
5987 APInt::getHighBitsSet(TypeBits
, TypeBits
-Op1Val
)));
5990 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
5991 Value
*Op0BOOp1
= Op0BO
->getOperand(1);
5992 if (isLeftShift
&& Op0BOOp1
->hasOneUse() &&
5994 m_And(m_Shr(m_Value(V1
), m_Value(V2
)),m_ConstantInt(CC
))) &&
5995 cast
<BinaryOperator
>(Op0BOOp1
)->getOperand(0)->hasOneUse() &&
5997 Instruction
*YS
= BinaryOperator::createShl(
5998 Op0BO
->getOperand(0), Op1
,
6000 InsertNewInstBefore(YS
, I
); // (Y << C)
6002 BinaryOperator::createAnd(V1
, ConstantExpr::getShl(CC
, Op1
),
6003 V1
->getName()+".mask");
6004 InsertNewInstBefore(XM
, I
); // X & (CC << C)
6006 return BinaryOperator::create(Op0BO
->getOpcode(), YS
, XM
);
6011 case Instruction::Sub
: {
6012 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6013 if (isLeftShift
&& Op0BO
->getOperand(0)->hasOneUse() &&
6014 match(Op0BO
->getOperand(0),
6015 m_Shr(m_Value(V1
), m_ConstantInt(CC
))) && CC
== Op1
) {
6016 Instruction
*YS
= BinaryOperator::createShl(
6017 Op0BO
->getOperand(1), Op1
,
6019 InsertNewInstBefore(YS
, I
); // (Y << C)
6021 BinaryOperator::create(Op0BO
->getOpcode(), V1
, YS
,
6022 Op0BO
->getOperand(0)->getName());
6023 InsertNewInstBefore(X
, I
); // (X + (Y << C))
6024 uint32_t Op1Val
= Op1
->getLimitedValue(TypeBits
);
6025 return BinaryOperator::createAnd(X
, ConstantInt::get(
6026 APInt::getHighBitsSet(TypeBits
, TypeBits
-Op1Val
)));
6029 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
6030 if (isLeftShift
&& Op0BO
->getOperand(0)->hasOneUse() &&
6031 match(Op0BO
->getOperand(0),
6032 m_And(m_Shr(m_Value(V1
), m_Value(V2
)),
6033 m_ConstantInt(CC
))) && V2
== Op1
&&
6034 cast
<BinaryOperator
>(Op0BO
->getOperand(0))
6035 ->getOperand(0)->hasOneUse()) {
6036 Instruction
*YS
= BinaryOperator::createShl(
6037 Op0BO
->getOperand(1), Op1
,
6039 InsertNewInstBefore(YS
, I
); // (Y << C)
6041 BinaryOperator::createAnd(V1
, ConstantExpr::getShl(CC
, Op1
),
6042 V1
->getName()+".mask");
6043 InsertNewInstBefore(XM
, I
); // X & (CC << C)
6045 return BinaryOperator::create(Op0BO
->getOpcode(), XM
, YS
);
6053 // If the operand is an bitwise operator with a constant RHS, and the
6054 // shift is the only use, we can pull it out of the shift.
6055 if (ConstantInt
*Op0C
= dyn_cast
<ConstantInt
>(Op0BO
->getOperand(1))) {
6056 bool isValid
= true; // Valid only for And, Or, Xor
6057 bool highBitSet
= false; // Transform if high bit of constant set?
6059 switch (Op0BO
->getOpcode()) {
6060 default: isValid
= false; break; // Do not perform transform!
6061 case Instruction::Add
:
6062 isValid
= isLeftShift
;
6064 case Instruction::Or
:
6065 case Instruction::Xor
:
6068 case Instruction::And
:
6073 // If this is a signed shift right, and the high bit is modified
6074 // by the logical operation, do not perform the transformation.
6075 // The highBitSet boolean indicates the value of the high bit of
6076 // the constant which would cause it to be modified for this
6079 if (isValid
&& !isLeftShift
&& I
.getOpcode() == Instruction::AShr
) {
6080 isValid
= Op0C
->getValue()[TypeBits
-1] == highBitSet
;
6084 Constant
*NewRHS
= ConstantExpr::get(I
.getOpcode(), Op0C
, Op1
);
6086 Instruction
*NewShift
=
6087 BinaryOperator::create(I
.getOpcode(), Op0BO
->getOperand(0), Op1
);
6088 InsertNewInstBefore(NewShift
, I
);
6089 NewShift
->takeName(Op0BO
);
6091 return BinaryOperator::create(Op0BO
->getOpcode(), NewShift
,
6098 // Find out if this is a shift of a shift by a constant.
6099 BinaryOperator
*ShiftOp
= dyn_cast
<BinaryOperator
>(Op0
);
6100 if (ShiftOp
&& !ShiftOp
->isShift())
6103 if (ShiftOp
&& isa
<ConstantInt
>(ShiftOp
->getOperand(1))) {
6104 ConstantInt
*ShiftAmt1C
= cast
<ConstantInt
>(ShiftOp
->getOperand(1));
6105 uint32_t ShiftAmt1
= ShiftAmt1C
->getLimitedValue(TypeBits
);
6106 uint32_t ShiftAmt2
= Op1
->getLimitedValue(TypeBits
);
6107 assert(ShiftAmt2
!= 0 && "Should have been simplified earlier");
6108 if (ShiftAmt1
== 0) return 0; // Will be simplified in the future.
6109 Value
*X
= ShiftOp
->getOperand(0);
6111 uint32_t AmtSum
= ShiftAmt1
+ShiftAmt2
; // Fold into one big shift.
6112 if (AmtSum
> TypeBits
)
6115 const IntegerType
*Ty
= cast
<IntegerType
>(I
.getType());
6117 // Check for (X << c1) << c2 and (X >> c1) >> c2
6118 if (I
.getOpcode() == ShiftOp
->getOpcode()) {
6119 return BinaryOperator::create(I
.getOpcode(), X
,
6120 ConstantInt::get(Ty
, AmtSum
));
6121 } else if (ShiftOp
->getOpcode() == Instruction::LShr
&&
6122 I
.getOpcode() == Instruction::AShr
) {
6123 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
6124 return BinaryOperator::createLShr(X
, ConstantInt::get(Ty
, AmtSum
));
6125 } else if (ShiftOp
->getOpcode() == Instruction::AShr
&&
6126 I
.getOpcode() == Instruction::LShr
) {
6127 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
6128 Instruction
*Shift
=
6129 BinaryOperator::createAShr(X
, ConstantInt::get(Ty
, AmtSum
));
6130 InsertNewInstBefore(Shift
, I
);
6132 APInt
Mask(APInt::getLowBitsSet(TypeBits
, TypeBits
- ShiftAmt2
));
6133 return BinaryOperator::createAnd(Shift
, ConstantInt::get(Mask
));
6136 // Okay, if we get here, one shift must be left, and the other shift must be
6137 // right. See if the amounts are equal.
6138 if (ShiftAmt1
== ShiftAmt2
) {
6139 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
6140 if (I
.getOpcode() == Instruction::Shl
) {
6141 APInt
Mask(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShiftAmt1
));
6142 return BinaryOperator::createAnd(X
, ConstantInt::get(Mask
));
6144 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
6145 if (I
.getOpcode() == Instruction::LShr
) {
6146 APInt
Mask(APInt::getLowBitsSet(TypeBits
, TypeBits
- ShiftAmt1
));
6147 return BinaryOperator::createAnd(X
, ConstantInt::get(Mask
));
6149 // We can simplify ((X << C) >>s C) into a trunc + sext.
6150 // NOTE: we could do this for any C, but that would make 'unusual' integer
6151 // types. For now, just stick to ones well-supported by the code
6153 const Type
*SExtType
= 0;
6154 switch (Ty
->getBitWidth() - ShiftAmt1
) {
6161 SExtType
= IntegerType::get(Ty
->getBitWidth() - ShiftAmt1
);
6166 Instruction
*NewTrunc
= new TruncInst(X
, SExtType
, "sext");
6167 InsertNewInstBefore(NewTrunc
, I
);
6168 return new SExtInst(NewTrunc
, Ty
);
6170 // Otherwise, we can't handle it yet.
6171 } else if (ShiftAmt1
< ShiftAmt2
) {
6172 uint32_t ShiftDiff
= ShiftAmt2
-ShiftAmt1
;
6174 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
6175 if (I
.getOpcode() == Instruction::Shl
) {
6176 assert(ShiftOp
->getOpcode() == Instruction::LShr
||
6177 ShiftOp
->getOpcode() == Instruction::AShr
);
6178 Instruction
*Shift
=
6179 BinaryOperator::createShl(X
, ConstantInt::get(Ty
, ShiftDiff
));
6180 InsertNewInstBefore(Shift
, I
);
6182 APInt
Mask(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShiftAmt2
));
6183 return BinaryOperator::createAnd(Shift
, ConstantInt::get(Mask
));
6186 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
6187 if (I
.getOpcode() == Instruction::LShr
) {
6188 assert(ShiftOp
->getOpcode() == Instruction::Shl
);
6189 Instruction
*Shift
=
6190 BinaryOperator::createLShr(X
, ConstantInt::get(Ty
, ShiftDiff
));
6191 InsertNewInstBefore(Shift
, I
);
6193 APInt
Mask(APInt::getLowBitsSet(TypeBits
, TypeBits
- ShiftAmt2
));
6194 return BinaryOperator::createAnd(Shift
, ConstantInt::get(Mask
));
6197 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
6199 assert(ShiftAmt2
< ShiftAmt1
);
6200 uint32_t ShiftDiff
= ShiftAmt1
-ShiftAmt2
;
6202 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
6203 if (I
.getOpcode() == Instruction::Shl
) {
6204 assert(ShiftOp
->getOpcode() == Instruction::LShr
||
6205 ShiftOp
->getOpcode() == Instruction::AShr
);
6206 Instruction
*Shift
=
6207 BinaryOperator::create(ShiftOp
->getOpcode(), X
,
6208 ConstantInt::get(Ty
, ShiftDiff
));
6209 InsertNewInstBefore(Shift
, I
);
6211 APInt
Mask(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShiftAmt2
));
6212 return BinaryOperator::createAnd(Shift
, ConstantInt::get(Mask
));
6215 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
6216 if (I
.getOpcode() == Instruction::LShr
) {
6217 assert(ShiftOp
->getOpcode() == Instruction::Shl
);
6218 Instruction
*Shift
=
6219 BinaryOperator::createShl(X
, ConstantInt::get(Ty
, ShiftDiff
));
6220 InsertNewInstBefore(Shift
, I
);
6222 APInt
Mask(APInt::getLowBitsSet(TypeBits
, TypeBits
- ShiftAmt2
));
6223 return BinaryOperator::createAnd(Shift
, ConstantInt::get(Mask
));
6226 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
6233 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
6234 /// expression. If so, decompose it, returning some value X, such that Val is
6237 static Value
*DecomposeSimpleLinearExpr(Value
*Val
, unsigned &Scale
,
6239 assert(Val
->getType() == Type::Int32Ty
&& "Unexpected allocation size type!");
6240 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Val
)) {
6241 Offset
= CI
->getZExtValue();
6243 return ConstantInt::get(Type::Int32Ty
, 0);
6244 } else if (BinaryOperator
*I
= dyn_cast
<BinaryOperator
>(Val
)) {
6245 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
6246 if (I
->getOpcode() == Instruction::Shl
) {
6247 // This is a value scaled by '1 << the shift amt'.
6248 Scale
= 1U << RHS
->getZExtValue();
6250 return I
->getOperand(0);
6251 } else if (I
->getOpcode() == Instruction::Mul
) {
6252 // This value is scaled by 'RHS'.
6253 Scale
= RHS
->getZExtValue();
6255 return I
->getOperand(0);
6256 } else if (I
->getOpcode() == Instruction::Add
) {
6257 // We have X+C. Check to see if we really have (X*C2)+C1,
6258 // where C1 is divisible by C2.
6261 DecomposeSimpleLinearExpr(I
->getOperand(0), SubScale
, Offset
);
6262 Offset
+= RHS
->getZExtValue();
6269 // Otherwise, we can't look past this.
6276 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
6277 /// try to eliminate the cast by moving the type information into the alloc.
6278 Instruction
*InstCombiner::PromoteCastOfAllocation(BitCastInst
&CI
,
6279 AllocationInst
&AI
) {
6280 const PointerType
*PTy
= cast
<PointerType
>(CI
.getType());
6282 // Remove any uses of AI that are dead.
6283 assert(!CI
.use_empty() && "Dead instructions should be removed earlier!");
6285 for (Value::use_iterator UI
= AI
.use_begin(), E
= AI
.use_end(); UI
!= E
; ) {
6286 Instruction
*User
= cast
<Instruction
>(*UI
++);
6287 if (isInstructionTriviallyDead(User
)) {
6288 while (UI
!= E
&& *UI
== User
)
6289 ++UI
; // If this instruction uses AI more than once, don't break UI.
6292 DOUT
<< "IC: DCE: " << *User
;
6293 EraseInstFromFunction(*User
);
6297 // Get the type really allocated and the type casted to.
6298 const Type
*AllocElTy
= AI
.getAllocatedType();
6299 const Type
*CastElTy
= PTy
->getElementType();
6300 if (!AllocElTy
->isSized() || !CastElTy
->isSized()) return 0;
6302 unsigned AllocElTyAlign
= TD
->getABITypeAlignment(AllocElTy
);
6303 unsigned CastElTyAlign
= TD
->getABITypeAlignment(CastElTy
);
6304 if (CastElTyAlign
< AllocElTyAlign
) return 0;
6306 // If the allocation has multiple uses, only promote it if we are strictly
6307 // increasing the alignment of the resultant allocation. If we keep it the
6308 // same, we open the door to infinite loops of various kinds.
6309 if (!AI
.hasOneUse() && CastElTyAlign
== AllocElTyAlign
) return 0;
6311 uint64_t AllocElTySize
= TD
->getABITypeSize(AllocElTy
);
6312 uint64_t CastElTySize
= TD
->getABITypeSize(CastElTy
);
6313 if (CastElTySize
== 0 || AllocElTySize
== 0) return 0;
6315 // See if we can satisfy the modulus by pulling a scale out of the array
6317 unsigned ArraySizeScale
;
6319 Value
*NumElements
= // See if the array size is a decomposable linear expr.
6320 DecomposeSimpleLinearExpr(AI
.getOperand(0), ArraySizeScale
, ArrayOffset
);
6322 // If we can now satisfy the modulus, by using a non-1 scale, we really can
6324 if ((AllocElTySize
*ArraySizeScale
) % CastElTySize
!= 0 ||
6325 (AllocElTySize
*ArrayOffset
) % CastElTySize
!= 0) return 0;
6327 unsigned Scale
= (AllocElTySize
*ArraySizeScale
)/CastElTySize
;
6332 // If the allocation size is constant, form a constant mul expression
6333 Amt
= ConstantInt::get(Type::Int32Ty
, Scale
);
6334 if (isa
<ConstantInt
>(NumElements
))
6335 Amt
= Multiply(cast
<ConstantInt
>(NumElements
), cast
<ConstantInt
>(Amt
));
6336 // otherwise multiply the amount and the number of elements
6337 else if (Scale
!= 1) {
6338 Instruction
*Tmp
= BinaryOperator::createMul(Amt
, NumElements
, "tmp");
6339 Amt
= InsertNewInstBefore(Tmp
, AI
);
6343 if (int Offset
= (AllocElTySize
*ArrayOffset
)/CastElTySize
) {
6344 Value
*Off
= ConstantInt::get(Type::Int32Ty
, Offset
, true);
6345 Instruction
*Tmp
= BinaryOperator::createAdd(Amt
, Off
, "tmp");
6346 Amt
= InsertNewInstBefore(Tmp
, AI
);
6349 AllocationInst
*New
;
6350 if (isa
<MallocInst
>(AI
))
6351 New
= new MallocInst(CastElTy
, Amt
, AI
.getAlignment());
6353 New
= new AllocaInst(CastElTy
, Amt
, AI
.getAlignment());
6354 InsertNewInstBefore(New
, AI
);
6357 // If the allocation has multiple uses, insert a cast and change all things
6358 // that used it to use the new cast. This will also hack on CI, but it will
6360 if (!AI
.hasOneUse()) {
6361 AddUsesToWorkList(AI
);
6362 // New is the allocation instruction, pointer typed. AI is the original
6363 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
6364 CastInst
*NewCast
= new BitCastInst(New
, AI
.getType(), "tmpcast");
6365 InsertNewInstBefore(NewCast
, AI
);
6366 AI
.replaceAllUsesWith(NewCast
);
6368 return ReplaceInstUsesWith(CI
, New
);
6371 /// CanEvaluateInDifferentType - Return true if we can take the specified value
6372 /// and return it as type Ty without inserting any new casts and without
6373 /// changing the computed value. This is used by code that tries to decide
6374 /// whether promoting or shrinking integer operations to wider or smaller types
6375 /// will allow us to eliminate a truncate or extend.
6377 /// This is a truncation operation if Ty is smaller than V->getType(), or an
6378 /// extension operation if Ty is larger.
6379 static bool CanEvaluateInDifferentType(Value
*V
, const IntegerType
*Ty
,
6380 unsigned CastOpc
, int &NumCastsRemoved
) {
6381 // We can always evaluate constants in another type.
6382 if (isa
<ConstantInt
>(V
))
6385 Instruction
*I
= dyn_cast
<Instruction
>(V
);
6386 if (!I
) return false;
6388 const IntegerType
*OrigTy
= cast
<IntegerType
>(V
->getType());
6390 // If this is an extension or truncate, we can often eliminate it.
6391 if (isa
<TruncInst
>(I
) || isa
<ZExtInst
>(I
) || isa
<SExtInst
>(I
)) {
6392 // If this is a cast from the destination type, we can trivially eliminate
6393 // it, and this will remove a cast overall.
6394 if (I
->getOperand(0)->getType() == Ty
) {
6395 // If the first operand is itself a cast, and is eliminable, do not count
6396 // this as an eliminable cast. We would prefer to eliminate those two
6398 if (!isa
<CastInst
>(I
->getOperand(0)))
6404 // We can't extend or shrink something that has multiple uses: doing so would
6405 // require duplicating the instruction in general, which isn't profitable.
6406 if (!I
->hasOneUse()) return false;
6408 switch (I
->getOpcode()) {
6409 case Instruction::Add
:
6410 case Instruction::Sub
:
6411 case Instruction::And
:
6412 case Instruction::Or
:
6413 case Instruction::Xor
:
6414 // These operators can all arbitrarily be extended or truncated.
6415 return CanEvaluateInDifferentType(I
->getOperand(0), Ty
, CastOpc
,
6417 CanEvaluateInDifferentType(I
->getOperand(1), Ty
, CastOpc
,
6420 case Instruction::Shl
:
6421 // If we are truncating the result of this SHL, and if it's a shift of a
6422 // constant amount, we can always perform a SHL in a smaller type.
6423 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
6424 uint32_t BitWidth
= Ty
->getBitWidth();
6425 if (BitWidth
< OrigTy
->getBitWidth() &&
6426 CI
->getLimitedValue(BitWidth
) < BitWidth
)
6427 return CanEvaluateInDifferentType(I
->getOperand(0), Ty
, CastOpc
,
6431 case Instruction::LShr
:
6432 // If this is a truncate of a logical shr, we can truncate it to a smaller
6433 // lshr iff we know that the bits we would otherwise be shifting in are
6435 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
6436 uint32_t OrigBitWidth
= OrigTy
->getBitWidth();
6437 uint32_t BitWidth
= Ty
->getBitWidth();
6438 if (BitWidth
< OrigBitWidth
&&
6439 MaskedValueIsZero(I
->getOperand(0),
6440 APInt::getHighBitsSet(OrigBitWidth
, OrigBitWidth
-BitWidth
)) &&
6441 CI
->getLimitedValue(BitWidth
) < BitWidth
) {
6442 return CanEvaluateInDifferentType(I
->getOperand(0), Ty
, CastOpc
,
6447 case Instruction::ZExt
:
6448 case Instruction::SExt
:
6449 case Instruction::Trunc
:
6450 // If this is the same kind of case as our original (e.g. zext+zext), we
6451 // can safely replace it. Note that replacing it does not reduce the number
6452 // of casts in the input.
6453 if (I
->getOpcode() == CastOpc
)
6458 // TODO: Can handle more cases here.
6465 /// EvaluateInDifferentType - Given an expression that
6466 /// CanEvaluateInDifferentType returns true for, actually insert the code to
6467 /// evaluate the expression.
6468 Value
*InstCombiner::EvaluateInDifferentType(Value
*V
, const Type
*Ty
,
6470 if (Constant
*C
= dyn_cast
<Constant
>(V
))
6471 return ConstantExpr::getIntegerCast(C
, Ty
, isSigned
/*Sext or ZExt*/);
6473 // Otherwise, it must be an instruction.
6474 Instruction
*I
= cast
<Instruction
>(V
);
6475 Instruction
*Res
= 0;
6476 switch (I
->getOpcode()) {
6477 case Instruction::Add
:
6478 case Instruction::Sub
:
6479 case Instruction::And
:
6480 case Instruction::Or
:
6481 case Instruction::Xor
:
6482 case Instruction::AShr
:
6483 case Instruction::LShr
:
6484 case Instruction::Shl
: {
6485 Value
*LHS
= EvaluateInDifferentType(I
->getOperand(0), Ty
, isSigned
);
6486 Value
*RHS
= EvaluateInDifferentType(I
->getOperand(1), Ty
, isSigned
);
6487 Res
= BinaryOperator::create((Instruction::BinaryOps
)I
->getOpcode(),
6488 LHS
, RHS
, I
->getName());
6491 case Instruction::Trunc
:
6492 case Instruction::ZExt
:
6493 case Instruction::SExt
:
6494 // If the source type of the cast is the type we're trying for then we can
6495 // just return the source. There's no need to insert it because it is not
6497 if (I
->getOperand(0)->getType() == Ty
)
6498 return I
->getOperand(0);
6500 // Otherwise, must be the same type of case, so just reinsert a new one.
6501 Res
= CastInst::create(cast
<CastInst
>(I
)->getOpcode(), I
->getOperand(0),
6505 // TODO: Can handle more cases here.
6506 assert(0 && "Unreachable!");
6510 return InsertNewInstBefore(Res
, *I
);
6513 /// @brief Implement the transforms common to all CastInst visitors.
6514 Instruction
*InstCombiner::commonCastTransforms(CastInst
&CI
) {
6515 Value
*Src
= CI
.getOperand(0);
6517 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
6518 // eliminate it now.
6519 if (CastInst
*CSrc
= dyn_cast
<CastInst
>(Src
)) { // A->B->C cast
6520 if (Instruction::CastOps opc
=
6521 isEliminableCastPair(CSrc
, CI
.getOpcode(), CI
.getType(), TD
)) {
6522 // The first cast (CSrc) is eliminable so we need to fix up or replace
6523 // the second cast (CI). CSrc will then have a good chance of being dead.
6524 return CastInst::create(opc
, CSrc
->getOperand(0), CI
.getType());
6528 // If we are casting a select then fold the cast into the select
6529 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Src
))
6530 if (Instruction
*NV
= FoldOpIntoSelect(CI
, SI
, this))
6533 // If we are casting a PHI then fold the cast into the PHI
6534 if (isa
<PHINode
>(Src
))
6535 if (Instruction
*NV
= FoldOpIntoPhi(CI
))
6541 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
6542 Instruction
*InstCombiner::commonPointerCastTransforms(CastInst
&CI
) {
6543 Value
*Src
= CI
.getOperand(0);
6545 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Src
)) {
6546 // If casting the result of a getelementptr instruction with no offset, turn
6547 // this into a cast of the original pointer!
6548 if (GEP
->hasAllZeroIndices()) {
6549 // Changing the cast operand is usually not a good idea but it is safe
6550 // here because the pointer operand is being replaced with another
6551 // pointer operand so the opcode doesn't need to change.
6553 CI
.setOperand(0, GEP
->getOperand(0));
6557 // If the GEP has a single use, and the base pointer is a bitcast, and the
6558 // GEP computes a constant offset, see if we can convert these three
6559 // instructions into fewer. This typically happens with unions and other
6560 // non-type-safe code.
6561 if (GEP
->hasOneUse() && isa
<BitCastInst
>(GEP
->getOperand(0))) {
6562 if (GEP
->hasAllConstantIndices()) {
6563 // We are guaranteed to get a constant from EmitGEPOffset.
6564 ConstantInt
*OffsetV
= cast
<ConstantInt
>(EmitGEPOffset(GEP
, CI
, *this));
6565 int64_t Offset
= OffsetV
->getSExtValue();
6567 // Get the base pointer input of the bitcast, and the type it points to.
6568 Value
*OrigBase
= cast
<BitCastInst
>(GEP
->getOperand(0))->getOperand(0);
6569 const Type
*GEPIdxTy
=
6570 cast
<PointerType
>(OrigBase
->getType())->getElementType();
6571 if (GEPIdxTy
->isSized()) {
6572 SmallVector
<Value
*, 8> NewIndices
;
6574 // Start with the index over the outer type. Note that the type size
6575 // might be zero (even if the offset isn't zero) if the indexed type
6576 // is something like [0 x {int, int}]
6577 const Type
*IntPtrTy
= TD
->getIntPtrType();
6578 int64_t FirstIdx
= 0;
6579 if (int64_t TySize
= TD
->getABITypeSize(GEPIdxTy
)) {
6580 FirstIdx
= Offset
/TySize
;
6583 // Handle silly modulus not returning values values [0..TySize).
6587 assert(Offset
>= 0);
6589 assert((uint64_t)Offset
< (uint64_t)TySize
&&"Out of range offset");
6592 NewIndices
.push_back(ConstantInt::get(IntPtrTy
, FirstIdx
));
6594 // Index into the types. If we fail, set OrigBase to null.
6596 if (const StructType
*STy
= dyn_cast
<StructType
>(GEPIdxTy
)) {
6597 const StructLayout
*SL
= TD
->getStructLayout(STy
);
6598 if (Offset
< (int64_t)SL
->getSizeInBytes()) {
6599 unsigned Elt
= SL
->getElementContainingOffset(Offset
);
6600 NewIndices
.push_back(ConstantInt::get(Type::Int32Ty
, Elt
));
6602 Offset
-= SL
->getElementOffset(Elt
);
6603 GEPIdxTy
= STy
->getElementType(Elt
);
6605 // Otherwise, we can't index into this, bail out.
6609 } else if (isa
<ArrayType
>(GEPIdxTy
) || isa
<VectorType
>(GEPIdxTy
)) {
6610 const SequentialType
*STy
= cast
<SequentialType
>(GEPIdxTy
);
6611 if (uint64_t EltSize
= TD
->getABITypeSize(STy
->getElementType())){
6612 NewIndices
.push_back(ConstantInt::get(IntPtrTy
,Offset
/EltSize
));
6615 NewIndices
.push_back(ConstantInt::get(IntPtrTy
, 0));
6617 GEPIdxTy
= STy
->getElementType();
6619 // Otherwise, we can't index into this, bail out.
6625 // If we were able to index down into an element, create the GEP
6626 // and bitcast the result. This eliminates one bitcast, potentially
6628 Instruction
*NGEP
= new GetElementPtrInst(OrigBase
,
6630 NewIndices
.end(), "");
6631 InsertNewInstBefore(NGEP
, CI
);
6632 NGEP
->takeName(GEP
);
6634 if (isa
<BitCastInst
>(CI
))
6635 return new BitCastInst(NGEP
, CI
.getType());
6636 assert(isa
<PtrToIntInst
>(CI
));
6637 return new PtrToIntInst(NGEP
, CI
.getType());
6644 return commonCastTransforms(CI
);
6649 /// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
6650 /// integer types. This function implements the common transforms for all those
6652 /// @brief Implement the transforms common to CastInst with integer operands
6653 Instruction
*InstCombiner::commonIntCastTransforms(CastInst
&CI
) {
6654 if (Instruction
*Result
= commonCastTransforms(CI
))
6657 Value
*Src
= CI
.getOperand(0);
6658 const Type
*SrcTy
= Src
->getType();
6659 const Type
*DestTy
= CI
.getType();
6660 uint32_t SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
6661 uint32_t DestBitSize
= DestTy
->getPrimitiveSizeInBits();
6663 // See if we can simplify any instructions used by the LHS whose sole
6664 // purpose is to compute bits we don't care about.
6665 APInt
KnownZero(DestBitSize
, 0), KnownOne(DestBitSize
, 0);
6666 if (SimplifyDemandedBits(&CI
, APInt::getAllOnesValue(DestBitSize
),
6667 KnownZero
, KnownOne
))
6670 // If the source isn't an instruction or has more than one use then we
6671 // can't do anything more.
6672 Instruction
*SrcI
= dyn_cast
<Instruction
>(Src
);
6673 if (!SrcI
|| !Src
->hasOneUse())
6676 // Attempt to propagate the cast into the instruction for int->int casts.
6677 int NumCastsRemoved
= 0;
6678 if (!isa
<BitCastInst
>(CI
) &&
6679 CanEvaluateInDifferentType(SrcI
, cast
<IntegerType
>(DestTy
),
6680 CI
.getOpcode(), NumCastsRemoved
)) {
6681 // If this cast is a truncate, evaluting in a different type always
6682 // eliminates the cast, so it is always a win. If this is a zero-extension,
6683 // we need to do an AND to maintain the clear top-part of the computation,
6684 // so we require that the input have eliminated at least one cast. If this
6685 // is a sign extension, we insert two new casts (to do the extension) so we
6686 // require that two casts have been eliminated.
6688 switch (CI
.getOpcode()) {
6690 // All the others use floating point so we shouldn't actually
6691 // get here because of the check above.
6692 assert(0 && "Unknown cast type");
6693 case Instruction::Trunc
:
6696 case Instruction::ZExt
:
6697 DoXForm
= NumCastsRemoved
>= 1;
6699 case Instruction::SExt
:
6700 DoXForm
= NumCastsRemoved
>= 2;
6705 Value
*Res
= EvaluateInDifferentType(SrcI
, DestTy
,
6706 CI
.getOpcode() == Instruction::SExt
);
6707 assert(Res
->getType() == DestTy
);
6708 switch (CI
.getOpcode()) {
6709 default: assert(0 && "Unknown cast type!");
6710 case Instruction::Trunc
:
6711 case Instruction::BitCast
:
6712 // Just replace this cast with the result.
6713 return ReplaceInstUsesWith(CI
, Res
);
6714 case Instruction::ZExt
: {
6715 // We need to emit an AND to clear the high bits.
6716 assert(SrcBitSize
< DestBitSize
&& "Not a zext?");
6717 Constant
*C
= ConstantInt::get(APInt::getLowBitsSet(DestBitSize
,
6719 return BinaryOperator::createAnd(Res
, C
);
6721 case Instruction::SExt
:
6722 // We need to emit a cast to truncate, then a cast to sext.
6723 return CastInst::create(Instruction::SExt
,
6724 InsertCastBefore(Instruction::Trunc
, Res
, Src
->getType(),
6730 Value
*Op0
= SrcI
->getNumOperands() > 0 ? SrcI
->getOperand(0) : 0;
6731 Value
*Op1
= SrcI
->getNumOperands() > 1 ? SrcI
->getOperand(1) : 0;
6733 switch (SrcI
->getOpcode()) {
6734 case Instruction::Add
:
6735 case Instruction::Mul
:
6736 case Instruction::And
:
6737 case Instruction::Or
:
6738 case Instruction::Xor
:
6739 // If we are discarding information, rewrite.
6740 if (DestBitSize
<= SrcBitSize
&& DestBitSize
!= 1) {
6741 // Don't insert two casts if they cannot be eliminated. We allow
6742 // two casts to be inserted if the sizes are the same. This could
6743 // only be converting signedness, which is a noop.
6744 if (DestBitSize
== SrcBitSize
||
6745 !ValueRequiresCast(CI
.getOpcode(), Op1
, DestTy
,TD
) ||
6746 !ValueRequiresCast(CI
.getOpcode(), Op0
, DestTy
, TD
)) {
6747 Instruction::CastOps opcode
= CI
.getOpcode();
6748 Value
*Op0c
= InsertOperandCastBefore(opcode
, Op0
, DestTy
, SrcI
);
6749 Value
*Op1c
= InsertOperandCastBefore(opcode
, Op1
, DestTy
, SrcI
);
6750 return BinaryOperator::create(
6751 cast
<BinaryOperator
>(SrcI
)->getOpcode(), Op0c
, Op1c
);
6755 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
6756 if (isa
<ZExtInst
>(CI
) && SrcBitSize
== 1 &&
6757 SrcI
->getOpcode() == Instruction::Xor
&&
6758 Op1
== ConstantInt::getTrue() &&
6759 (!Op0
->hasOneUse() || !isa
<CmpInst
>(Op0
))) {
6760 Value
*New
= InsertOperandCastBefore(Instruction::ZExt
, Op0
, DestTy
, &CI
);
6761 return BinaryOperator::createXor(New
, ConstantInt::get(CI
.getType(), 1));
6764 case Instruction::SDiv
:
6765 case Instruction::UDiv
:
6766 case Instruction::SRem
:
6767 case Instruction::URem
:
6768 // If we are just changing the sign, rewrite.
6769 if (DestBitSize
== SrcBitSize
) {
6770 // Don't insert two casts if they cannot be eliminated. We allow
6771 // two casts to be inserted if the sizes are the same. This could
6772 // only be converting signedness, which is a noop.
6773 if (!ValueRequiresCast(CI
.getOpcode(), Op1
, DestTy
, TD
) ||
6774 !ValueRequiresCast(CI
.getOpcode(), Op0
, DestTy
, TD
)) {
6775 Value
*Op0c
= InsertOperandCastBefore(Instruction::BitCast
,
6777 Value
*Op1c
= InsertOperandCastBefore(Instruction::BitCast
,
6779 return BinaryOperator::create(
6780 cast
<BinaryOperator
>(SrcI
)->getOpcode(), Op0c
, Op1c
);
6785 case Instruction::Shl
:
6786 // Allow changing the sign of the source operand. Do not allow
6787 // changing the size of the shift, UNLESS the shift amount is a
6788 // constant. We must not change variable sized shifts to a smaller
6789 // size, because it is undefined to shift more bits out than exist
6791 if (DestBitSize
== SrcBitSize
||
6792 (DestBitSize
< SrcBitSize
&& isa
<Constant
>(Op1
))) {
6793 Instruction::CastOps opcode
= (DestBitSize
== SrcBitSize
?
6794 Instruction::BitCast
: Instruction::Trunc
);
6795 Value
*Op0c
= InsertOperandCastBefore(opcode
, Op0
, DestTy
, SrcI
);
6796 Value
*Op1c
= InsertOperandCastBefore(opcode
, Op1
, DestTy
, SrcI
);
6797 return BinaryOperator::createShl(Op0c
, Op1c
);
6800 case Instruction::AShr
:
6801 // If this is a signed shr, and if all bits shifted in are about to be
6802 // truncated off, turn it into an unsigned shr to allow greater
6804 if (DestBitSize
< SrcBitSize
&&
6805 isa
<ConstantInt
>(Op1
)) {
6806 uint32_t ShiftAmt
= cast
<ConstantInt
>(Op1
)->getLimitedValue(SrcBitSize
);
6807 if (SrcBitSize
> ShiftAmt
&& SrcBitSize
-ShiftAmt
>= DestBitSize
) {
6808 // Insert the new logical shift right.
6809 return BinaryOperator::createLShr(Op0
, Op1
);
6817 Instruction
*InstCombiner::visitTrunc(TruncInst
&CI
) {
6818 if (Instruction
*Result
= commonIntCastTransforms(CI
))
6821 Value
*Src
= CI
.getOperand(0);
6822 const Type
*Ty
= CI
.getType();
6823 uint32_t DestBitWidth
= Ty
->getPrimitiveSizeInBits();
6824 uint32_t SrcBitWidth
= cast
<IntegerType
>(Src
->getType())->getBitWidth();
6826 if (Instruction
*SrcI
= dyn_cast
<Instruction
>(Src
)) {
6827 switch (SrcI
->getOpcode()) {
6829 case Instruction::LShr
:
6830 // We can shrink lshr to something smaller if we know the bits shifted in
6831 // are already zeros.
6832 if (ConstantInt
*ShAmtV
= dyn_cast
<ConstantInt
>(SrcI
->getOperand(1))) {
6833 uint32_t ShAmt
= ShAmtV
->getLimitedValue(SrcBitWidth
);
6835 // Get a mask for the bits shifting in.
6836 APInt
Mask(APInt::getLowBitsSet(SrcBitWidth
, ShAmt
).shl(DestBitWidth
));
6837 Value
* SrcIOp0
= SrcI
->getOperand(0);
6838 if (SrcI
->hasOneUse() && MaskedValueIsZero(SrcIOp0
, Mask
)) {
6839 if (ShAmt
>= DestBitWidth
) // All zeros.
6840 return ReplaceInstUsesWith(CI
, Constant::getNullValue(Ty
));
6842 // Okay, we can shrink this. Truncate the input, then return a new
6844 Value
*V1
= InsertCastBefore(Instruction::Trunc
, SrcIOp0
, Ty
, CI
);
6845 Value
*V2
= InsertCastBefore(Instruction::Trunc
, SrcI
->getOperand(1),
6847 return BinaryOperator::createLShr(V1
, V2
);
6849 } else { // This is a variable shr.
6851 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
6852 // more LLVM instructions, but allows '1 << Y' to be hoisted if
6853 // loop-invariant and CSE'd.
6854 if (CI
.getType() == Type::Int1Ty
&& SrcI
->hasOneUse()) {
6855 Value
*One
= ConstantInt::get(SrcI
->getType(), 1);
6857 Value
*V
= InsertNewInstBefore(
6858 BinaryOperator::createShl(One
, SrcI
->getOperand(1),
6860 V
= InsertNewInstBefore(BinaryOperator::createAnd(V
,
6861 SrcI
->getOperand(0),
6863 Value
*Zero
= Constant::getNullValue(V
->getType());
6864 return new ICmpInst(ICmpInst::ICMP_NE
, V
, Zero
);
6874 Instruction
*InstCombiner::visitZExt(ZExtInst
&CI
) {
6875 // If one of the common conversion will work ..
6876 if (Instruction
*Result
= commonIntCastTransforms(CI
))
6879 Value
*Src
= CI
.getOperand(0);
6881 // If this is a cast of a cast
6882 if (CastInst
*CSrc
= dyn_cast
<CastInst
>(Src
)) { // A->B->C cast
6883 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
6884 // types and if the sizes are just right we can convert this into a logical
6885 // 'and' which will be much cheaper than the pair of casts.
6886 if (isa
<TruncInst
>(CSrc
)) {
6887 // Get the sizes of the types involved
6888 Value
*A
= CSrc
->getOperand(0);
6889 uint32_t SrcSize
= A
->getType()->getPrimitiveSizeInBits();
6890 uint32_t MidSize
= CSrc
->getType()->getPrimitiveSizeInBits();
6891 uint32_t DstSize
= CI
.getType()->getPrimitiveSizeInBits();
6892 // If we're actually extending zero bits and the trunc is a no-op
6893 if (MidSize
< DstSize
&& SrcSize
== DstSize
) {
6894 // Replace both of the casts with an And of the type mask.
6895 APInt
AndValue(APInt::getLowBitsSet(SrcSize
, MidSize
));
6896 Constant
*AndConst
= ConstantInt::get(AndValue
);
6898 BinaryOperator::createAnd(CSrc
->getOperand(0), AndConst
);
6899 // Unfortunately, if the type changed, we need to cast it back.
6900 if (And
->getType() != CI
.getType()) {
6901 And
->setName(CSrc
->getName()+".mask");
6902 InsertNewInstBefore(And
, CI
);
6903 And
= CastInst::createIntegerCast(And
, CI
.getType(), false/*ZExt*/);
6910 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(Src
)) {
6911 // If we are just checking for a icmp eq of a single bit and zext'ing it
6912 // to an integer, then shift the bit to the appropriate place and then
6913 // cast to integer to avoid the comparison.
6914 if (ConstantInt
*Op1C
= dyn_cast
<ConstantInt
>(ICI
->getOperand(1))) {
6915 const APInt
&Op1CV
= Op1C
->getValue();
6917 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
6918 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
6919 if ((ICI
->getPredicate() == ICmpInst::ICMP_SLT
&& Op1CV
== 0) ||
6920 (ICI
->getPredicate() == ICmpInst::ICMP_SGT
&&Op1CV
.isAllOnesValue())){
6921 Value
*In
= ICI
->getOperand(0);
6922 Value
*Sh
= ConstantInt::get(In
->getType(),
6923 In
->getType()->getPrimitiveSizeInBits()-1);
6924 In
= InsertNewInstBefore(BinaryOperator::createLShr(In
, Sh
,
6925 In
->getName()+".lobit"),
6927 if (In
->getType() != CI
.getType())
6928 In
= CastInst::createIntegerCast(In
, CI
.getType(),
6929 false/*ZExt*/, "tmp", &CI
);
6931 if (ICI
->getPredicate() == ICmpInst::ICMP_SGT
) {
6932 Constant
*One
= ConstantInt::get(In
->getType(), 1);
6933 In
= InsertNewInstBefore(BinaryOperator::createXor(In
, One
,
6934 In
->getName()+".not"),
6938 return ReplaceInstUsesWith(CI
, In
);
6943 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
6944 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
6945 // zext (X == 1) to i32 --> X iff X has only the low bit set.
6946 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
6947 // zext (X != 0) to i32 --> X iff X has only the low bit set.
6948 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
6949 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
6950 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
6951 if ((Op1CV
== 0 || Op1CV
.isPowerOf2()) &&
6952 // This only works for EQ and NE
6953 ICI
->isEquality()) {
6954 // If Op1C some other power of two, convert:
6955 uint32_t BitWidth
= Op1C
->getType()->getBitWidth();
6956 APInt
KnownZero(BitWidth
, 0), KnownOne(BitWidth
, 0);
6957 APInt
TypeMask(APInt::getAllOnesValue(BitWidth
));
6958 ComputeMaskedBits(ICI
->getOperand(0), TypeMask
, KnownZero
, KnownOne
);
6960 APInt
KnownZeroMask(~KnownZero
);
6961 if (KnownZeroMask
.isPowerOf2()) { // Exactly 1 possible 1?
6962 bool isNE
= ICI
->getPredicate() == ICmpInst::ICMP_NE
;
6963 if (Op1CV
!= 0 && (Op1CV
!= KnownZeroMask
)) {
6964 // (X&4) == 2 --> false
6965 // (X&4) != 2 --> true
6966 Constant
*Res
= ConstantInt::get(Type::Int1Ty
, isNE
);
6967 Res
= ConstantExpr::getZExt(Res
, CI
.getType());
6968 return ReplaceInstUsesWith(CI
, Res
);
6971 uint32_t ShiftAmt
= KnownZeroMask
.logBase2();
6972 Value
*In
= ICI
->getOperand(0);
6974 // Perform a logical shr by shiftamt.
6975 // Insert the shift to put the result in the low bit.
6976 In
= InsertNewInstBefore(
6977 BinaryOperator::createLShr(In
,
6978 ConstantInt::get(In
->getType(), ShiftAmt
),
6979 In
->getName()+".lobit"), CI
);
6982 if ((Op1CV
!= 0) == isNE
) { // Toggle the low bit.
6983 Constant
*One
= ConstantInt::get(In
->getType(), 1);
6984 In
= BinaryOperator::createXor(In
, One
, "tmp");
6985 InsertNewInstBefore(cast
<Instruction
>(In
), CI
);
6988 if (CI
.getType() == In
->getType())
6989 return ReplaceInstUsesWith(CI
, In
);
6991 return CastInst::createIntegerCast(In
, CI
.getType(), false/*ZExt*/);
6999 Instruction
*InstCombiner::visitSExt(SExtInst
&CI
) {
7000 if (Instruction
*I
= commonIntCastTransforms(CI
))
7003 Value
*Src
= CI
.getOperand(0);
7005 // sext (x <s 0) -> ashr x, 31 -> all ones if signed
7006 // sext (x >s -1) -> ashr x, 31 -> all ones if not signed
7007 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(Src
)) {
7008 // If we are just checking for a icmp eq of a single bit and zext'ing it
7009 // to an integer, then shift the bit to the appropriate place and then
7010 // cast to integer to avoid the comparison.
7011 if (ConstantInt
*Op1C
= dyn_cast
<ConstantInt
>(ICI
->getOperand(1))) {
7012 const APInt
&Op1CV
= Op1C
->getValue();
7014 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
7015 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
7016 if ((ICI
->getPredicate() == ICmpInst::ICMP_SLT
&& Op1CV
== 0) ||
7017 (ICI
->getPredicate() == ICmpInst::ICMP_SGT
&&Op1CV
.isAllOnesValue())){
7018 Value
*In
= ICI
->getOperand(0);
7019 Value
*Sh
= ConstantInt::get(In
->getType(),
7020 In
->getType()->getPrimitiveSizeInBits()-1);
7021 In
= InsertNewInstBefore(BinaryOperator::createAShr(In
, Sh
,
7022 In
->getName()+".lobit"),
7024 if (In
->getType() != CI
.getType())
7025 In
= CastInst::createIntegerCast(In
, CI
.getType(),
7026 true/*SExt*/, "tmp", &CI
);
7028 if (ICI
->getPredicate() == ICmpInst::ICMP_SGT
)
7029 In
= InsertNewInstBefore(BinaryOperator::createNot(In
,
7030 In
->getName()+".not"), CI
);
7032 return ReplaceInstUsesWith(CI
, In
);
7040 Instruction
*InstCombiner::visitFPTrunc(CastInst
&CI
) {
7041 return commonCastTransforms(CI
);
7044 Instruction
*InstCombiner::visitFPExt(CastInst
&CI
) {
7045 return commonCastTransforms(CI
);
7048 Instruction
*InstCombiner::visitFPToUI(CastInst
&CI
) {
7049 return commonCastTransforms(CI
);
7052 Instruction
*InstCombiner::visitFPToSI(CastInst
&CI
) {
7053 return commonCastTransforms(CI
);
7056 Instruction
*InstCombiner::visitUIToFP(CastInst
&CI
) {
7057 return commonCastTransforms(CI
);
7060 Instruction
*InstCombiner::visitSIToFP(CastInst
&CI
) {
7061 return commonCastTransforms(CI
);
7064 Instruction
*InstCombiner::visitPtrToInt(CastInst
&CI
) {
7065 return commonPointerCastTransforms(CI
);
7068 Instruction
*InstCombiner::visitIntToPtr(CastInst
&CI
) {
7069 return commonCastTransforms(CI
);
7072 Instruction
*InstCombiner::visitBitCast(BitCastInst
&CI
) {
7073 // If the operands are integer typed then apply the integer transforms,
7074 // otherwise just apply the common ones.
7075 Value
*Src
= CI
.getOperand(0);
7076 const Type
*SrcTy
= Src
->getType();
7077 const Type
*DestTy
= CI
.getType();
7079 if (SrcTy
->isInteger() && DestTy
->isInteger()) {
7080 if (Instruction
*Result
= commonIntCastTransforms(CI
))
7082 } else if (isa
<PointerType
>(SrcTy
)) {
7083 if (Instruction
*I
= commonPointerCastTransforms(CI
))
7086 if (Instruction
*Result
= commonCastTransforms(CI
))
7091 // Get rid of casts from one type to the same type. These are useless and can
7092 // be replaced by the operand.
7093 if (DestTy
== Src
->getType())
7094 return ReplaceInstUsesWith(CI
, Src
);
7096 if (const PointerType
*DstPTy
= dyn_cast
<PointerType
>(DestTy
)) {
7097 const PointerType
*SrcPTy
= cast
<PointerType
>(SrcTy
);
7098 const Type
*DstElTy
= DstPTy
->getElementType();
7099 const Type
*SrcElTy
= SrcPTy
->getElementType();
7101 // If we are casting a malloc or alloca to a pointer to a type of the same
7102 // size, rewrite the allocation instruction to allocate the "right" type.
7103 if (AllocationInst
*AI
= dyn_cast
<AllocationInst
>(Src
))
7104 if (Instruction
*V
= PromoteCastOfAllocation(CI
, *AI
))
7107 // If the source and destination are pointers, and this cast is equivalent
7108 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
7109 // This can enhance SROA and other transforms that want type-safe pointers.
7110 Constant
*ZeroUInt
= Constant::getNullValue(Type::Int32Ty
);
7111 unsigned NumZeros
= 0;
7112 while (SrcElTy
!= DstElTy
&&
7113 isa
<CompositeType
>(SrcElTy
) && !isa
<PointerType
>(SrcElTy
) &&
7114 SrcElTy
->getNumContainedTypes() /* not "{}" */) {
7115 SrcElTy
= cast
<CompositeType
>(SrcElTy
)->getTypeAtIndex(ZeroUInt
);
7119 // If we found a path from the src to dest, create the getelementptr now.
7120 if (SrcElTy
== DstElTy
) {
7121 SmallVector
<Value
*, 8> Idxs(NumZeros
+1, ZeroUInt
);
7122 return new GetElementPtrInst(Src
, Idxs
.begin(), Idxs
.end(), "",
7123 ((Instruction
*) NULL
));
7127 if (ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(Src
)) {
7128 if (SVI
->hasOneUse()) {
7129 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
7130 // a bitconvert to a vector with the same # elts.
7131 if (isa
<VectorType
>(DestTy
) &&
7132 cast
<VectorType
>(DestTy
)->getNumElements() ==
7133 SVI
->getType()->getNumElements()) {
7135 // If either of the operands is a cast from CI.getType(), then
7136 // evaluating the shuffle in the casted destination's type will allow
7137 // us to eliminate at least one cast.
7138 if (((Tmp
= dyn_cast
<CastInst
>(SVI
->getOperand(0))) &&
7139 Tmp
->getOperand(0)->getType() == DestTy
) ||
7140 ((Tmp
= dyn_cast
<CastInst
>(SVI
->getOperand(1))) &&
7141 Tmp
->getOperand(0)->getType() == DestTy
)) {
7142 Value
*LHS
= InsertOperandCastBefore(Instruction::BitCast
,
7143 SVI
->getOperand(0), DestTy
, &CI
);
7144 Value
*RHS
= InsertOperandCastBefore(Instruction::BitCast
,
7145 SVI
->getOperand(1), DestTy
, &CI
);
7146 // Return a new shuffle vector. Use the same element ID's, as we
7147 // know the vector types match #elts.
7148 return new ShuffleVectorInst(LHS
, RHS
, SVI
->getOperand(2));
7156 /// GetSelectFoldableOperands - We want to turn code that looks like this:
7158 /// %D = select %cond, %C, %A
7160 /// %C = select %cond, %B, 0
7163 /// Assuming that the specified instruction is an operand to the select, return
7164 /// a bitmask indicating which operands of this instruction are foldable if they
7165 /// equal the other incoming value of the select.
7167 static unsigned GetSelectFoldableOperands(Instruction
*I
) {
7168 switch (I
->getOpcode()) {
7169 case Instruction::Add
:
7170 case Instruction::Mul
:
7171 case Instruction::And
:
7172 case Instruction::Or
:
7173 case Instruction::Xor
:
7174 return 3; // Can fold through either operand.
7175 case Instruction::Sub
: // Can only fold on the amount subtracted.
7176 case Instruction::Shl
: // Can only fold on the shift amount.
7177 case Instruction::LShr
:
7178 case Instruction::AShr
:
7181 return 0; // Cannot fold
7185 /// GetSelectFoldableConstant - For the same transformation as the previous
7186 /// function, return the identity constant that goes into the select.
7187 static Constant
*GetSelectFoldableConstant(Instruction
*I
) {
7188 switch (I
->getOpcode()) {
7189 default: assert(0 && "This cannot happen!"); abort();
7190 case Instruction::Add
:
7191 case Instruction::Sub
:
7192 case Instruction::Or
:
7193 case Instruction::Xor
:
7194 case Instruction::Shl
:
7195 case Instruction::LShr
:
7196 case Instruction::AShr
:
7197 return Constant::getNullValue(I
->getType());
7198 case Instruction::And
:
7199 return Constant::getAllOnesValue(I
->getType());
7200 case Instruction::Mul
:
7201 return ConstantInt::get(I
->getType(), 1);
7205 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
7206 /// have the same opcode and only one use each. Try to simplify this.
7207 Instruction
*InstCombiner::FoldSelectOpOp(SelectInst
&SI
, Instruction
*TI
,
7209 if (TI
->getNumOperands() == 1) {
7210 // If this is a non-volatile load or a cast from the same type,
7213 if (TI
->getOperand(0)->getType() != FI
->getOperand(0)->getType())
7216 return 0; // unknown unary op.
7219 // Fold this by inserting a select from the input values.
7220 SelectInst
*NewSI
= new SelectInst(SI
.getCondition(), TI
->getOperand(0),
7221 FI
->getOperand(0), SI
.getName()+".v");
7222 InsertNewInstBefore(NewSI
, SI
);
7223 return CastInst::create(Instruction::CastOps(TI
->getOpcode()), NewSI
,
7227 // Only handle binary operators here.
7228 if (!isa
<BinaryOperator
>(TI
))
7231 // Figure out if the operations have any operands in common.
7232 Value
*MatchOp
, *OtherOpT
, *OtherOpF
;
7234 if (TI
->getOperand(0) == FI
->getOperand(0)) {
7235 MatchOp
= TI
->getOperand(0);
7236 OtherOpT
= TI
->getOperand(1);
7237 OtherOpF
= FI
->getOperand(1);
7238 MatchIsOpZero
= true;
7239 } else if (TI
->getOperand(1) == FI
->getOperand(1)) {
7240 MatchOp
= TI
->getOperand(1);
7241 OtherOpT
= TI
->getOperand(0);
7242 OtherOpF
= FI
->getOperand(0);
7243 MatchIsOpZero
= false;
7244 } else if (!TI
->isCommutative()) {
7246 } else if (TI
->getOperand(0) == FI
->getOperand(1)) {
7247 MatchOp
= TI
->getOperand(0);
7248 OtherOpT
= TI
->getOperand(1);
7249 OtherOpF
= FI
->getOperand(0);
7250 MatchIsOpZero
= true;
7251 } else if (TI
->getOperand(1) == FI
->getOperand(0)) {
7252 MatchOp
= TI
->getOperand(1);
7253 OtherOpT
= TI
->getOperand(0);
7254 OtherOpF
= FI
->getOperand(1);
7255 MatchIsOpZero
= true;
7260 // If we reach here, they do have operations in common.
7261 SelectInst
*NewSI
= new SelectInst(SI
.getCondition(), OtherOpT
,
7262 OtherOpF
, SI
.getName()+".v");
7263 InsertNewInstBefore(NewSI
, SI
);
7265 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(TI
)) {
7267 return BinaryOperator::create(BO
->getOpcode(), MatchOp
, NewSI
);
7269 return BinaryOperator::create(BO
->getOpcode(), NewSI
, MatchOp
);
7271 assert(0 && "Shouldn't get here");
7275 Instruction
*InstCombiner::visitSelectInst(SelectInst
&SI
) {
7276 Value
*CondVal
= SI
.getCondition();
7277 Value
*TrueVal
= SI
.getTrueValue();
7278 Value
*FalseVal
= SI
.getFalseValue();
7280 // select true, X, Y -> X
7281 // select false, X, Y -> Y
7282 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(CondVal
))
7283 return ReplaceInstUsesWith(SI
, C
->getZExtValue() ? TrueVal
: FalseVal
);
7285 // select C, X, X -> X
7286 if (TrueVal
== FalseVal
)
7287 return ReplaceInstUsesWith(SI
, TrueVal
);
7289 if (isa
<UndefValue
>(TrueVal
)) // select C, undef, X -> X
7290 return ReplaceInstUsesWith(SI
, FalseVal
);
7291 if (isa
<UndefValue
>(FalseVal
)) // select C, X, undef -> X
7292 return ReplaceInstUsesWith(SI
, TrueVal
);
7293 if (isa
<UndefValue
>(CondVal
)) { // select undef, X, Y -> X or Y
7294 if (isa
<Constant
>(TrueVal
))
7295 return ReplaceInstUsesWith(SI
, TrueVal
);
7297 return ReplaceInstUsesWith(SI
, FalseVal
);
7300 if (SI
.getType() == Type::Int1Ty
) {
7301 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(TrueVal
)) {
7302 if (C
->getZExtValue()) {
7303 // Change: A = select B, true, C --> A = or B, C
7304 return BinaryOperator::createOr(CondVal
, FalseVal
);
7306 // Change: A = select B, false, C --> A = and !B, C
7308 InsertNewInstBefore(BinaryOperator::createNot(CondVal
,
7309 "not."+CondVal
->getName()), SI
);
7310 return BinaryOperator::createAnd(NotCond
, FalseVal
);
7312 } else if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(FalseVal
)) {
7313 if (C
->getZExtValue() == false) {
7314 // Change: A = select B, C, false --> A = and B, C
7315 return BinaryOperator::createAnd(CondVal
, TrueVal
);
7317 // Change: A = select B, C, true --> A = or !B, C
7319 InsertNewInstBefore(BinaryOperator::createNot(CondVal
,
7320 "not."+CondVal
->getName()), SI
);
7321 return BinaryOperator::createOr(NotCond
, TrueVal
);
7326 // Selecting between two integer constants?
7327 if (ConstantInt
*TrueValC
= dyn_cast
<ConstantInt
>(TrueVal
))
7328 if (ConstantInt
*FalseValC
= dyn_cast
<ConstantInt
>(FalseVal
)) {
7329 // select C, 1, 0 -> zext C to int
7330 if (FalseValC
->isZero() && TrueValC
->getValue() == 1) {
7331 return CastInst::create(Instruction::ZExt
, CondVal
, SI
.getType());
7332 } else if (TrueValC
->isZero() && FalseValC
->getValue() == 1) {
7333 // select C, 0, 1 -> zext !C to int
7335 InsertNewInstBefore(BinaryOperator::createNot(CondVal
,
7336 "not."+CondVal
->getName()), SI
);
7337 return CastInst::create(Instruction::ZExt
, NotCond
, SI
.getType());
7340 // FIXME: Turn select 0/-1 and -1/0 into sext from condition!
7342 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(SI
.getCondition())) {
7344 // (x <s 0) ? -1 : 0 -> ashr x, 31
7345 if (TrueValC
->isAllOnesValue() && FalseValC
->isZero())
7346 if (ConstantInt
*CmpCst
= dyn_cast
<ConstantInt
>(IC
->getOperand(1))) {
7347 if (IC
->getPredicate() == ICmpInst::ICMP_SLT
&& CmpCst
->isZero()) {
7348 // The comparison constant and the result are not neccessarily the
7349 // same width. Make an all-ones value by inserting a AShr.
7350 Value
*X
= IC
->getOperand(0);
7351 uint32_t Bits
= X
->getType()->getPrimitiveSizeInBits();
7352 Constant
*ShAmt
= ConstantInt::get(X
->getType(), Bits
-1);
7353 Instruction
*SRA
= BinaryOperator::create(Instruction::AShr
, X
,
7355 InsertNewInstBefore(SRA
, SI
);
7357 // Finally, convert to the type of the select RHS. We figure out
7358 // if this requires a SExt, Trunc or BitCast based on the sizes.
7359 Instruction::CastOps opc
= Instruction::BitCast
;
7360 uint32_t SRASize
= SRA
->getType()->getPrimitiveSizeInBits();
7361 uint32_t SISize
= SI
.getType()->getPrimitiveSizeInBits();
7362 if (SRASize
< SISize
)
7363 opc
= Instruction::SExt
;
7364 else if (SRASize
> SISize
)
7365 opc
= Instruction::Trunc
;
7366 return CastInst::create(opc
, SRA
, SI
.getType());
7371 // If one of the constants is zero (we know they can't both be) and we
7372 // have an icmp instruction with zero, and we have an 'and' with the
7373 // non-constant value, eliminate this whole mess. This corresponds to
7374 // cases like this: ((X & 27) ? 27 : 0)
7375 if (TrueValC
->isZero() || FalseValC
->isZero())
7376 if (IC
->isEquality() && isa
<ConstantInt
>(IC
->getOperand(1)) &&
7377 cast
<Constant
>(IC
->getOperand(1))->isNullValue())
7378 if (Instruction
*ICA
= dyn_cast
<Instruction
>(IC
->getOperand(0)))
7379 if (ICA
->getOpcode() == Instruction::And
&&
7380 isa
<ConstantInt
>(ICA
->getOperand(1)) &&
7381 (ICA
->getOperand(1) == TrueValC
||
7382 ICA
->getOperand(1) == FalseValC
) &&
7383 isOneBitSet(cast
<ConstantInt
>(ICA
->getOperand(1)))) {
7384 // Okay, now we know that everything is set up, we just don't
7385 // know whether we have a icmp_ne or icmp_eq and whether the
7386 // true or false val is the zero.
7387 bool ShouldNotVal
= !TrueValC
->isZero();
7388 ShouldNotVal
^= IC
->getPredicate() == ICmpInst::ICMP_NE
;
7391 V
= InsertNewInstBefore(BinaryOperator::create(
7392 Instruction::Xor
, V
, ICA
->getOperand(1)), SI
);
7393 return ReplaceInstUsesWith(SI
, V
);
7398 // See if we are selecting two values based on a comparison of the two values.
7399 if (FCmpInst
*FCI
= dyn_cast
<FCmpInst
>(CondVal
)) {
7400 if (FCI
->getOperand(0) == TrueVal
&& FCI
->getOperand(1) == FalseVal
) {
7401 // Transform (X == Y) ? X : Y -> Y
7402 if (FCI
->getPredicate() == FCmpInst::FCMP_OEQ
) {
7403 // This is not safe in general for floating point:
7404 // consider X== -0, Y== +0.
7405 // It becomes safe if either operand is a nonzero constant.
7406 ConstantFP
*CFPt
, *CFPf
;
7407 if (((CFPt
= dyn_cast
<ConstantFP
>(TrueVal
)) &&
7408 !CFPt
->getValueAPF().isZero()) ||
7409 ((CFPf
= dyn_cast
<ConstantFP
>(FalseVal
)) &&
7410 !CFPf
->getValueAPF().isZero()))
7411 return ReplaceInstUsesWith(SI
, FalseVal
);
7413 // Transform (X != Y) ? X : Y -> X
7414 if (FCI
->getPredicate() == FCmpInst::FCMP_ONE
)
7415 return ReplaceInstUsesWith(SI
, TrueVal
);
7416 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7418 } else if (FCI
->getOperand(0) == FalseVal
&& FCI
->getOperand(1) == TrueVal
){
7419 // Transform (X == Y) ? Y : X -> X
7420 if (FCI
->getPredicate() == FCmpInst::FCMP_OEQ
) {
7421 // This is not safe in general for floating point:
7422 // consider X== -0, Y== +0.
7423 // It becomes safe if either operand is a nonzero constant.
7424 ConstantFP
*CFPt
, *CFPf
;
7425 if (((CFPt
= dyn_cast
<ConstantFP
>(TrueVal
)) &&
7426 !CFPt
->getValueAPF().isZero()) ||
7427 ((CFPf
= dyn_cast
<ConstantFP
>(FalseVal
)) &&
7428 !CFPf
->getValueAPF().isZero()))
7429 return ReplaceInstUsesWith(SI
, FalseVal
);
7431 // Transform (X != Y) ? Y : X -> Y
7432 if (FCI
->getPredicate() == FCmpInst::FCMP_ONE
)
7433 return ReplaceInstUsesWith(SI
, TrueVal
);
7434 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7438 // See if we are selecting two values based on a comparison of the two values.
7439 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(CondVal
)) {
7440 if (ICI
->getOperand(0) == TrueVal
&& ICI
->getOperand(1) == FalseVal
) {
7441 // Transform (X == Y) ? X : Y -> Y
7442 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
7443 return ReplaceInstUsesWith(SI
, FalseVal
);
7444 // Transform (X != Y) ? X : Y -> X
7445 if (ICI
->getPredicate() == ICmpInst::ICMP_NE
)
7446 return ReplaceInstUsesWith(SI
, TrueVal
);
7447 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7449 } else if (ICI
->getOperand(0) == FalseVal
&& ICI
->getOperand(1) == TrueVal
){
7450 // Transform (X == Y) ? Y : X -> X
7451 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
7452 return ReplaceInstUsesWith(SI
, FalseVal
);
7453 // Transform (X != Y) ? Y : X -> Y
7454 if (ICI
->getPredicate() == ICmpInst::ICMP_NE
)
7455 return ReplaceInstUsesWith(SI
, TrueVal
);
7456 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7460 if (Instruction
*TI
= dyn_cast
<Instruction
>(TrueVal
))
7461 if (Instruction
*FI
= dyn_cast
<Instruction
>(FalseVal
))
7462 if (TI
->hasOneUse() && FI
->hasOneUse()) {
7463 Instruction
*AddOp
= 0, *SubOp
= 0;
7465 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
7466 if (TI
->getOpcode() == FI
->getOpcode())
7467 if (Instruction
*IV
= FoldSelectOpOp(SI
, TI
, FI
))
7470 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
7471 // even legal for FP.
7472 if (TI
->getOpcode() == Instruction::Sub
&&
7473 FI
->getOpcode() == Instruction::Add
) {
7474 AddOp
= FI
; SubOp
= TI
;
7475 } else if (FI
->getOpcode() == Instruction::Sub
&&
7476 TI
->getOpcode() == Instruction::Add
) {
7477 AddOp
= TI
; SubOp
= FI
;
7481 Value
*OtherAddOp
= 0;
7482 if (SubOp
->getOperand(0) == AddOp
->getOperand(0)) {
7483 OtherAddOp
= AddOp
->getOperand(1);
7484 } else if (SubOp
->getOperand(0) == AddOp
->getOperand(1)) {
7485 OtherAddOp
= AddOp
->getOperand(0);
7489 // So at this point we know we have (Y -> OtherAddOp):
7490 // select C, (add X, Y), (sub X, Z)
7491 Value
*NegVal
; // Compute -Z
7492 if (Constant
*C
= dyn_cast
<Constant
>(SubOp
->getOperand(1))) {
7493 NegVal
= ConstantExpr::getNeg(C
);
7495 NegVal
= InsertNewInstBefore(
7496 BinaryOperator::createNeg(SubOp
->getOperand(1), "tmp"), SI
);
7499 Value
*NewTrueOp
= OtherAddOp
;
7500 Value
*NewFalseOp
= NegVal
;
7502 std::swap(NewTrueOp
, NewFalseOp
);
7503 Instruction
*NewSel
=
7504 new SelectInst(CondVal
, NewTrueOp
,NewFalseOp
,SI
.getName()+".p");
7506 NewSel
= InsertNewInstBefore(NewSel
, SI
);
7507 return BinaryOperator::createAdd(SubOp
->getOperand(0), NewSel
);
7512 // See if we can fold the select into one of our operands.
7513 if (SI
.getType()->isInteger()) {
7514 // See the comment above GetSelectFoldableOperands for a description of the
7515 // transformation we are doing here.
7516 if (Instruction
*TVI
= dyn_cast
<Instruction
>(TrueVal
))
7517 if (TVI
->hasOneUse() && TVI
->getNumOperands() == 2 &&
7518 !isa
<Constant
>(FalseVal
))
7519 if (unsigned SFO
= GetSelectFoldableOperands(TVI
)) {
7520 unsigned OpToFold
= 0;
7521 if ((SFO
& 1) && FalseVal
== TVI
->getOperand(0)) {
7523 } else if ((SFO
& 2) && FalseVal
== TVI
->getOperand(1)) {
7528 Constant
*C
= GetSelectFoldableConstant(TVI
);
7529 Instruction
*NewSel
=
7530 new SelectInst(SI
.getCondition(), TVI
->getOperand(2-OpToFold
), C
);
7531 InsertNewInstBefore(NewSel
, SI
);
7532 NewSel
->takeName(TVI
);
7533 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(TVI
))
7534 return BinaryOperator::create(BO
->getOpcode(), FalseVal
, NewSel
);
7536 assert(0 && "Unknown instruction!!");
7541 if (Instruction
*FVI
= dyn_cast
<Instruction
>(FalseVal
))
7542 if (FVI
->hasOneUse() && FVI
->getNumOperands() == 2 &&
7543 !isa
<Constant
>(TrueVal
))
7544 if (unsigned SFO
= GetSelectFoldableOperands(FVI
)) {
7545 unsigned OpToFold
= 0;
7546 if ((SFO
& 1) && TrueVal
== FVI
->getOperand(0)) {
7548 } else if ((SFO
& 2) && TrueVal
== FVI
->getOperand(1)) {
7553 Constant
*C
= GetSelectFoldableConstant(FVI
);
7554 Instruction
*NewSel
=
7555 new SelectInst(SI
.getCondition(), C
, FVI
->getOperand(2-OpToFold
));
7556 InsertNewInstBefore(NewSel
, SI
);
7557 NewSel
->takeName(FVI
);
7558 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(FVI
))
7559 return BinaryOperator::create(BO
->getOpcode(), TrueVal
, NewSel
);
7561 assert(0 && "Unknown instruction!!");
7566 if (BinaryOperator::isNot(CondVal
)) {
7567 SI
.setOperand(0, BinaryOperator::getNotArgument(CondVal
));
7568 SI
.setOperand(1, FalseVal
);
7569 SI
.setOperand(2, TrueVal
);
7576 /// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
7577 /// we can determine, return it, otherwise return 0. If PrefAlign is specified,
7578 /// and it is more than the alignment of the ultimate object, see if we can
7579 /// increase the alignment of the ultimate object, making this check succeed.
7580 static unsigned GetOrEnforceKnownAlignment(Value
*V
, TargetData
*TD
,
7581 unsigned PrefAlign
= 0) {
7582 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
)) {
7583 unsigned Align
= GV
->getAlignment();
7584 if (Align
== 0 && TD
&& GV
->getType()->getElementType()->isSized())
7585 Align
= TD
->getPrefTypeAlignment(GV
->getType()->getElementType());
7587 // If there is a large requested alignment and we can, bump up the alignment
7589 if (PrefAlign
> Align
&& GV
->hasInitializer()) {
7590 GV
->setAlignment(PrefAlign
);
7594 } else if (AllocationInst
*AI
= dyn_cast
<AllocationInst
>(V
)) {
7595 unsigned Align
= AI
->getAlignment();
7596 if (Align
== 0 && TD
) {
7597 if (isa
<AllocaInst
>(AI
))
7598 Align
= TD
->getPrefTypeAlignment(AI
->getType()->getElementType());
7599 else if (isa
<MallocInst
>(AI
)) {
7600 // Malloc returns maximally aligned memory.
7601 Align
= TD
->getABITypeAlignment(AI
->getType()->getElementType());
7604 (unsigned)TD
->getABITypeAlignment(Type::DoubleTy
));
7607 (unsigned)TD
->getABITypeAlignment(Type::Int64Ty
));
7611 // If there is a requested alignment and if this is an alloca, round up. We
7612 // don't do this for malloc, because some systems can't respect the request.
7613 if (PrefAlign
> Align
&& isa
<AllocaInst
>(AI
)) {
7614 AI
->setAlignment(PrefAlign
);
7618 } else if (isa
<BitCastInst
>(V
) ||
7619 (isa
<ConstantExpr
>(V
) &&
7620 cast
<ConstantExpr
>(V
)->getOpcode() == Instruction::BitCast
)) {
7621 return GetOrEnforceKnownAlignment(cast
<User
>(V
)->getOperand(0),
7623 } else if (User
*GEPI
= dyn_castGetElementPtr(V
)) {
7624 // If all indexes are zero, it is just the alignment of the base pointer.
7625 bool AllZeroOperands
= true;
7626 for (unsigned i
= 1, e
= GEPI
->getNumOperands(); i
!= e
; ++i
)
7627 if (!isa
<Constant
>(GEPI
->getOperand(i
)) ||
7628 !cast
<Constant
>(GEPI
->getOperand(i
))->isNullValue()) {
7629 AllZeroOperands
= false;
7633 if (AllZeroOperands
) {
7634 // Treat this like a bitcast.
7635 return GetOrEnforceKnownAlignment(GEPI
->getOperand(0), TD
, PrefAlign
);
7638 unsigned BaseAlignment
= GetOrEnforceKnownAlignment(GEPI
->getOperand(0),TD
);
7639 if (BaseAlignment
== 0) return 0;
7641 // Otherwise, if the base alignment is >= the alignment we expect for the
7642 // base pointer type, then we know that the resultant pointer is aligned at
7643 // least as much as its type requires.
7646 const Type
*BasePtrTy
= GEPI
->getOperand(0)->getType();
7647 const PointerType
*PtrTy
= cast
<PointerType
>(BasePtrTy
);
7648 unsigned Align
= TD
->getABITypeAlignment(PtrTy
->getElementType());
7649 if (Align
<= BaseAlignment
) {
7650 const Type
*GEPTy
= GEPI
->getType();
7651 const PointerType
*GEPPtrTy
= cast
<PointerType
>(GEPTy
);
7652 Align
= std::min(Align
, (unsigned)
7653 TD
->getABITypeAlignment(GEPPtrTy
->getElementType()));
7662 /// visitCallInst - CallInst simplification. This mostly only handles folding
7663 /// of intrinsic instructions. For normal calls, it allows visitCallSite to do
7664 /// the heavy lifting.
7666 Instruction
*InstCombiner::visitCallInst(CallInst
&CI
) {
7667 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(&CI
);
7668 if (!II
) return visitCallSite(&CI
);
7670 // Intrinsics cannot occur in an invoke, so handle them here instead of in
7672 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(II
)) {
7673 bool Changed
= false;
7675 // memmove/cpy/set of zero bytes is a noop.
7676 if (Constant
*NumBytes
= dyn_cast
<Constant
>(MI
->getLength())) {
7677 if (NumBytes
->isNullValue()) return EraseInstFromFunction(CI
);
7679 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(NumBytes
))
7680 if (CI
->getZExtValue() == 1) {
7681 // Replace the instruction with just byte operations. We would
7682 // transform other cases to loads/stores, but we don't know if
7683 // alignment is sufficient.
7687 // If we have a memmove and the source operation is a constant global,
7688 // then the source and dest pointers can't alias, so we can change this
7689 // into a call to memcpy.
7690 if (MemMoveInst
*MMI
= dyn_cast
<MemMoveInst
>(II
)) {
7691 if (GlobalVariable
*GVSrc
= dyn_cast
<GlobalVariable
>(MMI
->getSource()))
7692 if (GVSrc
->isConstant()) {
7693 Module
*M
= CI
.getParent()->getParent()->getParent();
7695 if (CI
.getCalledFunction()->getFunctionType()->getParamType(2) ==
7697 Name
= "llvm.memcpy.i32";
7699 Name
= "llvm.memcpy.i64";
7700 Constant
*MemCpy
= M
->getOrInsertFunction(Name
,
7701 CI
.getCalledFunction()->getFunctionType());
7702 CI
.setOperand(0, MemCpy
);
7707 // If we can determine a pointer alignment that is bigger than currently
7708 // set, update the alignment.
7709 if (isa
<MemCpyInst
>(MI
) || isa
<MemMoveInst
>(MI
)) {
7710 unsigned Alignment1
= GetOrEnforceKnownAlignment(MI
->getOperand(1), TD
);
7711 unsigned Alignment2
= GetOrEnforceKnownAlignment(MI
->getOperand(2), TD
);
7712 unsigned Align
= std::min(Alignment1
, Alignment2
);
7713 if (MI
->getAlignment()->getZExtValue() < Align
) {
7714 MI
->setAlignment(ConstantInt::get(Type::Int32Ty
, Align
));
7718 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
7720 ConstantInt
*MemOpLength
= dyn_cast
<ConstantInt
>(CI
.getOperand(3));
7722 unsigned Size
= MemOpLength
->getZExtValue();
7723 unsigned Align
= cast
<ConstantInt
>(CI
.getOperand(4))->getZExtValue();
7724 PointerType
*NewPtrTy
= NULL
;
7725 // Destination pointer type is always i8 *
7726 // If Size is 8 then use Int64Ty
7727 // If Size is 4 then use Int32Ty
7728 // If Size is 2 then use Int16Ty
7729 // If Size is 1 then use Int8Ty
7730 if (Size
&& Size
<=8 && !(Size
&(Size
-1)))
7731 NewPtrTy
= PointerType::get(IntegerType::get(Size
<<3));
7734 Value
*Src
= InsertCastBefore(Instruction::BitCast
, CI
.getOperand(2),
7736 Value
*Dest
= InsertCastBefore(Instruction::BitCast
, CI
.getOperand(1),
7738 Value
*L
= new LoadInst(Src
, "tmp", false, Align
, &CI
);
7739 Value
*NS
= new StoreInst(L
, Dest
, false, Align
, &CI
);
7740 CI
.replaceAllUsesWith(NS
);
7742 return EraseInstFromFunction(CI
);
7745 } else if (isa
<MemSetInst
>(MI
)) {
7746 unsigned Alignment
= GetOrEnforceKnownAlignment(MI
->getDest(), TD
);
7747 if (MI
->getAlignment()->getZExtValue() < Alignment
) {
7748 MI
->setAlignment(ConstantInt::get(Type::Int32Ty
, Alignment
));
7753 if (Changed
) return II
;
7755 switch (II
->getIntrinsicID()) {
7757 case Intrinsic::ppc_altivec_lvx
:
7758 case Intrinsic::ppc_altivec_lvxl
:
7759 case Intrinsic::x86_sse_loadu_ps
:
7760 case Intrinsic::x86_sse2_loadu_pd
:
7761 case Intrinsic::x86_sse2_loadu_dq
:
7762 // Turn PPC lvx -> load if the pointer is known aligned.
7763 // Turn X86 loadups -> load if the pointer is known aligned.
7764 if (GetOrEnforceKnownAlignment(II
->getOperand(1), TD
, 16) >= 16) {
7765 Value
*Ptr
= InsertCastBefore(Instruction::BitCast
, II
->getOperand(1),
7766 PointerType::get(II
->getType()), CI
);
7767 return new LoadInst(Ptr
);
7770 case Intrinsic::ppc_altivec_stvx
:
7771 case Intrinsic::ppc_altivec_stvxl
:
7772 // Turn stvx -> store if the pointer is known aligned.
7773 if (GetOrEnforceKnownAlignment(II
->getOperand(2), TD
, 16) >= 16) {
7774 const Type
*OpPtrTy
= PointerType::get(II
->getOperand(1)->getType());
7775 Value
*Ptr
= InsertCastBefore(Instruction::BitCast
, II
->getOperand(2),
7777 return new StoreInst(II
->getOperand(1), Ptr
);
7780 case Intrinsic::x86_sse_storeu_ps
:
7781 case Intrinsic::x86_sse2_storeu_pd
:
7782 case Intrinsic::x86_sse2_storeu_dq
:
7783 case Intrinsic::x86_sse2_storel_dq
:
7784 // Turn X86 storeu -> store if the pointer is known aligned.
7785 if (GetOrEnforceKnownAlignment(II
->getOperand(1), TD
, 16) >= 16) {
7786 const Type
*OpPtrTy
= PointerType::get(II
->getOperand(2)->getType());
7787 Value
*Ptr
= InsertCastBefore(Instruction::BitCast
, II
->getOperand(1),
7789 return new StoreInst(II
->getOperand(2), Ptr
);
7793 case Intrinsic::x86_sse_cvttss2si
: {
7794 // These intrinsics only demands the 0th element of its input vector. If
7795 // we can simplify the input based on that, do so now.
7797 if (Value
*V
= SimplifyDemandedVectorElts(II
->getOperand(1), 1,
7799 II
->setOperand(1, V
);
7805 case Intrinsic::ppc_altivec_vperm
:
7806 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
7807 if (ConstantVector
*Mask
= dyn_cast
<ConstantVector
>(II
->getOperand(3))) {
7808 assert(Mask
->getNumOperands() == 16 && "Bad type for intrinsic!");
7810 // Check that all of the elements are integer constants or undefs.
7811 bool AllEltsOk
= true;
7812 for (unsigned i
= 0; i
!= 16; ++i
) {
7813 if (!isa
<ConstantInt
>(Mask
->getOperand(i
)) &&
7814 !isa
<UndefValue
>(Mask
->getOperand(i
))) {
7821 // Cast the input vectors to byte vectors.
7822 Value
*Op0
= InsertCastBefore(Instruction::BitCast
,
7823 II
->getOperand(1), Mask
->getType(), CI
);
7824 Value
*Op1
= InsertCastBefore(Instruction::BitCast
,
7825 II
->getOperand(2), Mask
->getType(), CI
);
7826 Value
*Result
= UndefValue::get(Op0
->getType());
7828 // Only extract each element once.
7829 Value
*ExtractedElts
[32];
7830 memset(ExtractedElts
, 0, sizeof(ExtractedElts
));
7832 for (unsigned i
= 0; i
!= 16; ++i
) {
7833 if (isa
<UndefValue
>(Mask
->getOperand(i
)))
7835 unsigned Idx
=cast
<ConstantInt
>(Mask
->getOperand(i
))->getZExtValue();
7836 Idx
&= 31; // Match the hardware behavior.
7838 if (ExtractedElts
[Idx
] == 0) {
7840 new ExtractElementInst(Idx
< 16 ? Op0
: Op1
, Idx
&15, "tmp");
7841 InsertNewInstBefore(Elt
, CI
);
7842 ExtractedElts
[Idx
] = Elt
;
7845 // Insert this value into the result vector.
7846 Result
= new InsertElementInst(Result
, ExtractedElts
[Idx
], i
,"tmp");
7847 InsertNewInstBefore(cast
<Instruction
>(Result
), CI
);
7849 return CastInst::create(Instruction::BitCast
, Result
, CI
.getType());
7854 case Intrinsic::stackrestore
: {
7855 // If the save is right next to the restore, remove the restore. This can
7856 // happen when variable allocas are DCE'd.
7857 if (IntrinsicInst
*SS
= dyn_cast
<IntrinsicInst
>(II
->getOperand(1))) {
7858 if (SS
->getIntrinsicID() == Intrinsic::stacksave
) {
7859 BasicBlock::iterator BI
= SS
;
7861 return EraseInstFromFunction(CI
);
7865 // If the stack restore is in a return/unwind block and if there are no
7866 // allocas or calls between the restore and the return, nuke the restore.
7867 TerminatorInst
*TI
= II
->getParent()->getTerminator();
7868 if (isa
<ReturnInst
>(TI
) || isa
<UnwindInst
>(TI
)) {
7869 BasicBlock::iterator BI
= II
;
7870 bool CannotRemove
= false;
7871 for (++BI
; &*BI
!= TI
; ++BI
) {
7872 if (isa
<AllocaInst
>(BI
) ||
7873 (isa
<CallInst
>(BI
) && !isa
<IntrinsicInst
>(BI
))) {
7874 CannotRemove
= true;
7879 return EraseInstFromFunction(CI
);
7886 return visitCallSite(II
);
7889 // InvokeInst simplification
7891 Instruction
*InstCombiner::visitInvokeInst(InvokeInst
&II
) {
7892 return visitCallSite(&II
);
7895 // visitCallSite - Improvements for call and invoke instructions.
7897 Instruction
*InstCombiner::visitCallSite(CallSite CS
) {
7898 bool Changed
= false;
7900 // If the callee is a constexpr cast of a function, attempt to move the cast
7901 // to the arguments of the call/invoke.
7902 if (transformConstExprCastCall(CS
)) return 0;
7904 Value
*Callee
= CS
.getCalledValue();
7906 if (Function
*CalleeF
= dyn_cast
<Function
>(Callee
))
7907 if (CalleeF
->getCallingConv() != CS
.getCallingConv()) {
7908 Instruction
*OldCall
= CS
.getInstruction();
7909 // If the call and callee calling conventions don't match, this call must
7910 // be unreachable, as the call is undefined.
7911 new StoreInst(ConstantInt::getTrue(),
7912 UndefValue::get(PointerType::get(Type::Int1Ty
)), OldCall
);
7913 if (!OldCall
->use_empty())
7914 OldCall
->replaceAllUsesWith(UndefValue::get(OldCall
->getType()));
7915 if (isa
<CallInst
>(OldCall
)) // Not worth removing an invoke here.
7916 return EraseInstFromFunction(*OldCall
);
7920 if (isa
<ConstantPointerNull
>(Callee
) || isa
<UndefValue
>(Callee
)) {
7921 // This instruction is not reachable, just remove it. We insert a store to
7922 // undef so that we know that this code is not reachable, despite the fact
7923 // that we can't modify the CFG here.
7924 new StoreInst(ConstantInt::getTrue(),
7925 UndefValue::get(PointerType::get(Type::Int1Ty
)),
7926 CS
.getInstruction());
7928 if (!CS
.getInstruction()->use_empty())
7929 CS
.getInstruction()->
7930 replaceAllUsesWith(UndefValue::get(CS
.getInstruction()->getType()));
7932 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(CS
.getInstruction())) {
7933 // Don't break the CFG, insert a dummy cond branch.
7934 new BranchInst(II
->getNormalDest(), II
->getUnwindDest(),
7935 ConstantInt::getTrue(), II
);
7937 return EraseInstFromFunction(*CS
.getInstruction());
7940 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(Callee
))
7941 if (IntrinsicInst
*In
= dyn_cast
<IntrinsicInst
>(BC
->getOperand(0)))
7942 if (In
->getIntrinsicID() == Intrinsic::init_trampoline
)
7943 return transformCallThroughTrampoline(CS
);
7945 const PointerType
*PTy
= cast
<PointerType
>(Callee
->getType());
7946 const FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
7947 if (FTy
->isVarArg()) {
7948 // See if we can optimize any arguments passed through the varargs area of
7950 for (CallSite::arg_iterator I
= CS
.arg_begin()+FTy
->getNumParams(),
7951 E
= CS
.arg_end(); I
!= E
; ++I
)
7952 if (CastInst
*CI
= dyn_cast
<CastInst
>(*I
)) {
7953 // If this cast does not effect the value passed through the varargs
7954 // area, we can eliminate the use of the cast.
7955 Value
*Op
= CI
->getOperand(0);
7956 if (CI
->isLosslessCast()) {
7963 return Changed
? CS
.getInstruction() : 0;
7966 // transformConstExprCastCall - If the callee is a constexpr cast of a function,
7967 // attempt to move the cast to the arguments of the call/invoke.
7969 bool InstCombiner::transformConstExprCastCall(CallSite CS
) {
7970 if (!isa
<ConstantExpr
>(CS
.getCalledValue())) return false;
7971 ConstantExpr
*CE
= cast
<ConstantExpr
>(CS
.getCalledValue());
7972 if (CE
->getOpcode() != Instruction::BitCast
||
7973 !isa
<Function
>(CE
->getOperand(0)))
7975 Function
*Callee
= cast
<Function
>(CE
->getOperand(0));
7976 Instruction
*Caller
= CS
.getInstruction();
7978 // Okay, this is a cast from a function to a different type. Unless doing so
7979 // would cause a type conversion of one of our arguments, change this call to
7980 // be a direct call with arguments casted to the appropriate types.
7982 const FunctionType
*FT
= Callee
->getFunctionType();
7983 const Type
*OldRetTy
= Caller
->getType();
7985 const FunctionType
*ActualFT
=
7986 cast
<FunctionType
>(cast
<PointerType
>(CE
->getType())->getElementType());
7988 // If the parameter attributes don't match up, don't do the xform. We don't
7989 // want to lose an sret attribute or something.
7990 if (FT
->getParamAttrs() != ActualFT
->getParamAttrs())
7993 // Check to see if we are changing the return type...
7994 if (OldRetTy
!= FT
->getReturnType()) {
7995 if (Callee
->isDeclaration() && !Caller
->use_empty() &&
7996 // Conversion is ok if changing from pointer to int of same size.
7997 !(isa
<PointerType
>(FT
->getReturnType()) &&
7998 TD
->getIntPtrType() == OldRetTy
))
7999 return false; // Cannot transform this return value.
8001 // If the callsite is an invoke instruction, and the return value is used by
8002 // a PHI node in a successor, we cannot change the return type of the call
8003 // because there is no place to put the cast instruction (without breaking
8004 // the critical edge). Bail out in this case.
8005 if (!Caller
->use_empty())
8006 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Caller
))
8007 for (Value::use_iterator UI
= II
->use_begin(), E
= II
->use_end();
8009 if (PHINode
*PN
= dyn_cast
<PHINode
>(*UI
))
8010 if (PN
->getParent() == II
->getNormalDest() ||
8011 PN
->getParent() == II
->getUnwindDest())
8015 unsigned NumActualArgs
= unsigned(CS
.arg_end()-CS
.arg_begin());
8016 unsigned NumCommonArgs
= std::min(FT
->getNumParams(), NumActualArgs
);
8018 CallSite::arg_iterator AI
= CS
.arg_begin();
8019 for (unsigned i
= 0, e
= NumCommonArgs
; i
!= e
; ++i
, ++AI
) {
8020 const Type
*ParamTy
= FT
->getParamType(i
);
8021 const Type
*ActTy
= (*AI
)->getType();
8022 ConstantInt
*c
= dyn_cast
<ConstantInt
>(*AI
);
8023 //Some conversions are safe even if we do not have a body.
8024 //Either we can cast directly, or we can upconvert the argument
8025 bool isConvertible
= ActTy
== ParamTy
||
8026 (isa
<PointerType
>(ParamTy
) && isa
<PointerType
>(ActTy
)) ||
8027 (ParamTy
->isInteger() && ActTy
->isInteger() &&
8028 ParamTy
->getPrimitiveSizeInBits() >= ActTy
->getPrimitiveSizeInBits()) ||
8029 (c
&& ParamTy
->getPrimitiveSizeInBits() >= ActTy
->getPrimitiveSizeInBits()
8030 && c
->getValue().isStrictlyPositive());
8031 if (Callee
->isDeclaration() && !isConvertible
) return false;
8033 // Most other conversions can be done if we have a body, even if these
8034 // lose information, e.g. int->short.
8035 // Some conversions cannot be done at all, e.g. float to pointer.
8036 // Logic here parallels CastInst::getCastOpcode (the design there
8037 // requires legality checks like this be done before calling it).
8038 if (ParamTy
->isInteger()) {
8039 if (const VectorType
*VActTy
= dyn_cast
<VectorType
>(ActTy
)) {
8040 if (VActTy
->getBitWidth() != ParamTy
->getPrimitiveSizeInBits())
8043 if (!ActTy
->isInteger() && !ActTy
->isFloatingPoint() &&
8044 !isa
<PointerType
>(ActTy
))
8046 } else if (ParamTy
->isFloatingPoint()) {
8047 if (const VectorType
*VActTy
= dyn_cast
<VectorType
>(ActTy
)) {
8048 if (VActTy
->getBitWidth() != ParamTy
->getPrimitiveSizeInBits())
8051 if (!ActTy
->isInteger() && !ActTy
->isFloatingPoint())
8053 } else if (const VectorType
*VParamTy
= dyn_cast
<VectorType
>(ParamTy
)) {
8054 if (const VectorType
*VActTy
= dyn_cast
<VectorType
>(ActTy
)) {
8055 if (VActTy
->getBitWidth() != VParamTy
->getBitWidth())
8058 if (VParamTy
->getBitWidth() != ActTy
->getPrimitiveSizeInBits())
8060 } else if (isa
<PointerType
>(ParamTy
)) {
8061 if (!ActTy
->isInteger() && !isa
<PointerType
>(ActTy
))
8068 if (FT
->getNumParams() < NumActualArgs
&& !FT
->isVarArg() &&
8069 Callee
->isDeclaration())
8070 return false; // Do not delete arguments unless we have a function body...
8072 // Okay, we decided that this is a safe thing to do: go ahead and start
8073 // inserting cast instructions as necessary...
8074 std::vector
<Value
*> Args
;
8075 Args
.reserve(NumActualArgs
);
8077 AI
= CS
.arg_begin();
8078 for (unsigned i
= 0; i
!= NumCommonArgs
; ++i
, ++AI
) {
8079 const Type
*ParamTy
= FT
->getParamType(i
);
8080 if ((*AI
)->getType() == ParamTy
) {
8081 Args
.push_back(*AI
);
8083 Instruction::CastOps opcode
= CastInst::getCastOpcode(*AI
,
8084 false, ParamTy
, false);
8085 CastInst
*NewCast
= CastInst::create(opcode
, *AI
, ParamTy
, "tmp");
8086 Args
.push_back(InsertNewInstBefore(NewCast
, *Caller
));
8090 // If the function takes more arguments than the call was taking, add them
8092 for (unsigned i
= NumCommonArgs
; i
!= FT
->getNumParams(); ++i
)
8093 Args
.push_back(Constant::getNullValue(FT
->getParamType(i
)));
8095 // If we are removing arguments to the function, emit an obnoxious warning...
8096 if (FT
->getNumParams() < NumActualArgs
)
8097 if (!FT
->isVarArg()) {
8098 cerr
<< "WARNING: While resolving call to function '"
8099 << Callee
->getName() << "' arguments were dropped!\n";
8101 // Add all of the arguments in their promoted form to the arg list...
8102 for (unsigned i
= FT
->getNumParams(); i
!= NumActualArgs
; ++i
, ++AI
) {
8103 const Type
*PTy
= getPromotedType((*AI
)->getType());
8104 if (PTy
!= (*AI
)->getType()) {
8105 // Must promote to pass through va_arg area!
8106 Instruction::CastOps opcode
= CastInst::getCastOpcode(*AI
, false,
8108 Instruction
*Cast
= CastInst::create(opcode
, *AI
, PTy
, "tmp");
8109 InsertNewInstBefore(Cast
, *Caller
);
8110 Args
.push_back(Cast
);
8112 Args
.push_back(*AI
);
8117 if (FT
->getReturnType() == Type::VoidTy
)
8118 Caller
->setName(""); // Void type should not have a name.
8121 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Caller
)) {
8122 NC
= new InvokeInst(Callee
, II
->getNormalDest(), II
->getUnwindDest(),
8123 Args
.begin(), Args
.end(), Caller
->getName(), Caller
);
8124 cast
<InvokeInst
>(NC
)->setCallingConv(II
->getCallingConv());
8126 NC
= new CallInst(Callee
, Args
.begin(), Args
.end(),
8127 Caller
->getName(), Caller
);
8128 if (cast
<CallInst
>(Caller
)->isTailCall())
8129 cast
<CallInst
>(NC
)->setTailCall();
8130 cast
<CallInst
>(NC
)->setCallingConv(cast
<CallInst
>(Caller
)->getCallingConv());
8133 // Insert a cast of the return type as necessary.
8135 if (Caller
->getType() != NV
->getType() && !Caller
->use_empty()) {
8136 if (NV
->getType() != Type::VoidTy
) {
8137 const Type
*CallerTy
= Caller
->getType();
8138 Instruction::CastOps opcode
= CastInst::getCastOpcode(NC
, false,
8140 NV
= NC
= CastInst::create(opcode
, NC
, CallerTy
, "tmp");
8142 // If this is an invoke instruction, we should insert it after the first
8143 // non-phi, instruction in the normal successor block.
8144 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Caller
)) {
8145 BasicBlock::iterator I
= II
->getNormalDest()->begin();
8146 while (isa
<PHINode
>(I
)) ++I
;
8147 InsertNewInstBefore(NC
, *I
);
8149 // Otherwise, it's a call, just insert cast right after the call instr
8150 InsertNewInstBefore(NC
, *Caller
);
8152 AddUsersToWorkList(*Caller
);
8154 NV
= UndefValue::get(Caller
->getType());
8158 if (Caller
->getType() != Type::VoidTy
&& !Caller
->use_empty())
8159 Caller
->replaceAllUsesWith(NV
);
8160 Caller
->eraseFromParent();
8161 RemoveFromWorkList(Caller
);
8165 // transformCallThroughTrampoline - Turn a call to a function created by the
8166 // init_trampoline intrinsic into a direct call to the underlying function.
8168 Instruction
*InstCombiner::transformCallThroughTrampoline(CallSite CS
) {
8169 Value
*Callee
= CS
.getCalledValue();
8170 const PointerType
*PTy
= cast
<PointerType
>(Callee
->getType());
8171 const FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
8173 IntrinsicInst
*Tramp
=
8174 cast
<IntrinsicInst
>(cast
<BitCastInst
>(Callee
)->getOperand(0));
8177 cast
<Function
>(IntrinsicInst::StripPointerCasts(Tramp
->getOperand(2)));
8178 const PointerType
*NestFPTy
= cast
<PointerType
>(NestF
->getType());
8179 const FunctionType
*NestFTy
= cast
<FunctionType
>(NestFPTy
->getElementType());
8181 if (const ParamAttrsList
*NestAttrs
= NestFTy
->getParamAttrs()) {
8182 unsigned NestIdx
= 1;
8183 const Type
*NestTy
= 0;
8184 uint16_t NestAttr
= 0;
8186 // Look for a parameter marked with the 'nest' attribute.
8187 for (FunctionType::param_iterator I
= NestFTy
->param_begin(),
8188 E
= NestFTy
->param_end(); I
!= E
; ++NestIdx
, ++I
)
8189 if (NestAttrs
->paramHasAttr(NestIdx
, ParamAttr::Nest
)) {
8190 // Record the parameter type and any other attributes.
8192 NestAttr
= NestAttrs
->getParamAttrs(NestIdx
);
8197 Instruction
*Caller
= CS
.getInstruction();
8198 std::vector
<Value
*> NewArgs
;
8199 NewArgs
.reserve(unsigned(CS
.arg_end()-CS
.arg_begin())+1);
8201 // Insert the nest argument into the call argument list, which may
8202 // mean appending it.
8205 CallSite::arg_iterator I
= CS
.arg_begin(), E
= CS
.arg_end();
8207 if (Idx
== NestIdx
) {
8208 // Add the chain argument.
8209 Value
*NestVal
= Tramp
->getOperand(3);
8210 if (NestVal
->getType() != NestTy
)
8211 NestVal
= new BitCastInst(NestVal
, NestTy
, "nest", Caller
);
8212 NewArgs
.push_back(NestVal
);
8218 // Add the original argument.
8219 NewArgs
.push_back(*I
);
8225 // The trampoline may have been bitcast to a bogus type (FTy).
8226 // Handle this by synthesizing a new function type, equal to FTy
8227 // with the chain parameter inserted. Likewise for attributes.
8229 const ParamAttrsList
*Attrs
= FTy
->getParamAttrs();
8230 std::vector
<const Type
*> NewTypes
;
8231 ParamAttrsVector NewAttrs
;
8232 NewTypes
.reserve(FTy
->getNumParams()+1);
8234 // Add any function result attributes.
8235 uint16_t Attr
= Attrs
? Attrs
->getParamAttrs(0) : 0;
8237 NewAttrs
.push_back (ParamAttrsWithIndex::get(0, Attr
));
8239 // Insert the chain's type into the list of parameter types, which may
8240 // mean appending it. Likewise for the chain's attributes.
8243 FunctionType::param_iterator I
= FTy
->param_begin(),
8244 E
= FTy
->param_end();
8247 if (Idx
== NestIdx
) {
8248 // Add the chain's type and attributes.
8249 NewTypes
.push_back(NestTy
);
8250 NewAttrs
.push_back(ParamAttrsWithIndex::get(NestIdx
, NestAttr
));
8256 // Add the original type and attributes.
8257 NewTypes
.push_back(*I
);
8258 Attr
= Attrs
? Attrs
->getParamAttrs(Idx
) : 0;
8261 (ParamAttrsWithIndex::get(Idx
+ (Idx
>= NestIdx
), Attr
));
8267 // Replace the trampoline call with a direct call. Let the generic
8268 // code sort out any function type mismatches.
8269 FunctionType
*NewFTy
=
8270 FunctionType::get(FTy
->getReturnType(), NewTypes
, FTy
->isVarArg(),
8271 ParamAttrsList::get(NewAttrs
));
8272 Constant
*NewCallee
= NestF
->getType() == PointerType::get(NewFTy
) ?
8273 NestF
: ConstantExpr::getBitCast(NestF
, PointerType::get(NewFTy
));
8275 Instruction
*NewCaller
;
8276 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Caller
)) {
8277 NewCaller
= new InvokeInst(NewCallee
,
8278 II
->getNormalDest(), II
->getUnwindDest(),
8279 NewArgs
.begin(), NewArgs
.end(),
8280 Caller
->getName(), Caller
);
8281 cast
<InvokeInst
>(NewCaller
)->setCallingConv(II
->getCallingConv());
8283 NewCaller
= new CallInst(NewCallee
, NewArgs
.begin(), NewArgs
.end(),
8284 Caller
->getName(), Caller
);
8285 if (cast
<CallInst
>(Caller
)->isTailCall())
8286 cast
<CallInst
>(NewCaller
)->setTailCall();
8287 cast
<CallInst
>(NewCaller
)->
8288 setCallingConv(cast
<CallInst
>(Caller
)->getCallingConv());
8290 if (Caller
->getType() != Type::VoidTy
&& !Caller
->use_empty())
8291 Caller
->replaceAllUsesWith(NewCaller
);
8292 Caller
->eraseFromParent();
8293 RemoveFromWorkList(Caller
);
8298 // Replace the trampoline call with a direct call. Since there is no 'nest'
8299 // parameter, there is no need to adjust the argument list. Let the generic
8300 // code sort out any function type mismatches.
8301 Constant
*NewCallee
=
8302 NestF
->getType() == PTy
? NestF
: ConstantExpr::getBitCast(NestF
, PTy
);
8303 CS
.setCalledFunction(NewCallee
);
8304 return CS
.getInstruction();
8307 /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
8308 /// and if a/b/c/d and the add's all have a single use, turn this into two phi's
8309 /// and a single binop.
8310 Instruction
*InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode
&PN
) {
8311 Instruction
*FirstInst
= cast
<Instruction
>(PN
.getIncomingValue(0));
8312 assert(isa
<BinaryOperator
>(FirstInst
) || isa
<GetElementPtrInst
>(FirstInst
) ||
8313 isa
<CmpInst
>(FirstInst
));
8314 unsigned Opc
= FirstInst
->getOpcode();
8315 Value
*LHSVal
= FirstInst
->getOperand(0);
8316 Value
*RHSVal
= FirstInst
->getOperand(1);
8318 const Type
*LHSType
= LHSVal
->getType();
8319 const Type
*RHSType
= RHSVal
->getType();
8321 // Scan to see if all operands are the same opcode, all have one use, and all
8322 // kill their operands (i.e. the operands have one use).
8323 for (unsigned i
= 0; i
!= PN
.getNumIncomingValues(); ++i
) {
8324 Instruction
*I
= dyn_cast
<Instruction
>(PN
.getIncomingValue(i
));
8325 if (!I
|| I
->getOpcode() != Opc
|| !I
->hasOneUse() ||
8326 // Verify type of the LHS matches so we don't fold cmp's of different
8327 // types or GEP's with different index types.
8328 I
->getOperand(0)->getType() != LHSType
||
8329 I
->getOperand(1)->getType() != RHSType
)
8332 // If they are CmpInst instructions, check their predicates
8333 if (Opc
== Instruction::ICmp
|| Opc
== Instruction::FCmp
)
8334 if (cast
<CmpInst
>(I
)->getPredicate() !=
8335 cast
<CmpInst
>(FirstInst
)->getPredicate())
8338 // Keep track of which operand needs a phi node.
8339 if (I
->getOperand(0) != LHSVal
) LHSVal
= 0;
8340 if (I
->getOperand(1) != RHSVal
) RHSVal
= 0;
8343 // Otherwise, this is safe to transform, determine if it is profitable.
8345 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
8346 // Indexes are often folded into load/store instructions, so we don't want to
8347 // hide them behind a phi.
8348 if (isa
<GetElementPtrInst
>(FirstInst
) && RHSVal
== 0)
8351 Value
*InLHS
= FirstInst
->getOperand(0);
8352 Value
*InRHS
= FirstInst
->getOperand(1);
8353 PHINode
*NewLHS
= 0, *NewRHS
= 0;
8355 NewLHS
= new PHINode(LHSType
, FirstInst
->getOperand(0)->getName()+".pn");
8356 NewLHS
->reserveOperandSpace(PN
.getNumOperands()/2);
8357 NewLHS
->addIncoming(InLHS
, PN
.getIncomingBlock(0));
8358 InsertNewInstBefore(NewLHS
, PN
);
8363 NewRHS
= new PHINode(RHSType
, FirstInst
->getOperand(1)->getName()+".pn");
8364 NewRHS
->reserveOperandSpace(PN
.getNumOperands()/2);
8365 NewRHS
->addIncoming(InRHS
, PN
.getIncomingBlock(0));
8366 InsertNewInstBefore(NewRHS
, PN
);
8370 // Add all operands to the new PHIs.
8371 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
8373 Value
*NewInLHS
=cast
<Instruction
>(PN
.getIncomingValue(i
))->getOperand(0);
8374 NewLHS
->addIncoming(NewInLHS
, PN
.getIncomingBlock(i
));
8377 Value
*NewInRHS
=cast
<Instruction
>(PN
.getIncomingValue(i
))->getOperand(1);
8378 NewRHS
->addIncoming(NewInRHS
, PN
.getIncomingBlock(i
));
8382 if (BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(FirstInst
))
8383 return BinaryOperator::create(BinOp
->getOpcode(), LHSVal
, RHSVal
);
8384 else if (CmpInst
*CIOp
= dyn_cast
<CmpInst
>(FirstInst
))
8385 return CmpInst::create(CIOp
->getOpcode(), CIOp
->getPredicate(), LHSVal
,
8388 assert(isa
<GetElementPtrInst
>(FirstInst
));
8389 return new GetElementPtrInst(LHSVal
, RHSVal
);
8393 /// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
8394 /// of the block that defines it. This means that it must be obvious the value
8395 /// of the load is not changed from the point of the load to the end of the
8398 /// Finally, it is safe, but not profitable, to sink a load targetting a
8399 /// non-address-taken alloca. Doing so will cause us to not promote the alloca
8401 static bool isSafeToSinkLoad(LoadInst
*L
) {
8402 BasicBlock::iterator BBI
= L
, E
= L
->getParent()->end();
8404 for (++BBI
; BBI
!= E
; ++BBI
)
8405 if (BBI
->mayWriteToMemory())
8408 // Check for non-address taken alloca. If not address-taken already, it isn't
8409 // profitable to do this xform.
8410 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(L
->getOperand(0))) {
8411 bool isAddressTaken
= false;
8412 for (Value::use_iterator UI
= AI
->use_begin(), E
= AI
->use_end();
8414 if (isa
<LoadInst
>(UI
)) continue;
8415 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(*UI
)) {
8416 // If storing TO the alloca, then the address isn't taken.
8417 if (SI
->getOperand(1) == AI
) continue;
8419 isAddressTaken
= true;
8423 if (!isAddressTaken
)
8431 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
8432 // operator and they all are only used by the PHI, PHI together their
8433 // inputs, and do the operation once, to the result of the PHI.
8434 Instruction
*InstCombiner::FoldPHIArgOpIntoPHI(PHINode
&PN
) {
8435 Instruction
*FirstInst
= cast
<Instruction
>(PN
.getIncomingValue(0));
8437 // Scan the instruction, looking for input operations that can be folded away.
8438 // If all input operands to the phi are the same instruction (e.g. a cast from
8439 // the same type or "+42") we can pull the operation through the PHI, reducing
8440 // code size and simplifying code.
8441 Constant
*ConstantOp
= 0;
8442 const Type
*CastSrcTy
= 0;
8443 bool isVolatile
= false;
8444 if (isa
<CastInst
>(FirstInst
)) {
8445 CastSrcTy
= FirstInst
->getOperand(0)->getType();
8446 } else if (isa
<BinaryOperator
>(FirstInst
) || isa
<CmpInst
>(FirstInst
)) {
8447 // Can fold binop, compare or shift here if the RHS is a constant,
8448 // otherwise call FoldPHIArgBinOpIntoPHI.
8449 ConstantOp
= dyn_cast
<Constant
>(FirstInst
->getOperand(1));
8450 if (ConstantOp
== 0)
8451 return FoldPHIArgBinOpIntoPHI(PN
);
8452 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(FirstInst
)) {
8453 isVolatile
= LI
->isVolatile();
8454 // We can't sink the load if the loaded value could be modified between the
8455 // load and the PHI.
8456 if (LI
->getParent() != PN
.getIncomingBlock(0) ||
8457 !isSafeToSinkLoad(LI
))
8459 } else if (isa
<GetElementPtrInst
>(FirstInst
)) {
8460 if (FirstInst
->getNumOperands() == 2)
8461 return FoldPHIArgBinOpIntoPHI(PN
);
8462 // Can't handle general GEPs yet.
8465 return 0; // Cannot fold this operation.
8468 // Check to see if all arguments are the same operation.
8469 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
8470 if (!isa
<Instruction
>(PN
.getIncomingValue(i
))) return 0;
8471 Instruction
*I
= cast
<Instruction
>(PN
.getIncomingValue(i
));
8472 if (!I
->hasOneUse() || !I
->isSameOperationAs(FirstInst
))
8475 if (I
->getOperand(0)->getType() != CastSrcTy
)
8476 return 0; // Cast operation must match.
8477 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
8478 // We can't sink the load if the loaded value could be modified between
8479 // the load and the PHI.
8480 if (LI
->isVolatile() != isVolatile
||
8481 LI
->getParent() != PN
.getIncomingBlock(i
) ||
8482 !isSafeToSinkLoad(LI
))
8484 } else if (I
->getOperand(1) != ConstantOp
) {
8489 // Okay, they are all the same operation. Create a new PHI node of the
8490 // correct type, and PHI together all of the LHS's of the instructions.
8491 PHINode
*NewPN
= new PHINode(FirstInst
->getOperand(0)->getType(),
8492 PN
.getName()+".in");
8493 NewPN
->reserveOperandSpace(PN
.getNumOperands()/2);
8495 Value
*InVal
= FirstInst
->getOperand(0);
8496 NewPN
->addIncoming(InVal
, PN
.getIncomingBlock(0));
8498 // Add all operands to the new PHI.
8499 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
8500 Value
*NewInVal
= cast
<Instruction
>(PN
.getIncomingValue(i
))->getOperand(0);
8501 if (NewInVal
!= InVal
)
8503 NewPN
->addIncoming(NewInVal
, PN
.getIncomingBlock(i
));
8508 // The new PHI unions all of the same values together. This is really
8509 // common, so we handle it intelligently here for compile-time speed.
8513 InsertNewInstBefore(NewPN
, PN
);
8517 // Insert and return the new operation.
8518 if (CastInst
* FirstCI
= dyn_cast
<CastInst
>(FirstInst
))
8519 return CastInst::create(FirstCI
->getOpcode(), PhiVal
, PN
.getType());
8520 else if (isa
<LoadInst
>(FirstInst
))
8521 return new LoadInst(PhiVal
, "", isVolatile
);
8522 else if (BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(FirstInst
))
8523 return BinaryOperator::create(BinOp
->getOpcode(), PhiVal
, ConstantOp
);
8524 else if (CmpInst
*CIOp
= dyn_cast
<CmpInst
>(FirstInst
))
8525 return CmpInst::create(CIOp
->getOpcode(), CIOp
->getPredicate(),
8526 PhiVal
, ConstantOp
);
8528 assert(0 && "Unknown operation");
8532 /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
8534 static bool DeadPHICycle(PHINode
*PN
,
8535 SmallPtrSet
<PHINode
*, 16> &PotentiallyDeadPHIs
) {
8536 if (PN
->use_empty()) return true;
8537 if (!PN
->hasOneUse()) return false;
8539 // Remember this node, and if we find the cycle, return.
8540 if (!PotentiallyDeadPHIs
.insert(PN
))
8543 // Don't scan crazily complex things.
8544 if (PotentiallyDeadPHIs
.size() == 16)
8547 if (PHINode
*PU
= dyn_cast
<PHINode
>(PN
->use_back()))
8548 return DeadPHICycle(PU
, PotentiallyDeadPHIs
);
8553 /// PHIsEqualValue - Return true if this phi node is always equal to
8554 /// NonPhiInVal. This happens with mutually cyclic phi nodes like:
8555 /// z = some value; x = phi (y, z); y = phi (x, z)
8556 static bool PHIsEqualValue(PHINode
*PN
, Value
*NonPhiInVal
,
8557 SmallPtrSet
<PHINode
*, 16> &ValueEqualPHIs
) {
8558 // See if we already saw this PHI node.
8559 if (!ValueEqualPHIs
.insert(PN
))
8562 // Don't scan crazily complex things.
8563 if (ValueEqualPHIs
.size() == 16)
8566 // Scan the operands to see if they are either phi nodes or are equal to
8568 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
8569 Value
*Op
= PN
->getIncomingValue(i
);
8570 if (PHINode
*OpPN
= dyn_cast
<PHINode
>(Op
)) {
8571 if (!PHIsEqualValue(OpPN
, NonPhiInVal
, ValueEqualPHIs
))
8573 } else if (Op
!= NonPhiInVal
)
8581 // PHINode simplification
8583 Instruction
*InstCombiner::visitPHINode(PHINode
&PN
) {
8584 // If LCSSA is around, don't mess with Phi nodes
8585 if (MustPreserveLCSSA
) return 0;
8587 if (Value
*V
= PN
.hasConstantValue())
8588 return ReplaceInstUsesWith(PN
, V
);
8590 // If all PHI operands are the same operation, pull them through the PHI,
8591 // reducing code size.
8592 if (isa
<Instruction
>(PN
.getIncomingValue(0)) &&
8593 PN
.getIncomingValue(0)->hasOneUse())
8594 if (Instruction
*Result
= FoldPHIArgOpIntoPHI(PN
))
8597 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
8598 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
8599 // PHI)... break the cycle.
8600 if (PN
.hasOneUse()) {
8601 Instruction
*PHIUser
= cast
<Instruction
>(PN
.use_back());
8602 if (PHINode
*PU
= dyn_cast
<PHINode
>(PHIUser
)) {
8603 SmallPtrSet
<PHINode
*, 16> PotentiallyDeadPHIs
;
8604 PotentiallyDeadPHIs
.insert(&PN
);
8605 if (DeadPHICycle(PU
, PotentiallyDeadPHIs
))
8606 return ReplaceInstUsesWith(PN
, UndefValue::get(PN
.getType()));
8609 // If this phi has a single use, and if that use just computes a value for
8610 // the next iteration of a loop, delete the phi. This occurs with unused
8611 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
8612 // common case here is good because the only other things that catch this
8613 // are induction variable analysis (sometimes) and ADCE, which is only run
8615 if (PHIUser
->hasOneUse() &&
8616 (isa
<BinaryOperator
>(PHIUser
) || isa
<GetElementPtrInst
>(PHIUser
)) &&
8617 PHIUser
->use_back() == &PN
) {
8618 return ReplaceInstUsesWith(PN
, UndefValue::get(PN
.getType()));
8622 // We sometimes end up with phi cycles that non-obviously end up being the
8623 // same value, for example:
8624 // z = some value; x = phi (y, z); y = phi (x, z)
8625 // where the phi nodes don't necessarily need to be in the same block. Do a
8626 // quick check to see if the PHI node only contains a single non-phi value, if
8627 // so, scan to see if the phi cycle is actually equal to that value.
8629 unsigned InValNo
= 0, NumOperandVals
= PN
.getNumIncomingValues();
8630 // Scan for the first non-phi operand.
8631 while (InValNo
!= NumOperandVals
&&
8632 isa
<PHINode
>(PN
.getIncomingValue(InValNo
)))
8635 if (InValNo
!= NumOperandVals
) {
8636 Value
*NonPhiInVal
= PN
.getOperand(InValNo
);
8638 // Scan the rest of the operands to see if there are any conflicts, if so
8639 // there is no need to recursively scan other phis.
8640 for (++InValNo
; InValNo
!= NumOperandVals
; ++InValNo
) {
8641 Value
*OpVal
= PN
.getIncomingValue(InValNo
);
8642 if (OpVal
!= NonPhiInVal
&& !isa
<PHINode
>(OpVal
))
8646 // If we scanned over all operands, then we have one unique value plus
8647 // phi values. Scan PHI nodes to see if they all merge in each other or
8649 if (InValNo
== NumOperandVals
) {
8650 SmallPtrSet
<PHINode
*, 16> ValueEqualPHIs
;
8651 if (PHIsEqualValue(&PN
, NonPhiInVal
, ValueEqualPHIs
))
8652 return ReplaceInstUsesWith(PN
, NonPhiInVal
);
8659 static Value
*InsertCastToIntPtrTy(Value
*V
, const Type
*DTy
,
8660 Instruction
*InsertPoint
,
8662 unsigned PtrSize
= DTy
->getPrimitiveSizeInBits();
8663 unsigned VTySize
= V
->getType()->getPrimitiveSizeInBits();
8664 // We must cast correctly to the pointer type. Ensure that we
8665 // sign extend the integer value if it is smaller as this is
8666 // used for address computation.
8667 Instruction::CastOps opcode
=
8668 (VTySize
< PtrSize
? Instruction::SExt
:
8669 (VTySize
== PtrSize
? Instruction::BitCast
: Instruction::Trunc
));
8670 return IC
->InsertCastBefore(opcode
, V
, DTy
, *InsertPoint
);
8674 Instruction
*InstCombiner::visitGetElementPtrInst(GetElementPtrInst
&GEP
) {
8675 Value
*PtrOp
= GEP
.getOperand(0);
8676 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
8677 // If so, eliminate the noop.
8678 if (GEP
.getNumOperands() == 1)
8679 return ReplaceInstUsesWith(GEP
, PtrOp
);
8681 if (isa
<UndefValue
>(GEP
.getOperand(0)))
8682 return ReplaceInstUsesWith(GEP
, UndefValue::get(GEP
.getType()));
8684 bool HasZeroPointerIndex
= false;
8685 if (Constant
*C
= dyn_cast
<Constant
>(GEP
.getOperand(1)))
8686 HasZeroPointerIndex
= C
->isNullValue();
8688 if (GEP
.getNumOperands() == 2 && HasZeroPointerIndex
)
8689 return ReplaceInstUsesWith(GEP
, PtrOp
);
8691 // Eliminate unneeded casts for indices.
8692 bool MadeChange
= false;
8694 gep_type_iterator GTI
= gep_type_begin(GEP
);
8695 for (unsigned i
= 1, e
= GEP
.getNumOperands(); i
!= e
; ++i
, ++GTI
) {
8696 if (isa
<SequentialType
>(*GTI
)) {
8697 if (CastInst
*CI
= dyn_cast
<CastInst
>(GEP
.getOperand(i
))) {
8698 if (CI
->getOpcode() == Instruction::ZExt
||
8699 CI
->getOpcode() == Instruction::SExt
) {
8700 const Type
*SrcTy
= CI
->getOperand(0)->getType();
8701 // We can eliminate a cast from i32 to i64 iff the target
8702 // is a 32-bit pointer target.
8703 if (SrcTy
->getPrimitiveSizeInBits() >= TD
->getPointerSizeInBits()) {
8705 GEP
.setOperand(i
, CI
->getOperand(0));
8709 // If we are using a wider index than needed for this platform, shrink it
8710 // to what we need. If the incoming value needs a cast instruction,
8711 // insert it. This explicit cast can make subsequent optimizations more
8713 Value
*Op
= GEP
.getOperand(i
);
8714 if (TD
->getTypeSizeInBits(Op
->getType()) > TD
->getPointerSizeInBits())
8715 if (Constant
*C
= dyn_cast
<Constant
>(Op
)) {
8716 GEP
.setOperand(i
, ConstantExpr::getTrunc(C
, TD
->getIntPtrType()));
8719 Op
= InsertCastBefore(Instruction::Trunc
, Op
, TD
->getIntPtrType(),
8721 GEP
.setOperand(i
, Op
);
8726 if (MadeChange
) return &GEP
;
8728 // If this GEP instruction doesn't move the pointer, and if the input operand
8729 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
8730 // real input to the dest type.
8731 if (GEP
.hasAllZeroIndices()) {
8732 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(GEP
.getOperand(0))) {
8733 // If the bitcast is of an allocation, and the allocation will be
8734 // converted to match the type of the cast, don't touch this.
8735 if (isa
<AllocationInst
>(BCI
->getOperand(0))) {
8736 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
8737 if (Instruction
*I
= visitBitCast(*BCI
)) {
8740 BCI
->getParent()->getInstList().insert(BCI
, I
);
8741 ReplaceInstUsesWith(*BCI
, I
);
8746 return new BitCastInst(BCI
->getOperand(0), GEP
.getType());
8750 // Combine Indices - If the source pointer to this getelementptr instruction
8751 // is a getelementptr instruction, combine the indices of the two
8752 // getelementptr instructions into a single instruction.
8754 SmallVector
<Value
*, 8> SrcGEPOperands
;
8755 if (User
*Src
= dyn_castGetElementPtr(PtrOp
))
8756 SrcGEPOperands
.append(Src
->op_begin(), Src
->op_end());
8758 if (!SrcGEPOperands
.empty()) {
8759 // Note that if our source is a gep chain itself that we wait for that
8760 // chain to be resolved before we perform this transformation. This
8761 // avoids us creating a TON of code in some cases.
8763 if (isa
<GetElementPtrInst
>(SrcGEPOperands
[0]) &&
8764 cast
<Instruction
>(SrcGEPOperands
[0])->getNumOperands() == 2)
8765 return 0; // Wait until our source is folded to completion.
8767 SmallVector
<Value
*, 8> Indices
;
8769 // Find out whether the last index in the source GEP is a sequential idx.
8770 bool EndsWithSequential
= false;
8771 for (gep_type_iterator I
= gep_type_begin(*cast
<User
>(PtrOp
)),
8772 E
= gep_type_end(*cast
<User
>(PtrOp
)); I
!= E
; ++I
)
8773 EndsWithSequential
= !isa
<StructType
>(*I
);
8775 // Can we combine the two pointer arithmetics offsets?
8776 if (EndsWithSequential
) {
8777 // Replace: gep (gep %P, long B), long A, ...
8778 // With: T = long A+B; gep %P, T, ...
8780 Value
*Sum
, *SO1
= SrcGEPOperands
.back(), *GO1
= GEP
.getOperand(1);
8781 if (SO1
== Constant::getNullValue(SO1
->getType())) {
8783 } else if (GO1
== Constant::getNullValue(GO1
->getType())) {
8786 // If they aren't the same type, convert both to an integer of the
8787 // target's pointer size.
8788 if (SO1
->getType() != GO1
->getType()) {
8789 if (Constant
*SO1C
= dyn_cast
<Constant
>(SO1
)) {
8790 SO1
= ConstantExpr::getIntegerCast(SO1C
, GO1
->getType(), true);
8791 } else if (Constant
*GO1C
= dyn_cast
<Constant
>(GO1
)) {
8792 GO1
= ConstantExpr::getIntegerCast(GO1C
, SO1
->getType(), true);
8794 unsigned PS
= TD
->getPointerSizeInBits();
8795 if (TD
->getTypeSizeInBits(SO1
->getType()) == PS
) {
8796 // Convert GO1 to SO1's type.
8797 GO1
= InsertCastToIntPtrTy(GO1
, SO1
->getType(), &GEP
, this);
8799 } else if (TD
->getTypeSizeInBits(GO1
->getType()) == PS
) {
8800 // Convert SO1 to GO1's type.
8801 SO1
= InsertCastToIntPtrTy(SO1
, GO1
->getType(), &GEP
, this);
8803 const Type
*PT
= TD
->getIntPtrType();
8804 SO1
= InsertCastToIntPtrTy(SO1
, PT
, &GEP
, this);
8805 GO1
= InsertCastToIntPtrTy(GO1
, PT
, &GEP
, this);
8809 if (isa
<Constant
>(SO1
) && isa
<Constant
>(GO1
))
8810 Sum
= ConstantExpr::getAdd(cast
<Constant
>(SO1
), cast
<Constant
>(GO1
));
8812 Sum
= BinaryOperator::createAdd(SO1
, GO1
, PtrOp
->getName()+".sum");
8813 InsertNewInstBefore(cast
<Instruction
>(Sum
), GEP
);
8817 // Recycle the GEP we already have if possible.
8818 if (SrcGEPOperands
.size() == 2) {
8819 GEP
.setOperand(0, SrcGEPOperands
[0]);
8820 GEP
.setOperand(1, Sum
);
8823 Indices
.insert(Indices
.end(), SrcGEPOperands
.begin()+1,
8824 SrcGEPOperands
.end()-1);
8825 Indices
.push_back(Sum
);
8826 Indices
.insert(Indices
.end(), GEP
.op_begin()+2, GEP
.op_end());
8828 } else if (isa
<Constant
>(*GEP
.idx_begin()) &&
8829 cast
<Constant
>(*GEP
.idx_begin())->isNullValue() &&
8830 SrcGEPOperands
.size() != 1) {
8831 // Otherwise we can do the fold if the first index of the GEP is a zero
8832 Indices
.insert(Indices
.end(), SrcGEPOperands
.begin()+1,
8833 SrcGEPOperands
.end());
8834 Indices
.insert(Indices
.end(), GEP
.idx_begin()+1, GEP
.idx_end());
8837 if (!Indices
.empty())
8838 return new GetElementPtrInst(SrcGEPOperands
[0], Indices
.begin(),
8839 Indices
.end(), GEP
.getName());
8841 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(PtrOp
)) {
8842 // GEP of global variable. If all of the indices for this GEP are
8843 // constants, we can promote this to a constexpr instead of an instruction.
8845 // Scan for nonconstants...
8846 SmallVector
<Constant
*, 8> Indices
;
8847 User::op_iterator I
= GEP
.idx_begin(), E
= GEP
.idx_end();
8848 for (; I
!= E
&& isa
<Constant
>(*I
); ++I
)
8849 Indices
.push_back(cast
<Constant
>(*I
));
8851 if (I
== E
) { // If they are all constants...
8852 Constant
*CE
= ConstantExpr::getGetElementPtr(GV
,
8853 &Indices
[0],Indices
.size());
8855 // Replace all uses of the GEP with the new constexpr...
8856 return ReplaceInstUsesWith(GEP
, CE
);
8858 } else if (Value
*X
= getBitCastOperand(PtrOp
)) { // Is the operand a cast?
8859 if (!isa
<PointerType
>(X
->getType())) {
8860 // Not interesting. Source pointer must be a cast from pointer.
8861 } else if (HasZeroPointerIndex
) {
8862 // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ...
8863 // into : GEP [10 x ubyte]* X, long 0, ...
8865 // This occurs when the program declares an array extern like "int X[];"
8867 const PointerType
*CPTy
= cast
<PointerType
>(PtrOp
->getType());
8868 const PointerType
*XTy
= cast
<PointerType
>(X
->getType());
8869 if (const ArrayType
*XATy
=
8870 dyn_cast
<ArrayType
>(XTy
->getElementType()))
8871 if (const ArrayType
*CATy
=
8872 dyn_cast
<ArrayType
>(CPTy
->getElementType()))
8873 if (CATy
->getElementType() == XATy
->getElementType()) {
8874 // At this point, we know that the cast source type is a pointer
8875 // to an array of the same type as the destination pointer
8876 // array. Because the array type is never stepped over (there
8877 // is a leading zero) we can fold the cast into this GEP.
8878 GEP
.setOperand(0, X
);
8881 } else if (GEP
.getNumOperands() == 2) {
8882 // Transform things like:
8883 // %t = getelementptr ubyte* cast ([2 x int]* %str to uint*), uint %V
8884 // into: %t1 = getelementptr [2 x int*]* %str, int 0, uint %V; cast
8885 const Type
*SrcElTy
= cast
<PointerType
>(X
->getType())->getElementType();
8886 const Type
*ResElTy
=cast
<PointerType
>(PtrOp
->getType())->getElementType();
8887 if (isa
<ArrayType
>(SrcElTy
) &&
8888 TD
->getABITypeSize(cast
<ArrayType
>(SrcElTy
)->getElementType()) ==
8889 TD
->getABITypeSize(ResElTy
)) {
8891 Idx
[0] = Constant::getNullValue(Type::Int32Ty
);
8892 Idx
[1] = GEP
.getOperand(1);
8893 Value
*V
= InsertNewInstBefore(
8894 new GetElementPtrInst(X
, Idx
, Idx
+ 2, GEP
.getName()), GEP
);
8895 // V and GEP are both pointer types --> BitCast
8896 return new BitCastInst(V
, GEP
.getType());
8899 // Transform things like:
8900 // getelementptr sbyte* cast ([100 x double]* X to sbyte*), int %tmp
8901 // (where tmp = 8*tmp2) into:
8902 // getelementptr [100 x double]* %arr, int 0, int %tmp.2
8904 if (isa
<ArrayType
>(SrcElTy
) &&
8905 (ResElTy
== Type::Int8Ty
|| ResElTy
== Type::Int8Ty
)) {
8906 uint64_t ArrayEltSize
=
8907 TD
->getABITypeSize(cast
<ArrayType
>(SrcElTy
)->getElementType());
8909 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
8910 // allow either a mul, shift, or constant here.
8912 ConstantInt
*Scale
= 0;
8913 if (ArrayEltSize
== 1) {
8914 NewIdx
= GEP
.getOperand(1);
8915 Scale
= ConstantInt::get(NewIdx
->getType(), 1);
8916 } else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
.getOperand(1))) {
8917 NewIdx
= ConstantInt::get(CI
->getType(), 1);
8919 } else if (Instruction
*Inst
=dyn_cast
<Instruction
>(GEP
.getOperand(1))){
8920 if (Inst
->getOpcode() == Instruction::Shl
&&
8921 isa
<ConstantInt
>(Inst
->getOperand(1))) {
8922 ConstantInt
*ShAmt
= cast
<ConstantInt
>(Inst
->getOperand(1));
8923 uint32_t ShAmtVal
= ShAmt
->getLimitedValue(64);
8924 Scale
= ConstantInt::get(Inst
->getType(), 1ULL << ShAmtVal
);
8925 NewIdx
= Inst
->getOperand(0);
8926 } else if (Inst
->getOpcode() == Instruction::Mul
&&
8927 isa
<ConstantInt
>(Inst
->getOperand(1))) {
8928 Scale
= cast
<ConstantInt
>(Inst
->getOperand(1));
8929 NewIdx
= Inst
->getOperand(0);
8933 // If the index will be to exactly the right offset with the scale taken
8934 // out, perform the transformation.
8935 if (Scale
&& Scale
->getZExtValue() % ArrayEltSize
== 0) {
8936 if (isa
<ConstantInt
>(Scale
))
8937 Scale
= ConstantInt::get(Scale
->getType(),
8938 Scale
->getZExtValue() / ArrayEltSize
);
8939 if (Scale
->getZExtValue() != 1) {
8940 Constant
*C
= ConstantExpr::getIntegerCast(Scale
, NewIdx
->getType(),
8942 Instruction
*Sc
= BinaryOperator::createMul(NewIdx
, C
, "idxscale");
8943 NewIdx
= InsertNewInstBefore(Sc
, GEP
);
8946 // Insert the new GEP instruction.
8948 Idx
[0] = Constant::getNullValue(Type::Int32Ty
);
8950 Instruction
*NewGEP
=
8951 new GetElementPtrInst(X
, Idx
, Idx
+ 2, GEP
.getName());
8952 NewGEP
= InsertNewInstBefore(NewGEP
, GEP
);
8953 // The NewGEP must be pointer typed, so must the old one -> BitCast
8954 return new BitCastInst(NewGEP
, GEP
.getType());
8963 Instruction
*InstCombiner::visitAllocationInst(AllocationInst
&AI
) {
8964 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
8965 if (AI
.isArrayAllocation()) // Check C != 1
8966 if (const ConstantInt
*C
= dyn_cast
<ConstantInt
>(AI
.getArraySize())) {
8968 ArrayType::get(AI
.getAllocatedType(), C
->getZExtValue());
8969 AllocationInst
*New
= 0;
8971 // Create and insert the replacement instruction...
8972 if (isa
<MallocInst
>(AI
))
8973 New
= new MallocInst(NewTy
, 0, AI
.getAlignment(), AI
.getName());
8975 assert(isa
<AllocaInst
>(AI
) && "Unknown type of allocation inst!");
8976 New
= new AllocaInst(NewTy
, 0, AI
.getAlignment(), AI
.getName());
8979 InsertNewInstBefore(New
, AI
);
8981 // Scan to the end of the allocation instructions, to skip over a block of
8982 // allocas if possible...
8984 BasicBlock::iterator It
= New
;
8985 while (isa
<AllocationInst
>(*It
)) ++It
;
8987 // Now that I is pointing to the first non-allocation-inst in the block,
8988 // insert our getelementptr instruction...
8990 Value
*NullIdx
= Constant::getNullValue(Type::Int32Ty
);
8994 Value
*V
= new GetElementPtrInst(New
, Idx
, Idx
+ 2,
8995 New
->getName()+".sub", It
);
8997 // Now make everything use the getelementptr instead of the original
8999 return ReplaceInstUsesWith(AI
, V
);
9000 } else if (isa
<UndefValue
>(AI
.getArraySize())) {
9001 return ReplaceInstUsesWith(AI
, Constant::getNullValue(AI
.getType()));
9004 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
9005 // Note that we only do this for alloca's, because malloc should allocate and
9006 // return a unique pointer, even for a zero byte allocation.
9007 if (isa
<AllocaInst
>(AI
) && AI
.getAllocatedType()->isSized() &&
9008 TD
->getABITypeSize(AI
.getAllocatedType()) == 0)
9009 return ReplaceInstUsesWith(AI
, Constant::getNullValue(AI
.getType()));
9014 Instruction
*InstCombiner::visitFreeInst(FreeInst
&FI
) {
9015 Value
*Op
= FI
.getOperand(0);
9017 // free undef -> unreachable.
9018 if (isa
<UndefValue
>(Op
)) {
9019 // Insert a new store to null because we cannot modify the CFG here.
9020 new StoreInst(ConstantInt::getTrue(),
9021 UndefValue::get(PointerType::get(Type::Int1Ty
)), &FI
);
9022 return EraseInstFromFunction(FI
);
9025 // If we have 'free null' delete the instruction. This can happen in stl code
9026 // when lots of inlining happens.
9027 if (isa
<ConstantPointerNull
>(Op
))
9028 return EraseInstFromFunction(FI
);
9030 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
9031 if (BitCastInst
*CI
= dyn_cast
<BitCastInst
>(Op
)) {
9032 FI
.setOperand(0, CI
->getOperand(0));
9036 // Change free (gep X, 0,0,0,0) into free(X)
9037 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(Op
)) {
9038 if (GEPI
->hasAllZeroIndices()) {
9039 AddToWorkList(GEPI
);
9040 FI
.setOperand(0, GEPI
->getOperand(0));
9045 // Change free(malloc) into nothing, if the malloc has a single use.
9046 if (MallocInst
*MI
= dyn_cast
<MallocInst
>(Op
))
9047 if (MI
->hasOneUse()) {
9048 EraseInstFromFunction(FI
);
9049 return EraseInstFromFunction(*MI
);
9056 /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
9057 static Instruction
*InstCombineLoadCast(InstCombiner
&IC
, LoadInst
&LI
,
9058 const TargetData
*TD
) {
9059 User
*CI
= cast
<User
>(LI
.getOperand(0));
9060 Value
*CastOp
= CI
->getOperand(0);
9062 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CI
)) {
9063 // Instead of loading constant c string, use corresponding integer value
9064 // directly if string length is small enough.
9065 const std::string
&Str
= CE
->getOperand(0)->getStringValue();
9067 unsigned len
= Str
.length();
9068 const Type
*Ty
= cast
<PointerType
>(CE
->getType())->getElementType();
9069 unsigned numBits
= Ty
->getPrimitiveSizeInBits();
9070 // Replace LI with immediate integer store.
9071 if ((numBits
>> 3) == len
+ 1) {
9072 APInt
StrVal(numBits
, 0);
9073 APInt
SingleChar(numBits
, 0);
9074 if (TD
->isLittleEndian()) {
9075 for (signed i
= len
-1; i
>= 0; i
--) {
9076 SingleChar
= (uint64_t) Str
[i
];
9077 StrVal
= (StrVal
<< 8) | SingleChar
;
9080 for (unsigned i
= 0; i
< len
; i
++) {
9081 SingleChar
= (uint64_t) Str
[i
];
9082 StrVal
= (StrVal
<< 8) | SingleChar
;
9084 // Append NULL at the end.
9086 StrVal
= (StrVal
<< 8) | SingleChar
;
9088 Value
*NL
= ConstantInt::get(StrVal
);
9089 return IC
.ReplaceInstUsesWith(LI
, NL
);
9094 const Type
*DestPTy
= cast
<PointerType
>(CI
->getType())->getElementType();
9095 if (const PointerType
*SrcTy
= dyn_cast
<PointerType
>(CastOp
->getType())) {
9096 const Type
*SrcPTy
= SrcTy
->getElementType();
9098 if (DestPTy
->isInteger() || isa
<PointerType
>(DestPTy
) ||
9099 isa
<VectorType
>(DestPTy
)) {
9100 // If the source is an array, the code below will not succeed. Check to
9101 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
9103 if (const ArrayType
*ASrcTy
= dyn_cast
<ArrayType
>(SrcPTy
))
9104 if (Constant
*CSrc
= dyn_cast
<Constant
>(CastOp
))
9105 if (ASrcTy
->getNumElements() != 0) {
9107 Idxs
[0] = Idxs
[1] = Constant::getNullValue(Type::Int32Ty
);
9108 CastOp
= ConstantExpr::getGetElementPtr(CSrc
, Idxs
, 2);
9109 SrcTy
= cast
<PointerType
>(CastOp
->getType());
9110 SrcPTy
= SrcTy
->getElementType();
9113 if ((SrcPTy
->isInteger() || isa
<PointerType
>(SrcPTy
) ||
9114 isa
<VectorType
>(SrcPTy
)) &&
9115 // Do not allow turning this into a load of an integer, which is then
9116 // casted to a pointer, this pessimizes pointer analysis a lot.
9117 (isa
<PointerType
>(SrcPTy
) == isa
<PointerType
>(LI
.getType())) &&
9118 IC
.getTargetData().getTypeSizeInBits(SrcPTy
) ==
9119 IC
.getTargetData().getTypeSizeInBits(DestPTy
)) {
9121 // Okay, we are casting from one integer or pointer type to another of
9122 // the same size. Instead of casting the pointer before the load, cast
9123 // the result of the loaded value.
9124 Value
*NewLoad
= IC
.InsertNewInstBefore(new LoadInst(CastOp
,
9126 LI
.isVolatile()),LI
);
9127 // Now cast the result of the load.
9128 return new BitCastInst(NewLoad
, LI
.getType());
9135 /// isSafeToLoadUnconditionally - Return true if we know that executing a load
9136 /// from this value cannot trap. If it is not obviously safe to load from the
9137 /// specified pointer, we do a quick local scan of the basic block containing
9138 /// ScanFrom, to determine if the address is already accessed.
9139 static bool isSafeToLoadUnconditionally(Value
*V
, Instruction
*ScanFrom
) {
9140 // If it is an alloca it is always safe to load from.
9141 if (isa
<AllocaInst
>(V
)) return true;
9143 // If it is a global variable it is mostly safe to load from.
9144 if (const GlobalValue
*GV
= dyn_cast
<GlobalVariable
>(V
))
9145 // Don't try to evaluate aliases. External weak GV can be null.
9146 return !isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage();
9148 // Otherwise, be a little bit agressive by scanning the local block where we
9149 // want to check to see if the pointer is already being loaded or stored
9150 // from/to. If so, the previous load or store would have already trapped,
9151 // so there is no harm doing an extra load (also, CSE will later eliminate
9152 // the load entirely).
9153 BasicBlock::iterator BBI
= ScanFrom
, E
= ScanFrom
->getParent()->begin();
9158 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(BBI
)) {
9159 if (LI
->getOperand(0) == V
) return true;
9160 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(BBI
))
9161 if (SI
->getOperand(1) == V
) return true;
9167 /// GetUnderlyingObject - Trace through a series of getelementptrs and bitcasts
9168 /// until we find the underlying object a pointer is referring to or something
9169 /// we don't understand. Note that the returned pointer may be offset from the
9170 /// input, because we ignore GEP indices.
9171 static Value
*GetUnderlyingObject(Value
*Ptr
) {
9173 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ptr
)) {
9174 if (CE
->getOpcode() == Instruction::BitCast
||
9175 CE
->getOpcode() == Instruction::GetElementPtr
)
9176 Ptr
= CE
->getOperand(0);
9179 } else if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Ptr
)) {
9180 Ptr
= BCI
->getOperand(0);
9181 } else if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
)) {
9182 Ptr
= GEP
->getOperand(0);
9189 Instruction
*InstCombiner::visitLoadInst(LoadInst
&LI
) {
9190 Value
*Op
= LI
.getOperand(0);
9192 // Attempt to improve the alignment.
9193 unsigned KnownAlign
= GetOrEnforceKnownAlignment(Op
, TD
);
9194 if (KnownAlign
> LI
.getAlignment())
9195 LI
.setAlignment(KnownAlign
);
9197 // load (cast X) --> cast (load X) iff safe
9198 if (isa
<CastInst
>(Op
))
9199 if (Instruction
*Res
= InstCombineLoadCast(*this, LI
, TD
))
9202 // None of the following transforms are legal for volatile loads.
9203 if (LI
.isVolatile()) return 0;
9205 if (&LI
.getParent()->front() != &LI
) {
9206 BasicBlock::iterator BBI
= &LI
; --BBI
;
9207 // If the instruction immediately before this is a store to the same
9208 // address, do a simple form of store->load forwarding.
9209 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(BBI
))
9210 if (SI
->getOperand(1) == LI
.getOperand(0))
9211 return ReplaceInstUsesWith(LI
, SI
->getOperand(0));
9212 if (LoadInst
*LIB
= dyn_cast
<LoadInst
>(BBI
))
9213 if (LIB
->getOperand(0) == LI
.getOperand(0))
9214 return ReplaceInstUsesWith(LI
, LIB
);
9217 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(Op
))
9218 if (isa
<ConstantPointerNull
>(GEPI
->getOperand(0))) {
9219 // Insert a new store to null instruction before the load to indicate
9220 // that this code is not reachable. We do this instead of inserting
9221 // an unreachable instruction directly because we cannot modify the
9223 new StoreInst(UndefValue::get(LI
.getType()),
9224 Constant::getNullValue(Op
->getType()), &LI
);
9225 return ReplaceInstUsesWith(LI
, UndefValue::get(LI
.getType()));
9228 if (Constant
*C
= dyn_cast
<Constant
>(Op
)) {
9229 // load null/undef -> undef
9230 if ((C
->isNullValue() || isa
<UndefValue
>(C
))) {
9231 // Insert a new store to null instruction before the load to indicate that
9232 // this code is not reachable. We do this instead of inserting an
9233 // unreachable instruction directly because we cannot modify the CFG.
9234 new StoreInst(UndefValue::get(LI
.getType()),
9235 Constant::getNullValue(Op
->getType()), &LI
);
9236 return ReplaceInstUsesWith(LI
, UndefValue::get(LI
.getType()));
9239 // Instcombine load (constant global) into the value loaded.
9240 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Op
))
9241 if (GV
->isConstant() && !GV
->isDeclaration())
9242 return ReplaceInstUsesWith(LI
, GV
->getInitializer());
9244 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
9245 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Op
))
9246 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
9247 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(CE
->getOperand(0)))
9248 if (GV
->isConstant() && !GV
->isDeclaration())
9250 ConstantFoldLoadThroughGEPConstantExpr(GV
->getInitializer(), CE
))
9251 return ReplaceInstUsesWith(LI
, V
);
9252 if (CE
->getOperand(0)->isNullValue()) {
9253 // Insert a new store to null instruction before the load to indicate
9254 // that this code is not reachable. We do this instead of inserting
9255 // an unreachable instruction directly because we cannot modify the
9257 new StoreInst(UndefValue::get(LI
.getType()),
9258 Constant::getNullValue(Op
->getType()), &LI
);
9259 return ReplaceInstUsesWith(LI
, UndefValue::get(LI
.getType()));
9262 } else if (CE
->isCast()) {
9263 if (Instruction
*Res
= InstCombineLoadCast(*this, LI
, TD
))
9268 // If this load comes from anywhere in a constant global, and if the global
9269 // is all undef or zero, we know what it loads.
9270 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GetUnderlyingObject(Op
))) {
9271 if (GV
->isConstant() && GV
->hasInitializer()) {
9272 if (GV
->getInitializer()->isNullValue())
9273 return ReplaceInstUsesWith(LI
, Constant::getNullValue(LI
.getType()));
9274 else if (isa
<UndefValue
>(GV
->getInitializer()))
9275 return ReplaceInstUsesWith(LI
, UndefValue::get(LI
.getType()));
9279 if (Op
->hasOneUse()) {
9280 // Change select and PHI nodes to select values instead of addresses: this
9281 // helps alias analysis out a lot, allows many others simplifications, and
9282 // exposes redundancy in the code.
9284 // Note that we cannot do the transformation unless we know that the
9285 // introduced loads cannot trap! Something like this is valid as long as
9286 // the condition is always false: load (select bool %C, int* null, int* %G),
9287 // but it would not be valid if we transformed it to load from null
9290 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op
)) {
9291 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
9292 if (isSafeToLoadUnconditionally(SI
->getOperand(1), SI
) &&
9293 isSafeToLoadUnconditionally(SI
->getOperand(2), SI
)) {
9294 Value
*V1
= InsertNewInstBefore(new LoadInst(SI
->getOperand(1),
9295 SI
->getOperand(1)->getName()+".val"), LI
);
9296 Value
*V2
= InsertNewInstBefore(new LoadInst(SI
->getOperand(2),
9297 SI
->getOperand(2)->getName()+".val"), LI
);
9298 return new SelectInst(SI
->getCondition(), V1
, V2
);
9301 // load (select (cond, null, P)) -> load P
9302 if (Constant
*C
= dyn_cast
<Constant
>(SI
->getOperand(1)))
9303 if (C
->isNullValue()) {
9304 LI
.setOperand(0, SI
->getOperand(2));
9308 // load (select (cond, P, null)) -> load P
9309 if (Constant
*C
= dyn_cast
<Constant
>(SI
->getOperand(2)))
9310 if (C
->isNullValue()) {
9311 LI
.setOperand(0, SI
->getOperand(1));
9319 /// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
9321 static Instruction
*InstCombineStoreToCast(InstCombiner
&IC
, StoreInst
&SI
) {
9322 User
*CI
= cast
<User
>(SI
.getOperand(1));
9323 Value
*CastOp
= CI
->getOperand(0);
9325 const Type
*DestPTy
= cast
<PointerType
>(CI
->getType())->getElementType();
9326 if (const PointerType
*SrcTy
= dyn_cast
<PointerType
>(CastOp
->getType())) {
9327 const Type
*SrcPTy
= SrcTy
->getElementType();
9329 if (DestPTy
->isInteger() || isa
<PointerType
>(DestPTy
)) {
9330 // If the source is an array, the code below will not succeed. Check to
9331 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
9333 if (const ArrayType
*ASrcTy
= dyn_cast
<ArrayType
>(SrcPTy
))
9334 if (Constant
*CSrc
= dyn_cast
<Constant
>(CastOp
))
9335 if (ASrcTy
->getNumElements() != 0) {
9337 Idxs
[0] = Idxs
[1] = Constant::getNullValue(Type::Int32Ty
);
9338 CastOp
= ConstantExpr::getGetElementPtr(CSrc
, Idxs
, 2);
9339 SrcTy
= cast
<PointerType
>(CastOp
->getType());
9340 SrcPTy
= SrcTy
->getElementType();
9343 if ((SrcPTy
->isInteger() || isa
<PointerType
>(SrcPTy
)) &&
9344 IC
.getTargetData().getTypeSizeInBits(SrcPTy
) ==
9345 IC
.getTargetData().getTypeSizeInBits(DestPTy
)) {
9347 // Okay, we are casting from one integer or pointer type to another of
9348 // the same size. Instead of casting the pointer before
9349 // the store, cast the value to be stored.
9351 Value
*SIOp0
= SI
.getOperand(0);
9352 Instruction::CastOps opcode
= Instruction::BitCast
;
9353 const Type
* CastSrcTy
= SIOp0
->getType();
9354 const Type
* CastDstTy
= SrcPTy
;
9355 if (isa
<PointerType
>(CastDstTy
)) {
9356 if (CastSrcTy
->isInteger())
9357 opcode
= Instruction::IntToPtr
;
9358 } else if (isa
<IntegerType
>(CastDstTy
)) {
9359 if (isa
<PointerType
>(SIOp0
->getType()))
9360 opcode
= Instruction::PtrToInt
;
9362 if (Constant
*C
= dyn_cast
<Constant
>(SIOp0
))
9363 NewCast
= ConstantExpr::getCast(opcode
, C
, CastDstTy
);
9365 NewCast
= IC
.InsertNewInstBefore(
9366 CastInst::create(opcode
, SIOp0
, CastDstTy
, SIOp0
->getName()+".c"),
9368 return new StoreInst(NewCast
, CastOp
);
9375 Instruction
*InstCombiner::visitStoreInst(StoreInst
&SI
) {
9376 Value
*Val
= SI
.getOperand(0);
9377 Value
*Ptr
= SI
.getOperand(1);
9379 if (isa
<UndefValue
>(Ptr
)) { // store X, undef -> noop (even if volatile)
9380 EraseInstFromFunction(SI
);
9385 // If the RHS is an alloca with a single use, zapify the store, making the
9387 if (Ptr
->hasOneUse()) {
9388 if (isa
<AllocaInst
>(Ptr
)) {
9389 EraseInstFromFunction(SI
);
9394 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
))
9395 if (isa
<AllocaInst
>(GEP
->getOperand(0)) &&
9396 GEP
->getOperand(0)->hasOneUse()) {
9397 EraseInstFromFunction(SI
);
9403 // Attempt to improve the alignment.
9404 unsigned KnownAlign
= GetOrEnforceKnownAlignment(Ptr
, TD
);
9405 if (KnownAlign
> SI
.getAlignment())
9406 SI
.setAlignment(KnownAlign
);
9408 // Do really simple DSE, to catch cases where there are several consequtive
9409 // stores to the same location, separated by a few arithmetic operations. This
9410 // situation often occurs with bitfield accesses.
9411 BasicBlock::iterator BBI
= &SI
;
9412 for (unsigned ScanInsts
= 6; BBI
!= SI
.getParent()->begin() && ScanInsts
;
9416 if (StoreInst
*PrevSI
= dyn_cast
<StoreInst
>(BBI
)) {
9417 // Prev store isn't volatile, and stores to the same location?
9418 if (!PrevSI
->isVolatile() && PrevSI
->getOperand(1) == SI
.getOperand(1)) {
9421 EraseInstFromFunction(*PrevSI
);
9427 // If this is a load, we have to stop. However, if the loaded value is from
9428 // the pointer we're loading and is producing the pointer we're storing,
9429 // then *this* store is dead (X = load P; store X -> P).
9430 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(BBI
)) {
9431 if (LI
== Val
&& LI
->getOperand(0) == Ptr
&& !SI
.isVolatile()) {
9432 EraseInstFromFunction(SI
);
9436 // Otherwise, this is a load from some other location. Stores before it
9441 // Don't skip over loads or things that can modify memory.
9442 if (BBI
->mayWriteToMemory())
9447 if (SI
.isVolatile()) return 0; // Don't hack volatile stores.
9449 // store X, null -> turns into 'unreachable' in SimplifyCFG
9450 if (isa
<ConstantPointerNull
>(Ptr
)) {
9451 if (!isa
<UndefValue
>(Val
)) {
9452 SI
.setOperand(0, UndefValue::get(Val
->getType()));
9453 if (Instruction
*U
= dyn_cast
<Instruction
>(Val
))
9454 AddToWorkList(U
); // Dropped a use.
9457 return 0; // Do not modify these!
9460 // store undef, Ptr -> noop
9461 if (isa
<UndefValue
>(Val
)) {
9462 EraseInstFromFunction(SI
);
9467 // If the pointer destination is a cast, see if we can fold the cast into the
9469 if (isa
<CastInst
>(Ptr
))
9470 if (Instruction
*Res
= InstCombineStoreToCast(*this, SI
))
9472 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ptr
))
9474 if (Instruction
*Res
= InstCombineStoreToCast(*this, SI
))
9478 // If this store is the last instruction in the basic block, and if the block
9479 // ends with an unconditional branch, try to move it to the successor block.
9481 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BBI
))
9482 if (BI
->isUnconditional())
9483 if (SimplifyStoreAtEndOfBlock(SI
))
9484 return 0; // xform done!
9489 /// SimplifyStoreAtEndOfBlock - Turn things like:
9490 /// if () { *P = v1; } else { *P = v2 }
9491 /// into a phi node with a store in the successor.
9493 /// Simplify things like:
9494 /// *P = v1; if () { *P = v2; }
9495 /// into a phi node with a store in the successor.
9497 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst
&SI
) {
9498 BasicBlock
*StoreBB
= SI
.getParent();
9500 // Check to see if the successor block has exactly two incoming edges. If
9501 // so, see if the other predecessor contains a store to the same location.
9502 // if so, insert a PHI node (if needed) and move the stores down.
9503 BasicBlock
*DestBB
= StoreBB
->getTerminator()->getSuccessor(0);
9505 // Determine whether Dest has exactly two predecessors and, if so, compute
9506 // the other predecessor.
9507 pred_iterator PI
= pred_begin(DestBB
);
9508 BasicBlock
*OtherBB
= 0;
9512 if (PI
== pred_end(DestBB
))
9515 if (*PI
!= StoreBB
) {
9520 if (++PI
!= pred_end(DestBB
))
9524 // Verify that the other block ends in a branch and is not otherwise empty.
9525 BasicBlock::iterator BBI
= OtherBB
->getTerminator();
9526 BranchInst
*OtherBr
= dyn_cast
<BranchInst
>(BBI
);
9527 if (!OtherBr
|| BBI
== OtherBB
->begin())
9530 // If the other block ends in an unconditional branch, check for the 'if then
9531 // else' case. there is an instruction before the branch.
9532 StoreInst
*OtherStore
= 0;
9533 if (OtherBr
->isUnconditional()) {
9534 // If this isn't a store, or isn't a store to the same location, bail out.
9536 OtherStore
= dyn_cast
<StoreInst
>(BBI
);
9537 if (!OtherStore
|| OtherStore
->getOperand(1) != SI
.getOperand(1))
9540 // Otherwise, the other block ended with a conditional branch. If one of the
9541 // destinations is StoreBB, then we have the if/then case.
9542 if (OtherBr
->getSuccessor(0) != StoreBB
&&
9543 OtherBr
->getSuccessor(1) != StoreBB
)
9546 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
9547 // if/then triangle. See if there is a store to the same ptr as SI that
9548 // lives in OtherBB.
9550 // Check to see if we find the matching store.
9551 if ((OtherStore
= dyn_cast
<StoreInst
>(BBI
))) {
9552 if (OtherStore
->getOperand(1) != SI
.getOperand(1))
9556 // If we find something that may be using the stored value, or if we run
9557 // out of instructions, we can't do the xform.
9558 if (isa
<LoadInst
>(BBI
) || BBI
->mayWriteToMemory() ||
9559 BBI
== OtherBB
->begin())
9563 // In order to eliminate the store in OtherBr, we have to
9564 // make sure nothing reads the stored value in StoreBB.
9565 for (BasicBlock::iterator I
= StoreBB
->begin(); &*I
!= &SI
; ++I
) {
9566 // FIXME: This should really be AA driven.
9567 if (isa
<LoadInst
>(I
) || I
->mayWriteToMemory())
9572 // Insert a PHI node now if we need it.
9573 Value
*MergedVal
= OtherStore
->getOperand(0);
9574 if (MergedVal
!= SI
.getOperand(0)) {
9575 PHINode
*PN
= new PHINode(MergedVal
->getType(), "storemerge");
9576 PN
->reserveOperandSpace(2);
9577 PN
->addIncoming(SI
.getOperand(0), SI
.getParent());
9578 PN
->addIncoming(OtherStore
->getOperand(0), OtherBB
);
9579 MergedVal
= InsertNewInstBefore(PN
, DestBB
->front());
9582 // Advance to a place where it is safe to insert the new store and
9584 BBI
= DestBB
->begin();
9585 while (isa
<PHINode
>(BBI
)) ++BBI
;
9586 InsertNewInstBefore(new StoreInst(MergedVal
, SI
.getOperand(1),
9587 OtherStore
->isVolatile()), *BBI
);
9589 // Nuke the old stores.
9590 EraseInstFromFunction(SI
);
9591 EraseInstFromFunction(*OtherStore
);
9597 Instruction
*InstCombiner::visitBranchInst(BranchInst
&BI
) {
9598 // Change br (not X), label True, label False to: br X, label False, True
9600 BasicBlock
*TrueDest
;
9601 BasicBlock
*FalseDest
;
9602 if (match(&BI
, m_Br(m_Not(m_Value(X
)), TrueDest
, FalseDest
)) &&
9603 !isa
<Constant
>(X
)) {
9604 // Swap Destinations and condition...
9606 BI
.setSuccessor(0, FalseDest
);
9607 BI
.setSuccessor(1, TrueDest
);
9611 // Cannonicalize fcmp_one -> fcmp_oeq
9612 FCmpInst::Predicate FPred
; Value
*Y
;
9613 if (match(&BI
, m_Br(m_FCmp(FPred
, m_Value(X
), m_Value(Y
)),
9614 TrueDest
, FalseDest
)))
9615 if ((FPred
== FCmpInst::FCMP_ONE
|| FPred
== FCmpInst::FCMP_OLE
||
9616 FPred
== FCmpInst::FCMP_OGE
) && BI
.getCondition()->hasOneUse()) {
9617 FCmpInst
*I
= cast
<FCmpInst
>(BI
.getCondition());
9618 FCmpInst::Predicate NewPred
= FCmpInst::getInversePredicate(FPred
);
9619 Instruction
*NewSCC
= new FCmpInst(NewPred
, X
, Y
, "", I
);
9620 NewSCC
->takeName(I
);
9621 // Swap Destinations and condition...
9622 BI
.setCondition(NewSCC
);
9623 BI
.setSuccessor(0, FalseDest
);
9624 BI
.setSuccessor(1, TrueDest
);
9625 RemoveFromWorkList(I
);
9626 I
->eraseFromParent();
9627 AddToWorkList(NewSCC
);
9631 // Cannonicalize icmp_ne -> icmp_eq
9632 ICmpInst::Predicate IPred
;
9633 if (match(&BI
, m_Br(m_ICmp(IPred
, m_Value(X
), m_Value(Y
)),
9634 TrueDest
, FalseDest
)))
9635 if ((IPred
== ICmpInst::ICMP_NE
|| IPred
== ICmpInst::ICMP_ULE
||
9636 IPred
== ICmpInst::ICMP_SLE
|| IPred
== ICmpInst::ICMP_UGE
||
9637 IPred
== ICmpInst::ICMP_SGE
) && BI
.getCondition()->hasOneUse()) {
9638 ICmpInst
*I
= cast
<ICmpInst
>(BI
.getCondition());
9639 ICmpInst::Predicate NewPred
= ICmpInst::getInversePredicate(IPred
);
9640 Instruction
*NewSCC
= new ICmpInst(NewPred
, X
, Y
, "", I
);
9641 NewSCC
->takeName(I
);
9642 // Swap Destinations and condition...
9643 BI
.setCondition(NewSCC
);
9644 BI
.setSuccessor(0, FalseDest
);
9645 BI
.setSuccessor(1, TrueDest
);
9646 RemoveFromWorkList(I
);
9647 I
->eraseFromParent();;
9648 AddToWorkList(NewSCC
);
9655 Instruction
*InstCombiner::visitSwitchInst(SwitchInst
&SI
) {
9656 Value
*Cond
= SI
.getCondition();
9657 if (Instruction
*I
= dyn_cast
<Instruction
>(Cond
)) {
9658 if (I
->getOpcode() == Instruction::Add
)
9659 if (ConstantInt
*AddRHS
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
9660 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
9661 for (unsigned i
= 2, e
= SI
.getNumOperands(); i
!= e
; i
+= 2)
9662 SI
.setOperand(i
,ConstantExpr::getSub(cast
<Constant
>(SI
.getOperand(i
)),
9664 SI
.setOperand(0, I
->getOperand(0));
9672 /// CheapToScalarize - Return true if the value is cheaper to scalarize than it
9673 /// is to leave as a vector operation.
9674 static bool CheapToScalarize(Value
*V
, bool isConstant
) {
9675 if (isa
<ConstantAggregateZero
>(V
))
9677 if (ConstantVector
*C
= dyn_cast
<ConstantVector
>(V
)) {
9678 if (isConstant
) return true;
9679 // If all elts are the same, we can extract.
9680 Constant
*Op0
= C
->getOperand(0);
9681 for (unsigned i
= 1; i
< C
->getNumOperands(); ++i
)
9682 if (C
->getOperand(i
) != Op0
)
9686 Instruction
*I
= dyn_cast
<Instruction
>(V
);
9687 if (!I
) return false;
9689 // Insert element gets simplified to the inserted element or is deleted if
9690 // this is constant idx extract element and its a constant idx insertelt.
9691 if (I
->getOpcode() == Instruction::InsertElement
&& isConstant
&&
9692 isa
<ConstantInt
>(I
->getOperand(2)))
9694 if (I
->getOpcode() == Instruction::Load
&& I
->hasOneUse())
9696 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(I
))
9697 if (BO
->hasOneUse() &&
9698 (CheapToScalarize(BO
->getOperand(0), isConstant
) ||
9699 CheapToScalarize(BO
->getOperand(1), isConstant
)))
9701 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
9702 if (CI
->hasOneUse() &&
9703 (CheapToScalarize(CI
->getOperand(0), isConstant
) ||
9704 CheapToScalarize(CI
->getOperand(1), isConstant
)))
9710 /// Read and decode a shufflevector mask.
9712 /// It turns undef elements into values that are larger than the number of
9713 /// elements in the input.
9714 static std::vector
<unsigned> getShuffleMask(const ShuffleVectorInst
*SVI
) {
9715 unsigned NElts
= SVI
->getType()->getNumElements();
9716 if (isa
<ConstantAggregateZero
>(SVI
->getOperand(2)))
9717 return std::vector
<unsigned>(NElts
, 0);
9718 if (isa
<UndefValue
>(SVI
->getOperand(2)))
9719 return std::vector
<unsigned>(NElts
, 2*NElts
);
9721 std::vector
<unsigned> Result
;
9722 const ConstantVector
*CP
= cast
<ConstantVector
>(SVI
->getOperand(2));
9723 for (unsigned i
= 0, e
= CP
->getNumOperands(); i
!= e
; ++i
)
9724 if (isa
<UndefValue
>(CP
->getOperand(i
)))
9725 Result
.push_back(NElts
*2); // undef -> 8
9727 Result
.push_back(cast
<ConstantInt
>(CP
->getOperand(i
))->getZExtValue());
9731 /// FindScalarElement - Given a vector and an element number, see if the scalar
9732 /// value is already around as a register, for example if it were inserted then
9733 /// extracted from the vector.
9734 static Value
*FindScalarElement(Value
*V
, unsigned EltNo
) {
9735 assert(isa
<VectorType
>(V
->getType()) && "Not looking at a vector?");
9736 const VectorType
*PTy
= cast
<VectorType
>(V
->getType());
9737 unsigned Width
= PTy
->getNumElements();
9738 if (EltNo
>= Width
) // Out of range access.
9739 return UndefValue::get(PTy
->getElementType());
9741 if (isa
<UndefValue
>(V
))
9742 return UndefValue::get(PTy
->getElementType());
9743 else if (isa
<ConstantAggregateZero
>(V
))
9744 return Constant::getNullValue(PTy
->getElementType());
9745 else if (ConstantVector
*CP
= dyn_cast
<ConstantVector
>(V
))
9746 return CP
->getOperand(EltNo
);
9747 else if (InsertElementInst
*III
= dyn_cast
<InsertElementInst
>(V
)) {
9748 // If this is an insert to a variable element, we don't know what it is.
9749 if (!isa
<ConstantInt
>(III
->getOperand(2)))
9751 unsigned IIElt
= cast
<ConstantInt
>(III
->getOperand(2))->getZExtValue();
9753 // If this is an insert to the element we are looking for, return the
9756 return III
->getOperand(1);
9758 // Otherwise, the insertelement doesn't modify the value, recurse on its
9760 return FindScalarElement(III
->getOperand(0), EltNo
);
9761 } else if (ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(V
)) {
9762 unsigned InEl
= getShuffleMask(SVI
)[EltNo
];
9764 return FindScalarElement(SVI
->getOperand(0), InEl
);
9765 else if (InEl
< Width
*2)
9766 return FindScalarElement(SVI
->getOperand(1), InEl
- Width
);
9768 return UndefValue::get(PTy
->getElementType());
9771 // Otherwise, we don't know.
9775 Instruction
*InstCombiner::visitExtractElementInst(ExtractElementInst
&EI
) {
9777 // If vector val is undef, replace extract with scalar undef.
9778 if (isa
<UndefValue
>(EI
.getOperand(0)))
9779 return ReplaceInstUsesWith(EI
, UndefValue::get(EI
.getType()));
9781 // If vector val is constant 0, replace extract with scalar 0.
9782 if (isa
<ConstantAggregateZero
>(EI
.getOperand(0)))
9783 return ReplaceInstUsesWith(EI
, Constant::getNullValue(EI
.getType()));
9785 if (ConstantVector
*C
= dyn_cast
<ConstantVector
>(EI
.getOperand(0))) {
9786 // If vector val is constant with uniform operands, replace EI
9787 // with that operand
9788 Constant
*op0
= C
->getOperand(0);
9789 for (unsigned i
= 1; i
< C
->getNumOperands(); ++i
)
9790 if (C
->getOperand(i
) != op0
) {
9795 return ReplaceInstUsesWith(EI
, op0
);
9798 // If extracting a specified index from the vector, see if we can recursively
9799 // find a previously computed scalar that was inserted into the vector.
9800 if (ConstantInt
*IdxC
= dyn_cast
<ConstantInt
>(EI
.getOperand(1))) {
9801 unsigned IndexVal
= IdxC
->getZExtValue();
9802 unsigned VectorWidth
=
9803 cast
<VectorType
>(EI
.getOperand(0)->getType())->getNumElements();
9805 // If this is extracting an invalid index, turn this into undef, to avoid
9806 // crashing the code below.
9807 if (IndexVal
>= VectorWidth
)
9808 return ReplaceInstUsesWith(EI
, UndefValue::get(EI
.getType()));
9810 // This instruction only demands the single element from the input vector.
9811 // If the input vector has a single use, simplify it based on this use
9813 if (EI
.getOperand(0)->hasOneUse() && VectorWidth
!= 1) {
9815 if (Value
*V
= SimplifyDemandedVectorElts(EI
.getOperand(0),
9818 EI
.setOperand(0, V
);
9823 if (Value
*Elt
= FindScalarElement(EI
.getOperand(0), IndexVal
))
9824 return ReplaceInstUsesWith(EI
, Elt
);
9826 // If the this extractelement is directly using a bitcast from a vector of
9827 // the same number of elements, see if we can find the source element from
9828 // it. In this case, we will end up needing to bitcast the scalars.
9829 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(EI
.getOperand(0))) {
9830 if (const VectorType
*VT
=
9831 dyn_cast
<VectorType
>(BCI
->getOperand(0)->getType()))
9832 if (VT
->getNumElements() == VectorWidth
)
9833 if (Value
*Elt
= FindScalarElement(BCI
->getOperand(0), IndexVal
))
9834 return new BitCastInst(Elt
, EI
.getType());
9838 if (Instruction
*I
= dyn_cast
<Instruction
>(EI
.getOperand(0))) {
9839 if (I
->hasOneUse()) {
9840 // Push extractelement into predecessor operation if legal and
9841 // profitable to do so
9842 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(I
)) {
9843 bool isConstantElt
= isa
<ConstantInt
>(EI
.getOperand(1));
9844 if (CheapToScalarize(BO
, isConstantElt
)) {
9845 ExtractElementInst
*newEI0
=
9846 new ExtractElementInst(BO
->getOperand(0), EI
.getOperand(1),
9847 EI
.getName()+".lhs");
9848 ExtractElementInst
*newEI1
=
9849 new ExtractElementInst(BO
->getOperand(1), EI
.getOperand(1),
9850 EI
.getName()+".rhs");
9851 InsertNewInstBefore(newEI0
, EI
);
9852 InsertNewInstBefore(newEI1
, EI
);
9853 return BinaryOperator::create(BO
->getOpcode(), newEI0
, newEI1
);
9855 } else if (isa
<LoadInst
>(I
)) {
9856 Value
*Ptr
= InsertCastBefore(Instruction::BitCast
, I
->getOperand(0),
9857 PointerType::get(EI
.getType()), EI
);
9858 GetElementPtrInst
*GEP
=
9859 new GetElementPtrInst(Ptr
, EI
.getOperand(1), I
->getName() + ".gep");
9860 InsertNewInstBefore(GEP
, EI
);
9861 return new LoadInst(GEP
);
9864 if (InsertElementInst
*IE
= dyn_cast
<InsertElementInst
>(I
)) {
9865 // Extracting the inserted element?
9866 if (IE
->getOperand(2) == EI
.getOperand(1))
9867 return ReplaceInstUsesWith(EI
, IE
->getOperand(1));
9868 // If the inserted and extracted elements are constants, they must not
9869 // be the same value, extract from the pre-inserted value instead.
9870 if (isa
<Constant
>(IE
->getOperand(2)) &&
9871 isa
<Constant
>(EI
.getOperand(1))) {
9872 AddUsesToWorkList(EI
);
9873 EI
.setOperand(0, IE
->getOperand(0));
9876 } else if (ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(I
)) {
9877 // If this is extracting an element from a shufflevector, figure out where
9878 // it came from and extract from the appropriate input element instead.
9879 if (ConstantInt
*Elt
= dyn_cast
<ConstantInt
>(EI
.getOperand(1))) {
9880 unsigned SrcIdx
= getShuffleMask(SVI
)[Elt
->getZExtValue()];
9882 if (SrcIdx
< SVI
->getType()->getNumElements())
9883 Src
= SVI
->getOperand(0);
9884 else if (SrcIdx
< SVI
->getType()->getNumElements()*2) {
9885 SrcIdx
-= SVI
->getType()->getNumElements();
9886 Src
= SVI
->getOperand(1);
9888 return ReplaceInstUsesWith(EI
, UndefValue::get(EI
.getType()));
9890 return new ExtractElementInst(Src
, SrcIdx
);
9897 /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
9898 /// elements from either LHS or RHS, return the shuffle mask and true.
9899 /// Otherwise, return false.
9900 static bool CollectSingleShuffleElements(Value
*V
, Value
*LHS
, Value
*RHS
,
9901 std::vector
<Constant
*> &Mask
) {
9902 assert(V
->getType() == LHS
->getType() && V
->getType() == RHS
->getType() &&
9903 "Invalid CollectSingleShuffleElements");
9904 unsigned NumElts
= cast
<VectorType
>(V
->getType())->getNumElements();
9906 if (isa
<UndefValue
>(V
)) {
9907 Mask
.assign(NumElts
, UndefValue::get(Type::Int32Ty
));
9909 } else if (V
== LHS
) {
9910 for (unsigned i
= 0; i
!= NumElts
; ++i
)
9911 Mask
.push_back(ConstantInt::get(Type::Int32Ty
, i
));
9913 } else if (V
== RHS
) {
9914 for (unsigned i
= 0; i
!= NumElts
; ++i
)
9915 Mask
.push_back(ConstantInt::get(Type::Int32Ty
, i
+NumElts
));
9917 } else if (InsertElementInst
*IEI
= dyn_cast
<InsertElementInst
>(V
)) {
9918 // If this is an insert of an extract from some other vector, include it.
9919 Value
*VecOp
= IEI
->getOperand(0);
9920 Value
*ScalarOp
= IEI
->getOperand(1);
9921 Value
*IdxOp
= IEI
->getOperand(2);
9923 if (!isa
<ConstantInt
>(IdxOp
))
9925 unsigned InsertedIdx
= cast
<ConstantInt
>(IdxOp
)->getZExtValue();
9927 if (isa
<UndefValue
>(ScalarOp
)) { // inserting undef into vector.
9928 // Okay, we can handle this if the vector we are insertinting into is
9930 if (CollectSingleShuffleElements(VecOp
, LHS
, RHS
, Mask
)) {
9931 // If so, update the mask to reflect the inserted undef.
9932 Mask
[InsertedIdx
] = UndefValue::get(Type::Int32Ty
);
9935 } else if (ExtractElementInst
*EI
= dyn_cast
<ExtractElementInst
>(ScalarOp
)){
9936 if (isa
<ConstantInt
>(EI
->getOperand(1)) &&
9937 EI
->getOperand(0)->getType() == V
->getType()) {
9938 unsigned ExtractedIdx
=
9939 cast
<ConstantInt
>(EI
->getOperand(1))->getZExtValue();
9941 // This must be extracting from either LHS or RHS.
9942 if (EI
->getOperand(0) == LHS
|| EI
->getOperand(0) == RHS
) {
9943 // Okay, we can handle this if the vector we are insertinting into is
9945 if (CollectSingleShuffleElements(VecOp
, LHS
, RHS
, Mask
)) {
9946 // If so, update the mask to reflect the inserted value.
9947 if (EI
->getOperand(0) == LHS
) {
9948 Mask
[InsertedIdx
& (NumElts
-1)] =
9949 ConstantInt::get(Type::Int32Ty
, ExtractedIdx
);
9951 assert(EI
->getOperand(0) == RHS
);
9952 Mask
[InsertedIdx
& (NumElts
-1)] =
9953 ConstantInt::get(Type::Int32Ty
, ExtractedIdx
+NumElts
);
9962 // TODO: Handle shufflevector here!
9967 /// CollectShuffleElements - We are building a shuffle of V, using RHS as the
9968 /// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
9969 /// that computes V and the LHS value of the shuffle.
9970 static Value
*CollectShuffleElements(Value
*V
, std::vector
<Constant
*> &Mask
,
9972 assert(isa
<VectorType
>(V
->getType()) &&
9973 (RHS
== 0 || V
->getType() == RHS
->getType()) &&
9974 "Invalid shuffle!");
9975 unsigned NumElts
= cast
<VectorType
>(V
->getType())->getNumElements();
9977 if (isa
<UndefValue
>(V
)) {
9978 Mask
.assign(NumElts
, UndefValue::get(Type::Int32Ty
));
9980 } else if (isa
<ConstantAggregateZero
>(V
)) {
9981 Mask
.assign(NumElts
, ConstantInt::get(Type::Int32Ty
, 0));
9983 } else if (InsertElementInst
*IEI
= dyn_cast
<InsertElementInst
>(V
)) {
9984 // If this is an insert of an extract from some other vector, include it.
9985 Value
*VecOp
= IEI
->getOperand(0);
9986 Value
*ScalarOp
= IEI
->getOperand(1);
9987 Value
*IdxOp
= IEI
->getOperand(2);
9989 if (ExtractElementInst
*EI
= dyn_cast
<ExtractElementInst
>(ScalarOp
)) {
9990 if (isa
<ConstantInt
>(EI
->getOperand(1)) && isa
<ConstantInt
>(IdxOp
) &&
9991 EI
->getOperand(0)->getType() == V
->getType()) {
9992 unsigned ExtractedIdx
=
9993 cast
<ConstantInt
>(EI
->getOperand(1))->getZExtValue();
9994 unsigned InsertedIdx
= cast
<ConstantInt
>(IdxOp
)->getZExtValue();
9996 // Either the extracted from or inserted into vector must be RHSVec,
9997 // otherwise we'd end up with a shuffle of three inputs.
9998 if (EI
->getOperand(0) == RHS
|| RHS
== 0) {
9999 RHS
= EI
->getOperand(0);
10000 Value
*V
= CollectShuffleElements(VecOp
, Mask
, RHS
);
10001 Mask
[InsertedIdx
& (NumElts
-1)] =
10002 ConstantInt::get(Type::Int32Ty
, NumElts
+ExtractedIdx
);
10006 if (VecOp
== RHS
) {
10007 Value
*V
= CollectShuffleElements(EI
->getOperand(0), Mask
, RHS
);
10008 // Everything but the extracted element is replaced with the RHS.
10009 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
10010 if (i
!= InsertedIdx
)
10011 Mask
[i
] = ConstantInt::get(Type::Int32Ty
, NumElts
+i
);
10016 // If this insertelement is a chain that comes from exactly these two
10017 // vectors, return the vector and the effective shuffle.
10018 if (CollectSingleShuffleElements(IEI
, EI
->getOperand(0), RHS
, Mask
))
10019 return EI
->getOperand(0);
10024 // TODO: Handle shufflevector here!
10026 // Otherwise, can't do anything fancy. Return an identity vector.
10027 for (unsigned i
= 0; i
!= NumElts
; ++i
)
10028 Mask
.push_back(ConstantInt::get(Type::Int32Ty
, i
));
10032 Instruction
*InstCombiner::visitInsertElementInst(InsertElementInst
&IE
) {
10033 Value
*VecOp
= IE
.getOperand(0);
10034 Value
*ScalarOp
= IE
.getOperand(1);
10035 Value
*IdxOp
= IE
.getOperand(2);
10037 // Inserting an undef or into an undefined place, remove this.
10038 if (isa
<UndefValue
>(ScalarOp
) || isa
<UndefValue
>(IdxOp
))
10039 ReplaceInstUsesWith(IE
, VecOp
);
10041 // If the inserted element was extracted from some other vector, and if the
10042 // indexes are constant, try to turn this into a shufflevector operation.
10043 if (ExtractElementInst
*EI
= dyn_cast
<ExtractElementInst
>(ScalarOp
)) {
10044 if (isa
<ConstantInt
>(EI
->getOperand(1)) && isa
<ConstantInt
>(IdxOp
) &&
10045 EI
->getOperand(0)->getType() == IE
.getType()) {
10046 unsigned NumVectorElts
= IE
.getType()->getNumElements();
10047 unsigned ExtractedIdx
=
10048 cast
<ConstantInt
>(EI
->getOperand(1))->getZExtValue();
10049 unsigned InsertedIdx
= cast
<ConstantInt
>(IdxOp
)->getZExtValue();
10051 if (ExtractedIdx
>= NumVectorElts
) // Out of range extract.
10052 return ReplaceInstUsesWith(IE
, VecOp
);
10054 if (InsertedIdx
>= NumVectorElts
) // Out of range insert.
10055 return ReplaceInstUsesWith(IE
, UndefValue::get(IE
.getType()));
10057 // If we are extracting a value from a vector, then inserting it right
10058 // back into the same place, just use the input vector.
10059 if (EI
->getOperand(0) == VecOp
&& ExtractedIdx
== InsertedIdx
)
10060 return ReplaceInstUsesWith(IE
, VecOp
);
10062 // We could theoretically do this for ANY input. However, doing so could
10063 // turn chains of insertelement instructions into a chain of shufflevector
10064 // instructions, and right now we do not merge shufflevectors. As such,
10065 // only do this in a situation where it is clear that there is benefit.
10066 if (isa
<UndefValue
>(VecOp
) || isa
<ConstantAggregateZero
>(VecOp
)) {
10067 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
10068 // the values of VecOp, except then one read from EIOp0.
10069 // Build a new shuffle mask.
10070 std::vector
<Constant
*> Mask
;
10071 if (isa
<UndefValue
>(VecOp
))
10072 Mask
.assign(NumVectorElts
, UndefValue::get(Type::Int32Ty
));
10074 assert(isa
<ConstantAggregateZero
>(VecOp
) && "Unknown thing");
10075 Mask
.assign(NumVectorElts
, ConstantInt::get(Type::Int32Ty
,
10078 Mask
[InsertedIdx
] = ConstantInt::get(Type::Int32Ty
, ExtractedIdx
);
10079 return new ShuffleVectorInst(EI
->getOperand(0), VecOp
,
10080 ConstantVector::get(Mask
));
10083 // If this insertelement isn't used by some other insertelement, turn it
10084 // (and any insertelements it points to), into one big shuffle.
10085 if (!IE
.hasOneUse() || !isa
<InsertElementInst
>(IE
.use_back())) {
10086 std::vector
<Constant
*> Mask
;
10088 Value
*LHS
= CollectShuffleElements(&IE
, Mask
, RHS
);
10089 if (RHS
== 0) RHS
= UndefValue::get(LHS
->getType());
10090 // We now have a shuffle of LHS, RHS, Mask.
10091 return new ShuffleVectorInst(LHS
, RHS
, ConstantVector::get(Mask
));
10100 Instruction
*InstCombiner::visitShuffleVectorInst(ShuffleVectorInst
&SVI
) {
10101 Value
*LHS
= SVI
.getOperand(0);
10102 Value
*RHS
= SVI
.getOperand(1);
10103 std::vector
<unsigned> Mask
= getShuffleMask(&SVI
);
10105 bool MadeChange
= false;
10107 // Undefined shuffle mask -> undefined value.
10108 if (isa
<UndefValue
>(SVI
.getOperand(2)))
10109 return ReplaceInstUsesWith(SVI
, UndefValue::get(SVI
.getType()));
10111 // If we have shuffle(x, undef, mask) and any elements of mask refer to
10112 // the undef, change them to undefs.
10113 if (isa
<UndefValue
>(SVI
.getOperand(1))) {
10114 // Scan to see if there are any references to the RHS. If so, replace them
10115 // with undef element refs and set MadeChange to true.
10116 for (unsigned i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
10117 if (Mask
[i
] >= e
&& Mask
[i
] != 2*e
) {
10124 // Remap any references to RHS to use LHS.
10125 std::vector
<Constant
*> Elts
;
10126 for (unsigned i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
10127 if (Mask
[i
] == 2*e
)
10128 Elts
.push_back(UndefValue::get(Type::Int32Ty
));
10130 Elts
.push_back(ConstantInt::get(Type::Int32Ty
, Mask
[i
]));
10132 SVI
.setOperand(2, ConstantVector::get(Elts
));
10136 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
10137 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
10138 if (LHS
== RHS
|| isa
<UndefValue
>(LHS
)) {
10139 if (isa
<UndefValue
>(LHS
) && LHS
== RHS
) {
10140 // shuffle(undef,undef,mask) -> undef.
10141 return ReplaceInstUsesWith(SVI
, LHS
);
10144 // Remap any references to RHS to use LHS.
10145 std::vector
<Constant
*> Elts
;
10146 for (unsigned i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
10147 if (Mask
[i
] >= 2*e
)
10148 Elts
.push_back(UndefValue::get(Type::Int32Ty
));
10150 if ((Mask
[i
] >= e
&& isa
<UndefValue
>(RHS
)) ||
10151 (Mask
[i
] < e
&& isa
<UndefValue
>(LHS
)))
10152 Mask
[i
] = 2*e
; // Turn into undef.
10154 Mask
[i
] &= (e
-1); // Force to LHS.
10155 Elts
.push_back(ConstantInt::get(Type::Int32Ty
, Mask
[i
]));
10158 SVI
.setOperand(0, SVI
.getOperand(1));
10159 SVI
.setOperand(1, UndefValue::get(RHS
->getType()));
10160 SVI
.setOperand(2, ConstantVector::get(Elts
));
10161 LHS
= SVI
.getOperand(0);
10162 RHS
= SVI
.getOperand(1);
10166 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
10167 bool isLHSID
= true, isRHSID
= true;
10169 for (unsigned i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
10170 if (Mask
[i
] >= e
*2) continue; // Ignore undef values.
10171 // Is this an identity shuffle of the LHS value?
10172 isLHSID
&= (Mask
[i
] == i
);
10174 // Is this an identity shuffle of the RHS value?
10175 isRHSID
&= (Mask
[i
]-e
== i
);
10178 // Eliminate identity shuffles.
10179 if (isLHSID
) return ReplaceInstUsesWith(SVI
, LHS
);
10180 if (isRHSID
) return ReplaceInstUsesWith(SVI
, RHS
);
10182 // If the LHS is a shufflevector itself, see if we can combine it with this
10183 // one without producing an unusual shuffle. Here we are really conservative:
10184 // we are absolutely afraid of producing a shuffle mask not in the input
10185 // program, because the code gen may not be smart enough to turn a merged
10186 // shuffle into two specific shuffles: it may produce worse code. As such,
10187 // we only merge two shuffles if the result is one of the two input shuffle
10188 // masks. In this case, merging the shuffles just removes one instruction,
10189 // which we know is safe. This is good for things like turning:
10190 // (splat(splat)) -> splat.
10191 if (ShuffleVectorInst
*LHSSVI
= dyn_cast
<ShuffleVectorInst
>(LHS
)) {
10192 if (isa
<UndefValue
>(RHS
)) {
10193 std::vector
<unsigned> LHSMask
= getShuffleMask(LHSSVI
);
10195 std::vector
<unsigned> NewMask
;
10196 for (unsigned i
= 0, e
= Mask
.size(); i
!= e
; ++i
)
10197 if (Mask
[i
] >= 2*e
)
10198 NewMask
.push_back(2*e
);
10200 NewMask
.push_back(LHSMask
[Mask
[i
]]);
10202 // If the result mask is equal to the src shuffle or this shuffle mask, do
10203 // the replacement.
10204 if (NewMask
== LHSMask
|| NewMask
== Mask
) {
10205 std::vector
<Constant
*> Elts
;
10206 for (unsigned i
= 0, e
= NewMask
.size(); i
!= e
; ++i
) {
10207 if (NewMask
[i
] >= e
*2) {
10208 Elts
.push_back(UndefValue::get(Type::Int32Ty
));
10210 Elts
.push_back(ConstantInt::get(Type::Int32Ty
, NewMask
[i
]));
10213 return new ShuffleVectorInst(LHSSVI
->getOperand(0),
10214 LHSSVI
->getOperand(1),
10215 ConstantVector::get(Elts
));
10220 return MadeChange
? &SVI
: 0;
10226 /// TryToSinkInstruction - Try to move the specified instruction from its
10227 /// current block into the beginning of DestBlock, which can only happen if it's
10228 /// safe to move the instruction past all of the instructions between it and the
10229 /// end of its block.
10230 static bool TryToSinkInstruction(Instruction
*I
, BasicBlock
*DestBlock
) {
10231 assert(I
->hasOneUse() && "Invariants didn't hold!");
10233 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
10234 if (isa
<PHINode
>(I
) || I
->mayWriteToMemory()) return false;
10236 // Do not sink alloca instructions out of the entry block.
10237 if (isa
<AllocaInst
>(I
) && I
->getParent() ==
10238 &DestBlock
->getParent()->getEntryBlock())
10241 // We can only sink load instructions if there is nothing between the load and
10242 // the end of block that could change the value.
10243 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
10244 for (BasicBlock::iterator Scan
= LI
, E
= LI
->getParent()->end();
10246 if (Scan
->mayWriteToMemory())
10250 BasicBlock::iterator InsertPos
= DestBlock
->begin();
10251 while (isa
<PHINode
>(InsertPos
)) ++InsertPos
;
10253 I
->moveBefore(InsertPos
);
10259 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
10260 /// all reachable code to the worklist.
10262 /// This has a couple of tricks to make the code faster and more powerful. In
10263 /// particular, we constant fold and DCE instructions as we go, to avoid adding
10264 /// them to the worklist (this significantly speeds up instcombine on code where
10265 /// many instructions are dead or constant). Additionally, if we find a branch
10266 /// whose condition is a known constant, we only visit the reachable successors.
10268 static void AddReachableCodeToWorklist(BasicBlock
*BB
,
10269 SmallPtrSet
<BasicBlock
*, 64> &Visited
,
10271 const TargetData
*TD
) {
10272 std::vector
<BasicBlock
*> Worklist
;
10273 Worklist
.push_back(BB
);
10275 while (!Worklist
.empty()) {
10276 BB
= Worklist
.back();
10277 Worklist
.pop_back();
10279 // We have now visited this block! If we've already been here, ignore it.
10280 if (!Visited
.insert(BB
)) continue;
10282 for (BasicBlock::iterator BBI
= BB
->begin(), E
= BB
->end(); BBI
!= E
; ) {
10283 Instruction
*Inst
= BBI
++;
10285 // DCE instruction if trivially dead.
10286 if (isInstructionTriviallyDead(Inst
)) {
10288 DOUT
<< "IC: DCE: " << *Inst
;
10289 Inst
->eraseFromParent();
10293 // ConstantProp instruction if trivially constant.
10294 if (Constant
*C
= ConstantFoldInstruction(Inst
, TD
)) {
10295 DOUT
<< "IC: ConstFold to: " << *C
<< " from: " << *Inst
;
10296 Inst
->replaceAllUsesWith(C
);
10298 Inst
->eraseFromParent();
10302 IC
.AddToWorkList(Inst
);
10305 // Recursively visit successors. If this is a branch or switch on a
10306 // constant, only visit the reachable successor.
10307 TerminatorInst
*TI
= BB
->getTerminator();
10308 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
10309 if (BI
->isConditional() && isa
<ConstantInt
>(BI
->getCondition())) {
10310 bool CondVal
= cast
<ConstantInt
>(BI
->getCondition())->getZExtValue();
10311 Worklist
.push_back(BI
->getSuccessor(!CondVal
));
10314 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
10315 if (ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(SI
->getCondition())) {
10316 // See if this is an explicit destination.
10317 for (unsigned i
= 1, e
= SI
->getNumSuccessors(); i
!= e
; ++i
)
10318 if (SI
->getCaseValue(i
) == Cond
) {
10319 Worklist
.push_back(SI
->getSuccessor(i
));
10323 // Otherwise it is the default destination.
10324 Worklist
.push_back(SI
->getSuccessor(0));
10329 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
10330 Worklist
.push_back(TI
->getSuccessor(i
));
10334 bool InstCombiner::DoOneIteration(Function
&F
, unsigned Iteration
) {
10335 bool Changed
= false;
10336 TD
= &getAnalysis
<TargetData
>();
10338 DEBUG(DOUT
<< "\n\nINSTCOMBINE ITERATION #" << Iteration
<< " on "
10339 << F
.getNameStr() << "\n");
10342 // Do a depth-first traversal of the function, populate the worklist with
10343 // the reachable instructions. Ignore blocks that are not reachable. Keep
10344 // track of which blocks we visit.
10345 SmallPtrSet
<BasicBlock
*, 64> Visited
;
10346 AddReachableCodeToWorklist(F
.begin(), Visited
, *this, TD
);
10348 // Do a quick scan over the function. If we find any blocks that are
10349 // unreachable, remove any instructions inside of them. This prevents
10350 // the instcombine code from having to deal with some bad special cases.
10351 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
10352 if (!Visited
.count(BB
)) {
10353 Instruction
*Term
= BB
->getTerminator();
10354 while (Term
!= BB
->begin()) { // Remove instrs bottom-up
10355 BasicBlock::iterator I
= Term
; --I
;
10357 DOUT
<< "IC: DCE: " << *I
;
10360 if (!I
->use_empty())
10361 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
10362 I
->eraseFromParent();
10367 while (!Worklist
.empty()) {
10368 Instruction
*I
= RemoveOneFromWorkList();
10369 if (I
== 0) continue; // skip null values.
10371 // Check to see if we can DCE the instruction.
10372 if (isInstructionTriviallyDead(I
)) {
10373 // Add operands to the worklist.
10374 if (I
->getNumOperands() < 4)
10375 AddUsesToWorkList(*I
);
10378 DOUT
<< "IC: DCE: " << *I
;
10380 I
->eraseFromParent();
10381 RemoveFromWorkList(I
);
10385 // Instruction isn't dead, see if we can constant propagate it.
10386 if (Constant
*C
= ConstantFoldInstruction(I
, TD
)) {
10387 DOUT
<< "IC: ConstFold to: " << *C
<< " from: " << *I
;
10389 // Add operands to the worklist.
10390 AddUsesToWorkList(*I
);
10391 ReplaceInstUsesWith(*I
, C
);
10394 I
->eraseFromParent();
10395 RemoveFromWorkList(I
);
10399 // See if we can trivially sink this instruction to a successor basic block.
10400 if (I
->hasOneUse()) {
10401 BasicBlock
*BB
= I
->getParent();
10402 BasicBlock
*UserParent
= cast
<Instruction
>(I
->use_back())->getParent();
10403 if (UserParent
!= BB
) {
10404 bool UserIsSuccessor
= false;
10405 // See if the user is one of our successors.
10406 for (succ_iterator SI
= succ_begin(BB
), E
= succ_end(BB
); SI
!= E
; ++SI
)
10407 if (*SI
== UserParent
) {
10408 UserIsSuccessor
= true;
10412 // If the user is one of our immediate successors, and if that successor
10413 // only has us as a predecessors (we'd have to split the critical edge
10414 // otherwise), we can keep going.
10415 if (UserIsSuccessor
&& !isa
<PHINode
>(I
->use_back()) &&
10416 next(pred_begin(UserParent
)) == pred_end(UserParent
))
10417 // Okay, the CFG is simple enough, try to sink this instruction.
10418 Changed
|= TryToSinkInstruction(I
, UserParent
);
10422 // Now that we have an instruction, try combining it to simplify it...
10426 DEBUG(std::ostringstream SS
; I
->print(SS
); OrigI
= SS
.str(););
10427 if (Instruction
*Result
= visit(*I
)) {
10429 // Should we replace the old instruction with a new one?
10431 DOUT
<< "IC: Old = " << *I
10432 << " New = " << *Result
;
10434 // Everything uses the new instruction now.
10435 I
->replaceAllUsesWith(Result
);
10437 // Push the new instruction and any users onto the worklist.
10438 AddToWorkList(Result
);
10439 AddUsersToWorkList(*Result
);
10441 // Move the name to the new instruction first.
10442 Result
->takeName(I
);
10444 // Insert the new instruction into the basic block...
10445 BasicBlock
*InstParent
= I
->getParent();
10446 BasicBlock::iterator InsertPos
= I
;
10448 if (!isa
<PHINode
>(Result
)) // If combining a PHI, don't insert
10449 while (isa
<PHINode
>(InsertPos
)) // middle of a block of PHIs.
10452 InstParent
->getInstList().insert(InsertPos
, Result
);
10454 // Make sure that we reprocess all operands now that we reduced their
10456 AddUsesToWorkList(*I
);
10458 // Instructions can end up on the worklist more than once. Make sure
10459 // we do not process an instruction that has been deleted.
10460 RemoveFromWorkList(I
);
10462 // Erase the old instruction.
10463 InstParent
->getInstList().erase(I
);
10466 DOUT
<< "IC: Mod = " << OrigI
10467 << " New = " << *I
;
10470 // If the instruction was modified, it's possible that it is now dead.
10471 // if so, remove it.
10472 if (isInstructionTriviallyDead(I
)) {
10473 // Make sure we process all operands now that we are reducing their
10475 AddUsesToWorkList(*I
);
10477 // Instructions may end up in the worklist more than once. Erase all
10478 // occurrences of this instruction.
10479 RemoveFromWorkList(I
);
10480 I
->eraseFromParent();
10483 AddUsersToWorkList(*I
);
10490 assert(WorklistMap
.empty() && "Worklist empty, but map not?");
10492 // Do an explicit clear, this shrinks the map if needed.
10493 WorklistMap
.clear();
10498 bool InstCombiner::runOnFunction(Function
&F
) {
10499 MustPreserveLCSSA
= mustPreserveAnalysisID(LCSSAID
);
10501 bool EverMadeChange
= false;
10503 // Iterate while there is work to do.
10504 unsigned Iteration
= 0;
10505 while (DoOneIteration(F
, Iteration
++))
10506 EverMadeChange
= true;
10507 return EverMadeChange
;
10510 FunctionPass
*llvm::createInstructionCombiningPass() {
10511 return new InstCombiner();