Fix for PR1801
[llvm-complete.git] / lib / Transforms / Scalar / ScalarReplAggregates.cpp
blobed49793b9e92fea43d3020b1356a119e6876363e
1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation implements the well known scalar replacement of
11 // aggregates transformation. This xform breaks up alloca instructions of
12 // aggregate type (structure or array) into individual alloca instructions for
13 // each member (if possible). Then, if possible, it transforms the individual
14 // alloca instructions into nice clean scalar SSA form.
16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17 // often interact, especially for C++ programs. As such, iterating between
18 // SRoA, then Mem2Reg until we run out of things to promote works well.
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "scalarrepl"
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/Constants.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Analysis/Dominators.h"
32 #include "llvm/Target/TargetData.h"
33 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/GetElementPtrTypeIterator.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Compiler.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/ADT/StringExtras.h"
41 using namespace llvm;
43 STATISTIC(NumReplaced, "Number of allocas broken up");
44 STATISTIC(NumPromoted, "Number of allocas promoted");
45 STATISTIC(NumConverted, "Number of aggregates converted to scalar");
46 STATISTIC(NumGlobals, "Number of allocas copied from constant global");
48 namespace {
49 struct VISIBILITY_HIDDEN SROA : public FunctionPass {
50 static char ID; // Pass identification, replacement for typeid
51 explicit SROA(signed T = -1) : FunctionPass((intptr_t)&ID) {
52 if (T == -1)
53 SRThreshold = 128;
54 else
55 SRThreshold = T;
58 bool runOnFunction(Function &F);
60 bool performScalarRepl(Function &F);
61 bool performPromotion(Function &F);
63 // getAnalysisUsage - This pass does not require any passes, but we know it
64 // will not alter the CFG, so say so.
65 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66 AU.addRequired<DominatorTree>();
67 AU.addRequired<DominanceFrontier>();
68 AU.addRequired<TargetData>();
69 AU.setPreservesCFG();
72 private:
73 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
74 /// information about the uses. All these fields are initialized to false
75 /// and set to true when something is learned.
76 struct AllocaInfo {
77 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
78 bool isUnsafe : 1;
80 /// needsCanon - This is set to true if there is some use of the alloca
81 /// that requires canonicalization.
82 bool needsCanon : 1;
84 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
85 bool isMemCpySrc : 1;
87 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
88 bool isMemCpyDst : 1;
90 AllocaInfo()
91 : isUnsafe(false), needsCanon(false),
92 isMemCpySrc(false), isMemCpyDst(false) {}
95 unsigned SRThreshold;
97 void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
99 int isSafeAllocaToScalarRepl(AllocationInst *AI);
101 void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
102 AllocaInfo &Info);
103 void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
104 AllocaInfo &Info);
105 void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
106 unsigned OpNo, AllocaInfo &Info);
107 void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
108 AllocaInfo &Info);
110 void DoScalarReplacement(AllocationInst *AI,
111 std::vector<AllocationInst*> &WorkList);
112 void CanonicalizeAllocaUsers(AllocationInst *AI);
113 AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
115 void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
116 SmallVector<AllocaInst*, 32> &NewElts);
118 const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
119 void ConvertToScalar(AllocationInst *AI, const Type *Ty);
120 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
121 static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
124 char SROA::ID = 0;
125 RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
128 // Public interface to the ScalarReplAggregates pass
129 FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
130 return new SROA(Threshold);
134 bool SROA::runOnFunction(Function &F) {
135 bool Changed = performPromotion(F);
136 while (1) {
137 bool LocalChange = performScalarRepl(F);
138 if (!LocalChange) break; // No need to repromote if no scalarrepl
139 Changed = true;
140 LocalChange = performPromotion(F);
141 if (!LocalChange) break; // No need to re-scalarrepl if no promotion
144 return Changed;
148 bool SROA::performPromotion(Function &F) {
149 std::vector<AllocaInst*> Allocas;
150 DominatorTree &DT = getAnalysis<DominatorTree>();
151 DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
153 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
155 bool Changed = false;
157 while (1) {
158 Allocas.clear();
160 // Find allocas that are safe to promote, by looking at all instructions in
161 // the entry node
162 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
163 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
164 if (isAllocaPromotable(AI))
165 Allocas.push_back(AI);
167 if (Allocas.empty()) break;
169 PromoteMemToReg(Allocas, DT, DF);
170 NumPromoted += Allocas.size();
171 Changed = true;
174 return Changed;
177 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
178 // which runs on all of the malloc/alloca instructions in the function, removing
179 // them if they are only used by getelementptr instructions.
181 bool SROA::performScalarRepl(Function &F) {
182 std::vector<AllocationInst*> WorkList;
184 // Scan the entry basic block, adding any alloca's and mallocs to the worklist
185 BasicBlock &BB = F.getEntryBlock();
186 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
187 if (AllocationInst *A = dyn_cast<AllocationInst>(I))
188 WorkList.push_back(A);
190 const TargetData &TD = getAnalysis<TargetData>();
192 // Process the worklist
193 bool Changed = false;
194 while (!WorkList.empty()) {
195 AllocationInst *AI = WorkList.back();
196 WorkList.pop_back();
198 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
199 // with unused elements.
200 if (AI->use_empty()) {
201 AI->eraseFromParent();
202 continue;
205 // If we can turn this aggregate value (potentially with casts) into a
206 // simple scalar value that can be mem2reg'd into a register value.
207 bool IsNotTrivial = false;
208 if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
209 if (IsNotTrivial && ActualType != Type::VoidTy) {
210 ConvertToScalar(AI, ActualType);
211 Changed = true;
212 continue;
215 // Check to see if we can perform the core SROA transformation. We cannot
216 // transform the allocation instruction if it is an array allocation
217 // (allocations OF arrays are ok though), and an allocation of a scalar
218 // value cannot be decomposed at all.
219 if (!AI->isArrayAllocation() &&
220 (isa<StructType>(AI->getAllocatedType()) ||
221 isa<ArrayType>(AI->getAllocatedType())) &&
222 AI->getAllocatedType()->isSized() &&
223 TD.getABITypeSize(AI->getAllocatedType()) < SRThreshold) {
224 // Check that all of the users of the allocation are capable of being
225 // transformed.
226 switch (isSafeAllocaToScalarRepl(AI)) {
227 default: assert(0 && "Unexpected value!");
228 case 0: // Not safe to scalar replace.
229 break;
230 case 1: // Safe, but requires cleanup/canonicalizations first
231 CanonicalizeAllocaUsers(AI);
232 // FALL THROUGH.
233 case 3: // Safe to scalar replace.
234 DoScalarReplacement(AI, WorkList);
235 Changed = true;
236 continue;
240 // Check to see if this allocation is only modified by a memcpy/memmove from
241 // a constant global. If this is the case, we can change all users to use
242 // the constant global instead. This is commonly produced by the CFE by
243 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
244 // is only subsequently read.
245 if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
246 DOUT << "Found alloca equal to global: " << *AI;
247 DOUT << " memcpy = " << *TheCopy;
248 Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
249 AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
250 TheCopy->eraseFromParent(); // Don't mutate the global.
251 AI->eraseFromParent();
252 ++NumGlobals;
253 Changed = true;
254 continue;
257 // Otherwise, couldn't process this.
260 return Changed;
263 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
264 /// predicate, do SROA now.
265 void SROA::DoScalarReplacement(AllocationInst *AI,
266 std::vector<AllocationInst*> &WorkList) {
267 DOUT << "Found inst to SROA: " << *AI;
268 SmallVector<AllocaInst*, 32> ElementAllocas;
269 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
270 ElementAllocas.reserve(ST->getNumContainedTypes());
271 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
272 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
273 AI->getAlignment(),
274 AI->getName() + "." + utostr(i), AI);
275 ElementAllocas.push_back(NA);
276 WorkList.push_back(NA); // Add to worklist for recursive processing
278 } else {
279 const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
280 ElementAllocas.reserve(AT->getNumElements());
281 const Type *ElTy = AT->getElementType();
282 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
283 AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
284 AI->getName() + "." + utostr(i), AI);
285 ElementAllocas.push_back(NA);
286 WorkList.push_back(NA); // Add to worklist for recursive processing
290 // Now that we have created the alloca instructions that we want to use,
291 // expand the getelementptr instructions to use them.
293 while (!AI->use_empty()) {
294 Instruction *User = cast<Instruction>(AI->use_back());
295 if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
296 RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
297 BCInst->eraseFromParent();
298 continue;
301 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
302 // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
303 unsigned Idx =
304 (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
306 assert(Idx < ElementAllocas.size() && "Index out of range?");
307 AllocaInst *AllocaToUse = ElementAllocas[Idx];
309 Value *RepValue;
310 if (GEPI->getNumOperands() == 3) {
311 // Do not insert a new getelementptr instruction with zero indices, only
312 // to have it optimized out later.
313 RepValue = AllocaToUse;
314 } else {
315 // We are indexing deeply into the structure, so we still need a
316 // getelement ptr instruction to finish the indexing. This may be
317 // expanded itself once the worklist is rerun.
319 SmallVector<Value*, 8> NewArgs;
320 NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
321 NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
322 RepValue = new GetElementPtrInst(AllocaToUse, NewArgs.begin(),
323 NewArgs.end(), "", GEPI);
324 RepValue->takeName(GEPI);
327 // If this GEP is to the start of the aggregate, check for memcpys.
328 if (Idx == 0) {
329 bool IsStartOfAggregateGEP = true;
330 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) {
331 if (!isa<ConstantInt>(GEPI->getOperand(i))) {
332 IsStartOfAggregateGEP = false;
333 break;
335 if (!cast<ConstantInt>(GEPI->getOperand(i))->isZero()) {
336 IsStartOfAggregateGEP = false;
337 break;
341 if (IsStartOfAggregateGEP)
342 RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
346 // Move all of the users over to the new GEP.
347 GEPI->replaceAllUsesWith(RepValue);
348 // Delete the old GEP
349 GEPI->eraseFromParent();
352 // Finally, delete the Alloca instruction
353 AI->eraseFromParent();
354 NumReplaced++;
358 /// isSafeElementUse - Check to see if this use is an allowed use for a
359 /// getelementptr instruction of an array aggregate allocation. isFirstElt
360 /// indicates whether Ptr is known to the start of the aggregate.
362 void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
363 AllocaInfo &Info) {
364 for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
365 I != E; ++I) {
366 Instruction *User = cast<Instruction>(*I);
367 switch (User->getOpcode()) {
368 case Instruction::Load: break;
369 case Instruction::Store:
370 // Store is ok if storing INTO the pointer, not storing the pointer
371 if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
372 break;
373 case Instruction::GetElementPtr: {
374 GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
375 bool AreAllZeroIndices = isFirstElt;
376 if (GEP->getNumOperands() > 1) {
377 if (!isa<ConstantInt>(GEP->getOperand(1)) ||
378 !cast<ConstantInt>(GEP->getOperand(1))->isZero())
379 // Using pointer arithmetic to navigate the array.
380 return MarkUnsafe(Info);
382 if (AreAllZeroIndices) {
383 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) {
384 if (!isa<ConstantInt>(GEP->getOperand(i)) ||
385 !cast<ConstantInt>(GEP->getOperand(i))->isZero()) {
386 AreAllZeroIndices = false;
387 break;
392 isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
393 if (Info.isUnsafe) return;
394 break;
396 case Instruction::BitCast:
397 if (isFirstElt) {
398 isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
399 if (Info.isUnsafe) return;
400 break;
402 DOUT << " Transformation preventing inst: " << *User;
403 return MarkUnsafe(Info);
404 case Instruction::Call:
405 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
406 if (isFirstElt) {
407 isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
408 if (Info.isUnsafe) return;
409 break;
412 DOUT << " Transformation preventing inst: " << *User;
413 return MarkUnsafe(Info);
414 default:
415 DOUT << " Transformation preventing inst: " << *User;
416 return MarkUnsafe(Info);
419 return; // All users look ok :)
422 /// AllUsersAreLoads - Return true if all users of this value are loads.
423 static bool AllUsersAreLoads(Value *Ptr) {
424 for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
425 I != E; ++I)
426 if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
427 return false;
428 return true;
431 /// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
432 /// aggregate allocation.
434 void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
435 AllocaInfo &Info) {
436 if (BitCastInst *C = dyn_cast<BitCastInst>(User))
437 return isSafeUseOfBitCastedAllocation(C, AI, Info);
439 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
440 if (GEPI == 0)
441 return MarkUnsafe(Info);
443 gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
445 // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
446 if (I == E ||
447 I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
448 return MarkUnsafe(Info);
451 ++I;
452 if (I == E) return MarkUnsafe(Info); // ran out of GEP indices??
454 bool IsAllZeroIndices = true;
456 // If this is a use of an array allocation, do a bit more checking for sanity.
457 if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
458 uint64_t NumElements = AT->getNumElements();
460 if (ConstantInt *Idx = dyn_cast<ConstantInt>(I.getOperand())) {
461 IsAllZeroIndices &= Idx->isZero();
463 // Check to make sure that index falls within the array. If not,
464 // something funny is going on, so we won't do the optimization.
466 if (Idx->getZExtValue() >= NumElements)
467 return MarkUnsafe(Info);
469 // We cannot scalar repl this level of the array unless any array
470 // sub-indices are in-range constants. In particular, consider:
471 // A[0][i]. We cannot know that the user isn't doing invalid things like
472 // allowing i to index an out-of-range subscript that accesses A[1].
474 // Scalar replacing *just* the outer index of the array is probably not
475 // going to be a win anyway, so just give up.
476 for (++I; I != E && (isa<ArrayType>(*I) || isa<VectorType>(*I)); ++I) {
477 uint64_t NumElements;
478 if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*I))
479 NumElements = SubArrayTy->getNumElements();
480 else
481 NumElements = cast<VectorType>(*I)->getNumElements();
483 ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
484 if (!IdxVal) return MarkUnsafe(Info);
485 if (IdxVal->getZExtValue() >= NumElements)
486 return MarkUnsafe(Info);
487 IsAllZeroIndices &= IdxVal->isZero();
490 } else {
491 IsAllZeroIndices = 0;
493 // If this is an array index and the index is not constant, we cannot
494 // promote... that is unless the array has exactly one or two elements in
495 // it, in which case we CAN promote it, but we have to canonicalize this
496 // out if this is the only problem.
497 if ((NumElements == 1 || NumElements == 2) &&
498 AllUsersAreLoads(GEPI)) {
499 Info.needsCanon = true;
500 return; // Canonicalization required!
502 return MarkUnsafe(Info);
506 // If there are any non-simple uses of this getelementptr, make sure to reject
507 // them.
508 return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
511 /// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
512 /// intrinsic can be promoted by SROA. At this point, we know that the operand
513 /// of the memintrinsic is a pointer to the beginning of the allocation.
514 void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
515 unsigned OpNo, AllocaInfo &Info) {
516 // If not constant length, give up.
517 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
518 if (!Length) return MarkUnsafe(Info);
520 // If not the whole aggregate, give up.
521 const TargetData &TD = getAnalysis<TargetData>();
522 if (Length->getZExtValue() !=
523 TD.getABITypeSize(AI->getType()->getElementType()))
524 return MarkUnsafe(Info);
526 // We only know about memcpy/memset/memmove.
527 if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
528 return MarkUnsafe(Info);
530 // Otherwise, we can transform it. Determine whether this is a memcpy/set
531 // into or out of the aggregate.
532 if (OpNo == 1)
533 Info.isMemCpyDst = true;
534 else {
535 assert(OpNo == 2);
536 Info.isMemCpySrc = true;
540 /// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
541 /// are
542 void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
543 AllocaInfo &Info) {
544 for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
545 UI != E; ++UI) {
546 if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
547 isSafeUseOfBitCastedAllocation(BCU, AI, Info);
548 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
549 isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
550 } else {
551 return MarkUnsafe(Info);
553 if (Info.isUnsafe) return;
557 /// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
558 /// to its first element. Transform users of the cast to use the new values
559 /// instead.
560 void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
561 SmallVector<AllocaInst*, 32> &NewElts) {
562 Constant *Zero = Constant::getNullValue(Type::Int32Ty);
563 const TargetData &TD = getAnalysis<TargetData>();
565 Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
566 while (UI != UE) {
567 if (BitCastInst *BCU = dyn_cast<BitCastInst>(*UI)) {
568 RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
569 ++UI;
570 BCU->eraseFromParent();
571 continue;
574 // Otherwise, must be memcpy/memmove/memset of the entire aggregate. Split
575 // into one per element.
576 MemIntrinsic *MI = dyn_cast<MemIntrinsic>(*UI);
578 // If it's not a mem intrinsic, it must be some other user of a gep of the
579 // first pointer. Just leave these alone.
580 if (!MI) {
581 ++UI;
582 continue;
585 // If this is a memcpy/memmove, construct the other pointer as the
586 // appropriate type.
587 Value *OtherPtr = 0;
588 if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
589 if (BCInst == MCI->getRawDest())
590 OtherPtr = MCI->getRawSource();
591 else {
592 assert(BCInst == MCI->getRawSource());
593 OtherPtr = MCI->getRawDest();
595 } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
596 if (BCInst == MMI->getRawDest())
597 OtherPtr = MMI->getRawSource();
598 else {
599 assert(BCInst == MMI->getRawSource());
600 OtherPtr = MMI->getRawDest();
604 // If there is an other pointer, we want to convert it to the same pointer
605 // type as AI has, so we can GEP through it.
606 if (OtherPtr) {
607 // It is likely that OtherPtr is a bitcast, if so, remove it.
608 if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
609 OtherPtr = BC->getOperand(0);
610 if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
611 if (BCE->getOpcode() == Instruction::BitCast)
612 OtherPtr = BCE->getOperand(0);
614 // If the pointer is not the right type, insert a bitcast to the right
615 // type.
616 if (OtherPtr->getType() != AI->getType())
617 OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
618 MI);
621 // Process each element of the aggregate.
622 Value *TheFn = MI->getOperand(0);
623 const Type *BytePtrTy = MI->getRawDest()->getType();
624 bool SROADest = MI->getRawDest() == BCInst;
626 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
627 // If this is a memcpy/memmove, emit a GEP of the other element address.
628 Value *OtherElt = 0;
629 if (OtherPtr) {
630 Value *Idx[2];
631 Idx[0] = Zero;
632 Idx[1] = ConstantInt::get(Type::Int32Ty, i);
633 OtherElt = new GetElementPtrInst(OtherPtr, Idx, Idx + 2,
634 OtherPtr->getNameStr()+"."+utostr(i),
635 MI);
638 Value *EltPtr = NewElts[i];
639 const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
641 // If we got down to a scalar, insert a load or store as appropriate.
642 if (EltTy->isFirstClassType()) {
643 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
644 Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
645 MI);
646 new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
647 continue;
648 } else {
649 assert(isa<MemSetInst>(MI));
651 // If the stored element is zero (common case), just store a null
652 // constant.
653 Constant *StoreVal;
654 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
655 if (CI->isZero()) {
656 StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
657 } else {
658 // If EltTy is a vector type, get the element type.
659 const Type *ValTy = EltTy;
660 if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
661 ValTy = VTy->getElementType();
663 // Construct an integer with the right value.
664 unsigned EltSize = TD.getTypeSizeInBits(ValTy);
665 APInt OneVal(EltSize, CI->getZExtValue());
666 APInt TotalVal(OneVal);
667 // Set each byte.
668 for (unsigned i = 0; 8*i < EltSize; ++i) {
669 TotalVal = TotalVal.shl(8);
670 TotalVal |= OneVal;
673 // Convert the integer value to the appropriate type.
674 StoreVal = ConstantInt::get(TotalVal);
675 if (isa<PointerType>(ValTy))
676 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
677 else if (ValTy->isFloatingPoint())
678 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
679 assert(StoreVal->getType() == ValTy && "Type mismatch!");
681 // If the requested value was a vector constant, create it.
682 if (EltTy != ValTy) {
683 unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
684 SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
685 StoreVal = ConstantVector::get(&Elts[0], NumElts);
688 new StoreInst(StoreVal, EltPtr, MI);
689 continue;
691 // Otherwise, if we're storing a byte variable, use a memset call for
692 // this element.
696 // Cast the element pointer to BytePtrTy.
697 if (EltPtr->getType() != BytePtrTy)
698 EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
700 // Cast the other pointer (if we have one) to BytePtrTy.
701 if (OtherElt && OtherElt->getType() != BytePtrTy)
702 OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
703 MI);
705 unsigned EltSize = TD.getABITypeSize(EltTy);
707 // Finally, insert the meminst for this element.
708 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
709 Value *Ops[] = {
710 SROADest ? EltPtr : OtherElt, // Dest ptr
711 SROADest ? OtherElt : EltPtr, // Src ptr
712 ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
713 Zero // Align
715 new CallInst(TheFn, Ops, Ops + 4, "", MI);
716 } else {
717 assert(isa<MemSetInst>(MI));
718 Value *Ops[] = {
719 EltPtr, MI->getOperand(2), // Dest, Value,
720 ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
721 Zero // Align
723 new CallInst(TheFn, Ops, Ops + 4, "", MI);
727 // Finally, MI is now dead, as we've modified its actions to occur on all of
728 // the elements of the aggregate.
729 ++UI;
730 MI->eraseFromParent();
734 /// HasPadding - Return true if the specified type has any structure or
735 /// alignment padding, false otherwise.
736 static bool HasPadding(const Type *Ty, const TargetData &TD,
737 bool inPacked = false) {
738 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
739 const StructLayout *SL = TD.getStructLayout(STy);
740 unsigned PrevFieldBitOffset = 0;
741 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
742 unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
744 // Padding in sub-elements?
745 if (HasPadding(STy->getElementType(i), TD, STy->isPacked()))
746 return true;
748 // Check to see if there is any padding between this element and the
749 // previous one.
750 if (i) {
751 unsigned PrevFieldEnd =
752 PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
753 if (PrevFieldEnd < FieldBitOffset)
754 return true;
757 PrevFieldBitOffset = FieldBitOffset;
760 // Check for tail padding.
761 if (unsigned EltCount = STy->getNumElements()) {
762 unsigned PrevFieldEnd = PrevFieldBitOffset +
763 TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
764 if (PrevFieldEnd < SL->getSizeInBits())
765 return true;
768 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
769 return HasPadding(ATy->getElementType(), TD, false);
770 } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
771 return HasPadding(VTy->getElementType(), TD, false);
773 return inPacked ?
774 false : TD.getTypeSizeInBits(Ty) != TD.getABITypeSizeInBits(Ty);
777 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
778 /// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
779 /// or 1 if safe after canonicalization has been performed.
781 int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
782 // Loop over the use list of the alloca. We can only transform it if all of
783 // the users are safe to transform.
784 AllocaInfo Info;
786 for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
787 I != E; ++I) {
788 isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
789 if (Info.isUnsafe) {
790 DOUT << "Cannot transform: " << *AI << " due to user: " << **I;
791 return 0;
795 // Okay, we know all the users are promotable. If the aggregate is a memcpy
796 // source and destination, we have to be careful. In particular, the memcpy
797 // could be moving around elements that live in structure padding of the LLVM
798 // types, but may actually be used. In these cases, we refuse to promote the
799 // struct.
800 if (Info.isMemCpySrc && Info.isMemCpyDst &&
801 HasPadding(AI->getType()->getElementType(), getAnalysis<TargetData>()))
802 return 0;
804 // If we require cleanup, return 1, otherwise return 3.
805 return Info.needsCanon ? 1 : 3;
808 /// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
809 /// allocation, but only if cleaned up, perform the cleanups required.
810 void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
811 // At this point, we know that the end result will be SROA'd and promoted, so
812 // we can insert ugly code if required so long as sroa+mem2reg will clean it
813 // up.
814 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
815 UI != E; ) {
816 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
817 if (!GEPI) continue;
818 gep_type_iterator I = gep_type_begin(GEPI);
819 ++I;
821 if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
822 uint64_t NumElements = AT->getNumElements();
824 if (!isa<ConstantInt>(I.getOperand())) {
825 if (NumElements == 1) {
826 GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
827 } else {
828 assert(NumElements == 2 && "Unhandled case!");
829 // All users of the GEP must be loads. At each use of the GEP, insert
830 // two loads of the appropriate indexed GEP and select between them.
831 Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
832 Constant::getNullValue(I.getOperand()->getType()),
833 "isone", GEPI);
834 // Insert the new GEP instructions, which are properly indexed.
835 SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
836 Indices[1] = Constant::getNullValue(Type::Int32Ty);
837 Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0),
838 Indices.begin(),
839 Indices.end(),
840 GEPI->getName()+".0", GEPI);
841 Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
842 Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0),
843 Indices.begin(),
844 Indices.end(),
845 GEPI->getName()+".1", GEPI);
846 // Replace all loads of the variable index GEP with loads from both
847 // indexes and a select.
848 while (!GEPI->use_empty()) {
849 LoadInst *LI = cast<LoadInst>(GEPI->use_back());
850 Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
851 Value *One = new LoadInst(OneIdx , LI->getName()+".1", LI);
852 Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI);
853 LI->replaceAllUsesWith(R);
854 LI->eraseFromParent();
856 GEPI->eraseFromParent();
863 /// MergeInType - Add the 'In' type to the accumulated type so far. If the
864 /// types are incompatible, return true, otherwise update Accum and return
865 /// false.
867 /// There are three cases we handle here:
868 /// 1) An effectively-integer union, where the pieces are stored into as
869 /// smaller integers (common with byte swap and other idioms).
870 /// 2) A union of vector types of the same size and potentially its elements.
871 /// Here we turn element accesses into insert/extract element operations.
872 /// 3) A union of scalar types, such as int/float or int/pointer. Here we
873 /// merge together into integers, allowing the xform to work with #1 as
874 /// well.
875 static bool MergeInType(const Type *In, const Type *&Accum,
876 const TargetData &TD) {
877 // If this is our first type, just use it.
878 const VectorType *PTy;
879 if (Accum == Type::VoidTy || In == Accum) {
880 Accum = In;
881 } else if (In == Type::VoidTy) {
882 // Noop.
883 } else if (In->isInteger() && Accum->isInteger()) { // integer union.
884 // Otherwise pick whichever type is larger.
885 if (cast<IntegerType>(In)->getBitWidth() >
886 cast<IntegerType>(Accum)->getBitWidth())
887 Accum = In;
888 } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
889 // Pointer unions just stay as one of the pointers.
890 } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
891 if ((PTy = dyn_cast<VectorType>(Accum)) &&
892 PTy->getElementType() == In) {
893 // Accum is a vector, and we are accessing an element: ok.
894 } else if ((PTy = dyn_cast<VectorType>(In)) &&
895 PTy->getElementType() == Accum) {
896 // In is a vector, and accum is an element: ok, remember In.
897 Accum = In;
898 } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
899 PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
900 // Two vectors of the same size: keep Accum.
901 } else {
902 // Cannot insert an short into a <4 x int> or handle
903 // <2 x int> -> <4 x int>
904 return true;
906 } else {
907 // Pointer/FP/Integer unions merge together as integers.
908 switch (Accum->getTypeID()) {
909 case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
910 case Type::FloatTyID: Accum = Type::Int32Ty; break;
911 case Type::DoubleTyID: Accum = Type::Int64Ty; break;
912 case Type::X86_FP80TyID: return true;
913 case Type::FP128TyID: return true;
914 case Type::PPC_FP128TyID: return true;
915 default:
916 assert(Accum->isInteger() && "Unknown FP type!");
917 break;
920 switch (In->getTypeID()) {
921 case Type::PointerTyID: In = TD.getIntPtrType(); break;
922 case Type::FloatTyID: In = Type::Int32Ty; break;
923 case Type::DoubleTyID: In = Type::Int64Ty; break;
924 case Type::X86_FP80TyID: return true;
925 case Type::FP128TyID: return true;
926 case Type::PPC_FP128TyID: return true;
927 default:
928 assert(In->isInteger() && "Unknown FP type!");
929 break;
931 return MergeInType(In, Accum, TD);
933 return false;
936 /// getUIntAtLeastAsBigAs - Return an unsigned integer type that is at least
937 /// as big as the specified type. If there is no suitable type, this returns
938 /// null.
939 const Type *getUIntAtLeastAsBigAs(unsigned NumBits) {
940 if (NumBits > 64) return 0;
941 if (NumBits > 32) return Type::Int64Ty;
942 if (NumBits > 16) return Type::Int32Ty;
943 if (NumBits > 8) return Type::Int16Ty;
944 return Type::Int8Ty;
947 /// CanConvertToScalar - V is a pointer. If we can convert the pointee to a
948 /// single scalar integer type, return that type. Further, if the use is not
949 /// a completely trivial use that mem2reg could promote, set IsNotTrivial. If
950 /// there are no uses of this pointer, return Type::VoidTy to differentiate from
951 /// failure.
953 const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
954 const Type *UsedType = Type::VoidTy; // No uses, no forced type.
955 const TargetData &TD = getAnalysis<TargetData>();
956 const PointerType *PTy = cast<PointerType>(V->getType());
958 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
959 Instruction *User = cast<Instruction>(*UI);
961 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
962 if (MergeInType(LI->getType(), UsedType, TD))
963 return 0;
965 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
966 // Storing the pointer, not into the value?
967 if (SI->getOperand(0) == V) return 0;
969 // NOTE: We could handle storing of FP imms into integers here!
971 if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD))
972 return 0;
973 } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
974 IsNotTrivial = true;
975 const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
976 if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0;
977 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
978 // Check to see if this is stepping over an element: GEP Ptr, int C
979 if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
980 unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
981 unsigned ElSize = TD.getABITypeSize(PTy->getElementType());
982 unsigned BitOffset = Idx*ElSize*8;
983 if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
985 IsNotTrivial = true;
986 const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
987 if (SubElt == 0) return 0;
988 if (SubElt != Type::VoidTy && SubElt->isInteger()) {
989 const Type *NewTy =
990 getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(SubElt)+BitOffset);
991 if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0;
992 continue;
994 } else if (GEP->getNumOperands() == 3 &&
995 isa<ConstantInt>(GEP->getOperand(1)) &&
996 isa<ConstantInt>(GEP->getOperand(2)) &&
997 cast<ConstantInt>(GEP->getOperand(1))->isZero()) {
998 // We are stepping into an element, e.g. a structure or an array:
999 // GEP Ptr, int 0, uint C
1000 const Type *AggTy = PTy->getElementType();
1001 unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1003 if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
1004 if (Idx >= ATy->getNumElements()) return 0; // Out of range.
1005 } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
1006 // Getting an element of the vector.
1007 if (Idx >= VectorTy->getNumElements()) return 0; // Out of range.
1009 // Merge in the vector type.
1010 if (MergeInType(VectorTy, UsedType, TD)) return 0;
1012 const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1013 if (SubTy == 0) return 0;
1015 if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
1016 return 0;
1018 // We'll need to change this to an insert/extract element operation.
1019 IsNotTrivial = true;
1020 continue; // Everything looks ok
1022 } else if (isa<StructType>(AggTy)) {
1023 // Structs are always ok.
1024 } else {
1025 return 0;
1027 const Type *NTy = getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(AggTy));
1028 if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0;
1029 const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1030 if (SubTy == 0) return 0;
1031 if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
1032 return 0;
1033 continue; // Everything looks ok
1035 return 0;
1036 } else {
1037 // Cannot handle this!
1038 return 0;
1042 return UsedType;
1045 /// ConvertToScalar - The specified alloca passes the CanConvertToScalar
1046 /// predicate and is non-trivial. Convert it to something that can be trivially
1047 /// promoted into a register by mem2reg.
1048 void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
1049 DOUT << "CONVERT TO SCALAR: " << *AI << " TYPE = "
1050 << *ActualTy << "\n";
1051 ++NumConverted;
1053 BasicBlock *EntryBlock = AI->getParent();
1054 assert(EntryBlock == &EntryBlock->getParent()->getEntryBlock() &&
1055 "Not in the entry block!");
1056 EntryBlock->getInstList().remove(AI); // Take the alloca out of the program.
1058 // Create and insert the alloca.
1059 AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
1060 EntryBlock->begin());
1061 ConvertUsesToScalar(AI, NewAI, 0);
1062 delete AI;
1066 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1067 /// directly. This happens when we are converting an "integer union" to a
1068 /// single integer scalar, or when we are converting a "vector union" to a
1069 /// vector with insert/extractelement instructions.
1071 /// Offset is an offset from the original alloca, in bits that need to be
1072 /// shifted to the right. By the end of this, there should be no uses of Ptr.
1073 void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
1074 const TargetData &TD = getAnalysis<TargetData>();
1075 while (!Ptr->use_empty()) {
1076 Instruction *User = cast<Instruction>(Ptr->use_back());
1078 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1079 // The load is a bit extract from NewAI shifted right by Offset bits.
1080 Value *NV = new LoadInst(NewAI, LI->getName(), LI);
1081 if (NV->getType() == LI->getType()) {
1082 // We win, no conversion needed.
1083 } else if (const VectorType *PTy = dyn_cast<VectorType>(NV->getType())) {
1084 // If the result alloca is a vector type, this is either an element
1085 // access or a bitcast to another vector type.
1086 if (isa<VectorType>(LI->getType())) {
1087 NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1088 } else {
1089 // Must be an element access.
1090 unsigned Elt = Offset/TD.getABITypeSizeInBits(PTy->getElementType());
1091 NV = new ExtractElementInst(
1092 NV, ConstantInt::get(Type::Int32Ty, Elt), "tmp", LI);
1094 } else if (isa<PointerType>(NV->getType())) {
1095 assert(isa<PointerType>(LI->getType()));
1096 // Must be ptr->ptr cast. Anything else would result in NV being
1097 // an integer.
1098 NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1099 } else {
1100 const IntegerType *NTy = cast<IntegerType>(NV->getType());
1102 // If this is a big-endian system and the load is narrower than the
1103 // full alloca type, we need to do a shift to get the right bits.
1104 int ShAmt = 0;
1105 if (TD.isBigEndian()) {
1106 // On big-endian machines, the lowest bit is stored at the bit offset
1107 // from the pointer given by getTypeStoreSizeInBits. This matters for
1108 // integers with a bitwidth that is not a multiple of 8.
1109 ShAmt = TD.getTypeStoreSizeInBits(NTy) -
1110 TD.getTypeStoreSizeInBits(LI->getType()) - Offset;
1111 } else {
1112 ShAmt = Offset;
1115 // Note: we support negative bitwidths (with shl) which are not defined.
1116 // We do this to support (f.e.) loads off the end of a structure where
1117 // only some bits are used.
1118 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1119 NV = BinaryOperator::createLShr(NV,
1120 ConstantInt::get(NV->getType(),ShAmt),
1121 LI->getName(), LI);
1122 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1123 NV = BinaryOperator::createShl(NV,
1124 ConstantInt::get(NV->getType(),-ShAmt),
1125 LI->getName(), LI);
1127 // Finally, unconditionally truncate the integer to the right width.
1128 unsigned LIBitWidth = TD.getTypeSizeInBits(LI->getType());
1129 if (LIBitWidth < NTy->getBitWidth())
1130 NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
1131 LI->getName(), LI);
1133 // If the result is an integer, this is a trunc or bitcast.
1134 if (isa<IntegerType>(LI->getType())) {
1135 assert(NV->getType() == LI->getType() && "Truncate wasn't enough?");
1136 } else if (LI->getType()->isFloatingPoint()) {
1137 // Just do a bitcast, we know the sizes match up.
1138 NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1139 } else {
1140 // Otherwise must be a pointer.
1141 NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
1144 LI->replaceAllUsesWith(NV);
1145 LI->eraseFromParent();
1146 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1147 assert(SI->getOperand(0) != Ptr && "Consistency error!");
1149 // Convert the stored type to the actual type, shift it left to insert
1150 // then 'or' into place.
1151 Value *SV = SI->getOperand(0);
1152 const Type *AllocaType = NewAI->getType()->getElementType();
1153 if (SV->getType() == AllocaType) {
1154 // All is well.
1155 } else if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
1156 Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1158 // If the result alloca is a vector type, this is either an element
1159 // access or a bitcast to another vector type.
1160 if (isa<VectorType>(SV->getType())) {
1161 SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1162 } else {
1163 // Must be an element insertion.
1164 unsigned Elt = Offset/TD.getABITypeSizeInBits(PTy->getElementType());
1165 SV = new InsertElementInst(Old, SV,
1166 ConstantInt::get(Type::Int32Ty, Elt),
1167 "tmp", SI);
1169 } else if (isa<PointerType>(AllocaType)) {
1170 // If the alloca type is a pointer, then all the elements must be
1171 // pointers.
1172 if (SV->getType() != AllocaType)
1173 SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1174 } else {
1175 Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1177 // If SV is a float, convert it to the appropriate integer type.
1178 // If it is a pointer, do the same, and also handle ptr->ptr casts
1179 // here.
1180 unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
1181 unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
1182 unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
1183 unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
1184 if (SV->getType()->isFloatingPoint())
1185 SV = new BitCastInst(SV, IntegerType::get(SrcWidth),
1186 SV->getName(), SI);
1187 else if (isa<PointerType>(SV->getType()))
1188 SV = new PtrToIntInst(SV, TD.getIntPtrType(), SV->getName(), SI);
1190 // Always zero extend the value if needed.
1191 if (SV->getType() != AllocaType)
1192 SV = new ZExtInst(SV, AllocaType, SV->getName(), SI);
1194 // If this is a big-endian system and the store is narrower than the
1195 // full alloca type, we need to do a shift to get the right bits.
1196 int ShAmt = 0;
1197 if (TD.isBigEndian()) {
1198 // On big-endian machines, the lowest bit is stored at the bit offset
1199 // from the pointer given by getTypeStoreSizeInBits. This matters for
1200 // integers with a bitwidth that is not a multiple of 8.
1201 ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1202 } else {
1203 ShAmt = Offset;
1206 // Note: we support negative bitwidths (with shr) which are not defined.
1207 // We do this to support (f.e.) stores off the end of a structure where
1208 // only some bits in the structure are set.
1209 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1210 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1211 SV = BinaryOperator::createShl(SV,
1212 ConstantInt::get(SV->getType(), ShAmt),
1213 SV->getName(), SI);
1214 Mask <<= ShAmt;
1215 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1216 SV = BinaryOperator::createLShr(SV,
1217 ConstantInt::get(SV->getType(),-ShAmt),
1218 SV->getName(), SI);
1219 Mask = Mask.lshr(ShAmt);
1222 // Mask out the bits we are about to insert from the old value, and or
1223 // in the new bits.
1224 if (SrcWidth != DestWidth) {
1225 assert(DestWidth > SrcWidth);
1226 Old = BinaryOperator::createAnd(Old, ConstantInt::get(~Mask),
1227 Old->getName()+".mask", SI);
1228 SV = BinaryOperator::createOr(Old, SV, SV->getName()+".ins", SI);
1231 new StoreInst(SV, NewAI, SI);
1232 SI->eraseFromParent();
1234 } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1235 ConvertUsesToScalar(CI, NewAI, Offset);
1236 CI->eraseFromParent();
1237 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1238 const PointerType *AggPtrTy =
1239 cast<PointerType>(GEP->getOperand(0)->getType());
1240 const TargetData &TD = getAnalysis<TargetData>();
1241 unsigned AggSizeInBits =
1242 TD.getABITypeSizeInBits(AggPtrTy->getElementType());
1244 // Check to see if this is stepping over an element: GEP Ptr, int C
1245 unsigned NewOffset = Offset;
1246 if (GEP->getNumOperands() == 2) {
1247 unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
1248 unsigned BitOffset = Idx*AggSizeInBits;
1250 NewOffset += BitOffset;
1251 } else if (GEP->getNumOperands() == 3) {
1252 // We know that operand #2 is zero.
1253 unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1254 const Type *AggTy = AggPtrTy->getElementType();
1255 if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
1256 unsigned ElSizeBits =
1257 TD.getABITypeSizeInBits(SeqTy->getElementType());
1259 NewOffset += ElSizeBits*Idx;
1260 } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
1261 unsigned EltBitOffset =
1262 TD.getStructLayout(STy)->getElementOffsetInBits(Idx);
1264 NewOffset += EltBitOffset;
1265 } else {
1266 assert(0 && "Unsupported operation!");
1267 abort();
1269 } else {
1270 assert(0 && "Unsupported operation!");
1271 abort();
1273 ConvertUsesToScalar(GEP, NewAI, NewOffset);
1274 GEP->eraseFromParent();
1275 } else {
1276 assert(0 && "Unsupported operation!");
1277 abort();
1283 /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1284 /// some part of a constant global variable. This intentionally only accepts
1285 /// constant expressions because we don't can't rewrite arbitrary instructions.
1286 static bool PointsToConstantGlobal(Value *V) {
1287 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1288 return GV->isConstant();
1289 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1290 if (CE->getOpcode() == Instruction::BitCast ||
1291 CE->getOpcode() == Instruction::GetElementPtr)
1292 return PointsToConstantGlobal(CE->getOperand(0));
1293 return false;
1296 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1297 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
1298 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
1299 /// track of whether it moves the pointer (with isOffset) but otherwise traverse
1300 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
1301 /// the alloca, and if the source pointer is a pointer to a constant global, we
1302 /// can optimize this.
1303 static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1304 bool isOffset) {
1305 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1306 if (isa<LoadInst>(*UI)) {
1307 // Ignore loads, they are always ok.
1308 continue;
1310 if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1311 // If uses of the bitcast are ok, we are ok.
1312 if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1313 return false;
1314 continue;
1316 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1317 // If the GEP has all zero indices, it doesn't offset the pointer. If it
1318 // doesn't, it does.
1319 if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1320 isOffset || !GEP->hasAllZeroIndices()))
1321 return false;
1322 continue;
1325 // If this is isn't our memcpy/memmove, reject it as something we can't
1326 // handle.
1327 if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
1328 return false;
1330 // If we already have seen a copy, reject the second one.
1331 if (TheCopy) return false;
1333 // If the pointer has been offset from the start of the alloca, we can't
1334 // safely handle this.
1335 if (isOffset) return false;
1337 // If the memintrinsic isn't using the alloca as the dest, reject it.
1338 if (UI.getOperandNo() != 1) return false;
1340 MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1342 // If the source of the memcpy/move is not a constant global, reject it.
1343 if (!PointsToConstantGlobal(MI->getOperand(2)))
1344 return false;
1346 // Otherwise, the transform is safe. Remember the copy instruction.
1347 TheCopy = MI;
1349 return true;
1352 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1353 /// modified by a copy from a constant global. If we can prove this, we can
1354 /// replace any uses of the alloca with uses of the global directly.
1355 Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1356 Instruction *TheCopy = 0;
1357 if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1358 return TheCopy;
1359 return 0;