Inliner pass header file was moved.
[llvm-complete.git] / docs / LangRef.html
blob96d4fa1086869383e65b85e926b1bec74120b1e2
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11 </head>
13 <body>
15 <div class="doc_title"> LLVM Language Reference Manual </div>
16 <ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#globalvars">Global Variables</a></li>
26 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#aliasstructure">Aliases</a>
28 <li><a href="#paramattrs">Parameter Attributes</a></li>
29 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
30 <li><a href="#datalayout">Data Layout</a></li>
31 </ol>
32 </li>
33 <li><a href="#typesystem">Type System</a>
34 <ol>
35 <li><a href="#t_primitive">Primitive Types</a>
36 <ol>
37 <li><a href="#t_classifications">Type Classifications</a></li>
38 </ol>
39 </li>
40 <li><a href="#t_derived">Derived Types</a>
41 <ol>
42 <li><a href="#t_array">Array Type</a></li>
43 <li><a href="#t_function">Function Type</a></li>
44 <li><a href="#t_pointer">Pointer Type</a></li>
45 <li><a href="#t_struct">Structure Type</a></li>
46 <li><a href="#t_pstruct">Packed Structure Type</a></li>
47 <li><a href="#t_vector">Vector Type</a></li>
48 <li><a href="#t_opaque">Opaque Type</a></li>
49 </ol>
50 </li>
51 </ol>
52 </li>
53 <li><a href="#constants">Constants</a>
54 <ol>
55 <li><a href="#simpleconstants">Simple Constants</a>
56 <li><a href="#aggregateconstants">Aggregate Constants</a>
57 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
58 <li><a href="#undefvalues">Undefined Values</a>
59 <li><a href="#constantexprs">Constant Expressions</a>
60 </ol>
61 </li>
62 <li><a href="#othervalues">Other Values</a>
63 <ol>
64 <li><a href="#inlineasm">Inline Assembler Expressions</a>
65 </ol>
66 </li>
67 <li><a href="#instref">Instruction Reference</a>
68 <ol>
69 <li><a href="#terminators">Terminator Instructions</a>
70 <ol>
71 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
72 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
73 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
74 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
75 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
76 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
77 </ol>
78 </li>
79 <li><a href="#binaryops">Binary Operations</a>
80 <ol>
81 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
82 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
83 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
84 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
85 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
86 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
87 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
88 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
89 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
90 </ol>
91 </li>
92 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
93 <ol>
94 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
95 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
96 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
97 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
98 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
99 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
100 </ol>
101 </li>
102 <li><a href="#vectorops">Vector Operations</a>
103 <ol>
104 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
105 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
106 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
107 </ol>
108 </li>
109 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
110 <ol>
111 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
112 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
113 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
114 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
115 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
116 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
117 </ol>
118 </li>
119 <li><a href="#convertops">Conversion Operations</a>
120 <ol>
121 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
122 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
123 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
124 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
125 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
126 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
127 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
128 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
129 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
130 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
131 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
132 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
133 </ol>
134 <li><a href="#otherops">Other Operations</a>
135 <ol>
136 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
137 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
138 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
139 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
140 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
141 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
142 </ol>
143 </li>
144 </ol>
145 </li>
146 <li><a href="#intrinsics">Intrinsic Functions</a>
147 <ol>
148 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
149 <ol>
150 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
151 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
152 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
153 </ol>
154 </li>
155 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
156 <ol>
157 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
158 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
159 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
160 </ol>
161 </li>
162 <li><a href="#int_codegen">Code Generator Intrinsics</a>
163 <ol>
164 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
165 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
166 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
167 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
168 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
169 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
170 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
171 </ol>
172 </li>
173 <li><a href="#int_libc">Standard C Library Intrinsics</a>
174 <ol>
175 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
176 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
177 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
178 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
179 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
180 </ol>
181 </li>
182 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
183 <ol>
184 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
185 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
186 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
187 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
188 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
189 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
190 </ol>
191 </li>
192 <li><a href="#int_debugger">Debugger intrinsics</a></li>
193 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
194 <li><a href="#int_general">General intrinsics</a></li>
195 <ol>
196 <li><a href="#int_var_annotation">'<tt>llvm.var.annotation</tt>'
197 Intrinsic</a></li>
198 </ol>
199 </li>
200 </ol>
201 </li>
202 </ol>
204 <div class="doc_author">
205 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
206 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
207 </div>
209 <!-- *********************************************************************** -->
210 <div class="doc_section"> <a name="abstract">Abstract </a></div>
211 <!-- *********************************************************************** -->
213 <div class="doc_text">
214 <p>This document is a reference manual for the LLVM assembly language.
215 LLVM is an SSA based representation that provides type safety,
216 low-level operations, flexibility, and the capability of representing
217 'all' high-level languages cleanly. It is the common code
218 representation used throughout all phases of the LLVM compilation
219 strategy.</p>
220 </div>
222 <!-- *********************************************************************** -->
223 <div class="doc_section"> <a name="introduction">Introduction</a> </div>
224 <!-- *********************************************************************** -->
226 <div class="doc_text">
228 <p>The LLVM code representation is designed to be used in three
229 different forms: as an in-memory compiler IR, as an on-disk bytecode
230 representation (suitable for fast loading by a Just-In-Time compiler),
231 and as a human readable assembly language representation. This allows
232 LLVM to provide a powerful intermediate representation for efficient
233 compiler transformations and analysis, while providing a natural means
234 to debug and visualize the transformations. The three different forms
235 of LLVM are all equivalent. This document describes the human readable
236 representation and notation.</p>
238 <p>The LLVM representation aims to be light-weight and low-level
239 while being expressive, typed, and extensible at the same time. It
240 aims to be a "universal IR" of sorts, by being at a low enough level
241 that high-level ideas may be cleanly mapped to it (similar to how
242 microprocessors are "universal IR's", allowing many source languages to
243 be mapped to them). By providing type information, LLVM can be used as
244 the target of optimizations: for example, through pointer analysis, it
245 can be proven that a C automatic variable is never accessed outside of
246 the current function... allowing it to be promoted to a simple SSA
247 value instead of a memory location.</p>
249 </div>
251 <!-- _______________________________________________________________________ -->
252 <div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
254 <div class="doc_text">
256 <p>It is important to note that this document describes 'well formed'
257 LLVM assembly language. There is a difference between what the parser
258 accepts and what is considered 'well formed'. For example, the
259 following instruction is syntactically okay, but not well formed:</p>
261 <div class="doc_code">
262 <pre>
263 %x = <a href="#i_add">add</a> i32 1, %x
264 </pre>
265 </div>
267 <p>...because the definition of <tt>%x</tt> does not dominate all of
268 its uses. The LLVM infrastructure provides a verification pass that may
269 be used to verify that an LLVM module is well formed. This pass is
270 automatically run by the parser after parsing input assembly and by
271 the optimizer before it outputs bytecode. The violations pointed out
272 by the verifier pass indicate bugs in transformation passes or input to
273 the parser.</p>
274 </div>
276 <!-- Describe the typesetting conventions here. --> </div>
278 <!-- *********************************************************************** -->
279 <div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
280 <!-- *********************************************************************** -->
282 <div class="doc_text">
284 <p>LLVM uses three different forms of identifiers, for different
285 purposes:</p>
287 <ol>
288 <li>Named values are represented as a string of characters with a '%' prefix.
289 For example, %foo, %DivisionByZero, %a.really.long.identifier. The actual
290 regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
291 Identifiers which require other characters in their names can be surrounded
292 with quotes. In this way, anything except a <tt>&quot;</tt> character can be used
293 in a name.</li>
295 <li>Unnamed values are represented as an unsigned numeric value with a '%'
296 prefix. For example, %12, %2, %44.</li>
298 <li>Constants, which are described in a <a href="#constants">section about
299 constants</a>, below.</li>
300 </ol>
302 <p>LLVM requires that values start with a '%' sign for two reasons: Compilers
303 don't need to worry about name clashes with reserved words, and the set of
304 reserved words may be expanded in the future without penalty. Additionally,
305 unnamed identifiers allow a compiler to quickly come up with a temporary
306 variable without having to avoid symbol table conflicts.</p>
308 <p>Reserved words in LLVM are very similar to reserved words in other
309 languages. There are keywords for different opcodes
310 ('<tt><a href="#i_add">add</a></tt>',
311 '<tt><a href="#i_bitcast">bitcast</a></tt>',
312 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
313 href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
314 and others. These reserved words cannot conflict with variable names, because
315 none of them start with a '%' character.</p>
317 <p>Here is an example of LLVM code to multiply the integer variable
318 '<tt>%X</tt>' by 8:</p>
320 <p>The easy way:</p>
322 <div class="doc_code">
323 <pre>
324 %result = <a href="#i_mul">mul</a> i32 %X, 8
325 </pre>
326 </div>
328 <p>After strength reduction:</p>
330 <div class="doc_code">
331 <pre>
332 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
333 </pre>
334 </div>
336 <p>And the hard way:</p>
338 <div class="doc_code">
339 <pre>
340 <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
341 <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
342 %result = <a href="#i_add">add</a> i32 %1, %1
343 </pre>
344 </div>
346 <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
347 important lexical features of LLVM:</p>
349 <ol>
351 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
352 line.</li>
354 <li>Unnamed temporaries are created when the result of a computation is not
355 assigned to a named value.</li>
357 <li>Unnamed temporaries are numbered sequentially</li>
359 </ol>
361 <p>...and it also shows a convention that we follow in this document. When
362 demonstrating instructions, we will follow an instruction with a comment that
363 defines the type and name of value produced. Comments are shown in italic
364 text.</p>
366 </div>
368 <!-- *********************************************************************** -->
369 <div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
370 <!-- *********************************************************************** -->
372 <!-- ======================================================================= -->
373 <div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
374 </div>
376 <div class="doc_text">
378 <p>LLVM programs are composed of "Module"s, each of which is a
379 translation unit of the input programs. Each module consists of
380 functions, global variables, and symbol table entries. Modules may be
381 combined together with the LLVM linker, which merges function (and
382 global variable) definitions, resolves forward declarations, and merges
383 symbol table entries. Here is an example of the "hello world" module:</p>
385 <div class="doc_code">
386 <pre><i>; Declare the string constant as a global constant...</i>
387 <a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
388 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
390 <i>; External declaration of the puts function</i>
391 <a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
393 <i>; Definition of main function</i>
394 define i32 @main() { <i>; i32()* </i>
395 <i>; Convert [13x i8 ]* to i8 *...</i>
396 %cast210 = <a
397 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
399 <i>; Call puts function to write out the string to stdout...</i>
401 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
403 href="#i_ret">ret</a> i32 0<br>}<br>
404 </pre>
405 </div>
407 <p>This example is made up of a <a href="#globalvars">global variable</a>
408 named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
409 function, and a <a href="#functionstructure">function definition</a>
410 for "<tt>main</tt>".</p>
412 <p>In general, a module is made up of a list of global values,
413 where both functions and global variables are global values. Global values are
414 represented by a pointer to a memory location (in this case, a pointer to an
415 array of char, and a pointer to a function), and have one of the following <a
416 href="#linkage">linkage types</a>.</p>
418 </div>
420 <!-- ======================================================================= -->
421 <div class="doc_subsection">
422 <a name="linkage">Linkage Types</a>
423 </div>
425 <div class="doc_text">
428 All Global Variables and Functions have one of the following types of linkage:
429 </p>
431 <dl>
433 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
435 <dd>Global values with internal linkage are only directly accessible by
436 objects in the current module. In particular, linking code into a module with
437 an internal global value may cause the internal to be renamed as necessary to
438 avoid collisions. Because the symbol is internal to the module, all
439 references can be updated. This corresponds to the notion of the
440 '<tt>static</tt>' keyword in C.
441 </dd>
443 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
445 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
446 the same name when linkage occurs. This is typically used to implement
447 inline functions, templates, or other code which must be generated in each
448 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
449 allowed to be discarded.
450 </dd>
452 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
454 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
455 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
456 used for globals that may be emitted in multiple translation units, but that
457 are not guaranteed to be emitted into every translation unit that uses them.
458 One example of this are common globals in C, such as "<tt>int X;</tt>" at
459 global scope.
460 </dd>
462 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
464 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
465 pointer to array type. When two global variables with appending linkage are
466 linked together, the two global arrays are appended together. This is the
467 LLVM, typesafe, equivalent of having the system linker append together
468 "sections" with identical names when .o files are linked.
469 </dd>
471 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
472 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
473 until linked, if not linked, the symbol becomes null instead of being an
474 undefined reference.
475 </dd>
477 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
479 <dd>If none of the above identifiers are used, the global is externally
480 visible, meaning that it participates in linkage and can be used to resolve
481 external symbol references.
482 </dd>
483 </dl>
486 The next two types of linkage are targeted for Microsoft Windows platform
487 only. They are designed to support importing (exporting) symbols from (to)
488 DLLs.
489 </p>
491 <dl>
492 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
494 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
495 or variable via a global pointer to a pointer that is set up by the DLL
496 exporting the symbol. On Microsoft Windows targets, the pointer name is
497 formed by combining <code>_imp__</code> and the function or variable name.
498 </dd>
500 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
502 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
503 pointer to a pointer in a DLL, so that it can be referenced with the
504 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
505 name is formed by combining <code>_imp__</code> and the function or variable
506 name.
507 </dd>
509 </dl>
511 <p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
512 variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
513 variable and was linked with this one, one of the two would be renamed,
514 preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
515 external (i.e., lacking any linkage declarations), they are accessible
516 outside of the current module.</p>
517 <p>It is illegal for a function <i>declaration</i>
518 to have any linkage type other than "externally visible", <tt>dllimport</tt>,
519 or <tt>extern_weak</tt>.</p>
520 <p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
521 linkages.
522 </div>
524 <!-- ======================================================================= -->
525 <div class="doc_subsection">
526 <a name="callingconv">Calling Conventions</a>
527 </div>
529 <div class="doc_text">
531 <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
532 and <a href="#i_invoke">invokes</a> can all have an optional calling convention
533 specified for the call. The calling convention of any pair of dynamic
534 caller/callee must match, or the behavior of the program is undefined. The
535 following calling conventions are supported by LLVM, and more may be added in
536 the future:</p>
538 <dl>
539 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
541 <dd>This calling convention (the default if no other calling convention is
542 specified) matches the target C calling conventions. This calling convention
543 supports varargs function calls and tolerates some mismatch in the declared
544 prototype and implemented declaration of the function (as does normal C).
545 </dd>
547 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
549 <dd>This calling convention attempts to make calls as fast as possible
550 (e.g. by passing things in registers). This calling convention allows the
551 target to use whatever tricks it wants to produce fast code for the target,
552 without having to conform to an externally specified ABI. Implementations of
553 this convention should allow arbitrary tail call optimization to be supported.
554 This calling convention does not support varargs and requires the prototype of
555 all callees to exactly match the prototype of the function definition.
556 </dd>
558 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
560 <dd>This calling convention attempts to make code in the caller as efficient
561 as possible under the assumption that the call is not commonly executed. As
562 such, these calls often preserve all registers so that the call does not break
563 any live ranges in the caller side. This calling convention does not support
564 varargs and requires the prototype of all callees to exactly match the
565 prototype of the function definition.
566 </dd>
568 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
570 <dd>Any calling convention may be specified by number, allowing
571 target-specific calling conventions to be used. Target specific calling
572 conventions start at 64.
573 </dd>
574 </dl>
576 <p>More calling conventions can be added/defined on an as-needed basis, to
577 support pascal conventions or any other well-known target-independent
578 convention.</p>
580 </div>
582 <!-- ======================================================================= -->
583 <div class="doc_subsection">
584 <a name="visibility">Visibility Styles</a>
585 </div>
587 <div class="doc_text">
590 All Global Variables and Functions have one of the following visibility styles:
591 </p>
593 <dl>
594 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
596 <dd>On ELF, default visibility means that the declaration is visible to other
597 modules and, in shared libraries, means that the declared entity may be
598 overridden. On Darwin, default visibility means that the declaration is
599 visible to other modules. Default visibility corresponds to "external
600 linkage" in the language.
601 </dd>
603 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
605 <dd>Two declarations of an object with hidden visibility refer to the same
606 object if they are in the same shared object. Usually, hidden visibility
607 indicates that the symbol will not be placed into the dynamic symbol table,
608 so no other module (executable or shared library) can reference it
609 directly.
610 </dd>
612 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
614 <dd>On ELF, protected visibility indicates that the symbol will be placed in
615 the dynamic symbol table, but that references within the defining module will
616 bind to the local symbol. That is, the symbol cannot be overridden by another
617 module.
618 </dd>
619 </dl>
621 </div>
623 <!-- ======================================================================= -->
624 <div class="doc_subsection">
625 <a name="globalvars">Global Variables</a>
626 </div>
628 <div class="doc_text">
630 <p>Global variables define regions of memory allocated at compilation time
631 instead of run-time. Global variables may optionally be initialized, may have
632 an explicit section to be placed in, and may have an optional explicit alignment
633 specified. A variable may be defined as "thread_local", which means that it
634 will not be shared by threads (each thread will have a separated copy of the
635 variable). A variable may be defined as a global "constant," which indicates
636 that the contents of the variable will <b>never</b> be modified (enabling better
637 optimization, allowing the global data to be placed in the read-only section of
638 an executable, etc). Note that variables that need runtime initialization
639 cannot be marked "constant" as there is a store to the variable.</p>
642 LLVM explicitly allows <em>declarations</em> of global variables to be marked
643 constant, even if the final definition of the global is not. This capability
644 can be used to enable slightly better optimization of the program, but requires
645 the language definition to guarantee that optimizations based on the
646 'constantness' are valid for the translation units that do not include the
647 definition.
648 </p>
650 <p>As SSA values, global variables define pointer values that are in
651 scope (i.e. they dominate) all basic blocks in the program. Global
652 variables always define a pointer to their "content" type because they
653 describe a region of memory, and all memory objects in LLVM are
654 accessed through pointers.</p>
656 <p>LLVM allows an explicit section to be specified for globals. If the target
657 supports it, it will emit globals to the section specified.</p>
659 <p>An explicit alignment may be specified for a global. If not present, or if
660 the alignment is set to zero, the alignment of the global is set by the target
661 to whatever it feels convenient. If an explicit alignment is specified, the
662 global is forced to have at least that much alignment. All alignments must be
663 a power of 2.</p>
665 <p>For example, the following defines a global with an initializer, section,
666 and alignment:</p>
668 <div class="doc_code">
669 <pre>
670 %G = constant float 1.0, section "foo", align 4
671 </pre>
672 </div>
674 </div>
677 <!-- ======================================================================= -->
678 <div class="doc_subsection">
679 <a name="functionstructure">Functions</a>
680 </div>
682 <div class="doc_text">
684 <p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
685 an optional <a href="#linkage">linkage type</a>, an optional
686 <a href="#visibility">visibility style</a>, an optional
687 <a href="#callingconv">calling convention</a>, a return type, an optional
688 <a href="#paramattrs">parameter attribute</a> for the return type, a function
689 name, a (possibly empty) argument list (each with optional
690 <a href="#paramattrs">parameter attributes</a>), an optional section, an
691 optional alignment, an opening curly brace, a list of basic blocks, and a
692 closing curly brace.
694 LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
695 optional <a href="#linkage">linkage type</a>, an optional
696 <a href="#visibility">visibility style</a>, an optional
697 <a href="#callingconv">calling convention</a>, a return type, an optional
698 <a href="#paramattrs">parameter attribute</a> for the return type, a function
699 name, a possibly empty list of arguments, and an optional alignment.</p>
701 <p>A function definition contains a list of basic blocks, forming the CFG for
702 the function. Each basic block may optionally start with a label (giving the
703 basic block a symbol table entry), contains a list of instructions, and ends
704 with a <a href="#terminators">terminator</a> instruction (such as a branch or
705 function return).</p>
707 <p>The first basic block in a function is special in two ways: it is immediately
708 executed on entrance to the function, and it is not allowed to have predecessor
709 basic blocks (i.e. there can not be any branches to the entry block of a
710 function). Because the block can have no predecessors, it also cannot have any
711 <a href="#i_phi">PHI nodes</a>.</p>
713 <p>LLVM functions are identified by their name and type signature. Hence, two
714 functions with the same name but different parameter lists or return values are
715 considered different functions, and LLVM will resolve references to each
716 appropriately.</p>
718 <p>LLVM allows an explicit section to be specified for functions. If the target
719 supports it, it will emit functions to the section specified.</p>
721 <p>An explicit alignment may be specified for a function. If not present, or if
722 the alignment is set to zero, the alignment of the function is set by the target
723 to whatever it feels convenient. If an explicit alignment is specified, the
724 function is forced to have at least that much alignment. All alignments must be
725 a power of 2.</p>
727 </div>
730 <!-- ======================================================================= -->
731 <div class="doc_subsection">
732 <a name="aliasstructure">Aliases</a>
733 </div>
734 <div class="doc_text">
735 <p>Aliases act as "second name" for the aliasee value (which can be either
736 function or global variable or bitcast of global value). Aliases may have an
737 optional <a href="#linkage">linkage type</a>, and an
738 optional <a href="#visibility">visibility style</a>.</p>
740 <h5>Syntax:</h5>
742 <div class="doc_code">
743 <pre>
744 @&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
745 </pre>
746 </div>
748 </div>
752 <!-- ======================================================================= -->
753 <div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
754 <div class="doc_text">
755 <p>The return type and each parameter of a function type may have a set of
756 <i>parameter attributes</i> associated with them. Parameter attributes are
757 used to communicate additional information about the result or parameters of
758 a function. Parameter attributes are considered to be part of the function
759 type so two functions types that differ only by the parameter attributes
760 are different function types.</p>
762 <p>Parameter attributes are simple keywords that follow the type specified. If
763 multiple parameter attributes are needed, they are space separated. For
764 example:</p>
766 <div class="doc_code">
767 <pre>
768 %someFunc = i16 (i8 sext %someParam) zext
769 %someFunc = i16 (i8 zext %someParam) zext
770 </pre>
771 </div>
773 <p>Note that the two function types above are unique because the parameter has
774 a different attribute (sext in the first one, zext in the second). Also note
775 that the attribute for the function result (zext) comes immediately after the
776 argument list.</p>
778 <p>Currently, only the following parameter attributes are defined:</p>
779 <dl>
780 <dt><tt>zext</tt></dt>
781 <dd>This indicates that the parameter should be zero extended just before
782 a call to this function.</dd>
783 <dt><tt>sext</tt></dt>
784 <dd>This indicates that the parameter should be sign extended just before
785 a call to this function.</dd>
786 <dt><tt>inreg</tt></dt>
787 <dd>This indicates that the parameter should be placed in register (if
788 possible) during assembling function call. Support for this attribute is
789 target-specific</dd>
790 <dt><tt>sret</tt></dt>
791 <dd>This indicates that the parameter specifies the address of a structure
792 that is the return value of the function in the source program.</dd>
793 <dt><tt>noalias</tt></dt>
794 <dd>This indicates that the parameter not alias any other object or any
795 other "noalias" objects during the function call.
796 <dt><tt>noreturn</tt></dt>
797 <dd>This function attribute indicates that the function never returns. This
798 indicates to LLVM that every call to this function should be treated as if
799 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
800 <dt><tt>nounwind</tt></dt>
801 <dd>This function attribute indicates that the function type does not use
802 the unwind instruction and does not allow stack unwinding to propagate
803 through it.</dd>
804 </dl>
806 </div>
808 <!-- ======================================================================= -->
809 <div class="doc_subsection">
810 <a name="moduleasm">Module-Level Inline Assembly</a>
811 </div>
813 <div class="doc_text">
815 Modules may contain "module-level inline asm" blocks, which corresponds to the
816 GCC "file scope inline asm" blocks. These blocks are internally concatenated by
817 LLVM and treated as a single unit, but may be separated in the .ll file if
818 desired. The syntax is very simple:
819 </p>
821 <div class="doc_code">
822 <pre>
823 module asm "inline asm code goes here"
824 module asm "more can go here"
825 </pre>
826 </div>
828 <p>The strings can contain any character by escaping non-printable characters.
829 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
830 for the number.
831 </p>
834 The inline asm code is simply printed to the machine code .s file when
835 assembly code is generated.
836 </p>
837 </div>
839 <!-- ======================================================================= -->
840 <div class="doc_subsection">
841 <a name="datalayout">Data Layout</a>
842 </div>
844 <div class="doc_text">
845 <p>A module may specify a target specific data layout string that specifies how
846 data is to be laid out in memory. The syntax for the data layout is simply:</p>
847 <pre> target datalayout = "<i>layout specification</i>"</pre>
848 <p>The <i>layout specification</i> consists of a list of specifications
849 separated by the minus sign character ('-'). Each specification starts with a
850 letter and may include other information after the letter to define some
851 aspect of the data layout. The specifications accepted are as follows: </p>
852 <dl>
853 <dt><tt>E</tt></dt>
854 <dd>Specifies that the target lays out data in big-endian form. That is, the
855 bits with the most significance have the lowest address location.</dd>
856 <dt><tt>e</tt></dt>
857 <dd>Specifies that hte target lays out data in little-endian form. That is,
858 the bits with the least significance have the lowest address location.</dd>
859 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
860 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
861 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
862 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
863 too.</dd>
864 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
865 <dd>This specifies the alignment for an integer type of a given bit
866 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
867 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
868 <dd>This specifies the alignment for a vector type of a given bit
869 <i>size</i>.</dd>
870 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
871 <dd>This specifies the alignment for a floating point type of a given bit
872 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
873 (double).</dd>
874 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
875 <dd>This specifies the alignment for an aggregate type of a given bit
876 <i>size</i>.</dd>
877 </dl>
878 <p>When constructing the data layout for a given target, LLVM starts with a
879 default set of specifications which are then (possibly) overriden by the
880 specifications in the <tt>datalayout</tt> keyword. The default specifications
881 are given in this list:</p>
882 <ul>
883 <li><tt>E</tt> - big endian</li>
884 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
885 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
886 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
887 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
888 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
889 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
890 alignment of 64-bits</li>
891 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
892 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
893 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
894 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
895 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
896 </ul>
897 <p>When llvm is determining the alignment for a given type, it uses the
898 following rules:
899 <ol>
900 <li>If the type sought is an exact match for one of the specifications, that
901 specification is used.</li>
902 <li>If no match is found, and the type sought is an integer type, then the
903 smallest integer type that is larger than the bitwidth of the sought type is
904 used. If none of the specifications are larger than the bitwidth then the the
905 largest integer type is used. For example, given the default specifications
906 above, the i7 type will use the alignment of i8 (next largest) while both
907 i65 and i256 will use the alignment of i64 (largest specified).</li>
908 <li>If no match is found, and the type sought is a vector type, then the
909 largest vector type that is smaller than the sought vector type will be used
910 as a fall back. This happens because <128 x double> can be implemented in
911 terms of 64 <2 x double>, for example.</li>
912 </ol>
913 </div>
915 <!-- *********************************************************************** -->
916 <div class="doc_section"> <a name="typesystem">Type System</a> </div>
917 <!-- *********************************************************************** -->
919 <div class="doc_text">
921 <p>The LLVM type system is one of the most important features of the
922 intermediate representation. Being typed enables a number of
923 optimizations to be performed on the IR directly, without having to do
924 extra analyses on the side before the transformation. A strong type
925 system makes it easier to read the generated code and enables novel
926 analyses and transformations that are not feasible to perform on normal
927 three address code representations.</p>
929 </div>
931 <!-- ======================================================================= -->
932 <div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
933 <div class="doc_text">
934 <p>The primitive types are the fundamental building blocks of the LLVM
935 system. The current set of primitive types is as follows:</p>
937 <table class="layout">
938 <tr class="layout">
939 <td class="left">
940 <table>
941 <tbody>
942 <tr><th>Type</th><th>Description</th></tr>
943 <tr><td><tt><a name="t_void">void</a></tt></td><td>No value</td></tr>
944 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
945 </tbody>
946 </table>
947 </td>
948 <td class="right">
949 <table>
950 <tbody>
951 <tr><th>Type</th><th>Description</th></tr>
952 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
953 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
954 </tbody>
955 </table>
956 </td>
957 </tr>
958 </table>
959 </div>
961 <!-- _______________________________________________________________________ -->
962 <div class="doc_subsubsection"> <a name="t_classifications">Type
963 Classifications</a> </div>
964 <div class="doc_text">
965 <p>These different primitive types fall into a few useful
966 classifications:</p>
968 <table border="1" cellspacing="0" cellpadding="4">
969 <tbody>
970 <tr><th>Classification</th><th>Types</th></tr>
971 <tr>
972 <td><a name="t_integer">integer</a></td>
973 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
974 </tr>
975 <tr>
976 <td><a name="t_floating">floating point</a></td>
977 <td><tt>float, double</tt></td>
978 </tr>
979 <tr>
980 <td><a name="t_firstclass">first class</a></td>
981 <td><tt>i1, ..., float, double, <br/>
982 <a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt>
983 </td>
984 </tr>
985 </tbody>
986 </table>
988 <p>The <a href="#t_firstclass">first class</a> types are perhaps the
989 most important. Values of these types are the only ones which can be
990 produced by instructions, passed as arguments, or used as operands to
991 instructions. This means that all structures and arrays must be
992 manipulated either by pointer or by component.</p>
993 </div>
995 <!-- ======================================================================= -->
996 <div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
998 <div class="doc_text">
1000 <p>The real power in LLVM comes from the derived types in the system.
1001 This is what allows a programmer to represent arrays, functions,
1002 pointers, and other useful types. Note that these derived types may be
1003 recursive: For example, it is possible to have a two dimensional array.</p>
1005 </div>
1007 <!-- _______________________________________________________________________ -->
1008 <div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1010 <div class="doc_text">
1012 <h5>Overview:</h5>
1013 <p>The integer type is a very simple derived type that simply specifies an
1014 arbitrary bit width for the integer type desired. Any bit width from 1 bit to
1015 2^23-1 (about 8 million) can be specified.</p>
1017 <h5>Syntax:</h5>
1019 <pre>
1021 </pre>
1023 <p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1024 value.</p>
1026 <h5>Examples:</h5>
1027 <table class="layout">
1028 <tr class="layout">
1029 <td class="left">
1030 <tt>i1</tt><br/>
1031 <tt>i4</tt><br/>
1032 <tt>i8</tt><br/>
1033 <tt>i16</tt><br/>
1034 <tt>i32</tt><br/>
1035 <tt>i42</tt><br/>
1036 <tt>i64</tt><br/>
1037 <tt>i1942652</tt><br/>
1038 </td>
1039 <td class="left">
1040 A boolean integer of 1 bit<br/>
1041 A nibble sized integer of 4 bits.<br/>
1042 A byte sized integer of 8 bits.<br/>
1043 A half word sized integer of 16 bits.<br/>
1044 A word sized integer of 32 bits.<br/>
1045 An integer whose bit width is the answer. <br/>
1046 A double word sized integer of 64 bits.<br/>
1047 A really big integer of over 1 million bits.<br/>
1048 </td>
1049 </tr>
1050 </table>
1051 </div>
1053 <!-- _______________________________________________________________________ -->
1054 <div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1056 <div class="doc_text">
1058 <h5>Overview:</h5>
1060 <p>The array type is a very simple derived type that arranges elements
1061 sequentially in memory. The array type requires a size (number of
1062 elements) and an underlying data type.</p>
1064 <h5>Syntax:</h5>
1066 <pre>
1067 [&lt;# elements&gt; x &lt;elementtype&gt;]
1068 </pre>
1070 <p>The number of elements is a constant integer value; elementtype may
1071 be any type with a size.</p>
1073 <h5>Examples:</h5>
1074 <table class="layout">
1075 <tr class="layout">
1076 <td class="left">
1077 <tt>[40 x i32 ]</tt><br/>
1078 <tt>[41 x i32 ]</tt><br/>
1079 <tt>[40 x i8]</tt><br/>
1080 </td>
1081 <td class="left">
1082 Array of 40 32-bit integer values.<br/>
1083 Array of 41 32-bit integer values.<br/>
1084 Array of 40 8-bit integer values.<br/>
1085 </td>
1086 </tr>
1087 </table>
1088 <p>Here are some examples of multidimensional arrays:</p>
1089 <table class="layout">
1090 <tr class="layout">
1091 <td class="left">
1092 <tt>[3 x [4 x i32]]</tt><br/>
1093 <tt>[12 x [10 x float]]</tt><br/>
1094 <tt>[2 x [3 x [4 x i16]]]</tt><br/>
1095 </td>
1096 <td class="left">
1097 3x4 array of 32-bit integer values.<br/>
1098 12x10 array of single precision floating point values.<br/>
1099 2x3x4 array of 16-bit integer values.<br/>
1100 </td>
1101 </tr>
1102 </table>
1104 <p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1105 length array. Normally, accesses past the end of an array are undefined in
1106 LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1107 As a special case, however, zero length arrays are recognized to be variable
1108 length. This allows implementation of 'pascal style arrays' with the LLVM
1109 type "{ i32, [0 x float]}", for example.</p>
1111 </div>
1113 <!-- _______________________________________________________________________ -->
1114 <div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1115 <div class="doc_text">
1116 <h5>Overview:</h5>
1117 <p>The function type can be thought of as a function signature. It
1118 consists of a return type and a list of formal parameter types.
1119 Function types are usually used to build virtual function tables
1120 (which are structures of pointers to functions), for indirect function
1121 calls, and when defining a function.</p>
1123 The return type of a function type cannot be an aggregate type.
1124 </p>
1125 <h5>Syntax:</h5>
1126 <pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
1127 <p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1128 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1129 which indicates that the function takes a variable number of arguments.
1130 Variable argument functions can access their arguments with the <a
1131 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
1132 <h5>Examples:</h5>
1133 <table class="layout">
1134 <tr class="layout">
1135 <td class="left"><tt>i32 (i32)</tt></td>
1136 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1137 </td>
1138 </tr><tr class="layout">
1139 <td class="left"><tt>float&nbsp;(i16&nbsp;sext,&nbsp;i32&nbsp;*)&nbsp;*
1140 </tt></td>
1141 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1142 an <tt>i16</tt> that should be sign extended and a
1143 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1144 <tt>float</tt>.
1145 </td>
1146 </tr><tr class="layout">
1147 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1148 <td class="left">A vararg function that takes at least one
1149 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1150 which returns an integer. This is the signature for <tt>printf</tt> in
1151 LLVM.
1152 </td>
1153 </tr>
1154 </table>
1156 </div>
1157 <!-- _______________________________________________________________________ -->
1158 <div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1159 <div class="doc_text">
1160 <h5>Overview:</h5>
1161 <p>The structure type is used to represent a collection of data members
1162 together in memory. The packing of the field types is defined to match
1163 the ABI of the underlying processor. The elements of a structure may
1164 be any type that has a size.</p>
1165 <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1166 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1167 field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1168 instruction.</p>
1169 <h5>Syntax:</h5>
1170 <pre> { &lt;type list&gt; }<br></pre>
1171 <h5>Examples:</h5>
1172 <table class="layout">
1173 <tr class="layout">
1174 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1175 <td class="left">A triple of three <tt>i32</tt> values</td>
1176 </tr><tr class="layout">
1177 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1178 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1179 second element is a <a href="#t_pointer">pointer</a> to a
1180 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1181 an <tt>i32</tt>.</td>
1182 </tr>
1183 </table>
1184 </div>
1186 <!-- _______________________________________________________________________ -->
1187 <div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1188 </div>
1189 <div class="doc_text">
1190 <h5>Overview:</h5>
1191 <p>The packed structure type is used to represent a collection of data members
1192 together in memory. There is no padding between fields. Further, the alignment
1193 of a packed structure is 1 byte. The elements of a packed structure may
1194 be any type that has a size.</p>
1195 <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1196 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1197 field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1198 instruction.</p>
1199 <h5>Syntax:</h5>
1200 <pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1201 <h5>Examples:</h5>
1202 <table class="layout">
1203 <tr class="layout">
1204 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1205 <td class="left">A triple of three <tt>i32</tt> values</td>
1206 </tr><tr class="layout">
1207 <td class="left"><tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}&nbsp;&gt;</tt></td>
1208 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1209 second element is a <a href="#t_pointer">pointer</a> to a
1210 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1211 an <tt>i32</tt>.</td>
1212 </tr>
1213 </table>
1214 </div>
1216 <!-- _______________________________________________________________________ -->
1217 <div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1218 <div class="doc_text">
1219 <h5>Overview:</h5>
1220 <p>As in many languages, the pointer type represents a pointer or
1221 reference to another object, which must live in memory.</p>
1222 <h5>Syntax:</h5>
1223 <pre> &lt;type&gt; *<br></pre>
1224 <h5>Examples:</h5>
1225 <table class="layout">
1226 <tr class="layout">
1227 <td class="left">
1228 <tt>[4x i32]*</tt><br/>
1229 <tt>i32 (i32 *) *</tt><br/>
1230 </td>
1231 <td class="left">
1232 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
1233 four <tt>i32</tt> values<br/>
1234 A <a href="#t_pointer">pointer</a> to a <a
1235 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1236 <tt>i32</tt>.<br/>
1237 </td>
1238 </tr>
1239 </table>
1240 </div>
1242 <!-- _______________________________________________________________________ -->
1243 <div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1244 <div class="doc_text">
1246 <h5>Overview:</h5>
1248 <p>A vector type is a simple derived type that represents a vector
1249 of elements. Vector types are used when multiple primitive data
1250 are operated in parallel using a single instruction (SIMD).
1251 A vector type requires a size (number of
1252 elements) and an underlying primitive data type. Vectors must have a power
1253 of two length (1, 2, 4, 8, 16 ...). Vector types are
1254 considered <a href="#t_firstclass">first class</a>.</p>
1256 <h5>Syntax:</h5>
1258 <pre>
1259 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1260 </pre>
1262 <p>The number of elements is a constant integer value; elementtype may
1263 be any integer or floating point type.</p>
1265 <h5>Examples:</h5>
1267 <table class="layout">
1268 <tr class="layout">
1269 <td class="left">
1270 <tt>&lt;4 x i32&gt;</tt><br/>
1271 <tt>&lt;8 x float&gt;</tt><br/>
1272 <tt>&lt;2 x i64&gt;</tt><br/>
1273 </td>
1274 <td class="left">
1275 Vector of 4 32-bit integer values.<br/>
1276 Vector of 8 floating-point values.<br/>
1277 Vector of 2 64-bit integer values.<br/>
1278 </td>
1279 </tr>
1280 </table>
1281 </div>
1283 <!-- _______________________________________________________________________ -->
1284 <div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1285 <div class="doc_text">
1287 <h5>Overview:</h5>
1289 <p>Opaque types are used to represent unknown types in the system. This
1290 corresponds (for example) to the C notion of a foward declared structure type.
1291 In LLVM, opaque types can eventually be resolved to any type (not just a
1292 structure type).</p>
1294 <h5>Syntax:</h5>
1296 <pre>
1297 opaque
1298 </pre>
1300 <h5>Examples:</h5>
1302 <table class="layout">
1303 <tr class="layout">
1304 <td class="left">
1305 <tt>opaque</tt>
1306 </td>
1307 <td class="left">
1308 An opaque type.<br/>
1309 </td>
1310 </tr>
1311 </table>
1312 </div>
1315 <!-- *********************************************************************** -->
1316 <div class="doc_section"> <a name="constants">Constants</a> </div>
1317 <!-- *********************************************************************** -->
1319 <div class="doc_text">
1321 <p>LLVM has several different basic types of constants. This section describes
1322 them all and their syntax.</p>
1324 </div>
1326 <!-- ======================================================================= -->
1327 <div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1329 <div class="doc_text">
1331 <dl>
1332 <dt><b>Boolean constants</b></dt>
1334 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1335 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1336 </dd>
1338 <dt><b>Integer constants</b></dt>
1340 <dd>Standard integers (such as '4') are constants of the <a
1341 href="#t_integer">integer</a> type. Negative numbers may be used with
1342 integer types.
1343 </dd>
1345 <dt><b>Floating point constants</b></dt>
1347 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1348 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1349 notation (see below). Floating point constants must have a <a
1350 href="#t_floating">floating point</a> type. </dd>
1352 <dt><b>Null pointer constants</b></dt>
1354 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1355 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1357 </dl>
1359 <p>The one non-intuitive notation for constants is the optional hexadecimal form
1360 of floating point constants. For example, the form '<tt>double
1361 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
1362 4.5e+15</tt>'. The only time hexadecimal floating point constants are required
1363 (and the only time that they are generated by the disassembler) is when a
1364 floating point constant must be emitted but it cannot be represented as a
1365 decimal floating point number. For example, NaN's, infinities, and other
1366 special values are represented in their IEEE hexadecimal format so that
1367 assembly and disassembly do not cause any bits to change in the constants.</p>
1369 </div>
1371 <!-- ======================================================================= -->
1372 <div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1373 </div>
1375 <div class="doc_text">
1376 <p>Aggregate constants arise from aggregation of simple constants
1377 and smaller aggregate constants.</p>
1379 <dl>
1380 <dt><b>Structure constants</b></dt>
1382 <dd>Structure constants are represented with notation similar to structure
1383 type definitions (a comma separated list of elements, surrounded by braces
1384 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
1385 where "<tt>%G</tt>" is declared as "<tt>%G = external global i32</tt>". Structure constants
1386 must have <a href="#t_struct">structure type</a>, and the number and
1387 types of elements must match those specified by the type.
1388 </dd>
1390 <dt><b>Array constants</b></dt>
1392 <dd>Array constants are represented with notation similar to array type
1393 definitions (a comma separated list of elements, surrounded by square brackets
1394 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1395 constants must have <a href="#t_array">array type</a>, and the number and
1396 types of elements must match those specified by the type.
1397 </dd>
1399 <dt><b>Vector constants</b></dt>
1401 <dd>Vector constants are represented with notation similar to vector type
1402 definitions (a comma separated list of elements, surrounded by
1403 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1404 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
1405 href="#t_vector">vector type</a>, and the number and types of elements must
1406 match those specified by the type.
1407 </dd>
1409 <dt><b>Zero initialization</b></dt>
1411 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1412 value to zero of <em>any</em> type, including scalar and aggregate types.
1413 This is often used to avoid having to print large zero initializers (e.g. for
1414 large arrays) and is always exactly equivalent to using explicit zero
1415 initializers.
1416 </dd>
1417 </dl>
1419 </div>
1421 <!-- ======================================================================= -->
1422 <div class="doc_subsection">
1423 <a name="globalconstants">Global Variable and Function Addresses</a>
1424 </div>
1426 <div class="doc_text">
1428 <p>The addresses of <a href="#globalvars">global variables</a> and <a
1429 href="#functionstructure">functions</a> are always implicitly valid (link-time)
1430 constants. These constants are explicitly referenced when the <a
1431 href="#identifiers">identifier for the global</a> is used and always have <a
1432 href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1433 file:</p>
1435 <div class="doc_code">
1436 <pre>
1437 @X = global i32 17
1438 @Y = global i32 42
1439 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1440 </pre>
1441 </div>
1443 </div>
1445 <!-- ======================================================================= -->
1446 <div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1447 <div class="doc_text">
1448 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1449 no specific value. Undefined values may be of any type and be used anywhere
1450 a constant is permitted.</p>
1452 <p>Undefined values indicate to the compiler that the program is well defined
1453 no matter what value is used, giving the compiler more freedom to optimize.
1454 </p>
1455 </div>
1457 <!-- ======================================================================= -->
1458 <div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1459 </div>
1461 <div class="doc_text">
1463 <p>Constant expressions are used to allow expressions involving other constants
1464 to be used as constants. Constant expressions may be of any <a
1465 href="#t_firstclass">first class</a> type and may involve any LLVM operation
1466 that does not have side effects (e.g. load and call are not supported). The
1467 following is the syntax for constant expressions:</p>
1469 <dl>
1470 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1471 <dd>Truncate a constant to another type. The bit size of CST must be larger
1472 than the bit size of TYPE. Both types must be integers.</dd>
1474 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1475 <dd>Zero extend a constant to another type. The bit size of CST must be
1476 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1478 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1479 <dd>Sign extend a constant to another type. The bit size of CST must be
1480 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1482 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1483 <dd>Truncate a floating point constant to another floating point type. The
1484 size of CST must be larger than the size of TYPE. Both types must be
1485 floating point.</dd>
1487 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1488 <dd>Floating point extend a constant to another type. The size of CST must be
1489 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1491 <dt><b><tt>fp2uint ( CST to TYPE )</tt></b></dt>
1492 <dd>Convert a floating point constant to the corresponding unsigned integer
1493 constant. TYPE must be an integer type. CST must be floating point. If the
1494 value won't fit in the integer type, the results are undefined.</dd>
1496 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1497 <dd>Convert a floating point constant to the corresponding signed integer
1498 constant. TYPE must be an integer type. CST must be floating point. If the
1499 value won't fit in the integer type, the results are undefined.</dd>
1501 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1502 <dd>Convert an unsigned integer constant to the corresponding floating point
1503 constant. TYPE must be floating point. CST must be of integer type. If the
1504 value won't fit in the floating point type, the results are undefined.</dd>
1506 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1507 <dd>Convert a signed integer constant to the corresponding floating point
1508 constant. TYPE must be floating point. CST must be of integer type. If the
1509 value won't fit in the floating point type, the results are undefined.</dd>
1511 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1512 <dd>Convert a pointer typed constant to the corresponding integer constant
1513 TYPE must be an integer type. CST must be of pointer type. The CST value is
1514 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1516 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1517 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1518 pointer type. CST must be of integer type. The CST value is zero extended,
1519 truncated, or unchanged to make it fit in a pointer size. This one is
1520 <i>really</i> dangerous!</dd>
1522 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1523 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1524 identical (same number of bits). The conversion is done as if the CST value
1525 was stored to memory and read back as TYPE. In other words, no bits change
1526 with this operator, just the type. This can be used for conversion of
1527 vector types to any other type, as long as they have the same bit width. For
1528 pointers it is only valid to cast to another pointer type.
1529 </dd>
1531 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1533 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1534 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1535 instruction, the index list may have zero or more indexes, which are required
1536 to make sense for the type of "CSTPTR".</dd>
1538 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1540 <dd>Perform the <a href="#i_select">select operation</a> on
1541 constants.</dd>
1543 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1544 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1546 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1547 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1549 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1551 <dd>Perform the <a href="#i_extractelement">extractelement
1552 operation</a> on constants.
1554 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1556 <dd>Perform the <a href="#i_insertelement">insertelement
1557 operation</a> on constants.</dd>
1560 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1562 <dd>Perform the <a href="#i_shufflevector">shufflevector
1563 operation</a> on constants.</dd>
1565 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1567 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1568 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1569 binary</a> operations. The constraints on operands are the same as those for
1570 the corresponding instruction (e.g. no bitwise operations on floating point
1571 values are allowed).</dd>
1572 </dl>
1573 </div>
1575 <!-- *********************************************************************** -->
1576 <div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1577 <!-- *********************************************************************** -->
1579 <!-- ======================================================================= -->
1580 <div class="doc_subsection">
1581 <a name="inlineasm">Inline Assembler Expressions</a>
1582 </div>
1584 <div class="doc_text">
1587 LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1588 Module-Level Inline Assembly</a>) through the use of a special value. This
1589 value represents the inline assembler as a string (containing the instructions
1590 to emit), a list of operand constraints (stored as a string), and a flag that
1591 indicates whether or not the inline asm expression has side effects. An example
1592 inline assembler expression is:
1593 </p>
1595 <div class="doc_code">
1596 <pre>
1597 i32 (i32) asm "bswap $0", "=r,r"
1598 </pre>
1599 </div>
1602 Inline assembler expressions may <b>only</b> be used as the callee operand of
1603 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1604 </p>
1606 <div class="doc_code">
1607 <pre>
1608 %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1609 </pre>
1610 </div>
1613 Inline asms with side effects not visible in the constraint list must be marked
1614 as having side effects. This is done through the use of the
1615 '<tt>sideeffect</tt>' keyword, like so:
1616 </p>
1618 <div class="doc_code">
1619 <pre>
1620 call void asm sideeffect "eieio", ""()
1621 </pre>
1622 </div>
1624 <p>TODO: The format of the asm and constraints string still need to be
1625 documented here. Constraints on what can be done (e.g. duplication, moving, etc
1626 need to be documented).
1627 </p>
1629 </div>
1631 <!-- *********************************************************************** -->
1632 <div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1633 <!-- *********************************************************************** -->
1635 <div class="doc_text">
1637 <p>The LLVM instruction set consists of several different
1638 classifications of instructions: <a href="#terminators">terminator
1639 instructions</a>, <a href="#binaryops">binary instructions</a>,
1640 <a href="#bitwiseops">bitwise binary instructions</a>, <a
1641 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1642 instructions</a>.</p>
1644 </div>
1646 <!-- ======================================================================= -->
1647 <div class="doc_subsection"> <a name="terminators">Terminator
1648 Instructions</a> </div>
1650 <div class="doc_text">
1652 <p>As mentioned <a href="#functionstructure">previously</a>, every
1653 basic block in a program ends with a "Terminator" instruction, which
1654 indicates which block should be executed after the current block is
1655 finished. These terminator instructions typically yield a '<tt>void</tt>'
1656 value: they produce control flow, not values (the one exception being
1657 the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1658 <p>There are six different terminator instructions: the '<a
1659 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1660 instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1661 the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1662 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1663 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1665 </div>
1667 <!-- _______________________________________________________________________ -->
1668 <div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1669 Instruction</a> </div>
1670 <div class="doc_text">
1671 <h5>Syntax:</h5>
1672 <pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
1673 ret void <i>; Return from void function</i>
1674 </pre>
1675 <h5>Overview:</h5>
1676 <p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1677 value) from a function back to the caller.</p>
1678 <p>There are two forms of the '<tt>ret</tt>' instruction: one that
1679 returns a value and then causes control flow, and one that just causes
1680 control flow to occur.</p>
1681 <h5>Arguments:</h5>
1682 <p>The '<tt>ret</tt>' instruction may return any '<a
1683 href="#t_firstclass">first class</a>' type. Notice that a function is
1684 not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1685 instruction inside of the function that returns a value that does not
1686 match the return type of the function.</p>
1687 <h5>Semantics:</h5>
1688 <p>When the '<tt>ret</tt>' instruction is executed, control flow
1689 returns back to the calling function's context. If the caller is a "<a
1690 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1691 the instruction after the call. If the caller was an "<a
1692 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1693 at the beginning of the "normal" destination block. If the instruction
1694 returns a value, that value shall set the call or invoke instruction's
1695 return value.</p>
1696 <h5>Example:</h5>
1697 <pre> ret i32 5 <i>; Return an integer value of 5</i>
1698 ret void <i>; Return from a void function</i>
1699 </pre>
1700 </div>
1701 <!-- _______________________________________________________________________ -->
1702 <div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1703 <div class="doc_text">
1704 <h5>Syntax:</h5>
1705 <pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
1706 </pre>
1707 <h5>Overview:</h5>
1708 <p>The '<tt>br</tt>' instruction is used to cause control flow to
1709 transfer to a different basic block in the current function. There are
1710 two forms of this instruction, corresponding to a conditional branch
1711 and an unconditional branch.</p>
1712 <h5>Arguments:</h5>
1713 <p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1714 single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
1715 unconditional form of the '<tt>br</tt>' instruction takes a single
1716 '<tt>label</tt>' value as a target.</p>
1717 <h5>Semantics:</h5>
1718 <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1719 argument is evaluated. If the value is <tt>true</tt>, control flows
1720 to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1721 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1722 <h5>Example:</h5>
1723 <pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1724 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
1725 </div>
1726 <!-- _______________________________________________________________________ -->
1727 <div class="doc_subsubsection">
1728 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1729 </div>
1731 <div class="doc_text">
1732 <h5>Syntax:</h5>
1734 <pre>
1735 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1736 </pre>
1738 <h5>Overview:</h5>
1740 <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1741 several different places. It is a generalization of the '<tt>br</tt>'
1742 instruction, allowing a branch to occur to one of many possible
1743 destinations.</p>
1746 <h5>Arguments:</h5>
1748 <p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1749 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1750 an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1751 table is not allowed to contain duplicate constant entries.</p>
1753 <h5>Semantics:</h5>
1755 <p>The <tt>switch</tt> instruction specifies a table of values and
1756 destinations. When the '<tt>switch</tt>' instruction is executed, this
1757 table is searched for the given value. If the value is found, control flow is
1758 transfered to the corresponding destination; otherwise, control flow is
1759 transfered to the default destination.</p>
1761 <h5>Implementation:</h5>
1763 <p>Depending on properties of the target machine and the particular
1764 <tt>switch</tt> instruction, this instruction may be code generated in different
1765 ways. For example, it could be generated as a series of chained conditional
1766 branches or with a lookup table.</p>
1768 <h5>Example:</h5>
1770 <pre>
1771 <i>; Emulate a conditional br instruction</i>
1772 %Val = <a href="#i_zext">zext</a> i1 %value to i32
1773 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
1775 <i>; Emulate an unconditional br instruction</i>
1776 switch i32 0, label %dest [ ]
1778 <i>; Implement a jump table:</i>
1779 switch i32 %val, label %otherwise [ i32 0, label %onzero
1780 i32 1, label %onone
1781 i32 2, label %ontwo ]
1782 </pre>
1783 </div>
1785 <!-- _______________________________________________________________________ -->
1786 <div class="doc_subsubsection">
1787 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1788 </div>
1790 <div class="doc_text">
1792 <h5>Syntax:</h5>
1794 <pre>
1795 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
1796 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
1797 </pre>
1799 <h5>Overview:</h5>
1801 <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1802 function, with the possibility of control flow transfer to either the
1803 '<tt>normal</tt>' label or the
1804 '<tt>exception</tt>' label. If the callee function returns with the
1805 "<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1806 "normal" label. If the callee (or any indirect callees) returns with the "<a
1807 href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1808 continued at the dynamically nearest "exception" label.</p>
1810 <h5>Arguments:</h5>
1812 <p>This instruction requires several arguments:</p>
1814 <ol>
1815 <li>
1816 The optional "cconv" marker indicates which <a href="#callingconv">calling
1817 convention</a> the call should use. If none is specified, the call defaults
1818 to using C calling conventions.
1819 </li>
1820 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1821 function value being invoked. In most cases, this is a direct function
1822 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1823 an arbitrary pointer to function value.
1824 </li>
1826 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1827 function to be invoked. </li>
1829 <li>'<tt>function args</tt>': argument list whose types match the function
1830 signature argument types. If the function signature indicates the function
1831 accepts a variable number of arguments, the extra arguments can be
1832 specified. </li>
1834 <li>'<tt>normal label</tt>': the label reached when the called function
1835 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1837 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1838 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1840 </ol>
1842 <h5>Semantics:</h5>
1844 <p>This instruction is designed to operate as a standard '<tt><a
1845 href="#i_call">call</a></tt>' instruction in most regards. The primary
1846 difference is that it establishes an association with a label, which is used by
1847 the runtime library to unwind the stack.</p>
1849 <p>This instruction is used in languages with destructors to ensure that proper
1850 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1851 exception. Additionally, this is important for implementation of
1852 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
1854 <h5>Example:</h5>
1855 <pre>
1856 %retval = invoke i32 %Test(i32 15) to label %Continue
1857 unwind label %TestCleanup <i>; {i32}:retval set</i>
1858 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1859 unwind label %TestCleanup <i>; {i32}:retval set</i>
1860 </pre>
1861 </div>
1864 <!-- _______________________________________________________________________ -->
1866 <div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1867 Instruction</a> </div>
1869 <div class="doc_text">
1871 <h5>Syntax:</h5>
1872 <pre>
1873 unwind
1874 </pre>
1876 <h5>Overview:</h5>
1878 <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1879 at the first callee in the dynamic call stack which used an <a
1880 href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1881 primarily used to implement exception handling.</p>
1883 <h5>Semantics:</h5>
1885 <p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1886 immediately halt. The dynamic call stack is then searched for the first <a
1887 href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1888 execution continues at the "exceptional" destination block specified by the
1889 <tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1890 dynamic call chain, undefined behavior results.</p>
1891 </div>
1893 <!-- _______________________________________________________________________ -->
1895 <div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1896 Instruction</a> </div>
1898 <div class="doc_text">
1900 <h5>Syntax:</h5>
1901 <pre>
1902 unreachable
1903 </pre>
1905 <h5>Overview:</h5>
1907 <p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1908 instruction is used to inform the optimizer that a particular portion of the
1909 code is not reachable. This can be used to indicate that the code after a
1910 no-return function cannot be reached, and other facts.</p>
1912 <h5>Semantics:</h5>
1914 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1915 </div>
1919 <!-- ======================================================================= -->
1920 <div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
1921 <div class="doc_text">
1922 <p>Binary operators are used to do most of the computation in a
1923 program. They require two operands, execute an operation on them, and
1924 produce a single value. The operands might represent
1925 multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
1926 The result value of a binary operator is not
1927 necessarily the same type as its operands.</p>
1928 <p>There are several different binary operators:</p>
1929 </div>
1930 <!-- _______________________________________________________________________ -->
1931 <div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1932 Instruction</a> </div>
1933 <div class="doc_text">
1934 <h5>Syntax:</h5>
1935 <pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1936 </pre>
1937 <h5>Overview:</h5>
1938 <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
1939 <h5>Arguments:</h5>
1940 <p>The two arguments to the '<tt>add</tt>' instruction must be either <a
1941 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
1942 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1943 Both arguments must have identical types.</p>
1944 <h5>Semantics:</h5>
1945 <p>The value produced is the integer or floating point sum of the two
1946 operands.</p>
1947 <h5>Example:</h5>
1948 <pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
1949 </pre>
1950 </div>
1951 <!-- _______________________________________________________________________ -->
1952 <div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1953 Instruction</a> </div>
1954 <div class="doc_text">
1955 <h5>Syntax:</h5>
1956 <pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1957 </pre>
1958 <h5>Overview:</h5>
1959 <p>The '<tt>sub</tt>' instruction returns the difference of its two
1960 operands.</p>
1961 <p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1962 instruction present in most other intermediate representations.</p>
1963 <h5>Arguments:</h5>
1964 <p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
1965 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
1966 values.
1967 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1968 Both arguments must have identical types.</p>
1969 <h5>Semantics:</h5>
1970 <p>The value produced is the integer or floating point difference of
1971 the two operands.</p>
1972 <h5>Example:</h5>
1973 <pre>
1974 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
1975 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
1976 </pre>
1977 </div>
1978 <!-- _______________________________________________________________________ -->
1979 <div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1980 Instruction</a> </div>
1981 <div class="doc_text">
1982 <h5>Syntax:</h5>
1983 <pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1984 </pre>
1985 <h5>Overview:</h5>
1986 <p>The '<tt>mul</tt>' instruction returns the product of its two
1987 operands.</p>
1988 <h5>Arguments:</h5>
1989 <p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
1990 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
1991 values.
1992 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1993 Both arguments must have identical types.</p>
1994 <h5>Semantics:</h5>
1995 <p>The value produced is the integer or floating point product of the
1996 two operands.</p>
1997 <p>Because the operands are the same width, the result of an integer
1998 multiplication is the same whether the operands should be deemed unsigned or
1999 signed.</p>
2000 <h5>Example:</h5>
2001 <pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2002 </pre>
2003 </div>
2004 <!-- _______________________________________________________________________ -->
2005 <div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2006 </a></div>
2007 <div class="doc_text">
2008 <h5>Syntax:</h5>
2009 <pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2010 </pre>
2011 <h5>Overview:</h5>
2012 <p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2013 operands.</p>
2014 <h5>Arguments:</h5>
2015 <p>The two arguments to the '<tt>udiv</tt>' instruction must be
2016 <a href="#t_integer">integer</a> values. Both arguments must have identical
2017 types. This instruction can also take <a href="#t_vector">vector</a> versions
2018 of the values in which case the elements must be integers.</p>
2019 <h5>Semantics:</h5>
2020 <p>The value produced is the unsigned integer quotient of the two operands. This
2021 instruction always performs an unsigned division operation, regardless of
2022 whether the arguments are unsigned or not.</p>
2023 <h5>Example:</h5>
2024 <pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2025 </pre>
2026 </div>
2027 <!-- _______________________________________________________________________ -->
2028 <div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2029 </a> </div>
2030 <div class="doc_text">
2031 <h5>Syntax:</h5>
2032 <pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2033 </pre>
2034 <h5>Overview:</h5>
2035 <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2036 operands.</p>
2037 <h5>Arguments:</h5>
2038 <p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2039 <a href="#t_integer">integer</a> values. Both arguments must have identical
2040 types. This instruction can also take <a href="#t_vector">vector</a> versions
2041 of the values in which case the elements must be integers.</p>
2042 <h5>Semantics:</h5>
2043 <p>The value produced is the signed integer quotient of the two operands. This
2044 instruction always performs a signed division operation, regardless of whether
2045 the arguments are signed or not.</p>
2046 <h5>Example:</h5>
2047 <pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2048 </pre>
2049 </div>
2050 <!-- _______________________________________________________________________ -->
2051 <div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2052 Instruction</a> </div>
2053 <div class="doc_text">
2054 <h5>Syntax:</h5>
2055 <pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2056 </pre>
2057 <h5>Overview:</h5>
2058 <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2059 operands.</p>
2060 <h5>Arguments:</h5>
2061 <p>The two arguments to the '<tt>fdiv</tt>' instruction must be
2062 <a href="#t_floating">floating point</a> values. Both arguments must have
2063 identical types. This instruction can also take <a href="#t_vector">vector</a>
2064 versions of floating point values.</p>
2065 <h5>Semantics:</h5>
2066 <p>The value produced is the floating point quotient of the two operands.</p>
2067 <h5>Example:</h5>
2068 <pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
2069 </pre>
2070 </div>
2071 <!-- _______________________________________________________________________ -->
2072 <div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2073 </div>
2074 <div class="doc_text">
2075 <h5>Syntax:</h5>
2076 <pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2077 </pre>
2078 <h5>Overview:</h5>
2079 <p>The '<tt>urem</tt>' instruction returns the remainder from the
2080 unsigned division of its two arguments.</p>
2081 <h5>Arguments:</h5>
2082 <p>The two arguments to the '<tt>urem</tt>' instruction must be
2083 <a href="#t_integer">integer</a> values. Both arguments must have identical
2084 types.</p>
2085 <h5>Semantics:</h5>
2086 <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2087 This instruction always performs an unsigned division to get the remainder,
2088 regardless of whether the arguments are unsigned or not.</p>
2089 <h5>Example:</h5>
2090 <pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2091 </pre>
2093 </div>
2094 <!-- _______________________________________________________________________ -->
2095 <div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
2096 Instruction</a> </div>
2097 <div class="doc_text">
2098 <h5>Syntax:</h5>
2099 <pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2100 </pre>
2101 <h5>Overview:</h5>
2102 <p>The '<tt>srem</tt>' instruction returns the remainder from the
2103 signed division of its two operands.</p>
2104 <h5>Arguments:</h5>
2105 <p>The two arguments to the '<tt>srem</tt>' instruction must be
2106 <a href="#t_integer">integer</a> values. Both arguments must have identical
2107 types.</p>
2108 <h5>Semantics:</h5>
2109 <p>This instruction returns the <i>remainder</i> of a division (where the result
2110 has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2111 operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2112 a value. For more information about the difference, see <a
2113 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2114 Math Forum</a>. For a table of how this is implemented in various languages,
2115 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2116 Wikipedia: modulo operation</a>.</p>
2117 <h5>Example:</h5>
2118 <pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2119 </pre>
2121 </div>
2122 <!-- _______________________________________________________________________ -->
2123 <div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2124 Instruction</a> </div>
2125 <div class="doc_text">
2126 <h5>Syntax:</h5>
2127 <pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2128 </pre>
2129 <h5>Overview:</h5>
2130 <p>The '<tt>frem</tt>' instruction returns the remainder from the
2131 division of its two operands.</p>
2132 <h5>Arguments:</h5>
2133 <p>The two arguments to the '<tt>frem</tt>' instruction must be
2134 <a href="#t_floating">floating point</a> values. Both arguments must have
2135 identical types.</p>
2136 <h5>Semantics:</h5>
2137 <p>This instruction returns the <i>remainder</i> of a division.</p>
2138 <h5>Example:</h5>
2139 <pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
2140 </pre>
2141 </div>
2143 <!-- ======================================================================= -->
2144 <div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2145 Operations</a> </div>
2146 <div class="doc_text">
2147 <p>Bitwise binary operators are used to do various forms of
2148 bit-twiddling in a program. They are generally very efficient
2149 instructions and can commonly be strength reduced from other
2150 instructions. They require two operands, execute an operation on them,
2151 and produce a single value. The resulting value of the bitwise binary
2152 operators is always the same type as its first operand.</p>
2153 </div>
2155 <!-- _______________________________________________________________________ -->
2156 <div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2157 Instruction</a> </div>
2158 <div class="doc_text">
2159 <h5>Syntax:</h5>
2160 <pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2161 </pre>
2162 <h5>Overview:</h5>
2163 <p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2164 the left a specified number of bits.</p>
2165 <h5>Arguments:</h5>
2166 <p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2167 href="#t_integer">integer</a> type.</p>
2168 <h5>Semantics:</h5>
2169 <p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
2170 <h5>Example:</h5><pre>
2171 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2172 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2173 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
2174 </pre>
2175 </div>
2176 <!-- _______________________________________________________________________ -->
2177 <div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2178 Instruction</a> </div>
2179 <div class="doc_text">
2180 <h5>Syntax:</h5>
2181 <pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2182 </pre>
2184 <h5>Overview:</h5>
2185 <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2186 operand shifted to the right a specified number of bits with zero fill.</p>
2188 <h5>Arguments:</h5>
2189 <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2190 <a href="#t_integer">integer</a> type.</p>
2192 <h5>Semantics:</h5>
2193 <p>This instruction always performs a logical shift right operation. The most
2194 significant bits of the result will be filled with zero bits after the
2195 shift.</p>
2197 <h5>Example:</h5>
2198 <pre>
2199 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2200 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2201 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2202 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
2203 </pre>
2204 </div>
2206 <!-- _______________________________________________________________________ -->
2207 <div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2208 Instruction</a> </div>
2209 <div class="doc_text">
2211 <h5>Syntax:</h5>
2212 <pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2213 </pre>
2215 <h5>Overview:</h5>
2216 <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2217 operand shifted to the right a specified number of bits with sign extension.</p>
2219 <h5>Arguments:</h5>
2220 <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2221 <a href="#t_integer">integer</a> type.</p>
2223 <h5>Semantics:</h5>
2224 <p>This instruction always performs an arithmetic shift right operation,
2225 The most significant bits of the result will be filled with the sign bit
2226 of <tt>var1</tt>.</p>
2228 <h5>Example:</h5>
2229 <pre>
2230 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2231 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2232 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2233 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
2234 </pre>
2235 </div>
2237 <!-- _______________________________________________________________________ -->
2238 <div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2239 Instruction</a> </div>
2240 <div class="doc_text">
2241 <h5>Syntax:</h5>
2242 <pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2243 </pre>
2244 <h5>Overview:</h5>
2245 <p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2246 its two operands.</p>
2247 <h5>Arguments:</h5>
2248 <p>The two arguments to the '<tt>and</tt>' instruction must be <a
2249 href="#t_integer">integer</a> values. Both arguments must have
2250 identical types.</p>
2251 <h5>Semantics:</h5>
2252 <p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2253 <p> </p>
2254 <div style="align: center">
2255 <table border="1" cellspacing="0" cellpadding="4">
2256 <tbody>
2257 <tr>
2258 <td>In0</td>
2259 <td>In1</td>
2260 <td>Out</td>
2261 </tr>
2262 <tr>
2263 <td>0</td>
2264 <td>0</td>
2265 <td>0</td>
2266 </tr>
2267 <tr>
2268 <td>0</td>
2269 <td>1</td>
2270 <td>0</td>
2271 </tr>
2272 <tr>
2273 <td>1</td>
2274 <td>0</td>
2275 <td>0</td>
2276 </tr>
2277 <tr>
2278 <td>1</td>
2279 <td>1</td>
2280 <td>1</td>
2281 </tr>
2282 </tbody>
2283 </table>
2284 </div>
2285 <h5>Example:</h5>
2286 <pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2287 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2288 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2289 </pre>
2290 </div>
2291 <!-- _______________________________________________________________________ -->
2292 <div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2293 <div class="doc_text">
2294 <h5>Syntax:</h5>
2295 <pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2296 </pre>
2297 <h5>Overview:</h5>
2298 <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2299 or of its two operands.</p>
2300 <h5>Arguments:</h5>
2301 <p>The two arguments to the '<tt>or</tt>' instruction must be <a
2302 href="#t_integer">integer</a> values. Both arguments must have
2303 identical types.</p>
2304 <h5>Semantics:</h5>
2305 <p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2306 <p> </p>
2307 <div style="align: center">
2308 <table border="1" cellspacing="0" cellpadding="4">
2309 <tbody>
2310 <tr>
2311 <td>In0</td>
2312 <td>In1</td>
2313 <td>Out</td>
2314 </tr>
2315 <tr>
2316 <td>0</td>
2317 <td>0</td>
2318 <td>0</td>
2319 </tr>
2320 <tr>
2321 <td>0</td>
2322 <td>1</td>
2323 <td>1</td>
2324 </tr>
2325 <tr>
2326 <td>1</td>
2327 <td>0</td>
2328 <td>1</td>
2329 </tr>
2330 <tr>
2331 <td>1</td>
2332 <td>1</td>
2333 <td>1</td>
2334 </tr>
2335 </tbody>
2336 </table>
2337 </div>
2338 <h5>Example:</h5>
2339 <pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2340 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2341 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2342 </pre>
2343 </div>
2344 <!-- _______________________________________________________________________ -->
2345 <div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2346 Instruction</a> </div>
2347 <div class="doc_text">
2348 <h5>Syntax:</h5>
2349 <pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2350 </pre>
2351 <h5>Overview:</h5>
2352 <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2353 or of its two operands. The <tt>xor</tt> is used to implement the
2354 "one's complement" operation, which is the "~" operator in C.</p>
2355 <h5>Arguments:</h5>
2356 <p>The two arguments to the '<tt>xor</tt>' instruction must be <a
2357 href="#t_integer">integer</a> values. Both arguments must have
2358 identical types.</p>
2359 <h5>Semantics:</h5>
2360 <p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2361 <p> </p>
2362 <div style="align: center">
2363 <table border="1" cellspacing="0" cellpadding="4">
2364 <tbody>
2365 <tr>
2366 <td>In0</td>
2367 <td>In1</td>
2368 <td>Out</td>
2369 </tr>
2370 <tr>
2371 <td>0</td>
2372 <td>0</td>
2373 <td>0</td>
2374 </tr>
2375 <tr>
2376 <td>0</td>
2377 <td>1</td>
2378 <td>1</td>
2379 </tr>
2380 <tr>
2381 <td>1</td>
2382 <td>0</td>
2383 <td>1</td>
2384 </tr>
2385 <tr>
2386 <td>1</td>
2387 <td>1</td>
2388 <td>0</td>
2389 </tr>
2390 </tbody>
2391 </table>
2392 </div>
2393 <p> </p>
2394 <h5>Example:</h5>
2395 <pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2396 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2397 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2398 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
2399 </pre>
2400 </div>
2402 <!-- ======================================================================= -->
2403 <div class="doc_subsection">
2404 <a name="vectorops">Vector Operations</a>
2405 </div>
2407 <div class="doc_text">
2409 <p>LLVM supports several instructions to represent vector operations in a
2410 target-independent manner. These instructions cover the element-access and
2411 vector-specific operations needed to process vectors effectively. While LLVM
2412 does directly support these vector operations, many sophisticated algorithms
2413 will want to use target-specific intrinsics to take full advantage of a specific
2414 target.</p>
2416 </div>
2418 <!-- _______________________________________________________________________ -->
2419 <div class="doc_subsubsection">
2420 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2421 </div>
2423 <div class="doc_text">
2425 <h5>Syntax:</h5>
2427 <pre>
2428 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2429 </pre>
2431 <h5>Overview:</h5>
2434 The '<tt>extractelement</tt>' instruction extracts a single scalar
2435 element from a vector at a specified index.
2436 </p>
2439 <h5>Arguments:</h5>
2442 The first operand of an '<tt>extractelement</tt>' instruction is a
2443 value of <a href="#t_vector">vector</a> type. The second operand is
2444 an index indicating the position from which to extract the element.
2445 The index may be a variable.</p>
2447 <h5>Semantics:</h5>
2450 The result is a scalar of the same type as the element type of
2451 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2452 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2453 results are undefined.
2454 </p>
2456 <h5>Example:</h5>
2458 <pre>
2459 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
2460 </pre>
2461 </div>
2464 <!-- _______________________________________________________________________ -->
2465 <div class="doc_subsubsection">
2466 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2467 </div>
2469 <div class="doc_text">
2471 <h5>Syntax:</h5>
2473 <pre>
2474 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2475 </pre>
2477 <h5>Overview:</h5>
2480 The '<tt>insertelement</tt>' instruction inserts a scalar
2481 element into a vector at a specified index.
2482 </p>
2485 <h5>Arguments:</h5>
2488 The first operand of an '<tt>insertelement</tt>' instruction is a
2489 value of <a href="#t_vector">vector</a> type. The second operand is a
2490 scalar value whose type must equal the element type of the first
2491 operand. The third operand is an index indicating the position at
2492 which to insert the value. The index may be a variable.</p>
2494 <h5>Semantics:</h5>
2497 The result is a vector of the same type as <tt>val</tt>. Its
2498 element values are those of <tt>val</tt> except at position
2499 <tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2500 exceeds the length of <tt>val</tt>, the results are undefined.
2501 </p>
2503 <h5>Example:</h5>
2505 <pre>
2506 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
2507 </pre>
2508 </div>
2510 <!-- _______________________________________________________________________ -->
2511 <div class="doc_subsubsection">
2512 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2513 </div>
2515 <div class="doc_text">
2517 <h5>Syntax:</h5>
2519 <pre>
2520 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2521 </pre>
2523 <h5>Overview:</h5>
2526 The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2527 from two input vectors, returning a vector of the same type.
2528 </p>
2530 <h5>Arguments:</h5>
2533 The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2534 with types that match each other and types that match the result of the
2535 instruction. The third argument is a shuffle mask, which has the same number
2536 of elements as the other vector type, but whose element type is always 'i32'.
2537 </p>
2540 The shuffle mask operand is required to be a constant vector with either
2541 constant integer or undef values.
2542 </p>
2544 <h5>Semantics:</h5>
2547 The elements of the two input vectors are numbered from left to right across
2548 both of the vectors. The shuffle mask operand specifies, for each element of
2549 the result vector, which element of the two input registers the result element
2550 gets. The element selector may be undef (meaning "don't care") and the second
2551 operand may be undef if performing a shuffle from only one vector.
2552 </p>
2554 <h5>Example:</h5>
2556 <pre>
2557 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2558 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2559 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2560 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2561 </pre>
2562 </div>
2565 <!-- ======================================================================= -->
2566 <div class="doc_subsection">
2567 <a name="memoryops">Memory Access and Addressing Operations</a>
2568 </div>
2570 <div class="doc_text">
2572 <p>A key design point of an SSA-based representation is how it
2573 represents memory. In LLVM, no memory locations are in SSA form, which
2574 makes things very simple. This section describes how to read, write,
2575 allocate, and free memory in LLVM.</p>
2577 </div>
2579 <!-- _______________________________________________________________________ -->
2580 <div class="doc_subsubsection">
2581 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2582 </div>
2584 <div class="doc_text">
2586 <h5>Syntax:</h5>
2588 <pre>
2589 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2590 </pre>
2592 <h5>Overview:</h5>
2594 <p>The '<tt>malloc</tt>' instruction allocates memory from the system
2595 heap and returns a pointer to it.</p>
2597 <h5>Arguments:</h5>
2599 <p>The '<tt>malloc</tt>' instruction allocates
2600 <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2601 bytes of memory from the operating system and returns a pointer of the
2602 appropriate type to the program. If "NumElements" is specified, it is the
2603 number of elements allocated. If an alignment is specified, the value result
2604 of the allocation is guaranteed to be aligned to at least that boundary. If
2605 not specified, or if zero, the target can choose to align the allocation on any
2606 convenient boundary.</p>
2608 <p>'<tt>type</tt>' must be a sized type.</p>
2610 <h5>Semantics:</h5>
2612 <p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2613 a pointer is returned.</p>
2615 <h5>Example:</h5>
2617 <pre>
2618 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
2620 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2621 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2622 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2623 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2624 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
2625 </pre>
2626 </div>
2628 <!-- _______________________________________________________________________ -->
2629 <div class="doc_subsubsection">
2630 <a name="i_free">'<tt>free</tt>' Instruction</a>
2631 </div>
2633 <div class="doc_text">
2635 <h5>Syntax:</h5>
2637 <pre>
2638 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
2639 </pre>
2641 <h5>Overview:</h5>
2643 <p>The '<tt>free</tt>' instruction returns memory back to the unused
2644 memory heap to be reallocated in the future.</p>
2646 <h5>Arguments:</h5>
2648 <p>'<tt>value</tt>' shall be a pointer value that points to a value
2649 that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2650 instruction.</p>
2652 <h5>Semantics:</h5>
2654 <p>Access to the memory pointed to by the pointer is no longer defined
2655 after this instruction executes.</p>
2657 <h5>Example:</h5>
2659 <pre>
2660 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2661 free [4 x i8]* %array
2662 </pre>
2663 </div>
2665 <!-- _______________________________________________________________________ -->
2666 <div class="doc_subsubsection">
2667 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2668 </div>
2670 <div class="doc_text">
2672 <h5>Syntax:</h5>
2674 <pre>
2675 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2676 </pre>
2678 <h5>Overview:</h5>
2680 <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2681 currently executing function, to be automatically released when this function
2682 returns to its caller.</p>
2684 <h5>Arguments:</h5>
2686 <p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2687 bytes of memory on the runtime stack, returning a pointer of the
2688 appropriate type to the program. If "NumElements" is specified, it is the
2689 number of elements allocated. If an alignment is specified, the value result
2690 of the allocation is guaranteed to be aligned to at least that boundary. If
2691 not specified, or if zero, the target can choose to align the allocation on any
2692 convenient boundary.</p>
2694 <p>'<tt>type</tt>' may be any sized type.</p>
2696 <h5>Semantics:</h5>
2698 <p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
2699 memory is automatically released when the function returns. The '<tt>alloca</tt>'
2700 instruction is commonly used to represent automatic variables that must
2701 have an address available. When the function returns (either with the <tt><a
2702 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
2703 instructions), the memory is reclaimed.</p>
2705 <h5>Example:</h5>
2707 <pre>
2708 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
2709 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2710 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
2711 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
2712 </pre>
2713 </div>
2715 <!-- _______________________________________________________________________ -->
2716 <div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2717 Instruction</a> </div>
2718 <div class="doc_text">
2719 <h5>Syntax:</h5>
2720 <pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
2721 <h5>Overview:</h5>
2722 <p>The '<tt>load</tt>' instruction is used to read from memory.</p>
2723 <h5>Arguments:</h5>
2724 <p>The argument to the '<tt>load</tt>' instruction specifies the memory
2725 address from which to load. The pointer must point to a <a
2726 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
2727 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
2728 the number or order of execution of this <tt>load</tt> with other
2729 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2730 instructions. </p>
2731 <h5>Semantics:</h5>
2732 <p>The location of memory pointed to is loaded.</p>
2733 <h5>Examples:</h5>
2734 <pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2736 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2737 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2738 </pre>
2739 </div>
2740 <!-- _______________________________________________________________________ -->
2741 <div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2742 Instruction</a> </div>
2743 <div class="doc_text">
2744 <h5>Syntax:</h5>
2745 <pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2746 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2747 </pre>
2748 <h5>Overview:</h5>
2749 <p>The '<tt>store</tt>' instruction is used to write to memory.</p>
2750 <h5>Arguments:</h5>
2751 <p>There are two arguments to the '<tt>store</tt>' instruction: a value
2752 to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
2753 operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
2754 operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
2755 optimizer is not allowed to modify the number or order of execution of
2756 this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2757 href="#i_store">store</a></tt> instructions.</p>
2758 <h5>Semantics:</h5>
2759 <p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2760 at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
2761 <h5>Example:</h5>
2762 <pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2764 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2765 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2766 </pre>
2767 </div>
2769 <!-- _______________________________________________________________________ -->
2770 <div class="doc_subsubsection">
2771 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2772 </div>
2774 <div class="doc_text">
2775 <h5>Syntax:</h5>
2776 <pre>
2777 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2778 </pre>
2780 <h5>Overview:</h5>
2783 The '<tt>getelementptr</tt>' instruction is used to get the address of a
2784 subelement of an aggregate data structure.</p>
2786 <h5>Arguments:</h5>
2788 <p>This instruction takes a list of integer operands that indicate what
2789 elements of the aggregate object to index to. The actual types of the arguments
2790 provided depend on the type of the first pointer argument. The
2791 '<tt>getelementptr</tt>' instruction is used to index down through the type
2792 levels of a structure or to a specific index in an array. When indexing into a
2793 structure, only <tt>i32</tt> integer constants are allowed. When indexing
2794 into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2795 be sign extended to 64-bit values.</p>
2797 <p>For example, let's consider a C code fragment and how it gets
2798 compiled to LLVM:</p>
2800 <div class="doc_code">
2801 <pre>
2802 struct RT {
2803 char A;
2804 int B[10][20];
2805 char C;
2807 struct ST {
2808 int X;
2809 double Y;
2810 struct RT Z;
2813 int *foo(struct ST *s) {
2814 return &amp;s[1].Z.B[5][13];
2816 </pre>
2817 </div>
2819 <p>The LLVM code generated by the GCC frontend is:</p>
2821 <div class="doc_code">
2822 <pre>
2823 %RT = type { i8 , [10 x [20 x i32]], i8 }
2824 %ST = type { i32, double, %RT }
2826 define i32* %foo(%ST* %s) {
2827 entry:
2828 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2829 ret i32* %reg
2831 </pre>
2832 </div>
2834 <h5>Semantics:</h5>
2836 <p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
2837 on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
2838 and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
2839 <a href="#t_integer">integer</a> type but the value will always be sign extended
2840 to 64-bits. <a href="#t_struct">Structure</a> types require <tt>i32</tt>
2841 <b>constants</b>.</p>
2843 <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
2844 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
2845 }</tt>' type, a structure. The second index indexes into the third element of
2846 the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2847 i8 }</tt>' type, another structure. The third index indexes into the second
2848 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
2849 array. The two dimensions of the array are subscripted into, yielding an
2850 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
2851 to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
2853 <p>Note that it is perfectly legal to index partially through a
2854 structure, returning a pointer to an inner element. Because of this,
2855 the LLVM code for the given testcase is equivalent to:</p>
2857 <pre>
2858 define i32* %foo(%ST* %s) {
2859 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
2860 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
2861 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
2862 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
2863 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
2864 ret i32* %t5
2866 </pre>
2868 <p>Note that it is undefined to access an array out of bounds: array and
2869 pointer indexes must always be within the defined bounds of the array type.
2870 The one exception for this rules is zero length arrays. These arrays are
2871 defined to be accessible as variable length arrays, which requires access
2872 beyond the zero'th element.</p>
2874 <p>The getelementptr instruction is often confusing. For some more insight
2875 into how it works, see <a href="GetElementPtr.html">the getelementptr
2876 FAQ</a>.</p>
2878 <h5>Example:</h5>
2880 <pre>
2881 <i>; yields [12 x i8]*:aptr</i>
2882 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
2883 </pre>
2884 </div>
2886 <!-- ======================================================================= -->
2887 <div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
2888 </div>
2889 <div class="doc_text">
2890 <p>The instructions in this category are the conversion instructions (casting)
2891 which all take a single operand and a type. They perform various bit conversions
2892 on the operand.</p>
2893 </div>
2895 <!-- _______________________________________________________________________ -->
2896 <div class="doc_subsubsection">
2897 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2898 </div>
2899 <div class="doc_text">
2901 <h5>Syntax:</h5>
2902 <pre>
2903 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2904 </pre>
2906 <h5>Overview:</h5>
2908 The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2909 </p>
2911 <h5>Arguments:</h5>
2913 The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2914 be an <a href="#t_integer">integer</a> type, and a type that specifies the size
2915 and type of the result, which must be an <a href="#t_integer">integer</a>
2916 type. The bit size of <tt>value</tt> must be larger than the bit size of
2917 <tt>ty2</tt>. Equal sized types are not allowed.</p>
2919 <h5>Semantics:</h5>
2921 The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
2922 and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2923 larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2924 It will always truncate bits.</p>
2926 <h5>Example:</h5>
2927 <pre>
2928 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
2929 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
2930 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
2931 </pre>
2932 </div>
2934 <!-- _______________________________________________________________________ -->
2935 <div class="doc_subsubsection">
2936 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2937 </div>
2938 <div class="doc_text">
2940 <h5>Syntax:</h5>
2941 <pre>
2942 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2943 </pre>
2945 <h5>Overview:</h5>
2946 <p>The '<tt>zext</tt>' instruction zero extends its operand to type
2947 <tt>ty2</tt>.</p>
2950 <h5>Arguments:</h5>
2951 <p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
2952 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
2953 also be of <a href="#t_integer">integer</a> type. The bit size of the
2954 <tt>value</tt> must be smaller than the bit size of the destination type,
2955 <tt>ty2</tt>.</p>
2957 <h5>Semantics:</h5>
2958 <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
2959 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
2961 <p>When zero extending from i1, the result will always be either 0 or 1.</p>
2963 <h5>Example:</h5>
2964 <pre>
2965 %X = zext i32 257 to i64 <i>; yields i64:257</i>
2966 %Y = zext i1 true to i32 <i>; yields i32:1</i>
2967 </pre>
2968 </div>
2970 <!-- _______________________________________________________________________ -->
2971 <div class="doc_subsubsection">
2972 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
2973 </div>
2974 <div class="doc_text">
2976 <h5>Syntax:</h5>
2977 <pre>
2978 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2979 </pre>
2981 <h5>Overview:</h5>
2982 <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
2984 <h5>Arguments:</h5>
2986 The '<tt>sext</tt>' instruction takes a value to cast, which must be of
2987 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
2988 also be of <a href="#t_integer">integer</a> type. The bit size of the
2989 <tt>value</tt> must be smaller than the bit size of the destination type,
2990 <tt>ty2</tt>.</p>
2992 <h5>Semantics:</h5>
2994 The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
2995 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
2996 the type <tt>ty2</tt>.</p>
2998 <p>When sign extending from i1, the extension always results in -1 or 0.</p>
3000 <h5>Example:</h5>
3001 <pre>
3002 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
3003 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
3004 </pre>
3005 </div>
3007 <!-- _______________________________________________________________________ -->
3008 <div class="doc_subsubsection">
3009 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3010 </div>
3012 <div class="doc_text">
3014 <h5>Syntax:</h5>
3016 <pre>
3017 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3018 </pre>
3020 <h5>Overview:</h5>
3021 <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3022 <tt>ty2</tt>.</p>
3025 <h5>Arguments:</h5>
3026 <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3027 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3028 cast it to. The size of <tt>value</tt> must be larger than the size of
3029 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3030 <i>no-op cast</i>.</p>
3032 <h5>Semantics:</h5>
3033 <p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3034 <a href="#t_floating">floating point</a> type to a smaller
3035 <a href="#t_floating">floating point</a> type. If the value cannot fit within
3036 the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3038 <h5>Example:</h5>
3039 <pre>
3040 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3041 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3042 </pre>
3043 </div>
3045 <!-- _______________________________________________________________________ -->
3046 <div class="doc_subsubsection">
3047 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3048 </div>
3049 <div class="doc_text">
3051 <h5>Syntax:</h5>
3052 <pre>
3053 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3054 </pre>
3056 <h5>Overview:</h5>
3057 <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3058 floating point value.</p>
3060 <h5>Arguments:</h5>
3061 <p>The '<tt>fpext</tt>' instruction takes a
3062 <a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3063 and a <a href="#t_floating">floating point</a> type to cast it to. The source
3064 type must be smaller than the destination type.</p>
3066 <h5>Semantics:</h5>
3067 <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3068 <a href="#t_floating">floating point</a> type to a larger
3069 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3070 used to make a <i>no-op cast</i> because it always changes bits. Use
3071 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3073 <h5>Example:</h5>
3074 <pre>
3075 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3076 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3077 </pre>
3078 </div>
3080 <!-- _______________________________________________________________________ -->
3081 <div class="doc_subsubsection">
3082 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3083 </div>
3084 <div class="doc_text">
3086 <h5>Syntax:</h5>
3087 <pre>
3088 &lt;result&gt; = fp2uint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3089 </pre>
3091 <h5>Overview:</h5>
3092 <p>The '<tt>fp2uint</tt>' converts a floating point <tt>value</tt> to its
3093 unsigned integer equivalent of type <tt>ty2</tt>.
3094 </p>
3096 <h5>Arguments:</h5>
3097 <p>The '<tt>fp2uint</tt>' instruction takes a value to cast, which must be a
3098 <a href="#t_floating">floating point</a> value, and a type to cast it to, which
3099 must be an <a href="#t_integer">integer</a> type.</p>
3101 <h5>Semantics:</h5>
3102 <p> The '<tt>fp2uint</tt>' instruction converts its
3103 <a href="#t_floating">floating point</a> operand into the nearest (rounding
3104 towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3105 the results are undefined.</p>
3107 <p>When converting to i1, the conversion is done as a comparison against
3108 zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3109 If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
3111 <h5>Example:</h5>
3112 <pre>
3113 %X = fp2uint double 123.0 to i32 <i>; yields i32:123</i>
3114 %Y = fp2uint float 1.0E+300 to i1 <i>; yields i1:true</i>
3115 %X = fp2uint float 1.04E+17 to i8 <i>; yields undefined:1</i>
3116 </pre>
3117 </div>
3119 <!-- _______________________________________________________________________ -->
3120 <div class="doc_subsubsection">
3121 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3122 </div>
3123 <div class="doc_text">
3125 <h5>Syntax:</h5>
3126 <pre>
3127 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3128 </pre>
3130 <h5>Overview:</h5>
3131 <p>The '<tt>fptosi</tt>' instruction converts
3132 <a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3133 </p>
3136 <h5>Arguments:</h5>
3137 <p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
3138 <a href="#t_floating">floating point</a> value, and a type to cast it to, which
3139 must also be an <a href="#t_integer">integer</a> type.</p>
3141 <h5>Semantics:</h5>
3142 <p>The '<tt>fptosi</tt>' instruction converts its
3143 <a href="#t_floating">floating point</a> operand into the nearest (rounding
3144 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3145 the results are undefined.</p>
3147 <p>When converting to i1, the conversion is done as a comparison against
3148 zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3149 If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
3151 <h5>Example:</h5>
3152 <pre>
3153 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
3154 %Y = fptosi float 1.0E-247 to i1 <i>; yields i1:true</i>
3155 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3156 </pre>
3157 </div>
3159 <!-- _______________________________________________________________________ -->
3160 <div class="doc_subsubsection">
3161 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3162 </div>
3163 <div class="doc_text">
3165 <h5>Syntax:</h5>
3166 <pre>
3167 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3168 </pre>
3170 <h5>Overview:</h5>
3171 <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3172 integer and converts that value to the <tt>ty2</tt> type.</p>
3175 <h5>Arguments:</h5>
3176 <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
3177 <a href="#t_integer">integer</a> value, and a type to cast it to, which must
3178 be a <a href="#t_floating">floating point</a> type.</p>
3180 <h5>Semantics:</h5>
3181 <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3182 integer quantity and converts it to the corresponding floating point value. If
3183 the value cannot fit in the floating point value, the results are undefined.</p>
3186 <h5>Example:</h5>
3187 <pre>
3188 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3189 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
3190 </pre>
3191 </div>
3193 <!-- _______________________________________________________________________ -->
3194 <div class="doc_subsubsection">
3195 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3196 </div>
3197 <div class="doc_text">
3199 <h5>Syntax:</h5>
3200 <pre>
3201 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3202 </pre>
3204 <h5>Overview:</h5>
3205 <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3206 integer and converts that value to the <tt>ty2</tt> type.</p>
3208 <h5>Arguments:</h5>
3209 <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
3210 <a href="#t_integer">integer</a> value, and a type to cast it to, which must be
3211 a <a href="#t_floating">floating point</a> type.</p>
3213 <h5>Semantics:</h5>
3214 <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3215 integer quantity and converts it to the corresponding floating point value. If
3216 the value cannot fit in the floating point value, the results are undefined.</p>
3218 <h5>Example:</h5>
3219 <pre>
3220 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3221 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
3222 </pre>
3223 </div>
3225 <!-- _______________________________________________________________________ -->
3226 <div class="doc_subsubsection">
3227 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3228 </div>
3229 <div class="doc_text">
3231 <h5>Syntax:</h5>
3232 <pre>
3233 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3234 </pre>
3236 <h5>Overview:</h5>
3237 <p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3238 the integer type <tt>ty2</tt>.</p>
3240 <h5>Arguments:</h5>
3241 <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3242 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3243 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3245 <h5>Semantics:</h5>
3246 <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3247 <tt>ty2</tt> by interpreting the pointer value as an integer and either
3248 truncating or zero extending that value to the size of the integer type. If
3249 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3250 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3251 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3252 change.</p>
3254 <h5>Example:</h5>
3255 <pre>
3256 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3257 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
3258 </pre>
3259 </div>
3261 <!-- _______________________________________________________________________ -->
3262 <div class="doc_subsubsection">
3263 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3264 </div>
3265 <div class="doc_text">
3267 <h5>Syntax:</h5>
3268 <pre>
3269 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3270 </pre>
3272 <h5>Overview:</h5>
3273 <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3274 a pointer type, <tt>ty2</tt>.</p>
3276 <h5>Arguments:</h5>
3277 <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3278 value to cast, and a type to cast it to, which must be a
3279 <a href="#t_pointer">pointer</a> type.
3281 <h5>Semantics:</h5>
3282 <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3283 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
3284 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3285 size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3286 the size of a pointer then a zero extension is done. If they are the same size,
3287 nothing is done (<i>no-op cast</i>).</p>
3289 <h5>Example:</h5>
3290 <pre>
3291 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3292 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3293 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
3294 </pre>
3295 </div>
3297 <!-- _______________________________________________________________________ -->
3298 <div class="doc_subsubsection">
3299 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3300 </div>
3301 <div class="doc_text">
3303 <h5>Syntax:</h5>
3304 <pre>
3305 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3306 </pre>
3308 <h5>Overview:</h5>
3309 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3310 <tt>ty2</tt> without changing any bits.</p>
3312 <h5>Arguments:</h5>
3313 <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
3314 a first class value, and a type to cast it to, which must also be a <a
3315 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3316 and the destination type, <tt>ty2</tt>, must be identical. If the source
3317 type is a pointer, the destination type must also be a pointer.</p>
3319 <h5>Semantics:</h5>
3320 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3321 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3322 this conversion. The conversion is done as if the <tt>value</tt> had been
3323 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3324 converted to other pointer types with this instruction. To convert pointers to
3325 other types, use the <a href="#i_inttoptr">inttoptr</a> or
3326 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3328 <h5>Example:</h5>
3329 <pre>
3330 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3331 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3332 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
3333 </pre>
3334 </div>
3336 <!-- ======================================================================= -->
3337 <div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3338 <div class="doc_text">
3339 <p>The instructions in this category are the "miscellaneous"
3340 instructions, which defy better classification.</p>
3341 </div>
3343 <!-- _______________________________________________________________________ -->
3344 <div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3345 </div>
3346 <div class="doc_text">
3347 <h5>Syntax:</h5>
3348 <pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3349 </pre>
3350 <h5>Overview:</h5>
3351 <p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3352 of its two integer operands.</p>
3353 <h5>Arguments:</h5>
3354 <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3355 the condition code indicating the kind of comparison to perform. It is not
3356 a value, just a keyword. The possible condition code are:
3357 <ol>
3358 <li><tt>eq</tt>: equal</li>
3359 <li><tt>ne</tt>: not equal </li>
3360 <li><tt>ugt</tt>: unsigned greater than</li>
3361 <li><tt>uge</tt>: unsigned greater or equal</li>
3362 <li><tt>ult</tt>: unsigned less than</li>
3363 <li><tt>ule</tt>: unsigned less or equal</li>
3364 <li><tt>sgt</tt>: signed greater than</li>
3365 <li><tt>sge</tt>: signed greater or equal</li>
3366 <li><tt>slt</tt>: signed less than</li>
3367 <li><tt>sle</tt>: signed less or equal</li>
3368 </ol>
3369 <p>The remaining two arguments must be <a href="#t_integer">integer</a> or
3370 <a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
3371 <h5>Semantics:</h5>
3372 <p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3373 the condition code given as <tt>cond</tt>. The comparison performed always
3374 yields a <a href="#t_primitive">i1</a> result, as follows:
3375 <ol>
3376 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3377 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3378 </li>
3379 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3380 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3381 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3382 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3383 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3384 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3385 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3386 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3387 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3388 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3389 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3390 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3391 <li><tt>sge</tt>: interprets the operands as signed values and yields
3392 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3393 <li><tt>slt</tt>: interprets the operands as signed values and yields
3394 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3395 <li><tt>sle</tt>: interprets the operands as signed values and yields
3396 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3397 </ol>
3398 <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3399 values are compared as if they were integers.</p>
3401 <h5>Example:</h5>
3402 <pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3403 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3404 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3405 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3406 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3407 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
3408 </pre>
3409 </div>
3411 <!-- _______________________________________________________________________ -->
3412 <div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3413 </div>
3414 <div class="doc_text">
3415 <h5>Syntax:</h5>
3416 <pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3417 </pre>
3418 <h5>Overview:</h5>
3419 <p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3420 of its floating point operands.</p>
3421 <h5>Arguments:</h5>
3422 <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3423 the condition code indicating the kind of comparison to perform. It is not
3424 a value, just a keyword. The possible condition code are:
3425 <ol>
3426 <li><tt>false</tt>: no comparison, always returns false</li>
3427 <li><tt>oeq</tt>: ordered and equal</li>
3428 <li><tt>ogt</tt>: ordered and greater than </li>
3429 <li><tt>oge</tt>: ordered and greater than or equal</li>
3430 <li><tt>olt</tt>: ordered and less than </li>
3431 <li><tt>ole</tt>: ordered and less than or equal</li>
3432 <li><tt>one</tt>: ordered and not equal</li>
3433 <li><tt>ord</tt>: ordered (no nans)</li>
3434 <li><tt>ueq</tt>: unordered or equal</li>
3435 <li><tt>ugt</tt>: unordered or greater than </li>
3436 <li><tt>uge</tt>: unordered or greater than or equal</li>
3437 <li><tt>ult</tt>: unordered or less than </li>
3438 <li><tt>ule</tt>: unordered or less than or equal</li>
3439 <li><tt>une</tt>: unordered or not equal</li>
3440 <li><tt>uno</tt>: unordered (either nans)</li>
3441 <li><tt>true</tt>: no comparison, always returns true</li>
3442 </ol>
3443 <p><i>Ordered</i> means that neither operand is a QNAN while
3444 <i>unordered</i> means that either operand may be a QNAN.</p>
3445 <p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3446 <a href="#t_floating">floating point</a> typed. They must have identical
3447 types.</p>
3448 <h5>Semantics:</h5>
3449 <p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3450 the condition code given as <tt>cond</tt>. The comparison performed always
3451 yields a <a href="#t_primitive">i1</a> result, as follows:
3452 <ol>
3453 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3454 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3455 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3456 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3457 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
3458 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3459 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3460 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3461 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3462 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3463 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3464 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3465 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3466 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3467 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
3468 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3469 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
3470 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3471 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
3472 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3473 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
3474 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3475 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
3476 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3477 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
3478 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3479 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
3480 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3481 </ol>
3483 <h5>Example:</h5>
3484 <pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3485 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3486 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3487 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3488 </pre>
3489 </div>
3491 <!-- _______________________________________________________________________ -->
3492 <div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3493 Instruction</a> </div>
3494 <div class="doc_text">
3495 <h5>Syntax:</h5>
3496 <pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3497 <h5>Overview:</h5>
3498 <p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3499 the SSA graph representing the function.</p>
3500 <h5>Arguments:</h5>
3501 <p>The type of the incoming values is specified with the first type
3502 field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3503 as arguments, with one pair for each predecessor basic block of the
3504 current block. Only values of <a href="#t_firstclass">first class</a>
3505 type may be used as the value arguments to the PHI node. Only labels
3506 may be used as the label arguments.</p>
3507 <p>There must be no non-phi instructions between the start of a basic
3508 block and the PHI instructions: i.e. PHI instructions must be first in
3509 a basic block.</p>
3510 <h5>Semantics:</h5>
3511 <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3512 specified by the pair corresponding to the predecessor basic block that executed
3513 just prior to the current block.</p>
3514 <h5>Example:</h5>
3515 <pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
3516 </div>
3518 <!-- _______________________________________________________________________ -->
3519 <div class="doc_subsubsection">
3520 <a name="i_select">'<tt>select</tt>' Instruction</a>
3521 </div>
3523 <div class="doc_text">
3525 <h5>Syntax:</h5>
3527 <pre>
3528 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
3529 </pre>
3531 <h5>Overview:</h5>
3534 The '<tt>select</tt>' instruction is used to choose one value based on a
3535 condition, without branching.
3536 </p>
3539 <h5>Arguments:</h5>
3542 The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3543 </p>
3545 <h5>Semantics:</h5>
3548 If the boolean condition evaluates to true, the instruction returns the first
3549 value argument; otherwise, it returns the second value argument.
3550 </p>
3552 <h5>Example:</h5>
3554 <pre>
3555 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
3556 </pre>
3557 </div>
3560 <!-- _______________________________________________________________________ -->
3561 <div class="doc_subsubsection">
3562 <a name="i_call">'<tt>call</tt>' Instruction</a>
3563 </div>
3565 <div class="doc_text">
3567 <h5>Syntax:</h5>
3568 <pre>
3569 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt;* &lt;fnptrval&gt;(&lt;param list&gt;)
3570 </pre>
3572 <h5>Overview:</h5>
3574 <p>The '<tt>call</tt>' instruction represents a simple function call.</p>
3576 <h5>Arguments:</h5>
3578 <p>This instruction requires several arguments:</p>
3580 <ol>
3581 <li>
3582 <p>The optional "tail" marker indicates whether the callee function accesses
3583 any allocas or varargs in the caller. If the "tail" marker is present, the
3584 function call is eligible for tail call optimization. Note that calls may
3585 be marked "tail" even if they do not occur before a <a
3586 href="#i_ret"><tt>ret</tt></a> instruction.
3587 </li>
3588 <li>
3589 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
3590 convention</a> the call should use. If none is specified, the call defaults
3591 to using C calling conventions.
3592 </li>
3593 <li>
3594 <p>'<tt>ty</tt>': shall be the signature of the pointer to function value
3595 being invoked. The argument types must match the types implied by this
3596 signature. This type can be omitted if the function is not varargs and
3597 if the function type does not return a pointer to a function.</p>
3598 </li>
3599 <li>
3600 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3601 be invoked. In most cases, this is a direct function invocation, but
3602 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
3603 to function value.</p>
3604 </li>
3605 <li>
3606 <p>'<tt>function args</tt>': argument list whose types match the
3607 function signature argument types. All arguments must be of
3608 <a href="#t_firstclass">first class</a> type. If the function signature
3609 indicates the function accepts a variable number of arguments, the extra
3610 arguments can be specified.</p>
3611 </li>
3612 </ol>
3614 <h5>Semantics:</h5>
3616 <p>The '<tt>call</tt>' instruction is used to cause control flow to
3617 transfer to a specified function, with its incoming arguments bound to
3618 the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3619 instruction in the called function, control flow continues with the
3620 instruction after the function call, and the return value of the
3621 function is bound to the result argument. This is a simpler case of
3622 the <a href="#i_invoke">invoke</a> instruction.</p>
3624 <h5>Example:</h5>
3626 <pre>
3627 %retval = call i32 %test(i32 %argc)
3628 call i32(i8 *, ...) *%printf(i8 * %msg, i32 12, i8 42);
3629 %X = tail call i32 %foo()
3630 %Y = tail call <a href="#callingconv">fastcc</a> i32 %foo()
3631 </pre>
3633 </div>
3635 <!-- _______________________________________________________________________ -->
3636 <div class="doc_subsubsection">
3637 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
3638 </div>
3640 <div class="doc_text">
3642 <h5>Syntax:</h5>
3644 <pre>
3645 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
3646 </pre>
3648 <h5>Overview:</h5>
3650 <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
3651 the "variable argument" area of a function call. It is used to implement the
3652 <tt>va_arg</tt> macro in C.</p>
3654 <h5>Arguments:</h5>
3656 <p>This instruction takes a <tt>va_list*</tt> value and the type of
3657 the argument. It returns a value of the specified argument type and
3658 increments the <tt>va_list</tt> to point to the next argument. The
3659 actual type of <tt>va_list</tt> is target specific.</p>
3661 <h5>Semantics:</h5>
3663 <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3664 type from the specified <tt>va_list</tt> and causes the
3665 <tt>va_list</tt> to point to the next argument. For more information,
3666 see the variable argument handling <a href="#int_varargs">Intrinsic
3667 Functions</a>.</p>
3669 <p>It is legal for this instruction to be called in a function which does not
3670 take a variable number of arguments, for example, the <tt>vfprintf</tt>
3671 function.</p>
3673 <p><tt>va_arg</tt> is an LLVM instruction instead of an <a
3674 href="#intrinsics">intrinsic function</a> because it takes a type as an
3675 argument.</p>
3677 <h5>Example:</h5>
3679 <p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3681 </div>
3683 <!-- *********************************************************************** -->
3684 <div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3685 <!-- *********************************************************************** -->
3687 <div class="doc_text">
3689 <p>LLVM supports the notion of an "intrinsic function". These functions have
3690 well known names and semantics and are required to follow certain restrictions.
3691 Overall, these intrinsics represent an extension mechanism for the LLVM
3692 language that does not require changing all of the transformations in LLVM when
3693 adding to the language (or the bytecode reader/writer, the parser, etc...).</p>
3695 <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3696 prefix is reserved in LLVM for intrinsic names; thus, function names may not
3697 begin with this prefix. Intrinsic functions must always be external functions:
3698 you cannot define the body of intrinsic functions. Intrinsic functions may
3699 only be used in call or invoke instructions: it is illegal to take the address
3700 of an intrinsic function. Additionally, because intrinsic functions are part
3701 of the LLVM language, it is required if any are added that they be documented
3702 here.</p>
3704 <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
3705 a family of functions that perform the same operation but on different data
3706 types. This is most frequent with the integer types. Since LLVM can represent
3707 over 8 million different integer types, there is a way to declare an intrinsic
3708 that can be overloaded based on its arguments. Such an intrinsic will have the
3709 names of its argument types encoded into its function name, each
3710 preceded by a period. For example, the <tt>llvm.ctpop</tt> function can take an
3711 integer of any width. This leads to a family of functions such as
3712 <tt>i32 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i32 @llvm.ctpop.i29(i29 %val)</tt>.
3713 </p>
3716 <p>To learn how to add an intrinsic function, please see the
3717 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
3718 </p>
3720 </div>
3722 <!-- ======================================================================= -->
3723 <div class="doc_subsection">
3724 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3725 </div>
3727 <div class="doc_text">
3729 <p>Variable argument support is defined in LLVM with the <a
3730 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
3731 intrinsic functions. These functions are related to the similarly
3732 named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
3734 <p>All of these functions operate on arguments that use a
3735 target-specific value type "<tt>va_list</tt>". The LLVM assembly
3736 language reference manual does not define what this type is, so all
3737 transformations should be prepared to handle these functions regardless of
3738 the type used.</p>
3740 <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
3741 instruction and the variable argument handling intrinsic functions are
3742 used.</p>
3744 <div class="doc_code">
3745 <pre>
3746 define i32 @test(i32 %X, ...) {
3747 ; Initialize variable argument processing
3748 %ap = alloca i8*
3749 %ap2 = bitcast i8** %ap to i8*
3750 call void @llvm.va_start(i8* %ap2)
3752 ; Read a single integer argument
3753 %tmp = va_arg i8** %ap, i32
3755 ; Demonstrate usage of llvm.va_copy and llvm.va_end
3756 %aq = alloca i8*
3757 %aq2 = bitcast i8** %aq to i8*
3758 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
3759 call void @llvm.va_end(i8* %aq2)
3761 ; Stop processing of arguments.
3762 call void @llvm.va_end(i8* %ap2)
3763 ret i32 %tmp
3766 declare void @llvm.va_start(i8*)
3767 declare void @llvm.va_copy(i8*, i8*)
3768 declare void @llvm.va_end(i8*)
3769 </pre>
3770 </div>
3772 </div>
3774 <!-- _______________________________________________________________________ -->
3775 <div class="doc_subsubsection">
3776 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3777 </div>
3780 <div class="doc_text">
3781 <h5>Syntax:</h5>
3782 <pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
3783 <h5>Overview:</h5>
3784 <P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3785 <tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3786 href="#i_va_arg">va_arg</a></tt>.</p>
3788 <h5>Arguments:</h5>
3790 <P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3792 <h5>Semantics:</h5>
3794 <P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3795 macro available in C. In a target-dependent way, it initializes the
3796 <tt>va_list</tt> element to which the argument points, so that the next call to
3797 <tt>va_arg</tt> will produce the first variable argument passed to the function.
3798 Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3799 last argument of the function as the compiler can figure that out.</p>
3801 </div>
3803 <!-- _______________________________________________________________________ -->
3804 <div class="doc_subsubsection">
3805 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3806 </div>
3808 <div class="doc_text">
3809 <h5>Syntax:</h5>
3810 <pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
3811 <h5>Overview:</h5>
3813 <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
3814 which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
3815 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
3817 <h5>Arguments:</h5>
3819 <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
3821 <h5>Semantics:</h5>
3823 <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
3824 macro available in C. In a target-dependent way, it destroys the
3825 <tt>va_list</tt> element to which the argument points. Calls to <a
3826 href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
3827 <tt>llvm.va_copy</tt></a> must be matched exactly with calls to
3828 <tt>llvm.va_end</tt>.</p>
3830 </div>
3832 <!-- _______________________________________________________________________ -->
3833 <div class="doc_subsubsection">
3834 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3835 </div>
3837 <div class="doc_text">
3839 <h5>Syntax:</h5>
3841 <pre>
3842 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
3843 </pre>
3845 <h5>Overview:</h5>
3847 <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
3848 from the source argument list to the destination argument list.</p>
3850 <h5>Arguments:</h5>
3852 <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
3853 The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
3856 <h5>Semantics:</h5>
3858 <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
3859 macro available in C. In a target-dependent way, it copies the source
3860 <tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
3861 intrinsic is necessary because the <tt><a href="#int_va_start">
3862 llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
3863 example, memory allocation.</p>
3865 </div>
3867 <!-- ======================================================================= -->
3868 <div class="doc_subsection">
3869 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3870 </div>
3872 <div class="doc_text">
3875 LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3876 Collection</a> requires the implementation and generation of these intrinsics.
3877 These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
3878 stack</a>, as well as garbage collector implementations that require <a
3879 href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
3880 Front-ends for type-safe garbage collected languages should generate these
3881 intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3882 href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3883 </p>
3884 </div>
3886 <!-- _______________________________________________________________________ -->
3887 <div class="doc_subsubsection">
3888 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
3889 </div>
3891 <div class="doc_text">
3893 <h5>Syntax:</h5>
3895 <pre>
3896 declare void @llvm.gcroot(&lt;ty&gt;** %ptrloc, &lt;ty2&gt;* %metadata)
3897 </pre>
3899 <h5>Overview:</h5>
3901 <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
3902 the code generator, and allows some metadata to be associated with it.</p>
3904 <h5>Arguments:</h5>
3906 <p>The first argument specifies the address of a stack object that contains the
3907 root pointer. The second pointer (which must be either a constant or a global
3908 value address) contains the meta-data to be associated with the root.</p>
3910 <h5>Semantics:</h5>
3912 <p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3913 location. At compile-time, the code generator generates information to allow
3914 the runtime to find the pointer at GC safe points.
3915 </p>
3917 </div>
3920 <!-- _______________________________________________________________________ -->
3921 <div class="doc_subsubsection">
3922 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
3923 </div>
3925 <div class="doc_text">
3927 <h5>Syntax:</h5>
3929 <pre>
3930 declare i8 * @llvm.gcread(i8 * %ObjPtr, i8 ** %Ptr)
3931 </pre>
3933 <h5>Overview:</h5>
3935 <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3936 locations, allowing garbage collector implementations that require read
3937 barriers.</p>
3939 <h5>Arguments:</h5>
3941 <p>The second argument is the address to read from, which should be an address
3942 allocated from the garbage collector. The first object is a pointer to the
3943 start of the referenced object, if needed by the language runtime (otherwise
3944 null).</p>
3946 <h5>Semantics:</h5>
3948 <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3949 instruction, but may be replaced with substantially more complex code by the
3950 garbage collector runtime, as needed.</p>
3952 </div>
3955 <!-- _______________________________________________________________________ -->
3956 <div class="doc_subsubsection">
3957 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
3958 </div>
3960 <div class="doc_text">
3962 <h5>Syntax:</h5>
3964 <pre>
3965 declare void @llvm.gcwrite(i8 * %P1, i8 * %Obj, i8 ** %P2)
3966 </pre>
3968 <h5>Overview:</h5>
3970 <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
3971 locations, allowing garbage collector implementations that require write
3972 barriers (such as generational or reference counting collectors).</p>
3974 <h5>Arguments:</h5>
3976 <p>The first argument is the reference to store, the second is the start of the
3977 object to store it to, and the third is the address of the field of Obj to
3978 store to. If the runtime does not require a pointer to the object, Obj may be
3979 null.</p>
3981 <h5>Semantics:</h5>
3983 <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
3984 instruction, but may be replaced with substantially more complex code by the
3985 garbage collector runtime, as needed.</p>
3987 </div>
3991 <!-- ======================================================================= -->
3992 <div class="doc_subsection">
3993 <a name="int_codegen">Code Generator Intrinsics</a>
3994 </div>
3996 <div class="doc_text">
3998 These intrinsics are provided by LLVM to expose special features that may only
3999 be implemented with code generator support.
4000 </p>
4002 </div>
4004 <!-- _______________________________________________________________________ -->
4005 <div class="doc_subsubsection">
4006 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4007 </div>
4009 <div class="doc_text">
4011 <h5>Syntax:</h5>
4012 <pre>
4013 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
4014 </pre>
4016 <h5>Overview:</h5>
4019 The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4020 target-specific value indicating the return address of the current function
4021 or one of its callers.
4022 </p>
4024 <h5>Arguments:</h5>
4027 The argument to this intrinsic indicates which function to return the address
4028 for. Zero indicates the calling function, one indicates its caller, etc. The
4029 argument is <b>required</b> to be a constant integer value.
4030 </p>
4032 <h5>Semantics:</h5>
4035 The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4036 the return address of the specified call frame, or zero if it cannot be
4037 identified. The value returned by this intrinsic is likely to be incorrect or 0
4038 for arguments other than zero, so it should only be used for debugging purposes.
4039 </p>
4042 Note that calling this intrinsic does not prevent function inlining or other
4043 aggressive transformations, so the value returned may not be that of the obvious
4044 source-language caller.
4045 </p>
4046 </div>
4049 <!-- _______________________________________________________________________ -->
4050 <div class="doc_subsubsection">
4051 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4052 </div>
4054 <div class="doc_text">
4056 <h5>Syntax:</h5>
4057 <pre>
4058 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
4059 </pre>
4061 <h5>Overview:</h5>
4064 The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4065 target-specific frame pointer value for the specified stack frame.
4066 </p>
4068 <h5>Arguments:</h5>
4071 The argument to this intrinsic indicates which function to return the frame
4072 pointer for. Zero indicates the calling function, one indicates its caller,
4073 etc. The argument is <b>required</b> to be a constant integer value.
4074 </p>
4076 <h5>Semantics:</h5>
4079 The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4080 the frame address of the specified call frame, or zero if it cannot be
4081 identified. The value returned by this intrinsic is likely to be incorrect or 0
4082 for arguments other than zero, so it should only be used for debugging purposes.
4083 </p>
4086 Note that calling this intrinsic does not prevent function inlining or other
4087 aggressive transformations, so the value returned may not be that of the obvious
4088 source-language caller.
4089 </p>
4090 </div>
4092 <!-- _______________________________________________________________________ -->
4093 <div class="doc_subsubsection">
4094 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4095 </div>
4097 <div class="doc_text">
4099 <h5>Syntax:</h5>
4100 <pre>
4101 declare i8 *@llvm.stacksave()
4102 </pre>
4104 <h5>Overview:</h5>
4107 The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4108 the function stack, for use with <a href="#int_stackrestore">
4109 <tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4110 features like scoped automatic variable sized arrays in C99.
4111 </p>
4113 <h5>Semantics:</h5>
4116 This intrinsic returns a opaque pointer value that can be passed to <a
4117 href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4118 <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4119 <tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4120 state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4121 practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4122 that were allocated after the <tt>llvm.stacksave</tt> was executed.
4123 </p>
4125 </div>
4127 <!-- _______________________________________________________________________ -->
4128 <div class="doc_subsubsection">
4129 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4130 </div>
4132 <div class="doc_text">
4134 <h5>Syntax:</h5>
4135 <pre>
4136 declare void @llvm.stackrestore(i8 * %ptr)
4137 </pre>
4139 <h5>Overview:</h5>
4142 The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4143 the function stack to the state it was in when the corresponding <a
4144 href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4145 useful for implementing language features like scoped automatic variable sized
4146 arrays in C99.
4147 </p>
4149 <h5>Semantics:</h5>
4152 See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4153 </p>
4155 </div>
4158 <!-- _______________________________________________________________________ -->
4159 <div class="doc_subsubsection">
4160 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4161 </div>
4163 <div class="doc_text">
4165 <h5>Syntax:</h5>
4166 <pre>
4167 declare void @llvm.prefetch(i8 * &lt;address&gt;,
4168 i32 &lt;rw&gt;, i32 &lt;locality&gt;)
4169 </pre>
4171 <h5>Overview:</h5>
4175 The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4176 a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4178 effect on the behavior of the program but can change its performance
4179 characteristics.
4180 </p>
4182 <h5>Arguments:</h5>
4185 <tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4186 determining if the fetch should be for a read (0) or write (1), and
4187 <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4188 locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
4189 <tt>locality</tt> arguments must be constant integers.
4190 </p>
4192 <h5>Semantics:</h5>
4195 This intrinsic does not modify the behavior of the program. In particular,
4196 prefetches cannot trap and do not produce a value. On targets that support this
4197 intrinsic, the prefetch can provide hints to the processor cache for better
4198 performance.
4199 </p>
4201 </div>
4203 <!-- _______________________________________________________________________ -->
4204 <div class="doc_subsubsection">
4205 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4206 </div>
4208 <div class="doc_text">
4210 <h5>Syntax:</h5>
4211 <pre>
4212 declare void @llvm.pcmarker( i32 &lt;id&gt; )
4213 </pre>
4215 <h5>Overview:</h5>
4219 The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4220 (PC) in a region of
4221 code to simulators and other tools. The method is target specific, but it is
4222 expected that the marker will use exported symbols to transmit the PC of the marker.
4223 The marker makes no guarantees that it will remain with any specific instruction
4224 after optimizations. It is possible that the presence of a marker will inhibit
4225 optimizations. The intended use is to be inserted after optimizations to allow
4226 correlations of simulation runs.
4227 </p>
4229 <h5>Arguments:</h5>
4232 <tt>id</tt> is a numerical id identifying the marker.
4233 </p>
4235 <h5>Semantics:</h5>
4238 This intrinsic does not modify the behavior of the program. Backends that do not
4239 support this intrinisic may ignore it.
4240 </p>
4242 </div>
4244 <!-- _______________________________________________________________________ -->
4245 <div class="doc_subsubsection">
4246 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4247 </div>
4249 <div class="doc_text">
4251 <h5>Syntax:</h5>
4252 <pre>
4253 declare i64 @llvm.readcyclecounter( )
4254 </pre>
4256 <h5>Overview:</h5>
4260 The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4261 counter register (or similar low latency, high accuracy clocks) on those targets
4262 that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4263 As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4264 should only be used for small timings.
4265 </p>
4267 <h5>Semantics:</h5>
4270 When directly supported, reading the cycle counter should not modify any memory.
4271 Implementations are allowed to either return a application specific value or a
4272 system wide value. On backends without support, this is lowered to a constant 0.
4273 </p>
4275 </div>
4277 <!-- ======================================================================= -->
4278 <div class="doc_subsection">
4279 <a name="int_libc">Standard C Library Intrinsics</a>
4280 </div>
4282 <div class="doc_text">
4284 LLVM provides intrinsics for a few important standard C library functions.
4285 These intrinsics allow source-language front-ends to pass information about the
4286 alignment of the pointer arguments to the code generator, providing opportunity
4287 for more efficient code generation.
4288 </p>
4290 </div>
4292 <!-- _______________________________________________________________________ -->
4293 <div class="doc_subsubsection">
4294 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4295 </div>
4297 <div class="doc_text">
4299 <h5>Syntax:</h5>
4300 <pre>
4301 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4302 i32 &lt;len&gt;, i32 &lt;align&gt;)
4303 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4304 i64 &lt;len&gt;, i32 &lt;align&gt;)
4305 </pre>
4307 <h5>Overview:</h5>
4310 The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4311 location to the destination location.
4312 </p>
4315 Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4316 intrinsics do not return a value, and takes an extra alignment argument.
4317 </p>
4319 <h5>Arguments:</h5>
4322 The first argument is a pointer to the destination, the second is a pointer to
4323 the source. The third argument is an integer argument
4324 specifying the number of bytes to copy, and the fourth argument is the alignment
4325 of the source and destination locations.
4326 </p>
4329 If the call to this intrinisic has an alignment value that is not 0 or 1, then
4330 the caller guarantees that both the source and destination pointers are aligned
4331 to that boundary.
4332 </p>
4334 <h5>Semantics:</h5>
4337 The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4338 location to the destination location, which are not allowed to overlap. It
4339 copies "len" bytes of memory over. If the argument is known to be aligned to
4340 some boundary, this can be specified as the fourth argument, otherwise it should
4341 be set to 0 or 1.
4342 </p>
4343 </div>
4346 <!-- _______________________________________________________________________ -->
4347 <div class="doc_subsubsection">
4348 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4349 </div>
4351 <div class="doc_text">
4353 <h5>Syntax:</h5>
4354 <pre>
4355 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4356 i32 &lt;len&gt;, i32 &lt;align&gt;)
4357 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4358 i64 &lt;len&gt;, i32 &lt;align&gt;)
4359 </pre>
4361 <h5>Overview:</h5>
4364 The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4365 location to the destination location. It is similar to the
4366 '<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
4367 </p>
4370 Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4371 intrinsics do not return a value, and takes an extra alignment argument.
4372 </p>
4374 <h5>Arguments:</h5>
4377 The first argument is a pointer to the destination, the second is a pointer to
4378 the source. The third argument is an integer argument
4379 specifying the number of bytes to copy, and the fourth argument is the alignment
4380 of the source and destination locations.
4381 </p>
4384 If the call to this intrinisic has an alignment value that is not 0 or 1, then
4385 the caller guarantees that the source and destination pointers are aligned to
4386 that boundary.
4387 </p>
4389 <h5>Semantics:</h5>
4392 The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
4393 location to the destination location, which may overlap. It
4394 copies "len" bytes of memory over. If the argument is known to be aligned to
4395 some boundary, this can be specified as the fourth argument, otherwise it should
4396 be set to 0 or 1.
4397 </p>
4398 </div>
4401 <!-- _______________________________________________________________________ -->
4402 <div class="doc_subsubsection">
4403 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
4404 </div>
4406 <div class="doc_text">
4408 <h5>Syntax:</h5>
4409 <pre>
4410 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4411 i32 &lt;len&gt;, i32 &lt;align&gt;)
4412 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4413 i64 &lt;len&gt;, i32 &lt;align&gt;)
4414 </pre>
4416 <h5>Overview:</h5>
4419 The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
4420 byte value.
4421 </p>
4424 Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4425 does not return a value, and takes an extra alignment argument.
4426 </p>
4428 <h5>Arguments:</h5>
4431 The first argument is a pointer to the destination to fill, the second is the
4432 byte value to fill it with, the third argument is an integer
4433 argument specifying the number of bytes to fill, and the fourth argument is the
4434 known alignment of destination location.
4435 </p>
4438 If the call to this intrinisic has an alignment value that is not 0 or 1, then
4439 the caller guarantees that the destination pointer is aligned to that boundary.
4440 </p>
4442 <h5>Semantics:</h5>
4445 The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4447 destination location. If the argument is known to be aligned to some boundary,
4448 this can be specified as the fourth argument, otherwise it should be set to 0 or
4450 </p>
4451 </div>
4454 <!-- _______________________________________________________________________ -->
4455 <div class="doc_subsubsection">
4456 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
4457 </div>
4459 <div class="doc_text">
4461 <h5>Syntax:</h5>
4462 <pre>
4463 declare float @llvm.sqrt.f32(float %Val)
4464 declare double @llvm.sqrt.f64(double %Val)
4465 </pre>
4467 <h5>Overview:</h5>
4470 The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
4471 returning the same value as the libm '<tt>sqrt</tt>' function would. Unlike
4472 <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4473 negative numbers (which allows for better optimization).
4474 </p>
4476 <h5>Arguments:</h5>
4479 The argument and return value are floating point numbers of the same type.
4480 </p>
4482 <h5>Semantics:</h5>
4485 This function returns the sqrt of the specified operand if it is a positive
4486 floating point number.
4487 </p>
4488 </div>
4490 <!-- _______________________________________________________________________ -->
4491 <div class="doc_subsubsection">
4492 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4493 </div>
4495 <div class="doc_text">
4497 <h5>Syntax:</h5>
4498 <pre>
4499 declare float @llvm.powi.f32(float %Val, i32 %power)
4500 declare double @llvm.powi.f64(double %Val, i32 %power)
4501 </pre>
4503 <h5>Overview:</h5>
4506 The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4507 specified (positive or negative) power. The order of evaluation of
4508 multiplications is not defined.
4509 </p>
4511 <h5>Arguments:</h5>
4514 The second argument is an integer power, and the first is a value to raise to
4515 that power.
4516 </p>
4518 <h5>Semantics:</h5>
4521 This function returns the first value raised to the second power with an
4522 unspecified sequence of rounding operations.</p>
4523 </div>
4526 <!-- ======================================================================= -->
4527 <div class="doc_subsection">
4528 <a name="int_manip">Bit Manipulation Intrinsics</a>
4529 </div>
4531 <div class="doc_text">
4533 LLVM provides intrinsics for a few important bit manipulation operations.
4534 These allow efficient code generation for some algorithms.
4535 </p>
4537 </div>
4539 <!-- _______________________________________________________________________ -->
4540 <div class="doc_subsubsection">
4541 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4542 </div>
4544 <div class="doc_text">
4546 <h5>Syntax:</h5>
4547 <p>This is an overloaded intrinsic function. You can use bswap on any integer
4548 type that is an even number of bytes (i.e. BitWidth % 16 == 0). Note the suffix
4549 that includes the type for the result and the operand.
4550 <pre>
4551 declare i16 @llvm.bswap.i16.i16(i16 &lt;id&gt;)
4552 declare i32 @llvm.bswap.i32.i32(i32 &lt;id&gt;)
4553 declare i64 @llvm.bswap.i64.i64(i64 &lt;id&gt;)
4554 </pre>
4556 <h5>Overview:</h5>
4559 The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
4560 values with an even number of bytes (positive multiple of 16 bits). These are
4561 useful for performing operations on data that is not in the target's native
4562 byte order.
4563 </p>
4565 <h5>Semantics:</h5>
4568 The <tt>llvm.bswap.16.i16</tt> intrinsic returns an i16 value that has the high
4569 and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4570 intrinsic returns an i32 value that has the four bytes of the input i32
4571 swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
4572 i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48.i48</tt>,
4573 <tt>llvm.bswap.i64.i64</tt> and other intrinsics extend this concept to
4574 additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
4575 </p>
4577 </div>
4579 <!-- _______________________________________________________________________ -->
4580 <div class="doc_subsubsection">
4581 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
4582 </div>
4584 <div class="doc_text">
4586 <h5>Syntax:</h5>
4587 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4588 width. Not all targets support all bit widths however.
4589 <pre>
4590 declare i32 @llvm.ctpop.i8 (i8 &lt;src&gt;)
4591 declare i32 @llvm.ctpop.i16(i16 &lt;src&gt;)
4592 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
4593 declare i32 @llvm.ctpop.i64(i64 &lt;src&gt;)
4594 declare i32 @llvm.ctpop.i256(i256 &lt;src&gt;)
4595 </pre>
4597 <h5>Overview:</h5>
4600 The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4601 value.
4602 </p>
4604 <h5>Arguments:</h5>
4607 The only argument is the value to be counted. The argument may be of any
4608 integer type. The return type must match the argument type.
4609 </p>
4611 <h5>Semantics:</h5>
4614 The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4615 </p>
4616 </div>
4618 <!-- _______________________________________________________________________ -->
4619 <div class="doc_subsubsection">
4620 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
4621 </div>
4623 <div class="doc_text">
4625 <h5>Syntax:</h5>
4626 <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
4627 integer bit width. Not all targets support all bit widths however.
4628 <pre>
4629 declare i32 @llvm.ctlz.i8 (i8 &lt;src&gt;)
4630 declare i32 @llvm.ctlz.i16(i16 &lt;src&gt;)
4631 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
4632 declare i32 @llvm.ctlz.i64(i64 &lt;src&gt;)
4633 declare i32 @llvm.ctlz.i256(i256 &lt;src&gt;)
4634 </pre>
4636 <h5>Overview:</h5>
4639 The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4640 leading zeros in a variable.
4641 </p>
4643 <h5>Arguments:</h5>
4646 The only argument is the value to be counted. The argument may be of any
4647 integer type. The return type must match the argument type.
4648 </p>
4650 <h5>Semantics:</h5>
4653 The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4654 in a variable. If the src == 0 then the result is the size in bits of the type
4655 of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
4656 </p>
4657 </div>
4661 <!-- _______________________________________________________________________ -->
4662 <div class="doc_subsubsection">
4663 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
4664 </div>
4666 <div class="doc_text">
4668 <h5>Syntax:</h5>
4669 <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
4670 integer bit width. Not all targets support all bit widths however.
4671 <pre>
4672 declare i32 @llvm.cttz.i8 (i8 &lt;src&gt;)
4673 declare i32 @llvm.cttz.i16(i16 &lt;src&gt;)
4674 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
4675 declare i32 @llvm.cttz.i64(i64 &lt;src&gt;)
4676 declare i32 @llvm.cttz.i256(i256 &lt;src&gt;)
4677 </pre>
4679 <h5>Overview:</h5>
4682 The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4683 trailing zeros.
4684 </p>
4686 <h5>Arguments:</h5>
4689 The only argument is the value to be counted. The argument may be of any
4690 integer type. The return type must match the argument type.
4691 </p>
4693 <h5>Semantics:</h5>
4696 The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4697 in a variable. If the src == 0 then the result is the size in bits of the type
4698 of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4699 </p>
4700 </div>
4702 <!-- _______________________________________________________________________ -->
4703 <div class="doc_subsubsection">
4704 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
4705 </div>
4707 <div class="doc_text">
4709 <h5>Syntax:</h5>
4710 <p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
4711 on any integer bit width.
4712 <pre>
4713 declare i17 @llvm.part.select.i17.i17 (i17 %val, i32 %loBit, i32 %hiBit)
4714 declare i29 @llvm.part.select.i29.i29 (i29 %val, i32 %loBit, i32 %hiBit)
4715 </pre>
4717 <h5>Overview:</h5>
4718 <p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
4719 range of bits from an integer value and returns them in the same bit width as
4720 the original value.</p>
4722 <h5>Arguments:</h5>
4723 <p>The first argument, <tt>%val</tt> and the result may be integer types of
4724 any bit width but they must have the same bit width. The second and third
4725 arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
4727 <h5>Semantics:</h5>
4728 <p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
4729 of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
4730 <tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
4731 operates in forward mode.</p>
4732 <p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
4733 right by <tt>%loBit</tt> bits and then ANDing it with a mask with
4734 only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
4735 <ol>
4736 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
4737 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
4738 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
4739 to determine the number of bits to retain.</li>
4740 <li>A mask of the retained bits is created by shifting a -1 value.</li>
4741 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
4742 </ol>
4743 <p>In reverse mode, a similar computation is made except that the bits are
4744 returned in the reverse order. So, for example, if <tt>X</tt> has the value
4745 <tt>i16 0x0ACF (101011001111)</tt> and we apply
4746 <tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
4747 <tt>i16 0x0026 (000000100110)</tt>.</p>
4748 </div>
4750 <div class="doc_subsubsection">
4751 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
4752 </div>
4754 <div class="doc_text">
4756 <h5>Syntax:</h5>
4757 <p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
4758 on any integer bit width.
4759 <pre>
4760 declare i17 @llvm.part.set.i17.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
4761 declare i29 @llvm.part.set.i29.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
4762 </pre>
4764 <h5>Overview:</h5>
4765 <p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
4766 of bits in an integer value with another integer value. It returns the integer
4767 with the replaced bits.</p>
4769 <h5>Arguments:</h5>
4770 <p>The first argument, <tt>%val</tt> and the result may be integer types of
4771 any bit width but they must have the same bit width. <tt>%val</tt> is the value
4772 whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
4773 integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
4774 type since they specify only a bit index.</p>
4776 <h5>Semantics:</h5>
4777 <p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
4778 of operation: forwards and reverse. If <tt>%lo</tt> is greater than
4779 <tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
4780 operates in forward mode.</p>
4781 <p>For both modes, the <tt>%repl</tt> value is prepared for use by either
4782 truncating it down to the size of the replacement area or zero extending it
4783 up to that size.</p>
4784 <p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
4785 are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
4786 in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
4787 to the <tt>%hi</tt>th bit.
4788 <p>In reverse mode, a similar computation is made except that the bits are
4789 reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
4790 <tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
4791 <h5>Examples:</h5>
4792 <pre>
4793 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
4794 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
4795 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
4796 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
4797 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
4798 </pre>
4799 </div>
4801 <!-- ======================================================================= -->
4802 <div class="doc_subsection">
4803 <a name="int_debugger">Debugger Intrinsics</a>
4804 </div>
4806 <div class="doc_text">
4808 The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4809 are described in the <a
4810 href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4811 Debugging</a> document.
4812 </p>
4813 </div>
4816 <!-- ======================================================================= -->
4817 <div class="doc_subsection">
4818 <a name="int_eh">Exception Handling Intrinsics</a>
4819 </div>
4821 <div class="doc_text">
4822 <p> The LLVM exception handling intrinsics (which all start with
4823 <tt>llvm.eh.</tt> prefix), are described in the <a
4824 href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
4825 Handling</a> document. </p>
4826 </div>
4828 <!-- ======================================================================= -->
4829 <div class="doc_subsection">
4830 <a name="int_general">General Intrinsics</a>
4831 </div>
4833 <div class="doc_text">
4834 <p> This class of intrinsics is designed to be generic and has
4835 no specific purpose. </p>
4836 </div>
4838 <!-- _______________________________________________________________________ -->
4839 <div class="doc_subsubsection">
4840 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
4841 </div>
4843 <div class="doc_text">
4845 <h5>Syntax:</h5>
4846 <pre>
4847 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
4848 </pre>
4850 <h5>Overview:</h5>
4853 The '<tt>llvm.var.annotation</tt>' intrinsic
4854 </p>
4856 <h5>Arguments:</h5>
4859 The first argument is a pointer to a value, the second is a pointer to a
4860 global string, the third is a pointer to a global string which is the source
4861 file name, and the last argument is the line number.
4862 </p>
4864 <h5>Semantics:</h5>
4867 This intrinsic allows annotation of local variables with arbitrary strings.
4868 This can be useful for special purpose optimizations that want to look for these
4869 annotations. These have no other defined use, they are ignored by code
4870 generation and optimization.
4871 </div>
4874 <!-- *********************************************************************** -->
4875 <hr>
4876 <address>
4877 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
4878 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
4879 <a href="http://validator.w3.org/check/referer"><img
4880 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
4882 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
4883 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
4884 Last modified: $Date$
4885 </address>
4886 </body>
4887 </html>