Inliner pass header file was moved.
[llvm-complete.git] / lib / Analysis / ConstantFolding.cpp
blob8991c24658630f97886b4c011a51f1803540b54f
1 //===-- ConstantFolding.cpp - Analyze constant folding possibilities ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions determines the possibility of performing constant
11 // folding.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Target/TargetData.h"
23 #include "llvm/Support/GetElementPtrTypeIterator.h"
24 #include "llvm/Support/MathExtras.h"
25 #include <cerrno>
26 #include <cmath>
27 using namespace llvm;
29 //===----------------------------------------------------------------------===//
30 // Constant Folding internal helper functions
31 //===----------------------------------------------------------------------===//
33 /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
34 /// from a global, return the global and the constant. Because of
35 /// constantexprs, this function is recursive.
36 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
37 int64_t &Offset, const TargetData &TD) {
38 // Trivial case, constant is the global.
39 if ((GV = dyn_cast<GlobalValue>(C))) {
40 Offset = 0;
41 return true;
44 // Otherwise, if this isn't a constant expr, bail out.
45 ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
46 if (!CE) return false;
48 // Look through ptr->int and ptr->ptr casts.
49 if (CE->getOpcode() == Instruction::PtrToInt ||
50 CE->getOpcode() == Instruction::BitCast)
51 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
53 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
54 if (CE->getOpcode() == Instruction::GetElementPtr) {
55 // Cannot compute this if the element type of the pointer is missing size
56 // info.
57 if (!cast<PointerType>(CE->getOperand(0)->getType())->getElementType()->isSized())
58 return false;
60 // If the base isn't a global+constant, we aren't either.
61 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
62 return false;
64 // Otherwise, add any offset that our operands provide.
65 gep_type_iterator GTI = gep_type_begin(CE);
66 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i, ++GTI) {
67 ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(i));
68 if (!CI) return false; // Index isn't a simple constant?
69 if (CI->getZExtValue() == 0) continue; // Not adding anything.
71 if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
72 // N = N + Offset
73 Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
74 } else {
75 const SequentialType *SQT = cast<SequentialType>(*GTI);
76 Offset += TD.getTypeSize(SQT->getElementType())*CI->getSExtValue();
79 return true;
82 return false;
86 /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
87 /// Attempt to symbolically evaluate the result of a binary operator merging
88 /// these together. If target data info is available, it is provided as TD,
89 /// otherwise TD is null.
90 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
91 Constant *Op1, const TargetData *TD){
92 // SROA
94 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
95 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
96 // bits.
99 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
100 // constant. This happens frequently when iterating over a global array.
101 if (Opc == Instruction::Sub && TD) {
102 GlobalValue *GV1, *GV2;
103 int64_t Offs1, Offs2;
105 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
106 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
107 GV1 == GV2) {
108 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
109 return ConstantInt::get(Op0->getType(), Offs1-Offs2);
113 // TODO: Fold icmp setne/seteq as well.
114 return 0;
117 /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
118 /// constant expression, do so.
119 static Constant *SymbolicallyEvaluateGEP(Constant** Ops, unsigned NumOps,
120 const Type *ResultTy,
121 const TargetData *TD) {
122 Constant *Ptr = Ops[0];
123 if (!cast<PointerType>(Ptr->getType())->getElementType()->isSized())
124 return 0;
126 if (TD && Ptr->isNullValue()) {
127 // If this is a constant expr gep that is effectively computing an
128 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
129 bool isFoldableGEP = true;
130 for (unsigned i = 1; i != NumOps; ++i)
131 if (!isa<ConstantInt>(Ops[i])) {
132 isFoldableGEP = false;
133 break;
135 if (isFoldableGEP) {
136 uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
137 (Value**)Ops+1, NumOps-1);
138 Constant *C = ConstantInt::get(TD->getIntPtrType(), Offset);
139 return ConstantExpr::getIntToPtr(C, ResultTy);
143 return 0;
147 //===----------------------------------------------------------------------===//
148 // Constant Folding public APIs
149 //===----------------------------------------------------------------------===//
152 /// ConstantFoldInstruction - Attempt to constant fold the specified
153 /// instruction. If successful, the constant result is returned, if not, null
154 /// is returned. Note that this function can only fail when attempting to fold
155 /// instructions like loads and stores, which have no constant expression form.
157 Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
158 if (PHINode *PN = dyn_cast<PHINode>(I)) {
159 if (PN->getNumIncomingValues() == 0)
160 return Constant::getNullValue(PN->getType());
162 Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
163 if (Result == 0) return 0;
165 // Handle PHI nodes specially here...
166 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
167 if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
168 return 0; // Not all the same incoming constants...
170 // If we reach here, all incoming values are the same constant.
171 return Result;
174 // Scan the operand list, checking to see if they are all constants, if so,
175 // hand off to ConstantFoldInstOperands.
176 SmallVector<Constant*, 8> Ops;
177 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
178 if (Constant *Op = dyn_cast<Constant>(I->getOperand(i)))
179 Ops.push_back(Op);
180 else
181 return 0; // All operands not constant!
183 return ConstantFoldInstOperands(I, &Ops[0], Ops.size(), TD);
186 /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
187 /// specified opcode and operands. If successful, the constant result is
188 /// returned, if not, null is returned. Note that this function can fail when
189 /// attempting to fold instructions like loads and stores, which have no
190 /// constant expression form.
192 Constant *llvm::ConstantFoldInstOperands(const Instruction* I,
193 Constant** Ops, unsigned NumOps,
194 const TargetData *TD) {
195 unsigned Opc = I->getOpcode();
196 const Type *DestTy = I->getType();
198 // Handle easy binops first.
199 if (isa<BinaryOperator>(I)) {
200 if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
201 if (Constant *C = SymbolicallyEvaluateBinop(I->getOpcode(), Ops[0],
202 Ops[1], TD))
203 return C;
205 return ConstantExpr::get(Opc, Ops[0], Ops[1]);
208 switch (Opc) {
209 default: return 0;
210 case Instruction::Call:
211 if (Function *F = dyn_cast<Function>(Ops[0]))
212 if (canConstantFoldCallTo(F))
213 return ConstantFoldCall(F, Ops+1, NumOps-1);
214 return 0;
215 case Instruction::ICmp:
216 case Instruction::FCmp:
217 return ConstantExpr::getCompare(cast<CmpInst>(I)->getPredicate(), Ops[0],
218 Ops[1]);
219 case Instruction::Trunc:
220 case Instruction::ZExt:
221 case Instruction::SExt:
222 case Instruction::FPTrunc:
223 case Instruction::FPExt:
224 case Instruction::UIToFP:
225 case Instruction::SIToFP:
226 case Instruction::FPToUI:
227 case Instruction::FPToSI:
228 case Instruction::PtrToInt:
229 case Instruction::IntToPtr:
230 case Instruction::BitCast:
231 return ConstantExpr::getCast(Opc, Ops[0], DestTy);
232 case Instruction::Select:
233 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
234 case Instruction::ExtractElement:
235 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
236 case Instruction::InsertElement:
237 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
238 case Instruction::ShuffleVector:
239 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
240 case Instruction::GetElementPtr:
241 if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, I->getType(), TD))
242 return C;
244 return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
248 /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
249 /// getelementptr constantexpr, return the constant value being addressed by the
250 /// constant expression, or null if something is funny and we can't decide.
251 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
252 ConstantExpr *CE) {
253 if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
254 return 0; // Do not allow stepping over the value!
256 // Loop over all of the operands, tracking down which value we are
257 // addressing...
258 gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
259 for (++I; I != E; ++I)
260 if (const StructType *STy = dyn_cast<StructType>(*I)) {
261 ConstantInt *CU = cast<ConstantInt>(I.getOperand());
262 assert(CU->getZExtValue() < STy->getNumElements() &&
263 "Struct index out of range!");
264 unsigned El = (unsigned)CU->getZExtValue();
265 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
266 C = CS->getOperand(El);
267 } else if (isa<ConstantAggregateZero>(C)) {
268 C = Constant::getNullValue(STy->getElementType(El));
269 } else if (isa<UndefValue>(C)) {
270 C = UndefValue::get(STy->getElementType(El));
271 } else {
272 return 0;
274 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
275 if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
276 if (CI->getZExtValue() >= ATy->getNumElements())
277 return 0;
278 if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
279 C = CA->getOperand(CI->getZExtValue());
280 else if (isa<ConstantAggregateZero>(C))
281 C = Constant::getNullValue(ATy->getElementType());
282 else if (isa<UndefValue>(C))
283 C = UndefValue::get(ATy->getElementType());
284 else
285 return 0;
286 } else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) {
287 if (CI->getZExtValue() >= PTy->getNumElements())
288 return 0;
289 if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
290 C = CP->getOperand(CI->getZExtValue());
291 else if (isa<ConstantAggregateZero>(C))
292 C = Constant::getNullValue(PTy->getElementType());
293 else if (isa<UndefValue>(C))
294 C = UndefValue::get(PTy->getElementType());
295 else
296 return 0;
297 } else {
298 return 0;
300 } else {
301 return 0;
303 return C;
307 //===----------------------------------------------------------------------===//
308 // Constant Folding for Calls
311 /// canConstantFoldCallTo - Return true if its even possible to fold a call to
312 /// the specified function.
313 bool
314 llvm::canConstantFoldCallTo(Function *F) {
315 const std::string &Name = F->getName();
317 switch (F->getIntrinsicID()) {
318 case Intrinsic::sqrt_f32:
319 case Intrinsic::sqrt_f64:
320 case Intrinsic::powi_f32:
321 case Intrinsic::powi_f64:
322 case Intrinsic::bswap:
323 case Intrinsic::ctpop:
324 case Intrinsic::ctlz:
325 case Intrinsic::cttz:
326 return true;
327 default: break;
330 switch (Name[0])
332 case 'a':
333 return Name == "acos" || Name == "asin" || Name == "atan" ||
334 Name == "atan2";
335 case 'c':
336 return Name == "ceil" || Name == "cos" || Name == "cosf" ||
337 Name == "cosh";
338 case 'e':
339 return Name == "exp";
340 case 'f':
341 return Name == "fabs" || Name == "fmod" || Name == "floor";
342 case 'l':
343 return Name == "log" || Name == "log10";
344 case 'p':
345 return Name == "pow";
346 case 's':
347 return Name == "sin" || Name == "sinh" ||
348 Name == "sqrt" || Name == "sqrtf";
349 case 't':
350 return Name == "tan" || Name == "tanh";
351 default:
352 return false;
356 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
357 const Type *Ty) {
358 errno = 0;
359 V = NativeFP(V);
360 if (errno == 0)
361 return ConstantFP::get(Ty, V);
362 errno = 0;
363 return 0;
366 /// ConstantFoldCall - Attempt to constant fold a call to the specified function
367 /// with the specified arguments, returning null if unsuccessful.
368 Constant *
369 llvm::ConstantFoldCall(Function *F, Constant** Operands, unsigned NumOperands) {
370 const std::string &Name = F->getName();
371 const Type *Ty = F->getReturnType();
373 if (NumOperands == 1) {
374 if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
375 double V = Op->getValue();
376 switch (Name[0])
378 case 'a':
379 if (Name == "acos")
380 return ConstantFoldFP(acos, V, Ty);
381 else if (Name == "asin")
382 return ConstantFoldFP(asin, V, Ty);
383 else if (Name == "atan")
384 return ConstantFP::get(Ty, atan(V));
385 break;
386 case 'c':
387 if (Name == "ceil")
388 return ConstantFoldFP(ceil, V, Ty);
389 else if (Name == "cos")
390 return ConstantFP::get(Ty, cos(V));
391 else if (Name == "cosh")
392 return ConstantFP::get(Ty, cosh(V));
393 break;
394 case 'e':
395 if (Name == "exp")
396 return ConstantFP::get(Ty, exp(V));
397 break;
398 case 'f':
399 if (Name == "fabs")
400 return ConstantFP::get(Ty, fabs(V));
401 else if (Name == "floor")
402 return ConstantFoldFP(floor, V, Ty);
403 break;
404 case 'l':
405 if (Name == "log" && V > 0)
406 return ConstantFP::get(Ty, log(V));
407 else if (Name == "log10" && V > 0)
408 return ConstantFoldFP(log10, V, Ty);
409 else if (Name == "llvm.sqrt.f32" || Name == "llvm.sqrt.f64") {
410 if (V >= -0.0)
411 return ConstantFP::get(Ty, sqrt(V));
412 else // Undefined
413 return ConstantFP::get(Ty, 0.0);
415 break;
416 case 's':
417 if (Name == "sin")
418 return ConstantFP::get(Ty, sin(V));
419 else if (Name == "sinh")
420 return ConstantFP::get(Ty, sinh(V));
421 else if (Name == "sqrt" && V >= 0)
422 return ConstantFP::get(Ty, sqrt(V));
423 else if (Name == "sqrtf" && V >= 0)
424 return ConstantFP::get(Ty, sqrt((float)V));
425 break;
426 case 't':
427 if (Name == "tan")
428 return ConstantFP::get(Ty, tan(V));
429 else if (Name == "tanh")
430 return ConstantFP::get(Ty, tanh(V));
431 break;
432 default:
433 break;
435 } else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
436 if (Name.size() > 11 && !memcmp(&Name[0], "llvm.bswap", 10)) {
437 return ConstantInt::get(Op->getValue().byteSwap());
438 } else if (Name.size() > 11 && !memcmp(&Name[0],"llvm.ctpop",10)) {
439 uint64_t ctpop = Op->getValue().countPopulation();
440 return ConstantInt::get(Type::Int32Ty, ctpop);
441 } else if (Name.size() > 10 && !memcmp(&Name[0], "llvm.cttz", 9)) {
442 uint64_t cttz = Op->getValue().countTrailingZeros();
443 return ConstantInt::get(Type::Int32Ty, cttz);
444 } else if (Name.size() > 10 && !memcmp(&Name[0], "llvm.ctlz", 9)) {
445 uint64_t ctlz = Op->getValue().countLeadingZeros();
446 return ConstantInt::get(Type::Int32Ty, ctlz);
449 } else if (NumOperands == 2) {
450 if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
451 double Op1V = Op1->getValue();
452 if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
453 double Op2V = Op2->getValue();
455 if (Name == "pow") {
456 errno = 0;
457 double V = pow(Op1V, Op2V);
458 if (errno == 0)
459 return ConstantFP::get(Ty, V);
460 } else if (Name == "fmod") {
461 errno = 0;
462 double V = fmod(Op1V, Op2V);
463 if (errno == 0)
464 return ConstantFP::get(Ty, V);
465 } else if (Name == "atan2") {
466 return ConstantFP::get(Ty, atan2(Op1V,Op2V));
468 } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
469 if (Name == "llvm.powi.f32") {
470 return ConstantFP::get(Ty, std::pow((float)Op1V,
471 (int)Op2C->getZExtValue()));
472 } else if (Name == "llvm.powi.f64") {
473 return ConstantFP::get(Ty, std::pow((double)Op1V,
474 (int)Op2C->getZExtValue()));
479 return 0;