1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "phielim"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/Passes.h"
19 #include "llvm/CodeGen/MachineFunctionPass.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/SSARegMap.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetMachine.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Support/Compiler.h"
31 STATISTIC(NumAtomic
, "Number of atomic phis lowered");
32 //STATISTIC(NumSimple, "Number of simple phis lowered");
35 struct VISIBILITY_HIDDEN PNE
: public MachineFunctionPass
{
36 static char ID
; // Pass identification, replacement for typeid
37 PNE() : MachineFunctionPass((intptr_t)&ID
) {}
39 bool runOnMachineFunction(MachineFunction
&Fn
) {
44 // Eliminate PHI instructions by inserting copies into predecessor blocks.
45 for (MachineFunction::iterator I
= Fn
.begin(), E
= Fn
.end(); I
!= E
; ++I
)
46 Changed
|= EliminatePHINodes(Fn
, *I
);
48 VRegPHIUseCount
.clear();
52 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
53 AU
.addPreserved
<LiveVariables
>();
54 MachineFunctionPass::getAnalysisUsage(AU
);
58 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
59 /// in predecessor basic blocks.
61 bool EliminatePHINodes(MachineFunction
&MF
, MachineBasicBlock
&MBB
);
62 void LowerAtomicPHINode(MachineBasicBlock
&MBB
,
63 MachineBasicBlock::iterator AfterPHIsIt
);
65 /// analyzePHINodes - Gather information about the PHI nodes in
66 /// here. In particular, we want to map the number of uses of a virtual
67 /// register which is used in a PHI node. We map that to the BB the
68 /// vreg is coming from. This is used later to determine when the vreg
69 /// is killed in the BB.
71 void analyzePHINodes(const MachineFunction
& Fn
);
73 typedef std::pair
<const MachineBasicBlock
*, unsigned> BBVRegPair
;
74 typedef std::map
<BBVRegPair
, unsigned> VRegPHIUse
;
76 VRegPHIUse VRegPHIUseCount
;
80 RegisterPass
<PNE
> X("phi-node-elimination",
81 "Eliminate PHI nodes for register allocation");
84 const PassInfo
*llvm::PHIEliminationID
= X
.getPassInfo();
86 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
87 /// predecessor basic blocks.
89 bool PNE::EliminatePHINodes(MachineFunction
&MF
, MachineBasicBlock
&MBB
) {
90 if (MBB
.empty() || MBB
.front().getOpcode() != TargetInstrInfo::PHI
)
91 return false; // Quick exit for basic blocks without PHIs.
93 // Get an iterator to the first instruction after the last PHI node (this may
94 // also be the end of the basic block).
95 MachineBasicBlock::iterator AfterPHIsIt
= MBB
.begin();
96 while (AfterPHIsIt
!= MBB
.end() &&
97 AfterPHIsIt
->getOpcode() == TargetInstrInfo::PHI
)
98 ++AfterPHIsIt
; // Skip over all of the PHI nodes...
100 while (MBB
.front().getOpcode() == TargetInstrInfo::PHI
)
101 LowerAtomicPHINode(MBB
, AfterPHIsIt
);
106 /// InstructionUsesRegister - Return true if the specified machine instr has a
107 /// use of the specified register.
108 static bool InstructionUsesRegister(MachineInstr
*MI
, unsigned SrcReg
) {
109 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
)
110 if (MI
->getOperand(i
).isRegister() &&
111 MI
->getOperand(i
).getReg() == SrcReg
&&
112 MI
->getOperand(i
).isUse())
117 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
118 /// under the assuption that it needs to be lowered in a way that supports
119 /// atomic execution of PHIs. This lowering method is always correct all of the
121 void PNE::LowerAtomicPHINode(MachineBasicBlock
&MBB
,
122 MachineBasicBlock::iterator AfterPHIsIt
) {
123 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
124 MachineInstr
*MPhi
= MBB
.remove(MBB
.begin());
126 unsigned DestReg
= MPhi
->getOperand(0).getReg();
128 // Create a new register for the incoming PHI arguments.
129 MachineFunction
&MF
= *MBB
.getParent();
130 const TargetRegisterClass
*RC
= MF
.getSSARegMap()->getRegClass(DestReg
);
131 unsigned IncomingReg
= MF
.getSSARegMap()->createVirtualRegister(RC
);
133 // Insert a register to register copy in the top of the current block (but
134 // after any remaining phi nodes) which copies the new incoming register
135 // into the phi node destination.
137 const MRegisterInfo
*RegInfo
= MF
.getTarget().getRegisterInfo();
138 RegInfo
->copyRegToReg(MBB
, AfterPHIsIt
, DestReg
, IncomingReg
, RC
);
140 // Update live variable information if there is any...
141 LiveVariables
*LV
= getAnalysisToUpdate
<LiveVariables
>();
143 MachineInstr
*PHICopy
= prior(AfterPHIsIt
);
145 // Increment use count of the newly created virtual register.
146 LV
->getVarInfo(IncomingReg
).NumUses
++;
148 // Add information to LiveVariables to know that the incoming value is
149 // killed. Note that because the value is defined in several places (once
150 // each for each incoming block), the "def" block and instruction fields
151 // for the VarInfo is not filled in.
153 LV
->addVirtualRegisterKilled(IncomingReg
, PHICopy
);
155 // Since we are going to be deleting the PHI node, if it is the last use
156 // of any registers, or if the value itself is dead, we need to move this
157 // information over to the new copy we just inserted.
159 LV
->removeVirtualRegistersKilled(MPhi
);
161 // If the result is dead, update LV.
162 if (LV
->RegisterDefIsDead(MPhi
, DestReg
)) {
163 LV
->addVirtualRegisterDead(DestReg
, PHICopy
);
164 LV
->removeVirtualRegistersDead(MPhi
);
167 // Realize that the destination register is defined by the PHI copy now, not
169 LV
->getVarInfo(DestReg
).DefInst
= PHICopy
;
172 // Adjust the VRegPHIUseCount map to account for the removal of this PHI
174 for (unsigned i
= 1; i
!= MPhi
->getNumOperands(); i
+= 2)
175 --VRegPHIUseCount
[BBVRegPair(
176 MPhi
->getOperand(i
+ 1).getMachineBasicBlock(),
177 MPhi
->getOperand(i
).getReg())];
179 // Now loop over all of the incoming arguments, changing them to copy into
180 // the IncomingReg register in the corresponding predecessor basic block.
182 std::set
<MachineBasicBlock
*> MBBsInsertedInto
;
183 for (int i
= MPhi
->getNumOperands() - 1; i
>= 2; i
-=2) {
184 unsigned SrcReg
= MPhi
->getOperand(i
-1).getReg();
185 assert(MRegisterInfo::isVirtualRegister(SrcReg
) &&
186 "Machine PHI Operands must all be virtual registers!");
188 // Get the MachineBasicBlock equivalent of the BasicBlock that is the
189 // source path the PHI.
190 MachineBasicBlock
&opBlock
= *MPhi
->getOperand(i
).getMachineBasicBlock();
192 // Check to make sure we haven't already emitted the copy for this block.
193 // This can happen because PHI nodes may have multiple entries for the
195 if (!MBBsInsertedInto
.insert(&opBlock
).second
)
196 continue; // If the copy has already been emitted, we're done.
198 // Get an iterator pointing to the first terminator in the block (or end()).
199 // This is the point where we can insert a copy if we'd like to.
200 MachineBasicBlock::iterator I
= opBlock
.getFirstTerminator();
203 RegInfo
->copyRegToReg(opBlock
, I
, IncomingReg
, SrcReg
, RC
);
205 // Now update live variable information if we have it. Otherwise we're done
208 // We want to be able to insert a kill of the register if this PHI
209 // (aka, the copy we just inserted) is the last use of the source
210 // value. Live variable analysis conservatively handles this by
211 // saying that the value is live until the end of the block the PHI
212 // entry lives in. If the value really is dead at the PHI copy, there
213 // will be no successor blocks which have the value live-in.
215 // Check to see if the copy is the last use, and if so, update the
216 // live variables information so that it knows the copy source
217 // instruction kills the incoming value.
219 LiveVariables::VarInfo
&InRegVI
= LV
->getVarInfo(SrcReg
);
221 // Loop over all of the successors of the basic block, checking to see
222 // if the value is either live in the block, or if it is killed in the
223 // block. Also check to see if this register is in use by another PHI
224 // node which has not yet been eliminated. If so, it will be killed
225 // at an appropriate point later.
228 // Is it used by any PHI instructions in this block?
229 bool ValueIsLive
= VRegPHIUseCount
[BBVRegPair(&opBlock
, SrcReg
)] != 0;
231 std::vector
<MachineBasicBlock
*> OpSuccBlocks
;
233 // Otherwise, scan successors, including the BB the PHI node lives in.
234 for (MachineBasicBlock::succ_iterator SI
= opBlock
.succ_begin(),
235 E
= opBlock
.succ_end(); SI
!= E
&& !ValueIsLive
; ++SI
) {
236 MachineBasicBlock
*SuccMBB
= *SI
;
238 // Is it alive in this successor?
239 unsigned SuccIdx
= SuccMBB
->getNumber();
240 if (SuccIdx
< InRegVI
.AliveBlocks
.size() &&
241 InRegVI
.AliveBlocks
[SuccIdx
]) {
246 OpSuccBlocks
.push_back(SuccMBB
);
249 // Check to see if this value is live because there is a use in a successor
252 switch (OpSuccBlocks
.size()) {
254 MachineBasicBlock
*MBB
= OpSuccBlocks
[0];
255 for (unsigned i
= 0, e
= InRegVI
.Kills
.size(); i
!= e
; ++i
)
256 if (InRegVI
.Kills
[i
]->getParent() == MBB
) {
263 MachineBasicBlock
*MBB1
= OpSuccBlocks
[0], *MBB2
= OpSuccBlocks
[1];
264 for (unsigned i
= 0, e
= InRegVI
.Kills
.size(); i
!= e
; ++i
)
265 if (InRegVI
.Kills
[i
]->getParent() == MBB1
||
266 InRegVI
.Kills
[i
]->getParent() == MBB2
) {
273 std::sort(OpSuccBlocks
.begin(), OpSuccBlocks
.end());
274 for (unsigned i
= 0, e
= InRegVI
.Kills
.size(); i
!= e
; ++i
)
275 if (std::binary_search(OpSuccBlocks
.begin(), OpSuccBlocks
.end(),
276 InRegVI
.Kills
[i
]->getParent())) {
283 // Okay, if we now know that the value is not live out of the block,
284 // we can add a kill marker in this block saying that it kills the incoming
287 // In our final twist, we have to decide which instruction kills the
288 // register. In most cases this is the copy, however, the first
289 // terminator instruction at the end of the block may also use the value.
290 // In this case, we should mark *it* as being the killing block, not the
292 bool FirstTerminatorUsesValue
= false;
293 if (I
!= opBlock
.end()) {
294 FirstTerminatorUsesValue
= InstructionUsesRegister(I
, SrcReg
);
296 // Check that no other terminators use values.
298 for (MachineBasicBlock::iterator TI
= next(I
); TI
!= opBlock
.end();
300 assert(!InstructionUsesRegister(TI
, SrcReg
) &&
301 "Terminator instructions cannot use virtual registers unless"
302 "they are the first terminator in a block!");
307 MachineBasicBlock::iterator KillInst
;
308 if (!FirstTerminatorUsesValue
)
313 // Finally, mark it killed.
314 LV
->addVirtualRegisterKilled(SrcReg
, KillInst
);
316 // This vreg no longer lives all of the way through opBlock.
317 unsigned opBlockNum
= opBlock
.getNumber();
318 if (opBlockNum
< InRegVI
.AliveBlocks
.size())
319 InRegVI
.AliveBlocks
[opBlockNum
] = false;
323 // Really delete the PHI instruction now!
328 /// analyzePHINodes - Gather information about the PHI nodes in here. In
329 /// particular, we want to map the number of uses of a virtual register which is
330 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
331 /// used later to determine when the vreg is killed in the BB.
333 void PNE::analyzePHINodes(const MachineFunction
& Fn
) {
334 for (MachineFunction::const_iterator I
= Fn
.begin(), E
= Fn
.end();
336 for (MachineBasicBlock::const_iterator BBI
= I
->begin(), BBE
= I
->end();
337 BBI
!= BBE
&& BBI
->getOpcode() == TargetInstrInfo::PHI
; ++BBI
)
338 for (unsigned i
= 1, e
= BBI
->getNumOperands(); i
!= e
; i
+= 2)
339 ++VRegPHIUseCount
[BBVRegPair(
340 BBI
->getOperand(i
+ 1).getMachineBasicBlock(),
341 BBI
->getOperand(i
).getReg())];