Inliner pass header file was moved.
[llvm-complete.git] / lib / CodeGen / SelectionDAG / SelectionDAG.cpp
blob0ac77f99a3056f3973cde803cafe74c68b4e2525
1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "llvm/Constants.h"
16 #include "llvm/GlobalVariable.h"
17 #include "llvm/Intrinsics.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Assembly/Writer.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineConstantPool.h"
22 #include "llvm/Support/MathExtras.h"
23 #include "llvm/Target/MRegisterInfo.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Target/TargetLowering.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include <algorithm>
33 #include <cmath>
34 using namespace llvm;
36 /// makeVTList - Return an instance of the SDVTList struct initialized with the
37 /// specified members.
38 static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
39 SDVTList Res = {VTs, NumVTs};
40 return Res;
43 //===----------------------------------------------------------------------===//
44 // ConstantFPSDNode Class
45 //===----------------------------------------------------------------------===//
47 /// isExactlyValue - We don't rely on operator== working on double values, as
48 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
49 /// As such, this method can be used to do an exact bit-for-bit comparison of
50 /// two floating point values.
51 bool ConstantFPSDNode::isExactlyValue(double V) const {
52 return DoubleToBits(V) == DoubleToBits(Value);
55 //===----------------------------------------------------------------------===//
56 // ISD Namespace
57 //===----------------------------------------------------------------------===//
59 /// isBuildVectorAllOnes - Return true if the specified node is a
60 /// BUILD_VECTOR where all of the elements are ~0 or undef.
61 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
62 // Look through a bit convert.
63 if (N->getOpcode() == ISD::BIT_CONVERT)
64 N = N->getOperand(0).Val;
66 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
68 unsigned i = 0, e = N->getNumOperands();
70 // Skip over all of the undef values.
71 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
72 ++i;
74 // Do not accept an all-undef vector.
75 if (i == e) return false;
77 // Do not accept build_vectors that aren't all constants or which have non-~0
78 // elements.
79 SDOperand NotZero = N->getOperand(i);
80 if (isa<ConstantSDNode>(NotZero)) {
81 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
82 return false;
83 } else if (isa<ConstantFPSDNode>(NotZero)) {
84 MVT::ValueType VT = NotZero.getValueType();
85 if (VT== MVT::f64) {
86 if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
87 (uint64_t)-1)
88 return false;
89 } else {
90 if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
91 (uint32_t)-1)
92 return false;
94 } else
95 return false;
97 // Okay, we have at least one ~0 value, check to see if the rest match or are
98 // undefs.
99 for (++i; i != e; ++i)
100 if (N->getOperand(i) != NotZero &&
101 N->getOperand(i).getOpcode() != ISD::UNDEF)
102 return false;
103 return true;
107 /// isBuildVectorAllZeros - Return true if the specified node is a
108 /// BUILD_VECTOR where all of the elements are 0 or undef.
109 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
110 // Look through a bit convert.
111 if (N->getOpcode() == ISD::BIT_CONVERT)
112 N = N->getOperand(0).Val;
114 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
116 unsigned i = 0, e = N->getNumOperands();
118 // Skip over all of the undef values.
119 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
120 ++i;
122 // Do not accept an all-undef vector.
123 if (i == e) return false;
125 // Do not accept build_vectors that aren't all constants or which have non-~0
126 // elements.
127 SDOperand Zero = N->getOperand(i);
128 if (isa<ConstantSDNode>(Zero)) {
129 if (!cast<ConstantSDNode>(Zero)->isNullValue())
130 return false;
131 } else if (isa<ConstantFPSDNode>(Zero)) {
132 if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
133 return false;
134 } else
135 return false;
137 // Okay, we have at least one ~0 value, check to see if the rest match or are
138 // undefs.
139 for (++i; i != e; ++i)
140 if (N->getOperand(i) != Zero &&
141 N->getOperand(i).getOpcode() != ISD::UNDEF)
142 return false;
143 return true;
146 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
147 /// when given the operation for (X op Y).
148 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
149 // To perform this operation, we just need to swap the L and G bits of the
150 // operation.
151 unsigned OldL = (Operation >> 2) & 1;
152 unsigned OldG = (Operation >> 1) & 1;
153 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
154 (OldL << 1) | // New G bit
155 (OldG << 2)); // New L bit.
158 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
159 /// 'op' is a valid SetCC operation.
160 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
161 unsigned Operation = Op;
162 if (isInteger)
163 Operation ^= 7; // Flip L, G, E bits, but not U.
164 else
165 Operation ^= 15; // Flip all of the condition bits.
166 if (Operation > ISD::SETTRUE2)
167 Operation &= ~8; // Don't let N and U bits get set.
168 return ISD::CondCode(Operation);
172 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
173 /// signed operation and 2 if the result is an unsigned comparison. Return zero
174 /// if the operation does not depend on the sign of the input (setne and seteq).
175 static int isSignedOp(ISD::CondCode Opcode) {
176 switch (Opcode) {
177 default: assert(0 && "Illegal integer setcc operation!");
178 case ISD::SETEQ:
179 case ISD::SETNE: return 0;
180 case ISD::SETLT:
181 case ISD::SETLE:
182 case ISD::SETGT:
183 case ISD::SETGE: return 1;
184 case ISD::SETULT:
185 case ISD::SETULE:
186 case ISD::SETUGT:
187 case ISD::SETUGE: return 2;
191 /// getSetCCOrOperation - Return the result of a logical OR between different
192 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
193 /// returns SETCC_INVALID if it is not possible to represent the resultant
194 /// comparison.
195 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
196 bool isInteger) {
197 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
198 // Cannot fold a signed integer setcc with an unsigned integer setcc.
199 return ISD::SETCC_INVALID;
201 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
203 // If the N and U bits get set then the resultant comparison DOES suddenly
204 // care about orderedness, and is true when ordered.
205 if (Op > ISD::SETTRUE2)
206 Op &= ~16; // Clear the U bit if the N bit is set.
208 // Canonicalize illegal integer setcc's.
209 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
210 Op = ISD::SETNE;
212 return ISD::CondCode(Op);
215 /// getSetCCAndOperation - Return the result of a logical AND between different
216 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
217 /// function returns zero if it is not possible to represent the resultant
218 /// comparison.
219 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
220 bool isInteger) {
221 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
222 // Cannot fold a signed setcc with an unsigned setcc.
223 return ISD::SETCC_INVALID;
225 // Combine all of the condition bits.
226 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
228 // Canonicalize illegal integer setcc's.
229 if (isInteger) {
230 switch (Result) {
231 default: break;
232 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
233 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
234 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
235 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
239 return Result;
242 const TargetMachine &SelectionDAG::getTarget() const {
243 return TLI.getTargetMachine();
246 //===----------------------------------------------------------------------===//
247 // SDNode Profile Support
248 //===----------------------------------------------------------------------===//
250 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
252 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
253 ID.AddInteger(OpC);
256 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
257 /// solely with their pointer.
258 void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
259 ID.AddPointer(VTList.VTs);
262 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
264 static void AddNodeIDOperands(FoldingSetNodeID &ID,
265 const SDOperand *Ops, unsigned NumOps) {
266 for (; NumOps; --NumOps, ++Ops) {
267 ID.AddPointer(Ops->Val);
268 ID.AddInteger(Ops->ResNo);
272 static void AddNodeIDNode(FoldingSetNodeID &ID,
273 unsigned short OpC, SDVTList VTList,
274 const SDOperand *OpList, unsigned N) {
275 AddNodeIDOpcode(ID, OpC);
276 AddNodeIDValueTypes(ID, VTList);
277 AddNodeIDOperands(ID, OpList, N);
280 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
281 /// data.
282 static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
283 AddNodeIDOpcode(ID, N->getOpcode());
284 // Add the return value info.
285 AddNodeIDValueTypes(ID, N->getVTList());
286 // Add the operand info.
287 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
289 // Handle SDNode leafs with special info.
290 switch (N->getOpcode()) {
291 default: break; // Normal nodes don't need extra info.
292 case ISD::TargetConstant:
293 case ISD::Constant:
294 ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
295 break;
296 case ISD::TargetConstantFP:
297 case ISD::ConstantFP:
298 ID.AddDouble(cast<ConstantFPSDNode>(N)->getValue());
299 break;
300 case ISD::TargetGlobalAddress:
301 case ISD::GlobalAddress:
302 case ISD::TargetGlobalTLSAddress:
303 case ISD::GlobalTLSAddress: {
304 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
305 ID.AddPointer(GA->getGlobal());
306 ID.AddInteger(GA->getOffset());
307 break;
309 case ISD::BasicBlock:
310 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
311 break;
312 case ISD::Register:
313 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
314 break;
315 case ISD::SRCVALUE: {
316 SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
317 ID.AddPointer(SV->getValue());
318 ID.AddInteger(SV->getOffset());
319 break;
321 case ISD::FrameIndex:
322 case ISD::TargetFrameIndex:
323 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
324 break;
325 case ISD::JumpTable:
326 case ISD::TargetJumpTable:
327 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
328 break;
329 case ISD::ConstantPool:
330 case ISD::TargetConstantPool: {
331 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
332 ID.AddInteger(CP->getAlignment());
333 ID.AddInteger(CP->getOffset());
334 if (CP->isMachineConstantPoolEntry())
335 CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
336 else
337 ID.AddPointer(CP->getConstVal());
338 break;
340 case ISD::LOAD: {
341 LoadSDNode *LD = cast<LoadSDNode>(N);
342 ID.AddInteger(LD->getAddressingMode());
343 ID.AddInteger(LD->getExtensionType());
344 ID.AddInteger(LD->getLoadedVT());
345 ID.AddPointer(LD->getSrcValue());
346 ID.AddInteger(LD->getSrcValueOffset());
347 ID.AddInteger(LD->getAlignment());
348 ID.AddInteger(LD->isVolatile());
349 break;
351 case ISD::STORE: {
352 StoreSDNode *ST = cast<StoreSDNode>(N);
353 ID.AddInteger(ST->getAddressingMode());
354 ID.AddInteger(ST->isTruncatingStore());
355 ID.AddInteger(ST->getStoredVT());
356 ID.AddPointer(ST->getSrcValue());
357 ID.AddInteger(ST->getSrcValueOffset());
358 ID.AddInteger(ST->getAlignment());
359 ID.AddInteger(ST->isVolatile());
360 break;
365 //===----------------------------------------------------------------------===//
366 // SelectionDAG Class
367 //===----------------------------------------------------------------------===//
369 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
370 /// SelectionDAG.
371 void SelectionDAG::RemoveDeadNodes() {
372 // Create a dummy node (which is not added to allnodes), that adds a reference
373 // to the root node, preventing it from being deleted.
374 HandleSDNode Dummy(getRoot());
376 SmallVector<SDNode*, 128> DeadNodes;
378 // Add all obviously-dead nodes to the DeadNodes worklist.
379 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
380 if (I->use_empty())
381 DeadNodes.push_back(I);
383 // Process the worklist, deleting the nodes and adding their uses to the
384 // worklist.
385 while (!DeadNodes.empty()) {
386 SDNode *N = DeadNodes.back();
387 DeadNodes.pop_back();
389 // Take the node out of the appropriate CSE map.
390 RemoveNodeFromCSEMaps(N);
392 // Next, brutally remove the operand list. This is safe to do, as there are
393 // no cycles in the graph.
394 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
395 SDNode *Operand = I->Val;
396 Operand->removeUser(N);
398 // Now that we removed this operand, see if there are no uses of it left.
399 if (Operand->use_empty())
400 DeadNodes.push_back(Operand);
402 if (N->OperandsNeedDelete)
403 delete[] N->OperandList;
404 N->OperandList = 0;
405 N->NumOperands = 0;
407 // Finally, remove N itself.
408 AllNodes.erase(N);
411 // If the root changed (e.g. it was a dead load, update the root).
412 setRoot(Dummy.getValue());
415 void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
416 SmallVector<SDNode*, 16> DeadNodes;
417 DeadNodes.push_back(N);
419 // Process the worklist, deleting the nodes and adding their uses to the
420 // worklist.
421 while (!DeadNodes.empty()) {
422 SDNode *N = DeadNodes.back();
423 DeadNodes.pop_back();
425 // Take the node out of the appropriate CSE map.
426 RemoveNodeFromCSEMaps(N);
428 // Next, brutally remove the operand list. This is safe to do, as there are
429 // no cycles in the graph.
430 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
431 SDNode *Operand = I->Val;
432 Operand->removeUser(N);
434 // Now that we removed this operand, see if there are no uses of it left.
435 if (Operand->use_empty())
436 DeadNodes.push_back(Operand);
438 if (N->OperandsNeedDelete)
439 delete[] N->OperandList;
440 N->OperandList = 0;
441 N->NumOperands = 0;
443 // Finally, remove N itself.
444 Deleted.push_back(N);
445 AllNodes.erase(N);
449 void SelectionDAG::DeleteNode(SDNode *N) {
450 assert(N->use_empty() && "Cannot delete a node that is not dead!");
452 // First take this out of the appropriate CSE map.
453 RemoveNodeFromCSEMaps(N);
455 // Finally, remove uses due to operands of this node, remove from the
456 // AllNodes list, and delete the node.
457 DeleteNodeNotInCSEMaps(N);
460 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
462 // Remove it from the AllNodes list.
463 AllNodes.remove(N);
465 // Drop all of the operands and decrement used nodes use counts.
466 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
467 I->Val->removeUser(N);
468 if (N->OperandsNeedDelete)
469 delete[] N->OperandList;
470 N->OperandList = 0;
471 N->NumOperands = 0;
473 delete N;
476 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
477 /// correspond to it. This is useful when we're about to delete or repurpose
478 /// the node. We don't want future request for structurally identical nodes
479 /// to return N anymore.
480 void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
481 bool Erased = false;
482 switch (N->getOpcode()) {
483 case ISD::HANDLENODE: return; // noop.
484 case ISD::STRING:
485 Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
486 break;
487 case ISD::CONDCODE:
488 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
489 "Cond code doesn't exist!");
490 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
491 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
492 break;
493 case ISD::ExternalSymbol:
494 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
495 break;
496 case ISD::TargetExternalSymbol:
497 Erased =
498 TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
499 break;
500 case ISD::VALUETYPE:
501 Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
502 ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
503 break;
504 default:
505 // Remove it from the CSE Map.
506 Erased = CSEMap.RemoveNode(N);
507 break;
509 #ifndef NDEBUG
510 // Verify that the node was actually in one of the CSE maps, unless it has a
511 // flag result (which cannot be CSE'd) or is one of the special cases that are
512 // not subject to CSE.
513 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
514 !N->isTargetOpcode()) {
515 N->dump(this);
516 cerr << "\n";
517 assert(0 && "Node is not in map!");
519 #endif
522 /// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It
523 /// has been taken out and modified in some way. If the specified node already
524 /// exists in the CSE maps, do not modify the maps, but return the existing node
525 /// instead. If it doesn't exist, add it and return null.
527 SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
528 assert(N->getNumOperands() && "This is a leaf node!");
529 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
530 return 0; // Never add these nodes.
532 // Check that remaining values produced are not flags.
533 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
534 if (N->getValueType(i) == MVT::Flag)
535 return 0; // Never CSE anything that produces a flag.
537 SDNode *New = CSEMap.GetOrInsertNode(N);
538 if (New != N) return New; // Node already existed.
539 return 0;
542 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
543 /// were replaced with those specified. If this node is never memoized,
544 /// return null, otherwise return a pointer to the slot it would take. If a
545 /// node already exists with these operands, the slot will be non-null.
546 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
547 void *&InsertPos) {
548 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
549 return 0; // Never add these nodes.
551 // Check that remaining values produced are not flags.
552 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
553 if (N->getValueType(i) == MVT::Flag)
554 return 0; // Never CSE anything that produces a flag.
556 SDOperand Ops[] = { Op };
557 FoldingSetNodeID ID;
558 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
559 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
562 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
563 /// were replaced with those specified. If this node is never memoized,
564 /// return null, otherwise return a pointer to the slot it would take. If a
565 /// node already exists with these operands, the slot will be non-null.
566 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
567 SDOperand Op1, SDOperand Op2,
568 void *&InsertPos) {
569 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
570 return 0; // Never add these nodes.
572 // Check that remaining values produced are not flags.
573 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
574 if (N->getValueType(i) == MVT::Flag)
575 return 0; // Never CSE anything that produces a flag.
577 SDOperand Ops[] = { Op1, Op2 };
578 FoldingSetNodeID ID;
579 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
580 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
584 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
585 /// were replaced with those specified. If this node is never memoized,
586 /// return null, otherwise return a pointer to the slot it would take. If a
587 /// node already exists with these operands, the slot will be non-null.
588 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
589 const SDOperand *Ops,unsigned NumOps,
590 void *&InsertPos) {
591 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
592 return 0; // Never add these nodes.
594 // Check that remaining values produced are not flags.
595 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
596 if (N->getValueType(i) == MVT::Flag)
597 return 0; // Never CSE anything that produces a flag.
599 FoldingSetNodeID ID;
600 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
602 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
603 ID.AddInteger(LD->getAddressingMode());
604 ID.AddInteger(LD->getExtensionType());
605 ID.AddInteger(LD->getLoadedVT());
606 ID.AddPointer(LD->getSrcValue());
607 ID.AddInteger(LD->getSrcValueOffset());
608 ID.AddInteger(LD->getAlignment());
609 ID.AddInteger(LD->isVolatile());
610 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
611 ID.AddInteger(ST->getAddressingMode());
612 ID.AddInteger(ST->isTruncatingStore());
613 ID.AddInteger(ST->getStoredVT());
614 ID.AddPointer(ST->getSrcValue());
615 ID.AddInteger(ST->getSrcValueOffset());
616 ID.AddInteger(ST->getAlignment());
617 ID.AddInteger(ST->isVolatile());
620 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
624 SelectionDAG::~SelectionDAG() {
625 while (!AllNodes.empty()) {
626 SDNode *N = AllNodes.begin();
627 N->SetNextInBucket(0);
628 if (N->OperandsNeedDelete)
629 delete [] N->OperandList;
630 N->OperandList = 0;
631 N->NumOperands = 0;
632 AllNodes.pop_front();
636 SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
637 if (Op.getValueType() == VT) return Op;
638 int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
639 return getNode(ISD::AND, Op.getValueType(), Op,
640 getConstant(Imm, Op.getValueType()));
643 SDOperand SelectionDAG::getString(const std::string &Val) {
644 StringSDNode *&N = StringNodes[Val];
645 if (!N) {
646 N = new StringSDNode(Val);
647 AllNodes.push_back(N);
649 return SDOperand(N, 0);
652 SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
653 assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
654 assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
656 // Mask out any bits that are not valid for this constant.
657 Val &= MVT::getIntVTBitMask(VT);
659 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
660 FoldingSetNodeID ID;
661 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
662 ID.AddInteger(Val);
663 void *IP = 0;
664 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
665 return SDOperand(E, 0);
666 SDNode *N = new ConstantSDNode(isT, Val, VT);
667 CSEMap.InsertNode(N, IP);
668 AllNodes.push_back(N);
669 return SDOperand(N, 0);
673 SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
674 bool isTarget) {
675 assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
676 if (VT == MVT::f32)
677 Val = (float)Val; // Mask out extra precision.
679 // Do the map lookup using the actual bit pattern for the floating point
680 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
681 // we don't have issues with SNANs.
682 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
683 FoldingSetNodeID ID;
684 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
685 ID.AddDouble(Val);
686 void *IP = 0;
687 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
688 return SDOperand(E, 0);
689 SDNode *N = new ConstantFPSDNode(isTarget, Val, VT);
690 CSEMap.InsertNode(N, IP);
691 AllNodes.push_back(N);
692 return SDOperand(N, 0);
695 SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
696 MVT::ValueType VT, int Offset,
697 bool isTargetGA) {
698 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
699 unsigned Opc;
700 if (GVar && GVar->isThreadLocal())
701 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
702 else
703 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
704 FoldingSetNodeID ID;
705 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
706 ID.AddPointer(GV);
707 ID.AddInteger(Offset);
708 void *IP = 0;
709 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
710 return SDOperand(E, 0);
711 SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
712 CSEMap.InsertNode(N, IP);
713 AllNodes.push_back(N);
714 return SDOperand(N, 0);
717 SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
718 bool isTarget) {
719 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
720 FoldingSetNodeID ID;
721 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
722 ID.AddInteger(FI);
723 void *IP = 0;
724 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
725 return SDOperand(E, 0);
726 SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
727 CSEMap.InsertNode(N, IP);
728 AllNodes.push_back(N);
729 return SDOperand(N, 0);
732 SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
733 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
734 FoldingSetNodeID ID;
735 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
736 ID.AddInteger(JTI);
737 void *IP = 0;
738 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
739 return SDOperand(E, 0);
740 SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
741 CSEMap.InsertNode(N, IP);
742 AllNodes.push_back(N);
743 return SDOperand(N, 0);
746 SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
747 unsigned Alignment, int Offset,
748 bool isTarget) {
749 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
750 FoldingSetNodeID ID;
751 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
752 ID.AddInteger(Alignment);
753 ID.AddInteger(Offset);
754 ID.AddPointer(C);
755 void *IP = 0;
756 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
757 return SDOperand(E, 0);
758 SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
759 CSEMap.InsertNode(N, IP);
760 AllNodes.push_back(N);
761 return SDOperand(N, 0);
765 SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
766 MVT::ValueType VT,
767 unsigned Alignment, int Offset,
768 bool isTarget) {
769 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
770 FoldingSetNodeID ID;
771 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
772 ID.AddInteger(Alignment);
773 ID.AddInteger(Offset);
774 C->AddSelectionDAGCSEId(ID);
775 void *IP = 0;
776 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
777 return SDOperand(E, 0);
778 SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
779 CSEMap.InsertNode(N, IP);
780 AllNodes.push_back(N);
781 return SDOperand(N, 0);
785 SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
786 FoldingSetNodeID ID;
787 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
788 ID.AddPointer(MBB);
789 void *IP = 0;
790 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
791 return SDOperand(E, 0);
792 SDNode *N = new BasicBlockSDNode(MBB);
793 CSEMap.InsertNode(N, IP);
794 AllNodes.push_back(N);
795 return SDOperand(N, 0);
798 SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
799 if ((unsigned)VT >= ValueTypeNodes.size())
800 ValueTypeNodes.resize(VT+1);
801 if (ValueTypeNodes[VT] == 0) {
802 ValueTypeNodes[VT] = new VTSDNode(VT);
803 AllNodes.push_back(ValueTypeNodes[VT]);
806 return SDOperand(ValueTypeNodes[VT], 0);
809 SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
810 SDNode *&N = ExternalSymbols[Sym];
811 if (N) return SDOperand(N, 0);
812 N = new ExternalSymbolSDNode(false, Sym, VT);
813 AllNodes.push_back(N);
814 return SDOperand(N, 0);
817 SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
818 MVT::ValueType VT) {
819 SDNode *&N = TargetExternalSymbols[Sym];
820 if (N) return SDOperand(N, 0);
821 N = new ExternalSymbolSDNode(true, Sym, VT);
822 AllNodes.push_back(N);
823 return SDOperand(N, 0);
826 SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
827 if ((unsigned)Cond >= CondCodeNodes.size())
828 CondCodeNodes.resize(Cond+1);
830 if (CondCodeNodes[Cond] == 0) {
831 CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
832 AllNodes.push_back(CondCodeNodes[Cond]);
834 return SDOperand(CondCodeNodes[Cond], 0);
837 SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
838 FoldingSetNodeID ID;
839 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
840 ID.AddInteger(RegNo);
841 void *IP = 0;
842 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
843 return SDOperand(E, 0);
844 SDNode *N = new RegisterSDNode(RegNo, VT);
845 CSEMap.InsertNode(N, IP);
846 AllNodes.push_back(N);
847 return SDOperand(N, 0);
850 SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
851 assert((!V || isa<PointerType>(V->getType())) &&
852 "SrcValue is not a pointer?");
854 FoldingSetNodeID ID;
855 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
856 ID.AddPointer(V);
857 ID.AddInteger(Offset);
858 void *IP = 0;
859 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
860 return SDOperand(E, 0);
861 SDNode *N = new SrcValueSDNode(V, Offset);
862 CSEMap.InsertNode(N, IP);
863 AllNodes.push_back(N);
864 return SDOperand(N, 0);
867 SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
868 SDOperand N2, ISD::CondCode Cond) {
869 // These setcc operations always fold.
870 switch (Cond) {
871 default: break;
872 case ISD::SETFALSE:
873 case ISD::SETFALSE2: return getConstant(0, VT);
874 case ISD::SETTRUE:
875 case ISD::SETTRUE2: return getConstant(1, VT);
877 case ISD::SETOEQ:
878 case ISD::SETOGT:
879 case ISD::SETOGE:
880 case ISD::SETOLT:
881 case ISD::SETOLE:
882 case ISD::SETONE:
883 case ISD::SETO:
884 case ISD::SETUO:
885 case ISD::SETUEQ:
886 case ISD::SETUNE:
887 assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
888 break;
891 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
892 uint64_t C2 = N2C->getValue();
893 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
894 uint64_t C1 = N1C->getValue();
896 // Sign extend the operands if required
897 if (ISD::isSignedIntSetCC(Cond)) {
898 C1 = N1C->getSignExtended();
899 C2 = N2C->getSignExtended();
902 switch (Cond) {
903 default: assert(0 && "Unknown integer setcc!");
904 case ISD::SETEQ: return getConstant(C1 == C2, VT);
905 case ISD::SETNE: return getConstant(C1 != C2, VT);
906 case ISD::SETULT: return getConstant(C1 < C2, VT);
907 case ISD::SETUGT: return getConstant(C1 > C2, VT);
908 case ISD::SETULE: return getConstant(C1 <= C2, VT);
909 case ISD::SETUGE: return getConstant(C1 >= C2, VT);
910 case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT);
911 case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT);
912 case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT);
913 case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT);
917 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
918 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
919 double C1 = N1C->getValue(), C2 = N2C->getValue();
921 switch (Cond) {
922 default: break; // FIXME: Implement the rest of these!
923 case ISD::SETEQ: return getConstant(C1 == C2, VT);
924 case ISD::SETNE: return getConstant(C1 != C2, VT);
925 case ISD::SETLT: return getConstant(C1 < C2, VT);
926 case ISD::SETGT: return getConstant(C1 > C2, VT);
927 case ISD::SETLE: return getConstant(C1 <= C2, VT);
928 case ISD::SETGE: return getConstant(C1 >= C2, VT);
930 } else {
931 // Ensure that the constant occurs on the RHS.
932 return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
935 // Could not fold it.
936 return SDOperand();
940 /// getNode - Gets or creates the specified node.
942 SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
943 FoldingSetNodeID ID;
944 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
945 void *IP = 0;
946 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
947 return SDOperand(E, 0);
948 SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
949 CSEMap.InsertNode(N, IP);
951 AllNodes.push_back(N);
952 return SDOperand(N, 0);
955 SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
956 SDOperand Operand) {
957 unsigned Tmp1;
958 // Constant fold unary operations with an integer constant operand.
959 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
960 uint64_t Val = C->getValue();
961 switch (Opcode) {
962 default: break;
963 case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
964 case ISD::ANY_EXTEND:
965 case ISD::ZERO_EXTEND: return getConstant(Val, VT);
966 case ISD::TRUNCATE: return getConstant(Val, VT);
967 case ISD::SINT_TO_FP: return getConstantFP(C->getSignExtended(), VT);
968 case ISD::UINT_TO_FP: return getConstantFP(C->getValue(), VT);
969 case ISD::BIT_CONVERT:
970 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
971 return getConstantFP(BitsToFloat(Val), VT);
972 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
973 return getConstantFP(BitsToDouble(Val), VT);
974 break;
975 case ISD::BSWAP:
976 switch(VT) {
977 default: assert(0 && "Invalid bswap!"); break;
978 case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
979 case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
980 case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
982 break;
983 case ISD::CTPOP:
984 switch(VT) {
985 default: assert(0 && "Invalid ctpop!"); break;
986 case MVT::i1: return getConstant(Val != 0, VT);
987 case MVT::i8:
988 Tmp1 = (unsigned)Val & 0xFF;
989 return getConstant(CountPopulation_32(Tmp1), VT);
990 case MVT::i16:
991 Tmp1 = (unsigned)Val & 0xFFFF;
992 return getConstant(CountPopulation_32(Tmp1), VT);
993 case MVT::i32:
994 return getConstant(CountPopulation_32((unsigned)Val), VT);
995 case MVT::i64:
996 return getConstant(CountPopulation_64(Val), VT);
998 case ISD::CTLZ:
999 switch(VT) {
1000 default: assert(0 && "Invalid ctlz!"); break;
1001 case MVT::i1: return getConstant(Val == 0, VT);
1002 case MVT::i8:
1003 Tmp1 = (unsigned)Val & 0xFF;
1004 return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1005 case MVT::i16:
1006 Tmp1 = (unsigned)Val & 0xFFFF;
1007 return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1008 case MVT::i32:
1009 return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1010 case MVT::i64:
1011 return getConstant(CountLeadingZeros_64(Val), VT);
1013 case ISD::CTTZ:
1014 switch(VT) {
1015 default: assert(0 && "Invalid cttz!"); break;
1016 case MVT::i1: return getConstant(Val == 0, VT);
1017 case MVT::i8:
1018 Tmp1 = (unsigned)Val | 0x100;
1019 return getConstant(CountTrailingZeros_32(Tmp1), VT);
1020 case MVT::i16:
1021 Tmp1 = (unsigned)Val | 0x10000;
1022 return getConstant(CountTrailingZeros_32(Tmp1), VT);
1023 case MVT::i32:
1024 return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1025 case MVT::i64:
1026 return getConstant(CountTrailingZeros_64(Val), VT);
1031 // Constant fold unary operations with an floating point constant operand.
1032 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1033 switch (Opcode) {
1034 case ISD::FNEG:
1035 return getConstantFP(-C->getValue(), VT);
1036 case ISD::FABS:
1037 return getConstantFP(fabs(C->getValue()), VT);
1038 case ISD::FP_ROUND:
1039 case ISD::FP_EXTEND:
1040 return getConstantFP(C->getValue(), VT);
1041 case ISD::FP_TO_SINT:
1042 return getConstant((int64_t)C->getValue(), VT);
1043 case ISD::FP_TO_UINT:
1044 return getConstant((uint64_t)C->getValue(), VT);
1045 case ISD::BIT_CONVERT:
1046 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1047 return getConstant(FloatToBits(C->getValue()), VT);
1048 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1049 return getConstant(DoubleToBits(C->getValue()), VT);
1050 break;
1053 unsigned OpOpcode = Operand.Val->getOpcode();
1054 switch (Opcode) {
1055 case ISD::TokenFactor:
1056 return Operand; // Factor of one node? No factor.
1057 case ISD::FP_ROUND:
1058 case ISD::FP_EXTEND:
1059 assert(MVT::isFloatingPoint(VT) &&
1060 MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1061 break;
1062 case ISD::SIGN_EXTEND:
1063 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1064 "Invalid SIGN_EXTEND!");
1065 if (Operand.getValueType() == VT) return Operand; // noop extension
1066 assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1067 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1068 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1069 break;
1070 case ISD::ZERO_EXTEND:
1071 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1072 "Invalid ZERO_EXTEND!");
1073 if (Operand.getValueType() == VT) return Operand; // noop extension
1074 assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1075 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
1076 return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1077 break;
1078 case ISD::ANY_EXTEND:
1079 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1080 "Invalid ANY_EXTEND!");
1081 if (Operand.getValueType() == VT) return Operand; // noop extension
1082 assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1083 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1084 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
1085 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1086 break;
1087 case ISD::TRUNCATE:
1088 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1089 "Invalid TRUNCATE!");
1090 if (Operand.getValueType() == VT) return Operand; // noop truncate
1091 assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1092 if (OpOpcode == ISD::TRUNCATE)
1093 return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1094 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1095 OpOpcode == ISD::ANY_EXTEND) {
1096 // If the source is smaller than the dest, we still need an extend.
1097 if (Operand.Val->getOperand(0).getValueType() < VT)
1098 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1099 else if (Operand.Val->getOperand(0).getValueType() > VT)
1100 return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1101 else
1102 return Operand.Val->getOperand(0);
1104 break;
1105 case ISD::BIT_CONVERT:
1106 // Basic sanity checking.
1107 assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1108 && "Cannot BIT_CONVERT between types of different sizes!");
1109 if (VT == Operand.getValueType()) return Operand; // noop conversion.
1110 if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
1111 return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1112 if (OpOpcode == ISD::UNDEF)
1113 return getNode(ISD::UNDEF, VT);
1114 break;
1115 case ISD::SCALAR_TO_VECTOR:
1116 assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1117 MVT::getVectorElementType(VT) == Operand.getValueType() &&
1118 "Illegal SCALAR_TO_VECTOR node!");
1119 break;
1120 case ISD::FNEG:
1121 if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X)
1122 return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1123 Operand.Val->getOperand(0));
1124 if (OpOpcode == ISD::FNEG) // --X -> X
1125 return Operand.Val->getOperand(0);
1126 break;
1127 case ISD::FABS:
1128 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
1129 return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1130 break;
1133 SDNode *N;
1134 SDVTList VTs = getVTList(VT);
1135 if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1136 FoldingSetNodeID ID;
1137 SDOperand Ops[1] = { Operand };
1138 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1139 void *IP = 0;
1140 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1141 return SDOperand(E, 0);
1142 N = new UnarySDNode(Opcode, VTs, Operand);
1143 CSEMap.InsertNode(N, IP);
1144 } else {
1145 N = new UnarySDNode(Opcode, VTs, Operand);
1147 AllNodes.push_back(N);
1148 return SDOperand(N, 0);
1153 SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1154 SDOperand N1, SDOperand N2) {
1155 #ifndef NDEBUG
1156 switch (Opcode) {
1157 case ISD::TokenFactor:
1158 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1159 N2.getValueType() == MVT::Other && "Invalid token factor!");
1160 break;
1161 case ISD::AND:
1162 case ISD::OR:
1163 case ISD::XOR:
1164 case ISD::UDIV:
1165 case ISD::UREM:
1166 case ISD::MULHU:
1167 case ISD::MULHS:
1168 assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1169 // fall through
1170 case ISD::ADD:
1171 case ISD::SUB:
1172 case ISD::MUL:
1173 case ISD::SDIV:
1174 case ISD::SREM:
1175 assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1176 // fall through.
1177 case ISD::FADD:
1178 case ISD::FSUB:
1179 case ISD::FMUL:
1180 case ISD::FDIV:
1181 case ISD::FREM:
1182 assert(N1.getValueType() == N2.getValueType() &&
1183 N1.getValueType() == VT && "Binary operator types must match!");
1184 break;
1185 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
1186 assert(N1.getValueType() == VT &&
1187 MVT::isFloatingPoint(N1.getValueType()) &&
1188 MVT::isFloatingPoint(N2.getValueType()) &&
1189 "Invalid FCOPYSIGN!");
1190 break;
1191 case ISD::SHL:
1192 case ISD::SRA:
1193 case ISD::SRL:
1194 case ISD::ROTL:
1195 case ISD::ROTR:
1196 assert(VT == N1.getValueType() &&
1197 "Shift operators return type must be the same as their first arg");
1198 assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1199 VT != MVT::i1 && "Shifts only work on integers");
1200 break;
1201 case ISD::FP_ROUND_INREG: {
1202 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1203 assert(VT == N1.getValueType() && "Not an inreg round!");
1204 assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1205 "Cannot FP_ROUND_INREG integer types");
1206 assert(EVT <= VT && "Not rounding down!");
1207 break;
1209 case ISD::AssertSext:
1210 case ISD::AssertZext:
1211 case ISD::SIGN_EXTEND_INREG: {
1212 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1213 assert(VT == N1.getValueType() && "Not an inreg extend!");
1214 assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1215 "Cannot *_EXTEND_INREG FP types");
1216 assert(EVT <= VT && "Not extending!");
1219 default: break;
1221 #endif
1223 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1224 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1225 if (N1C) {
1226 if (Opcode == ISD::SIGN_EXTEND_INREG) {
1227 int64_t Val = N1C->getValue();
1228 unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1229 Val <<= 64-FromBits;
1230 Val >>= 64-FromBits;
1231 return getConstant(Val, VT);
1234 if (N2C) {
1235 uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1236 switch (Opcode) {
1237 case ISD::ADD: return getConstant(C1 + C2, VT);
1238 case ISD::SUB: return getConstant(C1 - C2, VT);
1239 case ISD::MUL: return getConstant(C1 * C2, VT);
1240 case ISD::UDIV:
1241 if (C2) return getConstant(C1 / C2, VT);
1242 break;
1243 case ISD::UREM :
1244 if (C2) return getConstant(C1 % C2, VT);
1245 break;
1246 case ISD::SDIV :
1247 if (C2) return getConstant(N1C->getSignExtended() /
1248 N2C->getSignExtended(), VT);
1249 break;
1250 case ISD::SREM :
1251 if (C2) return getConstant(N1C->getSignExtended() %
1252 N2C->getSignExtended(), VT);
1253 break;
1254 case ISD::AND : return getConstant(C1 & C2, VT);
1255 case ISD::OR : return getConstant(C1 | C2, VT);
1256 case ISD::XOR : return getConstant(C1 ^ C2, VT);
1257 case ISD::SHL : return getConstant(C1 << C2, VT);
1258 case ISD::SRL : return getConstant(C1 >> C2, VT);
1259 case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1260 case ISD::ROTL :
1261 return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1262 VT);
1263 case ISD::ROTR :
1264 return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1265 VT);
1266 default: break;
1268 } else { // Cannonicalize constant to RHS if commutative
1269 if (isCommutativeBinOp(Opcode)) {
1270 std::swap(N1C, N2C);
1271 std::swap(N1, N2);
1276 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1277 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1278 if (N1CFP) {
1279 if (N2CFP) {
1280 double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1281 switch (Opcode) {
1282 case ISD::FADD: return getConstantFP(C1 + C2, VT);
1283 case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1284 case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1285 case ISD::FDIV:
1286 if (C2) return getConstantFP(C1 / C2, VT);
1287 break;
1288 case ISD::FREM :
1289 if (C2) return getConstantFP(fmod(C1, C2), VT);
1290 break;
1291 case ISD::FCOPYSIGN: {
1292 union {
1293 double F;
1294 uint64_t I;
1295 } u1;
1296 u1.F = C1;
1297 if (int64_t(DoubleToBits(C2)) < 0) // Sign bit of RHS set?
1298 u1.I |= 1ULL << 63; // Set the sign bit of the LHS.
1299 else
1300 u1.I &= (1ULL << 63)-1; // Clear the sign bit of the LHS.
1301 return getConstantFP(u1.F, VT);
1303 default: break;
1305 } else { // Cannonicalize constant to RHS if commutative
1306 if (isCommutativeBinOp(Opcode)) {
1307 std::swap(N1CFP, N2CFP);
1308 std::swap(N1, N2);
1313 // Canonicalize an UNDEF to the RHS, even over a constant.
1314 if (N1.getOpcode() == ISD::UNDEF) {
1315 if (isCommutativeBinOp(Opcode)) {
1316 std::swap(N1, N2);
1317 } else {
1318 switch (Opcode) {
1319 case ISD::FP_ROUND_INREG:
1320 case ISD::SIGN_EXTEND_INREG:
1321 case ISD::SUB:
1322 case ISD::FSUB:
1323 case ISD::FDIV:
1324 case ISD::FREM:
1325 case ISD::SRA:
1326 return N1; // fold op(undef, arg2) -> undef
1327 case ISD::UDIV:
1328 case ISD::SDIV:
1329 case ISD::UREM:
1330 case ISD::SREM:
1331 case ISD::SRL:
1332 case ISD::SHL:
1333 if (!MVT::isVector(VT))
1334 return getConstant(0, VT); // fold op(undef, arg2) -> 0
1335 // For vectors, we can't easily build an all zero vector, just return
1336 // the LHS.
1337 return N2;
1342 // Fold a bunch of operators when the RHS is undef.
1343 if (N2.getOpcode() == ISD::UNDEF) {
1344 switch (Opcode) {
1345 case ISD::ADD:
1346 case ISD::ADDC:
1347 case ISD::ADDE:
1348 case ISD::SUB:
1349 case ISD::FADD:
1350 case ISD::FSUB:
1351 case ISD::FMUL:
1352 case ISD::FDIV:
1353 case ISD::FREM:
1354 case ISD::UDIV:
1355 case ISD::SDIV:
1356 case ISD::UREM:
1357 case ISD::SREM:
1358 case ISD::XOR:
1359 return N2; // fold op(arg1, undef) -> undef
1360 case ISD::MUL:
1361 case ISD::AND:
1362 case ISD::SRL:
1363 case ISD::SHL:
1364 if (!MVT::isVector(VT))
1365 return getConstant(0, VT); // fold op(arg1, undef) -> 0
1366 // For vectors, we can't easily build an all zero vector, just return
1367 // the LHS.
1368 return N1;
1369 case ISD::OR:
1370 if (!MVT::isVector(VT))
1371 return getConstant(MVT::getIntVTBitMask(VT), VT);
1372 // For vectors, we can't easily build an all one vector, just return
1373 // the LHS.
1374 return N1;
1375 case ISD::SRA:
1376 return N1;
1380 // Fold operations.
1381 switch (Opcode) {
1382 case ISD::TokenFactor:
1383 // Fold trivial token factors.
1384 if (N1.getOpcode() == ISD::EntryToken) return N2;
1385 if (N2.getOpcode() == ISD::EntryToken) return N1;
1386 break;
1388 case ISD::AND:
1389 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
1390 // worth handling here.
1391 if (N2C && N2C->getValue() == 0)
1392 return N2;
1393 break;
1394 case ISD::OR:
1395 case ISD::XOR:
1396 // (X ^| 0) -> X. This commonly occurs when legalizing i64 values, so it's
1397 // worth handling here.
1398 if (N2C && N2C->getValue() == 0)
1399 return N1;
1400 break;
1401 case ISD::FP_ROUND_INREG:
1402 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
1403 break;
1404 case ISD::SIGN_EXTEND_INREG: {
1405 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1406 if (EVT == VT) return N1; // Not actually extending
1407 break;
1409 case ISD::EXTRACT_ELEMENT:
1410 assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
1412 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
1413 // 64-bit integers into 32-bit parts. Instead of building the extract of
1414 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
1415 if (N1.getOpcode() == ISD::BUILD_PAIR)
1416 return N1.getOperand(N2C->getValue());
1418 // EXTRACT_ELEMENT of a constant int is also very common.
1419 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
1420 unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
1421 return getConstant(C->getValue() >> Shift, VT);
1423 break;
1425 // FIXME: figure out how to safely handle things like
1426 // int foo(int x) { return 1 << (x & 255); }
1427 // int bar() { return foo(256); }
1428 #if 0
1429 case ISD::SHL:
1430 case ISD::SRL:
1431 case ISD::SRA:
1432 if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1433 cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1434 return getNode(Opcode, VT, N1, N2.getOperand(0));
1435 else if (N2.getOpcode() == ISD::AND)
1436 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1437 // If the and is only masking out bits that cannot effect the shift,
1438 // eliminate the and.
1439 unsigned NumBits = MVT::getSizeInBits(VT);
1440 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1441 return getNode(Opcode, VT, N1, N2.getOperand(0));
1443 break;
1444 #endif
1447 // Memoize this node if possible.
1448 SDNode *N;
1449 SDVTList VTs = getVTList(VT);
1450 if (VT != MVT::Flag) {
1451 SDOperand Ops[] = { N1, N2 };
1452 FoldingSetNodeID ID;
1453 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
1454 void *IP = 0;
1455 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1456 return SDOperand(E, 0);
1457 N = new BinarySDNode(Opcode, VTs, N1, N2);
1458 CSEMap.InsertNode(N, IP);
1459 } else {
1460 N = new BinarySDNode(Opcode, VTs, N1, N2);
1463 AllNodes.push_back(N);
1464 return SDOperand(N, 0);
1467 SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1468 SDOperand N1, SDOperand N2, SDOperand N3) {
1469 // Perform various simplifications.
1470 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1471 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1472 switch (Opcode) {
1473 case ISD::SETCC: {
1474 // Use FoldSetCC to simplify SETCC's.
1475 SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1476 if (Simp.Val) return Simp;
1477 break;
1479 case ISD::SELECT:
1480 if (N1C)
1481 if (N1C->getValue())
1482 return N2; // select true, X, Y -> X
1483 else
1484 return N3; // select false, X, Y -> Y
1486 if (N2 == N3) return N2; // select C, X, X -> X
1487 break;
1488 case ISD::BRCOND:
1489 if (N2C)
1490 if (N2C->getValue()) // Unconditional branch
1491 return getNode(ISD::BR, MVT::Other, N1, N3);
1492 else
1493 return N1; // Never-taken branch
1494 break;
1495 case ISD::VECTOR_SHUFFLE:
1496 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1497 MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1498 N3.getOpcode() == ISD::BUILD_VECTOR &&
1499 MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1500 "Illegal VECTOR_SHUFFLE node!");
1501 break;
1502 case ISD::VBIT_CONVERT:
1503 // Fold vbit_convert nodes from a type to themselves.
1504 if (N1.getValueType() == MVT::Vector) {
1505 assert(isa<ConstantSDNode>(*(N1.Val->op_end()-2)) &&
1506 isa<VTSDNode>(*(N1.Val->op_end()-1)) && "Malformed vector input!");
1507 if (*(N1.Val->op_end()-2) == N2 && *(N1.Val->op_end()-1) == N3)
1508 return N1;
1510 break;
1513 // Memoize node if it doesn't produce a flag.
1514 SDNode *N;
1515 SDVTList VTs = getVTList(VT);
1516 if (VT != MVT::Flag) {
1517 SDOperand Ops[] = { N1, N2, N3 };
1518 FoldingSetNodeID ID;
1519 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
1520 void *IP = 0;
1521 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1522 return SDOperand(E, 0);
1523 N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
1524 CSEMap.InsertNode(N, IP);
1525 } else {
1526 N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
1528 AllNodes.push_back(N);
1529 return SDOperand(N, 0);
1532 SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1533 SDOperand N1, SDOperand N2, SDOperand N3,
1534 SDOperand N4) {
1535 SDOperand Ops[] = { N1, N2, N3, N4 };
1536 return getNode(Opcode, VT, Ops, 4);
1539 SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1540 SDOperand N1, SDOperand N2, SDOperand N3,
1541 SDOperand N4, SDOperand N5) {
1542 SDOperand Ops[] = { N1, N2, N3, N4, N5 };
1543 return getNode(Opcode, VT, Ops, 5);
1546 SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1547 SDOperand Chain, SDOperand Ptr,
1548 const Value *SV, int SVOffset,
1549 bool isVolatile, unsigned Alignment) {
1550 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
1551 const Type *Ty = 0;
1552 if (VT != MVT::Vector && VT != MVT::iPTR) {
1553 Ty = MVT::getTypeForValueType(VT);
1554 } else if (SV) {
1555 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
1556 assert(PT && "Value for load must be a pointer");
1557 Ty = PT->getElementType();
1559 assert(Ty && "Could not get type information for load");
1560 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1562 SDVTList VTs = getVTList(VT, MVT::Other);
1563 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1564 SDOperand Ops[] = { Chain, Ptr, Undef };
1565 FoldingSetNodeID ID;
1566 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
1567 ID.AddInteger(ISD::UNINDEXED);
1568 ID.AddInteger(ISD::NON_EXTLOAD);
1569 ID.AddInteger(VT);
1570 ID.AddPointer(SV);
1571 ID.AddInteger(SVOffset);
1572 ID.AddInteger(Alignment);
1573 ID.AddInteger(isVolatile);
1574 void *IP = 0;
1575 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1576 return SDOperand(E, 0);
1577 SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
1578 ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
1579 isVolatile);
1580 CSEMap.InsertNode(N, IP);
1581 AllNodes.push_back(N);
1582 return SDOperand(N, 0);
1585 SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
1586 SDOperand Chain, SDOperand Ptr,
1587 const Value *SV,
1588 int SVOffset, MVT::ValueType EVT,
1589 bool isVolatile, unsigned Alignment) {
1590 // If they are asking for an extending load from/to the same thing, return a
1591 // normal load.
1592 if (VT == EVT)
1593 ExtType = ISD::NON_EXTLOAD;
1595 if (MVT::isVector(VT))
1596 assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
1597 else
1598 assert(EVT < VT && "Should only be an extending load, not truncating!");
1599 assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
1600 "Cannot sign/zero extend a FP/Vector load!");
1601 assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
1602 "Cannot convert from FP to Int or Int -> FP!");
1604 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
1605 const Type *Ty = 0;
1606 if (VT != MVT::Vector && VT != MVT::iPTR) {
1607 Ty = MVT::getTypeForValueType(VT);
1608 } else if (SV) {
1609 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
1610 assert(PT && "Value for load must be a pointer");
1611 Ty = PT->getElementType();
1613 assert(Ty && "Could not get type information for load");
1614 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1616 SDVTList VTs = getVTList(VT, MVT::Other);
1617 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1618 SDOperand Ops[] = { Chain, Ptr, Undef };
1619 FoldingSetNodeID ID;
1620 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
1621 ID.AddInteger(ISD::UNINDEXED);
1622 ID.AddInteger(ExtType);
1623 ID.AddInteger(EVT);
1624 ID.AddPointer(SV);
1625 ID.AddInteger(SVOffset);
1626 ID.AddInteger(Alignment);
1627 ID.AddInteger(isVolatile);
1628 void *IP = 0;
1629 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1630 return SDOperand(E, 0);
1631 SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
1632 SV, SVOffset, Alignment, isVolatile);
1633 CSEMap.InsertNode(N, IP);
1634 AllNodes.push_back(N);
1635 return SDOperand(N, 0);
1638 SDOperand
1639 SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
1640 SDOperand Offset, ISD::MemIndexedMode AM) {
1641 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
1642 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
1643 "Load is already a indexed load!");
1644 MVT::ValueType VT = OrigLoad.getValueType();
1645 SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
1646 SDOperand Ops[] = { LD->getChain(), Base, Offset };
1647 FoldingSetNodeID ID;
1648 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
1649 ID.AddInteger(AM);
1650 ID.AddInteger(LD->getExtensionType());
1651 ID.AddInteger(LD->getLoadedVT());
1652 ID.AddPointer(LD->getSrcValue());
1653 ID.AddInteger(LD->getSrcValueOffset());
1654 ID.AddInteger(LD->getAlignment());
1655 ID.AddInteger(LD->isVolatile());
1656 void *IP = 0;
1657 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1658 return SDOperand(E, 0);
1659 SDNode *N = new LoadSDNode(Ops, VTs, AM,
1660 LD->getExtensionType(), LD->getLoadedVT(),
1661 LD->getSrcValue(), LD->getSrcValueOffset(),
1662 LD->getAlignment(), LD->isVolatile());
1663 CSEMap.InsertNode(N, IP);
1664 AllNodes.push_back(N);
1665 return SDOperand(N, 0);
1668 SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1669 SDOperand Chain, SDOperand Ptr,
1670 SDOperand SV) {
1671 SDOperand Ops[] = { Chain, Ptr, SV, getConstant(Count, MVT::i32),
1672 getValueType(EVT) };
1673 return getNode(ISD::VLOAD, getVTList(MVT::Vector, MVT::Other), Ops, 5);
1676 SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
1677 SDOperand Ptr, const Value *SV, int SVOffset,
1678 bool isVolatile, unsigned Alignment) {
1679 MVT::ValueType VT = Val.getValueType();
1681 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
1682 const Type *Ty = 0;
1683 if (VT != MVT::Vector && VT != MVT::iPTR) {
1684 Ty = MVT::getTypeForValueType(VT);
1685 } else if (SV) {
1686 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
1687 assert(PT && "Value for store must be a pointer");
1688 Ty = PT->getElementType();
1690 assert(Ty && "Could not get type information for store");
1691 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1693 SDVTList VTs = getVTList(MVT::Other);
1694 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1695 SDOperand Ops[] = { Chain, Val, Ptr, Undef };
1696 FoldingSetNodeID ID;
1697 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1698 ID.AddInteger(ISD::UNINDEXED);
1699 ID.AddInteger(false);
1700 ID.AddInteger(VT);
1701 ID.AddPointer(SV);
1702 ID.AddInteger(SVOffset);
1703 ID.AddInteger(Alignment);
1704 ID.AddInteger(isVolatile);
1705 void *IP = 0;
1706 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1707 return SDOperand(E, 0);
1708 SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
1709 VT, SV, SVOffset, Alignment, isVolatile);
1710 CSEMap.InsertNode(N, IP);
1711 AllNodes.push_back(N);
1712 return SDOperand(N, 0);
1715 SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
1716 SDOperand Ptr, const Value *SV,
1717 int SVOffset, MVT::ValueType SVT,
1718 bool isVolatile, unsigned Alignment) {
1719 MVT::ValueType VT = Val.getValueType();
1720 bool isTrunc = VT != SVT;
1722 assert(VT > SVT && "Not a truncation?");
1723 assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
1724 "Can't do FP-INT conversion!");
1726 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
1727 const Type *Ty = 0;
1728 if (VT != MVT::Vector && VT != MVT::iPTR) {
1729 Ty = MVT::getTypeForValueType(VT);
1730 } else if (SV) {
1731 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
1732 assert(PT && "Value for store must be a pointer");
1733 Ty = PT->getElementType();
1735 assert(Ty && "Could not get type information for store");
1736 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1738 SDVTList VTs = getVTList(MVT::Other);
1739 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1740 SDOperand Ops[] = { Chain, Val, Ptr, Undef };
1741 FoldingSetNodeID ID;
1742 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1743 ID.AddInteger(ISD::UNINDEXED);
1744 ID.AddInteger(isTrunc);
1745 ID.AddInteger(SVT);
1746 ID.AddPointer(SV);
1747 ID.AddInteger(SVOffset);
1748 ID.AddInteger(Alignment);
1749 ID.AddInteger(isVolatile);
1750 void *IP = 0;
1751 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1752 return SDOperand(E, 0);
1753 SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
1754 SVT, SV, SVOffset, Alignment, isVolatile);
1755 CSEMap.InsertNode(N, IP);
1756 AllNodes.push_back(N);
1757 return SDOperand(N, 0);
1760 SDOperand
1761 SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
1762 SDOperand Offset, ISD::MemIndexedMode AM) {
1763 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
1764 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
1765 "Store is already a indexed store!");
1766 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
1767 SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
1768 FoldingSetNodeID ID;
1769 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1770 ID.AddInteger(AM);
1771 ID.AddInteger(ST->isTruncatingStore());
1772 ID.AddInteger(ST->getStoredVT());
1773 ID.AddPointer(ST->getSrcValue());
1774 ID.AddInteger(ST->getSrcValueOffset());
1775 ID.AddInteger(ST->getAlignment());
1776 ID.AddInteger(ST->isVolatile());
1777 void *IP = 0;
1778 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1779 return SDOperand(E, 0);
1780 SDNode *N = new StoreSDNode(Ops, VTs, AM,
1781 ST->isTruncatingStore(), ST->getStoredVT(),
1782 ST->getSrcValue(), ST->getSrcValueOffset(),
1783 ST->getAlignment(), ST->isVolatile());
1784 CSEMap.InsertNode(N, IP);
1785 AllNodes.push_back(N);
1786 return SDOperand(N, 0);
1789 SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1790 SDOperand Chain, SDOperand Ptr,
1791 SDOperand SV) {
1792 SDOperand Ops[] = { Chain, Ptr, SV };
1793 return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
1796 SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1797 const SDOperand *Ops, unsigned NumOps) {
1798 switch (NumOps) {
1799 case 0: return getNode(Opcode, VT);
1800 case 1: return getNode(Opcode, VT, Ops[0]);
1801 case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1802 case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1803 default: break;
1806 switch (Opcode) {
1807 default: break;
1808 case ISD::SELECT_CC: {
1809 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
1810 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1811 "LHS and RHS of condition must have same type!");
1812 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1813 "True and False arms of SelectCC must have same type!");
1814 assert(Ops[2].getValueType() == VT &&
1815 "select_cc node must be of same type as true and false value!");
1816 break;
1818 case ISD::BR_CC: {
1819 assert(NumOps == 5 && "BR_CC takes 5 operands!");
1820 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1821 "LHS/RHS of comparison should match types!");
1822 break;
1826 // Memoize nodes.
1827 SDNode *N;
1828 SDVTList VTs = getVTList(VT);
1829 if (VT != MVT::Flag) {
1830 FoldingSetNodeID ID;
1831 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
1832 void *IP = 0;
1833 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1834 return SDOperand(E, 0);
1835 N = new SDNode(Opcode, VTs, Ops, NumOps);
1836 CSEMap.InsertNode(N, IP);
1837 } else {
1838 N = new SDNode(Opcode, VTs, Ops, NumOps);
1840 AllNodes.push_back(N);
1841 return SDOperand(N, 0);
1844 SDOperand SelectionDAG::getNode(unsigned Opcode,
1845 std::vector<MVT::ValueType> &ResultTys,
1846 const SDOperand *Ops, unsigned NumOps) {
1847 return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
1848 Ops, NumOps);
1851 SDOperand SelectionDAG::getNode(unsigned Opcode,
1852 const MVT::ValueType *VTs, unsigned NumVTs,
1853 const SDOperand *Ops, unsigned NumOps) {
1854 if (NumVTs == 1)
1855 return getNode(Opcode, VTs[0], Ops, NumOps);
1856 return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
1859 SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
1860 const SDOperand *Ops, unsigned NumOps) {
1861 if (VTList.NumVTs == 1)
1862 return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
1864 switch (Opcode) {
1865 // FIXME: figure out how to safely handle things like
1866 // int foo(int x) { return 1 << (x & 255); }
1867 // int bar() { return foo(256); }
1868 #if 0
1869 case ISD::SRA_PARTS:
1870 case ISD::SRL_PARTS:
1871 case ISD::SHL_PARTS:
1872 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1873 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1874 return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1875 else if (N3.getOpcode() == ISD::AND)
1876 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1877 // If the and is only masking out bits that cannot effect the shift,
1878 // eliminate the and.
1879 unsigned NumBits = MVT::getSizeInBits(VT)*2;
1880 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1881 return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1883 break;
1884 #endif
1887 // Memoize the node unless it returns a flag.
1888 SDNode *N;
1889 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
1890 FoldingSetNodeID ID;
1891 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
1892 void *IP = 0;
1893 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1894 return SDOperand(E, 0);
1895 if (NumOps == 1)
1896 N = new UnarySDNode(Opcode, VTList, Ops[0]);
1897 else if (NumOps == 2)
1898 N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
1899 else if (NumOps == 3)
1900 N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
1901 else
1902 N = new SDNode(Opcode, VTList, Ops, NumOps);
1903 CSEMap.InsertNode(N, IP);
1904 } else {
1905 if (NumOps == 1)
1906 N = new UnarySDNode(Opcode, VTList, Ops[0]);
1907 else if (NumOps == 2)
1908 N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
1909 else if (NumOps == 3)
1910 N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
1911 else
1912 N = new SDNode(Opcode, VTList, Ops, NumOps);
1914 AllNodes.push_back(N);
1915 return SDOperand(N, 0);
1918 SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
1919 return makeVTList(SDNode::getValueTypeList(VT), 1);
1922 SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
1923 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1924 E = VTList.end(); I != E; ++I) {
1925 if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
1926 return makeVTList(&(*I)[0], 2);
1928 std::vector<MVT::ValueType> V;
1929 V.push_back(VT1);
1930 V.push_back(VT2);
1931 VTList.push_front(V);
1932 return makeVTList(&(*VTList.begin())[0], 2);
1934 SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
1935 MVT::ValueType VT3) {
1936 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1937 E = VTList.end(); I != E; ++I) {
1938 if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
1939 (*I)[2] == VT3)
1940 return makeVTList(&(*I)[0], 3);
1942 std::vector<MVT::ValueType> V;
1943 V.push_back(VT1);
1944 V.push_back(VT2);
1945 V.push_back(VT3);
1946 VTList.push_front(V);
1947 return makeVTList(&(*VTList.begin())[0], 3);
1950 SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
1951 switch (NumVTs) {
1952 case 0: assert(0 && "Cannot have nodes without results!");
1953 case 1: return makeVTList(SDNode::getValueTypeList(VTs[0]), 1);
1954 case 2: return getVTList(VTs[0], VTs[1]);
1955 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
1956 default: break;
1959 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1960 E = VTList.end(); I != E; ++I) {
1961 if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
1963 bool NoMatch = false;
1964 for (unsigned i = 2; i != NumVTs; ++i)
1965 if (VTs[i] != (*I)[i]) {
1966 NoMatch = true;
1967 break;
1969 if (!NoMatch)
1970 return makeVTList(&*I->begin(), NumVTs);
1973 VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
1974 return makeVTList(&*VTList.begin()->begin(), NumVTs);
1978 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1979 /// specified operands. If the resultant node already exists in the DAG,
1980 /// this does not modify the specified node, instead it returns the node that
1981 /// already exists. If the resultant node does not exist in the DAG, the
1982 /// input node is returned. As a degenerate case, if you specify the same
1983 /// input operands as the node already has, the input node is returned.
1984 SDOperand SelectionDAG::
1985 UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1986 SDNode *N = InN.Val;
1987 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1989 // Check to see if there is no change.
1990 if (Op == N->getOperand(0)) return InN;
1992 // See if the modified node already exists.
1993 void *InsertPos = 0;
1994 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
1995 return SDOperand(Existing, InN.ResNo);
1997 // Nope it doesn't. Remove the node from it's current place in the maps.
1998 if (InsertPos)
1999 RemoveNodeFromCSEMaps(N);
2001 // Now we update the operands.
2002 N->OperandList[0].Val->removeUser(N);
2003 Op.Val->addUser(N);
2004 N->OperandList[0] = Op;
2006 // If this gets put into a CSE map, add it.
2007 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2008 return InN;
2011 SDOperand SelectionDAG::
2012 UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2013 SDNode *N = InN.Val;
2014 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2016 // Check to see if there is no change.
2017 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2018 return InN; // No operands changed, just return the input node.
2020 // See if the modified node already exists.
2021 void *InsertPos = 0;
2022 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2023 return SDOperand(Existing, InN.ResNo);
2025 // Nope it doesn't. Remove the node from it's current place in the maps.
2026 if (InsertPos)
2027 RemoveNodeFromCSEMaps(N);
2029 // Now we update the operands.
2030 if (N->OperandList[0] != Op1) {
2031 N->OperandList[0].Val->removeUser(N);
2032 Op1.Val->addUser(N);
2033 N->OperandList[0] = Op1;
2035 if (N->OperandList[1] != Op2) {
2036 N->OperandList[1].Val->removeUser(N);
2037 Op2.Val->addUser(N);
2038 N->OperandList[1] = Op2;
2041 // If this gets put into a CSE map, add it.
2042 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2043 return InN;
2046 SDOperand SelectionDAG::
2047 UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2048 SDOperand Ops[] = { Op1, Op2, Op3 };
2049 return UpdateNodeOperands(N, Ops, 3);
2052 SDOperand SelectionDAG::
2053 UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2054 SDOperand Op3, SDOperand Op4) {
2055 SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2056 return UpdateNodeOperands(N, Ops, 4);
2059 SDOperand SelectionDAG::
2060 UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2061 SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2062 SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2063 return UpdateNodeOperands(N, Ops, 5);
2067 SDOperand SelectionDAG::
2068 UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2069 SDNode *N = InN.Val;
2070 assert(N->getNumOperands() == NumOps &&
2071 "Update with wrong number of operands");
2073 // Check to see if there is no change.
2074 bool AnyChange = false;
2075 for (unsigned i = 0; i != NumOps; ++i) {
2076 if (Ops[i] != N->getOperand(i)) {
2077 AnyChange = true;
2078 break;
2082 // No operands changed, just return the input node.
2083 if (!AnyChange) return InN;
2085 // See if the modified node already exists.
2086 void *InsertPos = 0;
2087 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2088 return SDOperand(Existing, InN.ResNo);
2090 // Nope it doesn't. Remove the node from it's current place in the maps.
2091 if (InsertPos)
2092 RemoveNodeFromCSEMaps(N);
2094 // Now we update the operands.
2095 for (unsigned i = 0; i != NumOps; ++i) {
2096 if (N->OperandList[i] != Ops[i]) {
2097 N->OperandList[i].Val->removeUser(N);
2098 Ops[i].Val->addUser(N);
2099 N->OperandList[i] = Ops[i];
2103 // If this gets put into a CSE map, add it.
2104 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2105 return InN;
2109 /// MorphNodeTo - This frees the operands of the current node, resets the
2110 /// opcode, types, and operands to the specified value. This should only be
2111 /// used by the SelectionDAG class.
2112 void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2113 const SDOperand *Ops, unsigned NumOps) {
2114 NodeType = Opc;
2115 ValueList = L.VTs;
2116 NumValues = L.NumVTs;
2118 // Clear the operands list, updating used nodes to remove this from their
2119 // use list.
2120 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2121 I->Val->removeUser(this);
2123 // If NumOps is larger than the # of operands we currently have, reallocate
2124 // the operand list.
2125 if (NumOps > NumOperands) {
2126 if (OperandsNeedDelete)
2127 delete [] OperandList;
2128 OperandList = new SDOperand[NumOps];
2129 OperandsNeedDelete = true;
2132 // Assign the new operands.
2133 NumOperands = NumOps;
2135 for (unsigned i = 0, e = NumOps; i != e; ++i) {
2136 OperandList[i] = Ops[i];
2137 SDNode *N = OperandList[i].Val;
2138 N->Uses.push_back(this);
2142 /// SelectNodeTo - These are used for target selectors to *mutate* the
2143 /// specified node to have the specified return type, Target opcode, and
2144 /// operands. Note that target opcodes are stored as
2145 /// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2147 /// Note that SelectNodeTo returns the resultant node. If there is already a
2148 /// node of the specified opcode and operands, it returns that node instead of
2149 /// the current one.
2150 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2151 MVT::ValueType VT) {
2152 SDVTList VTs = getVTList(VT);
2153 FoldingSetNodeID ID;
2154 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2155 void *IP = 0;
2156 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2157 return ON;
2159 RemoveNodeFromCSEMaps(N);
2161 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2163 CSEMap.InsertNode(N, IP);
2164 return N;
2167 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2168 MVT::ValueType VT, SDOperand Op1) {
2169 // If an identical node already exists, use it.
2170 SDVTList VTs = getVTList(VT);
2171 SDOperand Ops[] = { Op1 };
2173 FoldingSetNodeID ID;
2174 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2175 void *IP = 0;
2176 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2177 return ON;
2179 RemoveNodeFromCSEMaps(N);
2180 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2181 CSEMap.InsertNode(N, IP);
2182 return N;
2185 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2186 MVT::ValueType VT, SDOperand Op1,
2187 SDOperand Op2) {
2188 // If an identical node already exists, use it.
2189 SDVTList VTs = getVTList(VT);
2190 SDOperand Ops[] = { Op1, Op2 };
2192 FoldingSetNodeID ID;
2193 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2194 void *IP = 0;
2195 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2196 return ON;
2198 RemoveNodeFromCSEMaps(N);
2200 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2202 CSEMap.InsertNode(N, IP); // Memoize the new node.
2203 return N;
2206 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2207 MVT::ValueType VT, SDOperand Op1,
2208 SDOperand Op2, SDOperand Op3) {
2209 // If an identical node already exists, use it.
2210 SDVTList VTs = getVTList(VT);
2211 SDOperand Ops[] = { Op1, Op2, Op3 };
2212 FoldingSetNodeID ID;
2213 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2214 void *IP = 0;
2215 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2216 return ON;
2218 RemoveNodeFromCSEMaps(N);
2220 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2222 CSEMap.InsertNode(N, IP); // Memoize the new node.
2223 return N;
2226 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2227 MVT::ValueType VT, const SDOperand *Ops,
2228 unsigned NumOps) {
2229 // If an identical node already exists, use it.
2230 SDVTList VTs = getVTList(VT);
2231 FoldingSetNodeID ID;
2232 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2233 void *IP = 0;
2234 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2235 return ON;
2237 RemoveNodeFromCSEMaps(N);
2238 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2240 CSEMap.InsertNode(N, IP); // Memoize the new node.
2241 return N;
2244 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2245 MVT::ValueType VT1, MVT::ValueType VT2,
2246 SDOperand Op1, SDOperand Op2) {
2247 SDVTList VTs = getVTList(VT1, VT2);
2248 FoldingSetNodeID ID;
2249 SDOperand Ops[] = { Op1, Op2 };
2250 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2251 void *IP = 0;
2252 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2253 return ON;
2255 RemoveNodeFromCSEMaps(N);
2256 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2257 CSEMap.InsertNode(N, IP); // Memoize the new node.
2258 return N;
2261 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2262 MVT::ValueType VT1, MVT::ValueType VT2,
2263 SDOperand Op1, SDOperand Op2,
2264 SDOperand Op3) {
2265 // If an identical node already exists, use it.
2266 SDVTList VTs = getVTList(VT1, VT2);
2267 SDOperand Ops[] = { Op1, Op2, Op3 };
2268 FoldingSetNodeID ID;
2269 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2270 void *IP = 0;
2271 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2272 return ON;
2274 RemoveNodeFromCSEMaps(N);
2276 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2277 CSEMap.InsertNode(N, IP); // Memoize the new node.
2278 return N;
2282 /// getTargetNode - These are used for target selectors to create a new node
2283 /// with specified return type(s), target opcode, and operands.
2285 /// Note that getTargetNode returns the resultant node. If there is already a
2286 /// node of the specified opcode and operands, it returns that node instead of
2287 /// the current one.
2288 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2289 return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2291 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2292 SDOperand Op1) {
2293 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2295 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2296 SDOperand Op1, SDOperand Op2) {
2297 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2299 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2300 SDOperand Op1, SDOperand Op2,
2301 SDOperand Op3) {
2302 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2304 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2305 const SDOperand *Ops, unsigned NumOps) {
2306 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2308 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2309 MVT::ValueType VT2, SDOperand Op1) {
2310 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2311 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2313 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2314 MVT::ValueType VT2, SDOperand Op1,
2315 SDOperand Op2) {
2316 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2317 SDOperand Ops[] = { Op1, Op2 };
2318 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2320 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2321 MVT::ValueType VT2, SDOperand Op1,
2322 SDOperand Op2, SDOperand Op3) {
2323 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2324 SDOperand Ops[] = { Op1, Op2, Op3 };
2325 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2327 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2328 MVT::ValueType VT2,
2329 const SDOperand *Ops, unsigned NumOps) {
2330 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2331 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2333 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2334 MVT::ValueType VT2, MVT::ValueType VT3,
2335 SDOperand Op1, SDOperand Op2) {
2336 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2337 SDOperand Ops[] = { Op1, Op2 };
2338 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2340 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2341 MVT::ValueType VT2, MVT::ValueType VT3,
2342 SDOperand Op1, SDOperand Op2,
2343 SDOperand Op3) {
2344 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2345 SDOperand Ops[] = { Op1, Op2, Op3 };
2346 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
2348 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2349 MVT::ValueType VT2, MVT::ValueType VT3,
2350 const SDOperand *Ops, unsigned NumOps) {
2351 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2352 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
2355 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2356 /// This can cause recursive merging of nodes in the DAG.
2358 /// This version assumes From/To have a single result value.
2360 void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2361 std::vector<SDNode*> *Deleted) {
2362 SDNode *From = FromN.Val, *To = ToN.Val;
2363 assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2364 "Cannot replace with this method!");
2365 assert(From != To && "Cannot replace uses of with self");
2367 while (!From->use_empty()) {
2368 // Process users until they are all gone.
2369 SDNode *U = *From->use_begin();
2371 // This node is about to morph, remove its old self from the CSE maps.
2372 RemoveNodeFromCSEMaps(U);
2374 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2375 I != E; ++I)
2376 if (I->Val == From) {
2377 From->removeUser(U);
2378 I->Val = To;
2379 To->addUser(U);
2382 // Now that we have modified U, add it back to the CSE maps. If it already
2383 // exists there, recursively merge the results together.
2384 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2385 ReplaceAllUsesWith(U, Existing, Deleted);
2386 // U is now dead.
2387 if (Deleted) Deleted->push_back(U);
2388 DeleteNodeNotInCSEMaps(U);
2393 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2394 /// This can cause recursive merging of nodes in the DAG.
2396 /// This version assumes From/To have matching types and numbers of result
2397 /// values.
2399 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2400 std::vector<SDNode*> *Deleted) {
2401 assert(From != To && "Cannot replace uses of with self");
2402 assert(From->getNumValues() == To->getNumValues() &&
2403 "Cannot use this version of ReplaceAllUsesWith!");
2404 if (From->getNumValues() == 1) { // If possible, use the faster version.
2405 ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2406 return;
2409 while (!From->use_empty()) {
2410 // Process users until they are all gone.
2411 SDNode *U = *From->use_begin();
2413 // This node is about to morph, remove its old self from the CSE maps.
2414 RemoveNodeFromCSEMaps(U);
2416 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2417 I != E; ++I)
2418 if (I->Val == From) {
2419 From->removeUser(U);
2420 I->Val = To;
2421 To->addUser(U);
2424 // Now that we have modified U, add it back to the CSE maps. If it already
2425 // exists there, recursively merge the results together.
2426 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2427 ReplaceAllUsesWith(U, Existing, Deleted);
2428 // U is now dead.
2429 if (Deleted) Deleted->push_back(U);
2430 DeleteNodeNotInCSEMaps(U);
2435 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2436 /// This can cause recursive merging of nodes in the DAG.
2438 /// This version can replace From with any result values. To must match the
2439 /// number and types of values returned by From.
2440 void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2441 const SDOperand *To,
2442 std::vector<SDNode*> *Deleted) {
2443 if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
2444 // Degenerate case handled above.
2445 ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2446 return;
2449 while (!From->use_empty()) {
2450 // Process users until they are all gone.
2451 SDNode *U = *From->use_begin();
2453 // This node is about to morph, remove its old self from the CSE maps.
2454 RemoveNodeFromCSEMaps(U);
2456 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2457 I != E; ++I)
2458 if (I->Val == From) {
2459 const SDOperand &ToOp = To[I->ResNo];
2460 From->removeUser(U);
2461 *I = ToOp;
2462 ToOp.Val->addUser(U);
2465 // Now that we have modified U, add it back to the CSE maps. If it already
2466 // exists there, recursively merge the results together.
2467 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2468 ReplaceAllUsesWith(U, Existing, Deleted);
2469 // U is now dead.
2470 if (Deleted) Deleted->push_back(U);
2471 DeleteNodeNotInCSEMaps(U);
2476 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2477 /// uses of other values produced by From.Val alone. The Deleted vector is
2478 /// handled the same was as for ReplaceAllUsesWith.
2479 void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2480 std::vector<SDNode*> &Deleted) {
2481 assert(From != To && "Cannot replace a value with itself");
2482 // Handle the simple, trivial, case efficiently.
2483 if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2484 ReplaceAllUsesWith(From, To, &Deleted);
2485 return;
2488 // Get all of the users of From.Val. We want these in a nice,
2489 // deterministically ordered and uniqued set, so we use a SmallSetVector.
2490 SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
2492 while (!Users.empty()) {
2493 // We know that this user uses some value of From. If it is the right
2494 // value, update it.
2495 SDNode *User = Users.back();
2496 Users.pop_back();
2498 for (SDOperand *Op = User->OperandList,
2499 *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2500 if (*Op == From) {
2501 // Okay, we know this user needs to be updated. Remove its old self
2502 // from the CSE maps.
2503 RemoveNodeFromCSEMaps(User);
2505 // Update all operands that match "From".
2506 for (; Op != E; ++Op) {
2507 if (*Op == From) {
2508 From.Val->removeUser(User);
2509 *Op = To;
2510 To.Val->addUser(User);
2514 // Now that we have modified User, add it back to the CSE maps. If it
2515 // already exists there, recursively merge the results together.
2516 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2517 unsigned NumDeleted = Deleted.size();
2518 ReplaceAllUsesWith(User, Existing, &Deleted);
2520 // User is now dead.
2521 Deleted.push_back(User);
2522 DeleteNodeNotInCSEMaps(User);
2524 // We have to be careful here, because ReplaceAllUsesWith could have
2525 // deleted a user of From, which means there may be dangling pointers
2526 // in the "Users" setvector. Scan over the deleted node pointers and
2527 // remove them from the setvector.
2528 for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2529 Users.remove(Deleted[i]);
2531 break; // Exit the operand scanning loop.
2538 /// AssignNodeIds - Assign a unique node id for each node in the DAG based on
2539 /// their allnodes order. It returns the maximum id.
2540 unsigned SelectionDAG::AssignNodeIds() {
2541 unsigned Id = 0;
2542 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
2543 SDNode *N = I;
2544 N->setNodeId(Id++);
2546 return Id;
2549 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
2550 /// based on their topological order. It returns the maximum id and a vector
2551 /// of the SDNodes* in assigned order by reference.
2552 unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
2553 unsigned DAGSize = AllNodes.size();
2554 std::vector<unsigned> InDegree(DAGSize);
2555 std::vector<SDNode*> Sources;
2557 // Use a two pass approach to avoid using a std::map which is slow.
2558 unsigned Id = 0;
2559 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
2560 SDNode *N = I;
2561 N->setNodeId(Id++);
2562 unsigned Degree = N->use_size();
2563 InDegree[N->getNodeId()] = Degree;
2564 if (Degree == 0)
2565 Sources.push_back(N);
2568 TopOrder.clear();
2569 while (!Sources.empty()) {
2570 SDNode *N = Sources.back();
2571 Sources.pop_back();
2572 TopOrder.push_back(N);
2573 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
2574 SDNode *P = I->Val;
2575 unsigned Degree = --InDegree[P->getNodeId()];
2576 if (Degree == 0)
2577 Sources.push_back(P);
2581 // Second pass, assign the actual topological order as node ids.
2582 Id = 0;
2583 for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
2584 TI != TE; ++TI)
2585 (*TI)->setNodeId(Id++);
2587 return Id;
2592 //===----------------------------------------------------------------------===//
2593 // SDNode Class
2594 //===----------------------------------------------------------------------===//
2596 // Out-of-line virtual method to give class a home.
2597 void SDNode::ANCHOR() {}
2598 void UnarySDNode::ANCHOR() {}
2599 void BinarySDNode::ANCHOR() {}
2600 void TernarySDNode::ANCHOR() {}
2601 void HandleSDNode::ANCHOR() {}
2602 void StringSDNode::ANCHOR() {}
2603 void ConstantSDNode::ANCHOR() {}
2604 void ConstantFPSDNode::ANCHOR() {}
2605 void GlobalAddressSDNode::ANCHOR() {}
2606 void FrameIndexSDNode::ANCHOR() {}
2607 void JumpTableSDNode::ANCHOR() {}
2608 void ConstantPoolSDNode::ANCHOR() {}
2609 void BasicBlockSDNode::ANCHOR() {}
2610 void SrcValueSDNode::ANCHOR() {}
2611 void RegisterSDNode::ANCHOR() {}
2612 void ExternalSymbolSDNode::ANCHOR() {}
2613 void CondCodeSDNode::ANCHOR() {}
2614 void VTSDNode::ANCHOR() {}
2615 void LoadSDNode::ANCHOR() {}
2616 void StoreSDNode::ANCHOR() {}
2618 HandleSDNode::~HandleSDNode() {
2619 SDVTList VTs = { 0, 0 };
2620 MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0); // Drops operand uses.
2623 GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
2624 MVT::ValueType VT, int o)
2625 : SDNode(isa<GlobalVariable>(GA) &&
2626 dyn_cast<GlobalVariable>(GA)->isThreadLocal() ?
2627 // Thread Local
2628 (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
2629 // Non Thread Local
2630 (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
2631 getSDVTList(VT)), Offset(o) {
2632 TheGlobal = const_cast<GlobalValue*>(GA);
2635 /// Profile - Gather unique data for the node.
2637 void SDNode::Profile(FoldingSetNodeID &ID) {
2638 AddNodeIDNode(ID, this);
2641 /// getValueTypeList - Return a pointer to the specified value type.
2643 MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2644 static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2645 VTs[VT] = VT;
2646 return &VTs[VT];
2649 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2650 /// indicated value. This method ignores uses of other values defined by this
2651 /// operation.
2652 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2653 assert(Value < getNumValues() && "Bad value!");
2655 // If there is only one value, this is easy.
2656 if (getNumValues() == 1)
2657 return use_size() == NUses;
2658 if (Uses.size() < NUses) return false;
2660 SDOperand TheValue(const_cast<SDNode *>(this), Value);
2662 SmallPtrSet<SDNode*, 32> UsersHandled;
2664 for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
2665 SDNode *User = *UI;
2666 if (User->getNumOperands() == 1 ||
2667 UsersHandled.insert(User)) // First time we've seen this?
2668 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2669 if (User->getOperand(i) == TheValue) {
2670 if (NUses == 0)
2671 return false; // too many uses
2672 --NUses;
2676 // Found exactly the right number of uses?
2677 return NUses == 0;
2681 /// isOnlyUse - Return true if this node is the only use of N.
2683 bool SDNode::isOnlyUse(SDNode *N) const {
2684 bool Seen = false;
2685 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2686 SDNode *User = *I;
2687 if (User == this)
2688 Seen = true;
2689 else
2690 return false;
2693 return Seen;
2696 /// isOperand - Return true if this node is an operand of N.
2698 bool SDOperand::isOperand(SDNode *N) const {
2699 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2700 if (*this == N->getOperand(i))
2701 return true;
2702 return false;
2705 bool SDNode::isOperand(SDNode *N) const {
2706 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2707 if (this == N->OperandList[i].Val)
2708 return true;
2709 return false;
2712 static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
2713 SmallPtrSet<SDNode *, 32> &Visited) {
2714 if (found || !Visited.insert(N))
2715 return;
2717 for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
2718 SDNode *Op = N->getOperand(i).Val;
2719 if (Op == P) {
2720 found = true;
2721 return;
2723 findPredecessor(Op, P, found, Visited);
2727 /// isPredecessor - Return true if this node is a predecessor of N. This node
2728 /// is either an operand of N or it can be reached by recursively traversing
2729 /// up the operands.
2730 /// NOTE: this is an expensive method. Use it carefully.
2731 bool SDNode::isPredecessor(SDNode *N) const {
2732 SmallPtrSet<SDNode *, 32> Visited;
2733 bool found = false;
2734 findPredecessor(N, this, found, Visited);
2735 return found;
2738 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
2739 assert(Num < NumOperands && "Invalid child # of SDNode!");
2740 return cast<ConstantSDNode>(OperandList[Num])->getValue();
2743 std::string SDNode::getOperationName(const SelectionDAG *G) const {
2744 switch (getOpcode()) {
2745 default:
2746 if (getOpcode() < ISD::BUILTIN_OP_END)
2747 return "<<Unknown DAG Node>>";
2748 else {
2749 if (G) {
2750 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2751 if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2752 return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2754 TargetLowering &TLI = G->getTargetLoweringInfo();
2755 const char *Name =
2756 TLI.getTargetNodeName(getOpcode());
2757 if (Name) return Name;
2760 return "<<Unknown Target Node>>";
2763 case ISD::PCMARKER: return "PCMarker";
2764 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2765 case ISD::SRCVALUE: return "SrcValue";
2766 case ISD::EntryToken: return "EntryToken";
2767 case ISD::TokenFactor: return "TokenFactor";
2768 case ISD::AssertSext: return "AssertSext";
2769 case ISD::AssertZext: return "AssertZext";
2771 case ISD::STRING: return "String";
2772 case ISD::BasicBlock: return "BasicBlock";
2773 case ISD::VALUETYPE: return "ValueType";
2774 case ISD::Register: return "Register";
2776 case ISD::Constant: return "Constant";
2777 case ISD::ConstantFP: return "ConstantFP";
2778 case ISD::GlobalAddress: return "GlobalAddress";
2779 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
2780 case ISD::FrameIndex: return "FrameIndex";
2781 case ISD::JumpTable: return "JumpTable";
2782 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
2783 case ISD::RETURNADDR: return "RETURNADDR";
2784 case ISD::FRAMEADDR: return "FRAMEADDR";
2785 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
2786 case ISD::EHSELECTION: return "EHSELECTION";
2787 case ISD::ConstantPool: return "ConstantPool";
2788 case ISD::ExternalSymbol: return "ExternalSymbol";
2789 case ISD::INTRINSIC_WO_CHAIN: {
2790 unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2791 return Intrinsic::getName((Intrinsic::ID)IID);
2793 case ISD::INTRINSIC_VOID:
2794 case ISD::INTRINSIC_W_CHAIN: {
2795 unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2796 return Intrinsic::getName((Intrinsic::ID)IID);
2799 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
2800 case ISD::TargetConstant: return "TargetConstant";
2801 case ISD::TargetConstantFP:return "TargetConstantFP";
2802 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2803 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
2804 case ISD::TargetFrameIndex: return "TargetFrameIndex";
2805 case ISD::TargetJumpTable: return "TargetJumpTable";
2806 case ISD::TargetConstantPool: return "TargetConstantPool";
2807 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2809 case ISD::CopyToReg: return "CopyToReg";
2810 case ISD::CopyFromReg: return "CopyFromReg";
2811 case ISD::UNDEF: return "undef";
2812 case ISD::MERGE_VALUES: return "mergevalues";
2813 case ISD::INLINEASM: return "inlineasm";
2814 case ISD::LABEL: return "label";
2815 case ISD::HANDLENODE: return "handlenode";
2816 case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2817 case ISD::CALL: return "call";
2819 // Unary operators
2820 case ISD::FABS: return "fabs";
2821 case ISD::FNEG: return "fneg";
2822 case ISD::FSQRT: return "fsqrt";
2823 case ISD::FSIN: return "fsin";
2824 case ISD::FCOS: return "fcos";
2825 case ISD::FPOWI: return "fpowi";
2827 // Binary operators
2828 case ISD::ADD: return "add";
2829 case ISD::SUB: return "sub";
2830 case ISD::MUL: return "mul";
2831 case ISD::MULHU: return "mulhu";
2832 case ISD::MULHS: return "mulhs";
2833 case ISD::SDIV: return "sdiv";
2834 case ISD::UDIV: return "udiv";
2835 case ISD::SREM: return "srem";
2836 case ISD::UREM: return "urem";
2837 case ISD::AND: return "and";
2838 case ISD::OR: return "or";
2839 case ISD::XOR: return "xor";
2840 case ISD::SHL: return "shl";
2841 case ISD::SRA: return "sra";
2842 case ISD::SRL: return "srl";
2843 case ISD::ROTL: return "rotl";
2844 case ISD::ROTR: return "rotr";
2845 case ISD::FADD: return "fadd";
2846 case ISD::FSUB: return "fsub";
2847 case ISD::FMUL: return "fmul";
2848 case ISD::FDIV: return "fdiv";
2849 case ISD::FREM: return "frem";
2850 case ISD::FCOPYSIGN: return "fcopysign";
2851 case ISD::VADD: return "vadd";
2852 case ISD::VSUB: return "vsub";
2853 case ISD::VMUL: return "vmul";
2854 case ISD::VSDIV: return "vsdiv";
2855 case ISD::VUDIV: return "vudiv";
2856 case ISD::VAND: return "vand";
2857 case ISD::VOR: return "vor";
2858 case ISD::VXOR: return "vxor";
2860 case ISD::SETCC: return "setcc";
2861 case ISD::SELECT: return "select";
2862 case ISD::SELECT_CC: return "select_cc";
2863 case ISD::VSELECT: return "vselect";
2864 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
2865 case ISD::VINSERT_VECTOR_ELT: return "vinsert_vector_elt";
2866 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
2867 case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2868 case ISD::VCONCAT_VECTORS: return "vconcat_vectors";
2869 case ISD::VEXTRACT_SUBVECTOR: return "vextract_subvector";
2870 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
2871 case ISD::VBUILD_VECTOR: return "vbuild_vector";
2872 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
2873 case ISD::VVECTOR_SHUFFLE: return "vvector_shuffle";
2874 case ISD::VBIT_CONVERT: return "vbit_convert";
2875 case ISD::CARRY_FALSE: return "carry_false";
2876 case ISD::ADDC: return "addc";
2877 case ISD::ADDE: return "adde";
2878 case ISD::SUBC: return "subc";
2879 case ISD::SUBE: return "sube";
2880 case ISD::SHL_PARTS: return "shl_parts";
2881 case ISD::SRA_PARTS: return "sra_parts";
2882 case ISD::SRL_PARTS: return "srl_parts";
2884 // Conversion operators.
2885 case ISD::SIGN_EXTEND: return "sign_extend";
2886 case ISD::ZERO_EXTEND: return "zero_extend";
2887 case ISD::ANY_EXTEND: return "any_extend";
2888 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2889 case ISD::TRUNCATE: return "truncate";
2890 case ISD::FP_ROUND: return "fp_round";
2891 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2892 case ISD::FP_EXTEND: return "fp_extend";
2894 case ISD::SINT_TO_FP: return "sint_to_fp";
2895 case ISD::UINT_TO_FP: return "uint_to_fp";
2896 case ISD::FP_TO_SINT: return "fp_to_sint";
2897 case ISD::FP_TO_UINT: return "fp_to_uint";
2898 case ISD::BIT_CONVERT: return "bit_convert";
2900 // Control flow instructions
2901 case ISD::BR: return "br";
2902 case ISD::BRIND: return "brind";
2903 case ISD::BR_JT: return "br_jt";
2904 case ISD::BRCOND: return "brcond";
2905 case ISD::BR_CC: return "br_cc";
2906 case ISD::RET: return "ret";
2907 case ISD::CALLSEQ_START: return "callseq_start";
2908 case ISD::CALLSEQ_END: return "callseq_end";
2910 // Other operators
2911 case ISD::LOAD: return "load";
2912 case ISD::STORE: return "store";
2913 case ISD::VLOAD: return "vload";
2914 case ISD::VAARG: return "vaarg";
2915 case ISD::VACOPY: return "vacopy";
2916 case ISD::VAEND: return "vaend";
2917 case ISD::VASTART: return "vastart";
2918 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2919 case ISD::EXTRACT_ELEMENT: return "extract_element";
2920 case ISD::BUILD_PAIR: return "build_pair";
2921 case ISD::STACKSAVE: return "stacksave";
2922 case ISD::STACKRESTORE: return "stackrestore";
2924 // Block memory operations.
2925 case ISD::MEMSET: return "memset";
2926 case ISD::MEMCPY: return "memcpy";
2927 case ISD::MEMMOVE: return "memmove";
2929 // Bit manipulation
2930 case ISD::BSWAP: return "bswap";
2931 case ISD::CTPOP: return "ctpop";
2932 case ISD::CTTZ: return "cttz";
2933 case ISD::CTLZ: return "ctlz";
2935 // Debug info
2936 case ISD::LOCATION: return "location";
2937 case ISD::DEBUG_LOC: return "debug_loc";
2939 case ISD::CONDCODE:
2940 switch (cast<CondCodeSDNode>(this)->get()) {
2941 default: assert(0 && "Unknown setcc condition!");
2942 case ISD::SETOEQ: return "setoeq";
2943 case ISD::SETOGT: return "setogt";
2944 case ISD::SETOGE: return "setoge";
2945 case ISD::SETOLT: return "setolt";
2946 case ISD::SETOLE: return "setole";
2947 case ISD::SETONE: return "setone";
2949 case ISD::SETO: return "seto";
2950 case ISD::SETUO: return "setuo";
2951 case ISD::SETUEQ: return "setue";
2952 case ISD::SETUGT: return "setugt";
2953 case ISD::SETUGE: return "setuge";
2954 case ISD::SETULT: return "setult";
2955 case ISD::SETULE: return "setule";
2956 case ISD::SETUNE: return "setune";
2958 case ISD::SETEQ: return "seteq";
2959 case ISD::SETGT: return "setgt";
2960 case ISD::SETGE: return "setge";
2961 case ISD::SETLT: return "setlt";
2962 case ISD::SETLE: return "setle";
2963 case ISD::SETNE: return "setne";
2968 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
2969 switch (AM) {
2970 default:
2971 return "";
2972 case ISD::PRE_INC:
2973 return "<pre-inc>";
2974 case ISD::PRE_DEC:
2975 return "<pre-dec>";
2976 case ISD::POST_INC:
2977 return "<post-inc>";
2978 case ISD::POST_DEC:
2979 return "<post-dec>";
2983 void SDNode::dump() const { dump(0); }
2984 void SDNode::dump(const SelectionDAG *G) const {
2985 cerr << (void*)this << ": ";
2987 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2988 if (i) cerr << ",";
2989 if (getValueType(i) == MVT::Other)
2990 cerr << "ch";
2991 else
2992 cerr << MVT::getValueTypeString(getValueType(i));
2994 cerr << " = " << getOperationName(G);
2996 cerr << " ";
2997 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2998 if (i) cerr << ", ";
2999 cerr << (void*)getOperand(i).Val;
3000 if (unsigned RN = getOperand(i).ResNo)
3001 cerr << ":" << RN;
3004 if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3005 cerr << "<" << CSDN->getValue() << ">";
3006 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3007 cerr << "<" << CSDN->getValue() << ">";
3008 } else if (const GlobalAddressSDNode *GADN =
3009 dyn_cast<GlobalAddressSDNode>(this)) {
3010 int offset = GADN->getOffset();
3011 cerr << "<";
3012 WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3013 if (offset > 0)
3014 cerr << " + " << offset;
3015 else
3016 cerr << " " << offset;
3017 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3018 cerr << "<" << FIDN->getIndex() << ">";
3019 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3020 cerr << "<" << JTDN->getIndex() << ">";
3021 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3022 int offset = CP->getOffset();
3023 if (CP->isMachineConstantPoolEntry())
3024 cerr << "<" << *CP->getMachineCPVal() << ">";
3025 else
3026 cerr << "<" << *CP->getConstVal() << ">";
3027 if (offset > 0)
3028 cerr << " + " << offset;
3029 else
3030 cerr << " " << offset;
3031 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3032 cerr << "<";
3033 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3034 if (LBB)
3035 cerr << LBB->getName() << " ";
3036 cerr << (const void*)BBDN->getBasicBlock() << ">";
3037 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3038 if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3039 cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3040 } else {
3041 cerr << " #" << R->getReg();
3043 } else if (const ExternalSymbolSDNode *ES =
3044 dyn_cast<ExternalSymbolSDNode>(this)) {
3045 cerr << "'" << ES->getSymbol() << "'";
3046 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3047 if (M->getValue())
3048 cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3049 else
3050 cerr << "<null:" << M->getOffset() << ">";
3051 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3052 cerr << ":" << MVT::getValueTypeString(N->getVT());
3053 } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3054 bool doExt = true;
3055 switch (LD->getExtensionType()) {
3056 default: doExt = false; break;
3057 case ISD::EXTLOAD:
3058 cerr << " <anyext ";
3059 break;
3060 case ISD::SEXTLOAD:
3061 cerr << " <sext ";
3062 break;
3063 case ISD::ZEXTLOAD:
3064 cerr << " <zext ";
3065 break;
3067 if (doExt)
3068 cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3070 const char *AM = getIndexedModeName(LD->getAddressingMode());
3071 if (AM != "")
3072 cerr << " " << AM;
3073 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3074 if (ST->isTruncatingStore())
3075 cerr << " <trunc "
3076 << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3078 const char *AM = getIndexedModeName(ST->getAddressingMode());
3079 if (AM != "")
3080 cerr << " " << AM;
3084 static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3085 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3086 if (N->getOperand(i).Val->hasOneUse())
3087 DumpNodes(N->getOperand(i).Val, indent+2, G);
3088 else
3089 cerr << "\n" << std::string(indent+2, ' ')
3090 << (void*)N->getOperand(i).Val << ": <multiple use>";
3093 cerr << "\n" << std::string(indent, ' ');
3094 N->dump(G);
3097 void SelectionDAG::dump() const {
3098 cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3099 std::vector<const SDNode*> Nodes;
3100 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3101 I != E; ++I)
3102 Nodes.push_back(I);
3104 std::sort(Nodes.begin(), Nodes.end());
3106 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3107 if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3108 DumpNodes(Nodes[i], 2, this);
3111 if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3113 cerr << "\n\n";
3116 const Type *ConstantPoolSDNode::getType() const {
3117 if (isMachineConstantPoolEntry())
3118 return Val.MachineCPVal->getType();
3119 return Val.ConstVal->getType();