1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by Evan Cheng and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that ARM uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
16 #include "ARMAddressingModes.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMISelLowering.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMRegisterInfo.h"
21 #include "ARMSubtarget.h"
22 #include "ARMTargetMachine.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/Constants.h"
25 #include "llvm/Instruction.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/SSARegMap.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include "llvm/ADT/VectorExtras.h"
34 #include "llvm/Support/MathExtras.h"
37 ARMTargetLowering::ARMTargetLowering(TargetMachine
&TM
)
38 : TargetLowering(TM
), ARMPCLabelIndex(0) {
39 Subtarget
= &TM
.getSubtarget
<ARMSubtarget
>();
41 if (Subtarget
->isTargetDarwin()) {
43 setLibcallName(RTLIB::UINTTOFP_I64_F32
, NULL
);
44 setLibcallName(RTLIB::UINTTOFP_I64_F64
, NULL
);
46 // Uses VFP for Thumb libfuncs if available.
47 if (Subtarget
->isThumb() && Subtarget
->hasVFP2()) {
48 // Single-precision floating-point arithmetic.
49 setLibcallName(RTLIB::ADD_F32
, "__addsf3vfp");
50 setLibcallName(RTLIB::SUB_F32
, "__subsf3vfp");
51 setLibcallName(RTLIB::MUL_F32
, "__mulsf3vfp");
52 setLibcallName(RTLIB::DIV_F32
, "__divsf3vfp");
54 // Double-precision floating-point arithmetic.
55 setLibcallName(RTLIB::ADD_F64
, "__adddf3vfp");
56 setLibcallName(RTLIB::SUB_F64
, "__subdf3vfp");
57 setLibcallName(RTLIB::MUL_F64
, "__muldf3vfp");
58 setLibcallName(RTLIB::DIV_F64
, "__divdf3vfp");
60 // Single-precision comparisons.
61 setLibcallName(RTLIB::OEQ_F32
, "__eqsf2vfp");
62 setLibcallName(RTLIB::UNE_F32
, "__nesf2vfp");
63 setLibcallName(RTLIB::OLT_F32
, "__ltsf2vfp");
64 setLibcallName(RTLIB::OLE_F32
, "__lesf2vfp");
65 setLibcallName(RTLIB::OGE_F32
, "__gesf2vfp");
66 setLibcallName(RTLIB::OGT_F32
, "__gtsf2vfp");
67 setLibcallName(RTLIB::UO_F32
, "__unordsf2vfp");
68 setLibcallName(RTLIB::O_F32
, "__unordsf2vfp");
70 setCmpLibcallCC(RTLIB::OEQ_F32
, ISD::SETNE
);
71 setCmpLibcallCC(RTLIB::UNE_F32
, ISD::SETNE
);
72 setCmpLibcallCC(RTLIB::OLT_F32
, ISD::SETNE
);
73 setCmpLibcallCC(RTLIB::OLE_F32
, ISD::SETNE
);
74 setCmpLibcallCC(RTLIB::OGE_F32
, ISD::SETNE
);
75 setCmpLibcallCC(RTLIB::OGT_F32
, ISD::SETNE
);
76 setCmpLibcallCC(RTLIB::UO_F32
, ISD::SETNE
);
77 setCmpLibcallCC(RTLIB::O_F32
, ISD::SETEQ
);
79 // Double-precision comparisons.
80 setLibcallName(RTLIB::OEQ_F64
, "__eqdf2vfp");
81 setLibcallName(RTLIB::UNE_F64
, "__nedf2vfp");
82 setLibcallName(RTLIB::OLT_F64
, "__ltdf2vfp");
83 setLibcallName(RTLIB::OLE_F64
, "__ledf2vfp");
84 setLibcallName(RTLIB::OGE_F64
, "__gedf2vfp");
85 setLibcallName(RTLIB::OGT_F64
, "__gtdf2vfp");
86 setLibcallName(RTLIB::UO_F64
, "__unorddf2vfp");
87 setLibcallName(RTLIB::O_F64
, "__unorddf2vfp");
89 setCmpLibcallCC(RTLIB::OEQ_F64
, ISD::SETNE
);
90 setCmpLibcallCC(RTLIB::UNE_F64
, ISD::SETNE
);
91 setCmpLibcallCC(RTLIB::OLT_F64
, ISD::SETNE
);
92 setCmpLibcallCC(RTLIB::OLE_F64
, ISD::SETNE
);
93 setCmpLibcallCC(RTLIB::OGE_F64
, ISD::SETNE
);
94 setCmpLibcallCC(RTLIB::OGT_F64
, ISD::SETNE
);
95 setCmpLibcallCC(RTLIB::UO_F64
, ISD::SETNE
);
96 setCmpLibcallCC(RTLIB::O_F64
, ISD::SETEQ
);
98 // Floating-point to integer conversions.
99 // i64 conversions are done via library routines even when generating VFP
100 // instructions, so use the same ones.
101 setLibcallName(RTLIB::FPTOSINT_F64_I32
, "__fixdfsivfp");
102 setLibcallName(RTLIB::FPTOUINT_F64_I32
, "__fixunsdfsivfp");
103 setLibcallName(RTLIB::FPTOSINT_F32_I32
, "__fixsfsivfp");
104 setLibcallName(RTLIB::FPTOUINT_F32_I32
, "__fixunssfsivfp");
106 // Conversions between floating types.
107 setLibcallName(RTLIB::FPROUND_F64_F32
, "__truncdfsf2vfp");
108 setLibcallName(RTLIB::FPEXT_F32_F64
, "__extendsfdf2vfp");
110 // Integer to floating-point conversions.
111 // i64 conversions are done via library routines even when generating VFP
112 // instructions, so use the same ones.
113 // FIXME: There appears to be some naming inconsistency in ARM libgcc: e.g.
114 // __floatunsidf vs. __floatunssidfvfp.
115 setLibcallName(RTLIB::SINTTOFP_I32_F64
, "__floatsidfvfp");
116 setLibcallName(RTLIB::UINTTOFP_I32_F64
, "__floatunssidfvfp");
117 setLibcallName(RTLIB::SINTTOFP_I32_F32
, "__floatsisfvfp");
118 setLibcallName(RTLIB::UINTTOFP_I32_F32
, "__floatunssisfvfp");
122 addRegisterClass(MVT::i32
, ARM::GPRRegisterClass
);
123 if (!UseSoftFloat
&& Subtarget
->hasVFP2() && !Subtarget
->isThumb()) {
124 addRegisterClass(MVT::f32
, ARM::SPRRegisterClass
);
125 addRegisterClass(MVT::f64
, ARM::DPRRegisterClass
);
127 computeRegisterProperties();
129 // ARM does not have f32 extending load.
130 setLoadXAction(ISD::EXTLOAD
, MVT::f32
, Expand
);
132 // ARM supports all 4 flavors of integer indexed load / store.
133 for (unsigned im
= (unsigned)ISD::PRE_INC
;
134 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
135 setIndexedLoadAction(im
, MVT::i1
, Legal
);
136 setIndexedLoadAction(im
, MVT::i8
, Legal
);
137 setIndexedLoadAction(im
, MVT::i16
, Legal
);
138 setIndexedLoadAction(im
, MVT::i32
, Legal
);
139 setIndexedStoreAction(im
, MVT::i1
, Legal
);
140 setIndexedStoreAction(im
, MVT::i8
, Legal
);
141 setIndexedStoreAction(im
, MVT::i16
, Legal
);
142 setIndexedStoreAction(im
, MVT::i32
, Legal
);
145 // i64 operation support.
146 if (Subtarget
->isThumb()) {
147 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
148 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
149 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
151 setOperationAction(ISD::MUL
, MVT::i64
, Custom
);
152 setOperationAction(ISD::MULHU
, MVT::i32
, Custom
);
153 if (!Subtarget
->hasV6Ops())
154 setOperationAction(ISD::MULHS
, MVT::i32
, Custom
);
156 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Expand
);
157 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Expand
);
158 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Expand
);
159 setOperationAction(ISD::SRL
, MVT::i64
, Custom
);
160 setOperationAction(ISD::SRA
, MVT::i64
, Custom
);
162 // ARM does not have ROTL.
163 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
164 setOperationAction(ISD::CTTZ
, MVT::i32
, Expand
);
165 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
166 if (!Subtarget
->hasV5TOps() || Subtarget
->isThumb())
167 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
169 // Only ARMv6 has BSWAP.
170 if (!Subtarget
->hasV6Ops())
171 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
173 // These are expanded into libcalls.
174 setOperationAction(ISD::SDIV
, MVT::i32
, Expand
);
175 setOperationAction(ISD::UDIV
, MVT::i32
, Expand
);
176 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
177 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
179 // Support label based line numbers.
180 setOperationAction(ISD::LOCATION
, MVT::Other
, Expand
);
181 setOperationAction(ISD::DEBUG_LOC
, MVT::Other
, Expand
);
183 setOperationAction(ISD::RET
, MVT::Other
, Custom
);
184 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
185 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
186 setOperationAction(ISD::GLOBAL_OFFSET_TABLE
, MVT::i32
, Custom
);
187 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
189 // Expand mem operations genericly.
190 setOperationAction(ISD::MEMSET
, MVT::Other
, Expand
);
191 setOperationAction(ISD::MEMCPY
, MVT::Other
, Custom
);
192 setOperationAction(ISD::MEMMOVE
, MVT::Other
, Expand
);
194 // Use the default implementation.
195 setOperationAction(ISD::VASTART
, MVT::Other
, Expand
);
196 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
197 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
198 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
199 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
200 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
201 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
203 if (!Subtarget
->hasV6Ops()) {
204 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
205 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
207 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
209 if (!UseSoftFloat
&& Subtarget
->hasVFP2() && !Subtarget
->isThumb())
210 // Turn f64->i64 into FMRRD iff target supports vfp2.
211 setOperationAction(ISD::BIT_CONVERT
, MVT::i64
, Custom
);
213 setOperationAction(ISD::SETCC
, MVT::i32
, Expand
);
214 setOperationAction(ISD::SETCC
, MVT::f32
, Expand
);
215 setOperationAction(ISD::SETCC
, MVT::f64
, Expand
);
216 setOperationAction(ISD::SELECT
, MVT::i32
, Expand
);
217 setOperationAction(ISD::SELECT
, MVT::f32
, Expand
);
218 setOperationAction(ISD::SELECT
, MVT::f64
, Expand
);
219 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
220 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
221 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
223 setOperationAction(ISD::BRCOND
, MVT::Other
, Expand
);
224 setOperationAction(ISD::BR_CC
, MVT::i32
, Custom
);
225 setOperationAction(ISD::BR_CC
, MVT::f32
, Custom
);
226 setOperationAction(ISD::BR_CC
, MVT::f64
, Custom
);
227 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
229 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
230 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
231 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
232 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
233 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
235 // FP Constants can't be immediates.
236 setOperationAction(ISD::ConstantFP
, MVT::f64
, Expand
);
237 setOperationAction(ISD::ConstantFP
, MVT::f32
, Expand
);
239 // We don't support sin/cos/fmod/copysign
240 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
241 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
242 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
243 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
244 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
245 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
246 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
247 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
249 // int <-> fp are custom expanded into bit_convert + ARMISD ops.
250 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
251 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
252 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
253 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
255 setStackPointerRegisterToSaveRestore(ARM::SP
);
256 setSchedulingPreference(SchedulingForRegPressure
);
257 setIfCvtBlockSizeLimit(Subtarget
->isThumb() ? 0 : 10);
258 setIfCvtDupBlockSizeLimit(Subtarget
->isThumb() ? 0 : 3);
260 maxStoresPerMemcpy
= 1; //// temporary - rewrite interface to use type
264 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode
) const {
267 case ARMISD::Wrapper
: return "ARMISD::Wrapper";
268 case ARMISD::WrapperJT
: return "ARMISD::WrapperJT";
269 case ARMISD::CALL
: return "ARMISD::CALL";
270 case ARMISD::CALL_PRED
: return "ARMISD::CALL_PRED";
271 case ARMISD::CALL_NOLINK
: return "ARMISD::CALL_NOLINK";
272 case ARMISD::tCALL
: return "ARMISD::tCALL";
273 case ARMISD::BRCOND
: return "ARMISD::BRCOND";
274 case ARMISD::BR_JT
: return "ARMISD::BR_JT";
275 case ARMISD::RET_FLAG
: return "ARMISD::RET_FLAG";
276 case ARMISD::PIC_ADD
: return "ARMISD::PIC_ADD";
277 case ARMISD::CMP
: return "ARMISD::CMP";
278 case ARMISD::CMPNZ
: return "ARMISD::CMPNZ";
279 case ARMISD::CMPFP
: return "ARMISD::CMPFP";
280 case ARMISD::CMPFPw0
: return "ARMISD::CMPFPw0";
281 case ARMISD::FMSTAT
: return "ARMISD::FMSTAT";
282 case ARMISD::CMOV
: return "ARMISD::CMOV";
283 case ARMISD::CNEG
: return "ARMISD::CNEG";
285 case ARMISD::FTOSI
: return "ARMISD::FTOSI";
286 case ARMISD::FTOUI
: return "ARMISD::FTOUI";
287 case ARMISD::SITOF
: return "ARMISD::SITOF";
288 case ARMISD::UITOF
: return "ARMISD::UITOF";
289 case ARMISD::MULHILOU
: return "ARMISD::MULHILOU";
290 case ARMISD::MULHILOS
: return "ARMISD::MULHILOS";
292 case ARMISD::SRL_FLAG
: return "ARMISD::SRL_FLAG";
293 case ARMISD::SRA_FLAG
: return "ARMISD::SRA_FLAG";
294 case ARMISD::RRX
: return "ARMISD::RRX";
296 case ARMISD::FMRRD
: return "ARMISD::FMRRD";
297 case ARMISD::FMDRR
: return "ARMISD::FMDRR";
299 case ARMISD::THREAD_POINTER
:return "ARMISD::THREAD_POINTER";
303 //===----------------------------------------------------------------------===//
305 //===----------------------------------------------------------------------===//
308 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
309 static ARMCC::CondCodes
IntCCToARMCC(ISD::CondCode CC
) {
311 default: assert(0 && "Unknown condition code!");
312 case ISD::SETNE
: return ARMCC::NE
;
313 case ISD::SETEQ
: return ARMCC::EQ
;
314 case ISD::SETGT
: return ARMCC::GT
;
315 case ISD::SETGE
: return ARMCC::GE
;
316 case ISD::SETLT
: return ARMCC::LT
;
317 case ISD::SETLE
: return ARMCC::LE
;
318 case ISD::SETUGT
: return ARMCC::HI
;
319 case ISD::SETUGE
: return ARMCC::HS
;
320 case ISD::SETULT
: return ARMCC::LO
;
321 case ISD::SETULE
: return ARMCC::LS
;
325 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. It
326 /// returns true if the operands should be inverted to form the proper
328 static bool FPCCToARMCC(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
329 ARMCC::CondCodes
&CondCode2
) {
331 CondCode2
= ARMCC::AL
;
333 default: assert(0 && "Unknown FP condition!");
335 case ISD::SETOEQ
: CondCode
= ARMCC::EQ
; break;
337 case ISD::SETOGT
: CondCode
= ARMCC::GT
; break;
339 case ISD::SETOGE
: CondCode
= ARMCC::GE
; break;
340 case ISD::SETOLT
: CondCode
= ARMCC::MI
; break;
341 case ISD::SETOLE
: CondCode
= ARMCC::GT
; Invert
= true; break;
342 case ISD::SETONE
: CondCode
= ARMCC::MI
; CondCode2
= ARMCC::GT
; break;
343 case ISD::SETO
: CondCode
= ARMCC::VC
; break;
344 case ISD::SETUO
: CondCode
= ARMCC::VS
; break;
345 case ISD::SETUEQ
: CondCode
= ARMCC::EQ
; CondCode2
= ARMCC::VS
; break;
346 case ISD::SETUGT
: CondCode
= ARMCC::HI
; break;
347 case ISD::SETUGE
: CondCode
= ARMCC::PL
; break;
349 case ISD::SETULT
: CondCode
= ARMCC::LT
; break;
351 case ISD::SETULE
: CondCode
= ARMCC::LE
; break;
353 case ISD::SETUNE
: CondCode
= ARMCC::NE
; break;
359 HowToPassArgument(MVT::ValueType ObjectVT
, unsigned NumGPRs
,
360 unsigned StackOffset
, unsigned &NeededGPRs
,
361 unsigned &NeededStackSize
, unsigned &GPRPad
,
362 unsigned &StackPad
, unsigned Flags
) {
367 unsigned align
= (Flags
>> ISD::ParamFlags::OrigAlignmentOffs
);
368 GPRPad
= NumGPRs
% ((align
+ 3)/4);
369 StackPad
= StackOffset
% align
;
370 unsigned firstGPR
= NumGPRs
+ GPRPad
;
372 default: assert(0 && "Unhandled argument type!");
384 else if (firstGPR
== 3) {
392 /// LowerCALL - Lowering a ISD::CALL node into a callseq_start <-
393 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
395 SDOperand
ARMTargetLowering::LowerCALL(SDOperand Op
, SelectionDAG
&DAG
) {
396 MVT::ValueType RetVT
= Op
.Val
->getValueType(0);
397 SDOperand Chain
= Op
.getOperand(0);
398 unsigned CallConv
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getValue();
399 assert((CallConv
== CallingConv::C
||
400 CallConv
== CallingConv::Fast
) && "unknown calling convention");
401 SDOperand Callee
= Op
.getOperand(4);
402 unsigned NumOps
= (Op
.getNumOperands() - 5) / 2;
403 unsigned ArgOffset
= 0; // Frame mechanisms handle retaddr slot
404 unsigned NumGPRs
= 0; // GPRs used for parameter passing.
406 // Count how many bytes are to be pushed on the stack.
407 unsigned NumBytes
= 0;
409 // Add up all the space actually used.
410 for (unsigned i
= 0; i
< NumOps
; ++i
) {
415 MVT::ValueType ObjectVT
= Op
.getOperand(5+2*i
).getValueType();
416 unsigned Flags
= Op
.getConstantOperandVal(5+2*i
+1);
417 HowToPassArgument(ObjectVT
, NumGPRs
, NumBytes
, ObjGPRs
, ObjSize
,
418 GPRPad
, StackPad
, Flags
);
419 NumBytes
+= ObjSize
+ StackPad
;
420 NumGPRs
+= ObjGPRs
+ GPRPad
;
423 // Adjust the stack pointer for the new arguments...
424 // These operations are automatically eliminated by the prolog/epilog pass
425 Chain
= DAG
.getCALLSEQ_START(Chain
,
426 DAG
.getConstant(NumBytes
, MVT::i32
));
428 SDOperand StackPtr
= DAG
.getRegister(ARM::SP
, MVT::i32
);
430 static const unsigned GPRArgRegs
[] = {
431 ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
435 std::vector
<std::pair
<unsigned, SDOperand
> > RegsToPass
;
436 std::vector
<SDOperand
> MemOpChains
;
437 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
438 SDOperand Arg
= Op
.getOperand(5+2*i
);
439 unsigned Flags
= Op
.getConstantOperandVal(5+2*i
+1);
440 MVT::ValueType ArgVT
= Arg
.getValueType();
446 HowToPassArgument(ArgVT
, NumGPRs
, ArgOffset
, ObjGPRs
,
447 ObjSize
, GPRPad
, StackPad
, Flags
);
449 ArgOffset
+= StackPad
;
452 default: assert(0 && "Unexpected ValueType for argument!");
454 RegsToPass
.push_back(std::make_pair(GPRArgRegs
[NumGPRs
], Arg
));
457 RegsToPass
.push_back(std::make_pair(GPRArgRegs
[NumGPRs
],
458 DAG
.getNode(ISD::BIT_CONVERT
, MVT::i32
, Arg
)));
461 SDOperand Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, MVT::i32
, Arg
,
462 DAG
.getConstant(0, getPointerTy()));
463 SDOperand Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, MVT::i32
, Arg
,
464 DAG
.getConstant(1, getPointerTy()));
465 RegsToPass
.push_back(std::make_pair(GPRArgRegs
[NumGPRs
], Lo
));
467 RegsToPass
.push_back(std::make_pair(GPRArgRegs
[NumGPRs
+1], Hi
));
469 SDOperand PtrOff
= DAG
.getConstant(ArgOffset
, StackPtr
.getValueType());
470 PtrOff
= DAG
.getNode(ISD::ADD
, MVT::i32
, StackPtr
, PtrOff
);
471 MemOpChains
.push_back(DAG
.getStore(Chain
, Hi
, PtrOff
, NULL
, 0));
476 SDOperand Cvt
= DAG
.getNode(ARMISD::FMRRD
,
477 DAG
.getVTList(MVT::i32
, MVT::i32
),
479 RegsToPass
.push_back(std::make_pair(GPRArgRegs
[NumGPRs
], Cvt
));
481 RegsToPass
.push_back(std::make_pair(GPRArgRegs
[NumGPRs
+1],
484 SDOperand PtrOff
= DAG
.getConstant(ArgOffset
, StackPtr
.getValueType());
485 PtrOff
= DAG
.getNode(ISD::ADD
, MVT::i32
, StackPtr
, PtrOff
);
486 MemOpChains
.push_back(DAG
.getStore(Chain
, Cvt
.getValue(1), PtrOff
,
493 assert(ObjSize
!= 0);
494 SDOperand PtrOff
= DAG
.getConstant(ArgOffset
, StackPtr
.getValueType());
495 PtrOff
= DAG
.getNode(ISD::ADD
, MVT::i32
, StackPtr
, PtrOff
);
496 MemOpChains
.push_back(DAG
.getStore(Chain
, Arg
, PtrOff
, NULL
, 0));
500 ArgOffset
+= ObjSize
;
503 if (!MemOpChains
.empty())
504 Chain
= DAG
.getNode(ISD::TokenFactor
, MVT::Other
,
505 &MemOpChains
[0], MemOpChains
.size());
507 // Build a sequence of copy-to-reg nodes chained together with token chain
508 // and flag operands which copy the outgoing args into the appropriate regs.
510 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
511 Chain
= DAG
.getCopyToReg(Chain
, RegsToPass
[i
].first
, RegsToPass
[i
].second
,
513 InFlag
= Chain
.getValue(1);
516 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
517 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
518 // node so that legalize doesn't hack it.
519 bool isDirect
= false;
520 bool isARMFunc
= false;
521 bool isLocalARMFunc
= false;
522 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
523 GlobalValue
*GV
= G
->getGlobal();
525 bool isExt
= (GV
->isDeclaration() || GV
->hasWeakLinkage() ||
526 GV
->hasLinkOnceLinkage());
527 bool isStub
= (isExt
&& Subtarget
->isTargetDarwin()) &&
528 getTargetMachine().getRelocationModel() != Reloc::Static
;
529 isARMFunc
= !Subtarget
->isThumb() || isStub
;
530 // ARM call to a local ARM function is predicable.
531 isLocalARMFunc
= !Subtarget
->isThumb() && !isExt
;
532 // tBX takes a register source operand.
533 if (isARMFunc
&& Subtarget
->isThumb() && !Subtarget
->hasV5TOps()) {
534 ARMConstantPoolValue
*CPV
= new ARMConstantPoolValue(GV
, ARMPCLabelIndex
,
536 SDOperand CPAddr
= DAG
.getTargetConstantPool(CPV
, getPointerTy(), 2);
537 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, MVT::i32
, CPAddr
);
538 Callee
= DAG
.getLoad(getPointerTy(), DAG
.getEntryNode(), CPAddr
, NULL
, 0);
539 SDOperand PICLabel
= DAG
.getConstant(ARMPCLabelIndex
++, MVT::i32
);
540 Callee
= DAG
.getNode(ARMISD::PIC_ADD
, getPointerTy(), Callee
, PICLabel
);
542 Callee
= DAG
.getTargetGlobalAddress(GV
, getPointerTy());
543 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
545 bool isStub
= Subtarget
->isTargetDarwin() &&
546 getTargetMachine().getRelocationModel() != Reloc::Static
;
547 isARMFunc
= !Subtarget
->isThumb() || isStub
;
548 // tBX takes a register source operand.
549 const char *Sym
= S
->getSymbol();
550 if (isARMFunc
&& Subtarget
->isThumb() && !Subtarget
->hasV5TOps()) {
551 ARMConstantPoolValue
*CPV
= new ARMConstantPoolValue(Sym
, ARMPCLabelIndex
,
553 SDOperand CPAddr
= DAG
.getTargetConstantPool(CPV
, getPointerTy(), 2);
554 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, MVT::i32
, CPAddr
);
555 Callee
= DAG
.getLoad(getPointerTy(), DAG
.getEntryNode(), CPAddr
, NULL
, 0);
556 SDOperand PICLabel
= DAG
.getConstant(ARMPCLabelIndex
++, MVT::i32
);
557 Callee
= DAG
.getNode(ARMISD::PIC_ADD
, getPointerTy(), Callee
, PICLabel
);
559 Callee
= DAG
.getTargetExternalSymbol(Sym
, getPointerTy());
562 // FIXME: handle tail calls differently.
564 if (Subtarget
->isThumb()) {
565 if (!Subtarget
->hasV5TOps() && (!isDirect
|| isARMFunc
))
566 CallOpc
= ARMISD::CALL_NOLINK
;
568 CallOpc
= isARMFunc
? ARMISD::CALL
: ARMISD::tCALL
;
570 CallOpc
= (isDirect
|| Subtarget
->hasV5TOps())
571 ? (isLocalARMFunc
? ARMISD::CALL_PRED
: ARMISD::CALL
)
572 : ARMISD::CALL_NOLINK
;
574 if (CallOpc
== ARMISD::CALL_NOLINK
&& !Subtarget
->isThumb()) {
575 // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
576 Chain
= DAG
.getCopyToReg(Chain
, ARM::LR
,
577 DAG
.getNode(ISD::UNDEF
, MVT::i32
), InFlag
);
578 InFlag
= Chain
.getValue(1);
581 std::vector
<MVT::ValueType
> NodeTys
;
582 NodeTys
.push_back(MVT::Other
); // Returns a chain
583 NodeTys
.push_back(MVT::Flag
); // Returns a flag for retval copy to use.
585 std::vector
<SDOperand
> Ops
;
586 Ops
.push_back(Chain
);
587 Ops
.push_back(Callee
);
589 // Add argument registers to the end of the list so that they are known live
591 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
592 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
593 RegsToPass
[i
].second
.getValueType()));
596 Ops
.push_back(InFlag
);
597 Chain
= DAG
.getNode(CallOpc
, NodeTys
, &Ops
[0], Ops
.size());
598 InFlag
= Chain
.getValue(1);
600 SDOperand CSOps
[] = { Chain
, DAG
.getConstant(NumBytes
, MVT::i32
), InFlag
};
601 Chain
= DAG
.getNode(ISD::CALLSEQ_END
,
602 DAG
.getNodeValueTypes(MVT::Other
, MVT::Flag
),
603 ((RetVT
!= MVT::Other
) ? 2 : 1), CSOps
, 3);
604 if (RetVT
!= MVT::Other
)
605 InFlag
= Chain
.getValue(1);
607 std::vector
<SDOperand
> ResultVals
;
610 // If the call has results, copy the values out of the ret val registers.
612 default: assert(0 && "Unexpected ret value!");
616 Chain
= DAG
.getCopyFromReg(Chain
, ARM::R0
, MVT::i32
, InFlag
).getValue(1);
617 ResultVals
.push_back(Chain
.getValue(0));
618 if (Op
.Val
->getValueType(1) == MVT::i32
) {
619 // Returns a i64 value.
620 Chain
= DAG
.getCopyFromReg(Chain
, ARM::R1
, MVT::i32
,
621 Chain
.getValue(2)).getValue(1);
622 ResultVals
.push_back(Chain
.getValue(0));
623 NodeTys
.push_back(MVT::i32
);
625 NodeTys
.push_back(MVT::i32
);
628 Chain
= DAG
.getCopyFromReg(Chain
, ARM::R0
, MVT::i32
, InFlag
).getValue(1);
629 ResultVals
.push_back(DAG
.getNode(ISD::BIT_CONVERT
, MVT::f32
,
631 NodeTys
.push_back(MVT::f32
);
634 SDOperand Lo
= DAG
.getCopyFromReg(Chain
, ARM::R0
, MVT::i32
, InFlag
);
635 SDOperand Hi
= DAG
.getCopyFromReg(Lo
, ARM::R1
, MVT::i32
, Lo
.getValue(2));
636 ResultVals
.push_back(DAG
.getNode(ARMISD::FMDRR
, MVT::f64
, Lo
, Hi
));
637 NodeTys
.push_back(MVT::f64
);
642 NodeTys
.push_back(MVT::Other
);
644 if (ResultVals
.empty())
647 ResultVals
.push_back(Chain
);
648 SDOperand Res
= DAG
.getNode(ISD::MERGE_VALUES
, NodeTys
, &ResultVals
[0],
650 return Res
.getValue(Op
.ResNo
);
653 static SDOperand
LowerRET(SDOperand Op
, SelectionDAG
&DAG
) {
655 SDOperand Chain
= Op
.getOperand(0);
656 switch(Op
.getNumOperands()) {
658 assert(0 && "Do not know how to return this many arguments!");
661 SDOperand LR
= DAG
.getRegister(ARM::LR
, MVT::i32
);
662 return DAG
.getNode(ARMISD::RET_FLAG
, MVT::Other
, Chain
);
665 Op
= Op
.getOperand(1);
666 if (Op
.getValueType() == MVT::f32
) {
667 Op
= DAG
.getNode(ISD::BIT_CONVERT
, MVT::i32
, Op
);
668 } else if (Op
.getValueType() == MVT::f64
) {
669 // Recursively legalize f64 -> i64.
670 Op
= DAG
.getNode(ISD::BIT_CONVERT
, MVT::i64
, Op
);
671 return DAG
.getNode(ISD::RET
, MVT::Other
, Chain
, Op
,
672 DAG
.getConstant(0, MVT::i32
));
674 Copy
= DAG
.getCopyToReg(Chain
, ARM::R0
, Op
, SDOperand());
675 if (DAG
.getMachineFunction().liveout_empty())
676 DAG
.getMachineFunction().addLiveOut(ARM::R0
);
679 Copy
= DAG
.getCopyToReg(Chain
, ARM::R1
, Op
.getOperand(3), SDOperand());
680 Copy
= DAG
.getCopyToReg(Copy
, ARM::R0
, Op
.getOperand(1), Copy
.getValue(1));
681 // If we haven't noted the R0+R1 are live out, do so now.
682 if (DAG
.getMachineFunction().liveout_empty()) {
683 DAG
.getMachineFunction().addLiveOut(ARM::R0
);
684 DAG
.getMachineFunction().addLiveOut(ARM::R1
);
689 //We must use RET_FLAG instead of BRIND because BRIND doesn't have a flag
690 return DAG
.getNode(ARMISD::RET_FLAG
, MVT::Other
, Copy
, Copy
.getValue(1));
693 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
694 // their target countpart wrapped in the ARMISD::Wrapper node. Suppose N is
695 // one of the above mentioned nodes. It has to be wrapped because otherwise
696 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
697 // be used to form addressing mode. These wrapped nodes will be selected
699 static SDOperand
LowerConstantPool(SDOperand Op
, SelectionDAG
&DAG
) {
700 MVT::ValueType PtrVT
= Op
.getValueType();
701 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
703 if (CP
->isMachineConstantPoolEntry())
704 Res
= DAG
.getTargetConstantPool(CP
->getMachineCPVal(), PtrVT
,
707 Res
= DAG
.getTargetConstantPool(CP
->getConstVal(), PtrVT
,
709 return DAG
.getNode(ARMISD::Wrapper
, MVT::i32
, Res
);
712 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
714 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode
*GA
,
716 MVT::ValueType PtrVT
= getPointerTy();
717 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
718 ARMConstantPoolValue
*CPV
=
719 new ARMConstantPoolValue(GA
->getGlobal(), ARMPCLabelIndex
, ARMCP::CPValue
,
720 PCAdj
, "tlsgd", true);
721 SDOperand Argument
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 2);
722 Argument
= DAG
.getNode(ARMISD::Wrapper
, MVT::i32
, Argument
);
723 Argument
= DAG
.getLoad(PtrVT
, DAG
.getEntryNode(), Argument
, NULL
, 0);
724 SDOperand Chain
= Argument
.getValue(1);
726 SDOperand PICLabel
= DAG
.getConstant(ARMPCLabelIndex
++, MVT::i32
);
727 Argument
= DAG
.getNode(ARMISD::PIC_ADD
, PtrVT
, Argument
, PICLabel
);
729 // call __tls_get_addr.
732 Entry
.Node
= Argument
;
733 Entry
.Ty
= (const Type
*) Type::Int32Ty
;
734 Args
.push_back(Entry
);
735 std::pair
<SDOperand
, SDOperand
> CallResult
=
736 LowerCallTo(Chain
, (const Type
*) Type::Int32Ty
, false, false,
737 CallingConv::C
, false,
738 DAG
.getExternalSymbol("__tls_get_addr", PtrVT
), Args
, DAG
);
739 return CallResult
.first
;
742 // Lower ISD::GlobalTLSAddress using the "initial exec" or
743 // "local exec" model.
745 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode
*GA
,
747 GlobalValue
*GV
= GA
->getGlobal();
749 SDOperand Chain
= DAG
.getEntryNode();
750 MVT::ValueType PtrVT
= getPointerTy();
751 // Get the Thread Pointer
752 SDOperand ThreadPointer
= DAG
.getNode(ARMISD::THREAD_POINTER
, PtrVT
);
754 if (GV
->isDeclaration()){
755 // initial exec model
756 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
757 ARMConstantPoolValue
*CPV
=
758 new ARMConstantPoolValue(GA
->getGlobal(), ARMPCLabelIndex
, ARMCP::CPValue
,
759 PCAdj
, "gottpoff", true);
760 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 2);
761 Offset
= DAG
.getNode(ARMISD::Wrapper
, MVT::i32
, Offset
);
762 Offset
= DAG
.getLoad(PtrVT
, Chain
, Offset
, NULL
, 0);
763 Chain
= Offset
.getValue(1);
765 SDOperand PICLabel
= DAG
.getConstant(ARMPCLabelIndex
++, MVT::i32
);
766 Offset
= DAG
.getNode(ARMISD::PIC_ADD
, PtrVT
, Offset
, PICLabel
);
768 Offset
= DAG
.getLoad(PtrVT
, Chain
, Offset
, NULL
, 0);
771 ARMConstantPoolValue
*CPV
=
772 new ARMConstantPoolValue(GV
, ARMCP::CPValue
, "tpoff");
773 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 2);
774 Offset
= DAG
.getNode(ARMISD::Wrapper
, MVT::i32
, Offset
);
775 Offset
= DAG
.getLoad(PtrVT
, Chain
, Offset
, NULL
, 0);
778 // The address of the thread local variable is the add of the thread
779 // pointer with the offset of the variable.
780 return DAG
.getNode(ISD::ADD
, PtrVT
, ThreadPointer
, Offset
);
784 ARMTargetLowering::LowerGlobalTLSAddress(SDOperand Op
, SelectionDAG
&DAG
) {
785 // TODO: implement the "local dynamic" model
786 assert(Subtarget
->isTargetELF() &&
787 "TLS not implemented for non-ELF targets");
788 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
789 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
790 // otherwise use the "Local Exec" TLS Model
791 if (getTargetMachine().getRelocationModel() == Reloc::PIC_
)
792 return LowerToTLSGeneralDynamicModel(GA
, DAG
);
794 return LowerToTLSExecModels(GA
, DAG
);
797 SDOperand
ARMTargetLowering::LowerGlobalAddressELF(SDOperand Op
,
799 MVT::ValueType PtrVT
= getPointerTy();
800 GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
801 Reloc::Model RelocM
= getTargetMachine().getRelocationModel();
802 if (RelocM
== Reloc::PIC_
) {
803 bool UseGOTOFF
= GV
->hasInternalLinkage() || GV
->hasHiddenVisibility();
804 ARMConstantPoolValue
*CPV
=
805 new ARMConstantPoolValue(GV
, ARMCP::CPValue
, UseGOTOFF
? "GOTOFF":"GOT");
806 SDOperand CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 2);
807 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, MVT::i32
, CPAddr
);
808 SDOperand Result
= DAG
.getLoad(PtrVT
, DAG
.getEntryNode(), CPAddr
, NULL
, 0);
809 SDOperand Chain
= Result
.getValue(1);
810 SDOperand GOT
= DAG
.getNode(ISD::GLOBAL_OFFSET_TABLE
, PtrVT
);
811 Result
= DAG
.getNode(ISD::ADD
, PtrVT
, Result
, GOT
);
813 Result
= DAG
.getLoad(PtrVT
, Chain
, Result
, NULL
, 0);
816 SDOperand CPAddr
= DAG
.getTargetConstantPool(GV
, PtrVT
, 2);
817 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, MVT::i32
, CPAddr
);
818 return DAG
.getLoad(PtrVT
, DAG
.getEntryNode(), CPAddr
, NULL
, 0);
822 /// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol
823 /// even in non-static mode.
824 static bool GVIsIndirectSymbol(GlobalValue
*GV
, Reloc::Model RelocM
) {
825 return RelocM
!= Reloc::Static
&&
826 (GV
->hasWeakLinkage() || GV
->hasLinkOnceLinkage() ||
827 (GV
->isDeclaration() && !GV
->hasNotBeenReadFromBytecode()));
830 SDOperand
ARMTargetLowering::LowerGlobalAddressDarwin(SDOperand Op
,
832 MVT::ValueType PtrVT
= getPointerTy();
833 GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
834 Reloc::Model RelocM
= getTargetMachine().getRelocationModel();
835 bool IsIndirect
= GVIsIndirectSymbol(GV
, RelocM
);
837 if (RelocM
== Reloc::Static
)
838 CPAddr
= DAG
.getTargetConstantPool(GV
, PtrVT
, 2);
840 unsigned PCAdj
= (RelocM
!= Reloc::PIC_
)
841 ? 0 : (Subtarget
->isThumb() ? 4 : 8);
842 ARMCP::ARMCPKind Kind
= IsIndirect
? ARMCP::CPNonLazyPtr
844 ARMConstantPoolValue
*CPV
= new ARMConstantPoolValue(GV
, ARMPCLabelIndex
,
846 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 2);
848 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, MVT::i32
, CPAddr
);
850 SDOperand Result
= DAG
.getLoad(PtrVT
, DAG
.getEntryNode(), CPAddr
, NULL
, 0);
851 SDOperand Chain
= Result
.getValue(1);
853 if (RelocM
== Reloc::PIC_
) {
854 SDOperand PICLabel
= DAG
.getConstant(ARMPCLabelIndex
++, MVT::i32
);
855 Result
= DAG
.getNode(ARMISD::PIC_ADD
, PtrVT
, Result
, PICLabel
);
858 Result
= DAG
.getLoad(PtrVT
, Chain
, Result
, NULL
, 0);
863 SDOperand
ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDOperand Op
,
865 assert(Subtarget
->isTargetELF() &&
866 "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
867 MVT::ValueType PtrVT
= getPointerTy();
868 unsigned PCAdj
= Subtarget
->isThumb() ? 4 : 8;
869 ARMConstantPoolValue
*CPV
= new ARMConstantPoolValue("_GLOBAL_OFFSET_TABLE_",
871 ARMCP::CPValue
, PCAdj
);
872 SDOperand CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 2);
873 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, MVT::i32
, CPAddr
);
874 SDOperand Result
= DAG
.getLoad(PtrVT
, DAG
.getEntryNode(), CPAddr
, NULL
, 0);
875 SDOperand PICLabel
= DAG
.getConstant(ARMPCLabelIndex
++, MVT::i32
);
876 return DAG
.getNode(ARMISD::PIC_ADD
, PtrVT
, Result
, PICLabel
);
879 static SDOperand
LowerVASTART(SDOperand Op
, SelectionDAG
&DAG
,
880 unsigned VarArgsFrameIndex
) {
881 // vastart just stores the address of the VarArgsFrameIndex slot into the
882 // memory location argument.
883 MVT::ValueType PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
884 SDOperand FR
= DAG
.getFrameIndex(VarArgsFrameIndex
, PtrVT
);
885 SrcValueSDNode
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2));
886 return DAG
.getStore(Op
.getOperand(0), FR
, Op
.getOperand(1), SV
->getValue(),
890 static SDOperand
LowerFORMAL_ARGUMENT(SDOperand Op
, SelectionDAG
&DAG
,
891 unsigned *vRegs
, unsigned ArgNo
,
892 unsigned &NumGPRs
, unsigned &ArgOffset
) {
893 MachineFunction
&MF
= DAG
.getMachineFunction();
894 MVT::ValueType ObjectVT
= Op
.getValue(ArgNo
).getValueType();
895 SDOperand Root
= Op
.getOperand(0);
896 std::vector
<SDOperand
> ArgValues
;
897 SSARegMap
*RegMap
= MF
.getSSARegMap();
899 static const unsigned GPRArgRegs
[] = {
900 ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
907 unsigned Flags
= Op
.getConstantOperandVal(ArgNo
+ 3);
908 HowToPassArgument(ObjectVT
, NumGPRs
, ArgOffset
, ObjGPRs
,
909 ObjSize
, GPRPad
, StackPad
, Flags
);
911 ArgOffset
+= StackPad
;
915 unsigned VReg
= RegMap
->createVirtualRegister(&ARM::GPRRegClass
);
916 MF
.addLiveIn(GPRArgRegs
[NumGPRs
], VReg
);
917 vRegs
[NumGPRs
] = VReg
;
918 ArgValue
= DAG
.getCopyFromReg(Root
, VReg
, MVT::i32
);
919 if (ObjectVT
== MVT::f32
)
920 ArgValue
= DAG
.getNode(ISD::BIT_CONVERT
, MVT::f32
, ArgValue
);
921 } else if (ObjGPRs
== 2) {
922 unsigned VReg
= RegMap
->createVirtualRegister(&ARM::GPRRegClass
);
923 MF
.addLiveIn(GPRArgRegs
[NumGPRs
], VReg
);
924 vRegs
[NumGPRs
] = VReg
;
925 ArgValue
= DAG
.getCopyFromReg(Root
, VReg
, MVT::i32
);
927 VReg
= RegMap
->createVirtualRegister(&ARM::GPRRegClass
);
928 MF
.addLiveIn(GPRArgRegs
[NumGPRs
+1], VReg
);
929 vRegs
[NumGPRs
+1] = VReg
;
930 SDOperand ArgValue2
= DAG
.getCopyFromReg(Root
, VReg
, MVT::i32
);
932 if (ObjectVT
== MVT::i64
)
933 ArgValue
= DAG
.getNode(ISD::BUILD_PAIR
, MVT::i64
, ArgValue
, ArgValue2
);
935 ArgValue
= DAG
.getNode(ARMISD::FMDRR
, MVT::f64
, ArgValue
, ArgValue2
);
940 // If the argument is actually used, emit a load from the right stack
942 if (!Op
.Val
->hasNUsesOfValue(0, ArgNo
)) {
943 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
944 int FI
= MFI
->CreateFixedObject(ObjSize
, ArgOffset
);
945 SDOperand FIN
= DAG
.getFrameIndex(FI
, MVT::i32
);
947 ArgValue
= DAG
.getLoad(ObjectVT
, Root
, FIN
, NULL
, 0);
949 SDOperand ArgValue2
=
950 DAG
.getLoad(MVT::i32
, Root
, FIN
, NULL
, 0);
951 if (ObjectVT
== MVT::i64
)
952 ArgValue
= DAG
.getNode(ISD::BUILD_PAIR
, MVT::i64
, ArgValue
, ArgValue2
);
954 ArgValue
= DAG
.getNode(ARMISD::FMDRR
, MVT::f64
, ArgValue
, ArgValue2
);
957 // Don't emit a dead load.
958 ArgValue
= DAG
.getNode(ISD::UNDEF
, ObjectVT
);
961 ArgOffset
+= ObjSize
; // Move on to the next argument.
968 ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op
, SelectionDAG
&DAG
) {
969 std::vector
<SDOperand
> ArgValues
;
970 SDOperand Root
= Op
.getOperand(0);
971 unsigned ArgOffset
= 0; // Frame mechanisms handle retaddr slot
972 unsigned NumGPRs
= 0; // GPRs used for parameter passing.
975 unsigned NumArgs
= Op
.Val
->getNumValues()-1;
976 for (unsigned ArgNo
= 0; ArgNo
< NumArgs
; ++ArgNo
)
977 ArgValues
.push_back(LowerFORMAL_ARGUMENT(Op
, DAG
, VRegs
, ArgNo
,
978 NumGPRs
, ArgOffset
));
980 bool isVarArg
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getValue() != 0;
982 static const unsigned GPRArgRegs
[] = {
983 ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
986 MachineFunction
&MF
= DAG
.getMachineFunction();
987 SSARegMap
*RegMap
= MF
.getSSARegMap();
988 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
989 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
990 unsigned Align
= MF
.getTarget().getFrameInfo()->getStackAlignment();
991 unsigned VARegSize
= (4 - NumGPRs
) * 4;
992 unsigned VARegSaveSize
= (VARegSize
+ Align
- 1) & ~(Align
- 1);
994 // If this function is vararg, store any remaining integer argument regs
995 // to their spots on the stack so that they may be loaded by deferencing
996 // the result of va_next.
997 AFI
->setVarArgsRegSaveSize(VARegSaveSize
);
998 VarArgsFrameIndex
= MFI
->CreateFixedObject(VARegSaveSize
, ArgOffset
+
999 VARegSaveSize
- VARegSize
);
1000 SDOperand FIN
= DAG
.getFrameIndex(VarArgsFrameIndex
, getPointerTy());
1002 SmallVector
<SDOperand
, 4> MemOps
;
1003 for (; NumGPRs
< 4; ++NumGPRs
) {
1004 unsigned VReg
= RegMap
->createVirtualRegister(&ARM::GPRRegClass
);
1005 MF
.addLiveIn(GPRArgRegs
[NumGPRs
], VReg
);
1006 SDOperand Val
= DAG
.getCopyFromReg(Root
, VReg
, MVT::i32
);
1007 SDOperand Store
= DAG
.getStore(Val
.getValue(1), Val
, FIN
, NULL
, 0);
1008 MemOps
.push_back(Store
);
1009 FIN
= DAG
.getNode(ISD::ADD
, getPointerTy(), FIN
,
1010 DAG
.getConstant(4, getPointerTy()));
1012 if (!MemOps
.empty())
1013 Root
= DAG
.getNode(ISD::TokenFactor
, MVT::Other
,
1014 &MemOps
[0], MemOps
.size());
1016 // This will point to the next argument passed via stack.
1017 VarArgsFrameIndex
= MFI
->CreateFixedObject(4, ArgOffset
);
1020 ArgValues
.push_back(Root
);
1022 // Return the new list of results.
1023 std::vector
<MVT::ValueType
> RetVT(Op
.Val
->value_begin(),
1024 Op
.Val
->value_end());
1025 return DAG
.getNode(ISD::MERGE_VALUES
, RetVT
, &ArgValues
[0], ArgValues
.size());
1028 /// isFloatingPointZero - Return true if this is +0.0.
1029 static bool isFloatingPointZero(SDOperand Op
) {
1030 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
1031 return CFP
->isExactlyValue(0.0);
1032 else if (ISD::isEXTLoad(Op
.Val
) || ISD::isNON_EXTLoad(Op
.Val
)) {
1033 // Maybe this has already been legalized into the constant pool?
1034 if (Op
.getOperand(1).getOpcode() == ARMISD::Wrapper
) {
1035 SDOperand WrapperOp
= Op
.getOperand(1).getOperand(0);
1036 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(WrapperOp
))
1037 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
1038 return CFP
->isExactlyValue(0.0);
1044 static bool isLegalCmpImmediate(unsigned C
, bool isThumb
) {
1045 return ( isThumb
&& (C
& ~255U) == 0) ||
1046 (!isThumb
&& ARM_AM::getSOImmVal(C
) != -1);
1049 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
1050 /// the given operands.
1051 static SDOperand
getARMCmp(SDOperand LHS
, SDOperand RHS
, ISD::CondCode CC
,
1052 SDOperand
&ARMCC
, SelectionDAG
&DAG
, bool isThumb
) {
1053 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
.Val
)) {
1054 unsigned C
= RHSC
->getValue();
1055 if (!isLegalCmpImmediate(C
, isThumb
)) {
1056 // Constant does not fit, try adjusting it by one?
1061 if (isLegalCmpImmediate(C
-1, isThumb
)) {
1062 CC
= (CC
== ISD::SETLT
) ? ISD::SETLE
: ISD::SETGT
;
1063 RHS
= DAG
.getConstant(C
-1, MVT::i32
);
1068 if (C
> 0 && isLegalCmpImmediate(C
-1, isThumb
)) {
1069 CC
= (CC
== ISD::SETULT
) ? ISD::SETULE
: ISD::SETUGT
;
1070 RHS
= DAG
.getConstant(C
-1, MVT::i32
);
1075 if (isLegalCmpImmediate(C
+1, isThumb
)) {
1076 CC
= (CC
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETGE
;
1077 RHS
= DAG
.getConstant(C
+1, MVT::i32
);
1082 if (C
< 0xffffffff && isLegalCmpImmediate(C
+1, isThumb
)) {
1083 CC
= (CC
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
1084 RHS
= DAG
.getConstant(C
+1, MVT::i32
);
1091 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
1092 ARMISD::NodeType CompareType
;
1095 CompareType
= ARMISD::CMP
;
1101 // Uses only N and Z Flags
1102 CompareType
= ARMISD::CMPNZ
;
1105 ARMCC
= DAG
.getConstant(CondCode
, MVT::i32
);
1106 return DAG
.getNode(CompareType
, MVT::Flag
, LHS
, RHS
);
1109 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
1110 static SDOperand
getVFPCmp(SDOperand LHS
, SDOperand RHS
, SelectionDAG
&DAG
) {
1112 if (!isFloatingPointZero(RHS
))
1113 Cmp
= DAG
.getNode(ARMISD::CMPFP
, MVT::Flag
, LHS
, RHS
);
1115 Cmp
= DAG
.getNode(ARMISD::CMPFPw0
, MVT::Flag
, LHS
);
1116 return DAG
.getNode(ARMISD::FMSTAT
, MVT::Flag
, Cmp
);
1119 static SDOperand
LowerSELECT_CC(SDOperand Op
, SelectionDAG
&DAG
,
1120 const ARMSubtarget
*ST
) {
1121 MVT::ValueType VT
= Op
.getValueType();
1122 SDOperand LHS
= Op
.getOperand(0);
1123 SDOperand RHS
= Op
.getOperand(1);
1124 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
1125 SDOperand TrueVal
= Op
.getOperand(2);
1126 SDOperand FalseVal
= Op
.getOperand(3);
1128 if (LHS
.getValueType() == MVT::i32
) {
1130 SDOperand Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMCC
, DAG
, ST
->isThumb());
1131 return DAG
.getNode(ARMISD::CMOV
, VT
, FalseVal
, TrueVal
, ARMCC
, Cmp
);
1134 ARMCC::CondCodes CondCode
, CondCode2
;
1135 if (FPCCToARMCC(CC
, CondCode
, CondCode2
))
1136 std::swap(TrueVal
, FalseVal
);
1138 SDOperand ARMCC
= DAG
.getConstant(CondCode
, MVT::i32
);
1139 SDOperand Cmp
= getVFPCmp(LHS
, RHS
, DAG
);
1140 SDOperand Result
= DAG
.getNode(ARMISD::CMOV
, VT
, FalseVal
, TrueVal
,
1142 if (CondCode2
!= ARMCC::AL
) {
1143 SDOperand ARMCC2
= DAG
.getConstant(CondCode2
, MVT::i32
);
1144 // FIXME: Needs another CMP because flag can have but one use.
1145 SDOperand Cmp2
= getVFPCmp(LHS
, RHS
, DAG
);
1146 Result
= DAG
.getNode(ARMISD::CMOV
, VT
, Result
, TrueVal
, ARMCC2
, Cmp2
);
1151 static SDOperand
LowerBR_CC(SDOperand Op
, SelectionDAG
&DAG
,
1152 const ARMSubtarget
*ST
) {
1153 SDOperand Chain
= Op
.getOperand(0);
1154 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
1155 SDOperand LHS
= Op
.getOperand(2);
1156 SDOperand RHS
= Op
.getOperand(3);
1157 SDOperand Dest
= Op
.getOperand(4);
1159 if (LHS
.getValueType() == MVT::i32
) {
1161 SDOperand Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMCC
, DAG
, ST
->isThumb());
1162 return DAG
.getNode(ARMISD::BRCOND
, MVT::Other
, Chain
, Dest
, ARMCC
, Cmp
);
1165 assert(LHS
.getValueType() == MVT::f32
|| LHS
.getValueType() == MVT::f64
);
1166 ARMCC::CondCodes CondCode
, CondCode2
;
1167 if (FPCCToARMCC(CC
, CondCode
, CondCode2
))
1168 // Swap the LHS/RHS of the comparison if needed.
1169 std::swap(LHS
, RHS
);
1171 SDOperand Cmp
= getVFPCmp(LHS
, RHS
, DAG
);
1172 SDOperand ARMCC
= DAG
.getConstant(CondCode
, MVT::i32
);
1173 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
1174 SDOperand Ops
[] = { Chain
, Dest
, ARMCC
, Cmp
};
1175 SDOperand Res
= DAG
.getNode(ARMISD::BRCOND
, VTList
, Ops
, 4);
1176 if (CondCode2
!= ARMCC::AL
) {
1177 ARMCC
= DAG
.getConstant(CondCode2
, MVT::i32
);
1178 SDOperand Ops
[] = { Res
, Dest
, ARMCC
, Res
.getValue(1) };
1179 Res
= DAG
.getNode(ARMISD::BRCOND
, VTList
, Ops
, 4);
1184 SDOperand
ARMTargetLowering::LowerBR_JT(SDOperand Op
, SelectionDAG
&DAG
) {
1185 SDOperand Chain
= Op
.getOperand(0);
1186 SDOperand Table
= Op
.getOperand(1);
1187 SDOperand Index
= Op
.getOperand(2);
1189 MVT::ValueType PTy
= getPointerTy();
1190 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Table
);
1191 ARMFunctionInfo
*AFI
= DAG
.getMachineFunction().getInfo
<ARMFunctionInfo
>();
1192 SDOperand UId
= DAG
.getConstant(AFI
->createJumpTableUId(), PTy
);
1193 SDOperand JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PTy
);
1194 Table
= DAG
.getNode(ARMISD::WrapperJT
, MVT::i32
, JTI
, UId
);
1195 Index
= DAG
.getNode(ISD::MUL
, PTy
, Index
, DAG
.getConstant(4, PTy
));
1196 SDOperand Addr
= DAG
.getNode(ISD::ADD
, PTy
, Index
, Table
);
1197 bool isPIC
= getTargetMachine().getRelocationModel() == Reloc::PIC_
;
1198 Addr
= DAG
.getLoad(isPIC
? MVT::i32
: PTy
, Chain
, Addr
, NULL
, 0);
1199 Chain
= Addr
.getValue(1);
1201 Addr
= DAG
.getNode(ISD::ADD
, PTy
, Addr
, Table
);
1202 return DAG
.getNode(ARMISD::BR_JT
, MVT::Other
, Chain
, Addr
, JTI
, UId
);
1205 static SDOperand
LowerFP_TO_INT(SDOperand Op
, SelectionDAG
&DAG
) {
1207 Op
.getOpcode() == ISD::FP_TO_SINT
? ARMISD::FTOSI
: ARMISD::FTOUI
;
1208 Op
= DAG
.getNode(Opc
, MVT::f32
, Op
.getOperand(0));
1209 return DAG
.getNode(ISD::BIT_CONVERT
, MVT::i32
, Op
);
1212 static SDOperand
LowerINT_TO_FP(SDOperand Op
, SelectionDAG
&DAG
) {
1213 MVT::ValueType VT
= Op
.getValueType();
1215 Op
.getOpcode() == ISD::SINT_TO_FP
? ARMISD::SITOF
: ARMISD::UITOF
;
1217 Op
= DAG
.getNode(ISD::BIT_CONVERT
, MVT::f32
, Op
.getOperand(0));
1218 return DAG
.getNode(Opc
, VT
, Op
);
1221 static SDOperand
LowerFCOPYSIGN(SDOperand Op
, SelectionDAG
&DAG
) {
1222 // Implement fcopysign with a fabs and a conditional fneg.
1223 SDOperand Tmp0
= Op
.getOperand(0);
1224 SDOperand Tmp1
= Op
.getOperand(1);
1225 MVT::ValueType VT
= Op
.getValueType();
1226 MVT::ValueType SrcVT
= Tmp1
.getValueType();
1227 SDOperand AbsVal
= DAG
.getNode(ISD::FABS
, VT
, Tmp0
);
1228 SDOperand Cmp
= getVFPCmp(Tmp1
, DAG
.getConstantFP(0.0, SrcVT
), DAG
);
1229 SDOperand ARMCC
= DAG
.getConstant(ARMCC::LT
, MVT::i32
);
1230 return DAG
.getNode(ARMISD::CNEG
, VT
, AbsVal
, AbsVal
, ARMCC
, Cmp
);
1233 static SDOperand
LowerBIT_CONVERT(SDOperand Op
, SelectionDAG
&DAG
) {
1234 // Turn f64->i64 into FMRRD.
1235 assert(Op
.getValueType() == MVT::i64
&&
1236 Op
.getOperand(0).getValueType() == MVT::f64
);
1238 Op
= Op
.getOperand(0);
1239 SDOperand Cvt
= DAG
.getNode(ARMISD::FMRRD
, DAG
.getVTList(MVT::i32
, MVT::i32
),
1242 // Merge the pieces into a single i64 value.
1243 return DAG
.getNode(ISD::BUILD_PAIR
, MVT::i64
, Cvt
, Cvt
.getValue(1));
1246 static SDOperand
LowerMUL(SDOperand Op
, SelectionDAG
&DAG
) {
1247 // FIXME: All this code is target-independent. Create a new target-indep
1248 // MULHILO node and move this code to the legalizer.
1250 assert(Op
.getValueType() == MVT::i64
&& "Only handles i64 expand right now!");
1252 SDOperand LL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, MVT::i32
, Op
.getOperand(0),
1253 DAG
.getConstant(0, MVT::i32
));
1254 SDOperand RL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, MVT::i32
, Op
.getOperand(1),
1255 DAG
.getConstant(0, MVT::i32
));
1257 const TargetLowering
&TL
= DAG
.getTargetLoweringInfo();
1258 unsigned LHSSB
= TL
.ComputeNumSignBits(Op
.getOperand(0));
1259 unsigned RHSSB
= TL
.ComputeNumSignBits(Op
.getOperand(1));
1262 // Figure out how to lower this multiply.
1263 if (LHSSB
>= 33 && RHSSB
>= 33) {
1264 // If the input values are both sign extended, we can emit a mulhs+mul.
1265 Lo
= DAG
.getNode(ISD::MUL
, MVT::i32
, LL
, RL
);
1266 Hi
= DAG
.getNode(ISD::MULHS
, MVT::i32
, LL
, RL
);
1267 } else if (LHSSB
== 32 && RHSSB
== 32 &&
1268 TL
.MaskedValueIsZero(Op
.getOperand(0), 0xFFFFFFFF00000000ULL
) &&
1269 TL
.MaskedValueIsZero(Op
.getOperand(1), 0xFFFFFFFF00000000ULL
)) {
1270 // If the inputs are zero extended, use mulhu.
1271 Lo
= DAG
.getNode(ISD::MUL
, MVT::i32
, LL
, RL
);
1272 Hi
= DAG
.getNode(ISD::MULHU
, MVT::i32
, LL
, RL
);
1274 SDOperand LH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, MVT::i32
, Op
.getOperand(0),
1275 DAG
.getConstant(1, MVT::i32
));
1276 SDOperand RH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, MVT::i32
, Op
.getOperand(1),
1277 DAG
.getConstant(1, MVT::i32
));
1279 // Lo,Hi = umul LHS, RHS.
1280 SDOperand Ops
[] = { LL
, RL
};
1281 SDOperand UMul64
= DAG
.getNode(ARMISD::MULHILOU
,
1282 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
, 2);
1284 Hi
= UMul64
.getValue(1);
1285 RH
= DAG
.getNode(ISD::MUL
, MVT::i32
, LL
, RH
);
1286 LH
= DAG
.getNode(ISD::MUL
, MVT::i32
, LH
, RL
);
1287 Hi
= DAG
.getNode(ISD::ADD
, MVT::i32
, Hi
, RH
);
1288 Hi
= DAG
.getNode(ISD::ADD
, MVT::i32
, Hi
, LH
);
1291 // Merge the pieces into a single i64 value.
1292 return DAG
.getNode(ISD::BUILD_PAIR
, MVT::i64
, Lo
, Hi
);
1295 static SDOperand
LowerMULHU(SDOperand Op
, SelectionDAG
&DAG
) {
1296 SDOperand Ops
[] = { Op
.getOperand(0), Op
.getOperand(1) };
1297 return DAG
.getNode(ARMISD::MULHILOU
,
1298 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
, 2).getValue(1);
1301 static SDOperand
LowerMULHS(SDOperand Op
, SelectionDAG
&DAG
) {
1302 SDOperand Ops
[] = { Op
.getOperand(0), Op
.getOperand(1) };
1303 return DAG
.getNode(ARMISD::MULHILOS
,
1304 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
, 2).getValue(1);
1307 static SDOperand
LowerSRx(SDOperand Op
, SelectionDAG
&DAG
,
1308 const ARMSubtarget
*ST
) {
1309 assert(Op
.getValueType() == MVT::i64
&&
1310 (Op
.getOpcode() == ISD::SRL
|| Op
.getOpcode() == ISD::SRA
) &&
1311 "Unknown shift to lower!");
1313 // We only lower SRA, SRL of 1 here, all others use generic lowering.
1314 if (!isa
<ConstantSDNode
>(Op
.getOperand(1)) ||
1315 cast
<ConstantSDNode
>(Op
.getOperand(1))->getValue() != 1)
1318 // If we are in thumb mode, we don't have RRX.
1319 if (ST
->isThumb()) return SDOperand();
1321 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
1322 SDOperand Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, MVT::i32
, Op
.getOperand(0),
1323 DAG
.getConstant(0, MVT::i32
));
1324 SDOperand Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, MVT::i32
, Op
.getOperand(0),
1325 DAG
.getConstant(1, MVT::i32
));
1327 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
1328 // captures the result into a carry flag.
1329 unsigned Opc
= Op
.getOpcode() == ISD::SRL
? ARMISD::SRL_FLAG
:ARMISD::SRA_FLAG
;
1330 Hi
= DAG
.getNode(Opc
, DAG
.getVTList(MVT::i32
, MVT::Flag
), &Hi
, 1);
1332 // The low part is an ARMISD::RRX operand, which shifts the carry in.
1333 Lo
= DAG
.getNode(ARMISD::RRX
, MVT::i32
, Lo
, Hi
.getValue(1));
1335 // Merge the pieces into a single i64 value.
1336 return DAG
.getNode(ISD::BUILD_PAIR
, MVT::i64
, Lo
, Hi
);
1339 SDOperand
ARMTargetLowering::LowerMEMCPY(SDOperand Op
, SelectionDAG
&DAG
) {
1340 SDOperand Chain
= Op
.getOperand(0);
1341 SDOperand Dest
= Op
.getOperand(1);
1342 SDOperand Src
= Op
.getOperand(2);
1343 SDOperand Count
= Op
.getOperand(3);
1345 (unsigned)cast
<ConstantSDNode
>(Op
.getOperand(4))->getValue();
1346 if (Align
== 0) Align
= 1;
1348 ConstantSDNode
*I
= dyn_cast
<ConstantSDNode
>(Count
);
1349 // Just call memcpy if:
1350 // not 4-byte aligned
1352 // size is >= the threshold.
1353 if ((Align
& 3) != 0 ||
1355 I
->getValue() >= 64 ||
1356 (I
->getValue() & 3) != 0) {
1357 MVT::ValueType IntPtr
= getPointerTy();
1358 TargetLowering::ArgListTy Args
;
1359 TargetLowering::ArgListEntry Entry
;
1360 Entry
.Ty
= getTargetData()->getIntPtrType();
1361 Entry
.Node
= Op
.getOperand(1); Args
.push_back(Entry
);
1362 Entry
.Node
= Op
.getOperand(2); Args
.push_back(Entry
);
1363 Entry
.Node
= Op
.getOperand(3); Args
.push_back(Entry
);
1364 std::pair
<SDOperand
,SDOperand
> CallResult
=
1365 LowerCallTo(Chain
, Type::VoidTy
, false, false, CallingConv::C
, false,
1366 DAG
.getExternalSymbol("memcpy", IntPtr
), Args
, DAG
);
1367 return CallResult
.second
;
1370 // Otherwise do repeated 4-byte loads and stores. To be improved.
1371 assert((I
->getValue() & 3) == 0);
1372 assert((Align
& 3) == 0);
1373 unsigned NumMemOps
= I
->getValue() >> 2;
1374 unsigned EmittedNumMemOps
= 0;
1375 unsigned SrcOff
= 0, DstOff
= 0;
1376 MVT::ValueType VT
= MVT::i32
;
1377 unsigned VTSize
= 4;
1378 const unsigned MAX_LOADS_IN_LDM
= 6;
1379 SDOperand LoadChains
[MAX_LOADS_IN_LDM
];
1380 SDOperand Loads
[MAX_LOADS_IN_LDM
];
1382 // Emit up to 4 loads, then a TokenFactor barrier, then the same
1383 // number of stores. The loads and stores will get combined into
1384 // ldm/stm later on.
1385 while(EmittedNumMemOps
< NumMemOps
) {
1387 for (i
=0; i
<MAX_LOADS_IN_LDM
&& EmittedNumMemOps
+i
< NumMemOps
; i
++) {
1388 Loads
[i
] = DAG
.getLoad(VT
, Chain
,
1389 DAG
.getNode(ISD::ADD
, VT
, Src
,
1390 DAG
.getConstant(SrcOff
, VT
)),
1392 LoadChains
[i
] = Loads
[i
].getValue(1);
1396 Chain
= DAG
.getNode(ISD::TokenFactor
, MVT::Other
, &LoadChains
[0], i
);
1398 for (i
=0; i
<MAX_LOADS_IN_LDM
&& EmittedNumMemOps
+i
< NumMemOps
; i
++) {
1399 Chain
= DAG
.getStore(Chain
, Loads
[i
],
1400 DAG
.getNode(ISD::ADD
, VT
, Dest
,
1401 DAG
.getConstant(DstOff
, VT
)),
1405 EmittedNumMemOps
+= i
;
1411 SDOperand
ARMTargetLowering::LowerOperation(SDOperand Op
, SelectionDAG
&DAG
) {
1412 switch (Op
.getOpcode()) {
1413 default: assert(0 && "Don't know how to custom lower this!"); abort();
1414 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
1415 case ISD::GlobalAddress
:
1416 return Subtarget
->isTargetDarwin() ? LowerGlobalAddressDarwin(Op
, DAG
) :
1417 LowerGlobalAddressELF(Op
, DAG
);
1418 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
1419 case ISD::CALL
: return LowerCALL(Op
, DAG
);
1420 case ISD::RET
: return LowerRET(Op
, DAG
);
1421 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
, Subtarget
);
1422 case ISD::BR_CC
: return LowerBR_CC(Op
, DAG
, Subtarget
);
1423 case ISD::BR_JT
: return LowerBR_JT(Op
, DAG
);
1424 case ISD::VASTART
: return LowerVASTART(Op
, DAG
, VarArgsFrameIndex
);
1425 case ISD::SINT_TO_FP
:
1426 case ISD::UINT_TO_FP
: return LowerINT_TO_FP(Op
, DAG
);
1427 case ISD::FP_TO_SINT
:
1428 case ISD::FP_TO_UINT
: return LowerFP_TO_INT(Op
, DAG
);
1429 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
1430 case ISD::BIT_CONVERT
: return LowerBIT_CONVERT(Op
, DAG
);
1431 case ISD::MUL
: return LowerMUL(Op
, DAG
);
1432 case ISD::MULHU
: return LowerMULHU(Op
, DAG
);
1433 case ISD::MULHS
: return LowerMULHS(Op
, DAG
);
1435 case ISD::SRA
: return LowerSRx(Op
, DAG
, Subtarget
);
1436 case ISD::FORMAL_ARGUMENTS
:
1437 return LowerFORMAL_ARGUMENTS(Op
, DAG
);
1438 case ISD::RETURNADDR
: break;
1439 case ISD::FRAMEADDR
: break;
1440 case ISD::GLOBAL_OFFSET_TABLE
: return LowerGLOBAL_OFFSET_TABLE(Op
, DAG
);
1441 case ISD::MEMCPY
: return LowerMEMCPY(Op
, DAG
);
1446 //===----------------------------------------------------------------------===//
1447 // ARM Scheduler Hooks
1448 //===----------------------------------------------------------------------===//
1451 ARMTargetLowering::InsertAtEndOfBasicBlock(MachineInstr
*MI
,
1452 MachineBasicBlock
*BB
) {
1453 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
1454 switch (MI
->getOpcode()) {
1455 default: assert(false && "Unexpected instr type to insert");
1456 case ARM::tMOVCCr
: {
1457 // To "insert" a SELECT_CC instruction, we actually have to insert the
1458 // diamond control-flow pattern. The incoming instruction knows the
1459 // destination vreg to set, the condition code register to branch on, the
1460 // true/false values to select between, and a branch opcode to use.
1461 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1462 ilist
<MachineBasicBlock
>::iterator It
= BB
;
1468 // cmpTY ccX, r1, r2
1470 // fallthrough --> copy0MBB
1471 MachineBasicBlock
*thisMBB
= BB
;
1472 MachineBasicBlock
*copy0MBB
= new MachineBasicBlock(LLVM_BB
);
1473 MachineBasicBlock
*sinkMBB
= new MachineBasicBlock(LLVM_BB
);
1474 BuildMI(BB
, TII
->get(ARM::tBcc
)).addMBB(sinkMBB
)
1475 .addImm(MI
->getOperand(3).getImm());
1476 MachineFunction
*F
= BB
->getParent();
1477 F
->getBasicBlockList().insert(It
, copy0MBB
);
1478 F
->getBasicBlockList().insert(It
, sinkMBB
);
1479 // Update machine-CFG edges by first adding all successors of the current
1480 // block to the new block which will contain the Phi node for the select.
1481 for(MachineBasicBlock::succ_iterator i
= BB
->succ_begin(),
1482 e
= BB
->succ_end(); i
!= e
; ++i
)
1483 sinkMBB
->addSuccessor(*i
);
1484 // Next, remove all successors of the current block, and add the true
1485 // and fallthrough blocks as its successors.
1486 while(!BB
->succ_empty())
1487 BB
->removeSuccessor(BB
->succ_begin());
1488 BB
->addSuccessor(copy0MBB
);
1489 BB
->addSuccessor(sinkMBB
);
1492 // %FalseValue = ...
1493 // # fallthrough to sinkMBB
1496 // Update machine-CFG edges
1497 BB
->addSuccessor(sinkMBB
);
1500 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1503 BuildMI(BB
, TII
->get(ARM::PHI
), MI
->getOperand(0).getReg())
1504 .addReg(MI
->getOperand(1).getReg()).addMBB(copy0MBB
)
1505 .addReg(MI
->getOperand(2).getReg()).addMBB(thisMBB
);
1507 delete MI
; // The pseudo instruction is gone now.
1513 //===----------------------------------------------------------------------===//
1514 // ARM Optimization Hooks
1515 //===----------------------------------------------------------------------===//
1517 /// isLegalAddressImmediate - Return true if the integer value can be used
1518 /// as the offset of the target addressing mode for load / store of the
1520 static bool isLegalAddressImmediate(int64_t V
, MVT::ValueType VT
,
1521 const ARMSubtarget
*Subtarget
) {
1525 if (Subtarget
->isThumb()) {
1531 default: return false;
1546 if ((V
& (Scale
- 1)) != 0)
1549 return V
== V
& ((1LL << 5) - 1);
1555 default: return false;
1560 return V
== V
& ((1LL << 12) - 1);
1563 return V
== V
& ((1LL << 8) - 1);
1566 if (!Subtarget
->hasVFP2())
1571 return V
== V
& ((1LL << 8) - 1);
1575 /// isLegalAddressingMode - Return true if the addressing mode represented
1576 /// by AM is legal for this target, for a load/store of the specified type.
1577 bool ARMTargetLowering::isLegalAddressingMode(const AddrMode
&AM
,
1578 const Type
*Ty
) const {
1579 if (!isLegalAddressImmediate(AM
.BaseOffs
, getValueType(Ty
), Subtarget
))
1582 // Can never fold addr of global into load/store.
1587 case 0: // no scale reg, must be "r+i" or "r", or "i".
1590 if (Subtarget
->isThumb())
1594 // ARM doesn't support any R+R*scale+imm addr modes.
1598 int Scale
= AM
.Scale
;
1599 switch (getValueType(Ty
)) {
1600 default: return false;
1605 // This assumes i64 is legalized to a pair of i32. If not (i.e.
1606 // ldrd / strd are used, then its address mode is same as i16.
1608 if (Scale
< 0) Scale
= -Scale
;
1612 return isPowerOf2_32(Scale
& ~1);
1615 if (((unsigned)AM
.HasBaseReg
+ Scale
) <= 2)
1620 // Note, we allow "void" uses (basically, uses that aren't loads or
1621 // stores), because arm allows folding a scale into many arithmetic
1622 // operations. This should be made more precise and revisited later.
1624 // Allow r << imm, but the imm has to be a multiple of two.
1625 if (AM
.Scale
& 1) return false;
1626 return isPowerOf2_32(AM
.Scale
);
1634 static bool getIndexedAddressParts(SDNode
*Ptr
, MVT::ValueType VT
,
1635 bool isSEXTLoad
, SDOperand
&Base
,
1636 SDOperand
&Offset
, bool &isInc
,
1637 SelectionDAG
&DAG
) {
1638 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
1641 if (VT
== MVT::i16
|| ((VT
== MVT::i8
|| VT
== MVT::i1
) && isSEXTLoad
)) {
1643 Base
= Ptr
->getOperand(0);
1644 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
1645 int RHSC
= (int)RHS
->getValue();
1646 if (RHSC
< 0 && RHSC
> -256) {
1648 Offset
= DAG
.getConstant(-RHSC
, RHS
->getValueType(0));
1652 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
1653 Offset
= Ptr
->getOperand(1);
1655 } else if (VT
== MVT::i32
|| VT
== MVT::i8
|| VT
== MVT::i1
) {
1657 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
1658 int RHSC
= (int)RHS
->getValue();
1659 if (RHSC
< 0 && RHSC
> -0x1000) {
1661 Offset
= DAG
.getConstant(-RHSC
, RHS
->getValueType(0));
1662 Base
= Ptr
->getOperand(0);
1667 if (Ptr
->getOpcode() == ISD::ADD
) {
1669 ARM_AM::ShiftOpc ShOpcVal
= ARM_AM::getShiftOpcForNode(Ptr
->getOperand(0));
1670 if (ShOpcVal
!= ARM_AM::no_shift
) {
1671 Base
= Ptr
->getOperand(1);
1672 Offset
= Ptr
->getOperand(0);
1674 Base
= Ptr
->getOperand(0);
1675 Offset
= Ptr
->getOperand(1);
1680 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
1681 Base
= Ptr
->getOperand(0);
1682 Offset
= Ptr
->getOperand(1);
1686 // FIXME: Use FLDM / FSTM to emulate indexed FP load / store.
1690 /// getPreIndexedAddressParts - returns true by value, base pointer and
1691 /// offset pointer and addressing mode by reference if the node's address
1692 /// can be legally represented as pre-indexed load / store address.
1694 ARMTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDOperand
&Base
,
1696 ISD::MemIndexedMode
&AM
,
1697 SelectionDAG
&DAG
) {
1698 if (Subtarget
->isThumb())
1703 bool isSEXTLoad
= false;
1704 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
1705 Ptr
= LD
->getBasePtr();
1706 VT
= LD
->getLoadedVT();
1707 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
1708 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
1709 Ptr
= ST
->getBasePtr();
1710 VT
= ST
->getStoredVT();
1715 bool isLegal
= getIndexedAddressParts(Ptr
.Val
, VT
, isSEXTLoad
, Base
, Offset
,
1718 AM
= isInc
? ISD::PRE_INC
: ISD::PRE_DEC
;
1724 /// getPostIndexedAddressParts - returns true by value, base pointer and
1725 /// offset pointer and addressing mode by reference if this node can be
1726 /// combined with a load / store to form a post-indexed load / store.
1727 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode
*N
, SDNode
*Op
,
1730 ISD::MemIndexedMode
&AM
,
1731 SelectionDAG
&DAG
) {
1732 if (Subtarget
->isThumb())
1737 bool isSEXTLoad
= false;
1738 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
1739 VT
= LD
->getLoadedVT();
1740 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
1741 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
1742 VT
= ST
->getStoredVT();
1747 bool isLegal
= getIndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
1750 AM
= isInc
? ISD::POST_INC
: ISD::POST_DEC
;
1756 void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op
,
1758 uint64_t &KnownZero
,
1760 unsigned Depth
) const {
1763 switch (Op
.getOpcode()) {
1765 case ARMISD::CMOV
: {
1766 // Bits are known zero/one if known on the LHS and RHS.
1767 ComputeMaskedBits(Op
.getOperand(0), Mask
, KnownZero
, KnownOne
, Depth
+1);
1768 if (KnownZero
== 0 && KnownOne
== 0) return;
1770 uint64_t KnownZeroRHS
, KnownOneRHS
;
1771 ComputeMaskedBits(Op
.getOperand(1), Mask
,
1772 KnownZeroRHS
, KnownOneRHS
, Depth
+1);
1773 KnownZero
&= KnownZeroRHS
;
1774 KnownOne
&= KnownOneRHS
;
1780 //===----------------------------------------------------------------------===//
1781 // ARM Inline Assembly Support
1782 //===----------------------------------------------------------------------===//
1784 /// getConstraintType - Given a constraint letter, return the type of
1785 /// constraint it is for this target.
1786 ARMTargetLowering::ConstraintType
1787 ARMTargetLowering::getConstraintType(const std::string
&Constraint
) const {
1788 if (Constraint
.size() == 1) {
1789 switch (Constraint
[0]) {
1791 case 'l': return C_RegisterClass
;
1792 case 'w': return C_RegisterClass
;
1795 return TargetLowering::getConstraintType(Constraint
);
1798 std::pair
<unsigned, const TargetRegisterClass
*>
1799 ARMTargetLowering::getRegForInlineAsmConstraint(const std::string
&Constraint
,
1800 MVT::ValueType VT
) const {
1801 if (Constraint
.size() == 1) {
1802 // GCC RS6000 Constraint Letters
1803 switch (Constraint
[0]) {
1805 // FIXME: in thumb mode, 'l' is only low-regs.
1808 return std::make_pair(0U, ARM::GPRRegisterClass
);
1811 return std::make_pair(0U, ARM::SPRRegisterClass
);
1813 return std::make_pair(0U, ARM::DPRRegisterClass
);
1817 return TargetLowering::getRegForInlineAsmConstraint(Constraint
, VT
);
1820 std::vector
<unsigned> ARMTargetLowering::
1821 getRegClassForInlineAsmConstraint(const std::string
&Constraint
,
1822 MVT::ValueType VT
) const {
1823 if (Constraint
.size() != 1)
1824 return std::vector
<unsigned>();
1826 switch (Constraint
[0]) { // GCC ARM Constraint Letters
1830 return make_vector
<unsigned>(ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
,
1831 ARM::R4
, ARM::R5
, ARM::R6
, ARM::R7
,
1832 ARM::R8
, ARM::R9
, ARM::R10
, ARM::R11
,
1833 ARM::R12
, ARM::LR
, 0);
1836 return make_vector
<unsigned>(ARM::S0
, ARM::S1
, ARM::S2
, ARM::S3
,
1837 ARM::S4
, ARM::S5
, ARM::S6
, ARM::S7
,
1838 ARM::S8
, ARM::S9
, ARM::S10
, ARM::S11
,
1839 ARM::S12
,ARM::S13
,ARM::S14
,ARM::S15
,
1840 ARM::S16
,ARM::S17
,ARM::S18
,ARM::S19
,
1841 ARM::S20
,ARM::S21
,ARM::S22
,ARM::S23
,
1842 ARM::S24
,ARM::S25
,ARM::S26
,ARM::S27
,
1843 ARM::S28
,ARM::S29
,ARM::S30
,ARM::S31
, 0);
1845 return make_vector
<unsigned>(ARM::D0
, ARM::D1
, ARM::D2
, ARM::D3
,
1846 ARM::D4
, ARM::D5
, ARM::D6
, ARM::D7
,
1847 ARM::D8
, ARM::D9
, ARM::D10
,ARM::D11
,
1848 ARM::D12
,ARM::D13
,ARM::D14
,ARM::D15
, 0);
1852 return std::vector
<unsigned>();